
Computer Science Laboratory
Technical Report Digest: 1973-1990

Compiled and edited by: Nancy Freige

Computer Science Laboratory

Technical Report Digest: 1973-1990

Compiled and edited by: Nancy Freige

CSL-91-12 November 1991 [P91-00141]

© Copyright 1991 Xerox Corporation. All rights reserved.

Abstract: This digest contains a summary of technical reports
published by the Computer Science Laboratory of the Xerox Palo
Alto Research Center, for the period 1973 through 1990. Entries
are sorted by publication date, and contain the report title,
publication number, author(s) and abstract.

Reports preceded by an asterisk (*) in the table of contents are
out of print and no longer available. All other reports can be
obtained by writing to the CSL Receptionist at the address below.

CR Categories and Subject Descriptors: A.2 [Reference]

XEROX Xerox Corporation
Palo Alto Research Center.
3333 Coyote Hill Road
Palo Alto, California 94304

PREFACE

The Computer Science Laboratory has a long history of
research focused on fundamental issues in the design,
development, and use of distributed computer systems. As
chronicled in this digest of abstracts, research in the
Laboratory has spanned a broad range of topics and led to
fundamental contributions in many areas including
programming languages and environments, computer graphics
and imaging, personal computers, local area networks,
computer communication protocols, programming language
theory, computational geometry, and distributed multi-media
computing.

Today, the m1ss1on of the Computer Science Laboratory's
research is to create a conceptual and empirical foundation for
advanced computing systems. The vision at the heart of this
mission is one in which integrated, interoperable, readily
available, powerful computational devices invisibly enhance
human activities. Referred to as ubiquitous computing, this
vision is intended to define a new computing paradigm as well
as provide a foundation for Xerox initiatives in the next
generation of document processing systems and services.
Within this context the program focuses on core computer
science issues in the development of portable and
interoperable systems, distributed systems and collaborative
technologies, information storage and retrieval, computation
methods, and computational hardware and architecture. The
objective throughout is to understand the fundamental
principles and underpinnings of ubiquitous computing.

Mark Weiser, Manager
John R. White, Associate Manager

Computer Science Laboratory

1~\'~_, , ••uUl\ I jjjftf'

TABLE OF CONTENTS

AN INTERACTIVE PROGRAM VERIFIER
by L. Peter Deutsch . 1

NEW PROGRAMMING LANGUAGES
FOR Al RESEARCH
by Daniel G. Bobrow and Bertram Raphael

THE IMPLEMENTATION OF NLS
ON A MINICOMPUTER
by James G. Mitchell

*OMNIGRAPH: SIMPLE TERMINAL­
INDEPENDENT GRAPHICS SOFTWARE

1

2

by Robert Sproull . 2

A POSTMORTEM FOR A TIME SHARING SYSTEM
by Howard Ewing Sturgis . 3

ON DATA-LIMITED AND RESOURCE
LIMITED PROCESSES
by Donald A. Norman and Daniel G. Bobrow

INTRODUCING ITERATION INTO THE
PURE LISP THEOREM PROVER
by J. Strother Moore

*ON THE PROBLEM OF UNIFORM
REFERENCES TO DATA STRUCTURES

4

4

by Charles M. Geschke and James G. Mitchell 5

*COMPUTATIONAL LOGIC: STRUCTURE
SHARING AND PROOF OF PROGRAM
PROPERTIES, PART II
by J. Strother Moore . 5

v

TABLE OF CONTENTS

A SPACE-ECONOMICAL SUFFIX TREE
CONSTRUCTION ALGORITHM
by Edward M. Mccreight . 6

*SOME PRINCIPLES OF MEMORY SCHEMATA
by Daniel G. Bobrow and Donald A. Norman

DIMENSIONS OF REPRESENTATION

6

by Daniel G. Bobrow . 7

SUBGOAL INDUCTION
by James H. Morris, Jr., and Ben Wegbreit

*ETHERNET: DISTRIBUTED PACKET SWITCHING
FOR LOCAL COMPUTER NETWORKS
by Robert M. Metcalfe and David R. Boggs

GOAL-DIRECTED PROGRAM TRANSFORMATION
by Ben Wegbreit

*A FAST STRING SEARCHING ALGORITHM
by Robert S. Boyer and J. Strother Moore

CONSTRUCTIVE METHODS IN PROGRAM
VERIFICATION

8

8

9

9

by Ben Wegbreit . 10

*THE ANALYSIS OF HASHING ALGORITHMS
by Leonidas J. Guibas

*AN OVERVIEW OF KRL, A KNOWLEDGE
REPRESENTATION LANGUAGE
by Daniel G. Bobrow and Terry Winograd

THE INTERLISP VIRTUAL MACHINE SPECIFICATION
by J. Strother Moore

vi

10

11

12

TABLE OF CONTENTS

*EARLY EXPERIENCES WITH MESA
by Charles Geschke, James H. Morris and
Ed Satterthwaite . 13

*META-PROGRAMMING: A SOFTWARE
PRODUCTION METHOD
by Charles Simonyi

1977

SCHEMES: A HIGH LEVEL DATA STRUCTURING
CONCEPT
by James G. Mitchell and Ben Wegbreit

STRATEGY CONSTRUCTION USING A
SYNTHESIS OF HEURISTIC AND DECISION­
THEORETIC METHODS

13

14

by Robert F. Sproull . 15

A DISPLAY ORIENTED PROGRAMMER'S ASSISTANT
by Warren Teitelman . 16

A NECESSARY AND SUFFICIENT CONDITION
FOR THE EXISTENCE OF HOARE LOGICS
by Richard J. Lipton . 16

1978

EMPIRICAL ESTIMATES OF PROGRAM ENTROPY
by Richard E. Sweet . 17

USING ENCRYPTION FOR AUTHENTICATION
IN LARGE NETWORKS OF COMPUTERS
by Roger M. Needham and
Michael D. Schroeder . 18

SEPARATING DATA FROM FUNCTION IN A
DISTRIBUTED FILE SYSTEM
by Jay E. Israel, James G. Mitchell and
Howard E. Sturgis . 18

vii

TABLE OF CONTENTS

CONSISTENT AND COMPLETE PROOF RULES
FOR THE TOTAL CORRECTNESS OF PARALLEL
PROGRAMS
by Lawrence Flon and Norihisa Suzuki

MONITORING SYSTEM BEHAVIOR IN A COMPLEX
COMPUTATIONAL ENVIRONMENT

19

by Mitchell L. Model . 20

*MESA LANGUAGE MANUAL VERSION 5.0
by J.G. Mitchell, W. Maybury, R. Sweet 21

*TRANSPORT OF ELECTRONIC MESSAGES
THROUGH A NETWORK
by R. Levin and M. Schroeder 22

FORMALIZING THE ANALYSIS OF ALGORITHMS
by Lyle Harold Ramshaw

RASTER GRAPHICS FOR INTERACTIVE
PROGRAMMING ENVIRONMENTS

22

by Robert F. Sproull . 23

*COMPACT ENCODINGS OF LIST STRUCTURE
by Daniel G. Bobrow and Douglas W. Clark 24

*CODE GENERATION AND MACHINE
DESCRIPTIONS
by R.G.G. Cattell . 24

*AN ENTITY-BASED DATABASE INTERFACE
by R.G.G. Cattell . 25

PUP: AN INTERNETWORK ARCHITECTURE
by David R. Boggs, John F. Shoch, Edward A. Taft,
and Robert M. Metcalfe . 26

AL TO: A PERSONAL COMPUTER
by C.P. Thacker, E.M. McCreight, B.W. Lampson,
R.F. Sproull, and D.R. Boggs 26

viii

TABLE OF CONTENTS

*VIOLET: AN EXPERIMENT AL DECENTRALIZED
SYSTEM
by David Gifford . 26

*WFS: A SIMPLE SHARED FILE SYSTEM FOR
A DISTRIBUTED ENVIRONMENT
by D. Swinehart, G. McDaniel and D. Boggs

WEIGHTED VOTING FOR REPLICATED DATA
by David K. Gifford

*FORMAL SPECIFICATION AS A DESIGN TOOL
by J. Guttag and J. Horning

THE ETHERNET LOCAL NETWORK: THREE
REPORTS
by R. Metcalfe, D. Boggs, R. Crane, E. Taft,

27

27

28

J. Shoch and J. Hupp . 28

A CLIENT-BASED TRANSACTION SYSTEM TO
MAINTAIN DATA INTEGRITY
by William H. Paxton . 29

EFFICIENT DYNAMIC PROGRAMMING USING
QUADRANGLE INEQUALITIES
by F. Frances Yao . 29

*A LAYERED APPROACH TO SOFTWARE DESIGN
by Ira P. Goldstein and Daniel G. Bobrow

THE DISPLAY OF CHARACTERS USING GRAY
LEVEL SAMPLE ARRAYS

30

by J.E. Warnock . 30

*DISPLAYED DATA STRUCTURES FOR
INTERACTIVE DEBUGGING
by Brad A. Myers . 31

ix

TABLE OF CONTENTS

STRESS AND SALIENCE IN ENGLISH: THEORY
AND PRACTICE
by Henry S. Thompson

*EFFICIENT ALGORITHMS FOR ENUMERATING
INTERSECTING INTERVALS AND RECTANGLES

32

by Edward M. McCreight 33

*REQUIREMENTS FOR AN EXPERIMENTAL
PROGRAMMING ENVIRONMENT
edited by L. Peter Deutsch and Edward A. Taft 34

*THE PROPER PLACE OF MEN AND MACHINES
IN LANGUAGE TRANSLATION
by Martin Kay . 34

ALGORITHM SCHEMATA AND DATA
STRUCTURES IN SYNTACTIC PROCESSING
by Martin Kay

THE DORADO: A HIGH-PERFORMANCE
PERSONAL COMPUTER--THREE PAPERS
by B. Lampson, K. Pier, G. McDaniel, S. Ornstein,

35

and D. Clark . 36

THE TXDT PACKAGE -- INTERLISP TEXT
EDITING PRIMITIVES
by J. Strother Moore

AN EXPERIMENTAL DESCRIPTION-BASED
PROGRAMMING ENVIRONMENT: FOUR REPORTS
by Ira Goldstein and Daniel Bobrow

PRIORITY SEARCH TREES
by Edward M. McCreight

LAUREL MANUAL
by Douglas K. Bratz

x

37

37

38

39

TABLE OF CONTENTS

TRELLIS DAT A COMPRESSION
by Lawrence Colm Stewart 39

INFORMATION STORAGE IN A DECENTRALIZED
COMPUTER SYSTEM
by David K. Gifford : . 40

*REMOTE PROCEDURE CALL
by Bruce Jay Nelson 41

*TECHNIQUES FOR PROGRAM VERIFICATION
by Greg Nelson . 43

REAL PROGRAMMING IN FUNCTIONAL
LANGUAGES
by James H. Morris

*REPORT ON THE PROGRAMMING LANGUAGE
EUCLID
by Butler Lampson, James Horning,
Ralph London, James Mitchell and

44

Gerald Popek . 45

CRYPTOGRAPHIC SEALING FOR INFORMATION
SECRECY AND AUTHENTICATION
by David K. Gifford . 45

*AN ANALYSIS OF A MESA INSTRUCTION SET
by Gene McDaniel . 46

*SOME NOTES ON PUTTING FORMAL
SPECIFICATIONS TO PRODUCTIVE USE
by John Guttag, Jim Horning, and
Jeannette Wing . 46

GRAPEVINE: AN EXERCISE IN DISTRIBUTED
COMPUTING
by Andrew Birrell, Roy Levin, Roger Needham,
Michael Schroeder . 47

xi

TABLE OF CONTENTS

*PACKET-VOICE COMMUNICATIONS ON AN
ETHERNET LOCAL COMPUTER NETWORK:
AN EXPERIMENTAL STUDY
by Timothy A. Gonsalves

CONTROLLING LARGE SOFTWARE DEVELOPMENT
IN A DISTRIBUTED ENVIRONMENT
by Eric Emerson Schmidt

1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR
CONTROL-FLOW OPTIMIZED PROGRAMS

47

48

by Polle T. Zellweger . 49

MOCKINGBIRD: A COMPOSER'S AMANUENSIS
by John T. Maxwell Ill and Severo M. Ornstein 49

INTERNET BROADCASTING
by David R. Boggs . 50

DESIGN AND IMPLEMENTATION OF A
RELATIONSHIP-ENTITY-DATUM DATA MODEL
by R.G.G. Cattell . 51

DATA TYPES ARE VALUES
by James Donahue and Alan Demers

PRELIMINARY REPORT ON THE LARCH
SHARED LANGUAGE
by J.V. Guttag and J.J. Horning

IMPLEMENTING REMOTE PROCEDURE CALLS
by Andrew D. Birrell and Bruce Jay Nelson

ADDING VOICE TO AN OFFICE COMPUTER
NETWORK
by D.C. Swinehart, L.C. Stewart and

51

52

52

S.M. Ornstein . 53

xii

TABLE OF CONTENTS

THE SEMANTICS OF LAZY (AND INDUSTRIOUS)
EVALUATION
by Robert Cartwright and James Donahue

DEFTLY REPLACING go to STATEMENTS
WITH exit's

53

by Lyle Ramshaw . 54

THE CEDAR PROGRAMMING ENVIRONMENT:
A MIDTERM REPORT AND EXAMINATION
by Warren T eitelman . 54

GRAPEVINE: TWO PAPERS AND A REPORT
by Andrew Birrell, Roy Levin, Roger Needham,
and Michael Schroeder . 56

A DESCRIPTION OF THE CEDAR LANGUAGE
A CEDAR LANGUAGE REFERENCE MANUAL
by Butler W. Lampson

THE ALPINE FILE SYSTEM
by Mark R. Brown, Karen Kolling, and

56

Edward A. Taft . 57

INTERACTIVE SOURCE-LEVEL DEBUGGING
OF OPTIMIZED PROGRAMS
by Polle Trescott Zellweger

EXPERIENCE WITH THE CEDAR
PROGRAMMING ENVIRONMENT FOR
COMPUTER GRAPHICS RESEARCH

57

by Richard J. Beach . 59

ON ADDING GARBAGE COLLECTION AND
RUNTIME TYPES TO A STRONGLY-TYPED,
STATICALLY-CHECKED, CONCURRENT
LANGUAGE
by Paul Rovner . 59

xiii

TABLE OF CONTENTS

DISTRIBUTED NAME SERVERS: NAMING
AND CACHING IN LARGE DISTRIBUTED
COMPUTING ENVIRONMENTS
by Douglas Brian Terry . 60

ARCHITECTURAL ELEMENTS FOR BITMAP
GRAPHICS
by Cary D. Kornfeld . 61

SETIING TABLES AND ILLUSTRATIONS
WITH STYLE
by Richard J. Beach

WHITEBOARDS: A GRAPHICAL DATABASE TOOL
by James Donahue and Jennifer Widom

A CACHING FILE SYSTEM FOR A
PROGRAMMER'S WORKSTATION
by Michael D. Schroeder, David K. Gifford,

62

63

and Roger M. Needham . 63

AN EFFECTIVE TEST STRATEGY
by Howard Sturgis . 64

WALNUT: STORING ELECTRONIC MAIL
IN A DATABASE
by James Donahue and Willie-Sue Orr

A STRUCTURAL VIEW OF THE
CEDAR PROGRAMMING ENVIRONMENT
by Daniel C. Swinehart, Polle T. Zellweger,
Richard J. Beach, and Robert B. Hagmann

VOICE ANNOTATION AND EDITING IN
A WORKSTATION ENVIRONMENT
by Stephen Ades and Daniel C. Swinehart

xiv

64

65

65

TABLE OF CONTENTS

A CLIENT INTERFACE TO AN ENTITY­
RELA TIONSHIP DAT ABASE SYSTEM
by James Donahue, Carl Hauser, and Jack Kent 67

1987

REIMPLEMENTING THE CEDAR FILE SYSTEM
USING LOGGING AND GROUP COMMIT
by Robert Hagmann

VLSI DESIGN AIDS: CAPTURE, INTEGRATION,
AND LAYOUT GENERATION
by Richard Barth, Louis Monier, Bertrand Serlet,

67

and Pradeep Sindhu . 68

MAINTAINING THE ILLUSION OF A
FUNCTIONAL LANGUAGE IN THE PRESENCE
OF SIDE EFFECTS
by Howard E. Sturgis

EPIDEMIC ALGORITHMS FOR REPLICATED
DATABASE MAINTENANCE
by Alan Demers, Mark Gealy, Dan Greene,
Carl Hauser, Wes Irish, John Larson,
Sue Manning, Scott Shenker, Howard Sturgis,
Dan Swinehart, Doug Terry, and Don Woods

ETHERPHONE: COLLECTED PAPERS 1987-1988
by Daniel C. Swinehart, Douglas B. Terry,

69

70

and Polle T. Zellweger . 70

DAT A COMPRESSION WITH FINITE WINDOWS
by Edward R. Fiala and Daniel H. Greene 72

UNIX NEEDS A TRUE INTEGRATED ENVIRONMENT:
CASE CLOSED
by Mark Weiser, L. Peter Deutsch, and
Peter B. Kessler . 72

xv

TABLE OF CONTENTS

EFFICIENT BINARY SPACE PARTITIONS FOR
HIDDEN-SURFACE REMOVAL AND SOLID
MODELING
by Michael S. Paterson and F. Frances Yao

BROWSING ELECTRONIC MAIL: EXPERIENCES
INTERFACING A MAIL SYSTEM TO A DBMS
by Jack Kent, Douglas Terry, and

73

Willie-Sue Orr . 73

EXPERIENCES CREATING A PORTABLE CEDAR
by Russ Atkinson, Alan Demers, Carl Hauser,
Christian Jacobi, Peter Kessler, and
Mark Weiser . 74

FLOATING-POINT AND COMPUTER SYSTEMS
by David Goldberg . 75

LARGE SCALE ANALYSIS OF NEURAL
STRUCTURES
by Ralph C. Merkle . 75

CONSTRAINED QUANTIFICATION IN
POLYMORPHIC TYPE ANALYSIS
by Pavel Curtis

REBUILDING DATABASE CACHES DURING
FAST CRASH RECOVERY

75

by Robert B. Hagmann . 76

A MODULE SYSTEM FOR SCHEME
by Pavel Curtis and James Rauen

COMPARING STRUCTURALLY DIFFERENT
VIEWS OF A VLSI DESIGN
by Mike Spreitzer

xvi

77

77

TABLE OF CONTENTS

AN ARCHITECTURE FOR HIGH-PERFORMANCE
SINGLE-CHIP VLSI TESTERS
by James A. Casbarro . 78

ACTIVE TIOGA DOCUMENTS
AN EXPLORATION OF TWO PARADIGMS
by Douglas B. Terry and Donald C. Baker

HICHL Y PARALLEL SPARSE CHO LESKY
FACTORIZATION
by John R. Gilbert and Robert Schreiber

SEPARATORS IN GRAPHS WITH NEGATIVE
OR MULTIPLE VERTEX WEIGHTS
by Hristo N. Djidjev and John R. Gilbert

OPTIMAL EXPRESSION EVALUATION FOR
DATA PARALLEL ARCHITECTURES
by John R. Gilbert and Robert Schreiber

APPROXIMATING TREEWIDTH, PATHWIDTH,
AND MINIMUM ELIMINATION TREE HEIGHT
by Hans L. Bodlaender, John R. Gilbert,

79

80

81

81

Hjalmtyr Hafsteinsson, Ton Kloks 82

ELIMINATION STRUCTURES FOR UNSYMMETRIC
SPARSE LU FACTORS
by John R. Gilbert and Joseph W.H. Liu

7 STEPS TO A BEDER MAIL SYSTEM

83

by Douglas Terry . 83

PHASE-SLIP TECHNIQUE FOR DIRECT
SEQUENCE SPREAD SPECTRUM
COMMUNICATION
by Edward A. Richley and Richard M. Barth

Author Index

xvii

84

85

CSL-73-1 May 1973

AN INTERACTIVE PROGRAM VERIFIER
by L. Peter Deutsch

Program verification refers to the idea that the intent or effect
of a program can be stated in a precise way that is not a
simple "rewording" of the program itself, and that one can
prove (in the mathematical sense) that a program actually
conforms to a given statement of intent. This thesis describes
a software system which can verify (prove) some non-trivial
programs automatically.

The system described here is organized in a novel manner
compared to most other theorem-proving systems. It has a
great deal of specific knowledge about integers and arrays of
integers, yet it is not "special-purpose", since this knowledge
is represented in procedures which are separate from the
underlying structure of the system. It also incorporates some
knowledge, gained by the author from both experiment and
introspection, about how programs are often constructed, and
uses this knowledge to guide the proof process. It uses its
knowledge, plus contextual information from the program
being verified, to simplify the theorems dramatically as they
are being constructed, rather than relying on a super-powerful
proof procedure. The system also provides for interactive
editing of programs and assertions, and for detailed human
control of the proof process when the system cannot produce
a proof (or counter-example) on its own.

CSL-73-2 August 1973

NEW PROGRAMMING LANGUAGES FOR Al RESEARCH
by Daniel G. Bobrow and Bertram Raphael*

New directions in Artificial Intelligence research have led to
the need for certain novel features to be embedded in
programming languages. This paper gives an overview of the
nature of these features, and their implementation in four
principal families of Al languages: SAIL; PLANNER/CONNIVER;
QLISP/INTERLISP; and POPLER/POP-1. The programming
features described include: new data types and accessing

1

CSL Technical Report Digest: 1973-1990

mechanisms for stored expressions; more flexible control
structures, including multiple processes and backtracking;
pattern matching to allow comparison of data item with a
template, and extraction of labeled subexpressions; and
deductive mechanisms which allow the programming system
to carry out certain activities including modifying the data base
and deciding which subroutines to run next using only
constraints and guidelines set up by the programmer.

*Stanford Research Institute

CSL-73-3 August 1973

THE IMPLEMENTATION OF NLS ON A MINICOMPUTER
by James G. Mitchell

This technical report covers the research performed at Xerox
Palo Alto Research Center (PARC) for the period June 30, 1972
to July 1, 1973 under Contract Number DAHCIS 72 C 0223
with the Advanced Research Projects Agency, Information
Processing Techniques Office. The research covers initial
studies and evaluation of transferring a large, display-oriented
documentation system (the NLS system developed at Stanford
Research Institute) to a minicomputer system and a protocol
for accessing NLS over the ARPANET.

CSL-73-4 December 1973

OMNIGRAPH: SIMPLE TERMINAL-INDEPENDENT
GRAPHICS SOFlWARE
by Robert F. Sproull

This paper describes a graphics subroutine package for driving
a number of different display devices with any of three
different programming languages. The Omnigraph system is
designed for routine graphics applications, not for high­
performance terminals. The success of the design is largely
due to the modest aims of the routines and to the particularly
simple framework chosen for the graphics facilities.

2

CSL Technical Report Digest: 1973-1990

This paper cites a number of design errors in the initial
Omnigraph routines, and suggests improvements. The
Omnigraph Reference Manual is reprinted as an appendix.

CSL-74-1 January 1974

A POSTMORTEM FOR A TIME SHARING SYSTEM
by Howard Ewing Sturgis

This thesis describes a time sharing system constructed by a
project at the University of California, Berkeley Campus,
Computer Center. The project was of modest size,
consuming about 30 man years. The resulting system was
used by a number of programmers. The system was designed
for a commercially available computer, the Control Data 6400
with extended core store. The system design was based on
several fundamental ideas, including:

• specification of the entire system as an abstract machine,

• a capability based protection system,

• mapped address space,

• and layered implementation.

The abstract machine defined by the first implementation layer
provided 8 types of abstractly defined objects and about 100
actions to manipulate them. Subsequent layers provided a few
very complicated additional types. Many of the fundamental
ideas served us well, particularly the concept that the system
defines an abstract machine, and capability based protection.
However, the attempt to provide a mapped address space
using unsuitable hardware was a disaster. This thesis includes
software and hardware proposals to increase the efficiency of
representing an abstract machine and providing capability
based protection. Also included is a description of a crash
recovery consistency problem for files which reside in several
levels of storage, together with a solution that we used.

3

CSL Technical Report Digest: 1973-1990

CSL-74-2 May 1974

ON DATA-LIMITED AND RESOURCE LIMITED PROCESSES
by Donald A. Norman and Daniel G. Bobrow

This paper analyzes the effect on performance when several
active processes compete for limited processing resources.
The principles discussed in this paper show that conclusions
about the interactions among psychological processes must be
made with caution, and some existing assumptions may be
unwarranted. When two (or more) processes use the same
resources at the same time, they may both interfere with one
another, neither may interfere with the other, or one may
interfere with a second without any interference from the
second process to the first. The important principles are that
a process can be limited in its performance either by limits in
the amount of available processing resources (such as memory
or processing effort) or by limits in the quality of the data
available to it. Competition among processes can affect a
resource-limited process, but not a data-limited one. If a
process continually makes preliminary results available even
before it has completed all its operations, then it is possible to
compute performance-resource operating characteristics that
show how processes interact. A number of experiments from
the psychological literature are examined according to these
processing principles, resulting in some new interpretations of
interactions among competing psychological processes.

CSL-74-3 December 1974; Revised March 1975

INTRODUCING ITERATION INTO THE PURE LISP THEOREM
PROVER
by J. Strother Moore

It is shown how the LISP iterative primitives PROG, SIETQ, GO,
and RETURN may be introduced into the Boyer-Moore method
for automatically verifying Pure LISP programs. This is done by
extending some of the previously described heuristics for
dealing with recursive functions. The resulting verification
procedure uses structural induction to handle both recursion
and iteration. The procedure does not actually distinguish
between the two and they may be mixed arbitrarily. For

4

CSL Technical Report Digest: 1973-1990

example, since properties are stated in terms of user-defined
functions, the theorem prover will prove recursively specified
properties of iterative functions. Like its predecessor, the
procedure does not require user-supplied inductive assertions
for the iterative programs.

CSL-75-1 January 1975

ON THE PROBLEM OF UNIFORM REFERENCES TO DATA
STRUCTURES
by Charles M. Geschke and James G. Mitchell

The cost of a change to a large software system is often
primarily a function of the size of the system rather than the
complexity of the · change. One reason for this is that
programs which access some given data structure must
operate on it using notations which are determined by its
exact representation. Thus, changing how it is implemented
may necessitate changes to the programs which access it. This
paper develops a programming language notation and
semantic interpretations which allow a program to operate on
a data object in a manner which is dependent only on its
logical or abstract properties and independent of its
underlying concrete representation.

CSL-75-2 April 1975

COMPUTATIONAL LOGIC: STRUCTURE SHARING AND
PROOF OF PROGRAM PROPERTIES, PART II
by J. Strother Moore

This paper describes a program which automatically proves a
wide variety of theorems about functions written in a subset of
pure LISP. Features of this program include: The program is
fully automatic, requiring no information from the user except
the LISP definitions of the functions involved and the
statement of the theorem to be proved. No inductive
assertions are required from the user. The program uses
structural induction when required, automatically generating its
own induction formulas. All relationships in the theorem are
expressed in terms of user defined LISP functions, rather than
a second logical language. The system employs no built-in

5

CSL Technical Report Digest: 1973-1990

information about any non-primitive function. All properties
required for any function involved in a proof are derived and
established automatically. The program is capable of
generalizing some theorems in order to prove them; in doing
so, it often generates interesting lemmas. The program can
write new, recursive LISP functions automatically in attempting
to generalize a theorem. Finally, the program is very fast by
theorem proving standards, requiring around 10 seconds per
proof.

CSL-75-3 April 1975

A SPACE-ECONOMICAL SUFFIX TREE CONSTRUCTION
ALGORITHM
by Edward M. Mccreight

The first section presents a new algorithm for constructing
auxiliary digital search trees to aid in exact-match substring
searching. This algorithm has the same asymptotic running­
time bound as previously published algorithms, but is more
economical in space. The second section discusses some
implementation considerations. The third section presents
new work dealing with how to modify these search trees in
response to incremental chan'ges in the strings they index (the
update problem).

CSL-75-4 July 1975

SOME PRINCIPLES OF MEMORY SCHEMATA
by Daniel G. Bobrow and Donald A. Norman*

This paper deals with two related issues about memory:
access and processing. Consideration of the properties of
human memory lead us to suggest that memory is organized
into structural units: schemata. We suggest that memory
schemata refer to one another by means of context
dependent descriptions that specify the referent
unambiguously only with respect to a particular context. We
argue that this method of memory reference has a number of
desirable features for any intelligent memory system. For one,
it leads automatically to metaphorical and analogical match of

6

CSL Technical Report Digest: 1973-1990

memory structures. For another, it produces systems that are
robust and relatively insensitive to errors.

Consideration of systems which have limits on processing
resources leads to some basic principles of processing that
apply to memory structures. The quality of output of some
processes is limited by the quality of data available to them
(these are data-limited processes). The quality of the output
of other processes is limited by the amount of processing
resources available to them (these are resource-limited
processes). All processes are either data-limited or resource­
limited. We suggest that the overall system is driven from two
levels--by the data, and by concepts or hypotheses of what is
expected. These considerations of processing principles
provide some useful interpretations of psychological
phenomena, and suggest possible useful computational
models for artificial systems.

*Department of Psychology, University of California at San
Diego

CSL-75·5 July 1975

DIMENSIONS OF REPRESENTATION
by Daniel G. Bobrow

A set of questions is presented concerning representations of
knowledge. The questions are organized in terms of a
framework in which knowledge of a world-state is derived by
mapping the world to a knowledge base. The dimensions of
representation are defined in terms of design issues which
must be faced or finessed in any representation. Issues
considered include correspondence between operations on
the world and on the knowledge base, organization of the
mapping process, inference which would make explicit
knowledge which would otherwise be implicit, philosophy and
mechanisms of access to elements of the knowledge base,
pattern matching in knowledge processing, types of self­
awareness an understander system might have, and use of
multiple representations. These dimensions are illustrated with
examples from the literature. The differences between

7

CSL Technical Report Digest: 1973-1990

analogical and propositional representations are illuminated by
consideration along the multiple dimensions of representation.

CSL-75-6 July 1975

SUBGOAL INDUCTION
by James H. Morris, Jr., and Ben Wegbreit

A new proof method, subgoal induction, is presented as an
alternative or supplement to the commonly used inductive
assertion method. Its major virtue is that it can often be used
to prove a loop's correctness directly from its input-output
specification without the use of an invariant. The relation
between subgoal induction and other commonly used
induction rules is explored and, in particular, it is shown that
subgoal induction can be viewed as a specialized form of
computation induction. Finally, a set of sufficient conditions
are presented which guarantee that an input-output
specification is strong enough for the induction step of a
proof by subgoal induction to be valid.

CSL-75·7 November 1975

ETHERNET: DISTRIBUTED PACKET SWITCHING FOR LOCAL
COMPUTER NETWORKS
by Robert M. Metcalfe and David R. Boggs

Ethernet is a branching broadcast communication system for
carrying digital data packets among locally distributed
computing stations. The packet transport mechanism
provided by Ethernet has been used to build systems which
can be viewed as either local computer networks or loosely
coupled multiprocessors.

An Ethernet's shared communication facility, its Ether, is a
passive broadcast medium with no central control.
Coordination of access to the Ether for packet broadcasts is
distributed among the contending transmitting stations using
controlled statistical arbitration. Switching of packets to their
destinations on the Ether is distributed among the receiving
stations using packet address recognition.

8

CSL Technical Report Digest: 1973-1990

Design principles and implementation are described based on
experience with an operating Ethernet of 100 nodes along a
kilometer of coaxial cable. A model for estimating
performance under heavy loads and a packet protocol for
error-controlled communication are included for
completeness.

CSL-75·8 September 1975

GOAL-DIRECTED PROGRAM TRANSFORMATION
by Ben Wegbreit

Program development often proceeds by transforming simple,
clear programs into complex, involuted, but more efficient
ones. This paper examines ways this process can be rendered
more systematic. We show how analysis of program
performance, partial evaluation of functions. and abstraction of
recursive function definitions from recurring subgoals can be
combined to yield many global transformations in a methodical
fashion. Examples are drawn from compiler optimization, list
processing, very high level languages, and APL execution.

CSL-76·1 July 1976

A FAST STRING SEARCHING ALGORITHM
by Robert S. Boyer* and). Strother Moore*

An algorithm is presented that searches for the location, i, of
the first occurrence of a character string, pat, in another string,
string. During the search operation, the characters of pat are
matched starting with the last character of pat. The
information gained by starting the match at the end of the
pattern often allows the algorithm to proceed in large jumps
through the text being searched. Thus, the algorithm has the
unusual property that, in most cases, not all of the first i
characters of string are inspected. The number of characters
actually inspected (on the average) decreases as a function of
the length of pat. For a random English pattern of length 5,
the algorithm will typically inspect i/4 characters of string
before finding a match at i. Furthermore, the algorithm has
been implemented so that (on the average) fewer than
i + patlen machine instructions are executed. These

9

CSL Technical Report Digest: 1973-1990

conclusions are supported with empirical evidence and a
theoretical analysis of the average behavior of the algorithm.
The worst case behavior of the algorithm is linear in I+ patlen,
assuming the availability of array space for tables linear in
patlen plus the size of the alphabet.

*Stanford Research Institute, Computer Science Group

CSL-76-2 July 1976

CONSTRUCTIVE METHODS IN PROGRAM VERIFICATION
by Ben Wegbreit

Most current approaches to mechanical program verification
transform a program, and its specifications into first order
formulas and try to prove these formulas valid. Since the first
order predicate calculus is not decidable, such approaches are
inherently limited. This paper proposes an alternative
approach to program verification: Correctness proofs are
constructively established by proof justifications written in an
algorithmic notation. These proof justifications are written as
part of the program, along with the executable instructions
and correctness specifications. A notation is presented in
which instructions, specifications, and justifications are neatly
interwoven. The justifications establish the collection between
the instructions and specifications; they document the
reasoning on which the correctness is based. Programs so
written may be verified by proving the truth of quantifier-free
logical formulas.

CSL-76-3 July 1976

THE ANALYSIS OF HASHING ALGORITHMS
by Leonidas J. Guibas

In this thesis we relate the performance of hashing algorithms
to the notion of clustering, that is the pile-up phenomenon
that occurs because many keys may probe the table locations
in the same sequence. We will say that a hashing technique
exhibits k-ary clustering if the search for a key begins with k
independent random probes and the subsequent sequence of
probes is completely determined by the location of the k

10

CSL Technical Report Digest: 1973-1990

initial probes. Such techniques may be very bad; for instance,
the average number of probes necessary for insertion may
grow linearly with the table size. However, on the average
(that is if the permutations describing the method are
randomly chosen), k-ary clustering techniques for k > 1 are very
good. In fact the average performance is asymptotically
equivalent to the performance of uniform probing, a method
that exhibits no clustering and is known to be optimal in a
certain sense.

Perhaps the most famous among tertiary clustering techniques
is double hashing, the method in which we probe the hash
table along arithmetic progressions where the initial element
and the increment of the progression are chosen randomly
and independently depending only on the key K of the search.
We prove that double hashing is also asymptotically equivalent
to uniform probing for load factors a not exceeding a certain
constant ao = . 31... . Our proof method has a difkrent flavor
from those previously used in algorithmic analysis. We begin
by showing that the tail of the hypergeometric distribution a
fixed percent away from the mean is exponentially small. We
use this result to prove that random subsets of the finite ring
of integers modulo m of cardinality am have always nearly the
expected number of arithmetic progressions of length k,
except with exponentially small probability. We then use this
theorem to start up a process (called the extension process) of
looking at snapshots of the table as it fills up with double
hashing. Between steps of the extension process we can
show that the effect of clustering is negligible, and that we
therefore never depart too far from the truly random situation.

CSL-76-4 July 1976

AN OVERVIEW OF KR.L, A KNOWLEDGE REPRESENTATION
LANGUAGE
by Daniel G. Bobrow and Terry Winograd*

This paper describes KRL, a Knowledge Representation
Language designed for use in understander systems. It
outlines both the general concepts which underlie our
research and the details of KRL-0, an experimental
implementation of some of these concepts. KRL is an attempt

11

CSL Technical Report Digest: 1973-1990

to integrate procedural knowledge with a broad base of
declarative forms. These forms provide a variety of ways to
express the logical structure of the knowledge, in order to
give flexibility in associating procedures (for memory and
reasoning) with specific pieces of knowledge, and to control
the relative accessibility of different facts and descriptions.
The formalism for declarative knowledge is based on
structured conceptual objects with associated descriptions.
These objects form a network of memory units with several
different sorts of linkages, each having well-specified
implications for the retrieval process. Procedures can be
associated directly with the internal structure of a conceptual
object. This procedural attachment allows the steps for a
particular operation to be determined by characteristics of the
specific entities involved.

The control structure of KRL is based on the belief that the
next generation of intelligent programs will integrate data­
directed and goal-directed processing by using multi­
processing. It provides for a priority-ordered multi-process
agenda with explicit (user-provided) strategies for scheduling
and resource allocation. It provides procedure directories
which operate along with process frame works to allow
procedural parametrization of the fundamental system
processes for building, comparing, and retrieving memory
structures. Future development of KRL will include integrating
procedure definition with the descriptive formalism.

*Stanford University Al Laboratory

CSL-76-5 September 1976

THE INTERLISP VIRTUAL MACHINE SPECIFICATION
by J. Strother Moore

The INTERLISP Virtual Machine is the environment in which the
INTERLISP System is implemented. It includes such abstract
objects as "Literal Atoms," "List Cells," "Integers," etc., the
basic LISP functions for manipulating them, the underlying
program control and variable binding mechanisms, the
input/output facilities, and interrupt processing facilities. In
order to implement the INTERLISP System (as described in The
INTERLISP Reference Manual by W. Teitelman, et al.) on some
physical machine, it is only necessary to implement the

12

CSL Technical Report Digest: 1973-1990

INTERLISP Virtual Machine, since Virtual Machine compatible
source code for the rest of the INTERLISP System can be
obtained from publicly available files. This document specifies
the behavior of the INTERLISP Virtual Machine from the
implementor's point of view. That is, it is an attempt to make
explicit those things which must be implemented to allow the
INTERLISP System to run on some machine.

CSL-76-6 October 1976

EARLY EXPERIENCES WITH MESA
by Charles Geschke, James H. Morris and Ed Satterthwaite

The experiences of Mesa's first users primarily its
implementors -- are discussed, and some implications for Mesa
and similar programming languages are suggested. The
specific topics addressed are:

module structure and its use in defining abstractions,
data-structuring facilities in Mesa,
equivalence algorithm for types and type coercions,
benefits of the type system and why it is breached
occasionally,
difficulty of making the treatment of variant records
safe.

CSL-76-7 December 1976

META-PROGRAMMING: A SOFTWARE PRODUCTION
METHOD
by Charles Simonyi

This thesis describes an organizational schema, designed to
yield very high programming productivity in a simplified task
environment which excludes scheduling, system design,
documentation, and other engineering activities. The leverage
provided by high productivity can, in turn, be used to simplify
the engineering tasks. Difficulty of communications within a
production team, caused by the inherently rapid creation of
problem specific local language, is posited as the major
obstacle to the improvement of productivity. The thesis
proposes a combination of ideas for simplifying

13

CSL Technical Report Digest: 1973-1990

communications between programmers. Meta-programs are
informal, written communications, from the meta-programmer,
who creates the local language, to technicians who learn it and
actually write the programs.

The abstract notion of local language is resolved into the
questions: What are the objects that should be named, and
what should their names be? The answers involve the concept
of painted types (related to types in programming languages),
and naming conventions based on the idea of identifying
objects by their types. A method of state vector syntax
checking for debugging the programs produced in the high
productivity environment is described.

Descriptions of the relationships or contrasts between the
meta-programming organization and the relevant software
engineering concepts of high level languages, egoless
programming, structured programming, Chief Programmer
Teams, and automatic program verification are also given.

To verify the predictions of the meta-programming theory, a
series of experiments were performed. In one of the projects,
three programs were produced from the same specifications,
by three different groups in a controlled experiment. During
the longest experiment 14,000 lines of code were written, at
an average rate of 6.12 lines/man-hour. The controlled
experiments showed that comparable results can be obtained
by different persons acting as meta-programmers. The difficult
experimental comparisons of the meta-programming and
conventional organizations, however, yielded interesting, but
inconclusive, results.

CSL-77-1

SCHEMES: A HIGH LEVEL DATA STRUCTURING CONCEPT
by James G. Mitchell and Ben Wegbreit

In recent years, programming languages have provided better
constructs for data type definitions and have placed increasing
reliance on type machinery for protection, modularization, and
abstraction. This paper introduces several new constructs
whic;:h further these ends. Types may be defined as similar to

14

CSL Technical Report Digest: 1973-1990

existing types, extended by additional properties. Schemes
are type-parameterized definitions. For example, symbol
tables and symbol table operations can be defined as a
scheme with the key and value types as parameters; an
instantiation of the scheme implements a specific type of
symbol table. Because new types are typically defined along
with other related types, an instantiated scheme may export a
set of new types. A set of schemes with a common name and
common external behavior can be viewed as alternative
implementations of an abstraction. Parameter specifications
associated with each scheme are used to select the
appropriate implementation for each use.

CSL-77-2 July 1977

STRATEGY CONSTRUCTION USING A SYNTHESIS OF
HEURISTIC AND DECISION-THEORETIC METHODS
by Robert F. Sproull

This report describes a framework for constructing plans, or
strategies, in which aspects of mathematical decision theory
are incorporated into symbolic problem-solving techniques
currently dominant in artificial intelligence. The utility function
of decision theory is used to reveal tradeoffs among
competing strategies for achieving various goals, taking into
account reliability. the complexity of steps in the strategy, the
value of the goal, and so forth. The utility function aids
searching for good strategies, acquiring a world model.
allocating planning effort, and organizing a hierarchical
problem-solving system.

A problem-solving system that prepares travel itineraries is
presented as a case study in integrating the techniques of
decision theory and artificial intelligence. The system uses a
model of the traveler's utility to organize a search for good
solutions. The hierarchical structure of the search narrows the
search by finding crude plans and then further refining them.

A central observation of this work is that locating an optimal
strategy is not the proper procedure when the costs of the
planning itself are taken into account. Instead, we desire to
engage in optimal planning, in which the total expenditure of

15

CSL Technical Report Digest: 1973-1990

effort to find and execute the solution is in some sense
optimal.

CSL-77-3 March 1977

A DISPLAY ORIENTED PROGRAMMER'S ASSISTANT
by Warren Teitelman

This paper continues and extends previous work by the author
in developing systems which provide the user with various
forms of explicit and implicit assistance, and in general
cooperate with the user in the development of his programs.
The system described in this paper makes extensive use of a
bit map display and pointing device (a mouse) to significantly
enrich the user's interactions with the system, and to provide
capabilities not possible with terminals that essentially emulate
hard copy devices. For example, any text that is displayed on
the screen can be pointed at and treated as input, exactly as
though it were typed, i.e., the user can say use this expression
or that value, and then simply point. The user views his
programming environment through a collection of display
windows, each of which corresponds to a different task or
context. The user can manipulate the windows, or the
contents of a particular window, by a combination of keyboard
inputs or pointing operations. The technique of using different
windows for different tasks makes it easy for the user to
manage several simultaneous tasks and contexts, e.g., defining
programs, testing programs, editing, asking the system for
assistance, sending and receiving message, etc. and to switch
back and forth between these tasks at his convenience.

CSL-77-4 June 1977

A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF HOARE LOGICS
by Richard J. Lipton

A necessary and sufficient condition is obtained for the
existence of Hoare Logics for a large class of programming
languages. In addition, Cook's concept of expressiveness is
shown to be a very powerful restriction on the assertion
language.

16

CSL Technical Report Digest: 1973-1990

CSL-78-3 September 1978

EMPIRICAL ESTIMATES OF PROGRAM ENTROPY
by Richard E. Sweet

We wish to investigate compact representation of object
programs, therefore we wish to measure entropy, the average
information content of programs. This number tells how many
bits, on the average, would be needed to represent a program
in the best possible encoding. A collection of 114 MESA
programs, comprising approximately a million characters of
source text, is analyzed. For analysis purposes, the programs
are represented by trees, obtained by taking the parse trees
from the compiler before the code generation pass and
merging some of the symbol table information into them.

A new definition is given for a Markov source where the
concept of "previous" is defined in terms of the tree structure,
and this definition is used to model the MESA program source.
The lowest entropy value for these Markov models is 1.7 bits
per tree node, assuming dependencies of each node on its
grandfather, father, and elder brother (order 3). These
numbers compare with an approximate 10 bits per node
required for a naive encoding, and an equivalent of 3.2 bits
per node of code generated by the existing compiler.
Motivated by sample set limitations for higher order models,
we derive an entropy formula in which the order is non­
uniform.

The non-uniform entropy formulas are particularly suited to
trees, where we can now speak of conditional probabilities in
terms of patterns or arbitrarily shaped contexts around a node.
A method called pattern refinement is presented whereby
patterns are "grown", i.e., the set of nodes matching an
existing pattern is divided into those matching a larger pattern
and those remaining. A proof is given that the process always
leads to a lower estimate unless the old and new patterns
induce exactly the same conditional probabilities. The result
of applying this technique to the sample was an estimate of
1.6 bits per node. Further application would reduce this
number even more.

17

CSL Technical Report Digest: 1973-1990

Analytic solutions for the error bounds in approximating the
entropy of a Markov source are very difficult to obtain, so an
experimental approach is used to gauge a confidence figure
for the estimate. These calculations suggest that a more
accurate estimate would be 1.8 bits per node, with a standard
deviation of 13%. This corresponds to an entropy of .54 bits
per character of source program.

The methods of this thesis can be used both to define a
bound for code compression and to evaluate existing object
code.

CSL-78-4 September 1978

USING ENCRYPTION FOR AUTHENTICATION IN LARGE
NETWORKS OF COMPUTERS
by Roger M. Needham and Michael D. Schroeder

Use of encryption to achieve authenticated communication in
computer networks is discussed. Example protocols are
presented for the establishment of authenticated connections,
for the management of authenticated mail, and for signature
verification and document integrity guarantee. Both
conventional and public-key encryption algorithms are
considered as the basis for protocols.

CSL-78-5 September 1978

SEPARATING DATA FROM FUNCTION IN A DISTRIBUTED
FILE SYSTEM
by Jay E. Israel, James G. Mitchell and Howard E. Sturgis

This paper discusses an independent file facility, one that is
not embedded in an operating system. The distributed file
system (DFS) is so named because it is implemented on a
cooperating set of server computers connected by a
communications network, which together create the illusion of
a single, logical system for the creation, deletion and random
accessing of data. Access to the DFS can only be
accomplished over the network; a computer (or, more
precisely, a program running on one) that uses the DFS is

18

CSL Technical Report Digest: 1973-1990

called a client. This paper describes the division of
responsibility between servers and clients. We discuss
examples of situations in which a client is expected to take
prescribed steps in order to achieve its intended result. The
basic tool for maintaining data consistency in these situations
is the atomic property of file actions. This is a DFS feature
that protects clients from system malfunctions and from the
competing activities of other clients. We have implemented a
experimental system based on these concepts.

CSL-78-6 November 1978

CONSISTENT AND COMPLETE PROOF RULES FOR THE
TOTAL CORRECTNESS OF PARALLEL PROGRAMS
by Lawrence Flon and Norihisa Suzuki

We describe a formal theory of the total correctness of parallel
programs, including such heretofore theoretically incomplete
properties as safety from deadlock and starvation. We present
a consistent and complete set of proof rules for the total
correctness of parallel programs expressed in nondeterministic
form.

The proof of consistency and completeness is novel in that we
show that the weakest preconditions for the correctness
criteria are actually fixed-points (least or greatest) of
continuous functions over the complete lattice of total
predicates. We have obtained proof rule schemata which can
universally be applied to lead or greatest fixed points of
continuous functions. Therefore, our proof rules are a priori
consistent and complete once it is shown that certain weakest
preconditions are extremum fixed-points. The relationship
between true parallelism and nondeterminism is also
discussed.

19

CSL Technical Report Digest: 1973-1990

CSL-79-1 January 1979

MONITORING SYSTEM BEHAVIOR IN A COMPLEX
COMPUTATIONAL ENVIRONMENT
by Mitchell L. Model

Complex programming environments such as the
representation systems constr.ucted in Artificial Intelligence
research present new kinds of difficulties for their users. A
major part of program development involves debugging, but
in a complex environment the traditional tools and techniques
available for this task are inadequate. Not only do traditional
tools address state and process elements at too low a
conceptual level, but an Artificial Intelligence System typically
imposes its own data and control structures on top of those of
its implementation language, thereby evading the reach of
traditional program-level debugging tools. This work is
directed at the development of appropriate monitoring tools
for complex systems, in particular, the representation systems
of Artificial Intelligence research.

The first half of this work provides the foundation for the
design approach put forth and demonstrated in the second.
Certain facts concerning limitations on human information
processing abilities which formed the background for much of
the research are introduced. The nature of computer
programs is discussed, and a concept of "computational
behavior" defined. A thematic survey of traditional debugging
tools is presented, followed by a summary of recent work.
Observation of program behavior (''monitoring") is shown to
be the main function of most debugging tools and techniques.
Concluding this first part is an analysis of the particular
difficulties involved in monitoring the behavior of programs in
large and complex Al systems.

The second half presents an approach to the design of
monitoring facilities for complex systems. The need for
system-level tools similar to the ones traditionally available is
indicated. A new concept called "meta-monitoring" replaces
traditional dumps and traces with selective reporting of high­
level information about computations. The importance of the
visually-oriented analogical presentation of high-level

20

CSL Technical Report Digest: 1973-1990

information and the need to take into account differences
between states and active processes are stressed. A
generalized method for generating descriptions of system
activity is developed. This method is based on a theoretical
schematization of the fundamental structures and operations
of computational systems and is easily instantiated for any
particular Al system. Some specific display-based monitoring
tools and techniques which were implemented for this work
are exhibited. Several of the experimental monitoring facilities
which were constructed in accordance with the principles of
the proposed approach are described and their application to
existing Artificial Intelligence Systems illustrated. While much
of the research was performed in the context of the KRL-1
system developed at Xerox Palo Alto Research Center, the
general applicability of the theory and techniques of the
present work is demonstrated by one of these facilities, which
acts as a monitor for MYCIN, a medical diagnosis system
developed at Stanford University that embodies knowledge in
the form of production rules.

CSL-79-3 April 1979

MESA LANGUAGE MANUAL VERSION 5.0
by J.G. Mitchell, W. Maybury, R. Sweet

The Mesa language is one component of a programming
system intended for developing and maintaining a wide range
of systems and applications programs. Mesa supports the
development of systems composed of separate modules with
controlled sharing of information among them. The language
includes facilities for user-defined data types, strong compile­
time checking of both types and interfaces, procedure and
coroutine control mechanisms, and control structures for
dealing with concurrency and exceptional conditions.

21

CSL Technical Report Digest: 1973-1990

CSL-79-4 April 1979

TRANSPORT OF ELECTRONIC MESSAGES THROUGH A
NETWORK
by R. Levin and M. Schroeder

We list design objectives for a distributed mechanism to
transport digital memoranda in a network, and discuss the
associated administrative functions. We examine registering,
authenticating, locating, and grouping users; define name
mappings associated with message delivery; and consider the
distribution of services among the computing elements in a
network. Based on these analyses, we outline the structure
for a distributed transport mechanism.

CSL-79-5 June 1979

FORMALIZING THE ANALYSIS OF ALGORITHMS
by Lyle Harold Ramshaw

Consider the average case analyses of particular deterministic
algorithms. Typical arguments in this area can be divided into
two phases. First by using knowledge about what it means to
execute a program, an analyst characterizes the probability
distribution of the performance parameter of interest by
means of some mathematical construct, often a recurrence
relation. In the second phase, the solution of this recurrence
is studied by purely mathematical techniques. Our goal is to
build a formal system in which the first phases of these
arguments can be reduced to symbol manipulation.

Formal systems currently exist in which one can reason about
the correctness of programs by manipulating predicates that
describe the state of the executing process. The construction
and use of such systems belongs to the field of program
verification. We want to extend the ideas of program
verification, in particular, the partial correctness techniques of
Floyd and Hoare, to allow assertions that describe the
probabilistic state of the executing process to be written and
manipulated. Ben Wegbreit proposed a system that extended
Floyd-Hoare techniques to handle performance analyses, and
we shall take Wegbreit's system as our starting point. Our

22

CSL Technical Report Digest: 1973-1990

efforts at formal system construction will also lead us to a
framework for program semantics in which programs are
interpreted as linear functions between vector spaces of
measures. This framework was recently developed by
Dexter Kozen, and we shall draw upon his results as well.

We shall call our formal system the frequency system. The
atomic assertions in this system specify the frequencies with
which Floyd-Hoare predicates hold. These atomic assertions
are combined with logical and arithmetic connectives to build
assertions, and the rules of the frequency system describe how
these assertions change as the result of executing program
statements. The rules of the frequency system are sound, but
not complete.

We then discuss the use of the frequency system in several
average case analyses. In our examples, symbol manipulation
in the frequency system leads directly to the recurrence
relation that describes the distribution of the chosen
performance parameter. The last of these examples is the
algorithm that performs a straight insertion sort.

CSL-79-6 June 1979

RASTER GRAPHICS FOR INTERACTIVE PROGRAMMING
ENVIRONMENTS
by Robert F. Sproull

Raster-scan display terminals can significantly improve the
quality of interaction with conventional computer systems.
The design of a graphics package to provide a "window" into
the extensive programming environment of Interlisp is
presented. Two aspects of the package are described: first,
the functional view of display output and interactive input
facilities as seen by the programmer, and second, the methods
used to link the display terminal to the main computer via a
packet-switched computer network. Recommendations are
presented for designing operating systems and programming
languages so as to simplify attaching display terminals. An
appendix contains detailed documentation of the graphics
package.

23

CSL Technical Report Digest: 1973-1990

CSL-79·7 June 1979

COMPACT ENCODINGS OF LIST STRUCTURE
by Daniel G. Bobrow and Douglas W. Clark

List structures provide a general mechanism for representing
easily changed structured data, but can introduce inefficiencies
in the use of space when fields of uniform size are used to
contain pointers to data and to link the structure. Empirically
determined regularity can be exploited to provide more space
efficient encodings without losing the flexibility inherent in list
structures. The basic scheme is to provide compact pointer
fields big enough to accommodate most values that occur in
them, and to provide "escape" mechanisms for exceptional
cases. Several examples of encoding designs are presented
and evaluated, including two designs currently used in Lisp
machines. Alternative escape mechanisms are described, and
various questions of cost and implementation are discussed.
In order to extrapolate our results to larger systems than those
measured, we propose a model for the generation of list
pointers, and test the model against data from two programs.
We show that according to our model, list structures with
compact cdr fields will, as address space grows, continue to
be compacted well with a fixed width small field. Our
conclusion is that with a microcodable processor, about a
factor of two gain in space efficiency for list structure can be
had for little or no cost in processing time.

CSL-79·8 October 1979

CODE GENERATION AND MACHINE DESCRIPTIONS
by R.G.G. Cattell

This is a collection of three papers covering a Ph.D.
dissertation, "Formalization and Automatic Derivation of Code
Generators," Cattell[1978]. The papers are revised reprints of
versions appearing in the literature. The papers describe,
respectively,

1. A code generator generator (this paper includes an
overview of the thesis),

24

CSL Technical Report Digest: 1973-1990

2. The model of machines (instruction set processors), and

3. The table-driven code generator and portions of the
compiler in which it operates.

The tables for the code generator (3) are derived by the code
generator generator (1) from the machine description (2).
Thus the three papers describe the three main parts of the
thesis work.

CSL-79-9 November 1979

AN ENTITY-BASED DATABASE INTERFACE
by R.G.G. Cattell

A user interface to a database designed for casual, interactive
use is presented. The system is entity-based: the data display
to the user is based upon entities (e.g., persons, documents,
organizations) that participate in relationships, rather than
upon relations alone as in the relational data model
(Codd[1970)). Examples from an implementation of the
system are shown, for a prototype personal database (PDB),
developed in connection with the ZOG system at Carnegie­
Mellon University (Robertson et al[1977)). Some details of the
interface and associated issues concerning relational normal
forms, views, and knowledge-based assistance are presented.
Experience with the prototype system suggests that the entity­
based presentation is appropriate for types of casual
interactive use that existing database interfaces do not
address, such as browsing. It is proposed that such an
interface could be used to supplement a query language or
other interface to allow users both kinds of views of the data.

CSL-79· 10 July 1979

PUP: AN INTERNETWORK ARCHITECTURE
by David R. Boggs, John F. Shoch, Edward A. Taft, and
Robert M. Metcalfe

Pup is the name of an internet packet format (PARC Universal
Packet), a hierarchy of protocols, and a style of internetwork

25

CSL Technical Report Digest: 1973-1990

communication. The fundamental abstraction is an end-to-end
media-independent internetwork datagram. Higher levels of
functionality are achieved by end-to-end protocols that are
strictly a matter of agreement among the communicating end
processes.

This report explores important design issues, sets forth
principles that have guided the Pup design, discusses the
present implementation in moderate detail, and summarizes
experience with an operational internetwork. This work serves
as the basis for a functioning internetwork system that
provides service to about 1000 computers, on 25 networks of
5 different types, using 20 internetwork gateways.

CSL-79-11 August 1979

ALTO: A PERSONAL COMPUTER
by C.P. Thacker, E.M. Mccreight, B.W. Lampson, R.F.
Sproull, and D.R. Boggs

The Alto is a small computer system designed in early 1973 as
an experiment in personal computing. Its principal
characteristics, some of the design choices that led to the
implementation, and some of the applications for which the
Alto has been used are discussed.

CSL-79-12 September 1979

VIOLET: AN EXPERIMENTAL DECENTRALIZED SYSTEM
by David Gifford

Over the past year we have been designing and constructing
an experimental decentralized information system called
Violet. The lowest levels of the Violet system make it easy to
construct a distributed user application by hiding the
application's decentralized environment. Violet's first
application, a calendar system, provides a sophisticated user
interface to a simple relational data base manager. This paper
presents our experience with the design and implementation
of Violet. We discuss a new algorithm for replicated data
which is implemented by Violet, and discoveries we have
made about desirable concurrency modes for shared files. The

26

CSL Technical Report Digest: 1973-1990

conclusion outlines what we consider to be desirable design
features for decentralized information systems.

CSL-79-13 October 1979

WFS: A SIMPLE SHARED FILE SYSTEM FOR A DISTRIBUTED
ENVIRONMENT
by D. Swinehart, G. McDaniel and D. Boggs

WFS is a shared file server available to a large network
community. WFS responds to a carefully limited repertoire of
commands transmitted through a network by client programs,
and can be viewed as a remote intelligent disk controller. The
system does not utilize network connections, but instead
services independent page-level requests, one per per packet.
The design emphasizes reliance upon client programs to
implement the traditional facilities (stream 1/0, a directory
system, etc.) of a file system. The use of atomic file commands
and connectionless network protocols nearly eliminates the
need for WFS to maintain state information from request to
request. Various uses of the system are discussed and
extensions are proposed to provide security and protection
without violating the design principles.

CSL-79-14 September 1979

WEIGHTED VOTING FOR REPLICATED DATA
by David K. Gifford

In a new algorithm for maintaining replicated data, every copy
of a replicated file is assigned some number of votes. Every
transaction collects a read quorum of r votes to read a file,
and a write quorum of w votes to write a file, such that r + w
is greater than the total number of votes assigned to the file.
This ensures that there is a non-null intersection between
every read quorum and every write quorum. Version numbers
make it possible to determine which copies are current. The
reliability and performance characteristics of a replicated file
can be controlled by appropriately choosing r, w, and the file's
voting configuration. The algorithm guarantees serial
consistency, admits temporary copies in a natural way by the
introduction of copies with no votes, and has been

27

CSL Technical Report Digest: 1973-1990

implemented in the context of an application system called
Violet.

CSL-80-1 January 1980

FORMAL SPECIFICATION AS A DESIGN TOOL
by J. Guttag and J. Horning

The formulation and analysis of a design specification is almost
always of more utility than the verification of the consistency
of a program with its specification. Good specification tools
can assist in this process, but have generally not been
proposed and evaluated in this light. In this paper we outline
a specification language combining algebraic axioms and
predicate transformers, present part of a non-trivial example
(the specification of a high-level interface to a display), and
finally discuss the analysis of this specification.

CSL-80-2 February 1980

THE ETHERNET LOCAL NElWORK: THREE REPORTS
by R. Metcalfe, D. Boggs, R. Crane, E. Taft, J. Shoch and
J. Hupp

This report reproduces previously published papers on the
Ethernet local-area communications network:

• Ethernet: Distributed Packet Switching for Local
Computer Networks, by Robert M. Metcalfe and David R.
Boggs. Appeared in Communications of the ACM, vol. 19,
no. 7, July 1976.

• Practical Considerations in Ethernet Local Network
Design, by Ronald C. Crane and Edward A. Taft.
Presented at the Hawaii International Conference on
System Sciences, January 1980.

• Measured Performance of an Ethernet Local Network,
by John F. Shoch and Jon A. Hupp. A preliminary version
was presented at the Local Area Communications Network
Symposium, Boston, May 1979.

28

CSL Technical Report Digest: 1973-1990

The first paper introduces the Ethernet-style network, a multi­
access broadcast packet-switched communication system, and
presents the theory (CSMNCD) that underlies it. The second
paper discusses the design and implementation of the
prototype Ethernet system, and the final paper presents
performance results based on several years' practical
experience with that system.

CSL-80-3 March 1980

A CLIENT-BASED TRANSACTION SYSTEM TO MAINTAIN
DATA INTEGRITY
by William H. Paxton

This paper describes a technique for maintaining data integrity
that can be implemented using capabilities typically found in
existing file systems. Integrity is a property of a total
collection of data. It cannot be maintained simply by using
reliable primitives for reading and writing single units -- the
relations between the units are important also. The technique
suggested in this paper ensures that data integrity will not be
lost as a result of simultaneous access or as a result of crashes
at inopportune times. The approach is attractive because of
its relative simplicity and its modest demands on the
underlying file system. The paper gives a detailed description
of how consistent, atomic transactions can be implemented by
client processes communicating with one or more file server
computers. The discussion covers file structure, basic client
operations, crash recovery, and includes an informal
correctness proof.

CSL-80·4 March 1980

EFFICIENT DYNAMIC PROGRAMMING USING
QUADRANGLE INEQUALITIES
by F. Frances Yao

Dynamic programming is one of several widely used problem­
solving techniques in computer science and operation
research. In applying this technique, one always seeks to find
speed-up by taking advantage of special properties of the
problem at hand. However, in the current state of art, ad hoc

29

CSL Technical Report Digest: 1973-1990

approaches for speeding up seem to be characteristic; few
general criteria are known. In this paper we give a quadrangle
inequality condition for rendering speed-up. This condition is
easily checked, and can be applied to several apparently
different problems. For example, it follows immediately from
our general condition that the construction of optimal binary
search trees may be speeded up from O(nj) steps to 0(n2), a
result that was first obtained by Knuth using a different and
more complicated argument.

CSL-80-5 December 1980

A LAYERED APPROACH TO SOFTWARE DESIGN
by Ira P. Goldstein and Daniel G. Bobrow

Software engineers create alternative designs for their
programs, develop these designs to various degrees, compare
their properties, then choose among them. Yet most software
environments do not allow alternative definitions of
procedures to exist simultaneously. It is our hypothesis that
an explicit representation for alternative designs can
substantially improve a programmer's ability to develop
software. To support this hypothesis, we have implemented
an experimental Personal Information Environment (PIE) that
has been employed to create alternative software designs,
examine their properties, then choose one as the production
version. PIE is based on the use of layered networks.
Software systems are described in networks; alternatives are
separated by being described in different layers. We also
demonstrate that this approach has additional benefits as a
data structure for supporting cooperative design among team
members and as a basis for integrating the development of
code with its associated documentation.

CSL-80-6 October 1980

THE DISPLAY OF CHARACTERS USING GRAY LEVEL SAMPLE
ARRAYS
by J.E. Warnock

Character fonts on raster scanned display devices are usually
represented by arrays of bits that are displayed as a matrix of

30

CSL Technical Report Digest: 1973-1990

black and white dots. This paper reviews a filtering and
sampling method as applied to characters for building multiple
bit per pixel arrays. These arrays can be used as alternative
character representations for use on devices with gray scale
capability. Discussed in this paper are both the filtering
algorithms that are used to generate gray scale fonts and some
consequences of using gray levels for the representation of
fonts including:

1. The apparent resolution of the display is increased when
using gray scale fonts allowing smaller fonts to be used
with higher apparent positional accuracy and readability.
This is especially important when using low resolution
displays.

2. Fonts of any size and orientation can be generated
automatically from suitable high precision representations.
This automatic generation removes the tedious process of
"bit tuning" fonts for a given display.

CSL-80-7 May 1980

DISPLAYED DATA STRUCTURES FOR INTERACTIVE
DEBUGGING
by Brad A. Myers

Many modern computer languages have a variety of basic data
types and allow the programmer to define more. The facilities
for debugging programs written in these languages, however,
seldom provide any capabilities to capture the abstraction
represented in the programmer's mind by the data types.
Incense, the system described here, is a working prototype
system that allows the programmer to interactively investigate
data structures in programs. The desired displays can be
specified by the programmer or a default can be used. The
defaults include using the standard form for literals of the
basic types, the actual names for enumerated types, stacked
boxes for records, and curved lines with arrowheads for
pointers. The intention is that the display produced should be
similar to the picture the programmer would have drawn to
explain the data type. Incense displays have the additional
features that they can change dynamically.

31

CSL Technical Report Digest: 1973-1990

Incense is written in and for the Pascal-like language Mesa,
which was developed at the Xerox Palo Alto Research Center.
Incense has been used to investigate and document many data
structures including some of the internal data structures of the
Incense system itself.

In addition to displaying data structures, Incense also allows
the user to select, move, erase and redimension the resulting
displays. Incense also allows the user to modify the actual
values stored using the same high-level names that are
displayed. These functions are provided in a uniform, natural
manner using a pointing device ("mouse") and keyboard.

CSL-80-8 June 1980

STRESS AND SALIENCE IN ENGLISH: THEORY AND
PRACTICE
by Henry S. Thompson

This work is concerned with various aspects of English
prosody. On the practical side, a notational system and
transcription methodology are proposed, and the results of an
experiment to test their efficacy are reported. On the
theoretical side, a formal model of that part of the speech
production process which is concerned with prosody is
presented.

Both the theoretical and practical sections of the work are
founded on a relational, rhythmic approach to the
manifestation of stress in English utterances. The transcription
methodology is directed at notating the division of utterances
into a succession of tone groups, each made up of rhythmic
feet. Prosodic phenomena involving pitch are divided into
two classes: tonal excursions and kinetic tones.

In an experiment to test this methodology, four subjects
transcribed a 130 second monologue six times. Analysis of
the results shows good agreement about the division into
tone groups and feet, and about the location of kinetic tones,
but less agreement about the nature of the kinetic tones, and
about tonal excursions.

32

CSL Technical Report Digest: 1973-1990

Using the consensus foot structure of the monologue which
emerges from the experimental results, the hypothesis of the
isochronic or stress-timed nature of English is investigated. No
support for the hypothesis is found. Rather, a simple feature
model based on whether a syllable is or is not first in a foot,
and whether or not it is followed by a pause, is shown to
provide a much better account of the duration of syllables.

A framework for a stage model of the speech production
process, from concept to utterance, is proposed. The sub­
stage of this model which divides an utterance into feet, called
the footmaker, is described in detail. Variation of the possible
divisions into feet of an utterance is attributed to various
phonological, syntactic, semantic, and contextual factors. An
inventory of features which encode these factors and of rules
which operate in terms of these features is presented.

Finally, the model of the footmaker is applied to the
consensus foot structure of the monologue, and the feature
markings necessary to account for that structure are presented
and discussed.

CSL-80-9 June 1980

EFFICIENT ALGORITHMS FOR ENUMERATING
INTERSECTING INTERVALS AND RECTANGLES
by Edward M. McCreight

Let D be a dynamic set of intervals over the set 1,2 ... , k of
integers. Consider the following operations applied to D:

(1) Insert an interval [x,y] into D.
(2) Delete an interval [x,y] from D.
(3) Given a test integer u, list those intervals [x,y] in D that

contain u.
(4) Given a test interval [u,v], list those intervals [x,y] in D

for which [x,y] n [u,v] is non-empty.

Using a new data structure that we call a tile tree, operations
(1) and (2) can be implemented in O(n log(max{n,k})) time,
where n is the cardinality of D. Operations (3) and (4) require

33

CSL Technical Report Digest: 1973-1990

at most O(n log (max{n,k}) + s) time, where s is the number of
intervals listed. The tile tree occupies O(n) space.

Using a previously-known plane-sweep technique, the
operations above can be used to implement off-line algorithms
to list all intersecting pairs of rectangles within a set of n
aligned rectangles in O(n) space and O(n log n + s) time.

CSL-80-10 June 1980

REQUIREMENTS FOR AN EXPERIMENTAL PROGRAMMING
ENVIRONMENT
edited by L. Peter Deutsch and Edward A. Taft

We define experimental programming to mean the production
of moderate-size software systems that are usable by moderate
numbers of people in order to test ideas about such systems.
An experimental programming environment enables a small
number of programmers to construct such experimental
systems efficiently and cheaply -- an important goal in view of
the rising cost of software.

In this report we present a catalog of programming
environment capabilities and an evaluation of their cost, value,
and relative priority. Following this we discuss these
capabilities in the context of three existing programming
environments: Lisp, Mesa, and Smalltalk. We consider the
importance of specific capabilities in environments that already
have them and the possibility of including them in
environments that do not.

CSL-80-11 October 1980

THE PROPER PLACE OF MEN AND MACHINES IN
LANGUAGE TRANSLATION
by Martin Kay

The only way in which the power of computers has been
brought to bear on the problem of language translation is
machine translation, that is, the automation of the entire
process. Machine translation is an excellent research vehicle
but stands no chance of filling actual needs for translation

34

CSL Technical Report Digest: 1973-1990

which are growing at a great rate. In the quarter century
during which work on machine translation has been going on,
there has been considerable progress in relevant areas of
computer science. However, advances in linguistics, important
though they may have been, have not touched the core of this
problem. The proper thing to do is therefore to adopt the
kinds of solution that have proved successful in other
domains, namely to develop cooperative man-machine
systems. This paper proposes a translator's amanuensis,
incorporating into a word processor some simple facilities
peculiar to translation. Gradual enhancements of such a
system could eventually lead to the original goal of machine
translation.

CSL-80-12 October 1980

ALGORITHM SCHEMATA AND DATA STRUCTURES IN
SYNTACTIC PROCESSING
by Martin Kay

The space in which models of human parsing strategy are to
be sought is large. This paper is an exploration of that space,
attempting to show what its dimensions are and what some of
the choices are that the psycholinguist must face. Such an
exploration as this may provide some protection against the
common tendency to let some choices go by default.

A notion of configuration tables is used to locate algorithms
on two dimensions according as (1) they work top-down or
bottom-up, and (2) they are directed or undirected. The
algorithms occupying a particular place in this two dimensional
space constitute an algorithm schema. The notion of a chart is
used to show how to limit the amount of work a parser must
do by ensuring that nothing is done more than once. Finally,
the notion of an agenda is introduced to show how a rich
variety of psychological strategies can be combined in a
principled way with a given algorithm schema to yield an
algorithm.

35

CSL Technical Report Digest: 1973-1990

CSL-81-1 January 1981

THE DORADO: A HIGH-PERFORMANCE PERSONAL
COMPUTER
THREE PAPERS
by B. Lampson, K. Pier, G. McDaniel, S. Ornstein, and
D. Clark

This report reproduces three papers on the Dorado personal
computer. Each has been, or will be, published in a journal or
proceedings.

A Processor for a High-Performance Personal
Computer, by Butler W. Lampson and Kenneth A. Pier.
Appeared in the Proceedings of the 7th Symposium on
Computer Architecture, SigArch/IEEE, La Baule, May 1980,
pp. 146-160.

An Instruction Fetch Unit for a High-Performance
Personal Computer, by Butler W. Lampson, Gene
McDaniel, and Severo M. Ornstein. Appeared in IEEE
Transactions on Computers, vol. C-33, no. 8, August 1984,
pp. 712-730.

The Memory System of a High-Performance Personal
Computer, by Douglas W. Clark, Butler W. Lampson, and
Kenneth A. Pier. A revised version appeared in IEEE
Transactions on Computers, vol. C-30, no. 10, October
1981.

The first paper describes the Dorado's micro-programmed
processor, and also gives an overview of its history and
physical construction. The second discusses the instruction
fetch unit which prepares program instructions for execution,
and the third deals with the cache, map, and main storage of
the Dorado's memory system.

36

CSL Technical Report Digest: 1973-1990

CSL-81-2 January 1981

THE TXDT PACKAGE -· INTERLISP TEXT EDITING PRIMITIVES
by J. Strother Moore

The TXDT package is a collection of INTERLISP programs
designed for those who wish to build text editors in
INTERLISP. TXDT provides a new INTERLISP data type, called a
buffer, and programs for efficiently inserting, deleting,
searching and manipulating text in buffers. Modifications may
be made undoable. A unique feature of TXDT is that an
address may be "stuck" to a character occurrence so as to
follow that character wherever it is subsequently moved.
TXDT also has provisions for fonts.

CSL-81-3 March 1981

AN EXPERIMENTAL DESCRIPTION-BASED PROGRAMMING
ENVIRONMENT: FOUR REPORTS
by Ira Goldstein and Daniel Bobrow

This document reprints four articles that describe PIE, an
experimental personal information environment, from the
vantage point of its application to software development. PIE
employs a description language to support the interactive
development of programs. PIE contains a network of nodes,
each of which can be assigned several perspectives. Each
perspective describes a different aspect of the program
structure represented by the node, and provides specialized
actions from that point of view. Contracts can be created that
monitor nodes describing different parts of a program's
description. Contractual agreements are expressible as formal
constraints, or, to make the system failsoft, as English text
interpretable by the user. Contexts and layers are used to
represent alternative designs for programs described in the
network. The layered network database also facilitates
cooperative program design by a group, and coordinated,
structured documentation.

The first article, "Descriptions for a Programming
Environment," provides an overview of PIE. The second
article, "Extending Object Oriented Programming in Smalltalk,"

37

CSL Technical Report Digest: 1973-1990

explores the generalizations made to the Smalltalk language in
order to combine its strengths as an object language with
capabilities usually found in Al description languages. This
extended dialect is used to implement the PIE system. The
third article, "Representing Design Alternatives," describes
PIE's machinery for representing the evolution of a software
design. This machinery is described in greater detail in a
separate report, CSL-80-5. The fourth article, "Browsing in a
Programming Environment," describes the user interface.

CSL-81·5 January 1982

PRIORITY SEARCH TREES
by Edward M. Mccreight

Let D be a dynamic set of ordered pairs [x,y] over the set
0,1, ... ,k-1 of integers. Consider the following operations
applied to D:

(1) Insert (delete) a pair [x,y] into (from) D.

(2) Given test integers xO, x1, and y1. among all pairs [x,y] in
D such that xO :5 x :5 x1 and y :5 y1, find a pair whose x is
minimal (maximal).

(3) Given test integers xO and x1, among all pairs [x,y] in D

such that xO :5 x :5 x1, find a pair whose y is minimal.

(4) Given test integers xO, x1. and y1, enumerate those pairs
[x,y] in D such that x0:5x:5x1 and y:o;;y1.

Using a new data structure that we call a priority search tree,
of which two variants are introduced, operations (1), (2), and
(3) can be implemented in O(log n) time, where n is the
cardinality of 0. Operation (4) requires at most O(log n + s)
time, where s is the number of pairs enumerated. The priority
search tree occupies O(n) space.

Priority search tree algorithms can be used effectively as
subroutines in diverse applications. With them one can
answer questions of intersection or containment in a dynamic
set of linear intervals. Using a previously-known plane-sweep

38

CSL Technical Report Digest: 1973-1990

technique, they can be used to implement off-line algorithms
to enumerate all intersecting pairs of rectangles. Priority
search trees can also be used to implement best-/first-fit
storage allocation.

CSL-81-6 August 1981

LAUREL MANUAL
by Douglas K. Brotz

Laurel is an Alto-based, display-oriented, computer mail system
interface. It provides facilities to retrieve mail and present it
for delivery, and to display, forward, classify, file, edit and print
messages. Additional features include facilities to read, write
and copy files, run programs, and a whole lot more. Laurel is
a component of a distributed message system that has been in
operation for several years in the Xerox Research Internet.

This document is a description of the facilities contained in
Laurel. Several tips on proper use of computer mail facilities
in a social context are included.

CSL-81-7 June 1981

TRELLIS DATA COMPRESSION
by Lawrence Colm Stewart

Tree and trellis data compression systems have traditionally
been designed by using a tree or trellis search algorithm to
improve the performance of traditional coding systems such as
adaptive delta modulation or predictive quantization. Recent
work in the area of vector quantization has suggested the
possibility of designing new tree and trellis codes which are
well matched to particular sources. The main design procedure
iterates on a long training sequence to improve the
performance of an initial trellis decoder. An additional
procedure, given a trellis decoder, can produce a decoder of
longer constraint length which performs at least as well.
Combined, these algorithms provide a complete design
procedure for trellis encoding data compression systems.

39

CSL Technical Report Digest: 1973-1990

For random sources, many existing data compression systems
can be readily improved and performance close to the rate­
distortion bound can be obtained. In the applications area of
speech compression, tree and trellis codes designed with
these al;; xithms permit the construction of low rate speech
waveform coders, low rate residual excited linear predictive
coders (RELP), and a new kind of hybrid tree coder which
provides good quality speech at rates below 7000 bits per
second.

CSL-81·8 June 1981; Revised March 1982

INFORMATION STORAGE IN A DECENTRALIZED
COMPUTER SYSTEM
by David K. Gifford

This paper describes an architecture for shared information
storage in a decentralized computer system. The issues that
are addressed include: naming of files and other objects
(naming), reliable storage of data (stable storage), coordinated
access to shared storage (transactional storage), location of
objects (location), use of multiple copies to increase
performance, reliability and availability (replication), dynamic
modification of object representations (reconfiguration), and
storage security and authentication (protection).

A complete model of the architecture is presented, which
describes the interface to the facilities provided, and describes
in detail the proposed mechanisms for implementing them.
The model presents new approaches to naming, location,
replication, reconfiguration, and protection. To verify the
model, three prototypes were constructed, and experience
with these prototypes is discussed.

The model names objects with variable length byte arrays
called references. References may contain location
information, protection guards, cryptographic keys, and other
references. In addition, references can be made indirect to
delay their binding to a specific object or location.

The replication mechanism is based on assigning votes to each
copy of a replicated object. The characteristics of a replicated

40

CSL Technical Report Digest: 1973-1990

object can be chosen from a range of possibilities by
appropriately choosing its voting configuration. Temporary
copies can be easily implemented by introducing copies with
no votes.

The reconfiguration mechanism allows the storage that is used
to implement an object to change while the system is
operating. A client need not be aware that an object has been
reconfigured.

The protection mechanism is based on the idea of sealing an
object with a key. Sealed objects can only be unsealed with
an appropriate set of keys. Complex protection structures can
be created by using such operators as Key-Or and Key-And.
The protection mechanism can be employed to create popular
protection mechanisms such as capabilities, access control
lists, and information flow control.

CSL-81-9 May 1981

REMOTE PROCEDURE CALL
by Bruce Jay Nelson

Remote procedure call is the synchronous language-level
transfer of control between programs in disjoint address
spaces whose primary communication medium is a narrow
channel. The thesis of this dissertation is that remote
procedure call (RPC) is a satisfactory and efficient
programming language primitive for constructing distributed
systems.

A survey of existing remote procedure mechanisms shows that
past RPC efforts are weak in addressing the five crucial issues:
uniform call semantics, binding and configuration, strong
typechecking, parameter functionality, and concurrency and
exception control. The body of the dissertation elaborates
these issues and defines a set of corresponding essential
properties for RPC mechanisms. These properties must be
satisfied by any RPC mechanism that is fully and uniformly
integrated into a programming language for a homogeneous
distributed system. Uniform integration is necessary to meet
the dissertation's fundamental goal of syntactic and semantic

41

CSL Technical Report Digest: 1973-1990

transparency for local and remote procedures. Transparency is
important so that programmers need not concern themselves
with the physical distribution of their programs.

In addition to these essential language properties, a number of
pleasant properties are introduced that ease the work of
distributed programming. These pleasant properties are good
performance, sound remote interface design, atomic
transactions, respect for autonomy, type translation, and
remote debugging.

With the essential and pleasant properties broadly explored,
the detailed design of an RPC mechanism that satisfies all of
the essential properties and the performance property is
presented. Two design approaches are used: The first
assumes full programming language support and involves
changes to the language's compiler and binder. The second
involves no language changes, but uses a separate translator -­
a source-to-source RPC compiler -- to implement the same
functionality.

Design decisions crucial to the efficiency of the mechanism
are made using a set of RPC performance lessons. These
lessons are based on the empirical performance evaluation of
a sequence of five working RPC mechanisms, each one faster
than its predecessor. Some expected results about the costs
of parameter copying, process switching, and runtime type
manipulation are confirmed; a surprising result about the price
of protocol layering is presented as well. These performance
lessons, applied in concert, reduce the roundtrip time for a
remote procedure call by a remarkable factor of 35. For
moderate speed personal computers communicating over an
Ethernet, for example, a simple remote call takes 800
microseconds: on a higher speed personal computer, the
same remote call takes 149 microseconds. In both cases the
remote call takes about 20 times longer than the same local
call. This represents a substantial performance improvement
over other operational RPC mechanisms.

42

CSL Technical Report Digest: 1973-1990

CSL-81-10 June 1981

TECHNIQUES FOR PROGRAM VERIFICATION
by Greg Nelson

The main subject of this paper is the detailed description of a
mechanical theorem prover for use in program verification,
following the approach used successfully in the
simplifier/theorem-prover of the Stanford Pascal Verifier:
algorithms are developed for theorem-proving in various
logical theories, then the algorithms are combined to produce
a theorem-prover for the "combination" of the theories. The
algorithms described in this paper are refinements of those
used in coding the Stanford Verifier.

More precisely, algorithms are described for determining the
satisfiability of conjunctions of literals (i.e., atomic formulas or
negations thereof) in the following theories: the theory of the
real numbers under +, -, <, and ~; the theory of Lisp list
structure under car, cdr, cons, atom, and = ; the theory of
uninterpreted function symbols under = , and the theory of
arrays under operations for accessing and updating elements.
A general method for combining such algorithms is described
and applied to them to produce a single program that
determines the satisfiability of conjunctions of literals
containing any of the above functions and predicates.

A second subject of the paper is the problem of combining
these "special-purpose" theorem-proving techniques with the
two "general-purpose" techniques of matching (or resolution)
and induction. Several examples are worked through that
suggest that matching in the data structure of the special­
purpose algorithms is a viable alternative to matching using
ordinary list structure, but the details of an appropriate
matcher are not considered. Inductive proofs are considered
in more detail: formal semantics are described for a logical
system that extends first-order logic with non-deterministic
partial recursive function definitions, and an appropriate
induction rule is defined and proved to be valid. The rule
seems to be suited to the methods of Boyer and Moore; if so,
their successful heuristics for proving theorems about total
functions can be used with the new rule to prove theorems

43

CSL Technical Report Digest: 1973-1990

about partial functions. This is an important extension, since
the specifications for programs that manipulate linked data
structures are most naturally written using partial (and perhaps
non-deterministic) recursive function definitions. An example
is given of the use of the system in verifying the correctness of
a "destructive" list reversal program.

Finally, this paper addresses the question of the role of
program verification in contemporary programming
environments. It is argued that there are immediate
applications for program verification in establishing invariants
that are of practical value to a compiler. A programming
language is outlined that uses verifiable invariants in place of
type declarations, thereby allowing both a higher level of
consistency checking than that performed by compilers for
conventional hard-typed languages, and also the flexible data
structures that are ruled out by strict type systems.

CSL-81-11 July 1981

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES
by James H. Morris

The established properties of functional languages -- easy to
define semantics and mathematical elegance -- are appealing
to meta-programmers who study programming and programs
at one remove. Most people believe that functional
programming is inappropriate for real programmers who write
programs that are judged on their behavior rather than their
appearance. We shall explore this question by considering
experience with two languages, Poplar and Euclid, that have a
claim to being functional languages and to being used on real
problems -- string processing and system programming,
respectively.

44

CSL Technical Report Digest: 1973-1990

CSL-81-12 October 1981

REPORT ON THE PROGRAMMING LANGUAGE EUCLID
by Butler Lampson, James Horning, Ralph London,
James Mitchell and Gerald Popek

This report describes a programming language called Euclid,
intended for the expression of system programs which are to
be verified. Euclid draws heavily on Pascal for its structure and
many of its features. In order to reflect this relationship as
clearly as possible, the Euclid report has been written as a
heavily edited version of the revised Pascal report.

Proof rules for Euclid appear in a separate report [London et
al. 1978]. An informal discussion of the language design
appears in [Popek et al. 1977]. Euclid has been implemented
(with some omissions) by the Computer Systems Research
Group, University of Toronto, Toronto, Canada, and 1.P. Sharp
Associates, Toronto, Canada [Holt et al. 1978, Holt and
Wortman 1979, Holt et. al. 1980]. The translator is a 70,000
line Euclid program, the largest such program now in existence
[Wortman and Cordy 1981].

This is the fourth version of the Euclid report; earlier versions
appeared in May 1976, August 1976, and February 1977 (the
latter as SIGPLAN Notices 12, 2, Feb. 1977).

CSL-82-1 February 1982

CRYPTOGRAPHIC SEALING FOR INFORMATION SECRECY
AND AUTHENTICATION
by David K. Gifford

A new protection mechanism is described that provides
general primitives for protection and authentication. The
mechanism is based on the idea of sealing an object with a
key. Sealed objects are self-authenticating, and in the absence
of an appropriate set of keys, only provide information about
the size of their contents. New keys can be freely created at
any time, and keys can also be derived from existing keys with
operators that include Key-And and Key-Or. This flexibility
allows the protection mechanism to implement common

45

CSL Technical Report Digest: 1973-1990

protection mechanisms such as capabilities, access control
lists, and information flow control. The mechanism is
enforced with a synthesis of conventional cryptography,
public-key cryptography, and a threshold scheme.

CSL-82-2 May 1982

AN ANALYSIS OF A MESA INSTRUCTION SET
by Gene McDaniel

This paper reports measurements of dynamic instruction
frequencies for two Mesa programs running on a Dorado
personal computer at the Computer Science Laboratory of the
Xerox Palo Alto Research Center. The patterns of use
associated with the Mesa instruction set are examined in order
to find the implications of that usage for the Mesa architecture
and its implementation. This paper discusses Mesa's byte
encoding, patterns of memory references, use of an
expression evaluation stack, and the costs of emulating 32-bit
operations on a 16-bit processor.

CSL-82-3 June 1982

SOME NOTES ON PUTIING FORMAL SPECIFICATIONS TO
PRODUCTIVE USE
by John Guttag*, Jim Horning, and Jeannette Wing*

These notes are personal reflections, stemming from attempts
to understand the sources of problems and successes in the
application of work on formal specifications. Our intent is to
provoke thought about the nature and value of work in the
area; not to provide a set of well-tested results. Rather than
focusing on yet another specification language, we have tried
to take a broad view of the role of formal specifications in the
program development process.

*MIT Laboratory for Computer Science

46

CSL Technical Report Digest: 1973-1990

CSL-82-4 July 1982

GRAPEVINE: AN EXERCISE IN DISTRIBUTED COMPUTING
by Andrew 8i1Tell, Roy Levin, Roger Needham*,
Michael Schroeder

Grapevine is a multicomputer system on the Xerox research
internet. It provides facilities for the delivery of digital
messages such as computer mail; for naming people,
machines, and services; for authenticating people and
machines; and for locating services on the internet. This paper
has two goals: to describe the system itself and to serve as a
case study of a real application of distributed computing. Part
I describes the set of services provided by Grapevine and how
its data and function are divided among computers on the
internet. Part II presents in more detail selected aspects of
Grapevine that illustrate novel facilities or implementation
techniques, or that provide insight into the structure of a
distributed system. Part Ill summarizes the current state of the
system and the lessons learned from it so far.

*University of Cambridge Computer Laboratory

CSL-82-5 March 1982

PACKET-VOICE COMMUNICATIONS ON AN ETHERNET
LOCAL COMPUTER NETWORK: AN EXPERIMENTAL STUDY
by Timothy A. Gonsalves

Local computer networks have been used successfully for data
applications such as file transfers for several years. Recently,
there have been several proposals for using these networks for
voice applications. This paper describes a simple voice
protocol for use on a packet-switching local network. This
protocol is used in an experimental study of the feasibility of
using a 3 Mbps experimental Ethernet network for packet­
voice communications. The study shows that with
appropriately chosen parameters the experimental Ethernet is
capable of supporting about 40 simultaneous 64-Kbps voice
conversations with acceptable quality. This corresponds to a
utilization of 95% of the network capacity.

47

CSL Technical Report Digest: 1973-1990

CSL-82-7 December 1982

CONTROLLING LARGE SOFlWARE DEVELOPMENT IN A
DISTRIBUTED ENVIRONMENT
by Eric Emerson Schmidt

Breaking a program up into modules is an important technique
for managing the complexity of large systems. As the number
of modules increases, the modules themselves need to be
managed. Changing even a single module can be difficult.
Compilation and loading are complicated. Saving the state of
a program for others to build on is quite error-prone. The
development of a large program as part of a multi-person
project is even worse. This thesis presents solutions to these
problems. We use new languages to describe the modules
that comprise a system and tools that automate software
development. The first solution developed is a version control
system of modest goals that has been used to maintain up to
450,000 lines of code over the past year. Users of this system
list versions of files in description files (DF files) that are
automatically maintained for the user. DF files may refer to
other DF files when one software package depends on
another. A working set of software that is saved in a safe
location is called a release. The need for a release process
was identified and an iterative algorithm that uses DF files to
perform releases has been developed. Based on experience
with the DF system and the desire to automate the entire
compile-edit-debug-release cycle, a second solution was
developed in which the development cycle is controlled by
the System Modeller. The modeller automatically manages the
compilation, loading, and saving of new modules as they are
produced. The user describes his software in a system model
that lists the versions of files used, the information needed to
compile the system, and the interconnections between the
various modules. The modeller is connected to the editor and
is notified when files are edited and new versions are created.
To provide fast response, the modeller behaves like an
incremental compiler: only those modules that change are
analyzed and recompiled.

48

CSL Technical Report Digest: 1973-1990

CSL-83·1 January 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL·
FLOW OPTIMIZED PROGRAMS
by Polle T. Zellweger

The transformations performed by an optimizing compiler have
traditionally impeded interactive debugging in source language
terms. A prototype system, called Navigator, has been
developed for debugging optimized programs written in
Cedar, an Algol-like language. Navigator can be used to
monitor program execution flow in the presence of two
optimizations: inline procedure expansion and cross-jumping
(merging identical tails of code paths that join). This paper
describes the problems that these two optimizations create for
debugging and Navigator's solutions to these problems. The
approach taken is to collect extra information during the
optimization phases of compilation. At runtime, Navigator
uses the additional information to hide the effects of the
optimizations from the programmer.

CSL-83-2 January 1983

MOCKINGBIRD: A COMPOSER'S AMANUENSIS
by John T. Maxwell Ill and Severo M. Ornstein

Mockingbird is a computer based, display oriented, music
notation editor. It is especially focused on helping a
composer to capture his ideas. It can play scores on the
synthesizer as well as display and print them in standard
notational form. It can accept both graphical input and input
played on a synthesizer keyboard attached to the computer.
In the latter case, the user must edit the music to turn it into
standard notational form, and much of Mockingbirds interest
lies in the methods by which this conversion is accomplished.
The editor is highly interactive, presenting the illusion that the
user can reach in and move elements of the score around as
desired. This illusion is achieved by always showing the detail
of the score exactly as it might be printed.

49

CSL Technical Report Digest: 1973-1990

CSL-83·3 October 1983

INTERNET BROADCASTING
by David R. Boggs

Broadcasting should be a standard
packet-switched computer networks.
are interconnected to form an
mechanism is also required.

addressing mode of all
Further, when networks
internet, a broadcast

Broadcasting is the delivery of a packet to all hosts in a
network; unicasting is the delivery of a packet to one specific
host. They are distinct forms of interprocess communication;
functions that are simple to do with one are difficult to do
using only the other.

A broadcast is used when you don't know whom specifically
to address. There are two situations where this occurs:
1) when you are searching for some information but you don't
know whom to ask (for example, standing up in a theatre and
saying "Is there a doctor in the house?"), and 2) when you
possess some information of use to others but you don't
know specifically whom (for example, standing up in a theatre
and yelling, "Fire!").

A network should give its best efforts to deliver a copy of a
broadcast packet to each host, but perfectly reliable delivery is
not required. It is sufficient that most hosts receive a
broadcast and that the same hosts not miss retransmissions.
Just as with unicasting, higher-level protocols can be used to
improve the reliability of the basic broadcast delivery
mechanism, if required. Such an "unreliable" broadcast
mechanism is straightfoiward to implement in all types of
packet-switched networks.

In an internet composed of possibly thousands of networks
and millions of hosts, a full internet-wide broadcast, the
obvious internet analog to broadcasting in a single network, is
seldom the right choice. A directed broadcast, delivery of a
packet to all hosts on any single network in an internet, is
simpler to implement, closer to what most users need, and
sufficient to construct many forms of broadcast-based

50

CSL Technical Report Digest: 1973-1990

interprocess communication, including an internet-wide
broadcast.

CSL-83-4 May 1983

DESIGN AND IMPLEMENTATION OF A RELATIONSHIP­
ENTITY-DATUM DATA MODEL
by R.G.G. Cattell

The Model level of the Cypress Database Management
System, built upon the earlier Cedar DBMS, provides data
description and access capabilities at a higher level of
abstraction than the existing system and other conventional
DBMS's. In this report we describe the design of the Cypress
data model and discuss issues in the efficient implementation
of such a model. Cypress incorporates features motivated by
experience with local database applications. It may be viewed
as an integration of a number of existing data models; we
present the criteria that led to this choice. The Cypress
primitives include simple data values such as strings or
integers, entities representing real or abstract objects, and
relationships among entities and/or simple data values. We
also provide mechanisms for a hierarchy of types, relational
keys, and segmentation of databases into independent files.
Cypress allows a conventional relational query language. We
argue that our extensions to simpler data models allow a more
powerful and efficient implementation, and we describe the
optimizations Cypress performs. We also discuss some
preliminary experience with user tools and applications
developed in conjunction with Cypress.

CSL-83·5 March 1984

DATA TYPES ARE VALUES
by James Donahue and Alan Demers*

An important goal of programming language research is to
isolate the fundamental concepts of languages, those basic
ideas that allow us to understand the relationship among
various language features. This paper examines one of these
underlying notions, data type, with particular attention to the

51

CSL Technical Report Digest: 1973-1990

treatment of generic or polymorphic procedures and static
type-checking.

*Cornell University Computer Science Department

CSL-83·6 December 1983

PRELIMINARY REPORT ON THE LARCH SHARED LANGUAGE
by J.V. Guttag* and J.J. Homing

Each member of the Larch family of formal specification
languages has a component derived from a programming
language and another component common to all
programming languages. We call the former interface
languages, and the latter the Larch Shared Language.

This report presents version 1.0 of the Larch Shared Language.
It begins with a brief introduction to the Larch Project and the
Larch family of languages. The next chapter presents most of
the features of the Larch Shared Language and briefly
discusses how we expect these features to be used. It should
be read before reading either of the remaining two chapters,
which are a self-contained reference manual and a set of
examples.

*MIT Laboratory for Computer Science

CSL-83-7 December 1983

IMPLEMENTING REMOTE PROCEDURE CALLS
by Andrew D. Birrell and Bruce Jay Nelson

Remote procedure calls (RPC) appear to be a useful paradigm
for providing communication across a network between
programs written in a high level language. This paper
describes a package providing a remote procedure call facility,
the options that face a designer of such a package, and the
decisions we made. We describe the overall structure of our
RPC mechanism, our facilities for binding RPC clients, the
transport level communication protocol, and some
performance measurements. We include descriptions of some

52

CSL Technical Report Digest: 1973-1990

optimizations we used to achieve high performance and to
minimize the load on server machines that have many clients.

CSL-83-8 February 1984

ADDING VOICE TO AN OFFICE COMPUTER NElWORK
by D.C. Swinehart, LC. Stewart and S.M. Ornstein

This paper describes the architecture and initial
implementation of an experimental telephone system
developed by the Computer Science Laboratory at the Xerox
Palo Alto Research Center (PARC CSL). A specially designed
processor (Etherphone'M) connects to a telephone instrument
and transmits digitized voice, signaling, and supervisory
information in discrete packets over the Ethernet local area
network. When used by itself, an Etherphone processor
provides the functions of a conventional telephone, but it
comes into its own when combined with the capabilities of a
nearby office workstation, a voice file service, and other
shared services such as databases. Most of the work so far
has gone into the basic provisions for voice switching and
transmission. Today the system supports ordinary telephone
calls and simple voice message services. We will expand these
functions as we explore the integration of voice with our
experimental office systems.

CSL-83-9 April 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS)
EVALUATION
by Robert Cartwright* and James Donahue

Lazy evaluation has gained widespread acceptance among
language theoreticians -- particularly among the advocates of
"functional programming." The implementation of lazy
evaluation is easy to describe, but its semantic consequences
are deceptively complex. This paper develops a
comprehensive semantic theory of lazy evaluation as a change
in the value space over which computation is performed. It
also explores several approaches to formalizing the theory of
lazy evaluation within a programming logic.

53

CSL Technical Report Digest: 1973-1990

*Rice University

CSL-83-10 November 1983

DEFTLY REPIACING go to STATEMENTS WITH exit's
by Lyle Ramshaw

Suppose that we are trying to eliminate the go to statements
in a PASCAL program by replacing them with block exit
statements; and suppose that we aren't willing either to
introduce new variables or to replicate code. Previous
research has shown that, under this policy, we can eliminate all
of the go to's from a program if and only if that program's
.flow graph is reducible. In this paper, we shall investigate the
extent to which go to's can be eliminated under still stricter
policies. First, we shall discuss two simple program
transformations that replace go to's with equivalent exit's
simply by adding new levels of block structure. We shall find
that these transformations by themselves are sufficient to
eliminate all of the go to's in a program if and only if that
program has no head-to-head pairs of go to's, where we call a
pair of go to's head-to-head if each jumps into the other's
interior. Second, we shall consider an intermediate policy in
which we don't restrict ourselves to the two transformations
but we do forbid any reordering of the atomic tests and
actions of the program. Under this intermediate policy, we
shall find that all go to's can be eliminated if and only if a
certain augmented version of the flow graph is reducible. The
theory of these augmented flow graphs elucidates the
relationship between the standard theory of flow graph
reducibility and our results concerning head-to-head pairs of
go to's.

CSL-83-11 June 1984

THE CEDAR PROGRAMMING ENVIRONMENT: A MIDTERM
REPORT AND EXAMINATION
by Warren Teitelman

This collection of papers comprises a report on Cedar, a state­
of-the-art programming system. Cedar combines in a single
integrated environment: high-quality graphics, a sophisticated

54

CSL Technical Report Digest: 1973-1990

editor and document preparation facility, and a variety of tools
for the programmer to use in the construction and debugging
of his programs. The Cedar Programming Language is a
strongly-typed, compiler-oriented language of the Pascal
family. What is especially interesting about the Cedar project
is that it is one of the few examples where an interactive,
experimental programming environment has been built for this
kind of language. In the past, such environments have been
confined to dynamically typed languages like Lisp and
Smalltalk.

The first paper, "The Roots of Cedar," describes the conditions
in 1978 in the Xerox Palo Alto Research Center's Computer
Science Laboratory that led us to embark on the Cedar project
and helped to define its objectives and goals. Important
decisions had to be made about what facilities and features
were essential versus simply desirable, both with regard to the
programming language as well as tools and packages. This
section not only presents these decisions, but also describes
the process by which we reached them. These deliberations
are especially interesting in light of the fact that three
communities with diverse programming languages (Mesa, Lisp,
and Smalltalk) and very different programming styles, met to
discuss the merits and drawbacks of their individual systems
and religions, with the purpose of reaching some sort of
consensus that would allow the construction of a
programming environment that would be satisfactory to all of
them.

The second paper, "A Tour Through Cedar," is essentially a
travelogue through the current Cedar environment (as of
September 1983) in the form of a transcript of an actual
session. This transcript consists of numerous snapshots of the
display screen interspersed with dialogue and commentary.
The intent is to produce an effect similar to that of the reader
sitting down with a user in front of a display terminal and
being given a live demonstration of the system, while an
expert comments on some of the why's and wherefore's.
During the course of this demonstration, the reader is
introduced to most of the salient features of the Cedar
Programming Environment as they come up and are used. In
many cases we will digress from this demonstration to discuss

55

CSL Technical Report Digest: 1973-1990

some aspect of these features, such as why we did it this way,
how important this particular facility actually turned out to be,
etc. The final paper, "Cedar: The Report Card," discusses and
attempts to evaluate how well we have succeeded in reaching
our objectives and goals, to what extent the original objectives
and goals were changed or evolved during the course of the
project and what remains to be done.

CSL-83-12 December 1983

GRAPEVINE: TWO PAPERS AND A REPORT
by Andrew Birrell, Roy Levin, Roger Needham, and Michael
Schroeder

Grapevine is a multi-computer system on the Xerox research
internet. It provides facilities for the delivery of digital
messages such as computer mail; for naming people, machines
and services; for authenticating people and machines; and for
locating services on the internet. This report reproduces an
earlier paper on Grapevine (CSL-82-4, "Grapevine: An Exercise
in Distributed Computing"), a paper on our experience with
use of the Grapevine system, and a detailed description of the
services provided by Grapevine.

CSL-83-15 December 1983

A DESCRIPTION OF THE CEDAR LANGUAGE
A CEDAR LANGUAGE REFERENCE MANUAL
by Butler W. Lampson

The Cedar Language is a programming language derived from
Mesa, which in turn is derived from Pascal. It is meant to be
used for a wide variety of programming tasks, ranging from
low-level system software to large applications. In addition to
the sequential control constructs, static type checking and
structured types of Pascal, and the modules, exception
handling, and concurrency control constructs of Mesa, Cedar
also has garbage collection, dynamic types, and a limited form
of type parameterization.

This report describes the Cedar language. Except for Chapter
2, it is written strictly in the style of a reference manual, not a

56

CSL Technical Report Digest: 1973-1990

tutorial. Furthermore, it describes the entire language,
including a number of obsolete constructs and historical
accidents. Hence it tells much more than you probably want
to know. A summary of the safe language and comments
throughout the manual suggest which constructs should be
preferred for new programs.

CSL-84-4 October 1984

THE ALPINE FILE SYSTEM
by Mark R. Brown, Karen Kolling, and Edward A. Taft

Alpine is a file system that supports atomic transactions and is
designed to operate as a service on a Computer internet.
Alpine's primary purpose is to store files that represent
databases; an important secondary goal is to store ordinary
files representing documents, program modules, and the like.

Unlike other file servers described in the literature, Alpine uses
a log-based technique to implement atomic file update.
Another unusual aspect of Alpine is that it performs all
communication via a general-purpose remote procedure call
facility. Both of these decisions have worked out well. This
paper describes Alpine's design and implementation, and
evaluates the system in light of our experience to date.

Alpine is written in Cedar, a strongly typed modular
programming language that includes garbage-collected
storage. This paper reports on using the Cedar language and
programming environment to develop Alpine.

CSL-84-5 May 1984

INTERACTIVE SOURCE-LEVEL DEBUGGING OF OPTIMIZED
PROGRAMS
by Polle Trescott Zellweger

The transformations performed by an optimizing compiler have
traditionally impeded interactive debugging in source language
terms: after optimization, a program's source text and object
code do not have a straightforward correspondence. This
dissertation shows that effective interactive source-level

57

CSL Technical Report Digest: 1973-1990

debuggers can be provided for optimized programs. Such
debuggers can reduce debugging time and programmer
confusion. These benefits are especially important given the
increasing availability of optimizing compilers.

The first half of the dissertation studies the overall problem of
debugging optimized programs. It presents a general view of
debuggers and defines two important levels of debugger
behavior for optimized programs. A debugger provides
expected behavior if it hides the effects of the optimizations
from the user by doing behind-the-scenes processing. It
provides truthful behavior if it indicates that it cannot give the
exact answer to a debugging query (because the executing
program differs from the source program). The user may be
able to deduce the correct answer from the partial information
displayed by a truthful response. A thorough study of the
interactions between optimization and debugging is included.
In addition, a collection of solution techniques to relieve the
problems caused by optimization are described.

The second half of the dissertation describes implementation
experience with one aspect of the problem. A prototype
debugging system called Navigator was developed for the
Cedar programming environment at the Xerox Palo Alto
Research Center. Navigator can be used interactively to
monitor program execution flow in the presence of two
simple but nontrivial optimizations inline procedure expansion
and cross-jumping (merging identical tails of code paths that
join). Navigator provides expected behavior by combining
information collected by the compiler about the effects of the
optimizations and information collected by the debugger
about the control-flow history of the computation. Program
execution space and speed are almost totally unaffected when
no debugging requests are active. When debugging is
requested, Navigator provides its added functionality without
noticeably degrading debugger response time for most
programs. Proofs of correctness of the compiler and
debugger algorithms are given, as well as an analysis of their
efficiency.

58

CSL Technical Report Digest: 1973-1990

CSL-84-6 July 1985

EXPERIENCE WITH THE CEDAR PROGRAMMING
ENVIRONMENT FOR COMPUTER GRAPHICS RESEARCH
by Richard J. Beach

Cedar is an integrated programming environment for building
experimental Computer systems. The environment consists of
a well-coordinated collection of tools and packages and a
language that encourages and enforces their coordination.
Cedar incorporates a device-independent imaging model for
presenting all information and relies on input interaction
techniques to control the environment.

The computer graphics research accomplished with Cedar
covers a broad range, from basic computer graphics
techniques, to various design tools with sophisticated
graphical interfaces, to graphic-arts-quality typeset documents
with embedded color illustrations. Our experience with Cedar
confirms the benefits to a software researcher of shared
module interfaces, compiler type-checking, automatic storage
management, interpretive graphics programming languages,
and device-independent imaging models. The 'object­
oriented' programming style and the integration of graphics
within Cedar, below the screen window manager and
document formatter, have led to more effective software
designs than those designed with traditional languages and
programming environments. Cedar provides a software
research environment where one quickly integrates the work
of others and redesigns one's own work after experimenting
with it in a functional prototype.

CSL-84-7 July 1985

ON ADDING GARBAGE COLLECTION AND RUNTIME TYPES
TO A STRONGLY-TYPED, STATICALLY-CHECKED,
CONCURRENT LANGUAGE
by Paul Rovner

Enough is known now about garbage collection, runtime
types, strong-typing, static-checking and concurrency that it is

59

CSL Technical Report Digest: 1973-1990

possible to explore what happens when they are combined in
a real programming system.

Storage management is one of a few central issues through
which one can get a good view of the design of an entire
system. Tensions between ease of integration and the need
for protection; between generality, simplicity, flexibility,
extensibility and efficiency are all manifest when assumptions
and attitudes about managing storage are studied. And deep
understanding follows best from the analysis of systems that
people use to get real work done.

This paper is not for those who seek arguments pro or con
about the need for these features in programming systems;
such issues are for other papers. This one assumes these
features to be good and describes how they combine and
interact in Cedar, a programming language and environment
designed to help programmers build moderate-sized
experimental systems for moderate numbers of people to test
and use.

CSL-85-1 February 1985

DISTRIBUTED NAME SERVERS: NAMING AND CACHING IN
LARGE DISTRIBUTED COMPUTING ENVIRONMENTS
by Douglas Brian Terry

Name services facilitate sharing in distributed environments by
allowing objects to be named unambiguously and maintaining
a set of application-defined attributes for each named object.
Existing distributed name services, which manage names based
on their syntactic structure, may lack the flexibility needed by
large, diverse, and evolving computing communities. A new
approach, structure-free name management, separates three
activities: choosing names, selecting the storage sites for
object attributes, and resolving an object's name to its
attributes. Administrative entities apportion the responsibility
for managing various names, while the name services
information needed to locate an object's attributes can be
independently reconfigured to improve performance or meet
changing demands.

60

CSL Technical Report Digest: 1973-1990

An analytical performance model for distributed name services
provides assessments of the effect of various design and
configuration choices on the cost of name service operations.
Measurements of Xerox's Grapevine registration service are
used as inputs to the model to demonstrate the benefits of
replicating an object's attributes to coincide with sizable
localities of interest. Additional performance benefits result
from clients' acquiring local caches of name service data
treated as hints. A cache management strategy that maintains
a minimum level of cache accuracy is shown to be more
effective than the usual technique of maximizing the hit ratio:
cache managers can guarantee reduced overall response times,
even though clients must occasionally recover from outdated
cache data.

CSL-85-2 June 1985

ARCHITECTURAL ELEMENTS FOR BITMAP GRAPHICS
by Cary D. Kornfeld

This dissertation examines two closely related aspects of
bitmap graphics--methods for manipulating bitmap images and
techniques for displaying these images. First, it looks at the
implementation of three primitive operations useful when
manipulating images--Mirror, Rotate and Tran slate (BitBlt).
When implemented on conventional bitmap systems these
fundamental operations require extensive memory and
processor activity. Alternative architectures for bitmap graphic
systems are explored. Two new architectural elements that
significantly improve system performance are defined. The
first, a RasterOp unit, combines four bitmap images under
arbitrary merging operations at video data rates. The second
element, called an Image Prism, generates orthogonal image
transformations on bitmap images without requiring processor
interaction. As a result, these fundamental operations can be
performed several hundred times faster than before. VLSI
implementations of each are described and their performance
is reviewed.

The second thrust of this research focuses on the design and
development of a research display device. Three major
architectural components of traditional CRT-based bitmap

61

CSL Technical Report Digest: 1973-1990

display systems--frame buffer, display controller and display
device--are integrated into a single, exceptionally thin, flat
display device of which several working prototypes have been
built. The entire display device is constructed using
conventional microelectronic IC fabrication processing
technology so that all required electronics are integrated onto
a single silicon wafer which is then coated with a layer of
electrophoretic display material. Research topics explored
include new techniques for controlling display material at low
voltage and a novel approach to defect tolerant wafer scale
VLSI design. The behavior of the fabricated displays is
reviewed and analyzed.

CSL-85-3 May 1985

SmlNG TABLES AND ILLUSTRATIONS WITH SlYLE
by Richard J. Beach

This thesis addresses the problem of formatting complex
documents with electronic tools. In particular, the two
problems of incorporating illustrations and laying out tables
are treated in depth. The notion of style, a way of maintaining
consistency in a document, runs throughout the thesis. It
helps manage the complexities of formatting both illustrations
and tables. The thesis reviews the history of document
composition systems, including early computer typesetting
systems, document compilers, and integrated document
composition systems. The concept of graphical style is
introduced to extend the more traditional notion of document
style to illustrations. The observation that graphical style does
not adequately deal with the layout problem for· illustrations
leads to the investigation of a more concentrated layout
problem for the special case of table formatting. A grid
system is used to describe the table layout arrangement and a
constraint solver provides the general layout engine for
formatting tables as well as the basis for future interactive table
design tools. Further research based on the style and table
formatting models can be extended to mathematical
typesetting and full page layout. A glossary of typesetting
terms and an index to the thesis are provided to help the
reader deal with the typographic terminology used in the
thesis.

62

CSL Technical Report Digest: 1973-1990

CSL-85-4 June 1985

WHITEBOARDS: A GRAPHICAL DATABASE TOOL
by James Donahue and Jennifer Widom*

The 'Whiteboards' system is intended to be an electronic
equivalent of the whiteboards that we have in our offices. A
Whiteboard database has similar qualities of storing disparate
collections of data and saving their spatial location in a
window to help with organization. A Whiteboard database
can contain references to arbitrary entities: text files, notes,
programs, tools, pictures, etc. Whiteboards runs as an
application in the Cedar programming environment.

*Cornell University Computer Science Department

CSL-85-7 November 1985

A CACHING FILE SYSTEM FOR A PROGRAMMER'S
WORKSTATION
by Michael D. Schroeder, David K. Gifford, and
Roger M. Needham

This paper describes a workstation file system that supports a
group of cooperating programmers by allowing them both to
manage local naming environments and to share consistent
versions of collections of software. The file system has access
to the workstation's local disk and to remote file servers, and
provides a hierarchical name space that includes the files on
both. Local names can refer to local files or be attached to
remote files. Remote files, which also may be referred to
directly, are immutable and cached on the local disk. The file
system is part of the Cedar experimental programming
environment at Xerox PARC and has been in use since late
1983.

63

CSL Technical Report Digest: 1973-1990

CSL-85-8 November 1985

AN EFFECTIVE TEST STRATEGY
by Howard Sturgis

In this paper I describe a debugging strategy that I have
successfully used for several years. The principal idea is to
excise test subjects from large programs and test them in
individually crafted test beds, where the test beds are
constructed according to four principles: (1) provide an
"encapsulation" of the test subject that presents deterministic
behavior to the test driver, (2) write a program to simulate the
behavior of the encapsulated test subject, (3) use a random­
number generator to construct the test sequences and
compare the resulting behavior of the encapsulated subject
with that of the simulation, and (4) provide the ability to
exactly repeat a test sequence so as to isolate a detected bug
through "binary chop."

While this strategy does not have the theoretical completeness
provided by verification, I have found it to be easy to
implement and considerably more effective than haphazard
debugging. In all cases where I have used it, it has required
much less time to construct the test beds than required for
the original design and implementation of the program being
tested. Further, I generally find that the resulting program is
about as bug-free as it would have been had formal
verification been available and used.

CSL-85-9 November 1985

WALNUT: STORING ELECTRONIC MAIL IN A DATABASE
by James Donahue and Willie-Sue Orr

Walnut is an electronic mail storage and retrieval system
developed for the Cedar environment. The most novel aspect
of Walnut is its use of a general-purpose relational database
for storage of messages. This paper discusses the design and
implementation of Walnut, with particular attention to the
problems of using a database system for this type of
application.

64

CSL Technical Report Digest: 1973-1990

CSL-86·1 June 1986

A STRUCTURAL VIEW OF THE CEDAR PROGRAMMING
ENVIRONMENT
by Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach,
and Robert B. Hagmann

This paper presents an overview of the Cedar programming
environment, focusing on its overall structure - that is, the
major components of Cedar and the way they are organized.
Cedar supports the development of programs written in a
single programming language, also called Cedar. Its primary
purpose is to increase the productivity of programmers whose
activities include experimental programming and the
development of prototype software systems for a high­
performance personal computer. The paper emphasizes the
extent to which the Cedar language, with runtime support, has
influenced the organization, flexibility, usefulness, and stability
of the Cedar environment. It highlights the novel system
features of Cedar, including automatic storage management of
dynamically-allocated typed values, a runtime type system that
provides runtime access to Cedar data type definitions and
allows interpretive manipulation of typed values, and a
powerful device-independent imaging model that supports
the user interface facilities. Using these discussions to set the
context, the page addresses the language and system features
and the methodologies used to facilitate the integration of
Cedar applications. A comparison of Cedar with other
programming environments further identifies areas where
Cedar excels and areas where work remains to be done.

CSL-86-3 September 1986

VOICE ANNOTATION AND EDITING IN A WORKSTATION
ENVIRONMENT
by Stephen Ades* and Daniel C. Swinehart

The Xerox Cedar experimental development environment,
running on personal workstations, incorporates a structured
document editor, which is used as the basis of many
applications, including programming and document

65

CSL Technical Report Digest: 1973-1990

preparation. A project at the Xerox Palo Alto Research Center
has integrated the telephone into this environment, partly to
afford control over a user's telephone from his workstation
and partly to incorporate recording and playback of voice into
the workstation capability.

This paper describes incorporation of voice annotations into
normal documents within this environment. The user interface
is designed to be lightweight and easy to use, since
spontaneity in adding vocal annotations is essential. Voice
within a document is shown as a distinctive shape
superimposed around a character, so that the document's
visual layout and its contents as observed by other programs
(e.g., compilers) are unaffected. Users point at text selections
and use menus to add and listen to voice.

Simple voice editing is available: users can select a voice
annotation and open a window showing its sound profile.
Sounds from the same or other voice windows can be cut and
pasted together, and a lightweight "dictation facility" that uses
a record/stop/backup model can be used to record and
incorporate new sounds conveniently. Editing is done largely
at the phrase level (never at the phoneme level), representing
the granularity at which editing can be done fastest and with
least effort. The voice itself can be annotated with text. This
and several other features have been designed to add speed
and meaning to the editing process. The dictation facility can
also be used when placing annotations straight into
documents.

This paper describes the user interface in detail and explains
why we believe that this unusually lightweight interface is the
desired abstraction for voice in a general purpose workstation.
It also discusses the supporting system capabilities provided
by a distributed environment on a local area network.

*University of Cambridge Computer Laboratory

66

CSL Technical Report Digest: 1973-1990

CSL-86-4 September 1986

A CLIENT INTERFACE TO AN ENTITY-RELATIONSHIP
DATABASE SYSTEM
by James Donahue, Carl Hauser, and Jack Kent

This paper presents the design of an interface, written in the
Cedar language, for an entity-relationship data model database
system (the database system is called Cypress). We discuss
some of the design decisions that need to be made when
building such an interface. This interface has been used to
implement a number of database applications in the Cedar
environment.

The material presented in this paper can be seen in two lights.
First, it continues the development of "database programming
languages." The novel aspect of the work in this regard is its
use of the type structure and interface definition facility of the
Cedar language to make database access an integral part of
the Cedar environment without requmng any syntactic
extensions to the underlying language. The second (and more
interesting) aspect of the work reported here is that we give a
completely operational description of an entity-relationship
data model. The paper discusses several advantages of this
approach over a purely relational system.

CSL-87-7 August 1987

REIMPLEMENTING THE CEDAR FILE SYSTEM USING
LOGGING AND GROUP COMMIT
by Robert Hagmann

The workstation file system for the Cedar programming
environment was modified to improve its robustness and
performance. Previously, the file system used hardware­
provided labels on disk blocks to increase robustness against
hardware and software errors. The new system does not
require hardware disk labels, yet is more robust than the old
system. Recovery is rapid after a crash. The performance of
operations on file system metadata, e.g., file creation or open,
is greatly improved.

67

CSL Technical Report Digest: 1973-1990

The new file system has two features that make it atypical.
The system uses a log, as do most database systems, to
recover metadata about the file system. To gain performance,
it uses group commit, a concept derived from high
performance database systems. The design of the system
used a simple, yet detailed and accurate, analytical model to
choose between several design alternatives in order to provide
good disk performance.

CSL-88-1 July 1988

VLSI DESIGN AIDS: CAPTURE, INTEGRATION, AND LAYOUT
GENERATION
by Richard Barth, Louis Monier, Bertrand Serlet, and
Pradeep Sindhu

This report presents the VLSI tools recently developed in the
Computer Science Laboratory at Xerox PARC. Three aspects
are emphasized throughout the report: strong integration of
tools, capture of designer's intents at a high level of
abstraction, and an original framework for layout generation.
The backbone of the system allowing tight tool integration is a
data structure for representing circuits. Its features include
powerful operations, strong conceptual integrity, rich
expressive power, and high extensibility. The system enables
the capture of designs as a mix of parameterized schematics
and programs. Designs described in this manner are dense
and legible, because they capture abstractions instead of
merely net lists. Arbitrary properties may annotate designs. In
particular, layout annotations provide all the information
necessary to produce final masks. The layout subsystem,
called Patchwork, is a unified framework for integrating both
basic and powerful layout generators. A variety of major chips
has been built using this system, and several in-depth
examples are presented.

68

CSL Technical Report Digest: 1973-1990

CSL-88-2 July 1988

MAINTAINING THE ILLUSION OF A FUNCTIONAL
LANGUAGE IN THE PRESENCE OF SIDE EFFECTS
by Howard E. Sturgis

This paper describes and proves correct a method for
implementing first-order functions in the presence of side
effects. A user supplies a recursion equation for each desired
function. This equation contains a purely functional first-order
expression involving both the desired functions and certain
primitive functions. The desired functions are formally defined
by the least fixed point of a call-by-value functional that is
derived from the recursion equations. The user also provides
an implementation of each primitive function (written in an
imperative language), together with a declaration of the
possible side effects caused by these implementations. A flow
analysis algorithm is applied to the recursion equations in the
context of the declared side effects. If the recursion
equations pass the analysis, then they are translated into the
imperative language of the primitive function implementations
and executed together with them.

We prove that, if the recursion equations satisfy the flow
analysis and the implementations of the primitive functions are
both faithful and safe, then the resulting program computes
the defined functions. The implementations of the primitive
functions are faithful if they implement the intended primitive
functions, and they are safe if they cause no undeclared side
effects. We give a formal definition for faithful and safe. The
proof is constructed by comparing two different
computations: one in which the implementations of the
primitive functions are free of side effects and one in which
the implementations cause the declared side effects.

As a demonstration of the practicality of this method, we have
implemented a compiler-compiler in which the compile
function is defined by this method. The compiler-compiler is
self-compiling.

69

CSL Technical Report Qigest: 1973-1990

CSL-89-1 January 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE
MAINTENANCE
by Alan Demers, Mark Gealy, Dan Greene, Carl Hauser,
Wes Irish, John Larson, Sue Manning, Scott Shenker,
Howard Sturgis, Dan Swinehart, Doug Terry, and
Don Woods

When a database is replicated at many sites, maintaining
mutual consistency among the sites in the face of updates is a
significant problem. This paper describes several randomized
algorithms for distributing updates and driving the replicas
toward consistency. The algorithms are very simple and
require few guarantees from the underlying communication
system, yet they ensure that the effect of every update is
eventually reflected in all replicas. The cost and performance
of the algorithms are tuned by choosing appropriate
distributions in the randomization step. The algorithms are
closely analogous to epidemics, and the epidemiology
literature aids in understanding their behavior. One of the
algorithms has been implemented in the Clearinghouse servers
of the Xerox Corporate Internet, solving long-standing
problems of high traffic and database inconsistency.

CSL-89-2 May 1989

ETHERPHONE: COLLECTED PAPERS 1987-1988
by Daniel C. Swinehart, Douglas B. Terry, and
Polle T. Zellweger

The Etherphone'M system integrates live and recorded voice
into an office workstation environment. It supports a wide
range of applications, including telephony, voice mail, voice
annotation and editing, audio user interfaces, audio meeting
services, and narrated hypermedia documents. This report
brings together a group of previously-published papers that
describe these applications and the distributed voice system
architecture on which they are built. It includes an overview
of the Etherphone system; a vision of the role that
workstation-based telephones can play in an office
environment; a discussion of the voice manager that provides

70

CSL Technical Report Digest: 1973-1990

facilities for recording, editing, and playing stored voice; an
outline of the systems support required to permit flexible,
extensible multimedia applications; and a description of a
hypermedia presentation system built upon the capabilities of
the Etherphone system.

An Overview of the Etherphone System and its
Applications, by Polle T. Zellweger, Douglas B. Terry, and
Daniel C. Swinehart. This paper appeared in the
Proceedings of the 2nd IEEE Conference on Computer
Workstations (Santa Clara, CA, March 1988), 160-168. An
earlier version appeared as: D. Swinehart, D. Terry, and
P. Zellweger. An experimental environment for voice
system development. IEEE Office Knowledge Engineering
Newsletter, 1(1), February 1987, 39-48.

Telephone Management in the Etherphone System, by
Daniel C. Swinehart. This paper appeared in the
Proceedings of the IEEE/IE/CE Global Telecommunications
Conference (Tokyo, November 1987), 1176-1180.

Managing Stored Voice in the Etherphone System, by
Douglas B. Terry and Daniel C. Swinehart. A version of
this paper appeared in ACM Transactions on Computer
Systems, 6(1), February 1988, 3-27.

System Support Requirements for Multi-media
Workstations, by Daniel C. Swinehart. This paper
appeared in the Proceedings of the SpeechTech '88
Conference (New York; April 1988); Media Dimensions,
Inc., New York, April 1988, 82-83.

Active Paths through Multimedia Documents, by
Polle T. Zellweger. This paper appeared in Document
Manipulation and Typography, J.C. van Vliet (ed.),
Cambridge University Press, 1988. Proceedings of the
EP'88 Conference on Electronic Publishing, Document
Manipulation and Typography, (Nice, France; April 1988).

71

CSL Technical Report Digest: 1973-1990

CSL-89-3 January 1989

DATA COMPRESSION WITH FINITE WINDOWS
by Edward R. Fiala and Daniel H. Greene

Several methods are presented for adaptive, invertible data
compression in the style of Lempel's and Ziv's first textual
substitution proposal. For the first two methods, the paper
describes modifications of McCreight's suffix tree data
structure that support cyclic maintenance of a window on the
most recent source characters. A percolating update is used
to keep node positions within the window, and the updating
process is shown to have constant amortized cost. Other
methods explore the tradeoffs between compression time,
expansion time, data structure size, and amount of
compression achieved. The paper includes a graph-theoretic
analysis of the compression penalty incurred by our codeword
selection policy in comparison with an optimal policy, and it
includes empirical studies of the performance of various
adaptive compressors from the literature.

CSL-89-4 January 1989

UNIX NEEDS A TRUE INTEGRATED ENVIRONMENT: CASE
CLOSED
by Mark Weiser, L. Peter Deutsch*, and Peter B. Kessler

Long before there was CASE as we now know it, there were
integrated programming environments for languages like
Smalltalk and Lisp. Why are there no truly integrated
environments for UNIX? And why is CASE not enough?

*ParcPlace Systems

72

CSL Technical Report Digest: 1973-1990

CSL-89-6 January 1989

EFFICIENT BINARY SPACE PARTITIONS FOR HIDDEN­
SURFACE REMOVAL AND SOLID MODELING
by Michael S. Paterson* and F. Frances Yao

We consider schemes for recursively dividing a set of
geometric objects by hyperplanes until all objects are
separated. Such a binary space partition, or BSP, is naturally
considered as a binary tree where each internal node
corresponds to a division. The goal is to choose the
hyperplanes properly so that the size of the BSP, i.e., the
number of resulting fragments of the objects, is minimized.
For the two-dimensional case, we construct BSPs of size
O(nlogn) for n edges, while in three dimensions, we obtain
BSPs of size 0(n2) for n planar facets and prove a matching
lower bound of Q(n2). Two applications of efficient BSPs are
given. The first is an 0(n2)-sized data structure for
implementing a hidden-surface removal scheme of Fuchs,
Kedem and Naylor [6]. The second application is in solid
modeling: given a polyhedron described by its n faces, we

·show how to generate an 0(n2)-sized CSG (constructive-solid­
geometry) formula whose literals correspond to half-spaces
supporting the faces of the polyhedron. The best previous
results for both of these problems were 0(n3).

*University of Warwick Department of Computer Science

CSL-89-7 October 1989

BROWSING ELECTRONIC MAIL: EXPERIENCES
INTERFACING A MAIL SYSTEM TO A DBMS
by Jack Kent, Douglas Terry, and Willie-Sue Orr

A database management system provides the ideal support for
electronic mail applications. The Walnut mail system built at
the Xerox Palo Alto Research Center was recently redesigned
to take better advantage of its underlying database facilities.
The ability to pose ad-hoc queries with a "fill-in-the-form"
browser allows people to browse their mail quickly and
effectively, while database access paths guarantee fast retrieval
of stored information. Careful consideration of the systems'

73

CSL Technical Report Digest: 1973-1990

usage was reflected in both the database schema
representation and the user-interface for browsing mail.

CSL-89-8 June 1989

EXPERIENCES CREATING A PORTABLE CEDAR
by Russ Atkinson, Alan Demers, Carl Hauser, Christian
Jacobi, Peter Kessler, and Mark Weiser

Cedar is the name for both a language and an environment in
use in the Computer Science Laboratory at Xerox PARC since
1980. The Cedar language is a superset of Mesa, the major
additions being garbage collection and runtime types. Neither
the language nor the environment was originally intended to
be portable, and for many years ran only on D-machines at
PARC and a few other locations in Xerox. We recently re­
implemented the language to make it portable across many
different architectures. Our strategy was, first to use machine­
dependent C code as an intermediate language, second, to
create a language-independent layer known as the Portable
Common Runtime, and third, to write a relatively large amount
of Cedar-specific runtime code in a subset of Cedar itself. By
treating C as an intermediate code we are able to achieve
reasonably fast compilation, very good eventual machine code,
and all with relatively small programmer effort. Because Cedar
is a much richer language than C, there were numerous issues
to resolve in performing an efficient translation and in
providing reasonable debugging. These strategies will be of
use to many other porters of high-level languages who may
wish to use C as an assembler language without giving up
either ease of debugging or high performance. We present a
brief description of the Cedar language, our portability
strategy for the compiler and runtime, our manner of making
connections to other languages and the Unix operating
system, and some measures of the performance of our
"Portable Cedar".

74

CSL Technical Report Digest: 1973-1990

CSL-89-9 August 1989

FLOATING-POINT AND COMPUTER SYSTEMS
by David Goldberg

Floating-point is considered an esoteric subject by many
people. This is rather surprising, because floating-point is
ubiquitous in computer systems. Almost every language has a
floating-point datatype, computers from PC's to
supercomputers have floating-point accelerators, most
compilers will be called on to compile floating-point
algorithms from time to time, and almost every operating
system has to perform some action when floating-point
exceptions like overflow occur. This paper surveys aspects of
floating-point that are likely to be useful to designers and
users of computer systems. It begins with background on
floating-point representation and rounding error, continues
with a discussion of the IEEE floating-point standard, and
concludes with numerous examples of how computer system
builders can better support floating-point.

CSL-89-10 November 1989

LARGE SCALE ANALYSIS OF NEURAL STRUCTURES
by Ralph C. Merkle

Advances in computer analysis of images, the dropping cost of
computer power and advances in light and electron
microscopy and possibly in staining techniques will make it
possible in the next few years to analyze neural structures of
unprecedented size at the cellular level. A complete analysis
of the cellular connectivity of a structure as large as the human
brain is only a few decades away.

CSL-90-1 February 1990

CONSTRAINED QUANTIFICATION IN POLYMORPHIC TYPE
ANALYSIS
by Pavel Curtis

Sound type systems have existed for several years for
languages with polymorphism, the ability for procedures to

75

CSL Technical Report Digest: 1973-1990

work on many kinds of data. Successful systems also exist for
languages with a nontrivial notion of subtyping, such as is
provided in some modestly object-oriented languages. The
work in this dissertation was motivated by the problem of
providing a sound and flexible type system for languages with
both of these properties. We have developed a new kind of
type expression, which we call constrained quantification,
given a semantics for these new expressions, and developed
algorithms for soundly inferring such types for programs in a
particular sample programming language. This language has all
of the essential features of a polymorphic functional language
along with the kernel functionality of object-oriented
languages.

In addition to solving the type system problem for this class of
languages, constrained quantification outperforms the
traditional polymorphic type analysis algorithms even in
languages without subtyping.

We claim that constrained quantification is a flexible, powerful,
practical and formally comprehensible approach to
polymorphic type analysis, especially when applied to
languages with nontrivial subtyping. The dissertation
demonstrates this claim in more than enough detail for
constrained quantification to find immediate use in a practical
programming environment.

CSL-90-2 April 1990

REBUILDING DATABASE CACHES DURING FAST CRASH
RECOVERY
by Robert B. Hagmann

Most database systems use a disk log for fast crash recovery.
This paper proposes changes to the standard logging and
recovery algorithms to make them faster, and, in addition, to
recover various caches at little cost. One interesting cache is
the buffer pool. For large configurations, the buffer pool
(including old clean pages) is rebuilt from the log. During
recovery, essentially all disk 1/0 is the sequential reading of the
log. With enough main memory, no random reads or writes
to the disk database occur during recovery.

76

CSL Technical Report Digest: 1973-1990

CSL-90-3 April 1990

A MODULE SYSTEM FOR SCHEME
by Pavel Curtis and James Rauen*

This paper presents a module system designed for large-scale
programming in Scheme. The module system separates
specifications of objects from their implementations,
permitting the separate development, compilation, and testing
of modules. The module system also includes a robust macro
facility.

We discuss our design goals, the design of the module
system, implementation issues, and our future plans.

*MIT Laboratory for Computer Science

CSL-90-4 June 1990

COMPARING STRUCTURALLY DIFFERENT VIEWS OF A VLSI
DESIGN
by Mike Spreitzer

One of the major problems of VLSI design is coping with the
quantity and complexity of the design data. The leading
solutions use 'divide-and-conquer' techniques. Two different
ways of dividing are popular: division by a structural hierarchy,
and division into various levels of abstraction (a view is a
description at a particular level of abstraction). VLSI designs
are so large and complex that both divisions are needed,
which raises a question: should all the views of a design use
the same hierarchy? This question is currently controversial.
This dissertation, while not presuming to settle that question,
argues in favor of allowing the views to have different
hierarchies, and addresses a problem that is complicated by
differences in hierarchy. That is the comparison problem,
which has two parts: (1) verify consistency between alternate
views, and (2) determine the correspondence between the
design entiti.es of those views. Previously existing techniques
either work on flat views (that is, ones not divided into a
hierarchical structure), or can only compare views that have

77

CSL Technical Report Digest: 1973-1990

essentially identical hierarchies. Of course any hierarchical
description can be flattened, but flattening is disadvantageous
for a number of reasons. The most important reason is that
flattening can exponentially increase the size of the
description. Many comparison techniques require an amount
of time that grows exponentially with the size of the circuit
descriptions. Flat comparison techniques are thus impractical
for VLSI designs.

This dissertation introduces a new comparison method,
Informed Comparison, which neither requires the views to
have essentially identical hierarchies nor flattens the views.
Informed Comparison requires the designers to maintain a
key, which is a description of the intended relation between
the hierarchies of the views. Informed Comparison first
reconciles copies of the views by applying hierarchy
transformations, under the guidance of the key, until the
copies have essentially identical hierarchies. Informed
Comparison then finishes with a base comparison, which can
use any existing (or new) hierarchical technique that assumes
essentially identical hierarchies. Informed Comparison thus
has many of the good features, including good asymptotic
performance, of other hierarchical methods.

Several characteristics of Informed Comparison depend on the
repertoire of transformations available to the reconciliation
step and on the base comparison technique. This dissertation
illustrates those dependencies with two examples of Informed
Comparison.

CSL-90-5 June 1990

AN ARCHITECTURE FOR HIGH-PERFORMANCE SINGLE­
CHIP VLSI TESTERS
by James A. Gasbarro

Testing is an important factor in the production of useable
custom integrated circuits. Verification of the functional and
AC parametric characteristics of a device are usually performed
on large and expensive test systems. This thesis presents a
new approach to tester architecture that seeks to greatly
reduce both the size and cost of these systems. The principal

78

CSL Technical Report Digest: 1973-1990

idea is to base the tester design on the same high-density
technology as that of the devices being tested. Through the
use of novel test vector compression techniques and closed­
loop timing calibration methods, high performance and high
density can be achieved in a CMOS technology. The proof is
the implementation of a single-chip multi-channel tester which
has the size and cost attributes of the very low-end testers, yet
implements many of the features found on only the most
expensive machines.

The high level of integration achieved results in a number of
other advantages as well. The close proximity of the tester to
the test device eliminates most of the signal transmission and
loading issues encountered in larger systems. The extremely
compact size enables in-circuit probing and performance
analysis of the test device without custom fixturing. Finally,
and perhaps most importantly, by implementing the tester in
the same technology as that of the device to be tested, future
upgrades of the tester capability can evolve along with the
capabilities of the subject device.

CSL-90-6 June 1990

ACTIVE TIOGA DOCUMENTS
AN EXPLORATION OF TWO PARADIGMS
by Douglas B. Terry and Donald G. Baker*

The advent of electronic media has changed the way we think
about documents. Documents with illustrations, spread
sheets, and mathematical formulae have become
commonplace, but documents with active components have
been rare. This paper focuses on our extensions to the Tioga
editor to support two very different styles of active
documents. One paradigm involves dynamically computing,
or at least transforming, the contents of a document as it is
displayed. A second paradigm uses notifications of edits to a
document to trigger activities. Document activities can
include database queries, which are evaluated and placed in
the document upon opening the document, or constraints
between portions of a document, which are maintained as the
user edits the document. The resulting active documents can

79

CSL Technical Report Digest: 1973-1990

be viewed, edited, filed, and mailed in the same way as regular
documents, while retaining their activities.

*Rice University

CSL-90-7 August 1990

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION
by John R. Gilbert and Robert Schreiber*

We develop and compare several fine-grained parallel
algorithms to compute the Cholesky factorization of a sparse
matrix. Our experimental implementations are on the
Connection Machine, a distributed-memory SIMD machine
whose programming model conceptually supplies one
processor per data element. In contrast to special-purpose
algorithms in which the matrix structure conforms to the
connection structure of the machine, our focus is on matrices
with arbitrary sparsity structure. Our most promising algorithm
is one whose inner loop performs several dense factorizations
simultaneously on a two dimensional grid of processors.
Virtually any massively parallel dense factorization algorithm
can be used as the key subroutine. The sparse code attains
execution rates comparable to those of the dense subroutine.
Although at present architectural limitations prevent the dense
factorization from realizing its potential efficiency, we
conclude that a regular data parallel architecture can be used
efficiently to solve arbitrarily structured sparse problems.

We also present a performance model and use it to analyze
our algorithms. We find that asymptotic analysis combined
with experimental measurement of parameters is accurate
enough to be useful in choosing among alternative algorithms
for a complicated problem.

*Research Institute for Advanced Computer Science, NASA
Ames Research Center

80

CSL Technical Report Digest: 1973-1990

CSL-90·8 August 1990

SEPARATORS IN GRAPHS WITH NEGATIVE OR MULTIPLE
VERTEX WEIGHTS
by Hristo N. Djidjev* and John R. Gilbert

A separator is a small set of vertices whose removal divides a
graph approximately in half. Separator theorems are known
for graphs that forbid a given minor (including planar graphs,
for example); finite element graphs; chordal graphs; and some
others.

Here we show that a separator theorem implies various
weighted separator theorems. If real-valued (possibly
negative) vertex weights are given, the graph can be divided
exactly in half by weight. If two unrelated sets of positive
weights are given, the graph can be divided by both weights
simultaneously.

*Center of Informatics and Computer Technology, Bulgarian
Academy of Sciences

CSL-90·9 November 1990

OPTIMAL EXPRESSION EVALUATION FOR DATA PARALLEL
ARCHITECTURES
by John R. Gilbert and Robert Schreiber*

A data parallel machine represents an array or other composite
data structure by allocating one processor (at least
conceptually) per data item. A pointwise operation can be
performed between two such arrays in unit time, provided
their corresponding elements are allocated in the same
processors.

If the arrays are not aligned in this fashion, the cost of moving
one or both of them is part of the cost of the operation. The
choice of where to perform the operation then affects this
cost. If an expression with several operands is to be
evaluated, there may be many choices of where to perform
the intermediate operations. We give an efficient algorithm to
find the minimum-cost way to evaluate an expression, for

81

CSL Technical Report Digest: 1973-1990

several different data parallel architectures. Our algorithm
applies to any architecture in which the metric describing the
cost of moving an array has a property we call ''robustness.''
This encompasses most of the common data parallel
communication architectures, including meshes of arbitrary
dimension and hypercubes. We remark on several variations
of the problem, some of which we solve and some of which
remain open.

*Research Institute for Advanced Computer Science, NASA
Ames Research Center

CSL-90-10 January 1991

APPROXIMATING TREEWIDTH, PATHWIDTH, AND
MINIMUM ELIMINATION TREE HEIGHT
by Hans L. Bodlaender*, John R. Gilbert,
Hjalmtyr Hafsteinssont, Ton Kloks*

We show how the value of various parameters of graphs
connected to sparse matrix factorization and other applications
can be approximated using an algorithm of Leighton et al. that
finds vertex separators of graphs. The approximate values of
the parameters, which include minimum front size, treewidth,
pathwidth, and minimum elimination tree height, are no more
than O(log n) (minimum front size and treewidth) and
O(log2 n) (pathwidth and minimum elimination tree height)
times the optimal values. In addition we examine the
existence of bounded approximation algorithms for the
parameters, and show that unless P = NP there are no
absolute approximation algorithms for them.

*University of Utrecht
tUniversity of Iceland

82

CSL Technical Report Digest: 1973-1990

CSL-90-11

ELIMINATION STRUCTURES FOR UNSYMMETRIC SPARSE LU
FACTORS
by John R. Gilbert and Joseph W.H. Liu*

The elimination tree is central to the study of Cholesky
factorization of sparse symmetric positive definite matrices. In
this paper, we generalize the elimination tree to a structure
appropriate for the sparse LU factorization of unsymmetric
matrices. We define a pair of directed acyclic graphs called
elimination dags, and use them to characterize the zero­
nonzero structures of the lower and upper triangular factors.
We apply these elimination structures in a new algorithm to
compute fill in sparse LU factorization. Our experimental
results indicate that the new algorithm is usually faster than
existing methods.

*Department of Computer Science, York University

CSL-90-12 September 1990

7 STEPS TO A BETIER MAIL SYSTEM
by Douglas Terry

Electronic mail systems were developed as a means for
sending interpersonal messages between users. Distribution
lists in current mail systems are being increasingly used for
disseminating information to large groups of readers. Mail
systems are not ideally suited for this role. This paper
proposes seven steps that can be taken to improve our mail
systems. The intent is to allow more effective communication
among groups of people. The steps collectively lead to a non­
traditional mail system architecture, one utilizing a common
storage system and recipient-controlled message delivery.

83

CSL Technical Report Digest: 1973-1990

CSL-90-13 December 1990

PHASE-SUP TECHNIQUE FOR DIRECT SEQUENCE SPREAD
SPECTRUM COMMUNICATION
by Edward A. Richley and Richard M. Barth*

The advent of portable workstations has created a need for
wireless local area networks. In addressing these needs, many
techniques have appeared recently to take advantage of the
new FCC rules regarding the use of spread spectrum on the
902-928 Mhz and other, higher, bands. Most of these
techniques offer degraded performance or excessive power
requirements in order to comply with the rules. A technique,
referred to as "Phase-Slip-Locking" has been devised to
circumvent these shortcomings. A direct-sequence spread
spectrum system utilizing the entire available process gain has
been built in prototype form. Most importantly, the power
consumption requirement of the receiver is only slightly more
than that for a conventional narrow band system. The system
is operated at a center frequency of 915 Mhz, with a
transmitted power level of 100mW. Although much
refinement is yet to be performed, these initial tests indicate
that the Phase-Slip technique is very useful.

*Rambus, Inc.

84

AUTHOR INDEX

A

Ades, Stephen 65
Atkinson, Russ 74

B

Baker, Donald G. 79
Barth, Richard M. 68, 84
Beach, Richard J. 59, 62, 65
Birrell, Andrew D. 47, 52, 56
Bobrow, Daniel G. 1, 4, 6, 7, 11, 24, 30, 37
Bodlaender, Hans L. 82
Boggs, David R. 8, 25, 26, 27, 28, 50
Boyer, Robert S. 9
Bratz, Douglas K. 39
Brown, Mark R. 57

c

Cartwright. Robert 53
Cattell , R.G.G. 24, 25, 51
Clark, Douglas W. 24, 36
Crane, R. 28
Curtis, Pavel 75, 77

D

Demers, Alan 51, 70, 74
Deutsch, L. Peter 1, 34 (edited by), 72
Djidjev, Hristo N. 81
Donahue, James 51, 53, 63, 64, 67

F

Fiala, Edward R. 72
Flan, Lawrence 19

85

AUTHOR INDEX

G

Gasbarro, James A. 78
Gealy, Mark 70
Geschke, Charles M. 5, 13
Gifford, David K. 26, 27, 40, 45, 63
Gilbert, John R. 80, 81, 82, 83
Goldberg, David 75
Goldstein, Ira P. 30, 37
Gonsalves, Timothy A. 47
Greene, Daniel H. 70, 72
Guibas, Leonidas J. 10
Guttag, John V. 28, 46, 52

H

Hafsteinsson, Hjalmtyr 82
Hagmann, Robert B. 65, 67, 76
Hauser, Carl 67, 70, 74
Horning, James J. 28, 45, 46, 52
Hupp, J. 28

Irish, Wes 70
Israel, Jay E. 18

Jacobi, Christian 7 4

K

Kay, Martin 34, 35
Kent, Jack 67, 73
Kessler, Peter B. 72, 7 4
Kloks, Ton 82
Kolling, Karen 57
Kornfeld, Cary D. 61

86

AUTHOR INDEX

L

Lampson, Butler W. 26, 36, 45. 56
Larson. John 70
Levin, Roy 22, 47. 56
Lipton, Richard J. 16
Liu, Joseph W.H. 83
London, Ralph 45

M

Manning, Sue 70
Maxwell, John T. 49
Maybury. W. 21
McCreight. Edward M. 6, 26, 33, 38
McDaniel, Gene 27, 36. 46
Merkle, Ralph C. 75
Metcalfe, Robert M. 8, 25, 28
Mitchell. James G. 2, 5, 14, 18, 21. 45
Model. Mitchell L. 20
Monier. Louis 68
Moore, J. Strother 4, 5. 9, 12, 37
Morris, James H. 8, 13, 44
Myers, Brad A. 31

N

Needham. Roger M. 18, 47, 56, 63
Nelson, Bruce Jay 41, 52
Nelson, Greg 43
Norman, Donald A. 4. 6

0

Ornstein, Severo 36, 49, 53
Orr, Willie-Sue 64. 73

87

AUTHOR INDEX

p

Paterson, Michael S. 73
Paxton. William H. 29
Pier, Ken 36
Popek, Gerald 45

R

Ramshaw, Lyle Harold 22, 54
Raphael, Bertram 1
Rauen, James 77
Richley, Edward A. 84
Rovner, Paul 59

s

Satterthwaite, Ed 13
Schmidt, Eric Emerson 48
Schreiber, Robert 80, 81
Schroeder, Michael D. 18, 22, 47, 56, 63
Serlet. Bertrand 68
Shenker, Scott 70
Shoch, John F. 25, 28
Simonyi, Charles 13
Sindhu, Pradeep 68
Spreitzer, Mike 77
Sproull, Robert F. 2, 15, 23, 26
Stewart, Lawrence C. 39, 53
Sturgis, Howard E. 3, 18, 64, 69, 70
Suzuki, Norihisa 19
Sweet, Richard E. 17, 21
Swinehart, Daniel C. 27, 53, 65, 70

T

Taft, Edward A. 25, 28, 34 (edited by), 57
Terry, Douglas B. 60, 70, 73, 79, 83
Teitelman, Warren 16, 54
Thacker, C.P. 26
Thompson, Henry S. 32

88

AUTHOR INDEX

w

Warnock, J.E. 30
Wegbreit, Ben 8, 9, 10, 14
Weiser, Mark 72, 74
Widom, Jennifer 63
Wing, Jeannette 46
Winograd, Terry 11
Woods, Don 70

y

Yao, F. Frances 29, 73

z

Zellweger, Polle T. 49, 57, 65, 70

89

