@ adaptec,inc.

SCSI

Development

System

Reference

Manual

SDS-1

Revision 1.2

August 1986

Table of Contents
Section Page

INTRO.® SDS-1 INTRODUCTIONccccecveeccscscscscscsocsscsssees INTRO-1
INTRO.]1l SDS-1 OVEYXVIEW seeesecsccsssoscccsssoscsssssssssecess INTRO-1
INTRO.2 SDS-1 Product Design GoalsS ..eccesceeccececssssssssses INTRO-2
INTRO.3 SDS-1 Development System Product Features INTRO-3
INTRO.4 System Components ..c.cceeeececsccceccscscsssssssesss INTRO-5
INTRO.5 Using The SDS-1c.eeeecccccsasscccossnsssssssass INTRO-6

INTRO.5.1 SDS-1 Architectural ConceptS .e.ceeeeeccececssss INTRO-8
INTRO.5.1.1 BUffers ...eceeeceeccecescsccsccccssssnoecsssssss INTRO-8
INTRO.5.1.2 Hardware COMPAYXE .e.esecesccscssscsssessseess INTRO-9
INTRO.5.1.3 I/0 Driver/MENU Execution Environment INTRO-10

INTRO.6 Help SyStem .ceeeecececcecccceccaccccocasssssssasses INTRO-12

MENU.Q MENU INTERFACE¢c.cccceecessccccsccsscssasscasecsss MENU-1
MENU.1l Introduction/OVeIVieW .eececcececscocssocscssesssscsee MENU-1
MENU.l.1 Parameter Setup in Edit Mode ..ceceecsscecseess MENU-2
MENU.1.2 Function EXeCULIiON .iceeeeccocssscsnssccncasssss MENU=-3
MENU.1.3 Trace DiSpPlay cccececccesscccccccsasscsccsscsoses MENU-3
MENU.1.4 Setting Error Action s...ecececccsccaccsscessss MENU=3
MENU.1.5 Menu Interface StateS ..ceeeeecsecessscccsseess MENU-4
MENU.2 SETUP MENU ..tcecceeccssccccssccascsscscnassscssossea MENU-4
MENU.2.1 Execute All Function ..ceesesccsvcccessosssssssss MENU=-5
MENU.3 BUFFER MENU .ccecceccssceccssoscscsvocsccsosssscssscsseses MENU-6
MENU.4 RANDOM MENU ceeeoescoscscossososscssscenscecssssccssssss MENU-6
MENU.5 SEQUENTIAL MENU .esceescccssoscsccscsscsscsscsacssscsssese MENU-8
MENU.6 OTHER I/0 DRIVER MENU (ceceessasccssccsssscscsscesss MENU-9
MENU.7 MP MENU .tcoeeceacsscscscosscscsscsascsasssasscnscsssecses MENU-10
MENU.7.1 Display SCSI Bus Function ...cccececesccesceess MENU-10
MENU.8 FKEY MENU ceveeesocessvoccssosascasacssccscsscssnssss MENU~-11
MENU.8.1 Function Key Selection ..ceeeeesccecscocsoeessss MENU-11
MENU.8.1.1 Display/Edit/Append ModeS ..ccccceceeesssss MENU-12
MENU.B8.1.1.1 Display Mode ...c.ceceecccoocsoscsssssssss MENU-12
MENU.8.1.1.2 Append MOde ..ccecesssssccccsssssssesses MENU-12
MENU.8.1.1.3 Edit MOd€ .cccccoccsccsasosssscossccsss MENU-13
MENU.8.1.1.4 Return to FKEY MENU ..ecceescesescceasss MENU-13
MENU.8.2 Save/Load FKEY Set Functions ...ccecceeeceeeeess MENU-13
MENU.8.2.1 Save FKEY Set Function ...cccecececcasessss MENU-14
MENU.8.2.2 Load FKEY Set Function .ccceccecescsesssssss MENU-14
MENU.B.3 Debugger State ..ccceceeescccccosccoccccocceasssssss MENU-14
MENU.8.4 FKEY Execution Loop Countecccccececesecscss. MENU-14
MENU.8.5 Stopping FKEY Sequence Executionc.eceece.s... MENU-14
MENU.9 OTHER/EXIT MENU .cccececccecsccsccsaccsassasssccssscs MENU-14
MENU.9.1 Save Parameters Function ..ccccccceecccececsecssss MENU-15
MENU.9.2 Load Parameters Function ...cceccecececeecsssessses MENU-15
MENU.9.3 Save and Exit Function ..ecccececccccccscssassecess MENU-15
MENU.9.4 Exit Function ..ccceceescscsceccsccccascscasocsess MENU-15
MENU.9.5 Screen Swap Functioneececeeccecssccesssess MENU=-16
MENU.9.6 Initial Menu Screen Display Function MENU-16
MENU.9.7 Trace Function ...cccecececeececccsescccacceass MENU-16

403110-00 i REV.1.2

Section

MENU.16 Menu Interface Errors
MENU.10.1 No Space for Parameters
MENU.10.2
MENU.10.3 File I/0 Error
MENU.1@.4 Version Mismatch
MENU.10.5
MENU.10.6

SAT.0 STAND-ALONE TEST (SAT) GENERATION PROCESS
SAT.l1 Introduction

Table of Contents

No Space for Function

Maximum Number of Functions

Error in Converting File
PC Mouse Not Installed

® 0 06 006 6000600600006 0600006060000 00

Memory Not Freed ...

® e 0 o 00 o0

e o e e e 0080 00

© © 06 0 0 0 8 % 00 00 0 00 0 0 00T 0006 S SO0 L LSO

SAT.2 SAT Design and CodiNg ..ceeeeccccsccocccsccscsccscocs

SAT.2.1 User Template For SAT
SAT.2.2 SAT Program Creation
SAT.2.2.1 "C"

Notes

® ® ® ® ® 00 0000060000000 00000

® ¢ ® 0 8 0060605 000000000000t

© © 6 606 06 9 060600 0000 0000000000000
® ®6 068 606060000005 060000000
® 6 0 0060 00000 0 ¢ e 0 s
© © 0 0 ¢ 0 ¢ 0 O PP G OO LS LSO 0L 0 LPee e 0
® 6 © ¢ 0 060 060 000 0000000000t

Incompatible File TYPES seecccccsccossccscascs
MENU.1¢.7 File Does Not Exist
MENU.10.8
MENU.10.9

® ® ® % ® 0 000 0000000000000 0o
® ® 00 0 060000 0000 0e 0000

® 06 00 000 000600 008000000000

MENU.1l0.10 Temporary Files Have Not Been Deleted
MENU.10.11 File Name Error
MENU.10.12 Invalid String Pointer;
MENU.1ll Mouse Operations with the Menu Interface

® © 0 0. 5 0 00 00 ¢ 0 ¢ 0 0SS 0SP0G0

SAT.2.3 Test & Documentation Function Library

SAT.2.4 Compilation and Linkage of SAT ...ccecceccecsnccs

SAT.3 SAT Debug

® 0 © 0 6 0 0 5 0 00 0 0L 0GOS LN OSSP 0 00T 0SS0

SAT.3.1 Command Tail Operator -DB=

® © 6 0 00 060000000090 00000

SAT.3.1.1 Debug Level g ®© 8 0 0 0000006000000 0000000000000

SAT.3.1.2 Debug Level 1

® 6 0 0 0 6 0 0 00 0005 00000000000 000

SAT.3.1.3 Debug Level 2 ...iceececccscscccccascscsascssosce
SAT.3.1.4 Debug Level 3 .iieeeccescccsscassscscsssacnse
SAT.3.2 Command Tail Operator -PR ..ccecececcsccccssccas
SAT.4 Library Cataloging .ececccececcecccccccccscccscsccsoccscs

SAT.S5 Error Handling Logic

SAT.6 SAT Execution Halt/Interruption

SAT L] 6 Ll l
SAT L) 6 L 2
SAT.6.3

DV.0 DESIGN
DV.1l Introduction
DV.2 Design Verification Results

DV.2.1 Test Results Documentation

DV.2.2 Test Procedure Documentation

403110-00

® 6 6 0 0 © 0 00 S TS O CE LTSS 0O S E S e S0

® ®© 6060600000 0800000000

Normal End of SAT Program eceececececcccscccccone

ESCAPE Key
CONTROL-BREAK Keys

® e 068 0000000000

VERIFICATION PROCESS

ii

® © 8 © 00 00 8080060 00 00 0PSSO eSS e e s

® 8 6 0000 05 0 0000000000000 0000

® © 6 9 0 0 08 00 00000000 OET TS0 S SE OSSO

® 6 ® 6009 0 00000 ° 0000000 eeeoe

® 6 ©© 00000 ¢ 0060000000000

® ® & 006000 00 0000000000

Page

MENU-16
MENU-16
MENU-16
MENU-16
MENU-17
MENU-17
MENU-17
MENU-17
MENU-17
MENU-17
MENU-18
MENU-18
MENU-18
MENU-18

SAT-1
SAT-1
SAT-3
SAT-3a
SAT-5
SAT-8
SAT-8
SAT-9
SAT-16
SAT-16
SAT-17
SAT-18
SAT-19
SAT-20
SAT-21
SAT-21
SAT-21

SAT-22

SAT-22
SAT-22
SAT-22

DV-1
Dv-1
DV-1
DV-2
DV-4

REV.1.

Table of Contents
Section

RPTG.¢ REPORT GENERATOR
RPTG.1l Introduction
RPTG.1.1 Architecture ...eeeececeas
RPTG.1.2 Basic Operation
RPTG.1.2.1 Test Results Report
RPTG.1.2.2 Test Procedures Report
RPTG.2 Report Generator Operators
RPTG.2.1 Input File Operators (Test Procedure Report) ..
RPTG.2.1.1 Global Operators
RPTG.2.1.1.1 Documentation Boundary (-DB=)
RPTG.2.1.1.2 Start/Stop Document Output Operator ...
RPTG.2.1.1.3 Start/Stop Code Output Operator (-COD)
RPTG.2.1.2 Documentation Line Mode Operators ...cccecee
RPTG.2.1.2.1 Start/Stop Revision Log Output (-REV) .
RPTG.2.1.2.2 Group Title Operator (-GT=)

® 6 8 6 006 000 000006006060 0000000000000 00 00

® © © % 0 00 00 0000000000 L LS eE S ee e o0

@ © © 0 0 00060606 0600 060000000090 060000 000

® ® 606 060000060000 00008009000

® 06 0600 00 00 000000000 000

®© 60 000 0 00 0000000000000

® e 0o 0 00 0 00

® o0 0 00000 00

RPTG.2.1.2.3 Paragraph Title Operator (-PT=) .eeeoeee
RPTG.2.1.2.4 Page Eject Operator (-.PA) .cecccccccen
RPTG.2.1.2.5 Art Insert Operator (-BAI=) ceeeeescscss
RPTG.2.1.2.5.1 Mouse Hardware SetuUP .cesecceoncscns
RPTG.2.1.2.5.2 Mouse Software SetUp deeccececcoccaos
RPTG.2.1.2.5.3 Mouse Drawing or Painting ...ceecee
RPTG.2.1.2.5.4 Saving the PictUre ...ececcccccscss
RPTG.2.1.2.5.5 Exit PC PAINT PLUS and Return
RPTG.2.1.2.5.6 Using the Art Insert Operator
RPTG.2.1.3 Code Line Mode OperatorS ..cecececscccsscss

RPTG.2.1.3.1 Page Eject Operator (-.PA)
RPTG.2.1.4 Revision Log Line Mode Operators .c.eceeeeee
RPTG.2.1.4.1 Page Eject Operator (-.PA)
RPTG.2.2 Batch File Operators
RPTG.2.2.1 Initial Setup
RPTG.2.2.1.1 Documentation Title and Header (-TI=) .
RPTG.2.2.1.2 Creation Date (-CD=)

. RPTG.2.2.1.3 Reference Number or Name (-RN=)
RPTG.2.2.1.4 Filename Output (-FO=)
RPTG.2.2.2 Specifiy File Name (Test Procedures Report)
RPTG.2.2.2.1 File Name Operator (-FN=)
RPTG.2.2.2.2 Implied Mode
RPTG.2.2.3 Messages (Test Results Report)
RPTG.2.3 Command Tail Operators (Test Procedures Report)
RPTG.2.3.1 Output File Switch (-FN=)
RPTG.2.3.2 WordStar File Output (-WS=)
RPTG.2.3.3 RPTGEN Mode (-MD=)
RPTG.2.3.4 Revision Log Switch (-RL)
RPTG.2.3.5 File Reference Number or Name (-RN=)
RPTG.2.3.6 Code Print Switch (-CP=)
RPTG.2.3.7 Page Width Switch and Printer Control
RPTG.2.3.8 Tab Expansion Operator (-TE=)
RPTG.3 Output Report Format
RPTG.3.1 Test Results Report
RPTG.3.2 Test Procedures Report

® ® 0 000000 000

® e e o060 000 00
® 6 5 950 0 00 0006000000000 000 0900
H

® © 8 0 95 6 00 000 00 ¢ 080 L 0000 e

® 0600000000 000
®© 066 00 0 0000000000000 0000

e e e 000 000 000

® ® 500000000000 000
® e 0 000000000000
® © 0 000 0000 000000t
® © 9006000000000 0900
® e o @00
® ®© 0 ¢ 0000000000000
LI Y)
® 8600 000000000
® © © 0560 06060000 5500609060809 0000008000
® 8 0 0 20 000 0000000000000 00000

® 95 000 0005000000000 000000

403110-00 iii

Page

RPTG-1
RPTG-1
RPTG-1
RPTG-2
RPTG-2
RPTG-3
RPTG~6
RPTG-6
RPTG-6
RPTG-6
RPTG-6
RPTG-7
RPTG-7
RPTG-7
RPTG-7
RPTG-8
RPTG-9
RPTG-9
RPTG-9
RPTG-9a
RPTG-9a
RPTG-9b
RPTG-9b
RPTG-9b
RPTG-9b
RPTG-10
RPTG-10
RPTG-10
RPTG-180
RPTG-10
RPTG-10
RPTG-11
RPTG-11
RPTG-11
RPTG-11
RPTG-11
RPTG-12
RPTG-12
RPTG-12
RPTG-12
RPTG-12
RPTG-13
RPTG-13
RPTG-13
RPTG-13
RPTG-13
RPTG-14
RPTG-14
RPTG-14
RPTG-14

REV.1.2

Table of Contents
Section Page

IODVR.@ I/O DRIVER ...ceoeccesscnscssosossscscscsnscassssssessnss IODVR-1
IODVR.1l Execution Environment ..ecceeceecsceccscscsccscacssssss I0DVR-1
IODVR.2 Buffer Management ...cccceeccccecssssscccsossssssaese 10DVR-1

IODVR.2.1 Buffer Wraparound ..cceececceessccecsacosscsecss IODVR-2
IODVR.2.2 Data COMPAriSON .cecececccccssccsccsssocsssnsseese I10ODVR-2
IODVR.2.2.1 Hardware Data COmMPAre€ .eccssceccecsssssses IODVR-3
IODVR.2.2.2 Software Data COMPAre .secceccecsccsassesss IODVR-4
IODVR.3 Control FunctionNS .ceeeeeeececosccccccscsccssssssss I0ODVR-5
IODVR.3.1 I/0 Time OUt ..ceccecseccocosccscscscssosssoass IODVR-6
IODVR.3.2 Parity cecececcoesccscscsassscsesscscsscssocccssssss I0DVR-6
IODVR.3.3 Arbitration .ceceeeeseccsccccsoscssssscccssssesss I0DVR=7
IODVR.3.4 SeleCtiON .cceeecescssssssoscsccsscscssccsscscssss 10DVR-7
IODVR.3.5 SCSI Path Control ...sececececcccsccccscssasssess I10DVR-7
IODVR.3.6 Transfer ModeS ...ecesecccscccsascscasssssnsss IODVR-7
IODVR.3.6.1 PIO Read/Write (PIORW) eceeeeeccocssssesss I0ODVR-8
IODVR.3.6.2 PIO Software Compare (PIOSC) .ececesesssess IODVR-9
IODVR.3.6.3 TR Read/Write (TRRW) .cececececcecscosccsssesss I0ODVR-10
IODVR.3.6.4 TR Software Compare (TRSC) .ecececseccecesss IODVR-11
IODVR.3.6.5 DMA Read/Write (DMARW) eeeeeeececeseecceoss IODVR-12
IODVR.3.6.6 DMA COPY (DMACOPY) <.eeeecececececeeaaeaesss IODVR-13
IODVR.3.6.7 DMA Software Compare (DMASC) .v.eccecesesees. IODVR-14
IODVR.3.6.8 DMA Hardware Compare (DMAHC) ..¢cesceeeess IODVR-15
IODVR.3.6.9 High-Speed Read/Write Copy (HSRW/HSCOPY) . IODVR-16
IODVR.3.6.10 High-Speed Software Compare (HSSC) IODVR-17
IODVR.3.6.11 High-Speed Hardware Compare (HSHC) IODVR-18
IODVR.3.6.12 High-Speed Virtual Memory (HSHCV) IODVR-19
IODVR.3.7 Variable Acknowledge Delay ceceescecsccsccsssss IODVR-21
IODVR.3.8 BUSYWAit .ceceecescessscccoccsnsssosscssnssssssss IODVR-21
IODVR,3.9 AUtOSENSE cecsvsscsccsescscsoscscsscscsscsssess IODVR-22
IODVR.3.10 SCSI Bus State LOGQiNg eeecceecccccsccessosss IODVR-22
IODVR.4 RetuUrn COAES .vceeoscscsssscssscsscsscsssoscssscssss 10DVR-22
IODVR.4.1 Expected Status and Status Mask ..cecccceeee.. IODVR-24
IODVR.5 Statistics Gathering ..cccececeecceccscssscscscsescsssss I0DVR-24
IODVR.6 Sense HandlinNg e.cccceecccccsscccsscssccoscsoascssss IODVR-24

MP.@ MICROPROGRAMMINGccccccaccooscscoccccccscsccasssscss MP-1
MP.1 Execution Environment ..cccccecececccccccvcccccnsoasss MP-1
MP.Z Control Functions ® 0 8 0000 0000000000000 RNSOOLGOSECDS MP-Z

MP.2.1 Function Status ..cccececccccccccccccocccncscnses MP-3
MP.202 StatistiCS Gathering © ® 00000 00000000 LOes0eNSLOLOSPCS MP-3
MP.3 Arbitration TestinNg ..ccecececececcccccscccccccscccsse MP-3
MP.4 Parity Error Generation ® 0000000 000000000000 00000000 MP-G

STLOG.G BUS STATE LOG ® 6 0 0 0 000 5 0000 000 C PO OO0 0SS0 LL LRSS PLESIISIEGE STLOG‘l
STLOG.1 INtroducCtiON .ceeeecececcccsessesccsscsssscscccssssesss STLOG-1
STLOG.l.l Data Acquisition/DiSplay ®® © 0 0000 0000000 SO0 STLOG-Z
STLOG.2 State Log Entries ...c.cccececeecccsccccccccsacsss STLOG-3
STLOG03 Time Stamping @ess0e 00 0000000000000 00csss000000000 STLOG-4
STLOG.4 State Log Reduction Functions ...c.cccceecceecccesss STLOG-4

Section

DEBUG. @

DEBUG.1l Introduction
DEBUG.1l.1 SAT Command Tail Invocation
DEBUG.1.2 Function Invocation
DEBUG.1.3 Error Action Invocation
DEBUG.1.4 Menu Interface Invocation

Table of Contents

SDS-]. DEBUGGER ® 6 5 0 8 0 0 080 00 00000 000 0O 0 E e E GOS0

® © 0 0 000 0000 000 P 0PSO 0L GO L E e L0000 0o
e 00 0 0000000000000 0
® © 0 000000 00 0600000000080 000
®© ¢ 06060 0600600050000 0000000

DEBUG.2 Debugger DiSplay cecececesceoseocscccsassocsascssaccs

DEBUG. 2.1
DEBUG.2.1.1 Test Documentation Fixed Window

Primary DiSplay screen ® 0 000 0000 0000000000000

® e o 00 000 00

DEBUG.2.1.2 Test Documentation Scrolling Window

DEBUG.2.1.3 Status Fixed Window

® 8 60606 00 0060000000000 000

DEBUG.2.1.3.1 Statistics Frame
DEBUG.2.1.3.2 User Counters Frame
DEBUG.2.1.3.3 Buffer Frame
DEBUG.2.1.3.4 SCSI Command Frame

® e @ 00 0000000000000

® © 000 06006 00 060 06000 0000000900

¢ 6 060 060 0000000000000

DEBUG.2.1.4 Trace Display Scrolling Window ...cccceees

DEBUG.2.1.5 Debugger Command Line .
DEBUG.2.2 Secondary Display Screen

® ® 0000 0000000000000

® 6 60 0000000000000 0s00

DEBUG.Z.Z.I BUffer Display ® ®© 0 ¢ 006000000800 0080000800000

DEBUG.2.2.1.1 Data Buffer Display ccceecccceccccccccs
DEBUG.2.2.1.2 State Logging DiSpPlay sececececccscscss

DEBUG.2.3 Debugger Display/Execution Speed ..ecececccces

DEBUG.3 Debug States/Commands
DEBUG.3.1 Trace State
DEBUG.3.1.1 Detailed Descriptions of TRACE Commands

DEBUG.3.2 IOINIT State

® ® © 006 0 020 0606 0000000000000 0000
® 0 © 0 9 0600 00600060 0000006000000 0 04e0s0008

DEBUG.3.l1.1.1 Flow Control (TRACE:Flow)
DEBUG.3.1.1.2 Buffer Functions (TRACE:Buffer)
DEBUG.3.1.1.3 Error Action/Recovery (TRACE:EA/Rec) .
DEBUG.3.1.1.4 Debugger Control (TRACE:Control)

¢ ® o000 000000

® ® © 0 00 0 00 00 00 00O LGP0 SO 00O OO OS SO

DEBUG.3.2.1 Detailed Descriptions of IOINIT Commands .

DEBUG.3.3 IOABRT State

DEBUG.3.2.1.1 Flow Control (IOINIT:Flow)
DEBUG.3.2.1.2 Buffer Functions (IOINIT:Buffer)

o e o0

® © 0 0 00 0 0% 00 0O O OO 0SS OO OSSO S 00

DEBUG.3.3.1 Detailed Descriptions of IOABRT Commands .

DEBUG.3.4 ERROR PROCESSOR States

DEBUG.3.3.1.1 Flow Control (IOABRT:Flow)
DEBUG.3.3.1.2 Buffer Functions (IOABRT:Buffer)
DEBUG.3.3.1.3 Error Action/Recovery (IOABRT:EA/Rec)

® o000 000 000

®© 6 ® 99 8 ¢ 000 0000000000 000

DEBUG.3.4.1 Detailed Descriptions of ERROR PROC Cmds .

DEBUG.3.4.1.1 Flow Control
DEBUG.3.4.1.2 Buffer Functions
DEBUG.3.4.1.3 Error Action/RECOVErY .ceccececoscccccscs

® © © 06060600600 00 0000000000000

® © 9 ® 09 5000000000000 0

DEBUG.3.5 SAT Execution Halt/Interruption .ccececececceccocecs
DEBUG.3.5.1 Normal End of SAT Program eeececcececcccccecs
DEBUG.3.5.2 ESCAPE K@Y ccseccccsccsosscscsssccscnsascscscse
DEBUG.3.5.3 CONTROL-BREAK KEYS cecececcccscscccsassansce

403110-00 v

Page

DEBUG-1
DEBUG-1
DEBUG-3
DEBUG-3
DEBUG-3
DEBUG-4
DEBUG-4
DEBUG-5
DEBUG-8
DEBUG-8
DEBUG-8
DEBUG-8
DEBUG-9
DEBUG-9
DEBUG-9
DEBUG-10
DEBUG-18
DEBUG-10
DEBUG-10
DEBUG-10
DEBUG-12
DEBUG-13
DEBUG-15
DEBUG-16
DEBUG-18
DEBUG-18
DEBUG-19
DEBUG-19
DEBUG-20
DEBUG-20
DEBUG-22
DEBUG-22
DEBUG-22
DEBUG-22
DEBUG- 24
DEBUG-24
DEBUG-25
DEBUG-25
DEBUG-25
DEBUG-27
DEBUG-27
DEBUG-27
DEBUG-28
DEBUG-28
DEBUG-28
DEBUG-28
DEBUG-29

REV.1.2

Table of Contents

Section Page

DEBUG.4 Miscellaneous Debugger Functions ...cceceeeceee... DEBUG-29
DEBUG.4.1 DOS REtUIN .eceeecccsscsocsosscssseccssecsesnssss DEBUG-29
DEBUG.4.2 CONTROL-BREAK .veececcccscccssasassssassssssses DEBUG-29
DEBUG.4.3 Buffer Modification ...cceccceecscccccssccesssss DEBUG-29
DEBUG.4.4 Buffer Save/LO83 .ccccececcsccscssssssssssssss DEBUG-29
DEBUG.4.5 Display SCSI BUS sccscecsssscssasscccsessccssesss DEBUG-29

FLIB.@ FUNCTION LIBRARY OVERVIEW ...cccccccecccsosccoscsssesss FLIB-1
FLIB.l IntroductioOn ..ceccceccccccosccccsessssccsossssosssees FLIB-1
FLIB.2 Setup Test FUnNctioOnS .¢.cececesscccccscccscsssecsseaes FLIB-1

FLIB.2.1 Generic ClaSS cecececccessssssscscossssscoscseee FLIB-1
FLIB.2.1.1 Configuration SetUpP .c.cceoceccecoccscsceessss FLIB-1
FLIB.2.1.2 Buffer SetuUp c.eccecececccscococcssccassesees FLIB=2
FLIB.2.1.3 Error Action/Recovery SetuUP eseeececssseess FLIB-2
FLIB.2.1.4 Timer, Counter and Delay SetupP ..eeceesse.. FLIB-3
FLIB.2.1.5 Miscellan€oOuS cccccecesscescsasscosnsssccceses FLIB=3

FLIB.2.2 I/0 Driver ClaSS ..cceocecccccscossscsccsssccscses FLIB-4
FLIB.2.2.1 SCSI Related FuUnNCtiONS ccescvcccccsssseeses FLIB=4
FLIB.2.2.2 I/0 Driver Status Functions ...cccececeeses. FLIB-4
FLIB.2.2.3 Dblk() FunctionsS ..cceccscecesccccsccasasss FLIB-4

FLIB.2.3 Microprogramming ClaSS ..ccecececcsccccsscscceece FLIB=5

FLIB.3 Execution Test FUNCtionNS .cececeecccccscccccscossceeses FLIB=5

FLIB.3.1 Generic ClaSS .esecececscesscsccncsscscssssssessssse FLIB-5S

FLIB.3.2 I/0 Driver ClaSS ceccecececsccocssaccsssssoncessse FLIB-6
FLIB.3.2.1 General Purpose SCSI Functions (Commands) . FLIB-6
FLIB.3.2.2 Random Access Device Functions ...ceeeeeeee FLIB=7
FLIB.3.2.3 Sequential Access Device Functions FLIB-8

FLIB.3.3 Microprogramming ClaSS e.cecsseccscscssscscsssssss FLIB=9

FLIB.4 Data Analysis/Reduction Test Functions FLIB-10

FLIB.4.1 Generic ClasSS eeeeeccesoccccccsscssssssscasesese FLIB=10

FLIB.4.2 I/0O Driver ClaSS cececceccccscscscsccassssossssseee FLIB-11

FLIB.4.3 Microprogramming ClaSS ec.cecccecsccccccocccsssecse FLIB-11

FLIB.5 Report Documentation Functionsccccceceeeecsees FLIB-12

403110-00 vi REV.1.2

LIST OF APPENDIXES

o
]
Q
o

Appendix

APPENDIX A: SDS-1 FUNCTION LIBRARY ...ccccccecscceccccascanas
A.l Function LiStinNgS .eeececcecsscccssonosssosrascssccscssces
A.l.1 Functions Listed by Type, Class and GroupsS
A.l.2 Functions Listed Alphabetically ccececescecccoccss

A.2 Detailed Function Definitions (Listed Alphabetically).

»w?»v
HWOW N+

>

APPENDIX B: MISCELLANEOUS ...ivcececccccososscscssssossossoes
B.1l SDS-1 System Software Definition ..cieeececcccncscccces
B.2 Drive C: DirectOry TrE€ ..ceeeecceccccsssscscssosscosnasascs
B.3 SCSI Hardware Interface ..eeceecscessccssscccssccscsncs
B.4 SDS~1 Software MEmMOXY MAP ceeecececooccssoscsccsnsnccns
B.5 Design Verification EXample .eccseeccccccssscassasccccs

B.5.1 Design Verification Batch File ...vieeccesoccccsns
B.5.2 Test Procedure REPOIL .teieeccescescescsncssccncans
B.5.3 Test ResultsS REPOIt .eecevececcscccccsoccscoccccasns
B.5.4 SAT SoUXCe COGE .secesacsesccccscaccncsssocssncssas

L
2 W

APPENDIX C: CONFIGURATION CONTROL ® ® 8 0 ® & 5 5 0 0 O 6 0 O O 6 " OO e e
C.1l Reference Manual Configuration Controlccceececcccs

an wmmw?mwmwm
BN IO T W

|
N

403110-00 vii REV.1.2

“L.O.F.

LIST OF FIGURES
Figure Page

“INTRO-F
INTRO-Fl. SDS-1 System Level Block Diagram ...ececeeee... INTRO-1
INTRO-F2. SDS-1 ArchitectUre ...ceeeesseecsescccseacscssss INTRO-3
INTRO-F3. System HOOKUP .cccececcccceccsssosccsssccccscecsse INTRO-6
INTRO-F4. SDS-1 Buffer Architecturec.ceeeceeeesecess INTRO-8
INTRO-F5. SDS-1 Hardware COMPArE .oecesesesssescsssseesss INTRO-9
INTRO-F6. MENU/I/0 Driver Execution Environment INTRO-10
INTRO-F7. RTFL Debugger Display ..ceceeecececccaccassessss INTRO-11
INTRO-F8. SDS-1 Help SyStem .eeceseesccsccccsccsassecsses INTRO-13

“MENU-F
MENU-F1. Menu Interface Execution Environments MENU-1
MENU=-F2. - Menu Interface StateS .ceesesccocssccssssossssse MENU-4
MENU-F3. SETUP Menu SCreeN ..ccsescscccscacscscsascseses MENU-5
MENU-F4. BUFFER MeNnuU SCXeeN eccececcccssccscscssccsceasss MENU-6
MENU-FS5. RANDOM Menu SCXEeEeN ..ceesevsccssscsscssssssscseses MENU-7
MENU-F6. SEQUENTIAL Menu SCreeN .ceeseescssccsscsessscss MENU-8
MENU-F7. I/0 DRIVER Menu SCIEEN .cececscesscsscssssssess MENU-9
MENU-F8. Microprogramming Menu SCreenccsoceeeeess. MENU-10
MENU-F9. FKEY Menu SCIEEeN ..ceeeccvcccsccsoccsoccsscsccsseses MENU-11
MENU-F10. FKEY Sequence DisSplay ..cccecesccssccsscasssss MENU-12
MENU-Fl1l. OTHER/EXIT Menu SCIXEEeN .seceeccsovssscsseasssssss MENU-15

“SAT-F
SAT-F1l. SAT Component of Design Verification Process . SAT-1
SAT-F2. I1/0 Driver Execution Interfaceccecoeeeeesee SAT-2
SAT-F3. Microprogramming Execution Interface ...¢¢.... SAT-2
SAT-F4. Blank Stand-Alone Test Template (BLANKSAT.C) . SAT-4
SAT-F5. OBBWRCV.C Code LisSting .cceesceeccscsscesassess SAT-10
SAT-F6. Debug Level @ ..cceesscsccesscccccencccesscssase SAT=-17
SAT-F7. Debug Level 1 .(scececececccaccccccccsssccnseees SAT-18
SAT-F8. Debug LevVel 2 .cceececsccscsssssscccssssseccccss SAT-19
SAT-F9. Debug Level 3 .ccciececccccccccacscnsccncnseces SAT-20

“DV-F
DV-F1. Design Verification Process ...ccceccecececccess DV=-1
DV-F2. Blank Design Verification File (BLANKDV.BAT) . DV-2
DV-F3. Test Procedure Batch File (TP.BAT) .ecceeseess DV-4

“RPTG-F

RPTG-F1. Report Generator (Design Verification Process) RPTG-2
RPTG‘FZ. BatCh File Example ® © 6 0 0 0 0 00 0 0 0000 O eSO OB Ce 0o RPTG"'3
RPTG-F3. Source File with Input File Operators Example RPTG-5

~“IODVR-F
IODVR-Fl. 1I1/0 Driver Execution Environment .ccececececessess IODVR-1
IODVR-F2. SDS-1 Buffer Architectureccesocececececcceecs IODVR-2
IODVR-F3. Hardware Compare Architecture ...cceeeeeeceass I0ODVR-4
IODVR-F4. Software Compare Operation Example ..ccc¢ceee.. IODVR-F

403110-00 viii REV.1.2

LIST OF FIGURES
Figure Page

IODVR~F5., 1I/0 Driver Control Functions ..ccceccsececeeeess IODVR-5

IODVR-F6. PIORW Transfer Mode Block Diagramccess... IODVR-8

IODVR-F7. PIOSC Transfer Mode Block Diagram ..c.ecceeeess IODVR-9

IODVR-F8. TRRW Transfer Mode Block Diagram ..eeessseees. IODVR-10
IODVR-F9. TRSC Transfer Mode Block Diagram ...ceceeeee... IODVR-11
IODVR-F10. DMARW Transfer Mode Block Diagram ...eecceeess IODVR-12
IODVR-F11l. DMACOPY Transfer Mode Block Diagram IODVR-13
IODVR-F12. DMASC Transfer Mode Block Diagram ...scese.... IODVR-14
IODVR-F13. DMAHC Transfer Mode Block Diagram ...¢ceeeee.. IODVR-15
IODVR-Fl4. HSRW/HSCOPY Transfer Mode Block Diagram IODVR-16
IODVR-F15. HSSC Transfer Mode Block Diagram ..c.cceceeeee. IODVR-17
IODVR-F16. HSHC Transfer Mode Block Diagram ...c..eeeees.. IODVR-18
IODVR-Fl17. Virtual/Physical Buffer Mapping ..eccceecss... I0DVR-19
IODVR-F18. HSHCV Transfer Mode Block Diagram ...eceeseee.. I10DVR-20
IODVR-F19. REQ/ACK Handshake ..ececeececessccsscscsssceasse IODVR-21
IODVR-F28. I/0 Driver Internal Partitioncceeceeeees. IODVR-22

~“MP-F
MP-F1l. Microprogramming Execution Environment MP-1
MP-F2. Microprogramming Control FunctionsS ...eeeceee. MP-2
MP-F3. Arbitration Test Environmentcccceceeseees MP-3
MP-F4. Example Arbitration SAT ..eeeececscsscscceasess MP-4
MP-F5. Parity Error Testing Example ..ccececcceaseess MP-6
“STLOG-F

STLOG-Fl. 1I/0 Driver Execution Environmentc.eeee... STLOG-1
STLOG-F2. Microprogramming Execution Environment STLOG-2
STLOG_F3. State LOg DlSplay ® © © 5 © 0 ¢ 00 9 9 ° G OO O e OO O SO OSSO STLOG‘Z

“DEBUG-F
DEBUG-Fl. Debugger StateS ..ccecesececessssssssssccsssse DEBUG-2
DEBUG-F2. Debug Level @ ...cccceecceccccoccsoscesscssccesss DEBUG-6
DEBUG-F3. Debug Level 1 ...cceeccecescsscssccoccccsssssss DEBUG-6
DEBUG-F4. Debug Level 2 .ciceeccssscoccsosssosscnsscsseses DEBUG-7
DEBUG-F5. Debug Level 3 ...ccceecccccssscccsscocaccecsss DEBUG-7
DEBUG-F6. Data Buffer Display With Byte Grouping DEBUG-11
DEBUG-F7. Data Buffer Display With Word Grouping DEBUG-11
DEBUG-F8. State Log Display EXample ..c.cccececescecsecsss DEBUG-13
DEBUG-F9. Screen Update LOGIiC .ceeeeeccccccccccccscceesss DEBUG-15
DEBUG-F10. TRACE State Execution/Debugger Flow DEBUG-16
DEBUG-F11l. IOINIT State Execution/Debugger Flow DEBUG-21
DEBUG-F12. IOABRT State Execution/Debugger Flow DEBUG-23
DEBUG-F13. ERROR PROCESSOR States Execution/Debugger Flow DEBUG-26

“APNDXB-F

APNDXB-Fl. SCSI Interface Hardware Block Diagram B-4
APNDXB-FZ. System Software Memory Map s 0 cees 00 eess00 000 B-S

403110-00 ix REV.1.2

LIST OF TABLES
Table Page

“MENU-T
MENU-TI1. Mouse Movement and Button Definitions MENU-18

“RPTG-T
RPTG-T1. RPTGEN Execution Error MeSSageS eesceceseseeess RPTG-3
RPTG-T2. Report Generator Operators ...ceceeececcecessses RPTG-4

“IODVR-T
IODVR-T1. Data Compare Implicit Error Action¢eeee.. IODVR-3
IODVR-T2. Time Out Implicit Error Action ...eceseeeeeeess IODVR-6
IODVR-T3. Acknowledge Delay scescecccosccssscccsssassseaess IODVR-21
IODVR-T4. 1Initiator Status Return CodeS ...ceccceoeeses. I0ODVR-23
IODVR-T5. 1I/0 Driver Status Return Code€S .eesceccecssass I0DVR-23

“STLOG-T
STLOG-T1. State LOg SUMMAXY ccececceccsoscsosccsssssssssss STLOG-3

“DEBUG-T :
DEBUG-T1. Batch or SAT Error Actionccececeessessecs. DEBUG-4
DEBUG-T2. Debugger Display WindoWwS ..ccceseeesccsssessss DEBUG=-5
DEBUG-T3. Sample State Log Entries in State Log Buffer . DEBUG-12
DEBUG-T4. Debugger Display Levels (Stats Gathering On) . DEBUG-14
DEBUG-T5. TRACE State Command Set ..ecccseceeccccsecessses DEBUG-1"
DEBUG-T6. IOINIT State CommMAnNdS .cceeeecscocscssccessssss DEBUG-2Z
DEBUG-T7. IOABRT State Command Set ..cecsecessccscesssss DEBUG-24
DEBUG-T8. ERROR PROCESSOR Command Se€t eeceeeececessecssess DEBUG-26

“APNDXB-T

APNDXB-Tl. SDS‘l System SOftware e e 000 e e e er s o000 0000 B-2
APNDXB-TZ. SDS“‘]. System Drive Directory Tree e o e 000000000 B 3

403110-00 X REV.1.2

“INTRO.@4 SDS-1 INTRODUCTION

“INTRO.1 SDS-1 OVERVIEW

The Adaptec SDS-1 (SCSI Development System) is a stand-alone
computer system designed to fulfill a number of test needs for
SCSI peripheral development and qualification. Figure
INTRO-F1 shows a system level block diagram of the SDS-1 which
includes a hard disk-based computer with graphics monitor,
graphics printer (optional), and mouse interface.

FIGURE T“INTRO-Fl. SDS-1 SYSTEM LEVEL BLOCK DIAGRAM

f

> > Graphics
Printer
SCSI Bus
Mouse) }
\V] v
g L
S H System CRU Graphics
SCSI TARGET C =a Mcnitor
Under Test S r Real Time
{(rict included)J I d Clock
w
a 20ME
r Hard Disk
e

]

Keyboard

~INTRO.2 SDS-1 PRODUCT DESIGN GOALS

The SDS-1 was designed to perform in the following SCSI
development environments for SCSI OEMs and System Integrators:

- Initial

Engineering Debug:

During initial product debug, the development Engineer
needs a versatile but simple tool to use. The SDS-1
Development System's Menu Interface provides a quick,
user-friendly testing capability at the SCSI
electrical, message, command, status and sense levels.

- Final Product Debug:

The time-consuming final steps in product debug require
tools which provide flexibility and power to create
unique tests which can uncover the "hard-to-find" bugs.
The SDS-1 addresses this type of testing within the
Menu Interface via a versatile menu-driven test
compiler. . This feature allows the user to quickly
generate simple test sequences which can be executed
with a single keystroke. The ultimate in flexibility
can be obtained via use of the SDS-1's full Microsoft
"C" compiler in the Stand-Alone Test (SAT).

- Engineering Performance Testing:

Fully documented Engineering Performance tests can be
quickly generated via the SDS-1l's Menu Interface or SAT
utilizing the built-in documentation functions.

- Design Verification/Regression Testing:

The SDS-1 provides a systematic approach to a "hands-
off" initial design verification and regression testing
during the course of the product's life. The Adaptec
"Matched Set" (Test Procedure and Test Results Report)
Documentation system provides the user with an easy-to-
generate Test Procedure and Test Results Report which
tracks the test procedure at a section, subsection,
paragraph and subparagraph level.

- Product Assurance:

403110-00

With its ability to read and compare data up to 1.8
MB/second, the SCSI Development System allows Product
Assurance a quick means of obtaining data reliability
information. And with its Menu Interface, the SDS-1
provides a user-friendly interface with versatility.

“INTRO.3 SDS-1 DEVELOPMENT SYSTEM PRODUCT FEATURES

The power and flexibility of the SDS-1 is provided by a three-
level architectural approach (Figure INTRO-F2): SCSI Interface,
Resident Test/Documentation Function Library (RTFL) and User
Interfaces. The two user interfaces, MENU and SAT (Stand-Alone
Test), provide the user with different levels cf flexibility and

complexity.

FIGURE T“INTRO-F2. SDS-~1 ARCHITECTURE

Design
Verificaticn

USER Control .BRT
INTERFARCES T

MENU Stand-Alore

Interface Test
(SAT.EXE)

|]
|
Resident
Test (and Documentation)
Function Library

8SCSI Interface L
Hardware ———
J

403110-00 INTRO-3 REV.1.2

Somé of the features of the SDS-1 are:

User Interfaces

~-Menu Interface
* Menu Driven Test Sequence Generation
* User Customized Environment

-"C" Compiler for Creating SATs

-Program Debugger

-Batch File Regression Testing

-Adaptec "On-Line Reference Manual"
* One Second Random Access to Reference Manual
* All Manual Artwork On-Line
* Context-Sensitive Reference Manual Access from any User

Input Point

SCSI Environment Control
-Hardware or Software Arbitration (or no arbitration)
~-Complete SCSI LEVEL 17 Command Set Macro (Test Functions) and
Additional Common Command Set (CCS) Functions
-Ability to Create Vendor-Unique SCSI Commands
-Variable Speed/Types of Data Request/Acknowledge Handshake
* Up to 1.8 MB/Sec Asynchronous to SCS1 Development System
Test Adapter On-Board 16K Buffer
* SCSI Development System Memory DMA <==> SCSI Bus
* Programmed I/0
* Transmit/Receive State Machine Handshake (auto ACK gen)
-"On-the-Fly" Data Comparison (real time read after write data
integrity checking)
-SCSI Parity Generation/Checking Enable/Disable
-SCSI Parity Error Generation Capability
~Microprogramming (allows complex SCSI message system
testing/verification)

Architecture
-SDS-1 Backplane Buffers and High-Speed Test Adapter On-Board
Buffer
-Automatic Hardware/Software Data Compare Capability

Documentation

-Adaptec Exclusive Test Procedure Generator (can generate test
procedures utilizing the design verification batch file as a
Table of Contents and the embedded test procedures found in
each Stand-Alone Test)

-Test Sequence Run-Time Operators (provide a 1l:1 tracking
between the execution "Test Results Report" and the "Test
Procedure Report" generated by the Report Generator, known as
the Adaptec Matched Documentation Set)

403110-00 INTRO-4 REV.1.2

~“INTRO.4 SYSTEM COMPONENTS

The SDS-1 is comprised of the following hardware, software and
manual components:

HARDWARE CONTENTS

- SDS-1

640K User Ram

One 360K Floppy Drive

One 20MB Winchester Drive

Real-Time Clock

One Serial Port

One Parallel Port

One SCSI Single or Differential Test Port
89-Column x 25-Line Monochrome Display

~ 80-Column Graphics Printer (Optional)
Desktop Printer Stand
Printer Cable

- Mouse and Mouse Pad
SOFTWARE/MANUALS CONTENTS

- SCSI Development System Software
"On-Line Reference Manual" ;
Resident Test/Documentation Function Library (RTFL)
Run-Time Batch File Documentation Functions
Menu Interface
"C" Stand-Alone Test Generation Routines
Test Procedure Report Generator
SAT/Regression Test Examples
Interactive Editor

- SCSI Development System Reference Manual (Hard Copy)

- SAT Library Catalog Binder

- Microsoft "C" Compiler Diskettes and Reference Manual Set

- PC DOS Diskettes and Reference Manual Set

- Mouse Systems PC PAINT PLUS Diskette and Reference Manual Set
- Computer Reference Manuals

- Real Time Clock Utility Diskette and Reference Manual

- Borland Sidekick Diskette and Manual

403110-00 INTRO-5 REV.1.2

~INTRO.5 USING THE SDS-1

At this point, the user may be reading a magnetic version of the
SDS-1 Reference Manual, which is displayed at system boot time,
or the hard copy version. The following steps will get the user
involved with the SDS-1 and serve as a quick system checkout.

1. SYSTEM SETUP:
The system components (base unit, monitor and keyboard)
should be connected as shown in Figure INTRO-F3. The printer
should be connected and on-line. .For customers
purchasing the SDS-1 without a printer, connect one of the
following qualified printers:

OKIDATA Microline 192
IBM Graphics Printer

The mouse should also be connected (refer to Section
RPTG.2.1.2.5.1. for mouse hardware setup).

FIGURE "INTRO-F3. SYSTEM HOOKUP

Mouse Cable Printer Cable
Power
] X
Ej Mause GRAFHICS
Fower FPRINTER
Monitor Cable
MOUSE AND FAD
SCSI Bus Cable KEYBOARD
L L 1 DIF Monitor Power
Sirgle '] [I
4 Erded VV VYV 1
slélsls s s [s|s K POWER
Power [U R U O T I E GRAPHICS
) 0O |o {0 |o |O (O |O jO Y
SCS1I T IT T |T T T (T T B MONITOR
TARGET R
UNDER 1 |2 |3 |4 |S |6 |7 |8 D
TEST
SYSTEM UNIT

2, SCSI PERIPHERAL HOOKUP:
Next, connect an SCSI peripheral disk or tape drive. 1If
using a disk, try to choose a preformatted one. Pin One of
the SCSI cable points up. It would be easier to run the
example if the initial peripheral requires SCSI bus parity.

3. MENU INTERFACE:
It is now time to leave the "On-Line Reference Manual" and
proceed to the Menu Interface. But before leaving the Help
System, scroll the display such that the top line displayed

403110-00 INTRO-6 : REV.1.2

is 3a. WRITING AND READING:. Now mark this line with Book
Mark 1 by pressing ALT-1 keys (while pressing the ALT key,
press the 1 or number one key).

NOTE: This allows the user to reenter the Reference
Manual (Help System) at this paragraph from the DOS
command line by: C>SDSHELP BM1 or from the reference
manual TOCvia the BOOK MARK SECTION and BMl.

1f a hard copy of the Reference Manual is not available, the
user may want to print out Step 3a: adjust the screen to
Step 3a and press SHIFT-PrtSC. The user may want to do
another print screen since this Step does not fit on a
single screen.

To leave the Reference Manual (Help System), enter the ALT-H
keys (while pressing the ALT key, press the H key).

3a.WRITING AND READING:
After leaving the Reference Manual, invoke MENU by entering:

C>MENU SAMPLES

at the DOS prompt. SAMPLES will initialize the system and
place the user in the RANDOM menu. If the initial peripheral
does not require parity, the user may reset parity(l) in the
SETUP Menu to parity(@) (refer to MENU.1l.1l). To get
acquainted with the SDS-1 MENU, perform the following
operations:

KEYBOARD INPUT
FOR DISK FOR TAPE DESCRIPTION
If Already in Proper Menu, Skip
Performs SCSI Bus Reset
Performs Sense Command
Write 10 Blocks
Rewind Tape
Reads 10 Blocks
Move to BUFFER Menu
Displays Read Buffer
Displays SCSI State Log

sz
NP XISZ3n

M ND e

Return to the Reference Manual by pressing the ALT-H keys.
The user will return to the Reference Manual at MENU.3 BUFFER
MENU. Return to Step 3a by pressing the 1 (number one) key
for Book Mark 1.

NOTE: 1If the user has followed Step 3a, the Reference
Manual (Help System) was entered through MENU. To
return back to MENU, enter ALT-H.

4. SDS-1 ARCHITECTURE BASICS:

At this point, a SCSI write/resad operation has been executed
and the SDS-1's Bus State Log has been displayed. Before

403110-00 INTRO-7 REV.1l.2

proceeding, a few architectural céncepts should be
understood.

INTRO.5.1 SDS-1 ARCHITECTURAL CONCEPTS

INTRO.5.1.1 BUFFERS

Figure INTRO-F4 shows the basic buffer structure of the SDS-1.
Initially, we will focus on the backplane memory buffers:
Write/Reference, Read and Sense. 2All SCSI DATA OUT transfers are
taken from the SDS-1 write buffer. The starting location of the
transfer is set by the Write DMA pointer. The SDS-1 provides a
number of different buffer fill functions which allow the user to
create any data pattern in the write buffer. Unless changed by
the user, the write/reference buffer is the target buffer for all
£fill functions.

With the exception of the sense() command, all SCSI DATA 1IN
transfers write data into the SDS-1 read buffer. The starting
location of the transfer is determined by the Read DMA pointer.

The sense buffer is dedicated to SCSI sense DATA 1IN. Each
sense() command writes data into this buffer starting at DMA
address 4@.

The SDS-1 manages buffer wraparound for the backplane buffers.
This means that if a transfer exceeds the size of the buffer, the
SDS-1 will automatically stop the transfer at the buffer limit,
reset the correct DMA pointer to the start of the buffer, and
continue the transfer.

FIGURE T“INTRO-F4. SDS-1 BUFFER ARCHITECTURE

—————— | ORE Wr/Ref —_—
Read Buffer| = [Jp—————=———
| SCSI Bus
DMA Pointers 4———] l J
Write/Ref
Read
Sense Backplane DMA Control
Backplane
Sense Write/Ref Read Memory
Buffer Buffer
Cmd
Backplane SDS-1
Memory Buffers CPU Status

403110-00 INTRO-8 - REV.1.2

The SDS-1 provides numerous transfer modes: Programmed I1/0
(PI0), Transmit/Receive (TR), Direct Backplane Memory Access
(DMA) and High-Speed Direct Memory Access to the SDS-1 On-Board
Buffer (HS). In addition, various methods of data comparison can
be specified. The following section describes the most
commonly used method, Hardware Compare.

INTRO.5.1.2 HARDWARE COMPARE

When operating in a hardware compare mode, the SDS-1 transfers
SCSI DATA OUT information from the WRITE/reference buffer (see
Figure INTRO-F5) using the DMA pointer. During SCSI DATA 1IN
phases (with the exception of a sense() command), the SCSI bus
data is held on the SCSI bus and compared against the write/ref
buffer (via a hardware comparator) using the Write DMA pointer as
an index into the write/REFERENCE buffer. Since data is read
from the write/REFERENCE buffer via DMA, this is a very fast
operation.

FIGURE T“INTRO-F5. SDS-1 HARDWARE COMPARE

m—— OEBE —_
) | SCSI Bus
‘————)|Compare|(-
DMA Fointers)
Wr/Ref L— P ——J
Sense - —_—
Backplare DMA Cantrol ::]
)]
Serise Write .
Buffer Cmd
SDS-1
cPU
Status

403110-00 INTRO-9 REV.1.2

INTRO.5.1.3 I/0 DRIVER/MENU EXECUTION ENVIRONMENT

Another concept to understand is the Menu Interface/I1/0 Driver
execution environment and its relationship to the Resident Test
Function Library (RTFL). Figure INTRO-F6 shows the basic
architecture of the SDS-1. The Menu Interface is a special
application designed to give the user easy access to the SDS-1
Resident Test Function Library. This library lives in system
memory, just like DOS and is accessible via a fixed entry point.
The Menu Interface simply allows the user to make function calls
to the library in the order chosen. Certain functions within the
function library (such as writer() or readr()) interact with the
SCSI bus. This interaction is accomplished via an 1/0 Driver.

As shown, the I1/0 Driver can report its status to the SCSI Bus
State Log.

FIGURE “INTRO-F6. MENU/I/O0O DRIVER EXECUTION ENVIRONMENT

DGS
i

MENU
Interface

Execution Function

Debuéger *1

Resident Test -
Furction r— St. Log
Library 1/0 Driver 4

1
#1 See Debugper SCSI Interface ———
Services Hardware ~—=— §CSI Bus
o

403110-00 INTRO-10 REV.1.2

The Resident Test Function Library Debugger is heavily utilized
by the §8DS-1's Menu Interface. The Debugger provides the
following services to the MENU:

Service See Figure INTRO-F7
Execution Statistics Display Left-Hand Frame
Buffer/DMA Pointer Display Lower Center Frame
SCS1 Command Block Display Right-Hand Frame

11]

I/0 Driver Control Flags
SCSI Status Byte Display
SCSI Sense Data Display

RTFL Function Execution History Lower Frame
(Trace Display)

In addition to the display services, the RTFL Debugger also
provides a Debugger to aid in the debug of MENU Function Key
(FKEY) sequences or Stand-Alone Tests.

FIGURE “INTRO-F7. RTFL DEBUGGER DISPLAY

I/0 DRIVER STATUS
I1/0 Ops: eF ucQ: 1/0 Command Parameters stat: 00 __
TGT Chks: o} uci: CDB: 08 00 00 c0O 40 QO sense: (old)
INT D Er: O 00 00 00 00 00 00 00 00 00 00
Bytes Wr: FO0400 Wr/Ref: BPFM xfer: DMAHC a.s. sOFF e e
Bytes Rd: S0000 0000 s.1.0N arb.HDW sel.SMA e
Bytes Cp: 20000 Rd Buf: b. p. OFF b.w.OFF e e
Cmp Ers.: (o) ha: © iid: 7 tid: 4 [
TRACE DISPLAY

writer (0S80, 40) overbcw(0S5c0, 0100, 0000, 4000) writer (05c0, 40)

overbew (0600, 0100, 0000, 4000) writer (0600, 40) overbcw (0640, 0100, 0000, 4000)
writer (0640, 40) overbcw (0680, 0100, 0000, 4000) writer (0680, 40)

overbew (06c0, 0100, 0000, 4000) writer(06c0, 40) paragph() ackdelay(2100)
fillpr (O03f, 0000, 0200) savebuf (ORBIMG. TST, 0000, 0200) writer(0an0,a)
paragph () dmarst (R) ackdelay(0) readr(0000,004Q) paragph() dmarst (R)
ackdelay (15) readr (0040,0040) paragph() dmarst (R) ackdelay (255)

readr (0080, 0040) paragph () dmarst (R) readr(00C0O,0040) paragph() dmarst (R)
readr (0300, 001F) readr (031F, 0020) readr (033F,0001) paragph() ackdelay(0)
dmarst (R) readr (0900,0001) readr(0901,0010) readr (0911, O00F)

readr (0920, 0020) group() xfermode (DMAHC, 4000) paragph() fillk (00, 0000, 4000)

403110-00 : INTRO~11 REV.1.2

This concludes the basic SDS-1 architectural concepts. The
following outline is provided in order to guide the user through
the use of the SDS-1 Menu System into Stand-Alone Test Generation
and onto SCSI Design Verification Testing.

MENU System
Individual Menus
Parameter Save/Load
FKEYs
Saving/Loading
Debugging A
Host Emulation (I/0 Driver
operation)

SAT Generation
I/0 Driver Environment
Debugger
State Log
Microprogramming
Function Library

Design Verification

Report Generator

REFERENCE MANUAL
SECTION/SUBSECTION

Menu Interface
Menu Interface/"menu name"
Menu Interface/Other/Exit
Menu Interface/FKEY Menu

"

1/0 Driver

Stand-Alone Test
1/0 Driver
Debugger

State Log
Microprogramming
Function Library
Appendix A

Design Verification

Design Verification

Report Generator

“INTRO.6 HELP SYSTEM

The SDS-1 Help System provides two features to the user. First,
the Help System contains the full SDS-1 Reference Manual
(including artwork) with an electronic Table of Contents (TOC)
which can access any page 1in less than a second. The other
feature is that the Help System is integrated with the SDS-1 Menu
Interface and SDS-1 Debugger to provide the user with "“context-
sensitive help" at any user input point. That is, whenever the
SDS-1 requires a user input, the user can press ALT-H keys to
get more information from the Reference Manual.

403110-00 INTRO-12 REV.1.2

Figure INTRO-F8 shows a diagram of the Help System starting with
the two methods of entry, context-sensitive (ALT-H) or direct
entry (DOS environment). To utilize the direct entry feature of
the SDS-1 Help System, the user enters "SDSHELP xxxxxxxx" at the
DOS prompt, where "xxxxxxxx" is the reference manual entry point.
Below are some examples:

C>SDSHELP writer
C>SDSHELP INTRO.5
C>SDSHERLP

The first command will take the user to the writer() function
description page in Appendix A. The second command will take the
user to Section INTRO.5 and the last command will take the user
to the Electronic Table of Contents (TOC). The electronic TOC is
the default if the reference manual entry point is not found.

FIGURE “INTRO-F8. SDS-1 HELP SYSTEM

SDS-1 INTERACTIVE ENVIRONMENTS
Menu System
SAT Debugger

Context v Alt-H X
Sernsitive (DOS Envircorment) (
Help C)sdshelp

v

-
TOC Section Level) 4

X
—> TOC Subsection Level ————
A
=) 4 TOC Paragraph Level —)
!
v v)\ 4 Alt-H

- <

Il 1 1 1

REFERENCE MANUAL BODY
Exact Image of SDS-1 Reference Manual Including Artwork

Once in the Reference Manual Text, the user can move from one end
of the manual to the other. The three-level TOC provides top-
down access to all SDS-1 subjects.

The user canalso set electronic bookmarkers (ALT-1,ALT-2,...,
ALT-9,ALT-0) and can return to a bookmarker via a single
keystroke (1,2,...,9,0). Bookmarkers can be viewed from the
Section Level of the TOC. They are preserved until the next
system boot or reset.

403110-00 INTRO-13 REV.1.2

Below is a list of commands used in the magnetic version of the

Reference Manual:

IN THE TOC BODY
Select Section, Subsection or Paragraph:
Expand Section, Subsection or Paragraph:
Contract Subsection or Paragraph:
Swap to Original Screen (before Help):
Exit Help Screen:

IN THE REFERENCE MANUAL TEXT BODY
Scan through Text:

Return to TOC:

Set Bookmarker:

Go to Bookmarker:

Swap to Original Screen (before Help):
Exit Help System:

403110-00 INTRO-14

KEYS TO USE:
Up or Down Arrow
Carriage Return
ESC
Space Bar
ALT-H

Up or Down Arrow or
Page Up or Down

ESC

ALT-@ through ALT-9
@ through 9

Space Bar

ALT-H

REV.1.2

“MENU.@ MENU INTERFACE

“MENU.1 INTRODUCTION/OVERVIEW

The Menu Interface allows execution of the Test/Documentation
Functions via an interactive menu-driven system. It supports
both the I/0O Driver and Microprogramming execution environments
as shown in Figure MENU-F1.

FIGURE “MENU-Fl. MENU INTERFACE EXECUTION ENVIRONMENTS

filli () WRITE) 1/0 DRIVER j}———> |OPTIONAL SCSI
filld () BUFFER bus_logen() BUS STARTE
READ <)
BUFFER Data
Compare {) HARDWARE SCSI
Function l: BUS
writer () |USER GEN.) —
readr () I1/0 xfermode () parity ()
sense () COMMAND {arbmaode ()
selmode ()
busywait ()
exp_status()
iid ()
tid ()
filli () WRITE |——————)
filld () BUFFER USER {—) HARDWARE SCS1I
dmaset () MICRO- l: BUS
PROGRAMMING oo ———
campwr () READ A ——d FUNCTION parity ()
dmaset () | BUFFER '
arb()
sell ()
cdbél ()
datain()
statin()
msgin()

403110-00 MENU-1 : REV.1.2

There are currently eight menu displays or screens (SETUP,
BUFFER, RANDOM, SEQUENTIAL, I/O0O DRIVER, MP, FKEY and OTHER/EXIT),
each of which contains a set of functions that can be executed
with a single keystroke. In addition to executing these
functions, there is the ability to edit individual function
parameter(s). The Menu Interface also has the flexibility to
custom-build function sequences that can be executed by a single
keystroke (Fl through F10). The function key (FKEY) sequences
are discussed in more detail in section MENU.8 .

The Menu Interface is invoked by the command:
C>MENU <filename>

where the file name is optional. The file name is the name of a
file that has the stored parameter value set which had been saved
from a previous Menu Interface session. If the file name was not
specified, default parameter values will appear on the menu
screens. :

Once the menu initialization process is done, one of the menu
screens will be displayed. This is the default screen which can
be modified by the init_menu function in the OTHER/EXIT menu.
To display the other menu screens, use the Left or Right Arrow
keys or the menu code which is highlighted on the Menu Page
Select Line displayed at the bottom of the screen. The current
menu screen is noted in inverse video.

The Menu Interface screen contains three major areas: Debugger
Window, Menu Screen and Trace Display. The top portion of the
screen is the Debugger Window which provides the user with
information such as statistics, counters, buffers, SCSI command
bytes, sense display and other status. The Debugger Window is
discussed in more detail in the DEBUG.2.1.3 section. The lower
portion of the screen is the Menu Screen which displays the
current menu with its functions available for execution. The
Trace Display is swapped with the Menu Screen; it shows the
execution history of the Test/Documentation Functions that have
been executed (refer to DEBUG.2.1.4).

“MENU.1.1 PARAMETER SETUP IN THE EDIT MODE

The edit mode is used to set up or modify parameter values. To
enter this mode, hold down the CTRL key while pressing E (will be
written as CTRL-E or “E) at the menu screen. To exit this mode,
enter “E again.

While in the edit mode, the cursor will appear in the current
parameter field which is displayed in inverse video. A help
reference line with a brief description of the current field will
also appear at the bottom of the screen. To move the current
parameter field to the previous or next field, use the Up and
Down Arrow or Return keys. The Home key will move the current
parameter field to the first parameter field at the top of the
menu screen and the End key will move it to the last function.

403110-00 ' MENU-2 REV.1.2

The PgUp and PgDn keys will move up or down a line to the first
parameter field in the line. A summary of the edit mode keys are
displayed at the bottom of the screen.

To edit the parameter value, type in the new value in the
parameter field. The values maybe in decimal, hexadecimal or
alphanumeric. Some parameters are strings which are noted by
double quotes. 1If the value is to be hexadecimal, an "x" or "X"
must appear in the field before the value. For example, decimal
256 is @x100 in hex, the "X" must be present so that the Menu
Interface will interpret this value as a hex value. There is
some range and type checking, so that an error will appear if the
value is not within its limits or if it is an illegal value.
This error will continue to show until a legal value is entered.
The displayed value in the parameter field is the value to be
interpreted by MENU, so be sure the correct value is shown.

Some of the parameters are toggles. To modify these values use
the Left or Right Arrow keys. Refer to the bottom of the screen
for other instructions on editing parameters.

“MENU.l1.2 FUNCTION EXECUTION

When parameters have been setup, the user may execute these
functions. If the user is in the edit mode, be sure to exit that
mode. On the menu screen, each function has a highlighted or
intensified character preceding the function name. This is the
execution key code associated with the function. When this key
is entered, the function will execute using the displayed
parameter value(s). Only functions in the current menu can be
executed.

Some execution key codes are shown in inverse video. These
functions are toggles. Their purpose is to set flags or
variables. They are not part of the Test/Documentation Function
Library.

MENU.1.3 TRACE DISPLAY

When executing a Test/Documentation Library function, the menu
display is replaced by the trace display which shows the function
name and parameter(s) that have been executed. Internal Menu
functions (functions that are not part of the Test/Documentation
Library) do not appear in the trace display.

When in the menu display, the trace display can be viewed by
pressing the Space Bar. Pressing the Space Bar again will return
the user back to the menu display.

MENU.l1.4 SETTING ERROR ACTION

In the Menu Interface, the two error actions available are: LOGC
(lLog and continue) and LOGH (log and halt). These are set by the
iea() and eea() functions in the SETUP menu.

403110-00 MENU-3 REV.1.2

MENU.1.5 MENU INTERFACE STATES

Figure MENU-F2 is a diagram of the Menu Interface states which
display the various states and modes that can be accessed through
the different menus.

FIGURE “MENU-F2.

~“E

SETUR

BUFFER

RANDOM

SEQUENTIAL

I/0 DRIVER

MpP

exec key

- ¢

FKEY

MENU INTERFACE STATES

~E

EDIT

PARAMETER

)

EXECUTE
FUNCTION

OTHER/EXIT

“MENU.2 SETUP MENU

> EXIT TO DOS

DISFLAY FKEY
SERUENCE

v
A

~&] X ~a]

X

IAE v IAA

EDIT FKEY

PRRAMETER FKEY

INSERT/DELETE

FUNCTION

The SETUP menu contains functions that control the execution
environment of SCSI execution functions.
screen is shown on the next page.

403110-00

MENU-4

A typical

SETUP menu

REV.1l.1

FIGURE “MENU-F3. SETUP MENU SCREEN

I/0 DRIVER STATUS

1/0 Ops: (&) uc: 1/0 Command Parameters stat:
TGT Chks: 0 ucl: CDE: __ o o e e sense
INT D Er: Q e e e e
Bytes Wr: (o] Wr/Ref: BPM xfer: DMARW a.s. :0FF e e
Bytes Rd: (o) 0000 s.1.0N arb.HDW sel.SMA e e
Bytes Cp: 0 Rd Buf: EFM b.p.ON b.w.OFF e
Cmp Ers.: 0 Q000 ha: O iid: 7 tid: 4 - e
SDS—-1 MENU (Jun 12 1986 FC=4) SETUF FUNCTIONS
Z:execute_all (1) I:iea("LOGC") ; S:line_mode("S") ;
X:xfermode ("DMARW ", 0x4000); E:eea("LOGC") ;
7:iotol(30) ; Vifixed(1);
F:arbmode ("HDW ") N:autosense (0) ;
J:selmode ("SMART") ; W:busywait (0) ;
Yi:parity(1); G:bus_logen(1);
Q:tid(4) 3 2:ackdelay(0000);
D:iid(00, 07); C:bcou(l);
L:lun(C 0)3; 3:statsen(l);
l:cntlbyte(00); 4:stats_window("G");
A:stats_reset ("A "); P:fillbyte(Ox5R, 0000, O0xFFFF) ;
SETUFP BUFFER RANDOM SEQUENTIAL I1/0 DRIVER MP FKEY OTHER/EXIT
Select Menu: (,),U,B,... Edit Parms:”E Function Exec:Z,X,7,F,... Help:ALT-H

While in the edit mode, reference information or help on any of
these functions can be accessed by moving the cursor to a
parameter in the desired function and holding down the ALT key
and pressing H (will be written as ALT-H). All
Test/Documentation Library functions can be accessed directly
through the edit mode (as described) or through the Table of
Contents in the Help System. There are some functions in the
Menu Interface that are not part of the Test/Documentation
Library. These functions are internal Menu Interface functions
and they will be described throughout this chapter in their
respective places.

“MENU.2.1 EXECUTE ALL FUNCTION

In the SETUP menu, there is only one internal function called
execute_all. This function will execute all of the SETUP
functions listed in the SETUP menu when enabled (parameter set to
1).

In the menu initialization process, the execute_all function is
checked. 1If it is enabled, all of the SETUP functions will be
executed as part of the initialization. Otherwise, none of the
SETUP functions are executed.

The user may also change the existing environment by editing the
SETUP parameters and executing those functions individually or
performing execute_all(l).

403110-00 MENU-5 REV.1.2

“MENU.3 BUFFER MENU

The BUFFER menu contains buffer related functions such as the
various fill functions that can create several different types of
data patterns in the selected buffer. There are other functions
that allow the user to display, load and save buffers, and also
have the ability to reset or set the buffer pointers. A typical
BUFFER menu screen is shown below.

FIGURE “MENU-F4. BUFFER MENU SCREEN

I1/0 DRIVER STATUS

I1/0 Ops: [o} ucO: 1/0 Command Parameters stat: __
TBT Chks: o] uct: CDB: __ __ __ __ __ __ sense:
INT D Er: (o] e e o T
Bytes Wr: o} Wr/Ref: BFM xfer: DMARW a.s. :OFF —— e e
Bytes Rd: ¥] N 0000 s.1.0N arb.HDW sel.SMA o
Rytes Cp: [¢] Rd Buf: BPM b.p.ON b.w.OFF el __
Cmp Ers.: 0 Q000 ha: O iid:s 7 tid: 4 —— o
SDS-1 MENU (Jun 12 198 FC=4) BUFFER FUNCTIONS
G:dmarst ("R") ; W:fillbow(0000, 0x0200, ©OO0Q0,0xFFFF);
Y:dmarst ("W") ; Q:overbcb(00,0x0200, 0000,0xFFFF);
I:dmaset ("R", 0000); A:overbcw(0000, 0x0200, 0000, OxFFFF);
E:dmaset_va("R", 0000000Q) ; D:loadbuf (" "y 0000, ©0000);
3:dmaset_vblk("R"); V:savebuf (" "y 0000, O0000);
P:fillbyte(OxSA, 0000,0xFFFF); E:setbuf (" "y 0000);
L:filld(OO0, 0000,0xFFFF); F:dispbuf ("L *, 0000,0x0010);
J:filli¢ 00, 0000, OXFFFF) ; Z:dispbuf("R ", 0000, 0x0100) ;
N:fillpr(0000, 0000,0xFFFF); T:reset();
C:fillbcb(00,0x0200, QO00, OXFFFF) ;X :xfermode ("DMARW ", 0x4000Q) ;
1:fillk ("00, 00, 00, 00, 00, 00, 00,00", O0000,0x0008); 4:setfill_buf("W");
SETUF BUFFER RANDOM SEQUENTIAL I/0 DRIVER MP FKEY OTHER/EXIT
Select Menu: (,),U,B,... Edit Parms:™E Function Exec:6,Y,I,2,... Help:ALT-H

While in the parameter edit mode, the functions listed below
cannot be accessed directly through the Help System (via ALT-H
keys) since there are no parameters associated with them, but
they are listed in the SDS-1 Reference Manual in the Function
Library Description (Appendix A) under their respective names:

dmarst reset DMA pointer
reset reset SCSI Bus/I/0 Driver.

“MENU.4 RANDOM MENU

The RANDOM menu contains functions related to the random access
devices. The following figure is a typical Random Menu.

403110-00 - MENU-6 REV.1.2

FIGURE “MENU-F5. RANDOM MENU SCREEN

1/0 DRIVER STATUS

I/0 Ops: V] ucQ: 1/0 Commard Farameters stat: __
TGT Chks: 0 ucl: CDB: __ __ o o o serise:
INT D Er: o) e o
Bytes Wr: 0 Wr/Ref: BPM xfer: DMARW a.s. :0FF e
Bytes Rd: o] 0000 s.1.0N arb.HDW sel.SMA e e
Bytes Cp: [} Rd Buf: BPM b.p.ON b.w.OFF e e
Cup Ers.: (o] 0000 ha: 0 iids:s 7 tid: 4 e
—————S8DS-1 MENU (Jun 12 1986 FC=4 RANDOM ACCESS DEVICE FUNCTIONS
4:blk_size(O00Q0); T:reset(); Z:rezero();
A:format (0,0, 0O, 0000); X:seekl10(00000000) ;
I:inc_blk(0000); F:seekl (00000000) ;
D:ccs_modsel (00,0); N:sense(00);
C:ccs_modsen(00,0, O0Q)j; 2:set_blk(00000000) ;
1:random_blk(00000000, O0000000); 3:set_len{(O0000);
L:random_len(0000, 0000); Vi:verify10(0,0, 00000000, 0000);
J:readr_blk(); G:writer_blk();
G:readrid (o, 00000000, 0000) ; S:writer10(0, 00000000, 0000);
Pi:readriO_blk(); Y:writer10_blk();
E:readrl(00000000, 00); LC= 0001 W:writerl(00000000, 00); LC= 0001
SETUFR BUFFER RANDOM SEQRUENTIAL I1/0 DRIVER MP FKEY OTHER/EXIT
Select Menu: (,>,U,B,... Edit Parms:”E Function Exec:4,R,I,D,... Help:ALT-H

While in the parameter edit mode, the functions listed below
cannot be accessed directly through the Help System (via ALT-H
keys) since there are no parameters associated with them, but
they are listed in the SDS-1 Reference Manual in the Function
Library Description (Appendix A) under their respective names:

readr_blk 6-byte read command using predefined block
and length

readrl@_blk 19-byte read command using predefined block
and length

reset reset SCSI Bus/1/0 Driver

rezero rezero unit command

writer blk 6-byte write command using predefined block
and length

writerl@ blk l90-byte write command using predefined block
and length.

The LC= (shown after the readrl() and writerl() functions) is
the loop-count parameter. This controls the number of times the
function is to be executed. If the loop count is zero, the
function will execute indefinitely until it is halted by the user
through the ESC key. Otherwise, the function will execute the
number of times defined. The largest finite loop count is @xFFFF
(or 65,535 decimal).

403110-00 MENU-7 REV.1.2

“MENU.5 SEQUENTIAL MENU

The SEQUENTIAL menu contains functions related to sequential
access devices. A screen sample is shown below.

FIGURE "MENU-F6. SEQUENTIAL MENU SCREEN

I/0 DRIVER STATUS

1/0 Ops: o ucO: 1/0 Command Parameters stat: __
TGT Chks: o ucl: CDE: __ __ __ __ __ __ sense:
INT D Er: (0] e e e o
Bytes Wr: o} Wr/Ref: BFM xfer: DMARW a.s. :0FF e o
Bytes Rd: o 0000 s.1.0N arb.HDW sel.SMA e
Bytes Cp: o Rd Buf: EFM b.p.ON b.w.OFF e
Cmp Ers.: (o] 0000 ha: © iid: 7 tid: 4 e

SDS-1 MENU (Jurn 12 198& FC=4) SEQUENTIAL ACCESS DEVICE FUNCTIONS

G:1dunlds(0,0,0); T:reset () ;

D:modsels(00); X:rewind (0) ;

Jimodsens(00); N:sense(00);

I:prevmeds(0); P:space (0, 0OO000);

A:readsl (O0QOOOOO0O); LC= 0001 Viverifys (0, 0000);

C:recbufds(0000); Wiwritesl (00000000); LC= 0001

L:releases(0,0); Feiwrtfilm(O0OO000);

E:reserves(0,0);

SETUP BUFFER RANDOM SEQUENTIAL 1I1/0 DRIVER MP FKEY OTHER/EXIT

Select Mernu:(,),U,B,... Edit Parms:™E Function Exec:G,D,J,1,... Help:ALT-H

While in the parameter edit mode, the function listed below
cannot be accessed directly through the Help System (via ALT-H
keys) since there are no parameters associated with them, but
they are listed in the SDS-1 Reference Manual in the Function
Library Description (Appendix A) under its name:

reset reset SCSI Bus/I/0 Driver.

The LC= (shown after the readsl() and writesl() functions) is
the loop-count parameter. This controls the number of times the
function is to be executed. If the loop count is zero, the
function will execute indefinitely until it is halted by the user
through the ESC key. Otherwise, the function will execute the
number of times defined. The largest finite loop count is @xFFFF
(or 65,535 decimal).

403110-00 MENU-8 REV.1.2

~“MENU.6 OTHER I/0 DRIVER MENU

The I/0 DRIVER menu contains other I/0 Driver and miscellaneous
functions. A screen of the other I1/0 DRIVER menu is shown below.
The io6(), i0l8() and iol2() functions provide the user with the
flexibility to create any vendor-unique SCSI commands.

FIGURE “MENU-F7. 1I/0 DRIVER MENU SCREEN

I1/0 DRIVER STATUS

1/0 Ops: o ucoO: I1/0 Command Parameters stat: __
TGT Chks:] ucl: CDB: __ __ o o o sense:
INT D Er: 0 e e e o
Bytes Wr: o Wr/Ref: BFM xfer: DMARW a.s. :0FF e
Bytes Rd: (o) 0000 s.1.0N arb.HDW sel.SMA e e o
Bytes Cp: (o) Rd Buf: BFM b.p.ON b.w.OFF e
Cmp Ers.: [¢) 0000 ha: O iid: 7 tid: 4 — .
————-5DS-1 MENU (Jun 12 13986 FC=4) OTHER I/0 DRIVER FUNCTIONS

C:copy (000000) ; N:sense(00);

G:inquiry(0Q0); Witestur ()

T:reset (); X:ucname (O, ")

Virecvdiag(0000); Y:ucinc (O, O0000);

D:senddiag(0,0,0, 00Q0); Z:ucrst (0)

1:i06(00, 00, 0C, 00, 00, 00); LC= 0001
2:i010(00, 00, 00, 00, 00, 00, 00, 00, 00, 00); LC= 0001
3:iol2(00, 00, 00, 00, 00, 00, 0O, 00, 00, 00, 00, 00); LC= 0001

A:rptstats(l);

SETUF BUFFER RANDOM SEQUENTIAL I/0 DRIVER MFP FKEY OTHER/EXIT
Select Menu: {(,>,U,B,... Edit Parms:"E Function Exec:C,0Q,T,V,... Help:ALT-H

When in the parameter edit mode, the functions listed below
cannot be accessed directly through the Help System (via ALT-H
keys) since there are no parameters associated with them, but
they are listed in the SDS-1 Reference Manual in the Function
Library Description (Appendix A) under their respective names:

reset reset SCSI Bus/1/0 Driver
testur test unit ready command.

The LC= (shown after the io6(), iol#() and iol2() functions) is
the loop-count parameter. This controls the number of times the
function is to be executed. If the loop count is zero, the
function will execute indefinitely until it is halted by the user
through the ESC key. Otherwise, the function will execute the
number of times defined. The largest finite loop count is OxFFFF
(or 65,535 decimal).

403110-00 MENU-9 REV.1.2

“MENU.7 MP MENU

The MP menu contains microprogramming functions. A typical
screen is shown below. After every execution of a
microprogramming function, the SCSI bus display is shown, unless
the trace function is disabled.

FIGURE “MENU-F8. MICROPROGRAMMING MENU SCREEN

1/0 DRIVER STATUS

1/0 Ops: o} ucQ: I1/0 Command Parameters stat: __

TGT Chks: Q ucl: CDB: __ o o o e - sense:

INT D Er: 0 e e o R,

Bytes Wr: [¢] Wr/Ref: BFM xfer: DMARW a.s. :0FF e
Bytes Rd: (o] 0000 s.1.0N arb.HDW sel.SMA e e
Bytes Cp: (o) Rd Buf: BFM b.p.ON b.w.OFF e
Cmp Ers.: [¢] QOO0 ha: O iid: 7 tid: 4 el

SDS-1 MENU (Jun 12 13986 FC=4) MICROFROGRAMMING FUNCTIONS
Asarbl(00); N:datainl (00000000, 0) ; Irmsgin(O00);
J:arb2(00); 4:dataing(Q0000000, 0); G:msgout (00) ;
L:arblose(©00); S:datainS(00000000, 0); X:resel();
Wiawirn_res(00); O:dataoutO(00000000,0) ; 6:sell(00);
Q:bfreearm() ; V:i:dataouti1(00000000,0); 7:sel2C 00, O00);
H:bfreeck() ; Y: forcbusy () 8:sel3(00);
E:busrel (); F:forceattn(0); 9:sel4(00, 00);
D:datain0(O00000000,0); C:fcrcperr(00); Z:statin(00);
1:cdbb61(00, 00, 00, 00, 0C, 00); Ti:ureset ()
2:cdbl101 ¢ 00, 00, 00, 00, 00, 00, 00, 00, 00, 00); P:disp_scsi_bus;
3:edbiz21 ¢ OO, 00, 00, 0O, 00, 00, 00, 00, 00, 00, 00, 00);
SETUP BUFFER RANDOM SEGUENTIAL I/0 DRIVER MP FKEY OTHER/EXIT

Select Meru: {(,),U,B,... Edit Parms:”E Function Exec:R,J,L,W,... Help:ALT-H

While in the parameter edit mode, the functions listed below
cannot be accessed directly through the Help System (via ALT-H
keys) since there are no parameters associated with them, but
they are listed in the SDS-1 Reference Manual in the Function
Library Description (Appendix A) under their respective names:

bfreearm bus free detection logic arm
bfreeck bus free detection check

busrel release bus

forcbusy force test adapter BUSY on bus

resel verify reselection by disconnecting TARGET

‘ureset generate a SCSI reset pulse for more than 25 usec.

MENU.7.1 DISPLAY SCSI BUS FUNCTION

The internal Menu function, disp_scsi_bus, shows the state of the
SCSI bus at the time of request. The highlighted values
indicate the asserted signals. Below is a sample display:

BSY SEL data: 0000 0600 (04) REQ ACK c¢/D i/0 MSG ATTN RES

403110-00 MENU-10 REV.1.2

“MENU.8 FKEY MENU

The FKEY menu contains user-customized FKEY sequences. This
provides the user with the ability to create short custom
sequences which execute at a single keystroke. A typical screen
is shown below.

FIGURE “MENU-F9. FKEY MENU SCREEN

1/0 DRIVER STATUS

I1/0 Ops: [} ucQ: 1/0 Command Parameters stat: __
TGT Chks: (o) ucl: CDB: __ __ e o o e sense:
INT D Er: [¢) e e e e
Bytes Wr: 0 Wr/Ref: BFM xfer: DMARW a.s. :0FF e e
Bytes Rd: &} 0000 s.1.0N arb.HDW sel.SMA e e e e
Bytes Cp: 0 Rd Buf: BPFM b. p.ON b.w.OFF e e
Cmp Ers.: o 0000 ha: O iid: 7 tid: 4 e e
SDS-1 MENU (Jun 12 1986 FC=4) FUNCTION KEY SEQUENCE FUNCTIONS———
Fl:test (" "); LC= 0001 C:key select(F1l);
F2:test (" "); LC= 0001 D:display/edit/append;
F3:test (" "); LC= 0001 E:erase;
F4a:test (" “)s; LC= 0001 Y:save_fkey (" ")
FS:test (" "); LC= 0001 L:load_fkey(")3
Fé:test (" "); LC= 0001 V:save_all_fkeys(" ")
F7:test (" "); LC= 0001 A:load_all_fkeys(” ")
F8:test (" ")s; LC= O001 G:debugger("R")}
F9:test (" “); LC= 0001 F:set_er_limits(0000);
Fl1O:test (" *); LC= 0001
SETUF BUFFER RANDOM SEQUENTIAL I/0 DRIVER MP FKEY OTHER/EXIT
Select Menu:(,),U,;B,... Edit Parms:~E Function Exec:F1,F2,F3,.. Help:ALT-H

Ten function keys (F1 through Fl0) can be assigned to FKEY
sequences. The maximum number of functions per FKEY sequence is
also ten. The LC= is the loop-count parameter; it is explained
in Section MENU.8.4.

“MENU.8.1 FUNCTION KEY SELECTION

Some FKEY menu functions use the current function key selected
for execution. These functions are indented below the FKEY
select line on the FKEY menu screen. To modify or select the
function key, the function code associated with FKEY select (C
key) is toggled from (Fl through F10) for FKEY selection. Any
function execution codes shown in inverse video are toggles.

The erase function will erase the entire sequence for the current
FKEY selected.

The save_fkey function will save the FKEY selected to the
specified file name.

The load_ fkey function will load a previously saved function key
sequence to the selected FKEY, erasing the previous contents of
the selected FKEY.

The key select, erase, save_fkey and load_fkey functions are
internal Menu functions.

“MENU.8.1.1 DISPLAY/EDIT/APPEND MODES

MENU.8.1.1.1 DISPLAY MODE

The display/edit/append function will display the selected FKEY
sequence. From this screen, the user may enter the append or
edit mode, or return to the FKEY menu. Below is an example of
this screen.

FIGURE "MENU-Fl@0. FKEY SEQUENCE DISPLAY

1/0 DRIVER STATUS

1/0 Ops: (o] ucO: I/0 Command Parameters stats:s __
T6T Chks: o} ucli: CDB: __ __ 0 e e __ sense:

INT D Er: o} e e e e
Eytes Wr: [} Wr/Ref: BPM xfer: DMARW a.s. :0FF e
Bytes Rd: 0o 0000 s.1.0N arb.HDW sel.SMA e o
Bytes Cp: 0 Rd Buf: BPM b. p.ON b.w.OFF e e o
Cmp Ers.: (o] Q000 ha: O iid: 7 tid: 4

SDS—-1 MENU (Jun 25 1386 FC=4 FUNCTION KEY SEQUENCE FUNCTIONS
1 test("Wr/R/Cump 256blks");
2 xfermode ("HSHCV ",0x4000) ;
3 fillpr(0Q000, 0000, OxFFFF);
4 dmarst("W");
S writer10(Q, 00000000, Ox4CO00) 5
& writer10(Q,0x4C00 y OX70)3
7
a8
9
1

dmarst ("W") ;
readr10(0, 00000000, 0x4C00);
readri (0, 0x4C00 sOX70 s

O loop back to line 04; 0001 times

Create/Edit Functions:~RA Edit Parameters:“E Exit to FKEY:ESC Help:ALT-H

MENU.8.1.1.2 APPEND MODE

To enter the append mode, press CTRL-A ("A); use the same keys to
exit this mode. Once in append mode, an inverse video right
arrow "cursor" will appear to the right of the line numbers.
This indicates where the next function is to be added. It also
indicates where the next insertion or deletion will occur. The
user may move this "cursor" by using the Up or Down Arrow keys.
This "cursor" will stay within its sequence limits.

To build the FKEY sequence, enter the append mode and choose one
of the menus displayed on the menu line by its menu code. Once

403110-00 - MENU-12 REV.1.2

the menu has been picked, the screen will display the chosen
menu. At this point, a function can be picked by entering its
execution code and the screen will display the current sequence.
If the wrong menu was picked, the user may skip picking a
function or exit out of the append mode. Basically, the append
process is selecting the menu and selecting the function. These
steps may be repeated until the user exits the append mode or the
maximum number of functions for sequences has been reached.

If a function is to be inserted, move the "cursor" to where the
function is to be inserted and pick the menu and function as in
the append process. The following functions in the sequence are
moved down to make room for the inserted function.

To delete functions from the FKEY sequence, move the "cursor" to
the function to be deleted and press the "D keys. If there are
any functions following, they are moved up, so that the functions
in the sequence are contiguous.

There are other append functions. One of them is a Loopback
instruction to the function sequence. This allows a function to
go back to a line for the specified number of times. Nested
loopbacks are also possible, but be careful of overlapping
loops since MENU does not detect them.

The Goto instruction will allow one FKEY sequence to transfer to
another FKEY sequence. This will allow chaining of FKEY
sequences.

After the append mode is termihated, the display/edit/append
screen will appear, displaying the current sequence.

MENU.8.1.1.3 EDIT MODE

To edit the parameters of a function sequence, enter the edit
mode with the CTRL-E ("E) keys. To exit this mode, enter the
same keys (“E). The edit mode is the same as the edit menu
display except that an FKEY sequence is being edited and not the
menu display. Both of these edit modes operate in the same
fashion. When the edit mode is terminated, the display/edit/ap-
pend screen will appear with the current sequence.

MENU.8.1.1.4 RETURN TO FKEY MENU

The ESC key will return from the display/edit/append mode to the
FKEY menu.

“MENU.8.2 SAVE/LOAD FKEY SET FUNCTIONS

The save and load fkey set functions are internal Menu functions.

403110-00 MENU-13 REV.1.2

MENU.8.2.1 SAVE FKEY SET FUNCTION

In addition to saving one FKEY sequence, all ten FKEYs can be
saved to disk by specifying the file name (or path name, if
desired) and executing the appropriate function (save_all_fkeys).

MENU.8.2.2 LOAD FKEY SET FUNCTION

To load the FKEY sequence set, enter the file name or path name
containing the set and execute the load_all fkeys function. The
contents of the function sequence will be replaced with the
loaded function key set.

“MENU.8.3 DEBUGGER STATE

FKEY sequence execution can be executed under the SDS-1 Debugger
in the single step or run mode, by setting the debugger value to
S or R in the FKEY menu.

“MENU.8.4 FKEY EXECUTION LOOP COUNT

Each FKEY sequence can be executed in a loop by setting the loop
count (LC) to the number of loops to perform. 1If the loop count
is 8, the FKEY sequence will execute indefinitely until it is
halted by the user through the ESC key. Otherwise, the function
key sequence will execute the specified number of times in the
loop-count field. The largest finite execution loop count is
@xFFFF (65,535 decimal).

“MENU.B.5 STOPPING FKEY SEQUENCE EXECUTION

Use the ESC key to halt function execution and enter the Debugger
TRACE state. To return from the TRACE state to menu, hit the ESC
key a second time.

“MENU.9 OTHER/EXIT MENU

The OTHER/EXIT menu contains functions that are Menu Interface
related. All of these functions are internal Menu functions. A
typical screen is shown on the next page.

403110-00 MENU-14 REV.1.2

FIGURE “MENU-F11l. OTHER/EXIT MENU SCREEN

I/0 DRIVER STRTUS

I/0 Ops: o ucO: 1/0 Command Parameters stat: __
TGT Chks: (o} ucl: CDB: __ o o o e e sense:
INT D Er: (o) e e e e e e
Bytes Wr:) Wr/Ref: BFM xfer: DMARW a.s. :0FF e o
Bytes Rd: | (o) 0000 s.1.ON arb.HDW sel.SMRAR e o e
Bytes Cp: (o] Rd Buf: BPM b.p.ON b.w.OFF e
Cmp Ers.: [} 0000 ha: O iid: 7 tid: 4 I,
pooeo e —SDS—-1 MENU (Jun 1& 1986 FC=4) OTHER/EXIT FUNCTIONS

P:save_pars(" ")

L:load_pars("® ")

V:save_exit (" ")

1:exit ();

W:screen_swap (ON) ;
N:init_menu (RANDOM)3
A:trace (ON);

SETUP EBUFFER RANDOM SEQUENTIAL I/0 DRIVER MF FKEY OTHER/EXIT
Select Menu:(,>,U,B,... Edit Parms:"E Function Exec:P,L,V,1,... Help:ALT-H

“MENU.9.1 SAVE PARAMETERS FUNCTION

To save all the menu parameters (including all ten of the FKEY
sequences), use the save parameter function (save_pars) with a
specified disk file name.

To invoke the Menu Interface with these same parameters, enter
the saved file name on the command line following the MENU
command or use the load_pars function described in the next
section.

“MENU.9.2 LOAD PARAMETERS FUNCTION

In the load_pars function, a file saved from a save_pars function
can be loaded to the Menu Interface.

“MENU.9.3 SAVE AND EXIT FUNCTION

The save_exit function will save all parameters and FKEY
sequences to the specified file name and terminate the Menu
Interface session.

“MENU.9.4 EXIT FUNCTION

The exit function will terminate the Menu Interface session and
returns to DOS.

403110-00 MENU-15 REV.1.2

“MENU.9.5 SCREEN SWAP FUNCTION

The screen swap function will enable or disable screen swapping
between the Debugger (Trace Display) and the Menu Display. When
screen swap 1is enabled, the screen will swap to the menu display
while the function is executing and will swap back to the menu
display after execution. When screen swap is disabled, the
screen will not return to the menu after execution, but will
continue to show the Trace Display. To indicate that the
function has finished, the current menu name and cursor will
appear at the top left corner of the window.

“MENU.9.6 INITIAL MENU SCREEN DISPLAY FUNCTION

The init_menu function sets the initial menu screen display. To
set the initial menu screen, toggle to the menu screen parameter
until the new default screen name appears and save the
parameters to a file. Then on the next Menu invocation, load
this saved file. The new default screen should appear after
Menu initialization.

"MENU.9.7 TRACE FUNCTION

To enable or disable the Trace Display during all menu
executions, use the trace function. This feature provides an
increase in execution speed. Disabling the trace will also
inhibit the SCSI bus display on microprogramming functions.

“MENU.10 MENU INTERFACE ERRORS

“MENU.10.1 NO SPACE FOR PARAMETERS

There is not enough space in the structure to enter parameters of
the function. The function and its parameters are not entered
into the sequence. The user can delete other functions or FKEY
sequence(s) to free up space.

“MENU.16.2 NO SPACE FOR FUNCTION

There is no more space in the structure to enter another
function. The user can delete other functions or FKEY
sequence(s) to free up space.

“MENU.1¢.3 FILE I/0 ERROR

Error occurred on file I1/0. Below are possible causes:
e file name was not specified

® incorrect spelling of file name
e path name incorrect

403110-00 MENU-16 REV.1l.2

~“MENU.10.4 VERSION MISMATCH

The load file contains a version that cannot be converted. The
user can rebuild the save file with current menu version for
compatibility.

“MENU.16.5 MAXIMUM NUMBER OF FUNCTIONS

The maximum number of functions has been reached for a function
sequence. No more functions can be added to this sequence. The
user can use the Goto instruction to continue the FKEY sequence
to another FKEY.

"MENU.10.6 INCOMPATIBLE FILE TYPES

File types and menu version must be the same in order for loading
to be successful. This error indicates that the file type to
load is not the correct type requested in the load. There are
three different file types: single FKEY sequence (FF), all FKEY
sequences (AF), and all Menu parameters and FKEY sequences (PF).

“MENU.10.7 FILE DOES NOT EXIST

File name specified for initial loading of parameters does not
exist; the cause may be due to incorrect spelling of the file
name. The initialization process of Menu will continue with
default values. Once this process is done, try loading the
correct file name using the load_pars function in the OTHER/EXIT
menu.

“MENU.10.8 ERROR IN CONVERTING FILE

When loading a file with a lower version number, MENU will
automatically convert the saved file by renaming it with a .BAK
extension, and then convert it to the current version with its
original name. Once the conversion is done, there will be two
files: the old version with the .BAK extension and the current
version with the original file name.

I1f an error occurs during this process, the user may recover the
older version of the saved file and try again or run the saved
file with an older version of MENU that matches its version and
re-saving it. Below is a list of where this error occurs:

e unsuccessful deletion of a previous .BAK file before renaming
the current saved file
e unsuccessful renaming of the saved file

“MENU.16.9 PC MOUSE NOT INSTALLED

If the mouse is to be used, the mouse driver, MSMOUSE.COM, must
be executed before using MENU. MSMOUSE should be part of the
AUTOEXEC.BAT file, check to be sure that the mouse driver is
included in this file.

403110-00 MENU-17 REV.1l.2

~“MENU.10.10¢0 TEMPORARY FILES HAVE NOT BEEN DELETED

Before the Menu Interface can run properly, all of the .TMP files
in the current directory must be deleted. The error occurred
while deleting those files. This is a warning to let the user
know that .TMP files do exist. The user should exit MENU and
delete those files through DOS commands (DEL or ERASE) and then
enter MENU again.

“MENU.10.11 FILE NAME ERROR

If the file name has an extension of .TMP or .BAK, MENU will
sooner or later delete it or change its contents. The user
should rename the file with a different extension.

“MENU.10.12 INVALID STRING POINTER; MEMORY NOT FREED

An error occurred during deletion of FKEY functions, memory was
not freed.

“MENU.l11 MOUSE OPERATIONS WITH THE MENU INTERFACE

The mouse may be used with MENU to access areas on the menu
screens. It may be used to change Menu screens or getting around
and/or moving the cursor in the edit or append mode. The
following table defines the mouse movements and buttons in the
different Menu Interface states.

TABLE ~“MENU-T1. MOUSE MOVEMENT AND BUTTON DEFINITIONS

MENU INTERFACE MOUSE BUTTON DEFINITIONS
STATES MOVEMENTS LEFT="E MIDDLE=(- RIGHT=-)
At Menu Screens left & right movements = “E = enter/exit edit mode
: left & right arrows for (- & =-) = menu selection

menu selection

At FKEY sequence mouse movements ignored “E = enter/exit edit mode
display screen

In Edit Mode left & right movements = ~E = exit edit mode
UP & DOWN ARROWS for {(~ & =) = movement within
moving to previous or fields and also for
next parameter toggling parameters

up & down movements =
PAGE UP & PRGE DOWN for
previous & next line

In Append Mode up & down movements = buttons ignored
"cursor" movements

If mouse is not setup, refer to Section RPTG.2.1.2.5.1 for mouse
setup procedures or the PC PAINT PLUS reference manual.

403110-00 . MENU-18 REV.1l.2

“SAT.0 STAND-ALONE TEST (SAT) GENERATION PROCESS

“SAT.l1 INTRODUCTION

As with any large task, a Design Verification Test must be broken
down into smaller manageable pieces. The SDS-1 System uses the
Stand-Alone Test (SAT) as its basic Design Verification Building
Block. As the name implies, the SAT will execute by itself
providing a predefined pass/fail result. The Test and
Documentation Function Library contains initialization (setup),
execution, analysis and documentation functions necessary to
accomplish the test at hand. Figure SAT-Fl shows a flow diagram
of the SDS-1 Development Process. This is a structured approach
to debugging, performance testing, and design verification/device
qualification of SCSI peripheral devices. This section
concentrates on the SAT Generation Portion of the SDS-1
Development Process.

FIGURE “SAT-Fl. SAT COMPONENT OF DESIGN VERIFICATION PROCESS

r— = - - - - Design Verification Outline
v .BAT File
SAT GENERATION
SAT Design
)
I)
v ——)
SAT Coding l
i « BAT Test Procedure
SAT Debug Execution Generation
I RPTGEN. EXE
v T T
Cataloging v v
U
% Source Adaptec
SAT —_—) TR (—) TP
LIBRARY { —) ———eo—— Matched
. EXE Set
s\satlib\ Test Results Test Procedure
SATLIB Binder Report Report

403110-00 - SAT-1 REV.1.2

The SDS-1 System provides two types of "execution" in the "test
experiment." The I/0 Driver execution environment provides a
high-level interface with SCSI commands. It also provides system
environment and multihost emulation. The microprogramming
execution environment provides a low-level interface with precise
control over SCSI commands. It also provides a way to test
response to forced error conditions. Figures SAT-F2 and SAT-F3
are pictures of the execution interfaces with examples of test
function names. Both of these environments use functions from
the Test and Documentation Function Library.

FIGURE “SAT-F2. 1I/0 DRIVER EXECUTION INTERFACE

filli () WRITE {t——) 1/0 DRIVER {———) |OPTIONAL SCSI
filld) BUFFER bus_logen() BUS STATE
RERD <)
BUFFER ’ Data
Compare {(— HARDWARRE SCSI
Function l: BUS
writer () |USER GEN.) ———
readr () 1/0 xfermade () parity ()
sense () COMMAND |arbmode ()
selmode ()
busywait ()
exp_status()
iid ()
tid ()

FIGURE “SAT-F3. MICROPROGRAMMING EXECUTION INTERFACE

filli ©) WRITE |—————} r
filld () BUFFER USER () HRRDWARE SCSs1
dmaset () MICRO- I: BUS
PROGRAMMING —p——

compwr () READ — FUNCTION parity ()
dmaset () | BUFFER

arb()

sell ()

cdb61l ()

datain()

statin()

msgin()

403110-60 SAT-2 REV.1.2

(THIS PAGE INTENTIONALLY LEFT BLANK)

403110-00 | SAT-2a REV.1.2

“SAT.2 SAT DESIGN AND CODING

This section will walk-through a creation of a SAT program.
Before the walk-through, examples will be shown to familiarize
the user with the concept of SAT. The following figure displays
the contents of the SAT:

/* REVISION HISTORY
TEST PROCEDURE DEFINITION
-- GROUP (SECTION)
-- PARAGRAPH
*/

SETUP
EXECUTION
ANALYSIS .
. . Test Code
. ~- (Library Function Calls)

SETUP
EXECUTION
ANALYSIS

Below is a very simple SAT, which only uses a documentation and
execution call:

user_test() {
test ("This is a very simple SAT");
reset();

}

The test function performs library initializations and provides
the test title for the Test Results report. And the reset
function will reset the SCSI bus and initialize the I/0 Driver.

The SAT may include report generator operators (-GT= and -PT=)
and documentation functions (group() and paragph()) for report
purposes (to be discussed in the next section and RPTG section).
An expanded example of the simple SAT is shown below:

user_test() {
test ("This SAT uses the -GT= and -PT= operators");

/* =DOC
-GT="Perform RTFL Function"
~-DOC
*/
group ("Perform RTFL Function");
/* =DOC
-PT="Reset Function"
-DOC
 xy

paragph("Reset Function");
reset();

403110-00 SAT-3 REV.1.2

“SAT.2.1 USER TEMPLATE FOR SAT

Before coding, look at the Blank SAT Template shown in Figure
SAT-F4. This template is a guide to help create the SAT. Notice
that the test code and procedure appears in the SAT. The report
generator operators (-DOC, -REV, and -COD) control the format of
the Test Procedures report. These operators should occur as a
pair (start and stop operators):

-DOC
documentation line(s) are inserted
between the -DOC operators

-DOC

-COD
code line(s) are inserted
between the -COD operators
-COD :

-REV
revision log line(s) are inserted
between the -REV operators and
this operator must appear within
the -DOC operators

-REV

There are -GT= and ~-PT= operators to define the group and
paragraph titles.

All of these operators are embedded within the comment lines.
Comments are the characters between the "/*" and "*/" that the
"C" compiler ignores. Comment 1lines are usually used for
documentation purposes. When reports are generated, the Report
Generator will scan through the comment lines for its operators.
These operators are described in more detail in Section RPTG.2 .

This Blank SAT Template contains two templates: the Group
Documentation Template and the Paragraph Documentation Template.
The Group Template sets up for a group test with its first
paragraph (or test). The Paragraph Template is used to add
additional tests to the group(s).

403110-00 SAT-3a REV.1.2

FIGURE "SAT-F4. BLANK STAND-ALONE TEST TEMPLATE (BLANKSAT.C)

/% Blank Stand Rlorne Test Template #/

/% ~bOC
-REV
Created:
Initial Release:
Revision:
—REV

Introduction to Stand-Rlore Test:
Definition / Purpose of Test
text

text
—DOC %/
/% ~COD %/
/% Start of SAT #/
user_test ()

{
test ("User Test Title")
insert any one—-time test initialization here
/% —COD %/
/% Broup/ist Paragraph Template #/
/% —-DOC

-GT="Subtest Title (Group Level)"
insert subtest (group) description text here

-PT="1st Paragraph Test Title"
insert 1st paragraph description text here
—DOC #*/
/% ~COD #/
group("Subtest Title");
/% start of group code %/
insert group setup or initialization code here
/% end of group code %/
paragph("1st Paragraph Test Title");
/% start 1st paragraph code #/
-insert paragraph test code here
/% end 1st paragraph code %/
/% —=COD #/

/% Additional Paragraph Template %/
/% -DOC
-pT="pParagraph Test Title"
insert paragraph description text here

—-D0OC »/
/% ~COD %/
paragph ("Paragraph Test Title");
insert code here
/% =COD %/

/% end of Stand-Alone Test Program #*/

403110-00 _ SAT-4 ~ REV.1.2

~“SAT.2.2 SAT PROGRAM CREATION

The first step in SAT program creation is to specify or design
the test. After the SAT has been specified, the next step is to
find the functions in the Test Function Library that meet your
specifications.

The SATs will be developed on Sidekick's editor called Notepad.
The editor is one of Sidekick's features.

Invoke Sidekick by pressing the CTRL and ALT keys simultaneously.
When these keys are pressed again, the Sidekick window will
disappear or reappear since these keys are a toggle to enter and
exit Sidekick. A list of Sidekick features are displayed in the
Sidekick window. To access Notepad, press the N or F2 key or
move the up or down arrow keys to the Notepad line and hit the
return key.

When in Notepad, press the F3 key for new file and type in the
SAT file name. The SAT file name must have an extension of .C,
such as TEST.C, so the compiler will recognize this file as a "C"
source file. If this file name already exists, the user may
rename this file, or if the existing file is not needed anymore,
delete it.

To copy the user's template, press the CTRL and K keys
simultaneously and then the R key and type in the file name
BLANKSAT.C . If this file is not present, type in the template
in Figure SAT-F4 while following the step-by-step instructions.

Sidekick's Notepad basically uses the same control keys as
MicroPro's WordStar to edit files. 1In addition, Sidekick also
uses the arrows located on the right side of the keyboard to move
the cursor.

Below are the step-by-step instructions to generate a Stand-Alone
Test for use with the SDS-1 System, using the template:

l. Fill in the Revision Log information found in the SAT template
(do not forget to include the report generator operators if
generating from scratch):

/* -DOC
~REV
Created:
Initial Release:
Revision:
-REV

403110-00 ~ SAT-5S REV.1.2

20

Describe the Stand-Alone Test Function and any other notes or
messages after the second "-REV" and before the
ending "-DOC */" lines, fill in the following:

/* Expand definition of SAT:
Definition/Purpose */
Introduction to Stand-Alone Test:
Definition/Purpose of Test
text
text
-DOC */

If there are no external variable declarations, #include or
$§define statements, the user test() line must be the first
noncomment line in the SAT. This will define the function as
a SAT function. The brace, {, on the next line indicates the
start of the SAT. There is also a closing brace, }, on the
last SAT line to end the SAT. The main body of the SAT is
located between these braces which contains function calls to
the Test and Documentation Function Library. 1If variables
need to be declared, they should be declared before their use.
Several variable data types can be declared, refer to the "C"

"Reference Manual for more information. The next line(s) in

the SAT following the opening brace should define any
variables. Also define the test title (by test() function
which also performs SAT initialization) for the Test Results
report (remember that "C" statements and statements within
braces must end with a ;):

/* -COD */
/* Start of SAT */
user_test ()

test ("User Test Title");

insert any one time test initialization here
/* -COD */

The main body of the SAT should contain function calls to the
Test and Documentation Function Library. Each function call
must contain its function name and its arguments. The
arguments must appear within the parentheses; if there are no
arguments, the parentheses must still exist to indicate a
function call. Each function call statement must end with a
7. Using "C" statements (such as, for, if, while, ...), will
allow more flexibility in the SAT programs. There are
examples of function calls, for, if and while statements in
Figure SAT-F5. Some of these statements are briefly described
in section SAT.2.2.1, refer to the "C" Reference Manual for
more detailed information. ’

Define Subtest (groups) and £fill in Group/lst Paragraph
Documentation Templates:

403110-00 SAT-6 REV.1.2

/* Group/lst Paragraph Template */
/* -DOC
-GT="Subtest Title (Group Level)"
insert subtest (group) description text here

-PT="1st Paragraph Test Title"
insert 1lst paragraph description text here
-DOC */
/* -COD */
group("Subtest Title");
/* start of group code */
insert group setup or initialization code here
/* end of group code */
paragph(®"lst Paragraph Test Title"); :
/* start lst paragraph code */
insert paragraph test code here '
/* end lst paragraph code */
/* -COD */

5. For additional paragraph tests, a Paragraph Documentation
Template has been provided. Your SAT program should look
similar to the OBBWRCV.C Code Listing (see Figure SAT-F5).
Copies of the Group/lst Paragraph Documentation and the
Paragraph Documentation Templates can be made throughout the
SAT when needed. Remember to end the SAT with the closing
}, since this indicates the end of the SAT program.

/* Additional Paragraph Template */
/* -DOC
-PT="Paragraph Test Title"
insert paragraph description text here

-DOC */
/* -COD */
paragph (®"Paragraph Test Title");
insert code here
/* -COD */

/* end of Stand Alone Test Program *,

A Stand-Alone Test program may have many groups and under each
group, many paragraphs. Note that the first paragraph of each
group is found in the Group Documentation Template.

When the SAT program has been entered, the SAT file should be
saved by entering the following:

F2 key

or
CNTL and K and then D key.

403110-00 SAT-7 REV.1.2

And then to exit Sidekick, enter:
ESC key

or
CNTL and ALT keys.

“SAT.2.2.1 "C" NOTES

In "C," a sequence of characters enclosed by " ™ is a character
string. Hexadecimal numbers are noted by a preceding #x or 86X
(zero-x or zero-X). Octal numbers are preceded by a @ (zero).
If neither exists, "C" assumes that a number is decimal.

To briefly explain the for statement, there are three expressions
separated by semicolons and enclosed in parentheses. The first
expression within the parentheses is only performed once to
initialize the loop. The second expression is a condition which
is checked before each iteration. As long as this condition is
true, the loop will execute. The last expression is executed
after each loop iteration. In multi-statement loops, the loop is
started with a '{' and ends with a '}.'

In "C", another way to accomplish looping of statements is the
while statement. A condition within the parentheses following
the keyword while is checked. 1If the condition is true, the
statements within the while statement will be executed and the
condition checked after each iteration. As long as the condition
is true, the execution of these statements will continue.
Otherwise, if it is false, the looping will end or if false to
begin with, it will skip the while statements.

In the if statement, the condition within parentheses is checked.
If it is true, the rest of the if statement is executed.
Otherwise, if it is false, the if statement is skipped. An else
statement may follow the if statement. In this case, the else
statement will only execute if the if statement was not true.

“SAT.2.3 TEST & DOCUMENTATION FUNCTION LIBRARY

The Test and Documentation Function Library contains the
routines available for the SAT programs. The library contains
functions for initialization, execution, analysis and
documentation of the SAT programs. Each of these functions is
explained in detailed in Appendix A.

403110-00 SAT-8 REV.1.2

~“SAT.2.4 COMPILATION AND LINKAGE OF SAT

Once the stand-alone test has been written, the next step is to
compile and link it. The "C" compiler is used to link the Test
and Documentation Function Library. The SDS-1 System contains a
batch file that will build the executable SAT file and link it.
To run this batch file, enter MKSAT along with the filename
without the .C extension. For example, if the file name was
SATNAME.C, enter:

C>MKSAT SATNAME
After successful completion of MKSAT, an executable file called

SATNAME.EXE is generated. 1If errors occur during this step,
refer to the Microsoft User's Guide, Appendix E.

4063110-00 SAT-9 REV.1.2

FIGURE “SAT-F5. OBBWRCV.C CODE LISTING

-REV

Created: 01-16-86
Initial Release: N.A.
Revision: 1.000

06-17-86 Enrnable parity

Purpose: Demostrates OBE virtual memory, _blk functions and
variable ack delay

H
5
H
§
H
H
H
L
H
k]
jFProcedure: 1. Use get_byte() function to determine block limits
3 2. Read/UWrite Testing
H a. Fill drive via HSHCV mode with writelO() func
H b. Read entire drive using _blk functions
3 c. Read with random starting address and lengths
3 d. Time reads in sequential manner
3 e. Time reads with random starting addresses
H f. Time loop with everything random
b
3 System #1 Host i.d. = 73
H Target i.d. = 43
9
$Functions Tested: set_blk
3 random_blk
H inc_blk
H set_len
H rarndom_len
H inc_len
L]
-DOC %/
/% Constant Definitions #/
#define HOST_ID OxO07
#define TARGET_ID Ox04
user_test ()
{
/% Variable Definitions #/
int i /% i variable #/
unsigned long last_block_num; /# last block number on drive #/
unsigned long f_bw, f_br, f_bc, f_ce; /* stats variables #/
unsigned block_size; /% drive block size #/
unsigned long new_start; /% new starting block address #/
unsigned long down_count; /% length of disk %/
unsigned long start_blk; /% starting block #/
unsigned long block; /% block #/
unsigned long get_f_stats(); /% function status #/
unsigned len, akd; /% length & ack delay variables #/
unsigned op_type; /% operation type %/
unsigned tv; /% timer value */
char dummy(1001; /% dummy string #/
403110-00 SAT-10

REV.1l.2

FIGURE SAT-FS5. OBBWRCV.C CODE LISTING (continued)

test ("Random Function Testing")j
group("Self Configuration Example");
/% -DOC
~GT="Sel f-Configuration Example"

Demonstrate get_byte() function
determine block limits

=-DOC =/
xfermode ("DMARW", Ox100) ; /% DMARW mode w/Ox100 buf size #/
reset () ; /% reset 1/0 Driver and SCSI bus #/
ioto (600); /% long time-out w/two systems

competing for bus %/

bou(l) /% buffer/command frame update #*/
arbmade ("HDW") 3 /% hardware arbitration »/
selmode ("SMART") ; /% select SMART mode */
parity(1); /# SCSI parity enabled */
bus_logen(l) /% state bus log enabled #*/
ackdelay (Ox0000) ; /% O ack delay #/

statsen(1); /* statistics enabled %/
tid(TARBET_ID) ; /% set target ID %/

iid (0, HOST_1ID); /% set initiator ID ¥/

lun(0) ; /% logical unit number is O #*
iea("LOGH") ; /# log and halt on error #/
readcap (0,01,0); /% read capacity #/
last_block_num = ((unsigned long)get_byte(”"R",0) ((24) +

((unsigned long)get_byte("R",1) ((16) +
((unsigned long)get_byte("R",2) ((8) +
(unsigned long)get_byte("R",3);

sprint f (dummy, "Drive Parameters: Last Block Address = Ox%1X",
last_block_num) ;

logp (dummy) ; /% print last block address msg %/
block_size = ((unsigned)get_byte("R",6) ({(8) +
(unsigned)get_byte("R";7);
sprint f (dummy, * Block Size = Ox%XX",
block_size);
logp (dummy) ; /% print block size msg #/

group("Read/Write Testing");
paragph("Fill Drive via HSHCV");
/* -=DOC
-GT="Read/Write Testing"
-PT="Fill Drive via HSHCV"

Fill Drive with write10() comd
using HSHCV transfer mode

“ we WO g wr e we

4063110-00 © SAT-11 REV.1.2

403110-00

FIGURE SAT-F5. OBBWRCV.C CODE LISTING (continued)

s ~DOC #/
x fermade ("HSHCV", Ox4000) ; /% set HSHCV mode & buffer size #*/
fillpr (Ox87,0, 0x4000) ; /% fill buffer =/
down_count = last_block_num +1iL; /% number of blocks #/
start_blk = OLj; /% starting address #/

while (down_count) OxFFFFL) { /#% separate write commands if
greater than OxFFFF %/
writer1i0(0,start_blk,OxFFFF); /%* write maximum allowed %/
start_blk = start_blk + OxFFFFL3; /# mod starting addr */
down_count = down_count - OxFFFFLj; /% decrement blk cnt %/
b g
/% handle last write #/
writer10(0,start_blk, (unsigned)down_count); /# filled disk #/
rptstats(1); /% report stats with header on #/

paragph ("Read Entire Drive Using _blk commands")j
/% =DOC
-PT="Read Drive w/_blk cmds"

Read and Compare Entire Disk
using _blk command and HSHCV mode
of transfer

=DOC %/

set block size #/

reset global stats #/
set_blk(Ox01); start at block zero #/
set_len(OXFFFF) ; read OxFFFF blocks at a time #/
dmaset_vblk("W"); /% set the virtual starting addr #*/
down_count = last_block_num + 1L; /# get number of blocks #/
while (down_count » OxFFFFL) { /% as with the writes, separate
if block number greater than

blk_size(block_size);
stats_reset ("ALL") ;

NN N N W e e e e e e
* %k %k %

OxFFFF #/

readrl1O_blk(); /% read blocks #/

inc_blk (OxFFFF) 3 /% increment by OxFFFF #/

down_count = down_count - OxFFFFL; /# decrement blk cnt #/
} .
set_len({(unsigned)down_count)§ /% handle last read #*/
readr10_blk(); /% read blocks #*/
rptstats(1l); /% report stats with header on %/

/% Demonstrate get_f_stats() #/

f_bw get_f_stats("BW"); /% get bytes written */

f_br = get_f_stats("BR"); /% get bytes read %/
f_bc = get_f_stats("BC"); /% get bytes compared »/
f_ce = get_f_stats("CE"); /% get compare errors %/

/% print stats to log device #/
sprint f (dummy, "Last Read Command Statistics:");
logp (dummy) ;
sprint f (dummy,
" Bytes Written = Ox%81X",

SAT-12

REV.1.0

403110-00

FIGURE SAT-F5. OBBWRCV.C CODE LISTING (continued)

f_bw);
logp (dumny) 3
sprint f (dunmy,
" Bytes Read = Ox%81X",
f_br)g
logp (dumny) ;
sprint f (dummy,
" Bytes Compared = Ox%81X",
f_be)g
logp (dummy) ;
sprint f (dummy,
" Compare Errors = Ox%81X",
f_ce);
logp (dummy) ;

paragph ("Read with Randcom Starting Rddresses and Lengths");
/% -DOC
-PT="Read w/Random ARddrs & Lens”

L]

9

s Perform 100 read operatiorns with

; random starting addresses and

;§ lengths

9

5 —DOC %/

stats_reset ("ALL") ; /% reset global statistics #*/

for (i =13 i (= 1005 i++) {
lenn = random_len(1,0x1000); /% transfer length limit */
block = random_blk(OL, last_block_num—(unsigned long)len+1);
dmaset_vblk("W") ; /% set memory pointer %/
readrl1O_blk(); /% perform read */

/* check for transfer length #/

f_br = get_f_stats("BR"); /% check for read failure %/

if (f_br != (unsigred long)block_size*(unsigrned longl)len) {
fail ()
sprint f (dummy,

"Number of bytes read = Ox%081X; Should be = OxX081X;",
f_bry, (block_size #len));
lagp (dummy) ; /% print to log device #/
>
b
rptstats(1); /% report global stats %/

paragph("Timed Reads (three minutes) in Sequential Manner");
/% -DOC
-PT="Time Seq Reads (3 mins)"

Utilizing the user timer to
determine the number of
operations and bytes read which
can be executed in three minutes

~-DOC =/

ws Wt ge @0 we W we we

SAT-13

REV.1.0

FIGURE SAT-F5. OBBWRCV.C CODE LISTING (continued)

stats_reset ("ALL") ; /% reset statistics */

tmrset (Ox0) ; /% set timer to start at O #/

tmrstart ("Up") s /% start timer counting up */

rpttmr(); /% output timer to log #/

tv = tamrvalue(); /% get current time #/

sprint f (dummy, "Timer Value = Ox%04X",tv); /# display timer #*/

set_len(Ox100Q); /% 256 block transfers #/

set_blk(OxOL); /% starting block %/

while ((tv = tmrvalue()) ((unsigned) (3%60)) { /# 3 mins %/
dmaset _vblk("W"); /% set the virtual starting addr */
readr_blk(); /% perform read #/

new_start = inc_blk(Ox100); /% new starting block #/

if (new_start + Ox100) last_block_num) { /% if starting
block is greater than last
block number, #/

set_blk(Ox01); /% start over on drive %/
>
} .
tmrstop(); /% end of three minute loop %*/
sprint f (dummy, "Timer Value = Ox%04X",tv); /#* display timer %/
rpttmr () /% report timer to log */
rptstats(1); /% report statistics #*/

paragph("Time Reads (3 mins) with Random Starting Rddresses");j
/% -DOC
-PT="Time Reads w/Random RAddrs"

Utilize random_blk() to read
randomly over entire disk (in
a 3-minute timed loop)

w ar G0 ae W g W

=-DOC %/
stats_reset ("ALL") /% reset statistics »/
tmrset (0x0) 5 /% set timer to start at O #/
tmrstart ("Up") ; /% start timer counting up %/
set_1en(0x100) ; /% 256-block transfers */
set_blk(OxOL) ; /% starting block */
while (tmrvalue() ((unsigned) (3%60)) { /# 3 min count #/
dmaset _vblk("W"); /% set the virtual starting addr »*/
readr_blk(); /% perform read #/

/% calculate random block #*/
random_blk(OL, (last_block_num - (unsigned long)OxFF));

¥
tmrstop(); /% end of three minute loop #/
rptstats (i) /% report statistics %/

paragph("Timed Loop (10 minutes) With RAll Random");
/% -DOC
3 —PT="Timed Loop with Rll Random"

403110-00 SAT-14 REV.1.0

403110-00

FIGURE SAT-F5. OBBWRCV.C CODE LISTING (continued)

stats_reset ("ALL");

Randomly select the type of
operation:

6-byte read,

6~-byte write,

10-byte read,

or 10-byte write

Likewise randomly select the
starting block and transfer
lenigth, executing all in a 10
minute timed loop
-DOC =/
/* reset statistics #/

W gs W e WS we W s Wt g we

rptstats(1); /% report statistics #/

for (i = 03 i (63 i++) (/% one—hour test %/
tmrset (Ox0) ; /* set timer to start at O #/
tmrstart ("Up"); /% start timer counting up */
iotc (1200) ; /% set long for long random acks #/

while (tmrvalue() ((10#60)) { /# count for tern minutes */

/% calc trans len & start addr #/
len = random_len(1,0x1000); /* transfer len limit #*/
block =

random_blk (0], last_block_num—(unsigned long)len+1);

dmaset_vblk("W"); /% set the virtual starting addr */

akd = rand(); /% get random ack delay #/

ackdelay (OxOFF & akd); /#* set fixed delay #/

op_type = Ox0003 & rand(); /% use C library random
number to chocose type of
ocperation */

if (op_type == 0) {

readr_blk(); /% six byte read command %/
hd
else if (op_type == 1) (
writer_blk(); /% six byte write command #*/
¥
else if (op_type == 2) {
readrl10_blk(); /# 10 byte read command */
» i
else {
writeriO_blk(); /% 10-byte write command #*/
¥
>
tmrstop(); /% end of 10 minute timed loop */
rptstats(0); /% report statistics no header %/

SAT-15

REV.1.0

“SAT.3 SAT DEBUG

The following sections described how the SDS-1 Debugger relates
to the SAT. Refer to the Debugger Section for more detailed
description of the SDS-1 Debugger.

“SAT.3.1 COMMAND TAIL OPERATOR -DB=

After successful compilation and linkage of the SAT, its
executable file can now be executed using the SDS-1 Debugger.
There are four different levels in the Debugger. The execution
speed and debug modes vary with each level, with Level @ being
the fastest to execute but with less information displayed on the
screen, to Levels 2 and 3 being the slowest with more informa-
tion shown. When enabled, the frames in the Status Fixed Window
will be updated (the more screen updates, the slower the execu-
tion). Usually when debugging the SAT program, Level 2 or 3 is
used, since these levels provide the most screen information and
updates to aid in debugging.

To execute the SAT program example in Debug Level 3, enter the
SAT file name with the specified debug level:

C>SATNAME -DB=3

where SATNAME is the SAT executable file name. The -DB= command
tail operator specifies the debug level. Command tail operators
are options that can be defined on the command line. If the -DB=
operator does not exist, the default is debug level zero. A
screen should appear similar to Figure SAT-F9. As described in
the DEBUG section, there are several modes: TRACE, IOINIT, IMP
ER, EXP ER and IOABRT. The current mode is determined by looking
at the bottom left corner of the screen. When users first enter
the Debugger, the TRACE state is usually the first mode
encountered. This mode is where users will be spending most of
their SAT debug time. There is another mode called IOINIT which
appears when using the Half-Step command, but only if the half-
stepped function is an I/0 Driver command. The other modes are
error condition modes: IMP ER (Implicit Errors), EXP ER
(Explicit Errors) and IOABRT (I/0 Driver Abort).

There are several command options for each mode, to display them
press the space bar to show the different menu lines. The
commands on these menu lines may be entered at any menu line as
long as the mode supports them. Return to the first TRACE menu
line by pressing the space bar until:

TRACE : Flow >Goto; Break Pt.(@); Run; Step; Half Step; Skip; DOS

Press the § key several times to step through your SAT program;
notice that the S is highlighted in Step on the menu line. The
Step command will advance to the next function and display it on
the Trace Display Window. When the function name and its
parameters are pending execution, it appears in reverse video in
the Trace Display Window. After the function has been executed,

403110-00 SAT-16 REV.1.2

Ret

the trace function name and its parameters appear in full-
intensity. If a function has been skipped (the K command), the
function name will appear in half-intensity.

We have looked at Step and Skip commands. If the user wants to
execute the rest of the program without Debugger intervention,
use the Run command.

Another feature of the Debugger is buffer displays. Data, SCSI
Bus State Log and Sense buffers can be displayed. The SCSI Bus
State Log Buffer Display can assist in problem identification and
the Data Buffer Display can identify data integrity errors.

“SAT.3.1.1 DEBUG LEVEL @

Debug Level @ has no statistic updates, but provides the fastest
execution of the four levels of debug. There are only two
windows: Test Documentation Fixed Window and Test Documentation
Scrolling Window (see figure below). There are two ways to invoke
this level:

C>SATNAME -DB=§
or
C>SATNAME

The default level is @#. Usually, this level is used after all
bugs have been fixed in the SAT and execution without
interference of the debugging modes is desired.

FIGURE “SAT-F6. DEBUG LEVEL @

ADAFRTEC Test Structure Library (11-30-84)
DOS Command Line Execution
01-08-86 11:45:17

Printer Output Disabled:

1.0 On Board Buffer Write/Read/Compare Testing 01-08-86 11:45:20
1.2 Read and Compare (via DMARHC) OBB Write Data 01-08-86 11:51:46
1.2.9 Pseudo Random DMAHC Read 01-08-86 12:00:33
REPORT DISPLRY
1.2.6 00 FF S5 AR DMAHC Read 01-08-86 12:00:15
1.2.7 Incrementing Pattern DMAHC Read 01-08-86 12:00:17
1.2.8 Decrementing Pattern DMAHC Write 01-08-86 12:00:21
IOABORT IMPLICIT ERROR 01-08-86 12:00:22

Cmp Error: Ref Buf (Ox0000 = Ox04); SCSI Data = Ox22;
IOABORT IMPLICIT ERROR 01-08-86 12:00:32
I/0 Time-Out (Time—Out Value = 10 seconds)

1.2.9 Pseudo Random DMAHC Read 01-08-86 12:00:33

403110-60 .~ SAT-17 REV.1.2

~“SAT.3.1.2 DEBUG LEVEL 1

In addition to the windows provided in Level 8, the next level
includes the Status Fixed Window (see figure below). This level
provides information about the SAT program in progress. When
enabled, the frames in this window will be updated while the SAT
is executing. There are two ways to enable/disable this window:

(1) through library functions in the SAT (bcu() and
statsen()), or

(2) through the Debugger command, BCU (the statistics frame
cannot be enabled through the Debugger).

To invoke this level, use the same -~-DB= operator:
C>SATNAME -DB=1

The following levels can be called in this manner with the
specified 1level.

FIGURE “SAT-F7. DEBUG LEVEL 1

ADAPTEC Test Structure Library (11-30-84)
DOS Commard Line Execution
01-08-86 11:45:17

Printer Output Disabled:

1.0 On Board Buffer Write/Read/Compare Testing 01-08-86 11:45:20
1.1 OBB Fill Testing 01-08-86 11:45:20
1.1.6 00 FF 55 AR OFEER Write 01-08-86 11:45:49
I/0 DRIVER STATUS
1/0 Ops: S ucQ: I1/0 Command Parameters stat: 00 __
T6T Chks: (o} ucl: CDB: 0Oa 00 01 00 40 00 sense: (old)
INT D Er: Q 00 00 00 00 00 00 —— e
Bytes Wr: 28000 Wr/Ref: OBB xfer: HSRW a.s. :OFF —— e e
Bytes Rd: (o} 0000 s.1.0N arb.HDW sel.SMA —— e
Bytes Cp: (v} Rd Buf: OBB b. p. OFF b.w. OFF — e e
Cmp Ers.: (o) 0000 ha: O iid: 7 tid: 4 e e e e
REPORT DISPLAY
1.1.4 Constant 55 Pattern OBB Write 01-08-86 11:45:42
1.1.5 1233210 Pattern OBBR Write 01-08-86 11:45:46
1.1.6 00 FF S5 AR OBB MWrite 01-08-86 11:45:50

TRACE: (ESC) Halt :

403110-00 SAT-18 REV.1.2

~SAT.3.1.3 DEBUG LEVEL 2

Debug Level 2 has the following windows: Test Documentation
Fixed Window, Status Fixed Window and the Trace Display Scrolling

Window.

The function and its arguments are displayed in the Trace Display
Scrolling Window which provides a step-by-step execution history
of the SAT program (see figure below). Only functions from the

Test and Documentation Library can be traced.

FIGURE ~“SAT-F8. DEBUG LEVEL 2

ADAFTEC Test Structure Library (11-30-84)
DOS Command Line Execution
01-08-86 11:45:17

Printer Output Disabled:

1.0 On Roard Buffer Write/Read/Compare Testing 01-08-86 11:45:20
1.1 OBE Fill Testing 01-08-86 11:45:20
1.1.11 Word Block Count OBB Write 01-08-86 11:48:34

1/0 DRIVER STATUS
I/0 Ops: E ucO: 1/0 Command Parameters
TBT Chks: 0 uct: CDB: Oa 00 09 00 40 00
INT D Er: o} 00 00 00 00 00 00

)

(o]

¢

Bytes Wr: 6800 Wr/Ref: OEE xfer: HSRW a.s. sOFF
Bytes Rd: 0000 s.1.0N arb.HDW sel.SMA
Bytes Cp: Rd Buf: OBB b. p. OFF b.w.OFF

Cmp Ers.: Q 0000 ha: © iid: 7 tid: 4
TRACE DISFLAY

stat:
sense:

00

(cld)

filli(7e, 0000, 4000) writer(0300,0) paragph() ackdelay(243)

filld (04, 0000, 4000) writer(0400,10) writer(0410,1f) writer(042f, 11)

paragph () ackdelay(154) fillpr(008a,0000,4000) writer (0200, 10)
writer(0el0,1f) writer(0e2f,11) paragph() ackdelay(6020)

fillbeb (90,0100, 0000, 4000) writer (0900, 40) paragph() ackdelay(2100)

fillbcw(0340,0100, 0000, 4000)

TRACE : Control)Debug Level(2); BCU(1); User Cntr Reset; Stats Reset;

403110-00 SAT-19

REV.1l.0

~“SAT.3.1.4

DEBUG LEVEL 3

This level has only two windows:

Status Fixed Window and the

Trace Display Scrolling Window; as shown in the figure below.

I/0 Ops:
TGT Chks:
INT D Er:
Bytes Wr:
Bytes Rd:
Bytes Cp:
Cmp Ers.:

eF

o]

o}
FO400
S0000
20000
[o}

FIGURE “SAT-F9. DEBUG LEVEL 3

1/0 DRIVER STATUS

ucO: 1/0 Command Parameters
ucl: CDE: 08 00 00 cO 40 00
00 00 00 00 00 00
Wr/Ref: BPM xfer: DMAHC a.s. :0FF
0000 s.1.0N arb.HDW sel.SMA

Rd Buf: b. p. OFF b.w.OFF

ha: O iid: 7 tid: 4
TRACE DISPLAY

stat:

sense:

00

00

06 __
(old)

Q0

00

writer (0580, 40) overbecw (0S5c0, 0100, 0000, 4000) writer (05c0, 40)

overbow (0600, 0100, 0000, 4000) writer (0600, 40)

writer (0640, 40) overbcw (0680, 0100, 0000, 4000) writer (0680, 40)

overbcw (06c0, 0100, 0000, 4000)

fillpr (009f, 0000, O200)

readr (0080, 0040)

writer (06cO, 40) paragph() ackdelay(2100)

savebuf (OBBIMG. TST, 0000, 0200) writer (0a00,2)
paragph () dmarst (R) ackdelay(0) readr(0000,0040) paragph() dmarst (R)
ackdelay (15) readr (0040, 0040) paragph() dmarst (R) ackdelay(255)

paragph () dmarst (R) readr(00C0, 0040) paragph() dmarst(R)

overbew (0640, 0100, 0000, 4000)

readr (0300, O01F) readr(031F, 0020) readr (033F,0001) paragph() ackdelay(O)
dmarst (R) readr (0900,0001) readr(0901,0010) readr (0911, O00F)
readr (03920, 0020) group() xfermode(DMAHC, 4000) paragph() fillk{(00,0000, 4000)

readr (0000, 0040)

403110-00

paragph ()
Break Pt. (0); Run; Step; Half Step; Skip; DOS Ret;

SAT-20

paragph () fillk(F,0000,4000) readr (0040,0040) paragph()
fillk(RA, 0000, 4000) readr (0080,0040) paragph() fillk(S, 0000, 4000)

readr (00CO, 0040)
TRACE : Flow)Goto;

REV.1.0

“SAT.3.2 COMMAND TAIL OPERATOR -PR

Another command tail operator that can be used is the -PR
operator which will send the Test Documentation Scrolling Window
to the printer. This operator may appear anywhere on the command
line after the file name.

If the -PR operator is not performing as it should, be sure to
delete all temporary (.TMP) files before using this operator.
These temporary files were left over from an aborted batch file
execution. To delete all temporary files, enter the following:

C>ERASE *.TMP

“SAT.4 LIBRARY CATALOGING

SATs can begin to accumulate rapidly. To keep track of each SAT,
a system of cataloging the SATs is provided. It consists of a
binder with log pages and a place to put diskette copies of
user's SATs. Cataloging provides revision control and history
via report generator operator (-REV). It is also the central
point of SAT cataloging and SAT backup.

“SAT.5 ERROR HANDLING LOGIC

The goal of the SDS-1 System is a hands-off regression test which
provides a pass or fail result. Under these conditions, the user
does not analyze any data to make the pass/fail decision, all
decisions are made in the regression test itself.

The SDS-1 System supports two types of error detection. The
first type is implicit error detection. An implicit error is an
illegal condition detected by the Test Function Library that the
user does not have to test for explicitly. The most common
example of an implicit error is a data compare error between the
write/reference buffer and the read buffer. The data miscompare
is an implied error in the data compare mode and the user does
not need to explicitly check for the error.

The second type is explicit error. An explicit error is an error
generated by an explicit test. For example, a check for extended
sense key = 6 (unit attention) is an explicit test and a sense
key other than 6 will result in an explicit error.

The action taken by the SDS-1 System when an implicit or an
explicit error is detected is established by the Test Library
Functions iea() and eea() (implicit error action and explicit
error action).

403110-00 : SAT-21 REV.1.2

User options for each type of error action for the SAT mode are:
(CONT) 1Ignore Error and Continue

(HALT) Stop SAT and Invoke the Debugger ERROR PROCESSOR
(no error logging)

(LOGC) Log Error and Continue
(Up to user-defined set_er_limits(), default is
190 errors; otherwise, invoke the Debugger
ERROR PROCESSOR)

(LOGH) Log Error and Invoke the Debugger ERROR PROCESSOR.

These error actions can also be modified when the user is in the
Debugger and the Debug Level is greater than @, by using the IEA
and EEA debug menu commands. When errors are detected in the
default mode, LOGC, an error message is shown and execution of
SAT continues. If this mode was modified to HALT or LOGH, the
Debugger will halt execution on error so that one could examine
the error condition in the IMP ER or EXP ER debug mode.

The meaning of IEA and EEA value changes when running in the
batch mode environment, such as in the Design Verification batch
file, refer to Table DEBUG-T1 for those definitions.

“SAT.6 SAT EXECUTION HALT/INTERRUPTION

In addition to setting the error action iea and eea functions (or
IEA or EEA commands) to halt on error, there are other ways stop
or interrupt SAT execution.

“SAT.6.1 NORMAL END OF SAT PROGRAM

To exit from the Debugger at any level, the completion of the SAT
program will return back to DOS.

“SAT.6.2 ESCAPE KEY

If the Debug Level is greater than @, the ESC key can be used to
stop execution of the SAT program and the user can regain control
in the TRACE state with the next function pending execution
(indicated in reverse video).

"SAT.6.3 CONTROL-BREAK KEYS

The CTNL-BREAK (“Brk) key sequence can be used to interrupt
execution of SAT program, at which point the user has the option
to display the SCSI bus, exit to DOS or resume execution. The
CNTL-BREAK sequence will exit the user from a SAT execution with
the exception of PC crashes.

403110-00 SAT-22 REV.1.2

“DV.g DESIGN VERIFICATION PROCESS

“DV.l1 INTRODUCTION

After debugging the SATs, the next step in the SDS-1 Development
Process is to generate the Test Results and Test Procedure
Reports. This 1is the Design Verification process (see Figure

FIGURE "DV-Fl. DESIGN VERIFICATION PROCESS

r— -— — ==— — — |Design Verification Outlire
v .BAT File
SAT GENERATION
SAT Design
T)
V] ____)
SAT Coding l
T v v —\ v
v - BAT Test Procedure
SAT Debug Execution Generation
T RPTGEN. EXE
Cataloging \|I \ll
‘1’ Source Adaptec
SAT e TR {e—) TP
LIBRARY | —) —oooo— Matched
. EXE Set
:\satlib\ Test Results Test Procedure
SATLIR Binder Report Report

“DV.2 DESIGN VERIFICATION RESULTS

The Adaptec Matched Sets: Test Results and Test Procedure
Reports are the final products of the Design Verification Test
Sequence, see Figure DV-F1. The Test Results Report is
generated while executing the SAT in the Design Verification
Batch File (described in the next section). The Test Procedure
Report is the documentation or code report of the test procedure
using the same execution batch file.

403110-00 DV-1 REV.1.2

“DV.2.1 TEST RESULTS DOCUMENTATION

The Test Results documentation is generated by executing the
Design Verification Batch File. Shown below are the contents
that make up the Test Results Report:

TITLE PAGE
TABLE OF CONTENTS
SAT #1 RESULTS

*

3

SAT #N RESULTS
APPENDIX A: BATCH FILE COPY
APPENDIX B: TEST DATA SUMMARY

The Design Verification batch file executes the SATs sequentially
and provides the "hands-off" test execution. The following
BLANKDV.BAT file can be used as a template.

FIGURE “DV-F2. BLANK DESIGN VERIFICATION FILE (BLANKDV.BAT)

ECHO OFF ’

TITLEPG %0 -TI="Design Verification Title" -CD=07-15-85 —-RN=RN# —-FO=%0, TR
REM
REM
REM

REM Stand Rlone Test Selection
REM Rbort Regression Test if BLANKSAT1 fails
BLANKSAT1 -TN=
IF ERRORLEVEL 1 GOTO BAD

BLANKSAT2 =TN=
BLANKSATS -TN=

ENDTS -Mi=" Pass Messapges Here " -M2="Same as M1"
GOTO END .
:BAD .
ENDTS -Mi1=" Failure Message Here" -M2="Same as M1"

sEND

ERASE #. TMP
ECHO ON

The ECHO OFF and ECHO ON are DOS batch commands to turn off and
on the screen display of the command lines in the batch file.

403110-00 ‘ DV-2 REV.1l.2

The TITLEPG command line prints the title page of the Test
Results documentation. Its operators are:

-TI - Title of Test Results Documentation

-CD - Creation Date
-RN -~ Reference Number or Name
-FO - File Name Output

The 8 that appears on this command line is the batch file name
with the .BAT file extension removed. According to the above
TITLEPG command line, if the batch file name is DVFILE.BAT, the
test results would be located in a file named DVFILE.TR .

Lines that contain REM are the remark or comment lines which are
ignored during batch execution.

The BLANKSAT1, BLANKSAT2 and BLANKSAT3 are the SAT programs to be
executed. The -TN= operator is the test section number assigned
to the SAT for documentation purposes. If -TN= is not assigned,
the next sequential number will be used as its test section
number.

If an error occurs during execution of a SAT, the ERRORLEVEL
value is nonzero. The user can check the ERRORLEVEL for good SAT
completion as shown in Figure DV-F2.

The ENDTS command line prints out a message in Appendix B of the
Test Results report known as the Test Data Summary Section.
ENDTS can define up to four 8@-character messages, but they all
must appear on one command line.

The :BAD and :END are labels used by the GOTO batch command. The
label consists of a colon followed by a label name. The GOTO
command causes execution to transfer to the next command
following the label.

This batch file can be created to produce the Test Results
documentation using Sidekick's Notepad and using BLANKDV.BAT as a
template. Batch file names should always have an extension of
«.BAT . The file name of the batch file is all that is needed to
execute this file. Suppose the batch file name is BATNAME.BAT,
then to execute it, enter:

C>BATNAME
While executing, the screen will show the execution sequence of
this batch file. After it has completed (when the DOS prompt
appears), the Test Results File can be viewed or printed out to a
printer:

C>PRINT BATNAME.TR

See Section B.5.3 for an example of the Test Results Report.

403110-00 DV-3 REV.1.2

“DV.2.2 TEST PROCEDURE DOCUMENTATION

The Test Procedure Report is the documented procedure of the Test
Results. This document is formatted by the report generator
input file operators in the SAT code. The title page and
creation date is retrieved from the batch file's TITLEPG command.
Shown below are the typical contents that make up the Test
Procedure Report:

TITLE PAGE
TABLE OF CONTENTS
SAT #1 TEST PROCEDURE

.

SAT #N TEST PROCEDURE
APPENDIX A: BATCH FILE COPY
APPENDIX B: SAT REVISION HISTORY

There are options that will include/exclude the Revision History
and/or a Code Listing Title Page in Appendix B and/or C (refer to
Section RPTG.3.2 for setting up the operators that control the
Test Procedure Appendix).

To generate the Test Procedure documentation, the RPTGEN program
is used. The following is a batch file called TP.BAT that will
write the Test Procedure documentation into an input file:

FIGURE “DV-F3. TEST PROCEDURE BATCH FILE (TP.BAT)

ECHO OFF
REM Gernerate Test Procedure to current drive for input file
REM Assume IEBM Graphics Printer

RPTGEN %1.BAT -MD=TF -RL —-RN=8SDS-1TP-01 -PW=8 -FN=%1.TP

The above operators are:
-~MD RPTGEN mode: TP - Test Procedure Generation
CD - Code Documentation
Default mode is TP
~-RL - Document Revision Log in Appendix
-RN - Reference Number or Name
-PW - Page Width Switch and Printer Control
8: 8.5" paper and IBM (Epson) Control Codes
8A: 8.5" paper and ANADEX Rapid Scribe Codes
13: 13.4" paper and no control codes
-FN - File name of Output (if -FN is not specified,
‘ report will go directly to the printer)

Refer to Section RPTG.2.3 for more detailed information on these
operators.

403110-00 Dv-4 REV.1.2

If the above batch file does not exist, you may create it. To
execute, enter TP and the batch file name without the .BAT
extension:

C>TP BATNAME

This batch file uses the batch file name as input from the
command line.

To print the test procedure file to printer:

C>PRINT BATNAME.TP
There is an option to send this document to the printer, instead
of sending it to a disk file, by not using the -FN operator,

since the output default is to the printer.

See Section B.5.2 for an example of the Test Procedure Report.

(THIS PAGE INTENTIONALLY LEFT BLANK)

403110-00 REV.1.2

“"RPTG.@ REPORT GENERATOR

“RPTG.1l INTRODUCTION

RPTGEN is a program designed to perform one of the most necessary
but dreaded engineering tasks, documentation. Its primary
purpose is to generate a Test Procedure Report from a Design
Verification Batch File. 1In addition to this function, RPTGEN
also provides a convenient means of generating a Test Results
report. These two reports are referred to as the Adaptec Matched
Documentation Sets.

The Test Procedure report consists of the documented procedure
and/or code that was used to run the test(s). In addition, a
copy of the batch file is also included in Appendix A of the Test
Procedure report. There is also an option for a Revision Log
report and a Code Listing Title Page for Appendix B and/or C.

The Test Results report is the documented case of the execution
of the batch file. Also included with this document is the
Execution Batch File (Appendix A) and a Test Data Summary Report
(Appendix B). Though the Test Results document does not use
RPTGEN, there is a relationship that exists between these two
documents. y

“"RPTG.1.1 ARCHITECTURE

Figure RPTG-F1l shows the basic "documentation" architecture in
which RPTGEN operates. The program was designed around a batch
(.BAT) file and a group of related "library" files, such as SATs.
These files can be a group of individual SCSI test files or a
group of program modules which are compiled (or assembled) and
linked together to generate a specific program. RPTGEN serves as
the "Documentation Linker" in combining these individual modules
(files) into a single well-structured document.

403110-00 RPTG-1 REV.1.2

FIGURE "RPTG~F1l. REPORT GENERATOR (DESIGN VERIFICATION PROCESS)

r— — — — — — |Design Verification Outline
v .BAT File
SAT GENERATION
SAT Design
T)
v —)
SAT Coding I
T v v —V v ‘
v « BAT Test Procedure
SAT Debug Execution Generation
T RPTGEN. EXE
Cataloging ¢ $
i Saurce Adaptec
SAT e TR {———) TP
LIBRARY | —) ————eoo— Matched
. EXE Set
s\satlib\ ' Test Results Test Procedure
SATLIE Binder Report Report

“"RPTG.1.2 BASIC OPERATION

RPTG.1.2.1 TEST RESULTS REPORT

After the SAT programs have been debugged, they should be ready
to run in a batch file environment. A batch file example is
shown in Figure RPTG-F2. If the batch file name is TEST.BAT,
then all that is needed to execute this file is to enter its file
name :

C>TEST

While execution of the batch file is in progress, the Test
Results report is being generated, producing the documented
execution results. Based on the group() and paragph() functions
contained in the SAT, a Table of Contents (TOC) will also be
generated, refer to Section FLIB.5 for other Test Results
documentation functions. When batch execution has been
completed, a Test Data Summary section is generated. The title
page is initialized by the TITLEPG command line and any messages
can be defined by the ENDTS command.

403110-00 RPTG-2 REV.1.2

TABLE “RPTG-T1l. RPTGEN EXECUTION ERROR MESSAGES

~-— Command Tail Error --- No Batch File Specified

--- Command Tail Error --- Hyphen not found

--- File I/0 Error --- Cannot Open Batch File

--- File I/0 Error --- Cannot Create Output File

--- File I/0 Error --- Cannot Write to Output File

--- File I/0 Error --- Cannot Open Temporary TOC File

--- File I/0 Error --- Cannot Open Temporary Revision Log File
--~ File I/0 Error --- Cannot Write Temporary TOC File

--- File I/0 Error --- Cannot Rewind Temporary TOC File

--- File I/0 Error --- Cannot Rewind Temporary Rev Log File
--- File I/0 Error --- Cannot Write to Temporary Rev Log File

RPTG.1.2.2 TEST PROCEDURES REPORT

To generate the Test Procedures document file, RPTGEN is executed
(notice that RPTGEN was not involved in the Test Results report
generation). RPTGEN receives the name of the input batch file
via its command tail, for example:

RPTGEN test.bat -MD=TP -RL -RN=TP-test-@1 -PW=8 -FN=test.TP

The same batch file that was used to generate the Test Results
report must be used to produce the Test Procedure report. RPTGEN
begins by looking for the title (-TI=) and create date (-CD=)
operator within this batch file in the TITLEPG command line.
This information is used to print the document cover or title
page, refer to Figure RPTG-F2 for a batch file example.

FIGURE “RPTG-F2. BATCH FILE EXAMPLE

TITLEPG test -TI="DEMO REPORT" -~CD=09-16—-85 -RN=TR-01 —-FO=test.TR
testi

REM ~FN=testi.c -TN=i

testa

REM —-FN=test2.c

test3 ~ThN=

ENDTS -Mi="End of Demo"

403110-00 RPTG-3 REV.1.2

RPTGEN next places a copy of the input batch file in Appendix A
of the Test Procedures document file. The main documentation
function begins at this point. RPTGEN begins a line-by-line scan
of the batch file looking for File Name operators (-FN=). This
operator specifies the file name to be used for the output docu-
ment. If the Test Procedure Implied Mode is used, there is no
need for this operator (see Section RPTG.2.2.2.2).

When a file name is found, RPTGEN opens the file and processes
the input file in a line-by-line manner. During this process,
RPTGEN is looking for the input file operators. These operators
define documentation lines (-DOC), code lines (-COD), revision
log lines (-REV), group and paragraph titles (-GT= and -PT=) and
RPTGEN control functions (-DB, -.PA, -AI, ...). Each input file
is completely scanned for these operators. A source file may
look like Figure RPTG-F3.

After scanning the input file, RPTGEN returns to the control or
batch file for the next operation. After the batch file has been
completely scanned, the document body created, and requested
appendices have been generated; the last step of RPTGEN is to
generate a Table of Contents. Refer to Appendix B.5 for a RPTGEN
example.

TABLE “RPTG-T2. REPORT GENERATOR OPERATORS

INPUT FILE OFERATORS BRTCH FILE OPERATORS RPTGEN OPERRARTORS
~DB= (TP) -TI= (TP/TR) —FN= (TF)
global -bocC (TP {TITLEPG -CD= (TP/TR) —-WS= (TP)
mode -COoD (Th) ops ~RN= (TR) -~MD= (TP)
-FOD= ATR) -RL= (TP)
—RN= (TP)
-REV (TF) ~CP= (TP)
-6T= (TP) |batch emd ~FN= -TN= (TP) —PW= (TP)
~DoC -PT= (TP) -TE= (TP)
mode -. PA (TF)
-AI= (TP) -M1= (TR)
ENDTS -M2= (TR)
ops -M3= (TR)
-COD -« PA (TP) —M4= (TR)
mode
-REV -.PA (TP)
mode

TP = Test Procedures Report
TR = Test Results Report

403110-00 RPTG-4 , REV.1.2

FIGURE “RPTG-F3. SOURCE FILE WITH INPUT FILE OPERATORS EXAMPLE

/% -DOC
Filename: testl.c

This is an example of
using the source file operators.

-REV
Created: 09/16/85
Initial Release:
Revision:
-REV
-6T="Example of SAT"
~DOC %/

/% —COD »/

user_test ()

{

test ("Example of SAT"j

group("Write/Read/Compare in DMA HC Transfer Mode");

xfermode ("DMAHC", Ox40) 3 /% DMAHC transfer mode
with 64K buffer size %/

ioto(10); /% 10 second timeout #*/

arbmode ("HDW") 3 /% hardware arbitration #/

tid(0) ; /% target ID is O %/

lun(0) 3 /% logical unit # O */

/% —COD +/

/% -DOC

—PT="Write in DMAR HC Transfer Mode"

-DOC */

/% —COD %/

paragph (“Write in DMA HC Transfer Mode")j;

dmarst ("W") ; /% reset DMA Write Buffer #/

£filli (0O, 0,0%x40); /% fill buffer with
incrementing pattern #/

writer (0, 0%x40); /% write 64k bytes #*/

/% —=COD %/

/% -DOC .

-PT="Read/Compare in DMR HC Transfer Mode"

-DOC #*/

/% -COD %/

paragph ("Read/Compare in DMAR HC Transfer Mode");

readr (0, 0x40) ; /% read 64k bytes #/

b

/% —~COD #/

403110-00 RPTG-5 REV.1l.2

“"RPTG.2 REPORT GENERATOR OPERATORS

RPTGEN makes decisions and obtains input information for a set of
operators. These operators occur in three mutually-exclusive
areas: input files, batch (control) file, and command tail.
Each set of operators serves a specific function in the final
report generation (refer to Table RPTG-T2).

“"RPTG.2.1 INPUT FILE OPERATORS (TEST PROCEDURE REPORT)

During input file processing, RPTGEN examines each source file
line in a sequential manner. It looks for file operators which
establish RPTGEN's "line processing mode." There are four
basic line modes:

GLOBAL (not in -DOC, -COD or -REV mode)

DoC processing Document lines

REV processing Revision Log lines
(contained within Document line mode)

COD processing Code lines.

NOTE: RPTGEN will find only the first operator on a
line, then proceed to the next line (with the
exception of the -PT= and -RN= pair).

RPTG.2.1.1 GLOBAL OPERATORS

Global operators can occur in any portion of the input file.
They provide control information and cause line mode changes.

The ~DOC and -COD operator pairs can be intermixed. RPTGEN will
provide continuous print (filling up a page and continuing on the
next page) until a ~GT= operator is found between -DOC operators.
The document mode -GT= operator causes a page eject and places
the group title and reference number at the top of the next

page.

RPTG.2.1.1.1 DOCUMENTATION BOUNDARY (-DB=)

-DB=C DEFAULT: no left-hand margin character

Establishes the character, c, to be used as the left-hand margin
for the documentation and revision log portions of report
generation process. A typical boundary character is the ";"
which is the comment character for most assemblers. RPTGEN will
ignore all characters and spaces preceding the boundary character
for -DOC and -REV lines. The -DB= operator will disable the
left-hand margin character function.

RPTG.2.1.1.2 START/STOP DOCUMENT OUTPUT OPERATOR (-DOC)

-DOC

Once a -DOC operator is encountered in GLOBAL mode, RPTGEN will
remain in document line mode until the next -DOC operator (toggle

403110-00 RPTG-6 REV.1.2

function) is found, all other global operators and nondocument
operators will be ignored.

NOTE: The documentation line mode will truncate any
text past column 66.

RPTG.2.1.1.3 START/STOP CODE OUTPUT OPERATOR (-COD)

-COD

When the -COD operator is encountered in GLOBAL mode, RPTGEN will
remain in code line mode until the next -COD operator (toggle
function) is found, and all other global operators and noncode
operators will be ignored.

In code line mode, if the -CP (code print) operator is found in
the command tail, RPTGEN adds a line number to the input file
line and outputs the line to the printer. If 8.5-inch paper
width is specified, the output lines are printed using compressed
print. All other file operators are ignored when RPTGEN is in
code output mode.

RPTG.2.1.2 DOCUMENTATION LINE MODE OPERATORS

Documentation operators are valid only within the limits
established by the -DOC operator pair.

RPTG.2.1.2.1 START/STOP REVISION LOG OUTPUT (-REV)

-REV

If the -RL command tail operator appears on the RPTGEN command
line, RPTGEN will enter the Revision Line Mode and output the
document lines between the -REV operator pairs to a temporary
file RPTGENRL.TMP which will be attached to the main document as
Appendix B. RPTGEN will supply a title line and reference number
from the current test, group, or paragraph, depending on where
the -REV operator pair was embedded in the document area.

RPTG.2.1.2.2 GROUP TITLE OPERATOR (-GT=)

—GT=XXXXXXXXXXXXXXX (single-word title)
~GT="XXXX XXXXX XXXx" ' (multiple-word title)

XXX...Xxx is the group title which will be used in the Table of
Contents and at the top of the group. RPTGEN will automatically
generate a group number with the following format:
#.x where:
is the string taken from the batch file

operator -RN= or assigned by RPTGEN when no
-RN= operator is found.

403110-00 RPTG~-7 REV.1l.2

X is the next group number. At the start of
a new input file, RPTGEN sets its group
reference counter, x, to 4. When a -GT=
operator is encountered, the group reference
counter is incremented and used to define the
group. Each time the -GT= operator is
encountered, the paragraph reference counter
is reset to 4.

The group title operator will cause a TOC entry and a page eject
prior to printing the group title. The page eject will be held
if the -GT= operator occurs within the first 26 lines of a new
test (section).

RPTG.2.1.2.3 PARAGRAPH TITLE OPERATOR (-PT=)

-PT=xxxxxxxxkxxxxxxxx (-RN=sss) (single-word title)
-PT="xxxXX XXXXX XXXX"™ (—RN=sss) (multiple-word title)

This is the paragraph title operator with an optional reference
number extension. The xxX...Xxx is the paragraph title which
will be used in the Table of Contents and at the top of the
paragraph.

NOTE: The () are NOT part of syntax.

RPTGEN will automatically generate a paragraph reference number
with the following format:

#.X.y.sss where:

is the string taken from the batch file
-RN= operator.

x is the current group number.

y is the paragraph number. If the ~RN=
operator is found on the same line as the
-PT= operator, RPTGEN assumes that the user
wishes to expand the numbering system beyond
the three-deep level supported by RPTGEN.
Therefore, the paragraph reference counter,
Yy, wWill not be incremented. If only the
-PT=operator is found, then y will be
incremented and used. Yy is reset at each
occurrence of the -GT= operator.

sss is the paragraph extension supplied via
the -RN= operator.

403110-00 RPTG-8 REV.1.2

RPTG.2.1.2.4 PAGE EJECT OPERATOR (-.PA)

-.PA

The ~.PA operator will cause RPTGEN to generate a top of form.
This is useful when a description is longer than a single page
and the user wishes to control the page break location.

NOTE: The —-.PA operator will be ignored if a natural
page break has just occurred and the printer is at the
top of a new page.

RPTG.2.1.2.5 ART INSERT OPERATOR (-Al=)

~AI=XXXXXXXX.YYY
~AI="XXXXXXXX.YYY"

RPTGEN will allow the insertion of "printer image" files which
are formatted for the IBM PC Graphics printer. This allows the
user to include PC PAINT PLUS artwork into the Test Procedure
document, but only if the document is sent directly to the
printer. RPTGEN assumes all artwork will be 33 lines by 890
columns (16 characters/inch). RPTGEN will also ensure the
current page contains enough room for the art insertion or a page
eject is performed.

Since graphics art insertion requires output to an IBM Graphics
printer, report output to the Anadex printer or to.a file (CNTL-2Z
problem) cannot contain a printer image. For these cases, RPTGEN
will leave a blank area of 33 lines with the art file name
centered in this area. This allows the user to paste the artwork
after the document has been completed.

RPTG.2.1.2.5.1 MOUSE HARDWARE SETUP

The mouse is a small pointing device with 3 buttons. It is used
to move the pointer or indicator on the screen, to select tools,
to draw, and to pull down menus on the screen display. 1In this
section, the click or clicking is done with the left button.
There are three parts to the mouse: mouse, mouse pad and power
supply. To connect the mouse to the SDS-1, do the following:

a. plug one end of the power supply into the RS§-232C
connector jack (from the mouse) and the other end into a
wall outlet

b. plug the RS-232C connector (from the mouse) into the COM
port of the SDS-1 :

c. place the mouse on top of the mouse pad.

Refer to the Mouse Systems PC PAINT PLUS reference manual for
more information on the mouse and its usage.

403110-00 RPTG-9 REV.1.2

RPTG.2.1.2.5.2 MOUSE SOFTWARE SETUP

On SDS-1 boot, the mouse driver, MSMOUSE, should have already
been executed. To use the mouse software, the user should change
his current directory (C:\USER1l) to the C:\PAINT and execute
PCPAINT:

C>CD \PAINT
C>PCPAINT

The first screen to appear will indicate that PC PAINT PLUS is
running. Then the screen will change to show the user's work
area with a pointer. The pointer indicates where the mouse is
and the current mode or option. The initial option is the
pencil. When the pointer leaves the work area, the pencil
changes to an arrow. Along the top of the screen are the PC
PAINT PLUS menus. Along the left side and bottom of the screen
are the tool and option boxes (notice that the pencil box is
highlighted, since that is the current mode). Move the mouse
over the mouse pad; notice that the pointer or indicator on the
screen also moves in the same direction. Now move the pointer to
the Mouse System logo (located at the top left corner of the
screen) and click the mouse's left button--a command list should
appear. Move the pointer down to the "Control Box"; when it is
highlighted, click the mouse. In this command, the user can
modify the current values for running PC PAINT PLUS. Some of the
control box values are initially set to:

a. Display mode: 320 X 200 4-color
b. Sensitivity: Medium
c. Pic size: 8 X 11 - Low & Portrait X-240 Y-275.

Other control box values are discussed in the Mouse Systems PC
PAINT PLUS reference manual. To modify the values set, move the
mouse to the appropriate box and click the mouse. Some boxes
have more than one option; 1in this case, continue to click the
mouse until all possible options are shown. Other option or
value types are entered via keyboard. To accept the new values,
click the mouse at the Accept box. To cancel the new values and
return PC PAINT PLUS to the way it was before the control box was
opened, click the mouse when pointer is at the Cancel box.

RPTG.2.1.2.5.3 MOUSE DRAWING OR PAINTING

To draw figures, use the tools and/or options available by moving
the mouse to the tools and options box and clicking the tool
and/or option to use. Then move the mouse to the site where the
drawing is to start and, depending on the tools picked, either
hold down the left button and move the mouse to draw or click the
mouse to paint.

403110-00 RPTG-9a REV.1l.2

RPTG.2.1.2.5.4 SAVING THE PICTURE

Before saving the picture, the filename must be specified. Move
the pointer to the File menu and click. Then move pointer down
to the Save command and click. The Save screen should appear.

To modify the directory path name, move the mouse pointer to the
top field in the Save screen. This is the directory path box.
Click the mouse and type in the new directory path name and press
the RETURN key.

To change the filename, move the mouse pointer to the Filename
box (below the directory path box) and click the mouse. Enter
the name of the figure or picture and press the RETURN key. If
saving a picture, an extension of .PIC will be added to the file
name or if saving a clipping, .CLP will be added.

To save the picture, be sure the Picture box is highlighted and
move the pointer to the Save box. Then hold the CTRL key and
click the mouse. If the replace option is requested, move the
pointer to the Replace box and hold the CTRL key again and click
the mouse. This will save the picture in a format that is
compatible with the SDS-1 Report Generator.

RPTG.2.1.2.5.5 EXIT PC PAINT PLUS AND RETURN

To exit from PC PAINT PLUS, move the pointer to the File menu and
click. Then move the pointer down to the Quit PC PAINT command
and click. This should return the user back to DOS. Then to
return back to the user directory (C:\USERl):

C>CD \USER1l

RPTG.2.1.2.5.6 USING THE ART INSERT OPERATOR

For art insertion into the Test Procedure Report, use the -Al=
operator along with its file name. If the file is not in the
current user directory, specify the full path name (up to 20
characters may be used). An example of the -AI= operator:

/* -DOC

-AI=C:\PICTURES\ART.PIC

-DOC */

RPTG.2.1.3 CODE LINE MODE OPERATORS

Code operators are valid only within the limits established by
the -COD operator pairs (one starting and one ending the code
area) .

403110-00 RPTG-9b REV.1.2

RPTG.2.1.3.1 PAGE EJECT OPERATOR (-.PA)

-.PA

The -.PA operator will cause RPTGEN to generate a top of form.
This is useful when a code area containing sections that could be
easily understood by starting at the top of a page.

NOTE: The -.PA operator will be ignored if a natural
page break has just occurred and the printer is at the
top of a new page.

RPTG.2.1.4 REVISION LOG LINE MODE OPERATORS

Revision operators are valid only within the limits established
by the -REV operator pair (one starting and one ending the
Revision Log section).

RPTG.2.1.4.1 PAGE EJECT OPERATOR (-.PA)

-.PA

The -.PA operator will cause RPTGEN to generate a top of form in
the Revision Log Appendix (Appendix B of documentation).

“"RPTG.2.2 BATCH FILE OPERATORS

RPTG.2.2.1 INITIAL SETUP

The TITLEPG command will initialize the title page, reference
number and file name output for the Test Results Report. Below
is a typical example of the TITLEPG command line:

TITLEPGdtest -TI="DEMO TEST" -CD=09-16-85 -RN=TR-88 -FO=dtest.TR

RPTGEN creates the title page by scanning this command line for
the title and creating date operators for the Test Procedure
Report.

The batch file name follows TITLEPG on the command line; the
TITLEPG operators are listed. 1Its operators are defined in the
following sections:

RPTG.2.2.1.1 DOCUMENTATION TITLE AND HEADER (-TI=)

~TI="XXX.o.XXX"
The document title and header for the Test Results and Test

Procedures reports where xxx...xxx is the title or header
specified.

403110-00 RPTG-10 REV.1.2

RPTG.2.2.1.2 CREATION DATE (-CD=)

-CD=mm-dd-yy

This operator defines the creation date of the batch file which
is printed on the cover or title page of the Test Results and
Test Procedure reports, where mm-dd-yy is the month, day and
year.

RPTG.2.2.1.3 REFERENCE NUMBER OR NAME (-RN=)

-RN=xxx.yyy-901

The reference number or name of the Test Results report which
appears on the cover or title page. The definition consist of a
maximum of 35 alphanumeric characters and/or symbols in a "free
format" manner.

RPTG.2.2.1.4 FILENAME OUTPUT (-FO=)

-FO=XXXXXXXX.YYY

This operator specifies the name of the file where the Test
Results report is to be saved on disk where xxxxxxxx is the file

name and yyy is the file extension.

RPTG.2.2.2 SPECIFY FILE NAME (TEST PROCEDURES REPORT)

There are two ways to specify the file name for the Test
Procedures Report: the -FN= operator and the Test Procedure
Implied Mode.

RPTG.2.2.2.1 FILE NAME OPERATOR (-FN=)

This is the file name operator with an optional test (section)
number operator. To specify the file name for the Test
Procedure report, use the -FN= operator:

REM -FN=XXXXXXXX.YYY (-TN=(nnn))
NOTE: The () are NOT part of the syntax.

Usually located in the REM or comment line, the -FN= operator
specifies an input source file that RPTGEN uses in creating the
Test Procedure report. RPTGEN keeps an internal test (section)
reference counter which is set to 6 at program initialization.
Each -FN= occurrence increments this counter. RPTGEN will use
this counter for the test (section) number in the Test Procedure
report's Table of Contents and in group and paragraph numbering
if a -TN= operator is not found on the same line. Otherwise,
RPTGEN will use "nnn" as the test (section) number. The test
(section) reference counter will be incremented with or without
the presence of the -TN= operator. The -FN= operator will
generate a TOC entry and cause a page eject in the output report;
a new test (section) will always start at the top of a page.

403110-00 RPTG~11 REV.1l.2

RPTG.2.2.2.2 IMPLIED MODE

When in Test Procedure mode (-MD=TP), and the Batch File line
contains a -TN= operator but no -FN= operator, RPTGEN assumes
that the first command on the line is an .EXE file which was
generated from a file with the same name and an extension of .C
(for "C" source) or .A (for assembly code). RPTGEN will search
for these files as input files.

NOTE: The -TN= operator can be used without a test
reference number. RPTGEN will assign the next
sequential test reference number to this test.

RPTG.2.2.3 MESSAGES (TEST RESULTS REPORT)

To produce messages in the Test Results report, use the ENDTS
command line. ENDTS prints out the message(s) in Appendix B,
Test Data Summary Section of the Test Results report. The ENDTS
program can define up to 4 messages at one time but they all must
appear on the same command line. Each message may contain up to
86 characters.

ENDTS -Ml="Successful Execution™ -M2="No Errors Detected"

“RPTG.2.3 COMMAND TAIL OPERATORS (TEST PROCEDURES REPORT)

The command tail operators appear after the batch file name on
the RPTGEN command line:

RPTGEN test.bat -MD=CD -RL ~-RN=test-@2 -PW=8

Command tail operators are used so RPTGEN itself can be utilized
from the DOS batch environment.

RPTG.2.3.1 OUTPUT FILE SWITCH (-FN=)

~FN=XXXXXXXX.YYY DEFAULT: output to printer
Redirects RPTGEN output from the printer to a disk file specified
after the operator, where xxxxxxxx is the file name and yyy is
the file extension. The file will contain the printer image.

RPTG.2.3.2 WORDSTAR FILE OUTPUT (-WS=)

~WS=XXXXXXXX.YYY DEFAULT: output to printer

Redirects RPTGEN output from the printer to a disk file specified
after the operator, where xxxxxxxx is the file name and yyy is
the file extension. This file will not be a printer image but
will contain WordStar "dot" commands. These dot commands
generate a WordStar output identical to the document produced if
the output is sent directly to the printer. This mode allows the
user to modify the document in WordStar before printing.

403110-00 RPTG-12 REV.1.2

WARNING: Table of Contents page numbers are generated
by RPTGEN. Addition or deletion of document pages will
change the TOC.

RPTG.2.3.3 RPTGEN MODE (-MD=)

-MD=TP or -MD=CD DEFAULT: Test Procedure Generation
Sets the Test Procedure Generation (TP) or Code Documentation
(CD) mode. The only function of this flag is to modify the
RPTGEN run time status window and the output document title page.

RPTG.2.3.4 REVISION LOG SWITCH (-RL)

-RL DEFAULT: No revision log

Document the lines between -REV operator pair in Appendix B of
the Test Procedures Report, otherwise these lines are ignored.

RPTG.2.3.5 FILE REFERENCE NUMBER OR NAME (-RN=)

-RN=xxx.yyy-9001 DEFAULT: Blank Reference Number or Name

This reference number or name appears on Document Cover Sheet or
Title Page of the Test Procedures Report. The definition con-
sists of a maximum of 35 alphanumeric characters and/or symbols
in a "free format" expression.

RPTG.2.3.6 CODE PRINT SWITCH (-CP=)

~CP DEFAULT: No Code Print

Includes all code lines in output document. If -PW=8, then the
code segments will be printed in compressed print.

RPTG.2.3.7 PAGE WIDTH SWITCH AND PRINTER CONTROL (~PW=)

-PW=8
-PW=13
-PW=8A DEFAULT: 8.5 inch paper IBM Printer

The following are the codes for the —-PW= operator:

8 = 8.5 inch paper and IBM (Epsoh) Control Codes
8A = 8.5 inch paper and ANADEX Rapid Scribe Control Code
13 = 13.4 inch paper and no control codes sent.

It is used with -CP (code print) switch to determine if printer
output will be compressed during code line printing.

403110-00 RPTG-13 REV.1l.2

RPTG.2.3.8 TAB EXPANSION OPERATOR (-TE=)

-~TE=n DEFAULT : -TE=5

Defines batch (control) and input file Tab expansion stations;
for example, if n = 4, then tabs are set at 5, 9, 13, 17, etc.

“RPTG.3 OUTPUT REPORT FORMAT

“RPTG.3.1 TEST RESULTS REPORT

There are many options which affect the generation of the Test
Results report. Section FLIB.5 describes the report generator
function that provides these options. The basic Test Results
report structure is:

REPORT ELEMENT COMMENTS

TITLE PAGE Contains:
TITLE from TITLEPG in Batch File
CREATE DATE from TITLEPG in Batch File
BATCH FILE NAME
" " LAST REVISION DATE
" " LAST REVISION TIME
CURRENT DATE & TIME

TABLE OF CONTENTS Generated from test(), group().,
paragph() and subpar() functions
SAT #1 RESULTS Contains:
: The execution listing generated from
SAT #N RESULTS the report generator functions
APPENDIX A Batch File listing
APPENDIX B Test Data Summary Report and any ENDTS

message(s) .

“"RPTG.3.2 TEST PROCEDURES REPORT

The RPTGEN command tail provides the user with a number of
options which affect the Test Procedures report appendix
structure. However, the body structure of the final report is
consistent. This structure is as follows:

403110-00 RPTG-14 REV.1.2

REPORT ELEMENT COMMENTS

TITLE PAGE Contains:
TITLE from TITLEPG in Batch File
CREATE DATE from TITLEPG in Batch File
BATCH FILE NAME
" " LAST REVISION DATE
" " LAST REVISION TIME
CURRENT DATE & TIME

TABLE OF CONTENTS Generated from Batch File -FN= operators
and input file -GT= and ~PT= operators
SAT #1 PROCEDURE Contains:
: . -DOC and ~COD lines from input file
SAT #N PROCEDURE along with titles generated by Batch

File -FN= operator and input file =-GT=
and -PT= operators

APPENDIX A Batch File listing

Depending on the values of the -MD= operator and whether the -RL
operator exists, the following is a table of the appendix
definition for Appendix B and C of the Test Procedure report:

APPENDIX B APPENDIX C COMMAND TAIL FLAGS

NONE NONE -MD=TP
(Test Procedure Generation)

REVISION LOG NONE -MD=TP -=RL
(Test Procedure Generation with
Revision Log)

CODE LISTING NONE -MD=CD
TITLE PAGE (Code Documentation Generation)
REVISION LOG CODE LISTING -MD=CD = -RL
TITLE PAGE (Code Documentation Generation

with Revision Log)

For examples of the Test Results and Test Procedure Report, see
Appendix B.5.

403110-00 RPTG-15 REV.1l.2

(THIS PAGE INTENTIONALLY LEFT BLANK)

403110-00 REV.1.2

~IODVR.# I/0 DRIVER

“IODVR.1l EXECUTION ENVIRONMENT

The I/0 Driver is the SDS-1's primary SCSI execution environment.
It is used to execute the SCSI random and sequential functions
such as writer() and writes(). These I/0 Driver functions
provide the user with an easy means of executing SCSI commands,
with the task of SCSI bus management being performed by the I/0
Driver. Figure IODVR-F1l shows the basic execution I/0 Driver
environment. Features and characteristics of the 1/0 Driver are
discussed in following sections.

FIGURE “IODVR-Fl. I/0 DRIVER EXECUTION ENVIRONMENT

WRITE) I/0 DRIVER f(f—eeooo) SCS1
BUFFER BUS STRTE
Data
Compare
RERD { ————) Function
BUFFER
[4) HARDWARE SCS1
Initiator ': RUS
USER GEN. }—m——u—) Logic —
1/0
COMMAND

“IODVR.2 BUFFER MANAGEMENT

An important task of the I/0 Driver is memory buffer management.
The SDS-1 utilizes a three-buffer architecture (see IODVR-F2).
All data is written from the write buffer. Data is read from the
SCSI bus into the read buffer. The third and final buffer, sense
buffer, is a special case read buffer used only for SCSI sense
commands (refer to section IODVR.6 for definition of its use).

The SDS-1 utilizes two classes of buffers. Under certain
conditions (see xfermode() in Appendix A), system main memory is
used as the write and read buffers. Other modes utilize the
special High-Speed On-Board Buffer located on the SDS-1 SCSI
interface or test adapter board.

403110-00 IODVR-1 REV.1l.2

“IODVR.2.1 BUFFER WRAPAROUND

The I/0 Driver performs buffer wraparound. In other words, an
SCSI transfer that exceeds the physical buffer size will make
multiple passes through the buffer. For SCSI write operations,
the data pattern appearing on SCSI will repeat every buffer size.
For read operations this means that after the first buffer size
transfer, data will be overwritten in the SDS-1 read buffer.

When using backplane DMA transfer modes, the I/0 Driver software
must manage buffer wraparound (via software intervention) each
time the buffer size limit is reached. The S$DS-1 High-Speed On-
Board Buffer (OBB) utilizes hardware wraparound, and as such,
only requires software intervention every 16MB of transfer (limit
of OBB transfer length counter).

FIGURE “IODVR-F2. SDS-1 BUFFER ARCHITECTURE

———0OEB Wr/Ref —_—
Read Buffer! = p—————————o

| SCSI Bus
—.] J
Backplane DMA Control
Backplane
Sense Write/Ref Read Memory
Buf fer Buffer
Cmd
Backplane SDS-1
Memory Buffers CPU Status

“IODVR.2.2 DATA COMPARISON

A second function of the SDS-1 I/0 Driver is data comparison and
compare error reporting. The action taken by the I/O Driver and
SDS-1 Debugger on a data compare error depends upon the implicit
error (iea()) selected by the user and the execution environment
(design verification batch file or SAT/MENU). Table IODVR-T1
defines data compare error processing. The user should also refer
to the DEBUG section for further understanding of the IOABRT
state and compare error handling.

403110-00 IODVR-2 REV.1.2

TABLE “IODVR-T1l. DATA COMPARE IMPLICIT ERROR ACTION
IMPLICIT SAT/MENU DESIGN VERIFICATION
ERROR RES PONSE RESPONSE
ACTION (NON-BATCH MODE) (BATCH MODE)
___________ i e = = - - - = > S " - - - - - - —— -
CONT Accumulate function Accumulate function
(CONTINUE) statistics but does not statistics but does not
report counts or report counts or
miscompare counts. miscompare counts.
___________ o e o o e e o e it T 0 e
HALT Enter IOABRT state with Complete 1/0 after
(HALT) expected and actual data compare error and return
displayed. to DOS and execute the
next SAT.
___________ o o e e e e e e e o o e o e e e s = o o = = e ———
LOGH Report each compare error Report first compare
(LOG & in log until HOE set to @ error in log.
HALT) in IOABRT. Accumulate Accumulate function
function statistics and statistics, report the
report to log the overall overall execution
execution statistics at statistics at completion
completion of I/0. Halt of 1/0. Return to DOS
processing in Debugger's and execute the next
ERROR PROCESSOR state. SAT.
LOGC Report each compare error Report first compare
(LOG & in log until HOE set to @ error in log.
CONTINUE) in IOABRT. Accumulate Accumulate function
function statistics and statistics. Report the
report to log the overall overall execution
execution statistics at statistics at completion
completion of 1/0. of I1/0. Continue
Continue execution until execution until error
error 1limit is reached. limit is reached. If
If error limit reached, error limit reached,
stop in Debugger's ERROR return to DOS.
PROCESSOR state.
“IODVR.2.2.1 HARDWARE DATA COMPARE

The SDS-1 SCSI interface hardware contains a special hardware

comparator which compares SCSI data in an "On-the-Fly" mode.
other words,

In

as the data is read in from the SCSI bus it is

compared against a reference buffer.
the read SCSI data is not saved after the compare is completed

(see Figure IODVR-F3).

1f a data compare error occurs,

There is no read buffer and

the SDS-1

freezes the SCSI REQ/ACK handshake and displays the expected data
from the reference buffer and the SCSI read data.

403110-00

IODVR-3

REV.1l.2

FIGURE “IODVR-F3. HARDWARE COMPARE ARCHITECTURE

OBB Wr/Ref e
opp LbV— p—————
or L—-—---) Hardware| (¢ l 8CSI Bus
DMA ——) Compare | @g—-——————-—
4 8CS1
—L- ——J i Read
Data
Backplane DMA Contreol
Sense Write/Ref
Buffer
Cmd
Backplane SDS-1
Memory Buffers CrU Status

Since data is compared "On-the-Fly," the comparison appears from
a timing standpoint to look like a single read command. Buffer
wraparound is managed as it would be in a simple write or read
condition. The user should remember that there is no read buffer
in hardware compare modes and all SCSI commands which result in a
DATA IN phase (with the exception of sense()) will be compared
against the write/ref buffer.

“IODVR.2.2.2 SOFTWARE DATA COMPARE

Software data compare is handled in one of two ways. For PIOSC
(Programmed I/0 Software Compare) and TRSC (Transmit/Receive
Software Compare) transfer modes, each byte is compared (by the
system CPU) against the write/reference buffer as it is read from
the SCSI bus. This is possible because the CPU handles each and
every byte of the DATA IN phase.

DMASC (DMA Software Compare) and HSSC (High-Speed Software
Compare) provide a "real-time" transfer environment with an
"after the transfer" data comparison by the host CPU. 1In other
words, data is transferred into the read buffer via a DMA process
and once the buffer is full, the CPU compares the write/reference
buffer with read buffer. This feature allows the user to view
not only the data compare error itself (as was the case in
hardware compare), but also the data around the compare error.
In fact the RW option in the buffer display command (dispbuf())
will show the read buffer and write/reference buffer side-by-
side. During the software compare process, the read buffer is
filled and the write/ref buffer DMA pointer is used as the
reference data pointer for the software compare.

FIGURE “IODVR-F4. SOFTWARE COMPARE OPERATION EXAMPLE

Initial Conditions

Buffer Size = @x8000 (32K buffer)

SCSI read command will transfer -> GxC0O00 bytes (48K)
Initial write/ref pointer 0x2000

Initial read pointer 0x2000

DMA Pointer Values
I1/0 Driver Operation Write/Ref Read

@x2000 0x2000
1. I/0 Driver reads 0x6000
bytes up to buffer end

0x2000 0x0000
2. I/0 Driver compares
up to buffer end
0xQ000 0x0000
3. I/0 Driver completes
SCSI command (0x6000 bytes)
Px0000 0x6000
4. I/0 Driver completes compare
(0x6000 bytes remaining)
(0x4000 bytes left) _
Px6000 0x6000

“IODVR.3 CONTROL FUNCTIONS

Figure IODVR-F5 shows the I/0 Driver Execution Environment with
the various 1I/0 Driver control functions. These functions allow
the user to simulate many different SCSI host environments.

FIGURE "IODVR-F5. 1I/0 DRIVER CONTROL FUNCTIONS

WRITE j}————) I1/0 DRIVER jp—m—eou—) 8CS1
BUFFER bus_logen() BUS STATE
Data
Compare
READ {——) Function - ackdelay ()
BUFFER
<) HARDWARE §CSs1
Initiator ': BUS
USER GEN. }————) Logic —— parity ()
1/0 tid ()
COMMAND - iid ()
- arbmode ()
xfermode () exp_status() selmode ()

busywait () stat_mask ()
autosense ()

403110-00 IODVR-5 REV.1.2

“IODVR.3.1

1/0 TIME OUT

The ioto()

Driver operation.

combination

selected by
IODVR-T2 defines this logic.

function provides a

is a function of
the user and the

"watch dog"
The action taken by the I/0 Driver/Debugger
implicit error action
execution

timer on any I/O

(iea())

environment. Table

TABLE “IODVR-T2. TIME OUT IMPLICIT ERROR ACTION
IMPLICIT SAT/MENU DESIGN VERIFICATION
ERROR RESPONSE RESPONSE
ACTION (NON-BATCH MODE) (BATCH MODE)
___________ o o e o o o o
CONT Abort I/0 and continue Abort I/0 and continue
(CONTINUE) with the next SAT with the next SAT
function. function.
___________ d o e e e e e e e e e o e o o e
HALT Enter IOABRT state and Abort I/0 and return to
(HALT) and allow the user to DOS and execute the next
terminate or continue I/0 SAT.
with secondary time-out.
___________ o e e o - o i o e e i e o i e - o e S e = = - = = ——————
LOGH Enter IOABRT state and Abort I/0 and log time-
(LOG & allow the user to out. Return to DOS and
HALT) terminate or continue I/0 execute next SAT.
with secondary time-out.
If wuser terminates 1I/0,
log as I/0 time-out and
halt processing in
Debugger's ERROR
PROCESSOR.
___________ o e e o o = e o " = 2 = - - o ——— — ———— - — - -~ —— - ————
LOGC Abort 1I/0 and log error. Abort I/0 and log error.
(LOG & Continue execution until Continue execution until
CONTINUE) error 1limit is reached. error 1limit is reached.
If error limit reached, If error limit reached,
stop in Debugger's ERROR return to DOS and
PROCESSOR state. execute the next SAT.
NOTE: When I/0 is aborted as a result of a time-out, a

bus reset is performed.

“IODVR.3.2

PARITY

SCSI bus parity, both generation and checking, is controlled by
the parity() function. The 1/0 Driver responds to a DATA IN
parity error by asserting attention and internally setting a
MESSAGE OUT of DATA PARITY ERROR. If the target requests a
MESSAGE OUT in response to attention assertion, this message is
sent. In addition, the Initiator Status returned by the I/0
Driver will report a parity error detection. The I/0 Driver
handling of parity error is intentionally limited. The SDS-1

microprogramming environment is designed to provide the user with
a controlled means of error generation and response checking.

~“IODVR.3.3 ARBITRATION

Three modes of arbitration are supported by arbmode() function.

NONE: No arbitration, selection will jump on bus as with
nonarbitrating SCSI devices.

HARDWARE: During hardware arbitration, the arbitration win
decision is processed by hardware with no software
intervention required. The hardware will continue
to arbitrate after losses until it finally wins.

SOFTWARE: During software arbitration, the arbitration win
decision is processed by software. (If another
device asserts select, hardware will take over and
remove busy from the bus.) If arbitration is lost
and state logging is enabled, the loss is recorded
in the state log.

“I0DVR.3.4 SELECTION

The selmode() function provides two options: SMART and DUMB.

With SMART selection, attention is asserted during selection and
an identify message (with disconnects supported) will be sent to
the target. DUMB selection does not assert attention and as such
will never allow disconnects.

The synergistic effects of selmode() and arbmode() are described
below:

NUMBER OF
arbmode () selmode () SELECT BITS ID MESSAGE
NONE DUMB 1l NO
NONE SMART 2 NO
SFTW or HDW DUMB 1l NO
SFTW or HDW SMART 2 YES

~“IODVR.3.5 SCSI PATH CONTROL

The SCSI bus path is established with the iid(), tid() and lun{()
functions. Using the iid() function, the user can simulate
multiple hosts talking to the same SCSI target.

~“IODVR.3.6 TRANSFER MODES

One of the SCS-1's major features is its ability to emulate
- various SCSI hosts. The data transfer portion of this emulation
is controlled by the xfermode() function. This function allows

403110-00 IODVR-7 REV.1.2

the user to select one of 13 different data transfer/compare
modes for the 1/0 Driver. The xfermode() function description in
Appendix A summarizes these modes, while the following sections
define each mode in detail.

I0ODVR.3.6.1 PIO READ/WRITE (PIORW)

Each data byte is transferred by the SDS-1 CPU using Programmed
I/0 acknowledge handshake. This is the slowest means of
transfer.

FIGURE “IODVR-F6. PIORW TRANSFER MODE BLOCK DIAGRAM

——— OEB EEe—

[4 {(— | 8SCSI Bus
—) Y —

I O ’

Backplane DMA Control

Sense Write Read
Buffer Buffer
[— —— Cmd.
l SDS-1
Backplane L——————(——— CPU
Memory Buffers)) Status
—]
Backplane PIO Transfer Data Compare
Read/Write Buffer Size Mechanism Mechanism
Write Operation BPM 16-) CPU Data Move N.A.

32,768 |CPU Ack Cntl.

Read Operation BPM 16-) CPU Data Move N. A.
32,768 |CPU Ack Cntl.

Comments:

403110-00 IODVR-8 REV.1.2

IODVR.3.6.2

PIO SOFTWARE COMPARE (PIOSC)

Each data byte is transferred by the SDS-1 CPU using Programmed

1/0 acknowledge handshake.
byte is compared against the write/ref buffer.

During read operations,

each

DATA 1IN

FIGURE “IODVR-F7. PIOSC TRANSFER MODE BLOCK DIAGRAM
OEB —_—
< (- | SCSI Bus
—) — -
SR O |
Backplane DMA Control
Sense Write Read
Buffer Buf fer
[— ——— Cmd.
| SDS-1
Backplance L———-——(———w CPU
Memory)) Status
Buffers) Compare
;[come
Backplare PIO Transfer Data Compare
Software Compare Buffer Size Mechanism Mechanism
Write Operation BPM 16-) CPU Data Move N. R.
32,768 |CPU Ack Cntl.
Read Operation BPM 16-) CPU Data Move CPU Ref & Read
32,768 |CPU Ack Cntl. Buffer Compare

Comménts: I1/0 Driver will always try to fill read buffer then
perform compare, until last read which may be less than

a buffer in length.

403110-00

IODVR-9

REV.1.2

IODVR.3.6.3

TR READ/WRITE (TRRW)

Each data byte is transferred by the SDS-1 CPU using a special

hardware acknowledge logic

automatically on information transfer).

FIGURE “IODVR-F8.

TRRW TRANSFER MODE BLOCK DIAGRAM

(the ACK signal is generated

—— OBB —_
< (— | S8CSI Bus
)) —
1 J
Y P
EBackplane DMA Control
Sense Write Read
Buf fer Buffer
[— Cmd.
SDS-1
Backplane l L—————(——— CPU
Memory Buffers)) Status
| I
Backplane TR Transfer Data Compare
Read/Write Buffer Size Mechanism Mechanism
Write Operation BPM 16-) CPU Data Move N. A.
32,768 |Hardware Ack
Read Operation BPM 16-) CPU Data Move N. A.

32,768 |Hardware Ack

Comments:
IODVR-10

403110-00

REV.1.2

IODVR.3.6.4

TR SOFTWARE COMPARE (TRSC)

Each data byte is transferred by the SDS-1 CPU using a speciai
During read operations each DATA IN

hardware acknowledge logic.

byte is compared against the write/ref buffer.

FIGURE “IODVR-F9. TRSC TRANSFER MODE BLOCK DIAGRAM

r————| OBB _—
¢ {~ | SCSI Bus
—) y —
]
Y . D |
Backplane DMA Control
Sense Write Read
Buffer Buffer
RN | — Cmd.
l [SDS-1
Backplane 4 cPu
Memory)) Status
Buffers) Compare
;[Come
Backplane TR Transfer Data Compare
Software Compare Buffer Size Mechanism Mechanism
Write Operation BPM 16-) CPU Data Move N. A.
32,768 {Hardware RAck
Read Operation BPM 16— CPU Data Move CPU Ref & Read
32,768 |Hardware Ack Buffer Compare

Comments: I/0 Driver will always try to fill read buffer then

perform compare, until last read which may be less than
a buffer in length.

403110-00

IODVR-11

REV.1.2

IODVR.3.6.5

DMA READ/WRITE (DMARW)

DMARW utilizes the backplane memory buffers and the SDS-1 host
DMA controller to transfer write and read data.
is handled via the DMA logic.

FIGURE “IODVR-F14.

DMARW TRANSFER MODE BLOCK DIAGRAM

All handshaking

S E— OBB _
| SCSI Bus
—
R O
Backplane DMA Control ::]
)
Sense Write Read (l
Buffer Buffer
Cmd.
Backplane SDS—-1
Memory Buffers CPU Status
Backplane DMA Transfer Data Compare
Read/Write Buffer Size Mechanism Mechanism
Write Operation BFM 16-) Backplane DMA
32,768 |Controller
Read Operation BPM 16-) Backplane DMA
32,768 |Controller

Comments:

403110-00

IODVR-12

REV.1.2

10DVR.3.6.6 DMA COPY (DMACOPY)

DMACOPY is similar to DMARW with the difference that the write

and read buffer are the same physical buffer.

peripheral-to-peripheral transfer.

FIGURE “IODVR-F11l. DMACOPY TRANSFER MODE BLOCK DIAGRAM

OBB

- -1

— <
Backplane DMA Control ::]
)
Sense Write/ |« |
Read
Cmd.
Backplane SDS-1
Memory Buffers CcPU Status
Backplane DMA Transfer Data Compare
Copy Buffer Size Mechanism Mechanism
Write Operation BFM 16-) Backplane DMA N. A.
32,768 |[Controller
Read Operation BPM 16-) Backplane DMA N. A.
32,768 |Controller
Comments: Copy utilizes two separate DMA pointers one for
write and one for read operations, creating a FIFO-type
buffer for copy operations.

This is useful for

) [' SCSI Bus
(=

403110-00

IODVR-13

REV.l.z

IODVR.3.6.7 DMA SOFTWARE COMPARE (DMASC)

DMA Software Compare utilizes both a write buffer and a read
buffer during operation. All handshaking is handled via the DMA

logic.

FIGURE "IODVR-F12. DMASC TRANSFER MODE BLOCK DIAGRAM

OBB —_—
) Ii' SCSI1 Bus
— (-

J
L | T
Baékplane DMA Control ::]

[)
Sense UWrite Read (ﬂI
Buffer Buf fer
Cmd.

SDS-1

l crPU
) Status
) :T] Compare

Backplane DMA Transfer Data Compare
Software Compare Buffer Size Mechanism Mechanism
Write Operation BPM 16-) Backplane DMA N.A.
32,768 |Controller
Read Operation BPM 16-) Backplane DMA CPU Ref & Read
32,768 |Controller Buffer Compare

Comments: I/0 Driver will always try to fill read buffer then
perform compare, until last read which may be less than
a buffer in length.

403110-00 IODVR-14 , REV.1.2

I0DVR.3.6.8 DMA HARDWARE COMPARE (DMAHC)

DMA Hardware Compare utilizes the SDS-1 hardware comparator to
perform "On-the-Fly" compares with the SCSI DATA IN and the

write/ref buffer data.

FIGURE “IODVR-F13. DMAHC TRANSFER MODE BLOCK DIAGRAM

OBE —_—

) | S8CS1 Bus
————)lCompare|(
A }
L{_{_T
Backplane DMA Control]
)) “—
-)
Sense Write Read
Buffer Buffer
Cmd.
SDS~-1
CPU Status
Backplane DMR Transfer Data Compare
Hardware Compare Buffer Size Mechanism Mechanism
Write Operation BFM 16-) Backplane DMA N. A.
32,768 |Controller
Read Operation BFM 16— Backplane DMA Hardware "“On-
32,768 |[Controller the-Fly" Compare
Comments:

403110-00 IODVR-15

REV.1l.2

IODVR.3.6.9 HIGH-SPEED READ/WRITE COPY (HSRW/HSCOPY)

HSRW utilizes the SDS-1 High-Speed On-Board Buffer to transfer
All handshaking is handled via high-speed

write and read data.

DMA 1logic.

Since the same buffer is

(but with two different DMA pointers),
identical to the HSRW mode.

used for both read and write operations
the HSCOPY mode is

FIGURE “IODVR-F14. HSRW/HSCOPY TRANSFER MODE BLOCK DIAGRAM

— OBE _—
Wr/Read)
< ' SCSI Bus
R '
Backplane DMA Control
Sense
Cmd.
Backplane SDS-1
Memory Buffers CrPU Status
H.S. Copy and Transfer Data Compare
Read/Write Buffer Size Mechanism Mechanism
Write Operation OEB H.R. High- N. R.
16,384 |Speed DMA
Read Operation OBB H.A. High- N.RA.
16,384 |Speed DMA
Comments: Both modes utilize two separate DMA pointers one for
write and one for read operations.

403110-00

IODVR-16

REV.l.z

I0DVR.3.6.10 HIGH-SPEED SOFTWARE COMPARE (HSSC)

High-Speed Software Compare is almost a contradiction in terms.
The high-speed portion of the mode defines the high-speed DATA IN
transfer from the SCSI bus to the on-board buffer. The software
compare portion of the transfer is between the backplane memory
write/ref buffer and the on-board buffer. 1In this mode, Write
data is transferred from the backplane write/ref buffer via DMA
write.

FIGURE “IODVR-F1l5. HSSC TRANSFER MODE BLOCK DIAGRAM

—— OBB —_—
Read [4
| SCS1 Bus
—)) —
J
LT
Rackplane DMA Control]
[))
Sense Write
Buffer
Cmd.
SDs-1 CPU

Backplane —)

Memory Buffers)/ Y= ICompare Status
OBRB High-Speed Transfer Data Compare
Software Compare Buffer Size Mechanism Mechanism

Write Operation BFM Backplane DMA N.R.
16,384 |Controller
Read Operation OBB OBB H.S.DMA 0BB Read & BPM
16,384 [Controller Ref Buf. Comp.
Comments: I/0 Driver will always try to fill read buffer then
perform compare, until last read which may be less than
a buffer in length.

403110-00 IODVR-17 REV.1l.2

I0DVR.3.6.11

HIGH-SPEED HARDWARE COMPARE (HSHC)

High-Speed Hardware Compare utilizes the SDS-1 hardware
comparator to perform "On-the-Fly" compares with the SCSI DATA IN
and the on-board write/ref buffer data.

FIGURE “IODVR-F16.

e OBB
Wr/Ref

HSHC TRANSFER MODE BLOCK DIAGRAM

- . =1

L—)'Comparel(

L T

Backplane DMA Control

Sernse

Cmd.

Backplane
Memory Buffers

5y
l | SCSI Bus
J

SDS-1

Cru Status

4031106-00

OBE High-Speed Transfer Data Compare
Hardware Compare Buffer Size Mechanism Mechanismn
Write Operation OBR H.A. High- N.A.
16,384 |Speed DMA
Read Operation OBB H.A. High- Hardware “0On the
16,384 |Speed DMA Fly" Compare
Comments:
IODVR-18

REV.1.2

I0DVR.3.6.12 HIGH-SPEED VIRTUAL MEMORY (HSHCV)

One of the most powerful transfer modes is HSHCV. In this mode,
the High-Speed On-Board Buffer is utilized in a virtual memory
‘mode to simulate 256MB of random-access memory. This is accom-
plished via special hardware which double-increments the OBB
address count after every 16K transfers. 1In other words, the
buffer skips an address every wraparound. Figure IODVR-F17 shows
the mapping of the @8x0 -> @xFFFFFFF virtual address range into
the physical 16K buffer. The operational details of the simula-
tion are not important because the dmaset_va() and dmaset_vblk()
functions provide access to the memory as if it were 256MB in
size. (The user should utilize a fillpr() in order to guarantee
a unique data pattern in every block over the entire 256MB
range.)

FIGURE "IODVR-F17. VIRTUAL/PHYSICAL BUFFER MAPPING

OBB Physical Address

Virtual o2 oOx2000 OX3FFF
Address 1 3 I 10 Ox2000 Ox3FFF
v vVvVvYVvV ’ v vv v |
Ox0-) Ox3FFF L 1 I
Ox4000~-) OX7FFF [1 I
Ox8Q000-) OxEBFFF L])
OxCO00-> OxFFFF L | |
Ox10000-) Ox13FFF L] 1
AL AR ALY |
v
OxFFF4000-) OxFFF7FFF I— |
OxFFFB000~) OxFFFBFFF L L
OXFFFCOQ0~) OxFFFFFFF L |

403110-00 IODVR~-19 REV.1.2

FIGUORE “IODVR-F18. HSHCV TRANSFER MODE BLOCK DIAGRAM

OBB

Wr/Ref

Virtual —_—

Emulation)

| SCSI Bus
L—)'Comparel(
. '
Backplane DMA Control
Sense
Cmd.

Backplane SDS-1
Memory Buffers CcrPU Status

OBE High-Speed Physical Transfer Data Compare
Hardware Compare Buffer Size Mechanism Mechanism
Write Operation OBB H.A. High- N. A.
16,384 |Speed DMA
Read Operation OBB H.A. High- Hardware "On-the-
16,384 |Speed DMA Fly" Compare

Comments: Virtual Memory Simulation
space (fillpr() is required for pattern to be unique over
entire range of 2##28-1).

provides a 2##28-1

memory

403110-00

IODVR-20

REV.1.0

“IODVR.3.7 VARIABLE ACKNOWLEDGE DELAY

HSRW, HSSC, HSHC and HSHCV all utilize the SDS-1 on-board buffer.
This buffer is equipped with special hardware which allows the
user to vary the period from target REQ assertion to SDS-1 ACK
assertion. ackdelay() adds delay in 70ns increments (for @, 286
microseconds) to the base delay of the on-board buffer DMA logic.
IODVR-T3 defines this delay for each transfer mode.

TABLE “IODVR-T3. ACKNOWLEDGE DELAY

DATA IN DATA OUT
BASE DELAY BASE DELAY
TRANSFER MODE Min Ma x Min Max
HSRW/HSCOPY 210ns 280ns 210ns 280ns
HSSC 210ns 280ns NA NA
HSHC 350ns 420ns 210ns 280ns
HSHCV 350ns 420ns 210ns 280ns

FIGURE “IODVR-F19. REQ/ACK HANDSHAKE

REQUEST+

ACK+
< Y1«)
base ackdelay ()
delay

t1 = REQR deassert to ACK deassertion greater than 70ns

“IODVR.3.8 BUSYWAIT

The busywait() function instructs the 1/0 Driver to retry SCSI
commands which are completed with a BUSY status (SCSI Status byte
= @9x08). This is particularly useful in the sequential
environment where controllers return busy status during
initialization. With busywait() enabled, the SDS-1 will
continue to arbitrate and select the target until either the
completion status is not busy and the command is executed or

until an I1/0 time-out.

403110-00 IODVR-21 REV.1.2

“IODVR.3.9 | AUTOSENSE

With autosense() enabled, the SDS-1 will automatically perform a
SENSE command anytime a check condition is reported from the
target. The sense data will be reported in the error log (only
the number of bytes transferred from the target will be
displayed) .

~“IODVR.3.16 SCSI BUS STATE LOGGING

When bus logen() is enabled, each I/0 Driver transaction on the
SCSI bus is recorded on the test adapter state log. The log
entries are made at the end of each SCSI bus event. Time stamps
are provided in the log. The user should be careful in the use
of these time stamps (see STLOG section).

“IODVR.4 RETURN CODES

The I1/0 Driver is logically divided into two internal layers (see
Figure IODVR-F20). Each layer has it own error handling and
reporting structure. The Function Status io_stat and init_stat
are the error messages from the I/0 Driver and the Initiator
layers, respectively.

Tables IODVR-T4 and IODVR-TS5 define each of these return codes.
With explicit/implicit error action iea() of LOGC OR LOGH these
error codes will be reported in the log with verbal definition.

FIGURE “IODVR-F28. I/0 DRIVER INTERNAL PARTITION

1/0 Driver

Command generated

by SCSI function I/0 Driver 'SCSI
(example readr()) Leogic Initiator {————) '———-—

Logic ———

]

I/0 Driver Status (—— I

Initiator Status (

Target Status <

403110-00 IODVR-~-22 REV.1.2

TABLE

“IODVR-T4.

INITIATOR STATUS RETURN CODES

"C" DEFINE (*1)

$define
#define
$define
$define
$define
$define
$define
$define
$define
$define
$define

GOOD
TIMEOUT
SELTO
RESET
INVRSL
RSLABT
INVPHC
IVBFREE
MCOMP
PRTYERR
INTERR

DEFINITION

good command completion
I/0 time-out

selection time-out

SCS1I reset detected
invalid reselection
reselection abort

invalid SCSI phase change
invalid bus free detected
buffer miscompare

SCSI inbound parity error
internal I/0 driver error

*]1

DEFINE statements which can be used in "C" SAT

TABLE ~“IODVR-T5.

I1/0 DRIVER STATUS RETURN CODES

"C" DEFINE (*1)

$define
#define
#define
$define
$define
#define
#define
$define
#$define
$define

GOOD
NOFIFO
NORW
NOSB
INVCMD
HADERR
NOHA
DUPID
MISCOMP
IOABT

DEFINITION

good command completion
no active fifo

no active r/w buffer

no active sense buffer
invalid command code

host or test adapter detected error
no physical host or test adapter

duplicate SCSI ID
buffer miscompare
I/0 Abort from IOABRT

*] DEFINE statements

403110-00

which can be used in "C" SAT

- IODVR-23

REV.1.2

~“IODVR.4.1 EXPECTED STATUS AND STATUS MASK

The stat_mask() and exp_status() functions provide the user with
a means of redefining the SCSI status error state. Normally 0x00
status is considered a "passing" status. However, under certain
conditions, check or busy may be the "passing" status and @x00 is
a "failing status." A 0 in the stat_mask() function excludes the
status bit in that bit position from being compared to the
exp status() value. If the masked SCSI status and the expected
status do not match, a fail log error entry is made along with
the expected and actual status.

“IODVR.5 STATISTICS GATHERING

Each 1I/0 Driver execution results in a function statistics
generation. These statistics include:

bytes written 32-bit counter
bytes read 32-bit counter
bytes compared 32-bit counter
$ of miscompares 32-bit counter

If statsen() is set, global statistics will be accumulated after
each I/0 Driver operation. These statistics include:

number of 1/0 Driver Operations 32-bit counter
number of Initiator-Detected Errors 32-bit counter
number of unexpected Target Errors 32-bit counter
bytes written 32-bit counter
bytes read 32-bit counter
bytes compared 32-bit counter
of miscompares 32-bit counter

“IODVR.6 SENSE HANDLING

Due to its extensive usage of the SCSI, sense() command is
handled specially. First, compare-type transfer modes would
normally try to compare the sense data-in against the write/ref
buffer. This is averted by changing the transfer mode for
sense() commands to RW and pointing the read data to the start of
the sense buffer. After the sense() is complete, the transfer
mode is restored and the read pointer disappears. In other
transfer mode cases, the read pointer is simply redirected to the
start of the sense buffer. The sense buffer is located in
backplane memory, any OBB transfer modes will be switched to
DMARW in order to perform the sense() command.

403110-060 IODVR-24 REV.1.2

“MP.# MICROPROGRAMMING

“MP.l1 EXECUTION ENVIRONMENT

Microprogramming allows the user to take complete control of the
SCSI bus initiator functions and generate complex bus sequences,
as well as generate controlled errors on the SCSI bus. Unusual
or illegal message sequences are easily created. Parity error can
be forced on a given byte and true arbitration can be forced on a
nonstatistical basis. Figure MP-Fl presents the Microprogramming
execution environment.

FIGURE “MP-Fl. MICROPROGRAMMING EXECUTION ENVIRONMENT

: p——————) {OPTIONAL SCSI
USER BUS STATE
MICRO-
PROGRAMMING
WRITE |———e—) FUNCTION r
BUFFER (o) HARDWARRE SCsI
r BUS
—
READ ‘)
BUFFER

Microprogramming can be viewed as the set of internal functions
necessary to create an I/O Driver. In order to maintain
consistency, the microprogramming functions behave very similarly
to the 1/0 Driver. The user should reference the IODVR section
listed below for an understanding of the following topics:

BUFFER MANAGEMENT see IODVR.2
BUFFER WRAPAROUND see IODVR.2.1
DATA COMPARISON see IODVR.2.2

HARDWARE DATA COMPARE see IODVR.2.2.1

403110-00 MP-1 REV.1l.2

“MP.2 CONTROL FUNCTIONS

Figure MP-F2 shows the Microprogramming Execution Environment
with its various control functions. Control over functions such
as arbitration, selection, and message support are totally up to
the user in how he utilizes the various microprogramming
functions.

FIGURE “MP-F2. MICROPROGRAMMING CONTROL FUNCTIONS

ioto()
—————) |OPTIONAL SCSI
USER bus_logen() BUS STATE
MICRO-
PROGRAMMING
WRITE |}—meoooououuo) FUNCTION f
BUFFER (—) HARDWARE SCS1
I: BUS
—
READ S parity ()
BUFFER ,

example: arbl (), sell1(),
cdbé2(),datain3 (),
msgin(),statin();

See the IODVR section for detailed information on the following
functions (also refer to Appendix A):

ioto() see IODVR.3.1
parity() see IODVR.3.2
Transfer Modes see IODVR.3.6
datain®() (HS Read) see IODVR.3.6.9
datainl() (DMA Read) see IODVR.3.6.5
datain2() (TR Read) see IODVR.3.6.3
datain3() (PIO Read) see IODVR.3.6.1
datain4() (DMA Hardware Compare) see IODVR.3.6.8
datain5() (HS Hardware Compare) see IODVR.3.6.11
dataout@() (HS Write) see IODVR.3.6.9
dataoutl() (DMA Write) see IODVR.3.6.5
dataout2() (TR Write) see IODVR.3.6.3
dataout3() (PIO Write) see IODVR.3.6.1
ackdelay() see IODVR.3.7
bus_logen() - see IODVR.3.10

403110-00 MP-2 REV.1l.2

“MP.2.1 FUNCTION STATUS

Each Microprogramming function generates an initiator status and
1/0 Driver status. This is done to maintain consistency between
the I1/0 Driver and Microprogramming. Detailed information on
the function status can be found in the Function Library
Definitions (Appendix A) and in IODVR.4 .

~MP.2.2 STATISTICS GATHERING

Each of the Microprogramming data transfer functions (datains and
dataouts) generates function statistics. These statistics are
available via get_f_ stats(). In addition, if statsen() is set,
these statistics will be accumulated in the global statistics.
The user should reference IODVR.5 for additional information on
statistics.

“MP.3 ARBITRATION TESTING

The SDS-1 utilizes dedicated hardware to truly test SCSI bus
arbitration. By utilizing a third party busy (see Figure MP-F3),
the SDS-1 is able to generate a head-to-head arbitration con-
flict which the TARGET may win or lose. Figure MP-F4 shows a
sample SAT utilizing the forcbusy(), arbwin(), and arblose().

FIGURE “MP-F3. ARBITRATION TEST ENVIRONMENT

3rd Party BUSY Drive

Direct
Busy Drive)
BUSY
S) TARGET
SDS—-1 SELECT UNDER
Arbitration |«) TEST
Machine
<)
DATA BUS
SCS1 BUS

arbtest.c

VONDU S W=

403110-00

FIGURE “MP-F4.

/% —DR=3;
;—DOC
s—REV
Created:
Initial Release:
Revision:
-REV

Setup

-DOC %/

#define HOSTID OxO07

EXAMPLE ARBITRATION SAT

6/10/85
7/11/85
1710786
3/26/86

#define TARGETID Ox04

user_test () {

8-01-86

Update for Tech Ref Manual

icroprogramming RArbitration Example

M
Purpose: Force Arbitration between ACB 5500 and SDS-1

test ("Microprogramming Arbitration Test");

/%*-D0OC

s-6T="Arbitration Test");

§
;—ARI="ARB.PIC"
§
3
H
H
H
H

-DOC %/

group(“Arbitration Test");

-PT="Disconnect Setup"

paragph ("Disconnect Setup");

tid(TARGETID) ;
ureset () ;
parity(1);
bus_logen(l) ;
rezero();

arb2 (HOSTID) ;

sel4 (TRRGETID, OxCO) §
cdb62 (0x0B, 00, 0x10, 00, 00,00) 3 /# seek command #/

forcbusy () ;
msgin(Ox02) ;
msgin{(Ox04) ;
delays(1);

/%-DOC

/*
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%

Rezero Unit and then issue a Seek Command
which will result in a disconnect

target ID %/
reset #/
parity enabled #/

state log enabled %/

rezero unit #/
host arb #/

13:59:58 PAGE

1

Adaptec 5500 (SCSI/STS06) Disk Controller with STS506 drive

select target with disconnect #/

force busy #/

save data pointer message #/

disconnect wmessage */
be sure target is trying

to reconnect #/

;-PT="Verify Arbitration Loss by Target"

MP-4

REV.1.2

FIGORE MP-F4. EXAMPLE ARBITRATION SAT (continued)

arbtest.c 8-01-86 13:59:58 PAGE =4

55 H

56 H

57 ;s —DOC %/

58

53 paragph ("Verify Arbitration Loss by Target");

&0 arblose (Ox07) ; /% verify target lost %/

61 arblose (Ox06&) 3

62 arblose (0x035) ;

63

64 /%—-DOC

65 ;-PT="Verify Arbitration Win by Target"

66

67 $ Check win against lower I.D.

e8 3

69 5 —DOC %/

70

71 paragph("Verify Arbitration Win by Target");

72 arbwin{Ox03) ; /% target should win arbitration #/

73 resel () /% reselection %/

74

75 msgin{Ox80) ; /% identify =/

76 msgin{Ox03) ; /% restore pointers #/

77 statin(Ox00); /% good completion status %/

78

79 /%#-DOC

80 ;s—PT="Bus Free Verification"

81 H

8z sCheck for good completion and bus free

83 H

84 ;5 —DOC %/

85

8¢€ paragph ("Bus Free Verification");

87 bfreearm() ; /% verify bus goes free after compl
etion #/

a8 msgin(Ox00) ; /% command complete message #/

89 delays(1); /% delay for target to release bus
*/

90 bfreeck () ; /% check the bus has gone free %/

91

9z >

403110-00 MP-5 REV.1l.2

“MP.4 PARITY ERROR GENERATION

Parity error generation on a given outbound byte (command out,
data out, or message out) can be generated utilizing the
forcperr() function. An example of this is shown in Figure
MP”FS.

FIGURE “MP-F5. PARITY ERROR TESTING EXAMPLE

1=REV
Created: 6/8/85
Initial Release: 7/1/85
Revision: 1/10/86

)
T
m
<

Parity Error Generation Example

“s w0 we A8 we W0 we W8

;Purpose: 6Generate Parity Errors during
;differet information out phases

9

;Setup

3 Adaptec 3530P (SCSI/QIC-36)

H Streaming Tape Controller with

H QIC 36 Drive
H

§

-DOC +/
user_test ()

{
int host=7;
int target=0;

test ("Parity Error Generation Example");

/# =DOC
j6T="Initialization"
sDefine SCSI path and enable parity
s —=DOC #»/

group(”“Initialization");

init ()3

ureset () ;

delays(15);

filli (00, 00,00);

sense (Ox10) 3§
/% -DOC
;GT="Parity Error on Command Out"
;Generate Parity on 5 byte of command out
3 —=DOC %/

group("Parity Error on Command Qut")j

arb2(host) j

sel3(target);

403110-00 . MP-6 REV.1.2

FIGCURE MP-F5. PARITY ERROR TESTING EXAMPLE (continued)

forcperr(4);

cdb62 (01, 00, 00, 00, 00, 00) ;

statin(02);

msgin (00) ;

sense (0x10) 3

sbb (04, 02) ;
/% -DOC
;6T="Parity Error First Block of Data Out"
{Generate Parity on byte Ox80 of write block
;s —DOC +/

group("Parity Error on First Block of Data Out");

arb2(host) ;

sel3(target);

cdb6é2 (Ox0a, 01, 00, 00, 0%x10, 00) ;

dataocutl1 (Ox100L,1) 3

forcperr(0Ox80);

dataout1 (Ox100L,2) ;

statin(02);

msgin(00) ;

sense (0x10) ;

sbb (04, 02) ;

uprwd (0) ;
/% <-DOC
;6T="Parity Error on 100th block of data out"
;Benerate Parity on byte Ox80 of write block
§ -DOC =/

group("Parity Error on 100th Block of Data Out");

arb2(host) j

sel3(target);

cdb&2 (Ox0a, 01, 00,01, 00, 00) 5

dataoutl (OxC600L, 1) 3

forcperr (0Ox80) ;

dataout1 (Ox200L,2) ;

statin(02);

msgin(00) ;

sense (Ox10) ;

sbb (04, 02) ;

rewind (0) 3
/% -DOC
;6T="Verify Good Data*
jRfter Tape is rewound verfiy first 99
iblocks written ok

3 -DOC #/

group (“"Verfify Good Data");

reads (99) ; . /% use 1/0 driver reads #/
/% -DOC

§6T="Verify 100th block did not get Written"
jVerify end of meida after 99th block
3§ —=DOC »/

group("Verify 100th block did not pet Written®);

arb2(host) ; sel3(target);

cdb62(0x08,01,00,00,01,0); statin(2); wmsgin(0)j

sense (Ox10) ; sbb (8, 02) ; /% end of recorded media #/

403110-00 Mp-7 REV.1.0

(THIS PAGE INTENTIONALLY LEFT BLANK)

403110-00 : REV.1.0

“STLOG.# BUS STATE LOG

“STLOG.1 INTRODUCTION

The SCSI Bus State Log is a powerful debugging tool which allows
the user to capture SCSI bus events and examine them in an easy-
to-read SCSI hierarchical format. The state log is utilized by
both the I/0 Driver and Microprogramming environments. (See
Figures STLOG-Fl and STLOG-F2.)

The state log is a software log of the SCSI events occurring
between the SDS-1 and a SCSI Target. It is not a third-party
hardware logic analyzer watching the SCSI bus. Since the logging
function is performed in software, processing time will be taken
away from the I/0 Driver or the Microprogramming operation. The
state log is designed to minimize this time, none-the-less it
will effect the 1/0 operation. 1In situations where logging is
not needed bus_logen() can be utilized to turn off the state log.

FIGURE “STLOG-Fl. I/0O DRIVER EXECUTION ENVIRONMENT

WRITE p——————) 1/0 DRIVER (p—m----—) SCS1
BUFFER BUS STATE
Data
Compare
READ { ———) Function
BUFFER
<) HARDWARRE SCS1
Initiator ': BUS
USER 6EN. p—————) Logic ——
1/0
COMMAND

403110-00 STLOG-1 REV.1l.1

FIGURE ~STLOG-F2. MICROPROGRAMMING EXECUTION ENVIRONMENT

p—eee—) {OPTIONRL SCS1
USER BUS STRTE
MICRO-
PROGRAMMING
WRITE p—-—-) FUNCTION
BUFFER {) HARDWARE ': SCSI
BUS
—T
READ)
BUFFER

~STLOG.1.1 DATA ACQUISITION/DISPLAY

The state log acquisition memory is a 1@24-word-deep FIFO which
stores information (start time, event description and its data,
end time and line number) for each state log update call. The
state log display logic is responsible for translating this raw
compacted data into the display format. While certain SCSI
events are stored in the state log on a byte-by-byte basis (such
as command out) they are better understood if displayed on one Or
two lines. This is the case for command out information. Refer
to Figure STLOG-F3 for an actual state log display.

FIGURE “STLOG-F3. STATE LOG DISPLAY

Dbuf (Buf: W; Strt: 0000; Len: 0020; On: D B Grouping)

] rptbuf (L, 0, 10) 07-09-86 09:17:29

Start Time Event Description End Time Line #

+

+ -+

0083. 62869 Message in 00

0083. 62965 Bus Free Detected

0086. 62319 Arbitration as 07 0086. 62346
0086. 62441 Selection ids = (1001 000O0b) 0086. 62489
0086. 62521 Message out CO

0086. 62600 Command out 08 00 00 00 80 00 0086.62849
0086. 62886 Message in 02

0086. 62987 Message in 04

0086.63077 Bus Free Detected

0086.65187 Reselection ids = (1001 0000)

0086. 65203 Message in 80

0086. 65287 Message in 03

0086. 65664 Data In 8000H byte(s)

0086. 89434 Status in 00

0086. 89508 Message in 00

0086.89604 Bus Free Detected

403110-00 STLOG-2 REV.1.2

Since the state log is a FIFO, it always records the most recent
bus events pushing old information up and eventually out of the
FIFO. When displaying the state log, line @ represents the last
transaction on the bus with high lines (1, 2, 3, ..., 3FFh)
representing aging transactions.

“STLOG.2 STATE LOG ENTRIES

Each State Log Entry is basically comprised of five fields.
These fields are

START TIME EVENT DATA END TIME LINE #
DESCRIPTION (optional) (optional)

Table STLOG-T1 shows all the possible state log entries along
with comments regarding each entry.

TABLE “STLOG-T1l. STATE LOG SUMMARY

EVENT FIELD DATA FIELD COMMENTS
——~ Test Initialization —-—- N. A. Appears each time a SAT or
MENU is executed
Arbitration as hh Initiator ID Arbitration
Arbitration as hh (incomplete) (incomplete arb - a time out
Arbitration as hh (lost) or bus reset occurred)

(lost arb - only during
software arbitration)

blank N. R. After SDS-1 system reset,
log is reset

Bus Reset Asserted N. A. SDS-1 has forced a SCSI bus
reset

Bus Reset Detected N. R. Bus reset detected

Bus Free Detected N. A. SCSI Bus free has been
detected

Command out hh hh hh hh hh hh Command Bytes |SCSI command bytes

Data in hhhhH bytes(s) Bytes All contiguous DATA IN/OUT

Data out hhhhH bytes(s) Transferred log entries are displayed as
one line

Message in hh Message Value |SDS-1 inbound message

Message out hh Message Value |SDS~1 outbound message

Reselection ids = (bbbb bbbb) Reselect IDs Reselect

Selection ids = (bbbb bbbb) Select 1IDs SDS—1 selection of SCSI
Target
Status in hh Status In Value|TARGET status

hh = hexidecimal
bbbb = binary

403110-00 STLOG-3 REV.1.2

“STLOG.3 TIME STAMPING

Most of the State Log entries are time-stamped with a start and
end time. These times are logged in seconds with a resolution of
50 usec. Some events display only the start time; in these
cases, the time elapsed is either trivial (i.e., message out) or
can be derived from other events (i.e., the end of a data phase
is typically the start of the following status or message phase).
This time stamp is read from the SDS~-1 real-time clock and stored
along with the event code and related data. For command
transfers of greater than 6 bytes, the start time is displayed on
the first line and the end time is displayed on the second line.

“STLOG.4 STATE LOG REDUCTION FUNCTIONS

RTFL provides two reduction functions for obtaining information
from the state log. The delta_time() function gets the real time
elapsed between 2 bus state log entries and the state_data()
function gets the data associated with a particular state log
entry (refer to Appendix A for more information on these
functions).

403110-00 STLOG-4 REV.1.2

“DEBUG.9 SDS-1 DEBUGGER

“DEBUG.1 INTRODUCTION

The SDS-1 Debugger is a programming tool that provides both
debugging and statistics gathering functions. The debugger is an
integrated portion of the test function and documentation library
and is used in both the MENU and C compiler environments. Some
features of the Debugger are listed below:

Real Time Statistics Display

Real Time Buffer and SCSI Command Block Display
Test/Documentation Function Trace Display
Read/Write Buffer Display

Host Adapter State Transaction Log Display

Real Time Execution Interruption <ESC>

Break Point/Single-Step Execution Control
Explicit/Implicit Error Action Mode Selection.

The debugger has four basic states: TRACE, IOINIT, IOABRT and
ERROR PROCESSOR. The TRACE state allows control over the
executing environment. The IOINIT state updates statistics and
displays the Command Descriptor Block (CDB) pending execution.
The IOABRT state provides the user with an error trap within the
I1/0 Driver or Microprogramming functions to deal with function
time-outs and data compare errors. The ERROR PROCESSOR is the
central point for all SDS-1 Implicit and Explicit Error Handling.
Figure DEBUG-F1l shows a "State Diagram"™ of Function Execution
flow, the Debugger and 1/0 Driver. The interaction and flow
between states will be developed in succeeding sections.

403110-00 DEBUG-1 REV.1l.2

FUNCTION EXECUTION FLOW
1

Trace Disp. }<¢

Generation

|

Function
Execution

I/0 exec

I

Error
Check

|

Function
Return

FIGURE “DEBUG-F1l. DEBUGGER STATES

DEBUGGER STARTE 1/0 DRIVER
) 4 TRACE —n Y4 Entry
Exit
< -~
IOINIT 1
—_—— = - = =) — l—
l Compare
L < Y ——— Error/
——t >4 Time
Y SR p— Out
) 4 IOABORT
Y QRN R |
b (| ——y
) 4 -~ CNTL BREAK
.
=) 4 ERROR TEST I-———----‘(:om:lr‘ol Brk
PROCESSOR TERM b {—— Processor
DOS

Terminology Definition:

While the Debugger will be defined in the following sections,
certain terms will be used that are defined below to aid in
understanding the Debugger.

Debugger Level:

Debugger State:

Debugger Command

Refers to the Debugger display format.

Refers to one of four Debugger states: TRACE,
IOINIT, IOABRT or ERROR PROCESSOR

Line: Refers to the line at the bottom of the
display so that the user can interact with the
Debugger. Each Debugger state has its own
command or menu line (set).

The SDS~-1 MENU System utilizes the Debugger (in debug display
level 3) as its execution environment. The user can also change
the debug display level and invoke the Debugger command line from
a Stand-Alone Test. This is very useful in "debugging" both the
SAT and sometimes the system under test.

403110-00

DEBUG-2 REV.1.2

“DEBUG.1.1 SAT COMMAND TAIL INVOCATION

The SDS-1 Debugger Display can be invoked from the DOS command
line via a -DB=n command tail operator where n is the debug
level. There are four debug levels (# to 3), the default level
is @ (no debug operation). The following is an example of the
command line invocation:

C>TESTPROG -DB=2

The above command starts the execution of test file, TESTPROG,
with the debug level 2 display in the TRACE state command line.
The TRACE state displays the pending function and its argument(s)
and it also allows the user to examine buffers and/or control the
debug mode (refer to Section DEBUG.3.l1 for more on the TRACE
state). The command tail -PR operator can be used in
conjunction with the -DB= to direct the Documentation output to
the system printer, for example:

C>TESTPROG -DB=1 -PR

will invoke the Debugger with a debug level 1 display and output
the report scrolling window to the printer.

“DEBUG.1.2 FUNCTION INVOCATION

The Debugger can be invoked from within a SAT via the debug(n)
function. This function sets the debug display mode and causes
program execution to halt on the debug(n) function. At this
point, the user has the option to skip or execute the debug
function. If the user decides to skip, the debug level remains
unchanged. Otherwise, if the debug() function is executed, the
debug display level will change to the level selected and the
TRACE command line will be displayed with the next program
function ready to execute.

“DEBUG.1.3 ERROR ACTION INVOCATION

Many times it is desirable to invoke the Debugger only on an
error condition. Table DEBUG-T1 defines the Error Processor
logic and how it relates to the Debugger. When the Debugger
ERROR PROCESSOR command line is invoked from the error processor
it remains in the currently defined debug level.

403110-00 DEBUG-3 REV.1.2

TABLE “DEBUG-T1. BATCH OR SAT ERROR ACTION

IEA or EER SAT MODE
ERROR ACTION BRTCH MODE (non—-bhatch mode) MENU INTERFACE

CONT Continue Continue Not defined

HALT Exit to DOS and Invoke Debugger Not defined
execute next SAT ERROR PROCESSOR

Command Line

LOGC Log and continue Log and continue up to error limit value,
up to error otherwise, invoke Debugger ERROR PROCESSOR
limit value command line
otherwise, exit
to DOS

LOGH Log and exit to Log and invoke ERROR PROCESSOR command line
DOS

The implicit and explicit error action defaults to LOGC. To
change the error action, use the Debugger IEA or EEA command in
the TRACE command line or use the function library iea() and
eea() functions in the SAT or MENU. The error limit default is
100 errors; to change this limit, use the set_er_limits()
function.

“DEBUG.1.4 MENU INTERFACE INVOCATION

The SDS-1 Menu system utilizes Debug Display Level 3 as its
execution environment. This debug level provides the user with
statistics, CDB, DMA Pointers and Function Trace Displays. Prior
to FKEY execution the user may invoke the debug TRACE command
line by setting the debugger function in the FKEY menu to S for
single step. During FKEY execution, ESC can be used to access
the TRACE command line.

Single-key execution cannot invoke the Debugger TRACE state but
error action of LOGC or LOGH can invoke the error processor
command line to resume or exit from the TRACE command line to the
MENU.

"DEBUG.2 DEBUGGER DISPLAY

The Debugger Display consists of a Primary and a Secondary
Display Screen. The Primary display shows various data or
information on the executing test or design verification batch
file. The Secondary display is used for buffer and state log
displays.

403110-00 DEBUG-4 REV.1l.2

“DEBUG.2.1 PRIMARY DISPLAY SCREEN

The Primary Display Screen is a function of the Debug Level
(refer to Figures DEBUG-F2 through DEBUG-F5). The four debug
levels are designed to step the user from the debug environment
to the SAT environment with the end goal of executing a SAT which
simply generates a pass or fail result (debug level 3 to #). The
debugger display manager handles two fixed windows, two scrolling
windows, and one fixed line. Table DEBUG-T2 summarizes the
display for each debug level.

TABLE “DEBUG-T2. DEBUGGER DISPLAY WINDOWS

DEBUGGER
DISPLRAY LEVEL FIXED WINDOWS SCROLLING WINDOW FIXED LINE

___________________________ b - e e e - - - -

0 | Fixed Documentation Report Display The fixed lirne is

utilized for Debugger

1 Fixed Documentation Report Display message reporting and

Status debug command line

presentation and

e Fixed Documentation Trace Display interaction. In

Status addition, functions

such as user_input ()

3 Status Trace Display will interface with

the user on this line.

403110-00 DEBUG-5 REV.1.2

FIGURE ~“DEBUG-F2. DEBUG LEVEL @

- ADAPTEC Test Structure Library (11-30-84)
‘ DOS Command Line Execution
01-08-86 11:45:17
Printer Output Disabled:

1.0 On Board Buffer Write/Read/Compare Testing 01-08-86 11:45:20
1.2 Read and Compare (via DMARHC) OBB Write Data 01-08-86 11:51:46
1.2.9 Pseudo Random DMAMC Read 01-08-86 12:00:33
REPORT DISPLRAY
1.2.6 00 FF 55 AA DMAHC Read 01-08-86 12:00:15
1.2.7 Incrementing Pattern DMAHC Read 01-08-86 12:00:17
{.2.8 Decrementing Pattern DMARHC Write 01-08-86 12:00:21
IOABORT IMPLICIT ERROR ' 01-08-86 12:00:22

Cmp Error: Ref Buf(Ox0000 = 0x04); SCSI Data = ox223;
IOABORT IMPLICIT ERROR 01-08-86 12:00:32
1/0 Time Out (Time DOut Value = 10 seconds)

1.2.9 Pseudo Random DMAHC Read 01-08-86 12:00:33

FIGURE “DEBUG-F3. DEBUG LEVEL 1

ADAPTEC Test Structure Library (11-30-84)
DOS Command Line Execution
01-08-86 11:45:17

Printer Output Disabled:

1.0 On Board Buffer Write/Read/Compare Testing 01-08-86 11:45:20
1.1 OBE Fill Testing 01-08-86 11:45:20
1.1.6 00 FF 55 AR OBR Write 01-08-86 11:45:49
I/0 DRIVER STRTUS
I1/0 Ops: S ucoO: I1/0 Command Parameters stat: 00 __
T6T Chks: (o] ucl: CDB: Oa 00 01 00 40 00 sense: (old)
INT D Er: o} 00 00 00 00 00 00 -
Bytes Wr: 28000 Wr/Ref: OBB xfer: HSRW a.s. :0OFF :_ :: :- -
Bytes Rd: o 0000 s.1.0N arb.HDW sel.SMA __ __ __
Bytes Cp: 0 | Rd Buf: OBB b. p. OFF b.w. OFF -
Cmp Ers.: o 0000 ha: 0 iid: 7 tids & __ __ __ __
REPORT DISPLAY =
1.1.4 Constant 55 Pattern OBB Write 01-08-86 11:45:42
1.1.5 1233210 Pattern OBB UWrite 01-08-86 11:45:46
1.1.6 00 FF 55 AR OBR Write 01-08-86 11:45:50

TRACE: (ESC) Halt :

403110-00 DEBUG-6 REV.1.2

FIGURE “DEBUG-F4. DEBUG LEVEL 2

ADAFRTEC Test Structure Library (11-30-84)
DOS Command Line Execution
01-08-86 11:45:17

Printer Output Disabled:

1.0 On Board Buffer Write/Read/Compare Testing 01-08-86 11:45:20

1.1 OBB Fill Testing 01-08-86 11:45:20

1.1.11 Word Block Count OBRBR Write 01-08-86 11:48:34

I1/0 DRIVER STRATUS

1/0 Ops: E ucO: 1/0 Command Parameters stat: 00 __
TGT Chks: 0 uct: CDB: Oa 00 09 00 40 00 sense: (old)
INT D Er: 0 00 00 00 00 00 00 e o e
Bytes Wr: 68000 Wr/Ref: OBB xfer: HSRW a.s. :OFF e e
Rytes Rd: (o) 0000 s.1.0N arb.HDW sel.SMA e o o e
Bytes Cp: (o] Rd Buf: OBB b. p. OFF b.w.OFF e o o
Cmp Ers.: o} 0000 ha: O iids 7 tid: 4 e e

TRACE DISPLRY
filli(7e, 0000, 4000) writer (0300,0) paragph() ackdelay(243)
filld (04, 0000, 4000) writer(0400,10) writer(0410,1f) writer(042f,11)
paragph () ackdelay(154) fillpr(008a,0000,4000) writer (0e00,10)
writer(0el1Q,1f) writer(Oe2f,11) paragph() ackdelay(6020)
fillbeb (90, 0100, 0000, 4000) writer(0900,40) paragph() ackdelay(2100)
fillbcw (0340, 0100, 0000, 4000)

TRACE : Control)Debupg Level(2); BCU(1); User Cntr Reset; Stats Reset;

FIGURE “DEBUG-F5. DEBUG LEVEL 3

1/0 DRIVER STATUS

1/0 Ops: 2F ucQ: 1/0 Command Parameters stat: 00 __
TGT Chks: o) ucl: CDB: 08 00 00 c0O 40 00 sense: (old)
INT D Er: 0 00 00 00 00 00 00 00 00 00 00
Bytes Wr: FO0400 Wr/Ref: BFM xfer: DMAHC a.s. :0FF e o o
Bytes Rd: S0000 0000 |} s.1.0N arb.HDW sel.SMA e
Bytes Cp: 20000 Rd Buf: b. p. OFF b.w.OFF e
Cmp Ers.: (o] ha: O iid: 7 tid: 4 e e o o
TRACE DISPLAY

writer (0580, 40) overbcw(QSc0, 0100, 0000, 4000) writer (0S5cO, 40)
overbow (0600, 0100, 0000, 4000) writer (0600, 40) overbew(0640,0100, 0000, 4000)
writer (0640, 40) overbcw(0680,0100,0000,4000) writer (0680, 40)

overbew (06c0, 0100, 0000, 4000) writer (0600, 40) paragph() ackdelay (2100}
fillpr (009f, 0000, 0200) savebuf (OBBIMG. TST, 0000,0200) writer (0a00,2)
paragph () dmarst (R) ackdelay(0) readr(0000,0040) paragph() dmarst(R)
ackdelay (15) readr (0040,0040) paragph() dmarst (R) ackdelay(255)

readr (0080, 0040) paragph() dmarst(R) readr (00CO, 0040) paragph() dmarst (R)
readr (0300, 001F) readr(031F,0020) readr(033F,0001) paragph() ackdelay(O)
dmarst (R) readr (0900,0001) readr(0901,0010) readr (0911, 000F)

readr (0920, 0020) group() xfermode (DMAHC, 4000) paragph() fillk(00,0000,4000)
readr (0000, 0040) paragph() fillk(F,0000,4000) readr (0040,0040) paragph()
fillk (AR, 0000, 4000) readr(0080,0040) paragph() fillk(S,0000,4000)

readr (00CO, 0040) paragph ()

TRACE : Flow)Goto; Break Pt. (0); Run; Step; Half Step; Skip; DOS Ret;

403110-00 DEBUG-7 REV.1.0

DEBUG.2.1.1 TEST DOCUMENTATION FIXED WINDOW

The Test Documentation Fixed Window provides the state of the
Test or Design Verification in progress. Appearing on the upper
half of the screen for all debug levels except level 3, this
window provides a date/time-stamped indication of the BATCH FILE
(if any), TEST, SUBTEST, PARAGRAPH and SUBPARAGRAPH currently
being executed (refer to Figures DEBUG-F2 through DEBUG-F5).

DEBUG.2.1.2 TEST DOCUMENTATION SCROLLING WINDOW (REPORT DISPLAY)

The T.D. Scrolling Window (Report Display) provides a view of the
test document which is being generated by the test execution and
the Test Documentation Features of the SDS-1, in other words, it
displays the execution results. This window is also used for
explicit and implicit error message displays as well as an output
display for any information generated by a Test. This window
appears on the lower half of the screen for debug level 6 and 1
with a label of "REPORT DISPLAY" (refer to Figures DEBUG-F2 and
DEBUG-~F3) .

DEBUG.2.1.3 STATUS FIXED WINDOW

The Status Fixed Window provides the user with four frames of
real-time information. The I/0 Driver Status window appears in
the center of the screen in debug level 1 and 2 and on the top of
the screen in level 3 (refer to Figures DEBUG-F3 to DEBUG-FS5).

“DEBUG.2.1.3.1 STATISTICS FRAME

Whenever Statistics Display is enabled (statsen(l)), the Sta-
tistics Frame will reflect the current test statistics and each
I/0 Driver or related Microprogramming function call will result
in an update to this frame. The Statistics Frame can display
either global statistics, which is the cumulative statistics from
the last statistics reset operation, or individual function
statistics, which are only for the current function.

GLOBAL
STATISTICS: I/0 Ops: # of 1/0 Operations
TGT Chks: ¢ of Target Check Conditions (errors)
INT D Er: # of Initiator-Detected Errors
Bytes Wr: # of Bytes Written
Bytes Rd: # of Bytes Read
Bytes Cp: # of Bytes Compared
Cmp Ers.: # of Compare Errors
FUNCTION

STATISTICS: TGT Stat: Target Status Byte
: INIT Stat: Initiator Status Byte
I/0 Stat: 1I/0 Driver Status Byte
Bytes Wr: # of Bytes Written
Bytes Rd: # of Bytes Read
Bytes Cp: # of Bytes Compared
Cmp Ers.: # of Compare Errors

403110-00 DEBUG-8 REV.1.2

“DEBUG.2.1.3.2 USER COUNTERS FRAME

The User-Defined Counters provided in this frame will be updated
by direct function calls from the Test Function Library.

USER COUNTERS: uc@: 1l6-bit count
ucl: 16-bit count

uc@ or ucl is the User Counter String defining the counter as set
by the ucname() function. The user is also capable of
incrementing and resetting these counters through the SAT or MENU
via Test Function Library functions.

DEBUG.2.1.3.3 BUFFER FRAME

The buffer frame defines the current read and write buffer and
their current DMA address. This frame is only updated when the
Buffer/Command Update Flag is set by the bcu(l) function.

Wr Buf: BPM
@343
Rd Buf: BPM
G1ff

DEBUG.2.1.3.4 SCSI COMMAND FRAME

This frame shows the current SCSI command and 1/0 Driver
parameters issued to the I/0 Driver or the CDB generated by a
cdbnnl(), cdbnn2() or cdbnn3() Microprogramming function. In
addition, the returning status and sense() information is
displayed. The Debugger BCU(l) command or bcu(l) function is
required for auto-update of this frame.

I/0 COMMAND PARAMETERS:

CDB (SCSI Command) : up to 12 bytes

Status (SCSI Status): 1 byte

(previous SCSI Status): (1 byte)

Sense (SCSI Sense): up to 20 bytes, if more

than 20 a "+" will appear
after the 20th byte

xfer (data transfer mode): HSHCV,HSHC,HSSC,HSRW,HSCOPY,
DMAHC, DMASC, DMARW, DMACOPY,
TRSC, TRWR,
PIORW or PIOSC

a.s. (Autosense): ON or OFF

s.l. (Bus State Logging): ON oxr OFF

arb. (Arbitration Mode): NONE, HDW or SFTW
sel. (Select Mode): DUMB or SMART
b.p. (Bus Parity): ON or OFF

b.w. (Busywait): ON or OFF

iid (Initiator 1ID): g -> 7

tid (Target ID): g -> 17

4031106-00 DEBUG-9 REV.1l.2

The xfer through tid flags are not affected by any 1/0 Driver or
Microprogramming functions. These are updated only when the
functions that set them are called (i.e., xfermode(),
autosense(), bus_logen(), ...).

DEBUG.2.1.4 TRACE DISPLAY SCROLLING WINDOW

The Trace Scrolling Window provides the user with a step-by-step
execution history of Test and Documentation Functions. It
appears at the lower half of the screen; this window is displayed
in debug level 2 and 3 (refer to Figures DEBUG-F4 and DEBUG-F5).
The following convention is used within this window:

Reverse Video: Function pending execution

Half Intensity: Function which did not execute (skipped)

Full Intensity: Function currently or previously executed

DEBUG.2.1.5 DEBUGGER COMMAND LINE

The Debug Command Line provides the user with various Debug
command options. This line is displayed when the Debugger is
active if the debug display level is greater than 6 or if the
debug () function is encountered in SAT code execution. This debug
control line appears on line 24 of the screen. The functions
provided by the debugger are defined in Section DEBUG.3.

“DEBUG.2.2 SECONDARY DISPLAY SCREEN

The Secondary Display Screen provides a means of displaying the
Read/Write, Sense, OBB or State Log buffer. The Debugger saves
the Primary display screen and replaces it with the Secondary
screen. The primary screen is restored after the secondary
screen is no longer required by the user.

“DEBUG.2.2.1 BUFFER DISPLAY

DEBUG.2.2.1.1 DATA BUFFER DISPLAY

By specifying the buffer type, starting address and length of the
buffer to be displayed, the data buffer display will appear on
the secondary display screen. The display may also be grouped by
bytes or words. For an example of the data buffer display, refer
to Figures DEBUG-F6 and DEBUG-F7 .

403110-00 DEBUG-10 REV.1.2

FIGURE “DEBUG-F6.

Dbuf(Buf:

DATA BUFFER DISPLAY WITH BYTE GROUPING

W; Strt: 0000; Len:

Dbuf (Buf:

12

FIGURE “DEBUG-F7.

403110-00

Dbuf(Buf:

0000; Len:

010035 On:

D B Grouping)

0100;)

01-08-86 11:56:57

DATA BUFFER DISPLAY WITH WORD GROUPING

W; Strt:

Dbuf (Buf:

1233
2101
2332
1012
3321
0123
3210
1233
2101

2332
1012
3321
oi1a3
3210
1233
2101

2101
2332
1012
3321
0123
3210
1233
2101
2332
1012
3321
o123
3210
1233
2101
2332

Wi

2332
1012
3321
0123
3210
1233
2101
2332
1012
3321
o123
3210
1233
2101
2332
1012

0000

Strt: 0000; Len:

1012
3321
0123
3210
1233
2101
2332
1012
3321
0123
3210
1233
2101
2332
1012
3321

;s Len:

3321
o123
3210
1233
2101
2332
1012
3321
o123
3210
1233
2101
2332
1012
3321
o123

01003 On:

o123 3210
3210 1233
1233 2101
2101 2332
2332 1012
1012 3321
3321 o123
o123 3210
3210 1233
1233 2101
2101 2332
a33a 1012
1012 3321
3321 o123
0123 3210
3210 1233

DEBUG-11

D W Grouping)

01003)

1233
2101
2332
1012
3321
0123
3210
1233
2101
2332
1012
3321
o1a3
3210
1233
2101

01-08-86 11:58:16

REV.1.0

DEBUG.2.2.1.2 STATE LOGGING DISPLAY

The SDS-1 State Log file provides the user with a detailed
accounting of all SCSI Bus transactions performed by the SDS-1.
Each entry in the log represents a bus transaction. Some of the
entries have been compacted into one or two log line(s), such as
the Data_in, Data_out or Cmd_out entries. A few state log sample
entries are listed in Table DEBUG-T3 . The numbers at the right
of the entry indicate the log entry line number. The numbers at
the left are a time stamp logged in seconds with a resolution of
50 usec. Refer to Figure DEBUG-F8 for an example of an actual
state logging display.

TABLE “DEBUG-~T3. SAMPLE STATE LOG ENTRIES IN STATE LOG BUFFER

Start Time Event Description End Time Line #
0000, 00000 ~blank- O1B
0000. 00000 4 Test Initialization 01R
SSSS. mmmuy Arbitration as XX (incomplete) 019
SSSS. MMMuU Arbitration as XX (lost) SSSS. mmmuu 018
ssss. mmmuu Bus Free Detected 017
5SSS. mmmuu Arbitration as XX $555. mmmuu 016
SSSS. MMMy Selection ids = (bbbb bbbb) SSSS. mmmuu 015
SSSS. mmmuu Message out mm 014
SSSS. MMMuu Cmd_out cc cc €c cc cc e 013
SSS5S. mmmuy cc cc €c cc cc cc SSSS. mMmuu

SSSS. MMmuy Data out nnnnnnnnH byte(s) 012
8SSS. mmmuu Status in ss 011
SSSS5, MMMUU Message in mm . 010
s555. mmmuu Bus Free Detected OOF
SSSS. mmmuL Selection ids = (bbbb bbbb) #timed outs OOE
sss5s. mmmuu Bus Reset Detected 00D
SSSS. mmmuu Selection ids = (bbbb bbbb) €SSS, mMmuu ooC
S58S5. mmmuu Cmd_out cc cc ©c ec cc o S£88S. mmmuu O0B
S555. mmmuu Message in mm O0R
655S5. mmmuu Message in mm 003
ssss. mmmuu Bus Free Detected 008
£SSS. mmmuu Reselection ids = (bbbb bbbb) 007
£SSS. mmmuu Message in mm 006
S5SS. Mmmuu Message in mm 005
$SSS5. MMMUU Data in rmnnnnnnH bytel(s) 004
6SSS. mmmuu Status in ss 003
$SSS. Mmmuy Message in mm 002
$55S. mmmuu Bus Free Detected 001
ssss. mmmuu Bus Reset Asserted 000

Some entry lines will have a ">" at the far right to indicate
that there is more information in the log than currently
displayed.

The most recent log entry will have a log entry number of 0060,

which is the last entry in the state log buffer. When displaying
the most recent log entry, use a starting address of @#. This

403110-00 DEBUG-12 REV.1.2

buffer can be displayed through the Debugger (Dbuf command) or by
using the dispbuf() or rptbuf() function. The maximum number of
entries is 400 hex. The state log buffer is a FIFO where the
oldest entry is at the top and the most recent is at the bottom.
Once the maximum number of entries has been reached, the oldest
entries will be deleted at the top and the latest log entry is
entered at the bottom. As entries are entered, they are moved up
in the buffer.

FIGURE “"DEBUG-F8. STATE LOG DISPLAY EXAMPLE

Dbuf(Buf: W; Strt: 0000; Len: 00203 On: D B Grouping)

) rptbufiL, 0, 10) 07-09-86 09:17:29

Start Time Event Description End Time Line # B

+ +
+ +

-+

0083. 62869 Message in 00 OOF
0083. 6296Y Bus Free Detected O0E
0086. 62319 Arbitration as 07 0086. 62346 00D
0086. 62441 Selection ids = (1001 0000b) 0086. 62489 oocC
0086. 62521 Message out CO 0OOB
0086. 62600 Command ocut 08 00 00 00 80 00 0086.62849 0O0R
0086. 62886 Message in 02 009
0086. 62987 Message in 04 008
008€.63077 Bus Free Detected 007
0086.65187 Reselection ids = (1001 0000) 006
0086. 65203 Message in 80 00S
0086. 65287 Message in 03 004
0086. 65664 Data In 8000H byte(s) 003
008E. 89434 Status in 00 002
0086. 89508 Message in OO0 001
0086. 89604 Bus Free Detected 000

“DEBUG.2.3 DEBUGGER DISPLAY/EXECUTION SPEED

The bcu() (Buffer/Command Frame Update), statsen() and user
counter functions update the screen information--the more updates
to the screen, the slower the execution. Table DEBUG-T4 defines
the overall system execution speed based on the amount of screen
update required. Also refer to Figure DEBUG-F9 for a diagram
of where screen updates are performed. The Debugger states
TRACE, IOINIT, etc.) Will be discussed in detail in later
sections.

The I/0 Driver control flags (data transfer mode, autosense,

state logging, arbitration mode, etc.) effect the I/0 Driver
execution and are defined in the 1/0 DRIVER Section.

403110-00 ' DEBUG-13 REV.1.2

TABLE “DEBUG-T4.

DEBUGGER DISPLAY LEVELS (STATS GATHERING ON)

Debug Display Level Real Time 1/0 Driver
Level | BCU and Functions Execution Speed Notes
0 X T.D. Fixed Window FASTEST EXECUTION SPEED:
Debug T.D. Scrolling Window No screen updates during
Off . : function or I/0 Driver
execution
1) T.D. Fixed Window SECOND FASTEST:
Status Fixed Window Limited number of Fixed
Real Time Update: Window updates during
Statistics Frame function and 1I1I/0 Driver
T.D. Scrolling Window execution
2 "] T.D. Fixed Window SLOW:
Status Fixed Window Trace Scrolling Window and
Real Time Update: limited number of Fixed
Statistics Frame Window updates during
Trace Scrolling Window function and I/0 Driver
execution
3] Status Fixed Window SLOW:
Real Time Update: Same as level 2 with BCU
Statistics Frame equal to @
Trace Scrolling Window
1 1 T.D. Fixed Window MEDIUM:
Status Fixed Window Maximum number of Fixed
Real Time Updates: Window updates during
Statistics Frame function and 1I/0 Driver
Buffer Frame execution
SCSI Command Frame
T.D. Scrolling Window
2 1 T.D. Fixed Window SLOWEST:
Status Fixed Window Trace Scrolling Window and
Real Time Updates: maximum number of Fixed
Statistics Frame Window updates during
Buffer Frame and I/0 Driver execution
SCSI Command Frame
Trace Scrolling Window
3 1 Status Fixed Window SLOWEST:
Real Time Updates: Same as level 2 with BCU
Statistics Frame equal 9@
Buffer Frame
SCSI Command Frame
Trace Scrolling Window
T.D. = Test Documentation
403116-00 DEBUG-14 REV.1.2

FIGURE "DEBUG-F9. SCREEN UPDATE LOGIC

FUNCTION EXECUTION FLOW DEBUGGER STRTE I/0 DRIVER
1
Trace Disp. TRACE Y4 Entry
Generation (—— Exit
1 }
Function IDINIT 1
Execution r——-——————»-——#1—&2—‘L———G-———) ——
Compare
1/0 execr<—————————K—J Error/
(g (2% I N L #5——(Time
*6 Out
l I0ABORT
Error
Check
T CNTL BRERK
1
Function - (—— ERROR TEST Control Brk
Return PROCESSOR TERM Processor
oS
#1 = Command Update
#2 = Buffer Frame Update
#3 = Status Update
#4 = Serse Update if automatic sense enabled and check condition
#35 = Statistics Update
#6 = User counter functions update

The above figure illustrates where and when the Debugger updates
to the screen. Command and Buffer Frame updates occur prior to
the execution of the I1/0 Driver Command. Buffer Frame, Status,
Sense and Statistic updates occur after the execution of the I/0
Driver.

The User Counter functions (ucname(), ucinc() and ucrst()) update
the screen directly from their function.

“"DEBUG.3 DEBUG STATES/COMMANDS

The Debugger commands available are determined by the debug
state. These current debug states are determined by the test
function being executed and their execution condition (i.e.
execution phase and error status).

403110-00 DEBUG-15 REV.1l.2

“DEBUG.3.1 TRACE STATE

Figure DEBUG-F10 shows the relationship between the test function
and the Debugger TRACE state. For debug level greater than zero,
the test function enters the Debugger TRACE state to display the
function name and it arguments (right arrow going into the
left side of the TRACE box in Figure DEBUG-F1l0). Within the
TRACE state, the user has several program flow options (or
commands). These commands are shown in the lines leaving the
TRACE box. In the TRACE mode, the Run, Step or Half-Step
commands return to execute the test function. With the Goto and
Skip commands, the test function is not executed. And with the
DOS Return command, the SAT will exit back to DOS. When
executing in the SDS-1 Menu system, the ESC key is used to leave
the TRACE state and return to the Menu.

FIGURE “DEBUG-F18. TRACE STATE EXECUTION/DEBUGGER FLOW

FUNCTION EXECUTION FLOW DEBUGGER STATE 1/0 DRIVER
1
Trace Disp.) 4 TRACE —0—) — Entry
Gereration {(-R,S, H—mm— Exit
T — {8y K
Function IOINIT

Execution

L 10RBORT

Error
Check
~ CNTL BREARK
])
Function L { — ERROR TEST l-R.,T—-Ct:n'utr-o:ul Brk
Return PROCESSOR TERM L{(—0— Processor

pos

Other TRACE state commands available at this point are summarized
in Table DEBUG-T5. The space bar will toggle the TRACE command
line through its command set. As long as the mode supports the
command, it is not necessary to have it displayed on the command
line in order to execute it.

403110-00 DEBUG-16 REV.1.2

TABLE “DEBUG-T5. TRACE STATE COMMAND SET

Command

YOoUCC~HNDIVOZUIrX=INSLP WL =-OTMOUCOUODOOWD

Function

statistics reset (reset a single or all global stats)
break point (set a program execution break point)
buffer/command update (update Buffer/Command frames)
load buffer (lcad current fill buffer from disk)
buffer address (start address for load/save)
buffer length (length of load/save operation)
load file name (file name for load/save)
eea() function (change explicit error action)
display buffer
display buffer type (Read, Write, Log, Sense, OBB)
display buffer starting address
display buffer length
display buffer output device
display buffer by bytes or words
goto function (skipping other functions)
half-step function (stop prior to SCSI execution)
iea() function (implicit error action)
skip function (do not execute this function)
debupg display level
modify current fill buffer
modification address
sense
return to DOS
SCS1I display (sample SCSI bus and display)
run mode (start execution and do not stop in TRACE)
step mode (execute function and stop in next TRACE)
SCSI bus reset
user counter reset
save buffer
buffer address (start address for load/save)
buffer length (length of load/save operation)
load file name (file name for load/save)

403110-00

DEBUG-17

REV.1.2

DEBUG.3.1.1 DETAILED DESCRIPTIONS OF TRACE COMMANDS

The following section describes each of the TRACE menu line
options.

DEBUG.3.1.1.1 FLOW CONTROL (TRACE:Flow)

These are the flow control commands of the TRACE mode:

Goto (~GOTO):

Goes to the defined function skipping all functions between
the current point and the GOTO function name. The GOTO
function name will look for a match in the test program;
for instance, if the function name "read" was entered,
GOTO will skip functions until it finds a function with
its first four characters matching "read." Some possible
function names that GOTO will stop at are readr, reads,
readcap, etc. With a "writes(l0)"™ function name, the GOTO
function will look for the exact match. Maximum function
name length is 240, Count is the occurrence number, 1
indicates the first occurrence, 2 indicates the second and
so on. The following prompts will appear:

Enter Function Name >

Count >

Breakpoint Set ("BREAK-POINT):

Sets Break Point function and occurrence count. After
break point is set and Run is executed, all functions up to
the B.P. function will be executed. When the B.P. function
name is reached, execution is halted and user has control at
this point. The B.P. Function Name matches function names
exactly like the GOTO function. And Count is the occurrence
number. The following prompts will appear:

B.P. Function: >

Count: >

Run (RUN MODE):
Begins continuous execution of the test program and does not
halt unless a Break Point has been reached.

Step (SINGLE-STEP MODE):
Executes current command and halt in TRACE state on the next
RTFL function.

Half-Step (HALF-STEP):
Set up the I/0 Driver command but halt before 1/0 Driver
execution. Half-Step enters the IOINIT state.

Skip (SKIP FUNCTION):
Does not execute current command.

Exit to DOS (DOS RETURN):
Terminates current Test.

403110-00 DEBUG-18 REV.1.2

DEBUG.3.1.1.2 BUFFER FUNCTIONS (TRACE:Buffer)

In TRACE, the user can perform the following buffer-related
commands:

a) display a buffer

b) save a buffer to disk

c) load a buffer from disk

d) modify a buffer

DBuf (DISPLAY BUFFER):
Before displaying the buffer, check if the following
have been initialized properly:
e 0: Buffer reference (R, W, RW, Log, Sense, OBB)
1: Starting Address (in hex)
2: Length (in hex)
3: Display On: (D=display, P=printer, L=log)
4: With Grouping of: (B=bytes, W=words)

Load or Save (LOAD OR SAVE BUFFER):
Before 1loading or saving buffer, check if the following
values are initialized:
e 5: Starting Address of Buffer to Load or Save
® 6: Length to Load or Save
e 9: File name to Load or Save

Mod (MODIFY BUFFER) :
The following should be specified before the byte can be
modified:
@ 5: Starting Address of Buffer to Modify

DEBUG.3.1.1.3 ERROR ACTION/RECOVERY (TRACE:EA/Rec)

These are the error action and recovery commands in the TRACE
state:

IEA (IMPLICIT ERROR ACTION):
IEA(LOGC): Log Error and Continue
(LOGH) : Log Error and Halt and Enter Debugger
(CONT): Continue (ignore error)
(HALT): Halt on Error and Enter Debugger

EEA (EXPLICIT ERROR ACTION):
EEA(LOGC): Log Error and Continue
(LOGH): Log Error and Halt and Enter Debugger
(CONT): Continue (ignore error)
(HALT): Halt on Error and Enter Debugger

Sense (SENSE COMMAND):
Generate a Request Sense Command to 1I/0 Driver (does not
show on trace display or modify current 1/0 Driver command).
The target, initiator, and 1/0 status are also displayed at
the bottom of the screen. The initiator and I/O0 status
codes are discussed in the I/0 Driver section.

SCSI Reset (RESET SCSI BUS/I/O DRIVER)

403110-00 DEBUG-19 REV.1l.2

SCSI Display (SCSI BUS DISPLAY):
The SCSI bus display will appear as follows:

BSY SEL data: 04@00 0060 (6¢) REQ ACK c¢/D i/0 MSG RES (p=sample)

The full-intensity values indicate the asserted state of
the SCSI bus at the time of request.

DEBUG.3.1.1.4 DEBUGGER CONTROL (TRACE:Control)

These are four debugger control commands available in the TRACE
state:

Debug Level (DEBUG LEVEL):
Set Debug Display Level (Change Primary Display Format) to @
through 3. Level @ will disable the Debugger and commence
program execution at full speed. (The Debugger cannot be
reinvoked.)

BCU() (BUFFER COMMAND UPDATE FRAME FLAG):
BCU(@): Buffer Command Update Not Set
BCU(l): Buffer Command Update Set

User Cntr Reset (RESET USER COUNTERS) :
Reset User Counter ¢ or 1.

Stats Reset (STATISTICS RESET):
Reset all or a single global statistics counter.

“DEBUG.3.2 IOINIT STATE

If the current or pending function is an I/0 Driver command, a
Half-Step command in the TRACE state will cause function
execution to stop in the Debugger IOINIT state (note the state
name change on the Debugger command line when state changes). 1In
the IOINIT state, the user can view the SCSI Command Descriptor
Bytes (CDB) in the SCSI Command Frame and check the buffer
pointers prior to any execution on the SCSI bus. There are two
flow commands that can be executed from this state, Skip or
Exequte. The Skip command will not execute the CDB, while the
Exequte command will call the I/0 Driver for execution of command
and return to the test function. Commands other than Half-Step
that will cause execution of the I/0 commands will bypass the
IOINIT mode and go straight to the I/0 Driver (illustrated by the
broken lines through the IOINIT box in Figure DEBUG-Fll).

The Debugger options (commands) available in the IOINIT state are
listed in Table DEBUG-T6. The space bar will toggle the IOINIT
command line through its command set. As long as the mode
supports the command, it is not necessary to have it displayed on
the command line in order to execute it.

403110-00 DEBUG-20 REV.1.2

FIGURE ~“DEBUG-F11l.

IOINIT STATE EXECUTION/DEBUGGER FLOW

FUNCTION EXECUTION FLOW DERUGGER STRATE 1/0 DRIVER
1
Trace Disp. TRACE Y4 Entry
Generation (—— Exit
-~
l T
Function IOINIT 1
Execution r———______q.- _____ Y e Q) _——
(— (- = = = =~ — ¢ Compare
I/0 exec-(———r Error/
K —— —0-—) Time
Out
1 IOABORT
Error
Check
~ CNTL BREARK
] \
Function - ¢ ERROR TEST LR,T—-Control Brk
Return PROCESSOR TERM {(—0— Processor
p0S
TABLE “DEBUG-T6. IOINIT STATE COMMANDS
Command Function

VONCRUIXPWN=O0OTNMUOUOUND

load buffer (load current fill buffer from disk)

buffer address
buffer length
load file name
display buffer
display buffer
display buffer
display buffer
display buffer
display buffer
skip function
modify buffer

(start address for load/save)
(length of load/save operation)
{(file name for load/save)

type (Read, Write, Sense, 0BB)

starting address

length

output device

by bytes or words

Log,

address to modify

execute function

save buffer
buffer address
buffer length
load file name

{start address for load/save)
(length of load/save operation)
(file name for load/save)

403110-00

DEBUG-21 REV.1l.2

DEBUG.3.2.1 DETAILED DESCRIPTIONS OF IOINIT COMMANDS

DEBUG.3.2.1.1 FLOW CONTROL (IOINIT:Flow)

These are the flow control commands for the IOINIT mode:

Skip (SKIP FUNCTION):
Does not execute current I/0 command.

Exequte (EXECUTE FUNCTION) :
Execute the current I/0 command.

DEBUG.3.2.1.2 BUFFER FUNCTIONS (IOINIT:Buffer)

These are the buffer function commands for the IOINIT mode:

DBuf (DISPLAY BUFFER):
Before displaying buffer, check if the following are
initialized properly:
e @: Buffer number or reference (R, W, RW, L, S, OBB)
l: Starting Address (in hex)
2: Length (in hex)
3: Display On: (D=display, P=printer, L=log)
4: With Grouping of: (B=bytes, W=words)

Load or Save (LOAD OR SAVE BUFFER):
Before 1loading or saving buffer, check if the following
values are initialized:
® 5: Starting Address of Buffer to Load or Save
® 6: Length to Load or Save
® 9: File name to Load or Save

Mod (MODIFY BUFFER):
The following should be specified before the byte can be
modified:
® 5: Starting Address of Buffer to Modify

“DEBUG.3.3 IOABRT STATE

The IOABRT state is intended to provide the user with a window
inside the 1/0 Driver or Microprogramming function (refer to
Figure DEBUG-F1l2). This window provides the user a means to
handle time-out conditions and data miscompares.

403110-00 DEBUG-22 REV.1l.2

FIGURE “DEBUG-Fl12. IOABRT STATE EXECUTION/DEBUGGER FLOW

FUNCTION EXECUTION FLOW DERUGGER STARTE I1/0 DRIVER
A
Trace Disp. TRACE Entry
Generation Exit
~
1 T
Function IOINIT l

Execution —
[——— Compare

1/0 exec {(—Error—-| Error/
- Y—| Time
[— Out
T.0. —<

[i) IDABORT
Error R, T—)

Check
T ~ CNTL BRERK
L
Function ERROR TEST l-R,’l'— Control Brk
Return PROCESSOR TERM {~—0-—]| Processor
T.0. = Time Out in D&S

Microprogramming
function

The flow control options available on a compare error are resume
and halt on (next) compare error (HOCE(l)), or resume with no
further error display (HOCE(@)). For a time-out, the user can
resume the operation with a secondary time value. Or for either
type of condition, the user can terminate the operation. Further
details on IOABRT commands can be found in Table DEBUG-T7.

The space bar will toggle the IOABRT command line through the
command set. As long as the mode supports the command, it is not
necessary to have it displayed on the command line in order to
execute 1it.

403110-00 DEBUG-23 REV.1l.2

TABLE “DEBUG-T7. IOABRT STATE COMMAND SET

Command Function

load buffer (load current fill buffer from disk)
buffer address (start address for load/save)

buffer lerngth (length of load/save operation)
load file name (file name for load/save)
*1 display buffer

display buffer type (Read, Write, Log, Sense, O0OBB)
display buffer starting address
display buffer length
display buffer output device
display buffer by bytes or words
modify buffer
address to modify
return to DOS
SCSI display
resume
secondary time out value set
halt on compare error flag toggle
I1/0 termination
save buffer
buffer address (start address for locad/save)
buffer length (length of load/save operation)
load file name (file name for load/save)

VOUCHRPND2TIONISPWN-OTIVOOUND

#1 The Write Buffer Display Command is not allowed for any
operations which wutilize the On-Board Buffer (HSHCV, HSHC,
HSSC or HSRW).

DEBUG.3.3.1 DETAILED DESCRIPTIONS OF IOABRT COMMANDS

DEBUG.3.3.1.1 FLOW CONTROL (IOABRT:Flow)

These are the flow control commands for the IOABRT mode:

Resume (RESUME I/0 WITH ~“SECONDARY-TIMEOUT OR HALT ON ERROR):
e 7: TO: Change secondary time-out value. After the
first time-out, the default is 30 seconds.
e 8: HOCE(): Halt-On-Compare Error
HOCE (@) : Halt-On-Compare Error Not Set
HOCE(l): Halt-On-Compare Error Set

I/0 Termination (RESET AND TERMINATE I/0)

DOS Ret (RETURN TO DOS)

403110-00 DEBUG-~24 REV.1.2

DEBUG.3.3.1.2 BUFFER FUNCTIONS (IOABRT:Buffer)

These are the buffer function commands for the IOABRT mode:

DBuf (DISPLAY BUFFER):
(Not valid for OBB operations). Before displaying buffer,
check if the following are initialized properly for the
display:
e ¢: Buffer number or reference (R, W, RW, L, S, OBB)
Starting Address (in hex)
Length (in hex)
Display On: (D=display, P=printer, L=log)
With Grouping of: (B=bytes, W=words)

® 000
W N

Load or Save (LOAD OR SAVE BUFFER):
Before 1loading or saving buffer, check if the following
values are initialized:
@ 5: Starting Address of Buffer to Load or Save
e 6: Length to Load or Save
e 9: File name to Load or Save

Mod (MODIFY BUFFER):
The following should be specified before the byte can be
modified:
@ 5: Starting Address of Buffer to Modify

DEBUG.3.3.1.3 ERROR ACTION/RECOVERY (IOABRT:EA/Rec)

There is one error action and recovery command in the IOABRT
state:

SCSI Display (DISPLAY SCSI BUS):
The SCSI bus display will appear as below:

BSY SEL data: 0000 06000 (06) REQ ACK c/D i/0 MSG RES (p=sample)

The full-intensity values indicate the current state of
the SCSI bus at the time of request.

“DEBUG.3.4 ERROR PROCESSOR STATES

The ERROR PROCESSOR state is called from the error checking logic
contained in each SDS-1 library function. Certain types of
errors are classed either as implicit errors (such as data com-
pare errors) or explicit errors (such as an incorrect expected
status). Implicit errors do not require a test on the user's
part. Explicit errors, such as checking the sense data informa-
tion bytes, are explicitly performed by the user. Both types of
errors are processed by the ERROR PROCESSOR but can have dif-

ferent error actions. Figure DEBUG-T1 displays the execution
flow.

The ERROR PROCESSOR is responsible for reporting both IMP ER

(implicit errors) and EXP ER (explicit errors). The commands
available in this state are described in Table DEBUG-TS.

4063110-00 DEBUG-25 REV.1.2

FIGURE “DEBUG-F13. ERROR PROCESSOR STATES EXECUTION/DEBUGGER FLOW

FUNCTION EXECUTION FLOW DEBUGGER STRTE I/0 DRIVER
i
Trace Disp. TRACE
Generation
]
Function IOINIT
Execution
| I10ABART
Error }—) —Error
- Check — ¢
—0-) ~ CNTL BREARK
! ' 1 1
Function {—R— ERROR TEST l-R.,T—- Control Brk
Return PROCESSOR TERM b (—0-— Processor
pbs
TABLE “DEBUG-T8. ERROR PROCESSOR COMMAND SET
Command Function
D load buffer (load current fill buffer from disk)

VON<ATDOUNI~PWNN~OTITMUOON

(start address for locad/save)
buffer length (length of load/save operation)
load file name (file name for load/save)

eea() function (explicit error action)

display buffer
display buffer
display buffer
display buffer
display buffer output device
display buffer by bytes or words

iea() function (implicit error action)

modify buffer
address to modify

return to DOS

SCSI display

resume

SCSI bus reset

save buffer
buffer address
buffer length
load file name

buffer address

type (Read, Write, Log, Sense, OEB)
starting address

length

(start address for load/save)
(length of load/save operation)
(file name for load/save)

403110-00

DEBUG-26

REV.1l.2

DEBUG.3.4.1 DETAILED DESCRIPTIONS OF ERROR PROCESSOR COMMANDS

The ERROR PROCESSOR state is reached after completion of the I/0
command with implicit error action set to Log and Halt
(iea(LOGH)) or Halt (iea(HALT)), or explicit error action is set
to Log and Halt (eea(LOGH)) or Halt (eea(HALT)).

DEBUG.3.4.1.1 FLOW CONTROL

These are the flow control commands for the ERROR PROCESSOR mode:
Resume (CONTINUE WITH NEXT FUNCTION)
DOS Ret (RETURN TO DOS)

DEBUG.3.4.1.2 BUFFER FUNCTIONS

These are the buffer function commands for the ERROR PROCESSOR
state:

DBuf (DISPLAY BUFFER):
Before displaying buffer, check if the following are
initialized properly for the display:
e 0O: Buffer number or reference (R, W, RW, L, S, OBB)
l: Starting Address (in hex)
2: Length (in hex)
3: Display On: (D=display, P=printer, L=log)
4: With Grouping of: (B=bytes, W=words)

Load or Save (LOAD OR SAVE BUFFER):
Before 1loading or saving buffer, check if the following
values are initialized:
@ 5: Starting Address of Buffer to Load or Save
e 6: Length to Load or Save
@ 9: File name to Load or Save

Mod (MODIFY BUFFER):
The following should be specified before the byte can be
modified:
e 5: Starting Address of Buffer to Modify

403110-00 DEBUG-27 REV.1.2

DEBUG.3.4.1.3 ERROR ACTION/RECOVERY

These are the error action and recovery commands for the ERROR
PROCESSOR mode:

IEA (IMPLICIT ERROR ACTION):
IEA(LOGC): Log Error and Continue
(LOGH) : Log Error and Halt and Enter Debugger
(CONT): Continue (ignore error)
(HALT): Halt on Error and Enter Debugger

EEA (EXPLICIT ERROR ACTION):
EEA(LOGC): Log Error and Continue
(LOGH) : Log Error and Halt and Enter Debugger
(CONT): Continue (ignore error)
(HALT): Halt on Error and Enter Debugger

Sense (SENSE COMMAND):
Generates a Request Sense Command to I/O0 Driver (does not
show on trace display or modify current I/0 Driver
command). The target, initiator, and I/0 status are also
displayed at the bottom of the screen. The initiator and
I/0 status codes are listed in Figure IODVR-T4 and IODVR-T5.

SCSI Reset (RESET SCSI BUS/I/O DRIVER)

SCSI Display (SCSI BUS DISPLAY):
The SCSI bus display will appear as below:

BSY SEL data: 0000 0000 (09) REQ ACK ¢/D i/0 MSG RES (p=sample)

The full-intensity values indicate the current state of
the SCSI bus at the time of request.

“DEBUG.3.5 SAT EXECUTION HALT/INTERRUPTION

In addition to setting the error action, iea() and eeal()
functions (or IEA or EEA commands) to halt on error (as described
in section DEBUG.3.4.1), there are other ways to halt or
interrupt SAT execution.

DEBUG.3.5.1 NORMAL END OF SAT PROGRAM

To exit from the Debugger at any level, the completion of the SAT
program will return back to DOS.

DEBUG.3.5.2 ESCAPE KEY

The ESC key will be used to halt Debugger execution (in display
levels 1,2 or 3).

If the Debug Level is greater than @, the ESC key can be used to
stop execution of the SAT program. The user can stop execution
in the TRACE state of the next library function with the next
function pending execution (indicated in reverse video).

403110-00 DEBUG-28 REV.1l.2

DEBUG.3.5.3 CONTROL-BREAK KEYS

See Section DEBUG.4.2.

“DEBUG.4.9 MISCELLANEOUS DEBUGGER FUNCTIONS

“DEBUG.4.1 DOS RETURN

Exits the current SAT program or Menu Interface session and
returns to DOS.

“DEBUG.4.2 CONTROL-BREAK

The Control-Break key sequence can be used to interrupt execution
of the SAT program, at which point the user has control of the
execution to either resume execution or return to DOS or if a
function is being timed (that is, if the ioto() function is valid
for the currently executing function), the user can force an
early time-out with the I/0O Termination command.

When the Control-Break keys are pressed during an execution of a
time-out associated function, the options presented are: resume
execution, force a time-out, exit to DOS or display the SCSI bus.
Otherwise, the options are: resume execution, exit to DOS or
display SCSI bus.

“DEBUG.4.3 BUFFER MODIFICATION

Buffers may be modified by using the M command in any of the
Debugger states. The following should be specified before the
byte can be modified: :

Starting Address of Buffer to Modify (key 5)

“DEBUG.4.4 BUFFER SAVE/LOAD

Before loading or saving buffer, check if the following values
are initialized:

Starting Address of Buffer to Load or Save (key 5)

Length to Load or Save (key 6)

.File name to Load or Save (key 9)

“DEBUG.4.5 DISPLAY SCSI BUS

The SCSI bus display will appear as below:
BSY SEL data: 0000 0000 (00) REQ ACK c¢/D i/0O MSG RES (p=sample)

The full-intensity values indicate asserted bits on the SCSI bus
at the time of bus sample. P is used to resample the bus.

403110-00 - DEBUG-29 : REV.1.2

(THIS PAGE INTENTIONALLY LEFT BLANK)

4031106-00 REV.1l.2

“FLIB.® FUNCTION LIBRARY OVERVIEW

“FLIB.1 INTRODUCTION

This section is intended to give an overview of the functions
listed in Appendix A: Function Library. For a complete
description of each function, see Appendix A where they are
listed alphabetically.

The library functions are grouped together by categories (Type,
Class, and Function).

The Types are: Setup, Execution and Data Analysis/Reduction Test
Functions. Within each Type are the Classes: Generic, 1/0
Driver and Microprogramming. Some of these Classes have been
further grouped by their Functions.

There 1is also an additional Type which is the Report
Documentation Functions. These functions are basically used for
report generation of the Test Results Report.

“FLIB.2 SETUP TEST FUNCTIONS

These setup test functions are used to initialize conditions.
They can either be specific, I/0 Driver or Microprogramming Or
generic functions.

FLIB.2.1 GENERIC CLASS

FLIB.2.1l.1 CONFIGURATION SETUP

Function Name Use

ackdelay OBB Acknowledge Delay

errdelay Enable/Disable Five Second Error Message
Delay

line_mode Select Single-Ended or Differential SCSI
mode

parity Enable/Disable SCSI Bus Parity

reset Reset SCSI Bus/I/O Driver

set_er_ limits Set Error Limits

xfermode Open R/W Buffer/Set Transfer Mode

These functions are used to set up the initial conditions for
either an I/0 Driver or Microprogramming Execution Test.

403110-00 FLIB-1 REV.1.2

FLIB.2.1.2 BUFFER SETUP

Function Name Use

dmarst Reset DMA Pointer

dmaset Set DMA Pointer

dmaset va Set the Virtual DMA Address

dmaset_vblk Set Xirtual DMA Address for the Defined
: Bloc

fillbchb Byte Block Count Fill

fillbcw Word Block Count Fill

fillbyte Fill Buffer with Byte

filld Decrement Count Fill

filii Increment Count Fill

fillk Constant Fill

fillpr Pseudo Random Fill

loadbuf Load Buffer from Disk

overbcb Overlay Block Count Byte

overbcdw Overlay Block Count Double Word

overbcw Overlay Block Count Word

put byte Put Buffer with Data Byte

savebuf Save Fill Buffer to Disk

setbuf Fill Buffer with ASCII String

setfill buf Set Current Fill Buffer

These routines are useful for buffer initializations. The
xfermode() function will automatically open buffers and the next
xfermode() or end of SAT will close them.

Buffers may be filled more than once during the execution of test
programs. For instance, a buffer may be filled with a pseudo
random pattern (fillpr()) and then filled with the overlay block
count word (overbcw()) to check if the buffer was filled
properly. The savebuf() function will allow the user to save
a buffer to the SDS-1 internal disk and the loadbuf() allows the
user to load a buffer from the SDS-1 internal disk.

FLIB.2.1.3 ERROR ACTION/RECOVERY SETUP

Function Name Use
eea Explicit Error Action
iea Implicit Error Action

These routines specify the error action to be taken if an
implicit or explicit error occurs. There are several actions
that can be taken (refer to Appendix A function definitions).
The default action is to Log the Error and Continue (LOGC)
execution of the test (also see Sections SAT.5 and DEBUG.1l.3).

403110-00 FLIB-2 . REV.1l.2

FLIB.2.l1.4 TIMER, COUNTER AND DELAY SETUP

Function Name Use

delayms Millisecond Delay

delays Second Delay

stats_reset Reset Statistics Counters

stats_window Statistics Window Presentation (Global
or Function) '

tmrset User Timer Preset

tmrstart User Timer Start

tmrstop User Timer Stop

ucinc User Counter Increment/Decrement

ucname User Counter Name

ucrst User Counter Reset

These functions control the general-purpose timer, counter, and
delay. The timer can be controlled by starting (tmrstart()),
stopping (tmrstop()), or initializing (tmrset()) the timer. The
user counter allows the user to set up his own counter. By
giving the counter a name (ucname()), the user may be able to
increment/decrement (ucinc()) or reset (ucrst()) the counter.
The user can also delay execution by seconds (delays()) or
milliseconds (delayms()). The statistic counters can be set to
zero by the stats_reset() function. The presentation of the
statistics can be global or within the function (stats_window()).

FLIB.2.1.5 MISCELLANEOUS

Function Name Use

debug Interrupt Test Execution and Enter
Debugger

pause Pause Test Execution

The pause() function will allow the user to pause during
execution of the SAT program. A specified message string (passed
by pause()) will be displayed on the screen. The SAT program
will continue to execute once a return key has been hit.

The debug() function will allow the SAT program to convert over
to a another debug level while executing. This function will be
useful in situations where the SAT program is running under debug
level 9 and one needs to examine the execution of commands or to
track a certain process by inserting the debug() function and
specifying another level. The SAT test will convert over to the
level specified and the user may control the SAT execution from
that level (as long as the debug level is greater than zero).

403110-00 FLIB-3 REV.1.2

FLIB.2.2 1/0 DRIVER CLASS

FLIB.2.2.1 SCSI RELATED FUNCTIONS

Function Name Use Default
arbmode Set Arbitration Mode NONE
autosense Enable/Disable Auto Sense OFF
busywait Enable/Disable Busy Wait , OFF
cntlbyte Set Execution Control Byte /1]
exp_status Expected Status After Mask 0o
fixed Sequential Access Fixed Bit 1
iid Set 1D jumper
selectable
ioto Set 1/0 Time-Out Value 909 sec
lun Set Execution LUN)
selmode Set Selection Mode DUMB
stat_mask Set Expected Status Mask g0
tid Set Execution Target ID)

These are the 1/0 Driver SCSI related functions.

FLIB.2.2.2 1/0 DRIVER STATUS FUNCTIONS

Function Name Use
bcu Enable Buffer/Command Frame Update
statsen Enable Statistics Gathering

To enable/disable statistics gathering, use the statsen()
function. To enable/disable buffer/command frame update, use the
bcu() function.

FLIB.2.2.3 blk () FUNCTIONS

Function Name Use

blk size Defines Block Size to be used with
dmaset_vblk()

inc_blk Increment Starting Block Address for
_blk() Functions

inc len Increment Transfer Length for blk({()

- Functions -

random_blk Generate Random Starting Block Address
for blk() Functions

random len Generate Random Transfer Length for

- _blk() Functions

set_blk Set Starting Block Address for _blk()
Functions

set_len Set Transfer Length for _blk() Functions

These are the _blk() related functions.

403110-00 FLIB-4 REV.1.2

FLIB.2.3 MICROPROGRAMMING CLASS

Function Name Use

arb_or_resel Arbitrate or Reselect
bfreearm Arm Bus Free Detection Logic
busrel Release Bus

forcbusy Force SCSI Bus to Busy
forceattn Force SCSI Bus Attention
forcperr Force Parity Error

resel_wt Wait for Reselection Phase
ureset Bus Reset

These are the Microprogramming functions available for setup.
These functions allow the user to exercise close control over the
SCSI Initiator function. This close control permits detailed
message system testing and SCSI parity error generation. 1In
addition, Microprogramming allows faster phase transactions than
the SDS-1 I/0 Driver. Since the Microprogramming functions are
designed for fast execution, each function has as few arguments
as possible. Certain function types have many different versions
to allow for flexibility in programming while maintaining
execution speed.

NOTE: Since Microprogramming basically takes over
the Test Adapter Hardware Test Functions, calls to
the 1I/0 Driver should not be executed until the
SCSI bus has gone to a bus free state with a
command complete message (disconnect does not
count), i.e., the test adapter Microprogramming
sequence should complete a SCSI command (or issue a
SCSI bus reset).

“"FLIB.3 EXECUTION TEST FUNCTIONS

These types of functions perform certain tasks during the
execution of the test program: such as, format the disk
(format()) or rewind the tape (rewind()).

FLIB.3.1 GENERIC CLASS

Function Name Use
user_input User Action/Response Requested

The user_input() function will stop SAT execution and wait for
the user to enter a specific response.

403110-00 FLIB-5 REV.1.2

FLIB.3.2 I/0 DRIVER CLASS

FLIB.3.2.1 GENERAL PURPOSE SCSI FUNCTIONS (COMMANDS)

Function Name Use

copy Copy

inquiry Inguiry

io6 6~-Byte SCSI Command
iold 1l0-Byte SCSI Command
iol2 12-Byte SCSI Command
recvdiag Receive Diagnostic
senddiag Send Diagnostic
sense Request Sense
testur Test Unit Ready

These are the general-purpose SCSI functions. Functions io06(),
iol®(), and iol2() can be used to form commands that may not be
possible for the other functions to execute. For example, the
reads() function will accept a maximum of 64k bytes to read, but
when i06() is setup properly, more than 64K bytes can be read.

Before the other functions (except i06(), iol@() or iol2()) are
used, the lun() and cntlbyte() functions should be called to
initialize their values in the command descriptor block
structure, otherwise their default values will be used.

403110-00 ' FLIB-6 REV.1.2

FLIB.3.2.2

RANDOM ACCESS DEVICE FUNCTIONS

Function Name

ccs_podsel
ccs modsens

Use

CCS Mode Select
CCS Mode Sense

comp Compare

copyver Copy & Verify

format Format

modesen Mode Sense

mode_sel Mode Select

prevmedr Prevent/Allow Media Removal on Random
Access Device

rd buffer CCS Read Buffer

rd_defect CCS Read Defect Data

readcap Read Capacity

readr Read Random Device

readrl Read Random 6-Byte with Long Address

readrl@ Read Random Device 1l@-Byte

readrlé blk

Read Random using Predefined BLOCK and
LENGTH

readr blk Read with Predefined Counts
reasgnb Reassign Block

releaser Release Random Device

reservr Reserve Random Device

rezero Rezero

searchde Search Data Equal

searchdh Search Data High

searchdl Search Data Low

seek Seek

seekl Seek Random with Long Address
seekl@ Seek Random Device 1@-Byte
setlimts Set Limits

strstop Start/Stop

verifylg Verify 10-Byte

writer Write Random Device

writerl Write Random with Long Address
writerlg Write Random Device l1l@-Byte

writerl@ blk

writer_ blk
wrtvfyl@
wrt_buffer

Write Random using Predefined BLOCK and
LENGTH

Write with Predefined Counts
Write and Verify 16-Byte

CCS Write Buffer

These are the SCSI command functions for the random access
device. Before these functions are used, the lun() and
cntlbyte() functions should be called to initialize their values
in the command descriptor block structure, otherwise their
default values will be used.

403110-060 FLIB-7 REV.1l.2

FLIB.3.2.3 SEQUENTIAL ACCESS DEVICE FUNCTIONS

Function Name Use

erase Erase

ldunlds Load/Unload

modsels Mode Select

modsens Mode Sense

prevmeds Prevent/Allow Media Removal on
Sequential Access Device

rdblklts Read Block Limits

readrev Read Reverse (64K blocks Max)

reads Read Sequential (64K blocks Max)

readsl Read Seguential (long count)

recbufds Recover Buffer Data

releases Release Unit

reserves Reserve Unit

rewind Rewind

space Space (64K Max)

tksel Track Select

verifys Verify Sequential

writes Write Sequential (64K blocks Max)

writesl Write Sequential (long count)

wrtfilm Write File Marks

These are the SCSI command functions for the sequential access
devices. Before these functions are used, the lun(), fixed(),
and cntlbyte() functions should be called to initialize their
values in the command descriptor block structure, otherwise their
default values will be used.

403110-00 FLIB-8 REV.1.2

FLIB.3.3 MICROPROGRAMMING CLASS
Function Name Use
arbl Software Arbitration
arb2 Hardware Arbitration
cdb6l 6-Byte DMA Command Out
cdbé62 6-Byte T/R Machine Command Out
cdb63 6-Byte PIO Command Out
cdblgl 1¢-Byte DMA Command Out
cdbl@2 l1¢g-Byte T/R Machine Command Out
cdblg3 1-Byte PIO Command Out
cdbl2} 12-Byte DMA Command Out
cdbl22 12-Byte T/R Machine Command Out
cdbl23 12-Byte PIO Command Out
dataing OBB Data 1In
datainl DMA Data In
datain2 T/R Machine Data In
datain3 PIO Data In
datain4 OBB Hardware Compare Data In
datain5 DMA Hardware Compare Data In
dataoutd OBB Data Out
dataoutl DMA Data Out
dataout2 T/R Machine Data Out
dataout3 PIO Data Out
msgout Message Out
msgout_atnf Single Byte Message Out w/ATTN true
sell Nonarbitration Selection
sel2 Selection with No Message Out
sel3 Smart Arbitration Selection
sel4 Smart Selection with Message Out

These are the Microprogramming functions needed for execution of
test programs that will bypass the I/O Driver. These functions
will provide the programmer with a means to generate SCSI bus
excitation (arbitration, selection, command out, messages, data
transfer handshakes, etc.). Some of the excitation functions
also contain built-in Data Reduction capability. These functions
will be useful in situations where a test is needed without the
I/0 Driver. The SCSI bus must be in a free state when done with
testing.

403110-00 FLIB-9 REV.1.2

“FLIB.4 DATA ANALYSIS/REDUCTION TEST FUNCTIONS

These functions will compare results and/or report them.

FLIB.4.1 GENERIC CLASS

Function Name Use
bus logen Enable/Disable Bus Logging
chk_user_limits Check Limits from user_input()
chk user string Check for Match in user_input()
compwr Compare Write and Read Buffers
copy user string Copy String from user_input()

delta time

Get Time Between Two State Log Entries

dispbuf Display Buffer to Screen

error_ok Decrement Error Count

eseom Extended Sense EOM Bit Check

esfm Extended Sense File Mark Check

esili Extended Sense Illegal Length Indicator
Check

esinfob Extended Sense Information Bytes Check

eskey Extended Sense Key Equal Check

eskeynot Extended Sense Key Not Equal Check

esvalid Extended Sense Valid Check

get_byte Get Byte from Defined Buffer

get_user_int
get user long

Return Integer from user_input()
Return Long from user 1nput()

rbufbyte Compare Read Buffer Byte Within Limits

rbufword Compare Read Buffer Word Within L1m1ts

rptbuf Write Buffer to Report Log

rptsen Write Sense Buffer to Report Log

rptstats Write Statistics to Report Log

rpttmr Write Timers to Report Log

sbb Sense Byte Check

sbw Sense Word Check

serclass Std Sense Error Class

serrcd Std Sense Error Code

sladdr Check Std Sense Logical Block Address

state_data Get Data Associated with a State Log
Entry

svalid Std Sense Address Valid

svu Std Sense Vendor Unique

tmrimt User Timer Limit Check

tmrvalue Return Timer Value

The functions are the data analysis functions. They compare,
check and test the data values. Also included are the reduction
functions.

FLIB.4.2 1/0 DRIVER CLASS

Function Name Use

bytcmp Check Bytes Compared Limits

bytrd Check Bytes Read Count Limits

bytwrt Check Bytes Written Count Limits

get f stats Return Function Statistics Information
get f status Return Function Status Information
get_g_stats Return Global Statistics Information
opcnt Check Operation Count Limits

These functions compare the I1/0 Driver values and checks to see
if they are within the range specified.

FLIB.4.3 MICROPROGRAMMING CLASS

Function Name Use

arblose Check for TARGET Arb Lose

arbwin Check for TARGET Arb Win

awin_res Check for TARGET Arb Win and Allow
Reselect

bfreeck Bus Free Check

get_infoin Get and Acknowledge Data In

get phase Get Current Bus Phase

msgin Expected Message In

resel Reselection

statin Expected Status In

These are the Microprogramming functions for data
analysis/reduction. These functions provide a means of checking
response from the TARGET to the INITIATOR excitation functions.
They also look for the expected response from the TARGET and
generate an implicit error if the desired response is not
detected.

403110-00 FLIB-11 REV.1l.1

“FLIB.5 REPORT DOCUMENTATION FUNCTIONS

These functions are the report generation functions for the Test

Results report.
Function Name

cmd_tail_ bol
cmd_tail_ string

fail
group

logc
logp

page
paragph
pass
subpar
summary
test

403110-00

Use

Search Command Tail for String

Search Command Tail for String and
Return the Following Parameter

Print Fail line on Screen and Report
Print Group Line and Generate a TOC
Entry

Print a Log Line to Console (Log Device)
Print a Log Line to Printer and Log
Device

Page Eject in Test Results

Print a Paragraph Line and TOC Entry
Print Pass Line on Screen and Report
Print Subparagraph Line and TOC Entry
Print Summary Line

Print Test Line and TOC Entry

APPENDIX A

SDS-1 FUNCTION LIBRARY

“A.@ SDS-1 FUNCTION LIBRARY

A.]l FUNCTION LISTINGS

Functions are grouped or defined in the following manner:

TYPE (Setup, Execution, Analysis)
CLASS (Generic, 1/0 Driver, or Microprogramming)
FUNCTION GROUP

The TYPE and CLASS groupings help the user determine the proper
usage of a function. For example a GENERIC SETUP function is

neald A aadr 1 Eha intdial AaanAitiane far aidbhar a T/N0 Nrivaw
“MoTlU LU STT up Cu€ afisavadas CTONGLATAUNS L0 CAaC4CSY G 4a/v wia

Microprogramming Execution Function.

~ v
vV wd &

403110-00 A-2 REV.1l.2

A.l.]1 FUNCTIONS LISTED BY TYPE, CLASS AND GROUP

Setup Test Functions:
Generic Class
Configuration Setup

ackdelay(count); OBB Acknowledge Delay

errdelay(bit); Enable/Disable Five Second Error
Message Delay

line_mode("S/D"); Select Single-Ended or Differential
SCS1I mode

parity(e/1); Enable/Disable SCSI1 Bus Parity

reset () ; Reset SCSI Bus/1/0 Driver

set er limits(limit); Set Error Limits

xfermode ("mode" ,buf_size); Open R/W Buffer/Set Transfer Mode

Buffer Setup

dmarst("r/w"); Reset DMA Pointer

dmaset("r/w" ,address); Set DMA Pointer

dmaset va("r/w" ,addresslL); Set the Virtual DMA address

dmaset_vblk("r/w"); Set Virtual DMA address for the

Defined Block
fillbcb(st_byt,blk_len,st_add,len); Byte Block Count Fill
fxllbcw(st wrd,blk len,st add,len); Word Block Count Fill

flllbyte(char st add len), Fill Buffer with Byte
filld(st_byt, st_ add, len), Decrement Count FI1ll
filli(st byt,st “add,len); Increment Count Fill
f111k("str1ng",st add len); Constant Fill
fillpr(seed,st_. add, len), Pseudo Random Fill

loadbuf("flle",st add length); Load Buffer from Disk
overbcb(st_byt, blk _len,st_add,len); Overlay Block Count Byte
overbcdw(st dblwrdL, blk_ len,st add,len); Overlay Block Count
Double word
overbcw(st_wrd,blk_len,st_add,len); Overlay Block Count Word
-put_byte("?/w/s",aadress,byte); Put Buffer with Data Byte
savebuf("file",st_add,length);Save Fill Buffer to Disk

setbuf (" strlng“,st add), Fill Buffer with ASCII String
setfill buf(”r/w/s"), Set Current Fill Buffer

Error Action/Recovery Setup
eea("action"); Explicit Error Action
iea("action"); Implicit Error Action

Timer, Counter and Delay Setup

delayms (ms_delay); Millisecond Delay

delays (sec delay), Second Delay

stats teset("counter_ﬁd"); Reset Statistics Counters

stats_window("g/f"); Statistics Window Presentation
(Global or Function)

tmrset(value); User Timer Preset

tmrstart ("U/D"); User Timer Start

tmrstop () ; User Timer Stop

ucinc(0/1,value); User Counter Increment/Decrement

ucname (6/1,"name") ; User Counter Name

ucrst(6/1); User Counter Reset

403110-060 \ A-3 REV.1l.2

Miscellaneous

debug (level); Interrupt Test Execution and Enter
Debugger
pause ("message") ; Pause Test Execution

I/0 Driver Class
SCSI Related Functions

arbmode (mode) ; Set Arbitration Mode
autosense (0/1); Enable/Disable Auto Sense
busywait(6/1); Enable/Disable Busy Wait
cntlbyte (byte) ; Set SCSI Command Control byte
exp_ status(value); Expected Status after Mask
fixed(8/1); Sequential Access Fixed Bit
ixd(ﬂ,new1d); Set ID
ioto(value); Set I/0 Time-Out Value
lun(lun); Set Execution LUN
selmode ("mode") ; Set Selection Mode
stat_mask (byte); Set Expected Status Mask
tid(newid); Set Execution Target ID
I/0 Driver Status Functions
bcu(08/1) ; Enable Buffer/Command Frame Update
statsen(8/1); Enable Statistics Gathering
blk () Functions
blk_size(size); Defines Block Size to be used with
dmaset_vblk()
inc_blk(increment); Increment Starting Block Address
for _blk() Functions
inc_len(increment) ; Increment Transfer Length for
_blk() Functions
random_blk (minL,maxL) ; Generate Random Starting Block
Address for Dblk() Functions
random_len(min,max) ; Generate Random Transfer Length for
. _blk() Functions
set_blk(valuel); Set Starting Block Address for
_blk() Functions
set_len(value); Set Transfer Length for _blk()
Functions

Microprogramming Class

arb_or_resel (iid); Arbitrate or Reselect
bfreearn(), Arm Bus Free Detection Logic
busrel () ; Release Bus

forcbusy() ; Force SCSI Bus to Busy
forceattn(n); Force SCSI Bus Attention
forcperr(n); Force Parity Error

resel wt(); Wait for Reselection Phase
ureset() ; Bus Reset

403110-00 A-4 REV.1.2

Execution Test Functions:
Generic Class
user_input("string","type"); User Action/Response Requested

I1/0 Driver Class
General Purpose SCSI Functions

copy(lenl); Copy
inguiry(len); Inquiry
io6(b@,bl,...bd4,b5); 6-Byte SCSI Command
iol# (bo,bl,...b8,b9); 1@-Byte SCSI Command
iol2(b@,bl,...bl0@,bll); 12-Byte SCSI Command
recvdiag(len) ; Receive Diagnostic
senddiag(selftst,devof,unitof,len); Send Diagnostic
sense(len); Request Sense
testur(); Test Unit Ready
Random Access Device Functions
cCSs modsel(l:st len,sp); CCS Mode Select
ccs modsens(len S pcf,pagecode) ;CCS Mode Sense
comp(lenL), Compare
copyver (bytck,lenlL); Copy & Verify
format (fd,cmpl ,dflist,intrleave); Format
modesen(alloc_len); Mode Sense
mode_sel(list_len); Mode Select
prevmedr (prvent) ; Prevent/Allow Media Removal on

Random Access Device
rd buffer(length,bcv,vu2,vu3,vu4,vu5,vué); CCS Read Buffer
rd defect(length,p,g,format), CCS Read Defect Data

zeadcap(reladr,addL,pml), Read Capacity

readr (start,len); Read Random Device

readrl(st_addL,len); Read Random 6-Byte with Long

Address

readrl@(reladr,st_addL,len); Read Random Device 1¢-Byte

readrl@® blk(); Read Random using Predefined BLOCK
- and LENGTH

readr blk{(); Read with Predefined Counts

reasgnb () ; Reassign Block

releaser (3rd,3rdid,ext,resid) ;Release Random Device
reservr(3rd,3rdid,ext,resid,list); Reserve Random Device
rezero(); Rezero
searchde(inv,rcdfmt,spndat,reladr, st_addL,len); Search Data Equal
searchdh(znv,rcdfmt,spndat,reladr,st addL,len); Search Data High
searchdl (inv,rcdfmt spndat,reladt,st addL,len); Search Data Low

seek (add); Seek
seekl (addlL) ; Seek Random with Long address
seekl@ (addlL) ; Seek Random Device 10-Byte
setlimts(rdinh,wrinh,st _addL,len); Set Limits
strstop(xmmed,start), Start/Stop
verifyl@ (bytck,reladr,st_addL,len); Verify l0@-Byte
writer(start,len); Write Random Device
wxiterl(stattL len); Write Random with Long Address
writerl@(reladr,st_addL,len); Write Random Device l6-Byte
writerl®é blk(); Write Random using Predefined BLOCK
and LENGTH

403110-00 A-5 REV.1.2

writer blk();

Write with Predefined Counts

wrtvfyl#® (bytck,reladr,st_addL,len); Write and Verify 1@-Byte
wrt_buffer(length,bcv,vu2,vu3,vu4,vu5,vu6); CCS Write Buffer

erase(long);
ldunlds(immed,xreten,load) ;
modsels(list_len);
modsens(len);

prevmeds (prevent);

rdblklts();
readrev(len);
reads(len):;

readsl (lenL);
recbufds(len);
releases(3rd, 3rdid);
reserves (3rd,3rdid);
rewind (immed) ;
space(code,count);
tksel (tk_val);
verifys(bytcmp,len);
writes(len);
writesl(lenlL);
wrtfilm(count);

arbl(iid);

arb2(iid) ;

cdb6l (b0,,,,,b5);
cdb62(b0,,,,,b5);
cdbé63 (b0, ,,, b5);
cdbl®1(b@,,sss4++:.b9);
cdbl82(b8,,sss¢44+.b9);
cdblB3(b@,,,,s4+4+++b9%);
cdbl21(b@,,sssvse00s4b1l1);
cdbl22(b@,,srsre000+,b1l1l);
cdbl23 (b8, ,ssrsrs¢00sbl1);
datain@(countL,mode) ;
datainl (countL,mode);
datain2 (countL,mode) ;
datain3(countL,mode);
dataind4 (countL,mode) ;
datain5(countL,mode) ;
dataout@(countL,mode) ;
dataoutl (countL,mode);
dataout2(countL,mode) ;
dataout3(countL,mode);
msgout (mo) ;

msgout atnf(mo);

sell (tid);

sel2(tid,iid);

sel3(tid);

sel4 (tid,msgout);

403110-00

Sequential Access Device Functions
Erase
Load/Unload
Mode Select
Mode Sense
Prevent/Allow Media Removal on
Sequential Access Device
Read Block Limits
Read Reverse (64K blocks Max)
Read Sequential (64K blocks Max)
Read Sequential (long count)
Recover Buffer Data
Release Unit
Reserve Unit
Rewind
Space (64K Max)
Track Select
Verify Sequential
Write Sequential (64K blocks Max)
Write Sequential (long count)
Write File Marks

Microprogramming Class

Software Arbitration

Hardware Arbitration

6-Byte DMA Command Out

6-Byte T/R Machine Command Out
6-Byte PIO Command Out

10-Byte DMA Command Out

l1¢-Byte T/R Machine Command Out
16-Byte PIO Command Out

12-Byte DMA Command Out

12-Byte T/R Machine Command Out
12-Byte PIO Command Out

OBB Data 1In

DMA Data In

T/R Machine Data In

P10 Data In

OBB Hardware Compare Data In
DMA Hardware Compare Data In
OBB Data Out

DMA Data Out

T/R Machine Data Out

P10 Data Out

Message Out

Single Byte Message Out w/ATTN True
Nonarbitration Selection
Selection with No Message Out
Smart Arbitration Selection
Smart Selection with Message Out

A-6 REV.1.2

Data Analysis/Reduction Functions:
Generic Class

bus_logen(0/1); Enable/Disable Bus Logging

chk _user_limits(lo,hi); Check Limits from user_input()
chk _user strlng("ref string”) ;Check for Match in user _input()
compwr(st add,len); Compare Write and Read Buffers

copy_user strxng("tgt string"); Copy String from user_input()
delta tlme("statel",countl,"stateZ",countZ), Get Time Between TwoO

State Log Entries
dispbuf("buffer",start_add,length); Display Buffer to Screen
error ok("NODSPL/DISPLAY"), Decrement Error Count

eseom(n) ; Extended Sense EOM Bit Check
esfm(n); Extended Sense File Mark Check
esili(n); Extended Sense Illegal Length
Indicator Check
esinfob(minL,maxL) ; Extended Sense Information Bytes
Check
eskey(value); Extended Sense Key Egqual Check
eskeynot (value) ; Extended Sense Key Not Equal Check
esvalid(n); Extended Sense Valid Check
get_byte("r/w/s",address); Get Byte from Defined Buffer
get user_int(); Return Integer from user_input()
get user long(), Return Long from user 1nput()
rbufbyte(addzess lo,hi); Compare Read Buffer Byte within
Limits
rbufword(address,lo,hi); Compare Read Buffer Word within
Limits
rptbuf ("buffer”,start add,len); Write Buffer to Report Log
rptsen() ; - Write Sense Buffer to Report Log
rptstats(8/1); Write Statistics to Report Log
rpttmr () ; Write Timers to Report Log
- sbb(address,min,max) ; Sense Byte Check
sbw(address,min,max) ; Sense Word Check
serclass(class); Std Sense Error Class
sexrcd (code) ; Std Sense Error Code
sladdr (minL,maxL); Check Std Sense Logical Block
Address
state data("state" ,count); Get Data Associated with a State
- Log Entry
svalid(n); Std Sense Address Valid
svu(value); Std Sense Vendor Unique
tmrlmt(lo,hi); User Timer Limit Check
tarvalue(); Return Timer Value

1/0 Driver Class

bytcmp (minL,maxL); Check Bytes Compared Limits
bytrd (minL,maxL); Check Bytes Read Count Limits
bytwrt(minL,maxL); Check Bytes Written Count Limits
get_f stats("counter_id"); Return Function Statistics

- Information
get_f_ status("status_id"); Return Function Status Information

403110-00 A-7 REV.1l.2

get_g_stats("counter_id");

opcnt (minL,maxL);

arblose(id);
arbwin(id);
awin_;es(iid);

bfreeck();
get_infoin();

get phase(req_wait);
msgin(mi);

resel () ;

statin(si);

Return Global Statistics
Information
Check Operation Count Limits

Microprogramming Class

Check for TARGET Arb Lose

Check for TARGET Arb Win

Check for TARGET Arb Win and Allow
Reselect

Bus Free Check

Get Current Inbound Information
Byte

Get Current Bus Phase

Expected Message In

Reselection

Expected Status In

Report Documentation Functions:

cmd tail bol("string");

Search Command Tail for String

cmd_tail_string("look_for","return_parameter"); Search Command

fail("fail_string");
group("Group Name");
logc("string”);
logp("string");

page() ;
paragph("Paragraph Name");

pass();

Tail for String and Return the
Following Parameter

Print Fail Line on Screen and
Report

Print Group Line and Generate a TOC
entry

Print a Log Line to Console (Log
Device)

Print a Log Line to Printer and Log
Device

Page Eject in Test Results

Print a Paragraph Line and TOC
Entry

Print Pass Line on Screen and
Report

subpat("SuB-Paragraph Name" ,"ref string"); Print Subparagraph

summary("summary string");

test ("FILENAME Test Title");

403110-060

Line and TOC entry

Print Summary Line

Print Test Line and TOC Entry

A-8 REV.1.2

A.l1.2 FUNCTIONS LISTED ALPHABETICALLY

“aA.l A,B
ackdelay(count) ; OBB Acknowledge Delay
arblose(id) ; Check for TARGET Arb Lose
arbmode (mode) ; Set Arbitration Mode
arbwin(id); Check for TARGET Arb Win
arbl(iid); . Software Arbitration
arb2(iid); Hardware Arbitration
arb _or_resel(iid); Arbitrate or Reselect
autosense(0/1); Enable/Disable Auto Sense
awin_res(iid); Check for TARGET Arb Win and Allow
Reselect
bcu(2/1); Enable Buffer/Command Frame Update
bfreearm(); Arm Bus Free Detection Logic
bfreeck(); Bus Free Check
blk size(size); Defines Block Size to be used with
dmaset_vblk()
busrel () ; Release Bus
busywait(@/1); ' Enable/Disable Busy Wait
bus_logen(8/1); Enable/Disable Bus Logging
bytcmp (minL,maxL); Check Bytes Compared Limits
bytrd(minL,maxL); Check Bytes Read Count Limits
bytwrt (minL,maxL); Check Bytes Written Count Limits
“A.2 C's
ccs_modsel (list_len,sp); CCS Mode Select
ccs nodsens(len,pcf,pagecode) CCS Mode Sense
Cdbsl (bg, rr s ,b5) ’ 6-Byte DMA Command OUt
cdb62(b2,,,,.,b5); 6-Byte T/R Machine Command Out
cdb63(bd,,,,.,b5); 6-Byte PIO Command Out
Cdblﬁl (bG, rtrerrer e ,bg) ; lG—Byte DMA Command Out
cdbl@2(b@,,1140414¢.09); 10-Byte T/R Machine Command Out
cdbl@3(b0@,,,,ss+.+,b9); 19-Byte PIO Command Out
cdbl21(b@,,srsrrs¢0.b1l1); 12-Byte DMA Command Out
cdbl22(bB,,,4000¢¢4+.b11); l12-Byte T/R Machine Command Out
¢db123(b0,,,,,,,,,,,b11); lz-Byte PIO Command Out
chk _user_ limits(lo,hi); Check Limits from user_input()
chk user strlng("ref string”) ;Check for Match in user _input()
cmd | tail bol("stxxng)i Search Command Tail for String

cmd tail _string("look_ for",“return _parameter"); Search Command
Tail for String and Return the
Following Parameter

cntlbyte(byte); Set SCSI Command Control byte

comp(lenl); Compare

compwr (st_add,len); Compare Write and Read Buffers

copy(lenlL); Copy

copyver (bytck,lenlL); Copy & Verify

copy_user_string("tgt_string");Copy String from user_imput()
“A.3 D's

datain@ (countL,mode) ; OBB Data In

datainl (countL,mode) ; DMA Data In

datain2(countL,mode) ; T/R Machine Data In

datain3(countL,mode) ; PIO Data In

datain4 (countL,mode) ; OBB Hardware Compare Data In

datain5(countlL,mode) ; DMA Hardware Compare Data In

403116-00 A-9 REV.1.2

dataout@ (countL,mode) ;
dataoutl (countL,mode) ;
dataout2(countL,mode) ;
dataout3(countL,mode) ;
debug(level) ;

delayms (ms_delay);
delays (sec delay),

OBB Data Out

DMA Data Out

T/R Machine Data Out

PIO Data Out

Interrupt Test Execution and Enter
Debugger

Millisecond Delay

Second Delay

delta txme("statel",countl,"stateZ",count2), Get Time Between Two

State Log Entries

dispbuf ("buffer",start_add,length); Display Buffer to Screen

dmarst("r/w");

dmaset ("r/w" ,address) ;
dmaset val"r/u" ""‘A"‘ESSL)

ce=2C - A -

dmaset_yblk("r/w")

eea("action");
erase(long) ;
errdelay(bit);

error_ok("NODSPL/DISPLAY");

eseom(n) ;
esfm(n);
esili(n);

esinfob(minL,maxLl);

eskey(value);
eskeynot(value) ;
esvalid(n);

exp status(value);
fail("fail_string");

Reset DMA Pointer
Set DMA Pointer

A% P - DY e e e —
Set the Virtual DMA address

Set Virtual DMA address. for the
Defined Block

' “A.4 E,F
Explicit Error Action
Erase
Enable/Disable Five Second Error
Message Delay
Decrement Error Count
Extended Sense EOM Bit Check
Extended Sense File Mark Check
Extended Sense Illegal Length
Indicator Check
Extended Sense Information Bytes
Check
Extended Sense Key Equal Check
Extended Sense Key Not Equal Check
Extended Sense Valid Check
Expected Status After Mask
Print Fail Line on Screen and
Report

fillbcb(st_byt,blk_len,st_add,len); Byte Block Count Fill
f111bcw(st wrd,blk len,st “add,len); Word Block Count Fill

flllbyte(char st add,len);
filld(st _byt,st_ add len),
£illi(st byt,st add,len);

fillk("string",st_ add len);

fillpr(seed,st_ add,len);
fizxed(08/1);

forcbusy();
forceattn(n);
forcperr(n);

Fill Buffer with Byte
Decrement Count FIll
Increment Count Fill
Constant Fill

Pseudo Random Fill
Sequential Access Fixed Bit
Force SCSI Bus to Busy
Force SCSI Bus Attention
Force Parity Error

format(fd,cmpl ,dflist,intrleave); Format

get byte("r/w/s",address);
get f_stats("counter_id");

get_f status("status_id");
get_g_. _stats("counter 1d"),

get_infoin();

403110-00

A-10

“A.5 G,H,I,J,K
Get Byte from Defined Buffer '
Return Function Statistics
Information
Return Function Status Information
Return Global Statistics
Information
Get Current Inbound Information
Byte

REV.1.2

get_phase(reg_wait); Get Current Bus Phase

get_user lnt(), Return Integer from user input()
get user long() Return Long from user 1nput()
group("Group Name"), Print Group Line and Generate a TOC
entry
iea("action"); Implicit Error Action
iid(@,newid); Set 1D
inc blk(increment); Increment Starting Block Address
- for _blk() Functions
inc_len(increment); Increment Transfer Length for
_blk() Functions
ingquiry(len); Inquiry
ioto(value); Set I/0 Time-Out Value
io6(b0,bl,...bd4,bs5); 6-Byte SCSI Command
iol@(b0,bl,...b8,b9); l¢-Byte SCSI Command
iol2(bo,bl,...bl8,bll); 12-Byte SCSI Command
“A.6 L,M,N,0,P,Q
ldunlds(immed,reten,load); Load/Unload
line mode("S/D"); Select Single-Ended or Differential
- SCSI mode
loadbuf("file",st add,length); Load Buffer from Disk
logc("string"); Print a Log Line to Console (Log
Device)
logp("string"); Print a Log Line to Printer and Log
Device
lun(lun); Set Execution LUN
modesen(alloc_len); Mode Sense
mode_sel (list_len); Mode Select
modsels(list_len); Mode Select
modsens (len); Mode Sense
msgin(mi) ; Expected Message In
msgout (mo) ; Message Out
msgout_atnf (mo) ; Single Byte Message Out W/ATTN True
opcnt (minL,maxL) ; Check Operation Count Limits

overbcb(st_byt,blk_len,st_add,len); Overlay Block Count Byte

'overbcdw(st dblwrdL,blk len,st add,len); Overlay Block Count
Double Word

overbcw(st_wrd,blk_len,st_add,len); Overlay Block Count Word

page() ; Page Eject in Test Results

paragph("Paragraph Name"); Print a Paragraph Line and TOC
Entry

parity(6/1); Enable/Disable SCSI Bus Parity

pass(); Print Pass Line on Screen and
Report

pause ("message") ; Pause Test Execution

prevmedr (prvent) ; Prevent/Allow Media Removal on
Random Access Device

prevmeds (prevent) ; Prevent/Allow Media Removal on

Sequential Access Device
put_byte("r/w/s",address,byte); Put Buffer with Data Byte

“A.7 R's
random blk(minL,maxL); Generate Random Starting Block
Address for _blk() Functions
random_len(min,max); Generate Random Transfer Length for

_blk() Functions

4031106-00 A-11 REV.1.2

rbufbyte(address,lo,hi); Compare Read Buffer Byte within

Limits

rbufword (address,lo,hi); Compare Read Buffer Word within
Limits

rdblklts () ; ‘ Read Block Limits

rd buffer(length,bcv,vu2,vu3,vu4,vus5,vu6); CCS Read Buffer
rd defect(length,p,g,format); CCS Read Defect Data

readcap(reladr,addL,pmi) ; Read Capacity

readr(start,len); Read Random Device

readrev(len); Read Reverse (64K blocks Max)

readrl(st_addL,len); Read Random 6-Byte with Long
Address

readrl@(reladr,st addL,len); Read Random Device 1l@-Byte

readrlg8 blk(); - Read Random using Predefined BLOCK

- and LENGTH _

readr blk () ; Read with Predefined Counts

reads(len); Read Sequential (64K blocks Max)

readsl(lenlL); Read Sequential (long count)

reasgnb () ; Reassign Block

recbufds(len); Recover Buffer Data

recvdiag(len) ; Receive Diagnostic

releaser (3rd,3rdid,ext ,resid) ;jRelease Random

releases(3rd, 3rdid); Release Unit

resel(); Reselection

resel _wt(); Wait for Reselection Phase

reserves (3rd,3rdid); Reserve Unit

reservr(3rd,3rdid,ext,resid,list); Reserve Random Device

reset(); Reset SCSI Bus/1/0 Driver

rewind(immed) ; Rewind

rezero(); Rezero

rptbuf ("buffer",start_add,len); Write Buffer to Report Log

rptsen(); Write Sense Buffer to Report Log

rptstats(6/1); Write Statistics to Report Log

rpttmr () ; Write Timers to Report Log

: : “A.8 S's

savebuf("file",st_add,length) ;Save Fill Buffer to Disk

sbb(address,min,max) ; Sense Byte Check

sbw(address,min,max) ; Sense Word Check

searchde(inv,rcdfmt,spndat,reladr,st_addL,len); Search Data Equal
searchdh(inv,rcdfmt,spndat,reladr,st_addL,len); Search Data High
searchdl(inv,rcdfmt,spndat,reladr,st_addL,len); Search Data Low

seek (add) ; Seek

seekl (addlL) ; Seek Random with Long Address
seekl@ (addlL) ; Seek Random Device l10-Byte
selmode("mode") ; Set Selection Mode

sell(tid); Nonarbitration Selection
sel2(tid,iid); Selection with No Message Out
sel3(tid); Smart Arbitration Selection
sel4 (tid,msgout) ; Smart Selection with Message Out
senddiag(selftst,devof,unitof,len); Send Diagnostic
sense(len) ; Request Sense
serclass(class); Std Sense Error Class
serrcd(code) ; Std Sense Error Code

setbuf ("string”,st_add); Fill Buffer with ASCII String
setfill buf("r/w/s"); Set Current Fill Buffer

403110-00 A-12 REV.1.2

setlimts(rdinh,wrinh,st_addL,len); Set Limits

set_blk(valuel); Set Starting Block Address for
blk() Functions

set_er_limits(limit); Set Error Limits

set len(value), Set Transfer Length for blk()
Functions -

sladdr(minL,maxL) ; Check Std Sense Logical Block
Address

space(code,count); Space (64K Max)

state_data("state" ,data); Get Data Associated with a State
Log Entry

statin(si); Expected Status In

statsen(90/1); Enable Statistics Gathering

stats_reset("counter_id"); Reset Statistics Counters

stats w1ndow("g/f“), Statistics Window Presentat1on
(Global or Function)

stat_mask(byte); Set Expected Status Mask

strstop(immed,start); Start/Stop

subpar ("Sub-Paragraph Name","ref string"); Print Subparagraph
Line and TOC entry

summary("summary_string"); Print Summary Line
svalid(n); Std Sense Address Valid
svu(value) ; Std Sense Vendor Unique

“A.9 T,U0
test("FILENAME Test Title"); Print Test Line and TOC Entry
testur(); Test Unit Ready
tid(newid); Set Execution Target 1D
tksel (tk_val); Track Select
tmrlmt(lo,hi); User Timer Limit Check
tmrset(value); User Timer Preset
tmrstart("U/D"); User Timer Start
tmrstop() ; User Timer Stop
tmrvalue(); Return Timer Value
ucinc(8/1,value); User Counter Increment/Decrement
.ucname (¢/1,"name") ; User Counter Name
ucrst(8/1); User Counter Reset
ureset () ; Bus Reset

user_input("string”,"type"); User Action/Response Requested
“A.10 V,W,X,Y,2

verifys(bytcmp,len); Verify Sequential
verifyl® (bytck,reladr,st_addL,len); Verify 1l@-Byte
writer(start,len); Write Random Device
writerl(startL,len); Write Random with Long Address
writerl@(reladr,st_addL,len); Write Random Device l10-Byte
writerl@ blk(); Write Random using Predefined BLOCK
and LENGTH
writer_blk(); Write with Predefined Counts ‘
writes(len); Write Sequential (64K blocks Max)
writesl(lenl); Write Sequential (long count)
wrtfilm(count); Write File Marks

wrtvfyl@(bytck,reladr,st_addL,len); Write and Verify 1@-Byte
wrt_buffer(length,bcv ,vu2,vu3,vu4,vu5,vu6); CCS Write Buffer
xfermode ("mode" ,buf_size); Open R/W Buffer/Set Transfer Mode

403110-60 A-13 REV.1.2

SDS-1 FUNCTION LIBRARY

DETAILED FUNCTION DEFINITIONS (LISTED ALPHABETICALLY)

403110-00 A-14 REV.1l.0

ackdelay ~ackdelay

NAME
ackdelay - set SCSI acknowledge delay time for OBB
SYNOPSIS
ackdelay(count) ;
unsigned count; /* delay count in 7@ns
increments */
DESCRIPTION

This function sets the SDS-1 OBB hardware to perform delayed
acknowledge cycles for all High Speed transfer modes. The
argument specifies the delay count in 7@ns units. The base
(minimum ack delay with n = @) is 280ns.
Also see Section IODVR.3.7 .

DEFAULT VALUE:]

RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 ackdelay-1 REV.1l.2

arblose ~“arblose

NAME
arblose - check for arbitration loss by target
SYNOPSIS
return = arblose(id);
unsigned return; /* function return value */
BYTE id; /* arbitration ID used by test
adapter */
DESCRIPTION

The arblose() function is used in conjunction with the
forcbusy() function. The intent of the function is to
create a situation where a disconnected TARGET will lose bus
arbitration when it tries to reconnect to the INITIATOR.
This is accomplished in the following manner:

l. forcbusy() asserts BUSY via the test adapter PIO ports
while TARGET is still asserting BUSY.
2. delayms() creates a time delay sufficient enough for the
TARGET to be ready to reconnect,
3. arblose(id)
3a. sets up the test adapter arbitration logic to
arbitrate for the bus (when PIO BUSY is released)
as the SCSI ID passed in the arblose() argument.
3b. releases PIO BUSY.
3c. verifies that the test adapter arbitration logic
has won the arbitration. If test adapter lost, an
implicit error message is generated.
3d. reasserts PIO BUSY after arbitration win.
4. arblose(id) is called with another SCSI ID which will
still result in the TARGET losing the arbitration.
or
4. arbwin(id) is called with an SCSI ID which will allow
the TARGET to win the arbitration and reselect the
INITIATOR.
or
4. busrel() releases PIO BUSY asserted by arblose(),
allowing normal SCSI bus operation.

DEFAULT VALUE: N.A.

RETURNS:
@ arbitration won by test adapter (assume that TARGET did
not win arbitration)
1l arbitration lost by test adapter (assume TARGET won when
it should not have)

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte
Px00 good completion
@x20 unexpected arbitration lost by test adapter
@x06D invalid bus free detected

4031106-00 arblose-1 REV.1l.2

arblose “arblose

ERROR MESSAGES:
IMP. ER> arblose(id)
Arbitration Lost By Host Adapter Date/Time Stamp

403110-00 arblose-2 REV.1l.2

arbmode “arbmode

NAME

arbmode - set arbitration mode
SYNOPSIS

return = arbmode(mode) ;

int return; /* return code */

char *mode; /* "HDW" = Hardware

: "SFTW" = Software
"NONE" = None */

DESCRIPTION

This function determines whether and what type of SCSI

arbitration is done by the SDS-1. No arbitration (NONE)

results in direct assertion of select from the bus free
state. Hardware arbitration (HDW) utilizes a state machine
to arbitrate and check for arbitration win or lose.
Software arbitration (SFTW) utilizes a state machine to
assert ID on the bus and remove them if select is detected;
it uses software to determine if the SDS-1 has won
arbitration resulting in a longer arbitration phase.

Also see Section IODVR.3.3 and IODVR.3.4 .
DEFAULT VALUE: HDW
RETURNS:
NULL(@) function is enabled
1l disabled or function not supported
ERROR MESSAGES:

IMP. ER> arbmode(mode)
Illegal Arbitration Mode Date/Time Stamp

403110-00 arbmode-~1 REV.1l.2

arbwin “arbwin

NAME
arbwin - check for arbitration win by TARGET
SYNOPSIS
return = arbwin(id);
unsigned return; /* function return value */
BYTE id; /* arbitration ID used by test
adapter */
DESCRIPTION

The arbwin() function is used in conjunction with forcbusy()
function. The intent of the function is to create a
situation where a disconnected TARGET will win bus
arbitration when it tries to reconnect to the INITIATOR.
This is accomplished in the following manner:

1. forcbusy() asserts BUSY via the test adapter PIO ports
while TARGET is still asserting BUSY.
2. delayms() creates a time delay sufficient enough for the
TARGET to be ready to reconnect.
3. arbwin(id)
3a. sets up the test adapter arbitration logic to
arbitrate for the bus (when PIO BUSY is released) as
the SCSI ID passed in the arbwin() argument.
3b. releases PIO BUSY set by forcbusy().
3c. verifies that the test adapter lost arbitration and
that the bus is busy (BUSY or SEL asserted).
3d. disarms the test adapter arbitration logic and
restores the correct test adapter 1ID.
4., resel() verifies a valid reselection sequence with the
TARGET.

DEFAULT VALUE: N.A.

RETURNS:
@ arbitration lost by test adapter (assume that TARGET
won arbitration)
Px21 arbitration won by test adapter (assume TARGET won
when it should not have)
#x22 arbitration lost by test adapter, but BSY and SEL
false .

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte
Px08 good completion
#x21 unexpected win test adapter

ERROR MESSAGES:
IMP. ER> arbwin(id)
Arbitration Won By Host Adapter Date/Time Stamp

403110-00 arbwin-1 REV.1l.2
//

arbwin ~“arbwin

IMP. ER> arbwin(id)
Host Adapter Lost and Bus Not Busy Date/Time Stamp

403110-00 arbwin-2 REV.1.2

arbl “arbl

NAME
arbl - software arbitration function
SYNOPSIS
return = arbl(iid);
unsigned return; /* function return value */
BYTE iid; /* initiator ID number */
DESCRIPTION

Arbitrate for the SCSI bus using a hardware state machine to
assert IDs and deassert IDs if selection is detected. And
using software to determine if the test adapter has won
arbitration. The function does not return until arbitration
has been completed.

DEFAULT VALUE: N.A.

RETURNS :
Px00 arbitration complete
@x@5 function time-out
@x@9 SCSI bus reset detected

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte
0x00 good completion
#x85 function time-out
gx@89 SCSI bus reset detected

ERROR MESSAGES:
IMP. ER> arbl(iid)
I/0 Time-out Occurred Date/Time Stamp

IMP. ER> arbl(iid)
SCSI Reset Occurred Date/Time Stamp

403110-00 arbl-1 REV.1.2

arb2 “arb2

NAME
arb2 - hardware arbitration function
SYNOPSIS
return = arb2(iid);
unsigned return; /* function return value */
BYTE iid; /* initiator ID number */
DESCRIPTION

Arbitrate for the SCSI using a hardware state machine to
determine if the test adapter has won arbitration. The
function does not return until arbitration has been
completed.

DEFAULT VALUE: N.A.

RETURNS:
Px0@ arbitration complete
gx@5 function time-out
@x@9 SCSI bus reset detected

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte
0x00 good completion
@x05 function time-out
@x@39 SCSI bus reset detected

ERROR MESSAGES:
IMP. ER> arb2(0)
I/0 Time-out Occurred Date/Time Stamp

IMP. ER> arb2(9)
SCS1 Reset Occurred - Date/Time Stamp

403110-00 arb2-1 REV.1l.2

arb_or_resel “arb_or_resel

NAME
arb_or_ resel - arbitrate or reselect
SYNOPSIS
return = arb_or_resel (iid);
unsigned return; /* function return */
BYTE iid; /* host ID used for
arbitration */
DESCRIPTION

This function returns when one of two events occur:

l. The bus has gone free; the test adapter arbitrated as
'iid' and won.

OR

2. A reselect bus phase has been detected (BSY false, SEL
true, I1/0- true). This may have occurred after the
host attempted to arbitrate as 'iid' and lost. 1In this
case, the return value contains the select byte on the
bus. If the user wishes to proceed with a reselect
sequence, the correct 'iid' must be set up and resel()
must be called.

This function is intended to be used in a test which is
performing I/0s to more than one target, perhaps from more
than one host. This function allows the test to always keep
the bus as busy as possible, even when an I1/0 thread is
disconnected.

DEFAULT VALUE: N.A.

RETURNS:
#x0000 host won arbitration
0x00bb reselect detected; bb = data byte on the bus
@x0500 1/0 time-out
Px0900 SCSI bus reset detected

EXECUTION TYPE: Microprogramming
ERROR MESSAGES:
IMP. ER> arb_or_resel(iid)
1/0 Time-out Occurred Date/Time Stamp

IMP. ER> arb_or_resel(iid)
SCSI Reset Occurred Date/Time Stamp

403110-00 arb_or_resel-1 REV.1.2

autosense “autosense

NAME
autosense - set or reset autosense flag.

SYNOPSIS
autosense(bit);
int bit; /* @ = no autosense
' 1 = autosense on check
condition in I/0
Driver */
DESCRIPTION

The autosense{) function will set or reset automatic sense
request flag. If enabled, each command resulting in a
nonzero status function will have sense data requested for
it and the results will be placed into the current sense
buffer. The sense command issued by autosense() will
execute only once and return an error if sense cannot be

read.

Also see Section IODVR.3.9 .
DEFAULT VALUE: N.,A.
RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 autosense-1 REV.1.2

awin_res “awin_res

NAME

awin_res - check for arbitration win by target and allow

target to reselect

SYNOPSIS

return = awin_res(iid);

unsigned return; /* function return */

BYTE iid; /* initiator ID num */
DESCRIPTION

awin_res() combines two functions: arbwin() and resel().
The purpose of combining these functions into one is to
allow the user to step through a Stand-Alone Test without
causing the controller to detect a reselect time-out between
the time the arbwin() completes and the time the user
executes the resel() function. Other than this timing
difference, a call to awin_res(iid) is functionally
identical to a call to arbwin(iid) followed by a call to
resel(). '

DEFAULT VALUE: N.A.

RETURNS:

@x00 successful - target has reselected the host

@x05 reselect time-out

P#x@9 SCSI bus reset detected

Px21 host won arbitration
NOTE: In this case, the host will release the
bus immediately after it sees that it has won
arbitration; by the time the function has
returned, the target will probably have won
arbitration.

EXECUTION TYPE: Microprogramming

ERROR MESSAGES:
IMP. ER> awin_res(iid)

I/0 Time-out Occurred ' Date/Time Stamp

IMP. ER> awin res(iid)

SCSI Reset Occurred Date/Time Stamp
IMP. ER> awin_res(iid)
Arbitration won by host adapter Date/Time Stamp
IMP. ER> awin_res(iid)
Host Adapter Lost and Bus Not Busy Date/Time Stamp
IMP. ER> awin_res(iid)
Invalid Reselection Sequence Date/Time Stamp
IMP. ER> awin_res(iid)
Function Time-Out Date/Time Stamp
403110-00 awin_res-1 REV.1.2

(THIS PAGE INTENTIONALLY LEFT BLANK)

bcu “bcu

NAME
bcu - enable/disable buffer and command frame update
SYNOPSIS
bcu(bit);
int bit; /* @ = no update
1l = update buffer and
command frames */
DESCRIPTION

This function will enable or disable updates to the buffer
and command frames in the I1/0 Driver Status Window. Listed
below are the fields that are updated when this function is
enabled:

Buffer Frame:
" Wr/Ref (write/reference buffer and address)

Rd Buf (read buffer and address)

SCSI Command Frame:
CDB (SCSI command bytes)
status (SCSI current and previous status)
sense (SCSI sense bytes)
xfer (data transfer mode)
a.s. (autosense)
s.l. (state log)
arb. (arbitration mode)
sel. (select mode)
b.p. (bus parity)
b.w. (busywait)
iid (initiator 1ID)
tid (target ID)

DEFAULT VALUE: N.A.
RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 bcu-1 REV.1.2

bfreearm “bfreearm

NAME

bfreearm - bus free detection logic arm

SYNOPSIS

bfreearm();

DESCRIPTION

This function will arm the test adapter bus free detection
logic such that it will detect any bus free when the TARGET
releases the bus. This function should be called in advance
of a known disconnect or command complete message to catch
the bus free condition as soon as it occurs. bfreeck()
works in conjunction with the bfreearm() to verify a bus
release since the last breearm() execution.

NOTE: Arbitration functions are not allowed
between breearm() and bfreeck().

DEFAULT VALUE: N.A.

RETURNS: N.A.

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE: N.A.

ERROR MESSAGES: NONE

EXAMPLE: Check for bus free after command completion

arb2();
seld ();
cdb6l () ;
dataoutl();
statin();

bfreearm(); /* set up to catch bus free */

msgin(); /* command complete message */

delayms (n); /* n msec delay to allow TARGET to
release bus */

bfreeck(); /* check to see if the bus has gone free

at any time since the bfreearm() */

4031106-00 bfreearm-1 REV.1.2

bfreeck “bfreeck

NAME
bfreeck - bus free detection
(determines if bus has been released by TARGET)
SYNOPSIS
error = bfreeck();
unsigned error; /* return status */
DESCRIPTION

Determines if the bus has gone free since the last bfreeck()
(i.e., the TARGET has released the bus). bfreeck() requires
bfreearm() be called prior to the bus free event. If the
bus has gone free, bfreeck() returns @ and if the bus has
not gone free it returns a 0x22. It is possible that a delay
will be required from the disconnect or command complete
message msgin() test and bfreeck(). This function does not
check for a current bus free condition, but for whether a
bus free has been detected since the bfreearm() function was
executed. Therefore, this function could return a bus free
condition but indicating a previous bus free.

DEFAULT VALUE: N.A.

RETURNS :
P0x00 bus free
@x22 bus busy

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte

0x00 bus free

Px22 bus busy

ERROR MESSAGES:
IMP. ER> bfreeck()
SCSI Bus Not Gone Free Date/Time Stamp

403110-00 bfreeck-1 REV.1l.2

blk_size “blk_size

NAME

blk _size - define block size of random access device

transfers

SYNOPSIS

return = blk size(size);

unsigned return; /* return size */

unsigned size; /* blocks size in bytes */
DESCRIPTION

This function sets the block size to be used by
dmaset_vblk() to calculate a virtual memory address from a
starting block number. This function is not necessary
unless a pointer into the virtual buffer space needs to be
generated.

DEFAULT VALUES: NONE

RETURNS: defined block size

EXECUTION TYPE: N.A.

STATISTICS/STATUS UPDATE: N.A.

ERROR MESSAGES: N.A.

EXAMPLE:
blk_size(0x100); /* block size of 0x100 */
random blk (0x@L,0x2000L); /* random block length */
random_len(1l,@x0x1000) ; /* random transfer length */
dmaset_vblk("W"); /* set virtual starting
address */
readrl® _blk(); /* read */

403110-00 blk_size-1 REV.1.2

busrel “busrel

NAME
busrel - release bus
(release the test adapter asserted BUSY)

SYNOPSIS
busrel () ;

DESCRIPTION
busrel() releases all assertions of BUSY by the test
adapter. These include both the arbitration logic and the
PIO BUSY path (usually used in conjunction with arblose()).
This function may be used in conjunction with the forcbusy()
function to drop BUSY in order to allow the TARGET to
reselect the HOST after arbitration is lost by the TARGET.

DEFAULT VALUE: N.A.

RETURNS: NONE

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte

@x00 good completion

ERROR MESSAGES: N.A.

403110-00 busrel-1 REV.1.2

busywait “busywait

NAME

busywait - set or reset busywait flag
SYNOPSIS

busywait(bit) ;

int bit; /* @ = no busywait

1 = busywait in I/0 Driver
*/

DESCRIPTION

The busywait() function will set or reset the busywait flag.
This flag is an I/0 Driver option to wait for the target to
become not BUSY within the time-out limits set by the ioto()
function.
Also see Section IODVR.3.8 .

DEFAULT VALUE: N.A.

RETURNS: N.A.

ERROR MESSAGES: NONE

493110-00 busywait-1 REV.1.2

bus_logen “bus_logen

NAME
bus_logen - enable/disable SCSI bus state logging
SYNOPSIS |
bus_logen(bit);
int bit; /* @ = no logging
1l = SCSI state logging */
DESCRIPTION

Enables or disables SCSI bus state logging. 1If enabled,
each phase change that occurs on the SCSI bus (with the
exception of phases in which an explicit error occurs) or
bus events will be recorded into a FIFO. This information
can be used to debug SCSI bus problems.
Also see Section STLOG.

DEFAULT VALUE: N.A.

RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 bus_logen-1 REV.1.2

bytcmp “bytcmp

NAME
bytcmp - check the number of bytes compared
SYNOPSIS |
return = bytcmp(minL,maxL);
int return; /* return code */
unsigned long minL; /* minimum value */
unsigned long maxL; /* maximum value */
DESCRIPTION

Checks the number of bytes compared to be within the 'minL'
and 'maxL' limits. If the number is out of the specified

s
- e N Qo

range, an explicit error message is generated.
DEFAULT VALUE: N.A.

RETURNS:
NULL (@) number within range
1 number out of range

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> bytcmp(121£50,122200)
Bytes Compared Out of Range, Bytes Compared = 300148

403110-00 bytcmp-1 REV.1.2

bytrd
NAME
bytrd - check the number of bytes read
SYNOPSIS
return = bytrd(minL,maxL);
int return; /* return code */
unsigned long minL; /* minimum value */
unsigned long maxL; /* maximum value */
DESCRIPTION

“bytrd

Compares the number of bytes read with the 'minL' and 'maxL'
limits. If the number is out of the specified range, an

explicit error message is generated.
DEFAULT VALUE: N.A.
RETURNS:
NULL(6) number within range
1 number out of range

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> bytrd(121£50,122200)
Bytes Read Out of Range, Bytes Read = 121£f060

403110-00 bytrd-1

REV.1l.2

bytwrt “bytwrt

NAME
bytwrt - check the number of bytes written
SYNOPSIS
return = bytwrt{(minL,maxL);
int return; /* return code */
unsigned long minL; /* minimum value */
unsigned long maxL; /* maximum value */
DESCRIPTION

Compares the number of bytes written with the 'minL' and
'maxL' limits. If the number is out of the specified range,

an explicit error message 1s generated.
DEFAULT VALUE: N.A.

RETURNS:
NULL (@) number within range
1 number out of range

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> bytwrt(121£50,122200)
Bytes Written Out of Range, Bytes Written = 122204

403110-00 bytwrt-1 REV.1l.2

ccs_modsel “ccs_modsel

NAME

ccs_modsel - Common Command Set mode select command
SYNOPSIS

return = ccs_modesel(list_len,sp);

unsigned return; /* return code */

unsigned list_len; /* parameter list length */

unsigned sp; /* save parameters bit */
DESCRIPTION

This function will form and execute the command descriptor
block for the mode select command as defined in the CCS
version of SCSI. This function is the same as mode_sel()
with the addition of the save parameters bit.

COMMAND DESCRIPTOR BLOCK FOR CCS MODE SELECT COMMAND

bit 7 6 5 4 3 2 1)

byte
6 | | 15

...... e e o e o e o 2 e = = - —— - - — -
1 ‘ lun(lun); | g0 | SP

______ o o e e = e o . 0 o - ———
2 | 00

...... N ———
3| 00

...... o o o e e o = o = = =~ ——— - - ——
4 | list_len

______ o e o e o e e e e o o e 4D = it e = P 4 2 T = " S T S o - o T oo -
5 | cntlbyte (byte);

S T S e T o o o o T e T T T ST Sm e e T e T e e e e e S S S e S S S T M S S S e e e D S e mm S S S Am mm e e =S G e e S e
2 2 Xt 2 2+ 2 2 E 3 2 2 2 2 2 2 3 2 2+ - 2 & & 2+ F 3 2 F 5 2 &+ 1+ 2 533

For a complete description of the command refer to the
Common Command Set (CCS) version of the "SMALL COMPUTER
SYSTEM INTERFACE (SCSI)" by American National Standard for
information systems.

DEFAULT VALUE: N.A,

RETURNS :

NULL(@) successful completion
1 error

EXECUTION TYPE: 1I/0 Driver

STATISTICS/STATUS UPDATE:

Global Stats, Function Stats and Function Status (see 1/0
DRIVER Status Bytes)

ERROR MESSAGES:

Implicit and Explicit Errors from Target Status, 1Initiator
Status and I/0 Status (also see Section IODVR.4)

403110-00 ccs_modsel-1 REV.1.2

ccs_modsens “ccs_modsens

NAME
ccs_modsens - Common Command Set mode sense command
SYNOPSIS
return = modsens(len,pcf,pagecode);
unsigned return; /* return code */
unsigned len; /* allocation length */
unsigned pcf; /* page control field bits */
unsigned pagecode; /* page code */
DESCRIPTION

This function will form and execute the command descriptor
block for the mode sense command as defined in the CCS
version of SCSI. This function is the same as modesen()
with the addition of the 'pcf' and 'pagecode' fields.

COMMAND DESCRIPTOR BLOCK FOR CCS MODE SENSE COMMAND

— o o - o S S e E S G W T S S e A T T A A S M Me e e A A SR EE EE AN S SN S R S ST SR S G N S T S E R S Im T
-+ - &+ & 3 3 2 2+ 4 1 - - T 3+ F - - A T - R R R R B B R R R B Rk B2k

bit ‘ 7 I 6 ' 5 , 4 , 3 l 2 l 1 ')
byte
T T encam s Ty T
T Teer T emee cone
YT g
YT len
B cntlbyte(byte);

1}
[}
n
]
1}
[}
i
n
[}
"
i}
n
"
i}
[}
[}
[}
"
0
"
[}
"
L}
L]
[}
[}
n
1}
[}
1]
n
1}
1]
1]
[}
1}
[}
13
1}
[}
n
[}

L}

[}

[}

1]
il
1]

[}

1}

"

[}

[}

1]

[}

n

[}

[}

"

1]
[}
n
L}

For a complete description of the command refer to the
Common Command Set (CCS) version of the "SMALL COMPUTER
SYSTEM INTERFACE (SCSI)" by American National Standard for
information systems.

DEFAULT VALUE: N.A.

RETURNS:

NULL(®) successful completion
1l error

EXECUTION TYPE: 1I/0 Driver

STATISTICS/STATUS UPDATE:
Global Stats, Function Stats and Function Status (see I/0
DRIVER Status Bytes)

ERROR MESSAGES:

Implicit and Explicit Errors from Target Status, Initiator
Status and I/0 Status (also see Section IODVR.4)

403116-00 ccs_modsens-1 REV.1.2

cdb6l, cdbl@l, cdbl2l “cdb61 “cdbl@l “cdbl2l

NAME
cdb6l - 6-byte SCSI command transfer via DMA transfer
cdbl@l - 1@-byte SCSI command transfer via DMA transfer
cdbl2l - 12-byte SCSI command transfer via DMA transfer

SYNOPSIS
return = cdbé6l (b@,bl,b2,b3,b4,b5);
BYTE b@ -> b5: SCSI Command Bytes

return = cdbldl (b#,bl,b2,b3,b4,b5,b6,b7,b8,b9);
BYTE b0 -> b9: SCSI Command Bytes

return = cdbl2l(bé,bl,b2,b3,b4,b5,b6,b7,b8,b9,bld,bll);
BYTE b# -> bll: SCSI Command Bytes

int return;

DESCRIPTION

Transfers the n-byte command from the INITIATOR to the
TARGET utilizing the backplane DMA. The function will
return with good completion if n, and only n bytes of
command are requested by the TARGET. If less than n bytes
are requested, the function returns with an error code of
¥x@C. As soon as the n bytes have been transferred, the
function returns. After completion (good or bad), the
number of command bytes transferred can be accessed as the
function statistics "bytes written" field. (The global
bytes written counter is not incremented by this amount.)

DEFAULT VALUE: N.A.

RETURNS:
@x00 if all n bytes transferred
@x09 SCSI reset detected
@x0D invalid bus free detected
@gx05 1/0 time-out
@x0C invalid phase change occurred

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte:
Ox0@ if all n bytes transferred
Px@9 SCSI reset detected
Px@D invalid bus free detected
gx@5 1/0 time-out
@x@C 1invalid phase change occurred

403110-00 cdb__1-1 REV.1l.2

cdb6l, cdbl@l, cdbl2l “cdb61l “cdbl@l “cdbl2l

ERROR MESSAGES:
IMP. ER> cdb61(0A,00,00,00,01,00)
Unexpected Phase Change
Four bytes transferred Date/Time Stamp

IMP. ER> cdb6l(0A,00,00,00,01,00) Date/Time Stamp
SCSI Reset Occurred

IMP. ER> cdbé61(0A,00,00,00,01,00) Date/Time Stamp
SCSI 1/0 Time-out Occurred

IMP. ER> cdb6l(0A,00,00,00,01,00) Date/Time Stamp
SCS1 1/0 Invalid Bus Free Occurred

403110-00 cdb__ 1-2 REV.1.1

cdb62, cdbl@2, cdbl22 “cdb62 “cdbl@2 “cdbl22

NAME
cdb62 - 6-byte SCSI command transfer via TR transfer
cdbl@2 - 1l@-byte SCSI command transfer via TR transfer
cdbl22 - 12-byte SCSI command transfer via TR transfer
SYNOPSIS
return = cdb62(b@,bl,b2,b3,b4,bs5);
BYTE b@ -> b5: SCSI Command Bytes
return = cdbl#2 (b0,bl,b2,b3,b4,b5,b6,b7,b8,b9);
BYTE b@ -> b9: SCSI Command Bytes
return = cdbl22 (b0,bl,b2,b3,b4,b5,b6,b7,b8,b9,bl0 bll),
BYTE b@ -> bll: SCSI Command Bytes
int return;
DESCRIPTION

Transfers the n-byte command from the INITIATOR to the
TARGET utilizing the test adapter transmit/receive state
machine. The function will return with good completion if
n, and only n bytes of command are requested by the TARGET.
If less than n bytes are requested, the function returns
with an error code of @#x0C. As soon as the n bytes have
been transferred, the function returns. After completion
(good or bad), the number of command bytes transferred can
be accessed as the function statistics "bytes written”
field. (The global bytes written counter is not incremented
by this amount.)

DEFAULT VALUE: N.A.

RETURNS :
Px0@ if all n bytes transferred
gx09 SCSI reset detected
@x08D invalid bus free detected
gx@5 1/0 time-out
@x8C invalid phase change occurred

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte:
@x@@ if all n bytes transferred
@x09 SCSI reset detected
@x0D invalid bus free detected
@x@85 I/0 time-out
gx0C invalid phase change occurred

403116-00 cdb__2-1 : REV.1.2

cdb62, cdbl@2, cdbl22 “cdb62 “cdbl@2 “cdbl22

ERROR MESSAGES:
IMP. ER> cdb62(0A,00,00,00,01,00)
Unexpected Phase Change
Four Bytes Transferred Date/Time Stamp
IMP. ER> cdb62(0A,00,00,00,01,00)
Additional Command Byte Requested Date/Time Stamp

403110-00 cdb__ 2-2 REV.1.2

cdb63, cdbl@3, cdbl23 “cdb63 ~“cdbl@3 “cdbl23

NAME
cdb63 - 6-byte SCSI command transfer via PIO Transfer
cdbl@3 - 1l@-byte SCSI command transfer via PIO Transfer
cdbl23 - 12-byte SCSI command transfer via PIO Transfer
SYNOPSIS
return = cdb63(b0,bl,b2,b3,b4,b5);
BYTE b@ -> b5: SCS1 Command Bytes
return = cdblé3(bg,bl,b2,b3,b4,b5,b6,b7,b8,b9);
BYTE b@ -> b9: SCSI Command Bytes
return = cdbl23(bd,bl,b2,b3,b4,b5,b6,b7,b8,b9,b1d,bll);
BYTE b@ -> bll: SCSI Command Bytes
int return;
DESCRIPTION
Transfers the n-byte command from the INITIATOR to the
TARGET utilizing the test adapter Programmed I/0. The

function will return with good completion if n, and only n
bytes of command are requested by the TARGET. If less than
n bytes are requested, the function returns with an error
code of @x@C. As soon as the n bytes have been transferred,
the function returns. After completion (good or bad), the
number of command bytes transferred can be accessed as the
function statistics "bytes written" field. (The global
bytes written counter is not incremented by this amount.)

DEFAULT VALUE: N.A.

RETURNS:
Px00 if all n bytes transferred
@x09 SCSI reset detected
Px@D invalid bus free detected
@x@85 1/0 time-out
Px@C invalid phase change occurred

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte:
Px0@ if all n bytes transferred
@x09 SCSI reset detected
@x0D invalid bus free detected
@x05 1/0 time-out
@x@C invalid phase change occurred

403110-00 cdb__ 3-1 : REV.1.2

cdb63, cdbl@3, cdbl23 “cdb63 “cdbl@3 “cdbl23

ERROR MESSAGES:
IMP, ER> cdb63(0A,00,00,00,01,00)
Unexpected Phase Change
Four Bytes Transferred Date/Time Stamp

IMP. ER> cdb63(0A,00,00,00,01,00)
Additional Command Byte Requested Date/Time Stamp

403110-00 cdb__3-2 REV.1.2

chk_user_limits “chk_user_limits

NAME
chk _user_limits - check limits on user_input()
SYNOPSIS
return = chk_user_limits(lo,hi);
int return; /* return code */
int lo;: /* low limit to check */
int hi; /* upper limit to check */
DESCRIPTION
Checks to see if the current user_input() integer is within
limits defined by 'lo' and 'hi.' If out of range, an

explicit error will be generated.
DEFAULT VALUE: N.A.

RETURNS:
NULL (@) successful, string matches
1l error, string does not match

ERROR MESSAGES:
EXPLICIT ERROR MESSAGE

EXP. ER> chk_user_limits(10,25)
User Value (30) Out of Limits Date/Time Stamp

403110-00 chk_user_ limits-1 REV.1.2

chk_user_string “chk_user_string

NAME

chk_user_string - check for match in user_input()
SYNOPSIS

return = chk_user_string("ref_string");

int return; /* return code */

char *ref string; /* string to be compared */
" DESCRIPTION

Check to see if the current user_input() string matches the
reference string. An explicit error is generated when there
is no match.

DEFAULT VALUE: N.A.

RETURNS :
NULL (@) successful, string matches
1 error, string does not match

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> chk_user_string("stringl")

User String Does Not Match
User Response: string2 Date/Time Stamp

403110-00 chk_user_string-1 REV.1.2

cmd_tail_bol “cmd_tail _bol

NAME
cmd_tail_bol - search the command tail for the string and
return a logical 1, if string is found and a
@, if it is not found
SYNOPSIS
flag_true = cmd_tail_bol("string");
int flag_true; /* return flag */
char *string; /* string to match */
DESCRIPTION

The command tail boolean function searches the command tail
for amatch with the passed string. If a match is found the
function returns a 1. If a match is not found, the function
returns a @.

DEFAULT VALUE: N.A.

RETURNS:
gx6 1if boolean not found in SAT command tail line
6x1l if boolean found

ERROR MESSAGES: NONE

493110-00 cmd_tail _bol-1 REV.1.2

cmd_tail_string “cmd_tail_string

NAME
cmd tail string - search the command tail for the "look for"
- - string and return the parameter which
follows the string. The parameter is
defined as the word or the string bounded
by " " following the "look_for" string.
SYNOPSIS
flag_true = cmd_tail_string("look_for",“return parameter");
int flag_true; /* Teturn flag */
char *look_for; /* string to search */
char *return_parameter; /* word or string following
the "look for® string */
DESCRIPTION

The command tail string function searches the command tail
for a match with the "look_ for" string. If a match is
found, the function returns a 1 and returns the word or
string following the "look_ for"™ string as
"return_parameter". If no match is found, the function
returns as a @ and "return_parameter" is not modified.

DEFAULT VALUE: N.A.

RETURNS :

#x@ if "look_for" string not found
@xl1 if "look_for" string found and "return_parameter"
string will contain the following word or string

ERROR MESSAGES: NONE

403110-00 cmd_tail_string-1l REV.1.2

cntlbyte “cntlbyte

NAME
cntlbyte - set SCSI command control byte for SCSI commands
SYNOPSIS
cntlbyte (byte);
unsigned char byte; /* set SCSI control byte */
/* last byte in command */
DESCRIPTION

This function sets the SCSI control byte (last byte of the
SCSI CDB) which is generated by the 1/0 Driver. The control
byte may be vendor-unique so check the target's manual to
find the correct control byte value.

DEFAULT VALUE: 0x00

RETURNS: N.A.

EXECUTION TYPE: 1I/0 Driver

ERROR MESSAGES: NONE

403110-00 cntlbyte-1 REV.1.2

comp » “comp

NAME

comp - compare command (l0-byte command)
SYNOPSIS

return = comp(lenL);

unsigned return; /* return code */

unsigned long lenL; /* parameter list length */
DESCRIPTION

This function will form and execute the command descriptor
block for the l0-byte compare command.

- T R N T T T S T I N I T S S S v e e mm s S e o e S S S S S M D W G S SN S S S S S S s e ww mm mm S mv S S M N
2 2 2 2 22 2 2 2 2 223 2t + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 £ 2 2 2 2 3

bit I 7 ! 6 l 5 I 4 , 3 , 2 , 1 ' g

byte

U T handamy T e T
Ty Ty T o0
Ty T lent (ws®)
Ty T tent
B lent (LsB)
T
T T T Ty T T T
T T T T
Ty T cntlbyte(byte);

D e mm S s o i G e e e e e e s S M M S i e M e S s S S m e M S s e Sue e i SR e e e R S W S e A M sur S e e S S
2 2 2 2 1T 2 2 2 2 2t i - - 2 2 2 2 2 F 2 1t 2 - 3 * E - E F 1 5 2 ¢+ £ £+

For a complete description of the command refer to the
"SMALL COMPUTER SYSTEM INTERFACE (SCSI)" by American
National Standard for information systems.

DEFAULT VALUE: N.A.
RETURNS:
NULL(@) successful
1l error
EXECUTION TYPE: 1/0 Driver
STATISTICS/STATUSUPDATE:

Global Stats, Function Stats and Function Status (see 1I/0
DRIVER Status Bytes)

403110-00 comp-1 REV.;.Z

comp “comp

ERROR MESSAGES:
Implicit and Explicit Errors from Target Status, Initiator
Status and I/0 Status (also see Section IODVR.4)

403110-00 comp-~2 REV.1.2

compwr “compwr

NAME
compwr - compare write and read buffers
SYNOPSIS
return = compwr (st_add,len);
int return; /* return code */
unsigned st_add; /* compare starting address */
unsigned len; /* length of compare
0x0000 = 64K */
DESCRIPTION

Compares the write and read buffers. This function assumes
that the buffers are backplane starting at the given
address, 'st_add', for the defined 'len.' 1If 'st_add'+'len’
exceeds length of the write, the compare is to the end of
the buffer. ‘

DEFAULT VALUE: N.A.
RETURNS:
NULL (@) successful, compared
1 error, not compared

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> compwr (100,12849)
Read Buffer Not Open Date/Time Stamp

EXP. ER> compwr (1028,512)
Write Buffer Not Open Date/Time Stamp

EXP. ER> compwr (2460,8) _
Invalid Starting Address Date/Time Stamp

EXP. ER> compwr(9,0)

Compare Error: lst Error @ 0020; Wr/Ref = @4; R4 = 02
Total Bytes in error = (100 Date/Time Stamp

403110-00 compwr-1 REV.1.2

copy “copy

NAME
copy - copy command

SYNOPSIS
return = copy(lenlL);
unsigned return; /* return code */
unsigned long lenL; /* parameter list length */

DESCRIPTION
This function will form and execute the command descriptor

block for the copy command.

COMMAND DESCRIPTOR BLOCK FOR COPY COMMAND

bit 7 6 5 4 3 2 1 "}

byte
o | 18

______ o e e e e o = = - " - " -
1 | lun(lun); |)

______ o o e e e e e e e e = = - - - -
2 | lenL (MSB)

______ o e e o e e e e o = " " = S o ————— - - - - - ——
3 | lenL

______ o e e e e e e e e = = = > o - = - o
4 | lenL (LSB)

...... o e e e = e S e o - — - -~ - - - - -
5 | cntlbyte(byte);

e e e S wm S e e e e S e S e e S S e s e S e S ST SR N S A S am e S A S D S S S G S M S me S MW S e M M S w wme me
2 22t -t - 1 -ttt - - 2 -t 2t 2 - - - 1 t £ 2 & & 2 2 & 2 3

For a complete description of the command refer to the
"SMALL COMPUTER SYSTEM INTERFACE (SCSI)" by American
National Standard for information systems.

DEFAULT VALUE: N.A.
RETURNS :
NULL (@) successful
l error
EXECUTION TYPE: I/0 Driver
STATISTICS/STATUS UPDATE:
Global Stats, Function Stats and Function Status (see 1/0
DRIVER Status Bytes)
ERROR MESSAGES:

Implicit and Explicit Errors from Target Status, Initiator
Status and 1/0 Status (also see Section IODVR.4)

403110-00 copy-1 REV.1.2

copyver ~copyver

NAME v

copyver - copy and verify command (l@-byte command)
SYNOPSIS

return = copyver(bytck,lenlL);

unsigned return; /* return code */

unsigned int bytck; /* byte check bit */

unsigned long lenL; /* parameter list length */
DESCRIPTION

This function will form and execute the command descriptor
block for the 1@-byte copy and verify command.

COMMAND DESCRIPTOR BLOCK FOR 10-BYTE COPY AND VERIFY COMMAND

- i e S e S S S Sm e W e e G S Sms e S e NP MR S e SIS SEn i e SR T NP S A S N S W MR S M S ST AN SD M M ST S SR D S mm we e mm S
3+ 2 3+ 2 F F + T Tt 2t 1t 2 T 2 R - 2 £ R R B 2 2R 2 2 2 3 2 R 5 R _F B3 32 R

bit l 7 , 6 l 5 , 4 ’ 3 ’ 2 l 1 , 0
byte
o
B Ty S & |bytck | 0
T Ty T
Iy T lenL (MsB)
T T e T
R lenL (LS®)
e | T o0
T Ty T T T
T
e TTTTTTTTTTTTTTTTTTT cntlbyte (byte);

P e T I T T I T I T T T T ™ T ™ ™ T ™ ™ T T r ™ ™™ T T T rrrrrrrr>r—+
-+ 2+ 3 3+ 3 F 2 2 2 2t F E F F F F 3 £ -t - - 2 P 2t - 2 F 2 2+ R 2 2 2 R 4 3 2 3 2 B B

For a complete description of the command refer to the
"SMALL COMPUTER SYSTEM INTERFACE (SCSI)" by American
National Standard for information systems.

DEFAULT VALUE: N.A.

RETURNS:
NULL (@) successful
l error

EXECUTION TYPE: I/0 Driver
STATISTICS/STATUS UPDATE:

Global Stats, Function Stats and Function Status (see I/0
DRIVER Status Bytes)

403110-60 copyver-1 REV.1.2

copyver “copyver

ERROR MESSAGES:
Implicit and Explicit Errors from Target Status, Initiator
Status and I1/0 Status (also see Section IODVR.4)

403110-00 copyver-2 REV.1.2

copy_user_string “copy_user_string

NAME :
copy user_string - copy user_input() string to specified
string
SYNOPSIS
copy_user_string("tgt_string");
char™ *tgt string; /* strlng to copy user_input()
string */
DESCRIPTION
This function copies the last string entered by the
user 1nput() funct1on. The string returned from this

function is not defined if user 1nput\) was not called (with
a string argument).

DEFAULT VALUES: N.A.

RETURNS: N.A

EXECUTION TYPE: N.A.
STATISTICS/STATUS UPDATE: N.A.

ERROR MESSAGES: NONE

403110-00 copy_user_string-1 REV.1l.2

~“datain@ ~“datainl “datain2 ~datain3

NAME
datain@ - Data In to Test Adapter High-Speed Buffer
datainl - Data In to backplane memory via DMA transfer
datain2 - Data In to backplane memory via TR transfer
datain3 - Data In to backplane memory via PIO transfer
SYNOPSIS

datain@ (countL,mode) ;
datainl (countL,mode) ;
datain2(countL,mode) ;
datain3 (countL,mode);

unsigned long countL; /* number of bytes to transfer */
int mode; /* message mode
’ ") error on any phase change
1 accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
error on any other type of
phase change
2 = accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
without error on any other
type of phase change
3 = return on any phase change
’ without error */

DESCRIPTION

' Transfers the specified number of bytes from the TARGET
into the test adapter On-Board Buffer. With the message
mode set to @, any phase change will cause an implicit
error. With the mode set to 1, the function will handle the
disconnect/reconnect sequence which returns to a DATA OUT
phase. Any other phase change prior to completion will
cause an implicit error message. If the mode is set to 2,
the function will handle all disconnect/reconnect sequences
and will terminate with good completion if the desired
number of bytes has been transferred or a phase change
(other than for disconnection) occurs. A mode of 3 will
return without error on any phase change.

NOTE: The xfermode() function must be
executed to open the correct buffer.

DEFAULT VALUE: N.A.

RETURNS :
Ix0000 requested number of bytes transferred (mode @ or 1)
requested number of bytes transferred or phase
change occurred (mode 2 or 3)
@x0009 SCSI bus reset detected

403110-00 datain_-1 REV.1.2

~“datain@ ~“datainl ~“datain2 ~datain3

@x000D invalid bus free detected
@x0208 no active buffer

9x0005 1/0 time-out

@x@0@0C invalid phase change
@x0011 nonsupported message
@x000B reselection aborted

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:

Initiator Status Byte:
@x0@ good completion »
@x09 SCSI bus reset detected
@x@D invalid bus free detected
gx05 1/0 time-out
Px0C 1invalid phase change
@x1ll nonsupported message
@x0B reselection aborted
@x@F SCSI inbound parity error

I/0 Status Byte:
@x@2 no active buffer

ERROR MESSAGES:
IMP. ER> datainf(0x10000L,0)
No Data In Phase :
@ Bytes Transferred ' Date/Time Stamp

IMP. ER)> datain@(9x10000L,1)
Unexpected Phase Change
1234 Bytes Transferred Date/Time Stamp

IMP. ER> datain@(@9x10000L,2)
No Disc./Reconnect Messages
1234 Bytes Transferred Date/Time Stamp

IMP. ER> datain@(9x10000L,2)
No Active Buffer , Date/Time Stamp

403116-00 datain_-2 REV.1.2

datain4 datains “datain4 ~“datain5

NAME

datain4 - Compare SCSI data with Test Adapter High-Speed
Buffer
datain5 - Compare SCSI data with backplane memory

SYNOPSIS

dataind (countL,mode) ;
datain5(countL,mode) ;

unsigned long countL; /* Number of bytes to transfer */
int mode; /* message mode ,
@ = error on any phase change
1 accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
error on any other type of
phase change
2 = accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
without error on any other
type of phase change
3 = return on any phase change
without error */

DESCRIPTION

Transfers the specified number of bytes from the TARGET
and compares (on-the-fly) with the test adapter On-Board
Buffer. With the message mode set to 0, any phase change
will cause an implicit error. With the mode set to 1, the
function will handle the disconnect/reconnect sequence which
returns to a DATA OUT phase. Any other phase change prior
to completion will cause an implicit error message. If the
mode 1is set to 2, the function will handle all
disconnect/reconnect sequences and will terminate with good
completion if the desired number of bytes has been
transferred or a phase change (other than for disconnection)
occurs. A mode of 3 will return without error on any phase
change.

Only the first miscompare will be reported, after that
data will be compared on-the-fly without any further
miscompare messages.

NOTE: The xfermode() function must be
executed to open the correct buffer.

DEFAULT VALUE: N.A.

403110-00 datain4-1 REV.1l.2

datain4 datainb

RETURNS:

“datain4 ~“datain5

0x0000 requested number of bytes transferred (mode 0 or 1)
requested number of bytes transferred or
change occurred (mode 2 or 3)

0x0009 SCSI bus reset detected

@x000D invalid bus free detected

Px0200 no

active buffer

Px0005 1/0 time-out

@xFFP0 1/0 aborted (Data Compare Error)
@x000C invalid phase change

@x0011 nonsupported message

Ox000B reselection aborted

Lis Rt A o3 = P
1IFDe

Microprogramming

STATISTICS/STATUS UPDATE:
Initiator Status Byte:

ox00
0x09
@9x0D
0x@5
ox0C
Ox1ll
@x@B
OxGE
Ox0F
I/0 Status
Px02
@xFF

ERROR MESSAGES:

good completion

SCSI bus reset detected
invalid bus free detected
I1/0 time-out

invalid phase change
nonsupported message
reselection aborted
buffer miscompare

SCSI inbound parity error
Byte:

no active buffer

1/0 aborted (Data Compare Error)

IMP. ER> datain4(0x10000L,0)
No Data In Phase

@ Bytes Transferred

IMP. ER> datain4(@x10000L,1)
Unexpected Phase Change

1234 Bytes Transferred

IMP. ER> datain4(0x160600L,2)
No Disc./Reconnect Messages

1234 Bytes Transferred

IMP. ER> datain4(0x10006L,2)

No Active Buffer

IMP. ER> datain4(0x10000L,2)

Actual Data 03, Expected Data 07
Actual Data @C, Expected Data 08
Actual Data 08, Expected Data 09
Error Occurred Date/Time Stamp

Data Compare

403110-00

datain4-2

phase

Date/Time Stamp

Date/Time Stamp

Date/Time Stamp

Date/Time Stamp

REV.1.2

“dataoutd “dataoutl “dataout2 ~“dataout3

NAME
dataout@® - Data Out from Test Adapter High Speed Buffer
dataoutl - Data Out from backplane memory via DMA transfer
dataout2 - Data Out from backplane memory via TR transfer
dataout3 - Data Out from backplane memory via PIO transfer
SYNOPS1IS
error = dataoutl@ (countL,mode) ;
error = dataoutl (countL,mode);
error = dataout2(countL,mode) ;
error = dataout3(countL,mode);
unsigned long countL; /* Number of bytes to transfer */
int mode; /* message mode
@ = error on any phase change
1l = accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
error on any other type of
phase change
2 = accept save data pointers,
disconnect messages, support
reselection sequences to data
phase continuation. Return
without error on any other
type of phase change
3 = return on any phase change
without error */
DESCRIPTION

Transfers the specified number of bytes from the SDS-1 test
adapter On-Board Buffer to the TARGET. With the disconnect
mode set to @, any phase change will cause an implicit
error. With the mode set to 1, the function will handle the
disconnect/reconnect sequence which will return to the DATA
OUT phase. Any other phase change prior to completion will
cause an implicit error message. If the mode is set to 2,
the function will handle all disconnect/reconnect sequences
and will terminate with good completion if the desired
number of bytes have been transferred or a phase change
other than for disconnection occurs. (This feature \is
valuable for completion of a data transfer which was
intentionally interrupted like for a parity error check.) A
mode of 3 will return without error on any phase change.

NOTE: The xfermode() function must be
executed to open the correct buffer.

DEFAULT VALUE: N.A.

403110-00 dataout_-~1 REV.1.2

“dataout@ ~“dataoutl ~“dataout2 ~“dataout3

RETURNS: v

0x0000 requested number of bytes transferred (mode @ or 1)
requested number of bytes transferred or phase
change occurred (mode 2 or 3)

@x0009 SCSI bus reset detected

gx000D invalid bus free detected

gx0200 . no active buffer

@x0C00 invalid phase change

@x001ll nonsupported message

@x000B reselection aborted

EXECUTION TYPE: Microprogramming

STATISTICS/STATUS UPDATE:

Initiator Status Byte:
Px0@ good completion
@x09 SCSI bus reset detected
@x@D invalid bus free detected
@x@C invalid phase change
gx11 nonsupported message
@x0B reselection abort
@x@F SCSI inbound parity error

I/0 Status Byte:
@x02 no active buffer

ERROR MESSAGES:
IMP. ER> dataout@(@0x10000L,9)
No Data Out Phase
@ Bytes Transferred Date/Time Stamp

IMP. ER> dataout@ (0x10000L,1)
Unexpected Phase Change
1234 Bytes Transferred Date/Time Stamp

IMP. ER> dataout@(0x10060L,2)
No Disc./Reconnect Messages
1234 Bytes Transferred Date/Time Stamp

IMP. ER> dataout@(9x1000606L,2)
No Active Buffer Date/Time Stamp

403110-00 dataout_-2 REV.1.2

debug “debug

NAME
debug - set debug level

SYNOPSIS .
debug (level) ;
int level; /* debug level */

DESCRIPTION
This function will halt execution and enter the Debugger

(with the current display format). At this point the user
may perform any Debugger TRACE State command.

The Debugger Skip command will cause the function to be
skipped and the debug level to remain unchanged.

The following is a brief description of the effects of each
debug level:

LEVELS DESCRIPTION
) Disable Debugger and run at full speed
1, 2, 3 Enable Debugger and stop on next instruction

with debug level 1, 2 or 3.

Changing the debug 1level will also repaint the screen,
causing the Trace Display to be cleared.

DEFAULT VALUE: N.A.
RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 debug-1 REV.1l.2

delayms “delayms

NAME
delayms - generate a delay specified in milliseconds
SYNOPSIS
delayms (ms_delay) ;
int ms_delay; /* number of milliseconds to
delay */
DESCRIPTION

Generates a delay equal to the number of milliseconds
requested by the user.

DEFAULT VALUE: N.A.

RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 delayms-1 | REV.1.2

delays “delays

NAME
delays - generate a delay specified in seconds
SYNOPSIS
delays(sec_delay);
int sec_delay; /* number of seconds to delay
*/
DESCRIPTION

Generates a delay equal to the number of seconds requested
by the user.

DEFAULT VALUE: N.A.
RETURNS: . N.A.

ERROR MESSAGES: NONE

403110-00 delays-1 REV.1l.2

delta_time “delta_time

NAME ,
delta_time - obtain the real time elapsed between 2 bus
state log entries
SYNOPSIS
return = delta_time("statel",countl,"state2",count2);
unsigned long return; /* elapsed time in
microseconds */
char *statel; /* state description */
int countl; /* # of "statel" occurrences
*/
char *state2; /* state description */
int count2; /* # of "stated" occourrences
*/
DESCRIPTION

This function looks backward in the bus state log from the
current time for 'countl' occurrences of "statel." It then
looks forward in the state log for 'count2' occurrences of
"state2" and returns the elapsed time between these two
events in microseconds. The search backward for "statel"
stops at the entry indicating test initialization. A return
of zero indicates an error; get_f status("IO") must be
called to determine the type of error (these error codes are
defined below under I/0 Status). Below is a definition of
the values of "statel" and "state2" strings.

"ARB_START" --> start of arbitration
"ARB_END" --> completion (success) of arbitration
"SEL ASSERT" --> assertion of SEL by HOST
"SEL RESPONSE" --> response to SEL by TARGET (BSY
- assertion)
"CMD_START" --> detection of COMMAND OUT phase
"CMD_END" --> transfer of last command byte complete
"DATAIN" --> detection of DATA IN phase
"DATAOQOUT" --> detection of DATA OUT phase
"RESEL" --> reselection complete
"MSG_ouT" --> detection of MESSAGE OUT phase
"MSG_IN" --> detection of MESSAGE IN phase
"STATUS" -~> detection of STATUS IN phase
“BUS_EREE" --> detection of BUS FREE (BSY, SEL
false)
"RESET DET" --> detection of SCSI reset not
- generated by SDS-1
"RESET ASSRT" --> reset asserted by SDS-1
"TEST_INIT" --> commencement of execution of Stand-

Alone Test
DEFAULT VALUE: N.A.
RETURNS :

PL Error (see 1/0 status codes)
else Returns elapsed time in microseconds

403110-00 delta_time-1 REV.1.2

delta_time “delta_time

I/0 Status:
Px40 specified value of "statel” not found
Px41 specified value of "state2" not found
@x42 1illegal string specified for "statel"™ or "state2"

ERROR MESSAGES:
IMP. ER> delta_time(statel,countl,state2,count2);
State 1 not found Date/Time Stamp

IMP. ER> delta_time(statel,countl,state2,count2);
State 2 not found Date/Time Stamp

IMP. ER> delta_time(statel,countl,state2,count2);
Illegal state specifier Date/Time Stamp

403110-00 delta_time-2 REV.1l.2

dispbuf “dispbuf

 NAME

dispbuf - display specified buffer to screen

SYNOPSIS
dispbuf ("buffer",start_add,length);
char *buffer; /* buffer type to display */
unsigned start add; , /* starting address */
unsigned length; /* display length (in bytes)

*/
DESCRIPTION

Generates a buffer display for the requested buffer to the
screen. Below are the different buffer types that can be
specified by "buffer":

"R" Read Buffer

"W Write Buffer

"RW" Read/Write Buffer
"OoBB" On-Board Buffer
"L Log Buffer

ngw Sense Buffer

DEFAULT VALUE: N.A.
RETURNS: N.A.

ERROR MESSAGES: NONE

403110-00 dispbuf-1 REV.1.2

dmarst “dmarst

. NAME

dmarst - reset current DMA pointer to start of buffer
SYNOPSIS

return = dmarst("r/w");

int return; /* return code */

char *r/w; /* read or write buffer */
DESCRIPTION

Resets the buffer DMA pointer of the current write or read
buffer. If the requested buffer has not been assigned by
a xfermode() function, an error is returned. Read or write
operations leave their respective DMA pointer pointing to
the next byte in the buffer so that subsequent operations
will continue to fill (or read from) the buffer at the next
address. However, there are times when it is necessary to
reset the DMA pointer. This function does not change any
values in the buffer itself.

When performing read and compare operations, the write
buffer (also known as reference buffer) pointer must be
reset or set to a known location.

When performing hardware compare operations, resetting the
read buffer pointer will cause an error since there is no
read buffer.

DEFAULT VALUE: N.A.
RETURNS:
NULL (@) successful completion
1l error occurred

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> dmarst("R")
Read Buffer Not Open Date/Time Stamp

EXP. ER> dmarst("w")
Write Buffer Not Open Date/Time Stamp

EXP. ER> dmarst("i")
Invalid Argument Date/Time Stamp

dmaset “dmaset

dmaset - set current DMA pointer to new value

SYNOPSIS

return = dmaset("r/w",address);
int return; /* return code */
char *r/w; /* "r" = read buffer
"w" = write buffer */
int unsigned address; /* address to set */

DESCRIPTION

Sets the current Write or Read DMA address pointer within
the selected buffer (write or read) to the specified address
(see dmarst()). If an error condition occurs, a value of 1
is returned, otherwise a NULL(@) value is returned. This
function does not change any values in the buffer itself.

When performing read and compare operations, the write
buffer (also known as reference buffer) pointer must be
reset or set to a known location.

When performing hardware compare operations, setting the

read buffer pointer will cause an error since there is no

read buffer.
DEFAULT VALUE: N.A.

RETURNS:
NULL (@) successful completion
1 error occurred

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> dmaset("R")
Read Buffer Not Open

EXP. ER> dmaset("w")
Write Buffer Not Open

EXP. ER> dmaset("i")
Invalid Argument

403110-060 dmaset-1

Date/Time Stamp

Date/Time Stamp

Date/Time Stamp

REV.1l.2

dmaset_va “dmaset_va

NAME
dmaset_va - set a virtual address
SYNOPSIS
returnl, = dmaset va("r w",addresslL);
unsigned long returnL; /* returns a long address */
char *r w; /* String defining buffer
- "R" = Read "W" = write */
unsigned long addressL; /* virtual address (only 28
lower bits are used) */
DESCRIPTION

This function defines a 28-bit virtual address to be used
with write or read operations in the HSHCV transfer mode.
In this mode, the On-Board Buffer can create a 2**28 bit
nonrepeating pattern which can be viewed as a 256MB virtual
memory. The dmaset_va() allows the user to set any address
in this range for use with subsequent write and read
operations.

When performing read and compare operations, the write
buffer (also known as reference buffer) pointer must be
reset or set to a known location.
When performing hardware compare operations, setting the
read buffer pointer will cause an error since there is no
read buffer.
DEFAULT VALUES: NONE
RETURNS:
new virtual DMA address (unsigned long) successful
@xFFFFFFFFL error occurred
EXECUTION TYPE: N.A.
STATISTICS/STATUS UPDATE: N.A.
ERROR MESSAGES:
EXP. ER> dmaset_va("r_w",addressl);
Invalid Argument Date/Time Stamp

EXP. ER> dmaset_va("r_w",addresslL);
Buffer Not Open Date/Time Stamp

403110-00 dmaset_va-1 REV.1.2

dmaset_vblk “dmaset_vblk

NAME ,

dmaset_vblk - set a virtual address from block info
SYNOPSIS

returnl = dmaset_vblk("r_w");

unsigned long returnL; /* addressL */

char *r_w; /* String defining buffer

"R" = Read "W" = write */

DESCRIPTION

This function calculates a 28-bit virtual address to be used
with write or read operations in the HSHCV transfer mode.
The calculation is based on the block size established by
blk size() and the current starting block set by set blk(),
inc blk() or random_blk(). If a value greater than 2%*28 is
calculated, only the lower 28 bits are used.

The user can create unique data for every block on a large
disk by using a different seed in the f£illpr() function for
the second 256MB and yet a different seed for the third
256MB. This implies that the user must look at the current
starting block (returned by set_blk(), inc_blk(), or
random_blk() and decide if a new OBB fill pattern is
required). The max number of bytes supported by the SDS-1
is 2**32 * 2%*]16 (start_block * block_size).

When performing read and compare operations, the write
buffer (also known as reference buffer) pointer must be
reset or set to a known location.
When performing hardware compare operations, setting the
read buffer pointer will cause an error since there is no
read buffer.
DEFAULT VALUES: NONE
RETURNS:
new virtual DMA address (unsigned long) successful
¢xFFFFFFFFL error occurred
EXECUTION TYPE: N.A.
STATISTICS/STATUS UPDATE: N.A.
ERROR MESSAGES:
EXP. ER> dmaset_vblk("I");
Invalid Argument Date/Time Stamp

EXP. ER> dmaset_vblk("w");
Buffer Not Open Date/Time Stamp

403110-00 dmaset_vblk-1l REV.1l.2

eea eea

NAME
eea - set explicit error action
SYNOPSIS
eea("action");
char *action; /* error action to be taken on
explicit errors */
DESCRIPTION

Sets the action to be taken on an explicit error. An
explicit error is an error that reguires an explicit test to
determine that an error has occurred (such as a esvalid()
function).

The error action types are defined below:
CONT - no action (ignore error)

HALT - in nonbatch mode: halt and enter Debugger
in batch mode: exit to next SAT

LOGC - log error and continue up to the set_er_limits()
function limit; otherwise,
in nonbatch mode: enter the Debugger
in batch mode: exit to DOS

LOGH - in nonbatch mode: 1log error and enter Debugger

in batch mode: 1log error and exit to DOS

CONT and HALT types are not available in the Menu Interface.
Also see Sections SAT.5 and DEBUG.1.3 .

DEFAULT VALUE: LOGC
RETURNS: N.A.
ERROR MESSAGES:

IMP. ER> eea("LAGC");
Undefined Error Action Parameter Date/Time Stamp

403110-00 eea-1 REV.1l.2

‘erase : “erase

NAME
erase - erase command

SYNOPSIS
return = erase(long);
unsigned return; /* return code */
unsigned long; /* long bit */

DESCRIPTION

This function will form and execute the command descriptor
block for the erase command.

COMMAND DESCRIPTOR BLOCK FOR ERASE COMMAND

P e T I T T T T T T T T T T T T T T T T T " T ™ ™™ T I T ™™ ™ I ™ ===
rEF 2 F 2 4 5323 211t - I -ttt - i - -t P 2 - T E - ¢t 2 2 B 2 0

bit l 7 I 6 l 5 ' 4 , 3 ' 2 l 1 I)

byte

e T T T
T andem T T T ong
S
T T T T T
Ty T
e cntlbyte(byte);

For a complete description of the command refer to the
"SMALL COMPUTER SYSTEM INTERFACE (SCSI)" by American
National Standard for information systems.

DEFAULT VALUE: N.A.

RETURNS:
NULL (@) successful
1l error

EXECUTION TYPE: 1/0 Driver

STATISTICS/STATUS UPDATE:
Global Stats, Function Stats and Function Status (see 1/0
DRIVER Status Bytes)

ERROR MESSAGES:

Implicit and Explicit Errors from Target Status, Initiator
Status and I/0 Status (also see Section IODVR.4)

403110-~-00 . erase-1 REV.1l.2

“errdelay

errdelay
NAME
errdelay - enable/disable error delay
SYNOPSIS
return = errdelay(bit);
unsigned return; /* function return */
int bit; /* delay on/off
g = off
1 = on */
DESCRIPTION

This function allows the user to disable the 5-second delgy
which normally occurs when any implicit or explicit error is
detected.

DEFAULT VALUE: Error delay enabled

RETURNS: @ (always)

ERROR MESSAGES: NONE

403110-00 errdelay-1 REV.1l.1

error_ok “error_ok

NAME
error_ok - decrement error count

SYNOPSIS
return = error_ok("display");
unsigned return;
char *display;

/* function return */
/* "NODSPL" --> no display
"DISPLAY" --> display
message on the console
showing execution of
this function */

DESCRIPTION
This function allows the errors to occur in a test which
would normally generate a non-zero error count and hence

cause the test to fail. Calling this function decrements
the error count.

If the "display" string equals "DISPLAY", the following
message will be displayed on the console:

kkkkk*k SERROR OKC***x**
DEFAULT VALUE: N/A

RETURNS: @ (always)

ERROR MESSAGES: NONE

403110-00 error_ok-1 REV.1.2

eseom “eseom

NAME
' eseom - extended sense end of media check
SYNOPSIS
return = eseom(n);
int return; /* return code */
int n; /* bit value to compare */
DESCRIPTION

Compares the end of media (EOM) bit in the current extended
sense buffer with the 'n' argument value. If the values do
not match, the explicit error action will be taken. The
sense buffer must contain extended sense information or an
error will be returned.

DEFAULT VALUE: N.A.

RETURNS:
NULL (@) successful, values are equal
1 wvalues are not equal
2 if not extended sense data
3 1if no sense buffer open

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> eseom(1l)
EOM Bit Reset Date/Time Stamp

EXP. ER> eseom(0)
EOM Bit Set Date/Time Stamp

EXP. ER> eseom (@)
Non-Extended Sense Date/Time Stamp

EXP. ER> eseom(1l)
No Sense Buffer Open Date/Time Stamp

403110-00 eseom-1 . REV.1.2

esfm “esfm

NAME

esfm -~ extended sense file mark check
SYNOPSIS

return = esfm(n);

int return; /* return code */

int n; /* bit value to compare */
DESCRIPTION

Compares the file mark bit in the current extended sense
buffer with the 'n' argument value. If the values do not
match, the explicit error action will be taken. The sense
buffer must contain extended sense information or an error
will be returned.

DEFAULT VALUE: N.A.

RETURNS :

NULL (@) successful, values are equal
values are not equal
if not extended sense data
if no sense buffer open

w N+

ERROR MESSAGES:
EXPLICIT ERROR MESSAGES

EXP. ER> esfm(1l)
Filemark Bit Reset Date/Time Stamp

EXP. ER> esfm(0)
Filemark Bit Set Date/Time Stamp

EXP. ER> esfm (@)
Non-Extended Sense Date/Time Stamp

EXP. ER> esfm(1l)
No Sense Buffer Open Date/Time Stamp

403110-00 esfm-1 REV.1.2

esili “esili
NAME

esili - extended sense illegal length indicator check
SYNOPSIS

return = esili(n);

int return; /* return