43 459 Lm‘l’ M connrr:a SCIENCE PROGRESS REPORT 19 4
901-3. UNE 19.. (U) MASSACHUSETTS lNST OF TECH

H.R E LAB FOR COMPUTER SCIENCE.. M L DERTOUZ0S

UNCLASSIFIED .1 HRY 04 AIT/LCS-PR-19 NO9R14-75-C-0661 F/G 972

N
-]

2

=

y
= L
f s 2

= n
22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i A

mde

o U |

. MASSACHUSETTS
LABORATORY FOR %% INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

PROGRESS REPORT 19

AD-A143 459

July 1981 - June 1982

me/

Prepared for the (

Defense Advanced Research Projects Agency

TS FILE COPY

515 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02130

T . 4+ appeoved

for pu' oo .] walai 84 07 23 147

dh.tb\mun W unliuived,

/

-y
’

\ wn o

-

i3 i v

- .

N " N S

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE ,E,,g%g"c’g:;fggf;m‘o“
[T, REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

MIT/LCS Progress Report 19

S. TYPE OF REPORT & PERIOD COVERED

4 TITLE (and Sulmu? .

Laboratory for Computer Science (MIT) Annual Progress Report

Progress Report 19 ‘

July 1981 - June 1982 6. PERFORMING ORG. REPORT NUMBER
LCS-PR 19

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

MIT Laboratory for Computer Science N00014-75-C-0661

Michael L. Dertouzos, Director DARPA/DOD

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

MIT Laboratory for Computer Science AREA & WORK UNIT NuMBERS

545 Technology Square

Cambridge, MA 02139 \

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency May 1, 1984
Information Processing Techniques Office 5. NUMBER OF PAGES
1400 Wilson Boulevard, Arlington, VA 22209 287

4. MONITORING AGENCY NAME & ADDRESS(/f different from Controliing Oftlice) 15, SECURITY CLASS. (of thls report)
Office of Naval Research

Department of the Navy Unclassified
Information Systems Program Sa. gggééatuzncu«oafoowncnaomc

Arlington, VA 22217

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited.

.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Conlinue on reverse side if necessary -:'d identity by block numl_wr) . .
Computation Structures Educational Computing Multiprocessing

Computer Networks Hardware Systems Office Automation
Computer Systems Information Systems Personal Computers
Computer Language= Local Networks Programming Languages
Dataflow Message Systems Real-Time
30 ABSTRACT (Continue on reverss side Il necessary and identity by block number) ~ ODECLL ication

VLSI

Workstations

Trhis report summarizes the research performed at the MIT

Laboratory for Computer Science from July 1, 1981 through
June 30, 1982. NRTARY

DD ," 51" 1473 £0iTION OF 1 NOV 8515 OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS P AGE (When Date Bntered)

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

; [

uccession For
NTIS GRA&I

PROGRESS REPORT 19| bric s

Unannounced
Justificatio

Bv_

%, NDistribution/
é‘yailability Codes

‘Avail and/or
Dist | Special

Prepared for the A- I

Defense Advanced Research Projects Agency

July 1981 - June 1982

Effective date of contract: 1 January 1981
Contract expiration date: 31 December 1982
Principal Investigator and Director: Michael L. Dertouzos

(617) 253-2145

This research 13 supported by the Defense Advanced Resoaich Projects Agency under Contract No. NOOQ14.75-C-0861.
Views and conclusions contained n this report are thoss of the authors and shoukd not be interpreled as representing the official opinions or policy,
athor expressed or mplied of DARPA, the U.S Government or any other person or agency connected with them.

This ducumaent s approved for public release and sale; distribution 18 uniimited.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 (617) 253-3831

C

smndi_A

i

f TABLE OF CONTENTS
{ /‘>4A? &,‘n/&n’{ L/u(-r(;loé‘ 4‘

INTRODUCTION
SCOMPUTER SYSTEMS AND COMMUNICATIONS . .
Introduction
Network Technology Exploration
High-Performance Protocol Structures
Local Network Interconnection
Portable Personal Terminal
. Xerox Grant Activities
COMPUTER SYSTEMS STRUCTURES
Introduction
The Swallow System Prototype
Protection and Authentication
Naming without Hierarchy or a Central Authority
Distributed Debugging
. Non-FIFO Protocols
»EDUCATIONAL COMPUTING GROUP, -

1. Introduction 7
2. Designing Systems for Non-expert Users
3. A Boxer Overview

4, Next Steps with Boxer

12 LI o I

SN AN S

*FUNCTIONAL LANGUAGES AND ARCHITECTURE GROUP," -

1. Introduction
2. Language Related Work
3. A Dataflow Architecture and Prototype Implementation

>INFORMATION MECHANICS ; -

1. Conservative Logic and Reversible Computing
2. Semi-intelligent Control

“*MESSAGE PASSING SEMANTICS -

Introduction

Tinker

Using Examples

Programming with Tinker

A Chesshoard Analogy

Graphics

. A Guided Tour of the Tinker Screen
OFFICE AUTOMATION . Vo

1. Overview
2. Office Studies

NoOsLN A

(U

3. Multi-Person informational Work

4. The Ottfice Workstation
>PROGRAMMING METHODOLOGY .

1. Introduction

2. System Overview

3. A Simple Mail System

4. Theoretical Studies: Concurrency Control for Resilient Nested Actions 178

™) PROGRAMMING TECHNOLOGY,
1. Introduction to Planning System 188
2. Advanced Message System , 188
3. Knowledge-Based Planning Aids 191
4. MIM Development 193 -]
" "REAL TIME SYSTEMS - 199 ’ 1
1. Introduction 201
2. The Nu Personal Computer 201
3. Multiprocessor Architectures 202
4, TRIX Operating System 209 q
5. VLSITools 212
"SYSTEMATIC PROGRAM DEVELOPMENT, _ 221
1. Introduction e 222
2. Specification Languages ' 222]
3. The Specification Editor 225 -9
4, The Specification Library 229
5. The Rewrite Rule Laboratory 229]
6. Interactions Outside of LCS 231
PUBLICATIONS 237 é

128
142
165
166
166
169

187 o

L)}

ADMINISTRATION

Academic Staff

M. Dertouzos Director
M. Hammer Associate Director
A. Meyer Associate Director

Administrative Staff

J. Badal Information Specialist
M. Baker Administrative Assistant
J. Hynes Administrative Officer
D. Wharen Assistant Administrative
Officer
Support Staff

G. Brown T.LoDuca

S. Cavallaro D. Maupin

R. Cing-Mars E. Profirio

M. Cummings P. Vancini

Ei

=

Work reported herein was carried out within the Laboratory for Computer Science,
an MIT interdepartmental laboratory. During 1981-82, the principle financal support
of the Laboratory has come from the Defense Advanced Research Projects Agency
(DARPA), under the Office aof Naval Research Contract NOO14-75-C-0661. DARPA
has been instrumental in the last 19 years and is gratefully acknowledged here.

Reproduction of this report, in whole or in part, is permitted for any purpose of the
United States Government. Distribution of this report is unlimited.

Final assembly and production of this report was done by Paula Vancini.

INTRODUCTION

The Laboratory for Computer Science (LCS) is an MIT interdepartmental
laboratory whose principal goal is research in computer science and engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine
Aided Cognition). the Laboratory developed the Compatible Time-Sharing System
(CTSS), one of the first time-shared systems in the world, and Multics -- an improved
time-shared system that introduced several new concepts. These two major
developments stimulated research activities in the application of on-line computing
to such diverse disciplines as engineering, architecture, mathematics, biology,
medicine, library science, ard management. Since that time, the Laboratory’s
objectives expanded, leading to research across a broad front of activities that now
span four principal areas:

The first such area, entitted Knowledge Based Programs, involves making
programs more intelligent by capturing, representing, and using knowledge which is
specific to the problem domain. Examples are the use of expert medical knowledge
for assistance in diagnosis carried out by the Clinical Decision-Making Research
Group; the use of mathematical knowledge for an automated "mathematical
assistant" by the Mathlab Research Group; and the use of specific knowledge about
budgets for a budget planning system.

Research in the second and largest area, entitled Machines, Languages, and
Systems, strives to effect sizable improvements in the ease of utilization and cost
effectiveness of computing systems. For example, the Programming Methodology
Research Group strives to achieve this broad goal through research in the semantics
of geographically distributed systems. Toward the same goal, the Real Time
Systems Group is exploring distributed operating systems and the architecture of
single-user powerful computers that are interconnected by communication
networks. The networks for such distributed environments are studied by the
Computer Systems and Communications Group, while distributed file servers and
cryptographic protection techniques are pursued by the Computer Systems
Structures Group. Other research in this area includes the architecture of very large
muitiprocessor machines by the Computation Structures and Functional Languages
and Architectures research groups, and the use of networks to link large numbers of
computers engaged in computationally intensive tasks.

The Laboratory’s third principal area of research entitled Theory, involves
exploration and development of theoretical foundations in computer science. For
example, the Theory of Computation Research Group strives to understand ultimate
limits in space and time associated with various classes of algorithms, the semantics

A

INTRODUCTION

of programming languages from both analytical and synthetic viewpoints, the logic
of programs, and the links between mathematics and the privacy/authentication of
computer-to-computer messages.

The fourth area of Laboratory research, entitled Computers and People, entails
societal as well as technical aspects of the interrelationships between people and
machines. Examples of research in this area include the use of computers in the
educational process by the Educational Computing Group; office automation
research carried out by the similarly named Laboratory research group; the use of
interconnected computers for planning; as well as the sociological impact of
computers on individuals, and the ethical problems of distributed responsibility
posed by multiprogrammer systems.

During the past year, the Laboratory consisted of 307 members -- 36 faculty and
academic research staff, 22 visitors and visiting faculty, 75 professional and support
staff, 90 graduate and 84 undergraduate students -- organized into 16 research
groups. The academic affiliation of most of the faculty and students is with the
Department of Electrical Engineering and Computer Science. Other academic units
represented in the Laboratory membership are Mathematics, Architecture,
Humanities, Center for Policy Alternatives, and Sloan School of Management.
Laboratory research during 1981-82 was funded by 15 governmental and industrial
organizations, of which the Defense Advanced Research Projects Agency of the
Department of Defense provided about half of the total research funds.

Technical results of our research in 1981-82 were disseminated through
publications in the technical literature, through Technical Reports (TR263-TR276)
and through Technical Memoranda (TM199-TM220). The following items are the
highlights of the year:

The newly established Educational Computing Group has been augmented with
additional people from the MIT Division for Study and Research in Education,
notably Dr. Sylvia Weir and her researchers. We are embarking on a major effort in
the area of computers and education starting from the results of the pioneering work
of Prof. Papert during the last decade. We hope to establish a broadly based effort
by pursuing research in the intersection of computer technology, cognitive science,
and education with the objective of improving the human educational process.

Another area of emphasis involves our newly created research group on
Functional Languages and Architectures. Here, we are pursuing the eventual
construction of a new class of computers consisting of hundreds, if not thousands,
of interconnected processors, all working toward the same applications goal. Such
goals include speech and image understanding, logical inference, and the solution
of large, numerically intensive problems, such as weather forecasting. The new
opportunity that motivates us to pursue this work is our progressively increasing

INTRODUCTION

ability to construct, via VLSI (very large scale integration) techniques, a large
number of identical, complex and relatively inexpensive computational structures.
Our hope is to develop scalable architectures in the sense that doubling the number
of elements in such a system will roughly double the performance under the desired
application.

During 1981-82, we have also made substantial progress in our distributed systems
research. This major laboratory focus continues to occupy the attention of more
than half our people. Our recent results have put us in a position to construct a class
of geographically distributed and interconnected systems which strive to balance
local autonomy with application cohesiveness. The hardware resources that we
designed were successfully transferred to industry and we expect to take delivery of
the first commercial-level machines before the end of 1982. These and other
machines of the single-user variety are expected to form prototype systems within
the laboratory starting in 1983. It is through these prototypes that we plan to
implement the collection of research results that we have acquired up to now. In
particular, we expect to experiment with languages, operating systems, and
applications that establish the feasibility of distributed systems. Such feasibility, in
turn, means that an aggregate of arbitrarily many such interconnected and
decentralized machines can render at minimum all the functions of a single
centralized computer environment -- in the presence of local failures which are likely
to be frequent as the number of participating machines becomes large.

During 1981-1982 Drs. David Lebling, Ramesh Patil, Christopher Reeve, and
Gerard Vichniac became Research Associates; Dr. Marvin Sirbu joined us as
Associate member, and Dr. Sylvia Weir as Principal Research Associate. Finally, Mr.
Albert Vezza was appointed Acting Associate Director replacing Prof. Michael
Hammer who took a leave of absence for one year.

COMPUTER SYSTEMS AND COMMUNICATIONS

Academic Staff

J.H. Saltzer, Group Leader F.J. Corbaté
D.D. Clark M.V. Wilkes

Research Staff

J.N. Chiappa E.A. Martin
M.B. Greenwald C.M. Novitsky

Graduate Students

R.W. Baldwin K. Koile
G.H. Cooper L.N. Lopez
S.R. Curtis V. Singh
D.L. Estrin L. Zhang
J. Frankel

Undergraduate Students

L.W. Allen F. Meier zu Sieker
D.A. Bridgham R. Myhill
M.D. Cunningham M.A. Patton
D.C. Feldmeier J.L. Romkey
D.E. Goldfarb R.S. Teal
F.S. Hsu D.L. Wilson
L.J. Konopelski K.D. Wright
C.V. Ludwig C.M. Zeitz
Support Staff
D.J. Fagin M.F. Webber |

N. Lyall

—

m p—

[COMPUTER SYSTEMS AND COMMUNICATIONS

1. INTRODUCTION

The Computer Systems and Communicatiziy aroup of the MIT Laboratory for
u Computer Science does expuiimental research on the integration of computer
operating systcins with data communication networks. Its current projects are in
four related areas: alternative local area network technologies, high-pertormance
communication protocols. local network interconnection, and prototype experiments
for future portable personal computer terminals. The work of this group is closely
n coordinated with that of the Computer Systems Structures Group led by Protessor
David Reed. and somewhat more loosely coordinated with that of the Programming
Methodology Group led by Professor Barbara Liskov. Because experimental work in
computer systems often requires trying ideas out in realistic application situations,
some of the activities of the group mix research with the provision of service facilities
to the Laboratory as a whole. The four major project areas are discussed
individually in the following sections.

2. NETWORK TECHNOLOGY EXPLORATION

The underlying goal in exploring alternative network technologies is to exploit
modern, low-cost digital electronics to provide relatively high-speed data
communication among groups of desktop computers and related, specialized,
service-providing computers. This basic goal includes the extension of high-speed
data communication to personal computers located at home. One such technology,
the contention-controlied bus, has been extensively developed by the Xerox
Corporation under the name Ethernet. We are comparing the Ethernet with an
alternative approach, the ring of digital repeaters using a token for access control.
From a theoretical point of view one cannot identity persuasive arguments favoring
either one of these technologies over the other. Insteac' it appears that the primary
differences are in things best tested in the field. such as ease of trouble-isolation and
repair, frequency of failure, and cost of pre-wiring a building. On each of these
issues, there is reason to believe that the ring is a superior strategy.

To gain a better feel for these issues, in 1979 we installed a one megabit/second
ring network, a design originally developed by the University of California at Irvine for
experiments in distributed computing systems. This ring. which grew to a size of
eight nodes was operated side-by-side with a locally-designed variant of ‘he
Ethernet, known as Chaosnet. Based on that experience, in 1980 we began work
with a subcontractor, Protcon Associates, to develop a 10 megabit/sccond ring
network with a simplified design. This newer ring network, known as the LCS
Version 2 ring (and now available from the subcontracior under the trademark
ProNet) wes the target of a major software support effort of Elizabeth Martin and
Larry Allen, after which it began to replace the older ring for some hosts in
November 1981. The Version 2 ring has gradually been expanded to connect five

COMPUTER SYSTEMS AND COMMUNICATIONS

nodes. Equipment is currently on order to extend this expansion to eighteen nodes,
and plans are being made to increase the number to thirty or so, with the installation
of several VAX 11/750 computers for personal computing experiments.
Simultaneously, Proteon Associates began commercial delivery of the design, and
has completed installation of rings at ten other sites. Host-specific ring interfaces
have been designed for computers using the Digital Unibus and Qbus, the Intel
Multibus, the S-100 bus, and the LCS nu-bus.

So far, experience with the Version 2 ring in comparison with the Chaosnet and a
more recently-installed Xerox experimental Ethernet is largely anecdotal: all these
networks work well, they fail to work only rarely, and we believe that the ring is
proving easier to repair. To allow us to move from anecdotal to statistical evidence,
a network monitoring station is under development. We expect that in the coming
year the work in this area will comprise mostly adding stations to the ring and

statistics gathering.

As an aside, public interest in ring networks received a strong boost this year with
the presentation by the IBM Zurich Research Laboratory of three papers describing
a ring network quite similar in design to the LCS Version 2 ring. Although no
commitment has been made by IBM to use this approach, a related presentation by
members of the IBM Communication Products Division to the IEEE 802 local
networks standards committee on the subject of token access rings fueled
speculation that IBM may eventually adopt this technology.

A second area of network technology exploration began this year: extension of
megabit-per-second communication to computers installed at home. The
technology being tried for this project is known in the industry as "broadband”,
using radio-frequency signalling over coaxial cable with components developed for
two-way cable television applications. The long-range goal is to make use of the
modern, high-capacity (in channel numbers) two-way CATV systems currently being
installed in many large metropolitan areas, including Boston and some of its
suburbs. Initially, such communications would be among a few small home
computers and larger systems, such as the file-storing hosts at MIT But as the
number of home-sited personal computers grows, we envision the arrival of
community-located services, such as laser printers and online storage, and an
increase of communications among the home computers themselves, to exchange
messages, programs, and for multi-player video games. The potential growing
demand for such local data communication services has inspired a cooperative
venture between our group and the Newton, Massachusetts cable operator,
Continental Cablevision. So far this cooperative venture has been limited to
discussion of the possibilities and a search for suppliers of suitable hardware.

The hard technical problems in using a residential cable television system seem to

Ty — ¥

ﬁ.m_A,.

COMPUTER SYSTEMS AND COMMUNICATIONS

be two: accumulation of noise on the channe! inbound toward the cable television
headend, and assuring no interference with a fully-occupied spectrum of
entertainment video materials. The first problem may require the use of digital signal
regenerators in place of some of the analog amplifiers in the return path, while the
second problem seems to constrain modulation techniques and spectrum shaping
(at least on the outbound channel) to closely imitate a standard television signal. An
interesting possibility that might tackle both these problems is the use of spread
spectrum modulation methods (but present techniques would involve higher cost).

Perhaps harder than the technical problems are policy problems arising from use
of systems installed for entertainment video purposes. Our studies on this topic are
reported later, in the section on internetwork connection.

Finally, to learn more about the technical aspects of data communication via
television cable, cooperation has begun between Ungermann-Bass (a local network
supplier), and MIT to aliow an Ungermann-Bass subcontractor, Bolt Beranek and
Newman, to use two channels of the MIT educational cable television facility as a
testbed for broadband equipment. Initial communication experiments began in May
1982, and are expected to continue through the summer and fall.

3. HIGH-PERFORMANCE PROTOCOL STRUCTURES

The second area of research of this group is to understand better the causes of
bad performance when computer operating systems are connected to a network. It
is by now a common experience to attach a 10 megabit/second local network
between two computer systems, fire up some communications software to transfer a
file, and observe an effective data rate in the range of 5 to 50 kilobits per second. In
explanation of this phenomenon, the words "software overhead" usually appear, but
overhead by itself does not really explain a difference between capability and
achievement of more than two orders of magnitude -- something more fundamental
is wrong. It appears that the primary problem is in the structure of the
communication network protocols themselves.

Network protocols, both design and implementation, have evolved until now in a
world of telephone lines that are characterized by frequent data errors, point-to-
point topology, and most important, a data rate limited to 50 kilobits/second or less
- often only one or two kilobits/second. As one might expect, existing protocol
design and implementation experience has been shaped by these properties of
telephone lines. Not obvious (until one attaches a 10 megabit/second local
network) is just how strong this shaping force has been. Our tentative conclusion
from early investigations is that increasing the available data rate by two orders of
magnitude so changes the environment that traditional concepts of protocol
function, structure, and layers must be largely replaced with lighter-weight

LA .

COMPUTER SYSTEMS AND COMMUNICATIONS

approaches. In addition, these lighter-weight approaches must be applied both to
the protoccl designs and implementations and to the operating system designs and
implementations.

One slightly heretical concept that we have explored extensively this year is the
complete protocol implementation that is specialized to one application. An example
is the file transfer package that in a single small but not very modular program reads
data from a file and emits properly-formatted data packets, packets that appear to
have been neatly constructed in several layers. Because the only purpose of this
package is to transfer files, most of the intermediate protocol layers do not need a
full implementation -- only the function required for file transfer need be there. Once
this simplification has been made, it is often apparent how to reorganize the
remaining functions to combine layers or do things in a different order than the
layers might imply. (Karl Wright, in his undergraduate thesis describing such an
implementation for the IBM Personal Computer describes this strategy as "cradle-to-
grave handling”.) The result can be a file transfer application package that is not
built out of general-purpose subroutine packages, but that may move files at a rate
ten times higher than the usual protocols. Two cradle-to-grave implementations
have now been completed, the one already mentioned for the IBM Personal
Computer, and a TCP/Telnet by David Clark, for the Xerox Alto.

A closely related idea is the restructuring of a protocol implementation to use
implementation modularity that does not conform to the layer boundaries of the
protocol. A simple example of this approach shows up in construction of a packet
for a multi-layered protocol. Traditionally, an application layer calls an outer
protocol layer with a pointer to some data it would like to transmit. The outer
protocol fayer constructs a packet header, copies the application data into the
packet, then calls a lower network layer. This lower layer in turn constructs a
header, copies the higher layer's packet into its own data area, and calls on the next
lower layer. Only when the packet finally gets to the bottom layer is it discovered
that the network is busy and the packet has to be queued anyway. After restructure,
this scenario would operate quite differently: the call from the application would
drop through all the layers to the bottom, leaving only notes along the way that the
client has data to transmit. The next time the network becomes available, a series of
calls would go backwards through the layers. The lowest layer would create a
header and then call the next higher layer to fill in the data area. This series of calls
propagates through the layers, perhaps all the way back to the client, creating a
packet with no extra data copies and at a time when it is known that it can be
dispatched immediately.

Several experimental implementations using ideas such as the one just described
have been carried out this year. Liza Martin developed an IP implementation for
UNIX, and Dave Clark developed a byte stream protoco! implementation for the

COMPUTER SYSTEMS AND COMMUNICATIONS

TRIPOS system while visiting the Computer Laboratory of the University of
Cambridge. Larry Allen implemented a file transfer package for UNIX that achieves a
useful data rate of 130 kilobits/second as compared with 45 kilobits/second for an
earlier implementation with more traditional structure. Geoffrey Cooper started work
on a Master's thesis on what he calls "soft layering” of protocol implementation.
The idea here is that implementation of a protocol layer follow traditional lines but
that it be done with knowledge both of the application that the client layer has in
mind and also the implementation strategies of lower layers.

A second area of rethinking of organization applies to operating systems
themselves. A high-speed communication network places tremendous stresses on
the facilities that an operating system provides for coordinating parallel activities.
Demands for attention from a network are usually quite unsynchronized with other
activities inside the host (as compared with a disk, which usually asks for attention
only after you poke it) and successive demands may arrive with only a millisecond
headway separating them. More subtly, a decision to queue a packet for
transmission (say in acknowledgment of one that just arrived) sometimes needs to
be reevaluated if more data becomes available to add to the packet before the
transmission actually occurs. Finally, whatever mechanisms are used for sharing
data between parallel activities must be designed with the recognition that simple
copying of data from place to place consumes an inordinate amount of time.

The folklore in this area says that onc should attack these problems by minimizing
the number of process scheduling operations. Such a strategy may have the
unfortunate side effect of not exploiting some opportunities for parallel activity. That
observation in turn leads to the idea that what is really needed is very light-weight
parallel activities. We have now completed three experimental implementations of
light-weight activities, one for multiple tasks within a process of the UNIX operating
system, by Larry Allen; the second for a queue-driven subroutine dispatcher for the
PDP-11 MOS operating system, by Noel Chiappa; and the third for a multi-task
module for the TRIPOS system by David Clark. The first was the basis for a high
performance TCP implementation. The second was the basis for an internet
gateway implementation that is still being checked out. (An earlier prototype of this
gateway has operated as a link in a chain where end-to-end data rates of over 400
kilobits/second were achieved.) The third was the basis of a revised protocol
implementation that achieved a transmission rate improvement of a factor of ten
(from 30 kilobits/second to 300 kilobits/second) over the previous implementation.

A third area of organizational rethinking relates to protocols themselves. Professor
David Reed of the Computer Systems Structures Group has led the development and
implementation of two protocols that reduce the use of acknowledgments to a bare
minimum. One is used for rapid transfer of files, the other for rapid transter of bit
maps for displays. It was this latter protocol that operated at the 400 kilobit/second

10

—r‘v

s

D R A e SR -

COMPUTER SYSTEMS AND COMMUNICATIONS

rate mentioned earlier. Another performance-oriented protocol concept is that of
source routes: the originator of a packet places a complete set of routing
instructions inside the packet so that as the packet proceeds through internetwork
gateways it can be forwarded without any computation or table lookup by the
gateways. Vineet Singh, in a Master's thesis, developed a plan for a service that
calculates source routes for use in such a system. His service allows for hierarchical
organization boundaries, with a separate route-calculating service in each
organization, yet it retains the essential advantage of high-performance transmission
of individual packets.

Although not having exactly the same goals, another project was started in the
area of protocol performance: the network attachment of low cost personal
computers using the same large-scale protocols as do large mainframes. The goal
here is to provide convincing evidence that even a low-performance desk-top
computer can participate as a full member of a data communication network. Three
IBM Personal Computers were acquired, on the basis that that recently designed
machine is typical of the latest wave of 16-bit machines, with an address space large
enough and a processor fast enough to allow a full protocol implementation. Since
the primary interest in this project was to learn about software feasibility, and it
seems likely that manufacturers will soon provide off-the-shelf network hardware for
this class of machines, we chose to use as the initial hardware connection just the
9600 bit/second RS-232 asynchronous line connection that comes with the IBM
Personal Computer. Several such lines are run to a Digital LSI-11 computer that is to
be programmed as an internetwork gateway and attached to one of the higher speed
local networks.

Much of the first stage of this project consisted in getting support tools in place to
facilitate programming for the IBM Personal Computer. Lack of availability of a
native assembler and awkwardness in the mechanics of use of the native compilers
for the Personal Computer led to a decision to use a cross-assembler, cross-
compiler, and downloading system from our PDP-11/45 UNIX machine, with the
result that most of the programs being developed by us for the Personal Computer
are in the C language. Two related tools for the Personal Computer were also
developed, a terminal emulator and a clock-driven profiler that tells where programs
are spending their time. David Bridgham and John Romkey have done most of this
work, with both help and guidance from Wayne Gramlich.

The first completed protocol program is the file transfer package using the
protocol TFTP/UDP/IP, mentioned earlier. This package achieves a useful data rate
of 3500 bits/second over a 9600 bit/second line; most of the difference in these
rates can be explained by low performance of the floppy disk software and hardware
packages of the Personal Computer. When doing memory to memory file transfer, a
data rate of about 12000 bits per second was achieved using a 19200 bit/second line

1

—v‘v—-w<ﬁ v

=

COMPUTER SYSTEMS AND COMMUNICATIONS

between two Personal Computers. (In both cases the communication line data rate
was adjusted to the lowest rate that did not add any bottlienecks.)
ES

Two further protocol implementations are underway for the IBM Personal
Computer, a remote login (Telnet/TCP/IP) protocol and an acknowledgment-free
file transfer protocol (Blast/UDP/IP).

4. LOCAL NETWORK INTERCONNECTION

The third major research area of this Group concerns interconnection of local area
networks. Most laboratories exploring this topic have concerned themselves with
only one aspect of this problem, namely that available local network technologies
are limited in area to one or a few buildings and limited in connectability to a few
hundred nodes. These limitations lead to the conclusion that larger networks must
be built up by interconnecting smaller ones with forwarding nodes, called gateways.
We have added to this consideration a second aspect that we believe is equally
important in its technical impact: administrative boundaries within organizations and
between organizations also shape the boundaries of local networks and add
management considerations such as policy control (e.g., privacy, authenticity, and
accounting) on data flow from one local network to another.

There seem to be two models on which the interconnection of a large number of
local networks can be based: concatenation of adjacent local networks, or
systematic hierarchical interconnection. With the first model, gateways are placed
at opportune points where two or three local networks are adjacent in coverage, and
communication from one point to another takes place over as many intervening local
networks as necessary. In the second model, a higher-level network called a
"spine" or "backbone" is installed, with geographical coverage of the entire
community of interest but with attachment only of gateways to the several local
networks. With this approach, communication from one point to another goes from
a node through its attached local network to a gateway that passes the message to
the spine network; it travels across the spine to a second gateway directly into the
local network to which the target node is attached.

When administrative boundaries are taken into consideration it is apparent that the
model of concatenation of adjacent networks has serious shortcomings. For long
distance communication one must depend on correct operation and benevolent
administration of all the intervening local networks and gateways. Bandwidth, delay,
and reliability of connections are limited by the worst example of each parameter
along the path. From the point of view of the manager of one of the local networks,
much of the traffic he is carrying may be "tandem" traffic. that is, long distance
communication that neither originates nor terminates in his network; this makes
control of load, and thus performance, for his own users hard to accomplish. The

12

COMPUTER SYSTEMS AND COMMUNICATIONS

alternative, hierarchical model, with its backbone network, has corresponding
advantages. The backbone network and its gateways can be centrally administered,
while the local networks can be locally installed and managed. Responsibility for
long-distance communication is clearly defined, which means that trouble isolation,
repair, and capacity planning are easier to accomplish.

It is this line of reasoning that has led us to recommend the hierarchical model to
the MIT Director of Computing and Telecommunication Resources as the basis for a

campus-wide network.

A second area of interest in the area of network interconnection relates to the
proliferation of different communication protocols. Unfortunately, the many different
sources of protocol implementations are not converging to a single approach.
Instead, it appears that strong differences in opinion as to relative importance of
different issues is leading to send quite different families of protocol design. The
differences stem from application differences, environment differences, and
sometimes issues of taste and vendor strategy. These families differ in the same
ways (and for the same reasons) that computer programming languages differ. For
the moment, at least, any forces for standardization appear to be neutralized by the
forces of diversity, which means that every attempt at network interconnection
inevitably encounters incompatible communication protocols.

At the lowest level, removing a packet from one focal network (say an Ethernet)
and placing it on another (say a ring), there is generally not a very serious
compatibility problem, because although link-level communication protocols are
often very different, they are usually very modular and higher-level protocols are
often designed in anticipation of using many different link-level layers and they do
not usually depend on having a single link from end to end. The gateway between
local networks has a problem that is analogous to that of taking letters from a truck
and putting them on a bus or handing them to a letter carrier. One must not ask the
letter carrier to walk away with a 100 kg sack of mail, but unless the carrier insists he
can handle only letters weighing less than 15 grams there is usually not a serious
forwarding problem.

The real difficulties arise at the higher levels of protocol -- the end-to-end
transmission protocols and above. After several not-very-satisfying attempts to build
protocol-translating gateway programs, we have reached a second important
conclusion concerning network interconnections that cross administrative
boundaries: Having a protoco! translator at the gateway between two networks is
about as ineffective as having a long-distance telephone operator act as a language
interpreter in a call from Spain to Finland (or, more analogously, automatic
translation of Cobol programs into PL/I). That is, there are certain stylized
applications for which the approach can be acceptable (for example, remote login

13

.
- . e BA .. e .__-_._.AA._bkA__J

v Ve

COMPUTER SYSTEMS AND COMMUNICATIONS

and mail forwarding), but as a general communication system it is fundamentally
unworkable. The reasons are many, but mostly they boil down to non-comparable
semantics in the higher-level protocols. A simple example is translation between two
different file transfer protocols, one of which requires that the first fact received be
the size of the arriving file while the second allows the sender not to reveal this
information until the last packet it sends. To translate between these protocols, a
gateway must provide buffer storage large enough to hold the entirety of the largest
file that it might be asked to forward. More subtly. since the transmission to the
recipient cannot begin until the sender has dispatched the last packet, the sender’s
protocol may, by timeout, expect commitment of the transaction long before it is
clear that the recipient can make that commitment. If the translating gateway returns
an early acknowledgment to the sender committing acceptance of the file, then the
gateway must honor that commitment with the same degree of reliability as the
intended recipient; this commitment means that the gateway must have reliable
storage and recovery procedures equal in quality to those of the most sophisticated
recipient system.

Even when two different protocols appear superficially similar enough to allow on-
the-fly translation, often they are built on different assumptions about network delay,
probability of specific kinds of error, or recovery technique; in these cases a
translating gateway may have the difficult-to-predict property that it works only when
traffic load is light and no errors occur; less-favorable conditions lead to
communication breakdown and application failure.

The alternative to translating gateways is end-to-end agreement to use the same
protocol. This approach has two implications, one for hosts and the other for
gateways that connect networks. For hosts, it means that two different hosts cannot
communicate unless they have some common protocol. This implication leads to
multiple protocol implementations and to application-specific translation programs.
For gateways, it means that packets of several different end-to-end protocols may
require forwarding. Since the forwarding strategies of different protocols can be
quite different, the gateway must therefore be organized to deal with muitiple routing
strategies, multiple addressing schemes, multiple error handling and recovery
procedures, and multiple examples of local state information.

Realization of this requirement has led us to design and implement a multi-
protocol, multi-network gateway package for use in network interconnection. This
package, developed by Noel Chiappa, is written using the C language and the MOS
operating system, and operates on Digital LSI-11 computers. It has been designed
with the ability, at the lower level, to connect to any local or long-haul network;
drivers for the LCS Version 1 and Version 2 rings. the Xerox experimental Ethernet,
the Chaosnet, the Xerox-DEC-intel 10 Mbit/second Ethernet, the ARPANET (by
Robert Baldwin), and low-speed telephone lines (by David Bridgham) have been

14

| e

COMPUTER SYSTEMS AND COMMUNICATIONS

developed or are planned. At the higher level, internetwork forwarding packages for
IP and Chaos protocols have been implemented, and packages for X.25, DECNET,
Xerox NS, and IBM SNA forwarding strategies have been considered as candidates
for implementation. Experiments in source-route forwarding will probably also be
carried out using the multi-protocol capability of this gateway package. As of this
writing, the package has been completed and has operated as an IP gateway
between the ARPANET and the version 1 ring network.

Another example of a service built on the principle of avoiding on-the-fly protocol
transformation is a multi-protocol mail forwarding facility installed this year on the
Multics system. Although at the highest level there is agreement among several
communities on the format of an electronic message, there are several different
protocols for transfer of a message between two hosts: old and new ARPANET
protocols. Chaosnet protocols, and some local variants. In some cases, the protocol
that is required differs depending on the port over which the message is dispatched.
The forwarding service on Multics will accept a message from any source host in any
of the various protocols. It will then queue and remail the message to the intended
target, using whatever mail-forwarding protocol that host requires. Michael
Greenwald did most of this year's work on this facility.

The earlier section on protocol performance mentioned a thesis by Vineet Singh on
the design of a service that calculates routes to be placed in a packet at its source.
That work has important application for network interconnections that cross
administrative lines as well, since an important virtue of a source route system is the
ability to control exactly the path taken by a packet. Such control allows a packet to
be directed along a path that has appropriate data rate, reliability, delay, or security,
and that meets policy requirements (e.g., the packet shouldn’t pass through country
X or private company network Y). It also allows trouble isolation (by sending packets
that have a route that takes them out to a gateway and back to the originator) from
any node, a useful facility to reduce finger-pointing as the prime trouble isolation
method in multivendor network paths.

As the scale of interconnection of local networks grows, and links extend from one
organization to another, a problem arises of identifying the individual users of the
network. Proper identification is needed to send electronic mail, and to authorize
use of data or other services: it may also be needed to account correctly for use of
services. Traditional authorization and naming systems have operated entirely
within a single computer system, and have used techniques satisfactory for a
population of from a ftew dozen up to maybe a thousand or so users. When
connected to a network, the name of the host computer usually appears as part of
the identification, say, when sending mail to someone. These schemes begin to
break down when larger numbers of computers each with a smaller number of
locally-assigned users appear, and as the cost of computing declines to the point

15

COMPUTEF: SYSTEMS AND COMMUNICATIONS

that almo:it everyone in an organization becomes a computer user. Problems are
especially apparent when user names are expressed only as three initials or some
locally-known nickname.

This year we began a project to implement an on-line directory service for the MIT
community. The goal of this project is to explore techniques for naming people at
the scale required at MIT in the future--a community of 15000 people with turnover of
perhaps 2000 faces (and names) each year. Two specific services are being
developec by Kimberle Koile, with assistance from Felix S.Hsu. First is an
interactive: directory assistance service that accepts a partial, potentially ambiguous
name of someone thought to be at MIT, and responds with a set of possible correct
identificat ons, along with confirming information such as title or department, and
office or term address. When the correct person is found, associated with it will be a
standard form of that person's name, for use in sending mail and for authorization
and accounting. One of the questions to be explored is the extent to which the
standard faorm can be exactly the person’s name as he is commonly known--typically
a first name, middle initial, and last name.

The second service, based on the file stored by the first service, is a mail
forwarding service that eliminates the need to know on which computer system at
MIT a person’s electronic mailbox resides. Instead, one directs the mail to the
person’s standard name (perhaps as discovered once before by use of the directory
assistance service and then tucked away in a private list of nickname--standard
name pairs.)

Operation of these two services at the scale of the entire MIT campus demands
that much of the information base be automatically derived from other files: those
managed by the registrar of students and the staff personnel department. The
project bejan by obtaining machine readable copies of directory listings from both
those souices; continued cooperation with both those organizations as well as the
telecommunications office (which publishes telephone books and operates the
telephone-based directory assistance service) is anticipated. Also, because the data
held by th:ase services is personal in nature, all plans for this data base are being
reviewed Jy the MIT Privacy Committee for suggestions and to spot possibly
troublesome points.

As an e«<periment in practical problems of interconnection, Fredrich Meier zu
Sieket, in his undergraduate thesis, designed a gateway to the commercial Telex
service, to be usable via the local networks by any authorized person at MIT This
project he ps focus attention on user identification (for poorly addressed incoming
messages) and accounting and authorization for use. An implementation cf the
service is tinderway, by Robert Myhill and Lixia Zhang.

As part of our interest in network interconnection, we have maintained a strong

16

COMPUTER SYSTEMS AND COMMUNICATIONS

interest in the Internet protoco! family being developed by DARPA. During this year
David Clark took over the job of technical coordination of the architecture of this
protocol family, and he is chairing the Internet Contiguration Control Board with the
responsibility for decision making this this area.

As part of this DARPA Internet project, he has prepared a number of notes which
together comprise an informal implementor’s guide to the protocols, with particular
attention on how to produce a simple implementation that performs weil. These
memos will be distributed by DARPA in July.

A final project in the area of network interconnection has already been mentioned
under the heading of network technology exploration--the use of cable television as
a data communication medium. The interconnection aspect of this project is its
policy component. There are issues of allocation of cost, of control of access to a
limited resource, of provision of related services, and of separation of control over
content and carriage. Communication regulations are generally formulated with two
distinct classes of service in mind: common carrier, and broadcast. Policy
regulations pertaining to the first focus mostly on tariffs while for the second they
focus on program content: fairness, community service, etc. Using a cable for data
communication involves elements of both kinds of policy regulation, requiring some
innovation to deal with the situation sensibly. In addition, in the United States, cable
policy regulation is typically handled at the community level, rather than state or
federal, and most communities have inadequate resources and expertise to deal with
either kind of policy regulation, let alone their interaction.

To shed some light on this area Deborah Estrin just completed a Master's Thesis
on the policy problems of using cable television for data communications. The main
contribution of the thesis is to outline the range and depth of the policy problems
that are involved. In addition, one chapter offers specific suggestions to community
policy makers on how to proceed.

5. PORTABLE PERSONAL TERMINAL

During the year, the group has done a preliminary study on the design of a portable
terminal, small enough to be carried in the briefcase, if not the pocket. We were
interested in exploring ways in which such a terminal could be made realistically
useful, given that the small size must involve a severe restriction in the basic
capabilities of the terminal. We assumed that individual applications would have to
be reprogrammed so that they knew about and could take advantage of the specific
features of the terminal. This kind of specialization has been very important when
moving from traditional ASCII terminals to more sophisticated bitmap displays; it was
our believe that the same specialization would be important for a terminal with
restricted rather than enhanced features.

17

h_

L ¢}

COMPUTER SYSTEMS AND COMMUNICATIONS

We had in mind two sorts of terminals for this project. The smaller realization
consists of a single line of alphanumeric text and an undersize, but traditionally
organized keyboard. This ierminal configuration appealed to us because products
are now appearing on the market with this approximate hardware configuration. The
more sophisticated version of the terminal would have a keyboard and a multi-line
display, perhaps packaged so that the display could fold up and sit at a traditional
angle to the keyboard. The display technology for such a packaging is beyond our
ability to fabricate, but we thought it worth exploring the implications of this degree
of sophistication, because the range of applications that could be supported was
much greater than with a single line of text.

We had in mind particular applications which seemed suitable for a portable
terminal. The first application studied was sending and receiving mail, which clearly
benefits for a greater flexibility and freedom in the patterns of accessibility. Other
applications which would be suitable for such a terminal include a portable
appointment book or a database query facility. These alternative applications were
not considered in detail.

The first phase of this project concentrated on the simpler of the two terminals,
with a single line of display. The first question was how the limited functionality of
this terminal should be organized in order to make it maximally useful. Simple
experiments with traditional patterns of text display, in which the text is streamed
from right to left as a continuous ribbon, quickly eliminated this pattern of display.
Because of refresh limitations in the dispiay, this pattern was limited to a very slow
reading rate, which the user quickly found frustrating. In a Bachelor’s thesis, Russell
Houldin experimented with a number of alternative reading modes, using a
simulation of an LCD display which he and David Goldfarb programmed for the
bitmap display of the Alto computer. This simulation allowed us to experiment
before we had implemented any prototype hardware for the terminal itself, and led to
the conclusion that a rather specialized reading mode was the proper display pattern
for a single line terminal. The reading mode involves dividing the text into small
chunks, no more than ten to fifteen characters long (except when a single word is
longer), and dispiaying these chunks in rapid sequence centered in the display. The
reader never moves his eye, and can easily be trained to read five to ten chunks per
second. In this manner, large quantities of text can be perused quickly.

In order to support this reading mode, the terminal required two special features.
First, it required special keys to control the rate of text to display. The reader must
easily be able to slow down, or back up and reread something. This requirement in
turn implied that the terminal must have an internal butfer, rather then simply
displaying text as it came down the telephone line. In fact, the buffer was
additionally required in order to permit a peak reading speed which exceeded the
data rate of the telephone line. We therefore developed a proposed buffer scheme,

18

COMPUTER SYSTEMS AND COMMUNICATIONS

in which the application understood about the management of the buffer, and
attempted to keep the buffer full, so that as the reader advanced through the buffer,
the desired text was always there.

In order to explore some of these specialized features, and to learn something
about the actual operation of LCD displays. Clifford Ludwig. in a Bachelor's thesis,
undertook the development of a prototype terminal. His goal was not to produce
something which was in any sense properly packaged for portability, but rather to
produce something which contained hardware a..d software of the correct power.
The prototype contained a Z80 microprocessor, a suitable amount of memory for
buffering, and a special display peripheral which consisted of one line, 36 characters
long, of LCD display. The prototype was implemented, and certain of the
experiments which had been performed on the Alto simulator were recreated on the
actual display.

This initiai prototype taught us a number of things. First, LCD displays, although
clearly desirable from a point of view of power consumption, are marginal for this
purpose, because they cannot alter the display fast enough to suit the peak reading
speed of a trained user. Blurring and cloudiness occur, even with very careful tuning
of the electrical parameters of the driving circuitry. Therefore, more experimentation
with the detailed characteristics of LCD displays are required. Second, in order to
drive the display properly, specialized display chips are required, which are now
available only in a form too bulky to be properly packaged. A commercial version of
this terminal would require specialized LSI. Third, a Z80 is clearly powerful enough
to provide the display, keyboard, and telephone line controls needed for the
terminal.

A related project in this area explored the idea that speech input and output could
be an important part of this terminal's function. The intention was not to rely on
speech recognition or synthesis, two very difficult problems, but to use speech
storage as a way of passing information through the terminal from one human to
another without the necessity of dealing with a restricted display or an undersized
keyboard. For example, in the context of mail, the user might employ the keyboard
to specify the recipient and subject matter of the message. but might dictate the
message itself. Alternatively, the terminal could be used as a dictating machine, with
later playback and transcription of the information into ASCIl representation of the
text. Two projects were undertaken to explore the feasibility of integrating speech
into this terminal. First. a study was undertaken of speech digitization and storage
techniques. to find out how many bits per second of digital information would be
required in order to store intelligible speech. Much previous work has been done in
this area, but the specific issue we were concerned with was the fact that speech
had been transmitted through a telephone line before being digitized, which
changes its spectral characteristics. In particular, efficient storage algorithms such

19

!

COMPUTER SYSTEMS AND COMMUNICATIONS

as linear predictive coding are unsuitable. We thus did a preliminary experiment with
delta modulation techniques, to determine whether they could produce intelligible
speech with a reasonable bit rate. In a Bachelor's thesis, David Teller clearly
demonstrated hat delta modulation is a suitable technique in this context, but he
also demonstrated that successtul utilization of that strategy in this context would
require the development of specialized hardware for the purpose, as opposed to the
converter card which we had purchased for initial trials.

The other experiment related to speech involved the development of a specialized
modem to connect the terminal to the host. Since we desired to send both digitized
information and analog speech over the phone line, it was necessary that the modem
be switched off and on by computer control to permit the telephone line to be used
alternatively for both digital and analog transmission. Further, at the terminal end, it
was necessary to have some form of microphone and speaker which the human
could use for sending and receiving speech. Since a telephone line was being used
for the transmission of this information, we explored whether a telephone handset
could be plugged into the terminal for this purpose. Carol Novitsky did a preliminary
study in this area, with the particular goal of determining whether any of the
specialized low-speed modem chips which are now available could be used at a bit
rate above 300 bits per second. This involved the careful design of high order
analog bandpass filters. The results of this experiment were somewhat encouraging,
but it is clear that to achieve high bandwidth over a phone line with a very small
space and power available in the terminal represent a substantial analog
engineering job. We feel that pushing further in this direction should be delayed
until we have a better idea of the actual bandwidth requirements.

The final study in this area was an evaluation of mail on the more sophisticated
version of the portable terminal, in which many lines of display might be available,
perhaps as many as on a traditional CRT. In this case, the study focused on a rather
different area of terminal function. For the single line display, it had been assumed
that the terminal would be connected to the host using a telephone line whenever
the terminal was in use. Because of the space limitations in the terminal, there was
no other useful way to imagine utilizing the terminal. However, if the terminal is
somewhat larger, it is possible to imagine enough buffering in the terminal that it
could serve as an independent computer, being connected to the host only now and
then to refresh iis internal storage. This is a particularly appealing pattern for mail,
since the terminal could be connected to the computer a few times a day to receive
any new messages, and then could be carried off to permit the reading of mail
whenever convenient. The problem which arises from this pattern of use is one of
management of duplicate copies of information. In particular, when a host transfers
a piece of mail to the terminal, it is not reasonable for the host to discard its copy of
the mail. The terminal, being portable, could be lost or damaged, and it would be
inappropriate if mail were lost under these circumstances. Therefore, a

20

m

COMPUTER SYSTEMS AND COMMUNICATIONS

synchronizing strategy is required between the copies of the mail stored in the
terminal and the host. to ensure that mail is not lost. In fact, it is very important that
the host keep a copy of any mail delivered to the terminal. because. as a result of
reading the mail, the user may instruct that the mail be disposed of in various ways,
perhaps being saved or forwarded or used as the text of a reply. Such functions are
much more convenient if the host has its own copy of the mail. Michael Patton, in a
Bachelor's thesis, did a first study of the way in which the host and the terminal
would cooperate to provide this kind of functionality.

This particular distributed database is a very interesting one for study in general,
because it has a very different usage pattern from those traditionally considered in
research on distributed systems. Most researchers assume that the database is
connected by communications facilities almost all the time, but occasionally
partitioned. In this case the database is almost always partitioned, but very
occasionally connected. In general, such a partitioned database could not be made
to work well, but in the case of mail, because of its particular characteristics, the
partitioning does not seem to be a difficult problem. This is an interesting
observation, which suggests that more study of application-dependent distributed
systems is appropriate.

6. XEROX GRANT ACTIVITIES

An incidental activity of this group is administration of a University Grant of the
Xerox Corporation, consisting of 18 Alto personal computers, a Dover laser printer, a
file server, an experimental Ethernet local communications network, and related
supporting software and facilities. These facilities are now an integral part of the
resources of the laboratory as a whole. Eleven of the Altos are currently used in
direct support of research projects in four LCS groups, while six are assigned to
different groups throughout the laboratory primarily to provide experience with the
cultural effect of having high performance personal computers nearby. (The 18th
Alto is used as a maintenance spare and for overflow usage by the other groups.)
This report briefly outlines the ways in which the Xerox grant facilities have been
used. More extensive project descriptions will be found in the annual reports of the
individual groups doing the projects.

The Computer Systems and Communications group has undertaken three separate
programming projects on the Alto, all related to its protocol effectiveness research.
The ftirst, by David Clark, was to create a Dover spooler service, a program that
accepts files in the DARPA TFTP/IP protocol, and relays these files to the Dover
laser printer in the Xerox Pup protocol. A second project. also by David Clark, was
implementation of a very small and fast user Telnet/TCP package that permits the
Alto to be used as a remote terminal via internet gateways. Both these systems are
now in production use; the Telnet/TCP was recently used to log into a Digital

21

COMPUTER SYSTEMS AND COMMUNICATIONS

PDP-11 computer located in Norway, with several networks and gateways in
between. The third project. by Geoffrey Cooper, was an implementation of the
ANGEL protocol, an IP-based reliable datagram transfer service that uses the soft
layering ideas of Cooper’s S.M. thesis.

During the past year,the Computer Systems Structures group has used the Altos in
three ways. First, the Swallow distributed data storage system repository was built
using Mesa on an Alto. The repository is now operational in a test configuration.
The availability of Altos was a crucial factor in being able to pursue this work.
Second, the group began to use Altos to provide remote, network-attached bitmap
displays for single user VAX-750's, using special, high-speed protocols. Third, they
used Altos as high performance network terminals, providing 80X60 character,
network-attached access to hosts using TCP on the DARPA Internet.

The Systematic Program Development group decided to abandon its attempt to
use an Alto as the front end of its specification editor. This decision was based upon
the prohibitively bad performance of a prototype implementation, unhappiness with
the Mesa 5 programming environment, and a reluctance to increase an investment in
what appears to be (for LCS) a dead-end line of machines. Members of the SPDG
did get considerable use out of the text preparation facilities of the Alto.
Compatibility with text preparation facilities at Xerox PARC greatly facilitated
cooperative work with James Horning.

The Functional Languages and Architectures group is developing an advanced
computer architecture and a hardware prototype based on "dataflow” principles.
That group has found that the Xerox Alto computer is an asset in carrying out its
research and in particular they have used the Alto in the following ways:

1) The Draw program has been invaluable in producing high quality figures
for many designs. Members of the group have commented that the
flexibility of the Draw system has led to qualitative improvements in their
designs and documentation;

2) The group is using a stripped-down M68000 microprocessor as an /0
and control processor for each processor of its prototype dataflow
machine. By connecting a M68000 to the Alto via an 8-bit paralle! port
they have been able to quickly tap onto the Alto’s existing file system
and Ethernet without a large software/hardware effort. A student is
working on microcoding the Alto parallel port software to improve the
performance of the link.

The group is also considering using the Alto programs Sil, Analyze, Route, and
Build to generate wire lists for the prototype. Route's capability to generate
Multiwire lists is very attractive since they are planning to use Multiwire boards in the
prototype.

22

COMPUTER SYSTEMS AND COMMUNICATIONS

James Frankel, a Ph. D. candidate at Harvard University, has been using the Alto's
as a distributed computer system on which to implement a prototype. of some
software ideas in his dissertation. The dissertation, “"The Architecture of Closely-
coupled Distributed Computers and their Language Processors,” deals with the
hardware and software design of a shared memory multiprocessor.

The system implemented on the Alto's. a parallel-executing Pascal compiler,
compiles syntactic structures of the source code concurrently. Thus, the prototype
begins by compiling a program on a single processor. That machine compiles all
declarations and then initiates the compilation of nested procedures on other
machines passing to them the symbol table that was generated. The initial
processor then compiles and produces code for its code block. The machines on
which compilations were spawned perform the same sequence of operations in turn.

The generalization of these ideas is that the parallelism for multiprocessor
computer systems should come from the data flow rather than the control flow
present in programs. Furthermore, the premise is that "coarse data flow," data flow
where the data is larger than a single word (for example, the size of a procedure,
statement, or expression, for a compiler), allows conventional processors to run in a
multiprocessor configuration, reduces communications and, thus, contention for
shared memory, and does this without the drawbacks present in data flow machines
(inability to deal directly with data structures, difficulties with recursive and reentrant
procedures, etc.).

A number of tools were developed during the work on the project. With the
cooperation of Roy Levin and other members of the Xerox PARC Computer Science
Lab, Mr. Frankel wrote a package to create "boot" files from Mesa 5.0 programs.
This package was distributed to all of the universities in the Xerox University Grant
Program. The Diagnostic Memory Test, DMT, program was modified to allow an Alto
to be down-loaded over the EtherNet only if there are no disks ready in the Alto. A
page level file server was written to act as shared memory over the 3 MHz
Experimental EtherNet. A client interface to the page server and a stream interface
to the client interface were written. When bound with these programs, any Mesa
program that was written to access files from disk will access those files from the
page server.

The Pascal compiler itself is written in Pascal and compiles into a byte coded
instruction set called Pascal Byte Codes. These byte codes are interpreted by the
Pascal Byte Machine, PBM, which is itself written in Mesa.

More detailed information is available in Mr. Frankel's dissertation to be completed
in August, 1982.

The Dover laser printer is one of the most popular facilities in the laboratory,

23

W

® COMPUTER SYSTEMS AND COMMUNICATIONS

receiving wide use from almost every computer system of both the Artificial

Intelligence Laboratory and the Laboratory for Computer Science. An indication of
h its popularity is the rate that it consumes paper: 250,000 sheets/month at present.
Almost all technical reports, technical memoranda, and submissions of papers to
journals from the two laboratories are prepared with the help of this printer.

24

m p —

COMPUTER SYSTEMS AND COMMUNICATIONS

Publications
1. Clark, D., "Local Networks.” to be published in Computer. accepted
April 1982.
2. Corbatd. F., "An MIT Campus Computer Network," Campus Computer
b Network Group Memo No. 1, MIT, Cambridge, MA, 1981.
3. Corbatd, F., "Time Sharing." Encyclopedia of Computer Science,

A. Ralson, Editor, Second Edition, van Nostrand Reinhold Co., New
York, in press.

h) 4. Estrin, D., "Data Communications via Cable Television Networks:
Technical and Policy Considerations," MIT/LCS/TR-273, MIT
Laboratory for Computer Science, Cambridge, MA, May 1982.

. Saltzer, J., "Communication Ring Initialization Without Central Control,"
MIT/LCS/TM-202, MIT Laboratory for Computer Science, Cambridge,
MA, December 1981.

=
(4]

6. Saltzer, F., "On the Naming and Binding of Network Destinations,"
International Symposium on Local Computer Networks, Florence, ltaly,
April 1982, pp. 311-317.

7. Saltzer, J., Clark, D., and Pogran, K., "Why a Ring?" Seventh Data
Communications Symposium, Mexico City, Mexico, October 1981, pp.
211-217.

8. Singh, V., "The Design of a Routing Service tor Campus-Wide Internet
Transport,” MIT/LCS/TR-270, MIT Laboratory for Computer Science,
Cambridge, MA, August 1981.

9. Wright, K., "A File Transfer Program for a Personal Computer,"
MIT/LCS/TM-217, MIT Laboratory for Computer Science, Cambridge,
MA, April 1982,

Theses Completed

1. Baldwin, R., "An Evaluation of the Recursive Machine Architecture,”
M.S. thesis, MIT Dcpartment of Electrical Engineering and Computer
¢ Science, Cambridge, MA, June 1981. (Also S.B.)

2. Estrin, D., "Data Communications via Cable Television Networks:

25

W e

™

o 6

7.

8.

| 9.
1.

10.

11.

12.

COMPUTER SYSTEMS AND COMMUNICATIONS

Technical and Policy Considerations," M.S. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, May
1982.

Houldin, R., "Formats and Controls for a One-Line Computer Terminal
Display,” S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, August, 1981.

Ludwig, C., "A Personal Portable Terminal," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, February 1982.

. Martinez, D., "A Central Switcher for Message-Oriented Computer

Input/Output,” M.S. thesis, MIT Department of Electrical Engineering
and Computer Science, May 1982. (Also S.B.)

. Meier zu Sieker, F., "A Telex Gateway for the Internet," S.B. thesis, MIT

Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

Patton, M., "Integrating Disconnected Personal Computers into an
Electronic Mail System,” S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1982.

Powell, R., "Microprocessor-Based Floppy Disk Controller,” S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

Singh, V., "The Design of a Routing Service for Campus-Wide internet
Transport,” Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, August 1981.

Teller, D., "Efficient Storage of Digitized Speech," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982,

Tou, F., "Information Retrieval in a KL-ONE Data Base," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1982. (Also S.B.)

Wright, K., "A File Transfer Program for a Personal Computer," S.B.

thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, April 1982.

26

13.

COMPUTER SYSTEMS AND COMMUNICATIONS

York, W., "Command Completion in the Muitics Environment," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1982.

Theses in Progress

. Cooper, G., "An Argument for Soft Layering of Protocols,"” M.S. thesis,

MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1982.

Greenwald, M., "Operating System Support for Closely Cooperating
Talks,” S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected December 1982.

Koile, K., "An On-line MIT Directory Service,” M.S. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected June 1983.

Konopelski, L., "Implementing Internet Remote Login on a Personal
Computer,” S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected August 1982.

Lopez, L., "Gateway Congestion Control," M.S. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA,
expected January 1983.

Roush, P., "Computerized Scheduling of Intramural Sports," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected August 1982.

Talks

. Chiappa, N., "Developments in Fault Tolerant Local Networks at MIT,"

South Padras Island, Texas, February 1982,

Clark, D., "The LCS Ringnet Project,"
University of Strathclyde, Glasgow, Scotland, April 1982;

University of Kent, Canterbury, England, April 1982;
Siemens, Munich, Germany, May 1982.

Clark , D., "Problems in Local Network Iinterconnection,” Los Angeles,
CA., November 1981.

27

-

Y Y

COMPUTER SYSTEMS AND COMMUNICATIONS

4. Clart.,, D.. "The ARPA Internet Project,”

Computer Laboratory. Cambridge University, Cambridge,
England, May 1982,

IBM Zurich Research Laboratory, Zurich, Switzeriand, May
1982.

5. Cortato. F.. Participation in the Communications Policy Seminar on Ad
Hoc Networks of Microcomputers, MIT, Cambridge, MA, April 15, 1982

6. Martn, E., "Network Handling on a Small Computer Running UNIX,"
Inter vet Working Meeting. Cambridge, MA, March 25, 1982.

7. Saiwzer,)., Session Chairman, "Local Networking Approaches< ," ACM
81, Los Anrrgeles, CA., November 1981.

8. Saltzer, J.. "Technology, Bureaucracy Avoidance, and Distributed
Comuter Systems™: "intriguing Ideas About Computer Systems"; and
"Her2tical Ideas About Local Networks,” 1982 George Forsythe
Lecturer, Stantord University, Stanford, CA., January 1982.

9. Saltzer, J.. "Technology, Bureaucracy Avoidance, and Distributed
Comuter Systems," invited lecture, First Colombian conference on
compuyter science, informatics and related sciences, Bogota, Colombia,
Sout America, March 1982.

Committees

1. Clark, D. D., DARPA/TCP Working Group (Chairman)

2. Chiappa, J. N., DARPA/TCP Working Group

3. Martin, E. A., DARPA/TCP Working Group

4. Saltzzr, J. H., DoD/DDRE Security Working Group Member

5. Saltzar, J. H., Chairman, 9th ACM Symposium on Operating Systems
Principles

6. Saltzer, J.H., Program Committee, IFIP/TC6 Working Conference on
Interconnected High Performance Personal Computing Systems

28

COMPUTER SYSTEMS STRUCTURES

Academic Staff

D.P. Reed, Group Leader

Research Staff

M. Greenwald

Graduate Students

B. Coan J. Stamos
D. Daniels D. Theriault
W. Gramlich C. Topolcic
K. Sollins

Undergraduate Students

R. Kukura D. Solo
M. Novick K. Yelick
C. Rubin
Support Staff
D. Fagin
Visitors

O. Hvinden L. Svobodova

COMPUTER SYSTEMS STRUCTURES

1. INTRODUCTION

During the past year, the effort of the Computer Systems Structures Group has
been focused on development ot tools and substrates appropriate for development
of distributed applications systems. We find that the most interesting research
problems arise from trying to exploit two "insurmountable opportunities": 1) the
opportunity to connect two autonomously managed independent computer systems
with a computer network in order to share data. and 2) the opportunity to use high
performance networks and specialized server computers to build multi-user
computer systems that are modularized in a way that has not been possible before
with single, large mainframe computer systems.

The first opportunity, data sharing, became apparent when the ARPANET
computers first began to exchange data. The level of interconnection on the
ARPANET however, has never been particularly high. The best example of
distributed applications within the Arpanet has been the mail system. Higher level
applications that share databases across the network have been rare and extremely
ad hoc. Our goal in this area is to develop substrates, such as the Swallow prototype
described below, that can support applications at independent sites that can be later
combined into larger applications while maintaining the autonomy of the original
applications. The new research problems in this area result from two characteristic
issues; the first issue is autonomy, that is, the fact that there is no "central
administrator” who controls what is done on each computer in the distributed
system, while the second issue is "growth by federation”, that is, that adding a single
gateway between two independent networks of autonomous processors may all of
the sudden create a single system with complete interconnection. Although this
fedoration process is easy at the hardware level, the software structures developed
for distnibuted systems have been hierarchical, with naming, protection,
concurrency control, failure recovery, etc., managed by what amounts to a single
central authority. Trying to combine two hierarchies results in a hierarchy that no
longer functions, because there is a new ambiguity -- “who's on top?".

The second opportunity modularization arises from new local network
technologies, workstation technologies, etc., that allow the construction of what
might be called "server-oriented systems”. For reasons of reliability, economy of
scale, and flexibility, it is often convenient to design a distributed system consisting
of a set of workstations with no secondary storage or only very small amounts of
local secondary storage, with the bulk of secondary storage being provided by one
or more shared, specialized data storage scrvice machines. Similarly, specialized
services such as printers. image scanners, or wire-wrap machines, may be attached
to the net rather than directly to any particular work station. These new structures
present problems of reliability, pertormance. protection, and coordination that differ
significantly from the same problems as they appear in centralized time-sharing

30

COMPUTER SYSTEMS STRUCTURES

systems with many attached peripherals and file storage devices. The Swallow
repository, which is a specialized data storage server computer, is a prototype of one
kind of shared service.

In addition to developing substrates and servers, such as those above, we have
also been working on several specialized network protocols. These protocols called
non-fifo protocols. achieve extremely high pertormance and extreme simplicity by
ignoring the conventional wisdom of protoco! design. Instead of many layers ot
protocol implementing virtual circuits, these protocols use end-to-end datagram
transport, and involve the application in error recovery. flow control, and coping with
out of order packet arrival. Our initial experience with these protocols leads us to
believe that such protocols will be necessary to exploit the potential of high
bandwidth local networks, long delay high bandwidth satellite connections, and
internetwork coupling.

In the following sections. we summarize the results of the past year’'s work on
Swallow, protection and authentication in distributed systems, protocol design,
naming in distributed systems, and debugging of distributed systems.

2. THESWALLOW SYSTEM PROTOTYPE

Over the past year, work on the Swallow system has focused on the development
of the Swallow system repository prototype. The Swallow repository is a specialized
data storage server that provides stable storage to any number of clients on a
network. A Swallow system may contain any number of repositories and each user
may use any subset of the available repositories to store his data. The Swallow
repository participates in concurrency control and recovery algorithms designed by
Reed [1] [2] to provide multi-site atomic actions. The Swallow repository design was
also conceived with the intention that it could be based on write-once storage media
such as optical disk technology now being developed in a number of places.

The Swallow repository was built on an Alto with a special additional large disk
drive since that hardware was available to us at the time. Although the rest of the
Swaliow system was not available to use the repository, we began to test and tune
the system during the past spring semester, so that it could be incorporated easily
into the Swallow system once the rest of it is constructed.

The design of the Swallow repository; particularly its use of write-once disk,
required the development of a new storage organization (called append-only
storage) which naturally supports the object of Swallow which have dynamically
varying size and which have multiple versions over time. This concept, first
introduced by Reed in his doctoral thesis [1] and developed by Reed and
Svobodova, is documented in a paper recently published by Svobodova [3].

31

COMPUTER SYSTEMS STRUCTURES

The client interface to the Swallow system is provided by a software module in
each computer called the broker. The design of the broker was begun during the
past year, but it was decided that the final design decisions would have to wait for
the arrival of appropriate workstation computer hardware. At this point it seems
likely that such workstations will be implemented on VAX II/750's which will arrive
during the coming summer. Our next task then will be to finalize this design and
determine how to integrate it with the operating system (UNIX) of the VAX.

3. PROTECTION AND AUTHENTICATION

During the past year we completed and tested our authentication server prototype
and began to see how it could be used in securing various communications that
currently go on in the lab. One result of this was a bachelor’s thesis by Solo, who
investigated the problem of securing a file transfer protocoi [4].

The approach of using authentication servers has a flaw, which we view as a very
important one. This flaw is that the authentication server used to authenticate one
party to another is in a sense a central authority. As distributed systems grow larger
and cross organizational and governmental boundaries, there may be no real single
trusted central authority. Problems of authentication and protection across such
boundaries will require and different and novel solutions. During the past year
Topolcic has developed a technique for creating "digital guarantees” that can be
used where a client and a server need a mechanism to enforce the satisfaction of
remote requests in a decentralized system without such a centralized authenticator.

Consider this scenario. In a network of autonomous computers having varied
resources, a client may request a service from some other node, the server. Since
autonomous nodes within different organizations may be mutually suspicious, and
since there may exist no universally trusted authority, some decentralized
mechanism is necessary to assure the client that its requests will be honored.
Topolcic examines some failures that can interfere with fulfillment of the remote
requests and methods to control them.

One source of failure is the dishonesty of the server, which might return incorrect
results, or may ignore some commitment it had previously made to the client.
Cryptographic "Digital Signatures", as proposed by Needham and Schroeder [5],
attempt to provide a binding "guarantee" from a server to a user. Needham and
Schroeder's approach requires that the encryption keys be protected for extended
periods of time. Such long-term protection, regardiess of the security of the
encryption technique, demands administrative controls that are difficult to identify
and impossible to prove correct. Topolcic proposes a system of guarantees based
on a hard to duplicate yet completely public characteristic function (rather than
encryption) and a distributed method of monitoring and punishment based on a

32

COMPUTER SYSTEMS STRUCTURES

"User's Group" rather than a universally accepted judge. The characteristic
function of a guarantee is placed by the server into the next guarantee it issues,
forming a linked list which cannot be modified without changing the latest one
issued, whose uniqueness is verified with real-time authentication. The User’s
Group is a collection of clients which monitor the server, exchange information
about it, and enforce punishment by boycotting it if a member proves the server’s
dishonesty. A minority of non-participating or dishonest members cannot affect the
correctness of the actions of the majority.

4. NAMING WITHOUT HIERARCHY OR A CENTRAL AUTHORITY

In nearly every computer system the naming mechanism consists of a hierarchy
with pieces of a single global name space assigned to each user who can then
assign names within those parts to objects of his own interest. A global name space
presents problems in a system that grows by adding communications points between
preexisting but independent distributed systems on independent networks. Where
each system had its own global name space in which all names were unigue, the
combined system has name conflicts. Where each system had a central authority
that partitioned the name space before, there are now two or more central
authorities in the combined system. Thus the notion of a hierarchy tends tc break
down in these federated systems (which result from interenterprise linkage, in
particular). A new approach to naming is needed.

If we look at the "human distributed system", we find a potential for similar
problems in human language. Here, a distributed system is analogous to a human
community, and the computers are analogous to individual people. As thousands of
years of human history have shown, people have little trouble with the problems with
integrating name spaces that so confound computer systems. We feit that by
exploring this analogy, a new approach to computer naming of things could be
developed, which would be flexible, natural, and free of the problems of hierarchy.

Sollins has been exploring these ideas in her Ph.D. thesis which was begun during
the past year. Although the ideas are still at an early stage, they promise to be
significant.

Sollins proposes contexts as the system provided tool for name management. In
addition to the goal of non-hierarchical naming mentioned above, Sollins' work will
provide a unified naming framework for all entities in a distributed computing
environment where each node must be capabie of independent operation without
dependence on others. This independent or autonomous operation leads to the
conclusion that names cannot be guaranteed to be unique. It is this assumption of
autonomy that has led away from more traditional remote name servers. All these
forces combined have led to the model of contexts proposed in this thesis. There

33

COMPUTER SYSTEMS STRUCTURES

are two sorts of functions provided by contexts. First, a context might translate a
name into something else, either another name or an address. Second. a context
might answer the question of whether two names name the same entity. Contexts
allow names to be assigned to any entities, people, processes, data. or whatever else
needs to be named.

There are several different kinds of names that are used commonly in naming
during human interactions. These are modeled in the naming frarnework provided.
One is the ability of the name user to assign nicknames. Another is the ability to
name by description. In this case, an entity might be described by a collection of
descriptive attributes. The namer will name the entity by indicating a logical
combination of these descriptions. A third form of name is what in this work is called
generic naming. This is @a means of naming a class of entities by using a single
name. An example of such a class is the set of implementations that provide a
particular service, although the entities named by a generic name need to be the
same type of entity. Each namer should be able to use whatever name he chooses
for the entities he wishes to name. In fact, although superficially these three kinds of
names appear to be different in nature, they are not. Any two can be described in
terms of the third, or all in terms of generalized names or labels. For instance,
assuming there are only generic names, a nickname is simply a generic name that
names only one entity, which also has at least one other name. The entity named by
a description is simply the intersection of those entities named by a collection of
generic names, one for each attribute in the description.

There are a number of issues related to contexts and naming that remain to be
investigated. The following is a partial list:

1) the relationship between naming as provided by contexts and protection
and authentication.

2) how contexts will be used, individually and in combination with each
other.

3) how and when contexts should and should not be shared and by whom
or what.

4) a detailed example of the use of contexts.

This work is in progress and will continue on the assumption that contexts are a
useful mechanism for name management in future systems.

COMPUTER SYSTEMS STRUCTURES

5. DISTRIBUTED DEBUGGING

Gramlich has undertaken a Ph.D. thesis to investigate a debugging methodology
called checkpoint debugging. Basically, checkpoint debugging works by taking
regular checkpoints of a program. A checkpoint consists of a fixed part and
incremental part. The fixed part of a checkpoint consists of a single consistent
snapshot of the relevant program state. The incremental part of a checkpoint
consists of a sequential recording of alf program input since the time of the program
snap-shot. When a program failure occurs, it is possible to use the checkpoint
information to repeat deterministically the failure as many times as necessary to
locate the program failure. This is done by going to a previous checkpoint, loading
the fixed part, and reexecuting the program using the incremental part for program
input. The major advantage of checkpoint debugging is that it converts a large class
of non-deterministic failures (i.e., non-repeatable) into deterministic failures (i.e.
repeatable). It turns out that it is much easier for a user to locate and correct a
deterministic failure than a non-deterministic failure. A trial implementation of this
debugging system will be implemented in CLU for Berkeley Unix.

6. NON-FIFO PROTOCOLS

The so-called end-to-end argument [6] is a protocol design rule that says, in effect,
that the application usually knows best how to cope with such problems as loss of
messages, protection, flow control, duplicate message detection, coping with
messages arriving out of order, and so forth, which traditionally have been in the
domain of the communications subsystem. A corollary to the argument is that the
communications subsystem may be paying a very high performance price that
results from implementing solutions to these problems at too low a level in the
system. In fact, in order to have any layering of function at all, it is necessary to
place some functions at least inside the communications system and below the
application. But if the application knows best, and implements all these functions for
itself, there is little or nothing left in the communications subsystem to layer.

This line of reasoning seems to be borne out by a couple of protocols we
developed recently for two specialized applications. By exploiting natural properties
of the applications themselves, we were able to accomplish the flow control and
error control functions involved in communication in a much simpler and more
efficient way. Similar simplifications and efficiencies were obtained in the protocols
developed for the Swallow distributed data storage systems communications needs

[7].

The first of these specialized protocols was a protocol called BLAST. We observed
that most file transfer protocols, even when implemented on very high bandwidth
local networks, such as a ten megabit-per-second ring network, had disappointingly

35

Fu

COMPUTER SYSTEMS STRUCTURES

slow information transfer rates. For example. a file transfer from one Alto to another
on a three-megabit-per-second Ethernet rarely exceeds 75.000 bits per second,
while the underlying communication medium and disks are capable of much higher
rates. The "accepted wisdom" for implementing file transfer protocols is to access
the file as a sequential stream of characters, transmit each character successively
over a virtual circuit between the two computers, and store the file sequentially on
the remote machine using a stream-oriented file system intertace. The stream
interface to files and the virtual circuit, of course. are implemented by fairly complex
mechanisms that take the raw blocks of the disk or the raw packets of the network
and transform them into something that is quite different, a reliable ordered stream
of bits. This transformation, or extraction. is not natural. The result is that the
application has very little control of the timing of what is going on and the timing
itself is critical. To cope with a lost packet in the network, for example, the network
virtual circuit implementation introduces a small amount of delay in the
communications. The result of such delay will be delay in accessing the next byte of
the file, but delay in accessing the file can result in a significant real time delay while
the disk rotates one whole revolution. This, in turn, disrupts the smooth flow of data
to the receiver across the network, which can effect both the flow control to the
receiver, and also the rate at which packets can be stored on disk at the receiver.

Our new BLAST protocol is based on a very simple idea. The sender transmits the
blocks of the file each in a separate packet labeled with a block number of the file.
Since the block number is in each packet, the receiver can place each packet
directly in the file at the time he receives it. If packets are lost in the network, there is
no need for the sender to retransmit those packets right away -- instead the sender
can continue to transmit the rest of the packets of the file. When the sender thinks
that all the packets have been transmitted to the receiver, he polls the receiver with a
single packet and the receiver responds with a packet that indicates the set of file
blocks that remain to be transmitted. The sender then rereads just those blocks of
the file that need to be retransmitted and resends them. This process converges
after a few rounds. Neither end needs buffering for error control or reordering.
Duplicate packets are not a problem since they may be stored again in the same
place and reordered packets just get stored in a different order into the file. The
network and communication system serve as a way of getting packets from one end
to the other only.

To understand why this protocol is interesting consider a satellite link. Typical
satellites have channel capacities of maybe up to 50 megabits per second, but the
delay due to speed of light is on the order of seconds from end to end. Satellite
channels also tend to have a fairly high probability of packet loss. Traditional stream
protocols do not cope well with this combination of high bandwidth and long delay.
A single packet loss discovered at the receiver may require one or two seconds
before it can be filled in by a retransmitted packet. Meanwhile tens of millions of bits

36

COMPUTER SYSTEMS STRUCTURES

have been transmitted over the network and must be buffered at both the receiver
and sender until the retransmitted packet arrives (thus megabyte bufters are
needed). In order to maintain throughput on the order of 50 megabits per second,
these millions of bits must then be written instantaneously onto the disk at the
receiver. In contrast the BLAST operates quite reasonably on such a network with
no buffering at the receiver or sender at all. The round trip delay only affects the
final polling to determine if all packets have arrived, and for long files, this is
negligible. The instantaneous dumping of the entire receive buffer to disk will no
longer be necessary.

A similar protocol has been developed so that a remote single user computer can
access a bitmap display such as that on the Alto across a high performance local
network. In BLINK, each end maintains a copy of the bitmap for the screen. As the
computer changes regions of its bitmap, the updated regions are transmitted to the
remote display. Since updates to non-overlapping regions may be applied to the
display bitmap in either order, a lost packet need not delay processing of later
packets arriving at the receiver. Periodically, every hundred milliseconds or so, the
display sends a packet containing a version number for every region on the display.
The computer then retransmits any portions of the bitmap that have not made it to
the display bitmap. The performance arguments for this approach are similar to
those for BLAST.

37

® COMPUTER SYSTEMS STRUCTURES

References

1. Reed, D.P. "Naming and Synchronization in a Decentralized Computer
System,” MIT/LCS/TR-205, MIT Laboratory for Computer Science,
Cambridge, MA, September 1978.

2. Reed, D.P. "Implementing Atomic Actions on Decentralized Data,"
Journal of the ACM, to appear 1982.

3. Svobodova, L. "A Reliable Object-Oriented Repository for a Distributed
Computer System,” ACM Eighth Symposium on Operating Systems
Principles, Pacific Grove, CA, 47-58, December 1982.

4. Solo, A."User Authentication and Security Modifications for TFTP,"
S.B. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1982.

5. Needham, R., and Schroeder, M. "Using Encryption for Authentication
in Large Networks of Computer," Communications of the ACM, 21, 12,
December, 1978.

6. Saltzer, J.H., Reed, D.P., and Clark, D.D. "End-to-end Arguments in
System Design," Proceedings of the Second International Conference
on Distributed Computing Systems, Paris, France, April 1981.

7. Reed, D.P. "SWALLOW: A Distributed Data Storage System for a Local
Network,” in Local Networks for Computer Communications, North-
Holland, New York, NY, West, A and Janson, P. (eds.), 335-373, 1981.

Publications

1. Reed, D.P. "Implementing Atomic Actions on Decentralized Data,"
accepted for publication by Communications of the ACM, New York, NY,
1982.

2. Reed, D.P. and Svobodova, L., "SWALLOW: A Distributed Data Storage
System for a Local Network," in Local Networks for Computer
Communications,"” A.West and P.Janson (Editors), North-Holland
Publishing Company, New York, NY 1981, pp. 335-373.

3. Saltzer, J.H., Reed, D.P., and Clark, D.D., "Source Routing for Campus-
Wide Internet Transport,” in Local Networks for Computer
Communications,” A.West and P.Janson (Editors), North-Holland
Publishing Company, New York, NY, 1981, pp. 1-23.

33

m

COMPUTER SYSTEMS STRUCTURES

4. Schiffenbauer, R., "Debugging in a Distributed System,"
MIT/LCS/TR-264, MIT Laboratory for Computer Science, Cambridge,
y MA, September 1981.

5. Svobodova, L., "A Reliable Object-Oriented Repository for a Distributed
Computer System," ACM Eighth Symposium on Operating Systems
Principles. Pacific Grove, CA, December 1982,

Theses Completed

1. Daniels, D., "Query Compilation in a Distributed Database System," S.M.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, February, 1982 (also S.B. degree).

2. Lederman, A., "A Pascal Structure Oriented System," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1981.

3. Schiffenbauer, R., "Debugging in a Distributed System," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1981.

4. Solo, D., "User Authentication and Security Modifications for TFTP,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1982.

5. Stamos, J., "Grouping Strategies for an Object Oriented Virtual
Memory," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, February, 1982 (also S.B. degree).

6. Ulloa, M., "A Window Manager for Microcomputers," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982,

7. Weiss, 8., "Managing Software Evolution in an Object-Oriented
Environment," S.M. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1982,

Theses in Progress

1. Gramlich, W., "Checkpoint Debugging,” Ph.D. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA,
expected date of completion, June 1983.

COMPUTER SYSTEMS STRUCTURES

. Ketelboeter, V., "Forward Recovery in Distributed Systems," S.M. thesis,

MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected date of completion, August 1982.

. Mendelsohn, A., "A Framework for User Interfaces to Distributed

Systems,” S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected date of completion, June
1983.

. Sollins, K., "Name Management in a Distributed System,” Ph.D. thesis,

MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected date of completion, June 1983.

. Topolcic, C., "Ensuring the Satisfaction of Requests to Remote Servers

in Distributed Computer Systems,” S.M. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
expected date of completion, August 1982.

Conference Participation

. Reed, D.P., Program Chairperson, ACM Eighth Symposium on Operating

Systems Principles, December 1981,

. Svobodova, L., "A Reliable Object-Oriented Repository for a Distributed

Computer System," ACM Eighth Symposium on Operating Systems
Principles," Pacific Grove, CA, December 1981.

Talks

. Sollins, K., "Distributed Computing at MIT ", University of Southern

Calitornia, Los Angeles, CA, December 1981.

. Reed, D.P., "Protection Issues in Distributed Systems," talk to JIPDEC

group on security, audit and control, Cambridge, Massachusetts, April
1982,

. Reed, D.P., "An Overview of Distributed Systems Research at MIT LCS,"

Siemens, Munich, Germany, May 1982.

. Reed, D.P., "Non-FIFO Protocols or Streams Considered Harmful," IBM

Zurich Research Laboratory, Zurich, Switzerland, May 1982.

A7 %

COMPUTER SYSTEMS STRUCTURES

Committee Membership

1. Reed, D.P., Program Chairperson, ACM Eighth Symposium on Operating
Systems Principles, December 1981.

4

e

EDUCATIONAL COMPUTING GROUP

Academic Staff

H. Abelson, Group Leader A. diSessa

Research Staff

D. Neves

Visiting Staff

M. Schneider

Undergraduate Students

L. Bagnall M. Hailperin
J. Dempsey G. Kiczales
R. Hyre E. Tenenbaum
Support Staff
D. Tatar

EDUCATIONAL COMPUTING GROUP

1. INTRODUCTION

1981 was the year in which the world discovered educational computing.
Suddenly, it is taken for granted that students will have easy access to personal
computers, and that the ability to program a computer will soon be regarded as a
“basic skill.” For those of us who have long propounded such ideas to a skeptical
educational establishment, it is almost shocking to see our most futuristic visions
easily asserted as the obvious course of events by the pundits of Time and
Newsweek. 1981 was also the year that the Logo computer language, developed at
MIT over the past 12 years, became widely available as a commercial product, and is
being hailed as a major breakthrough in computers and education. Many of the
Group's members have been involved in Logo development, and it is gratifying to
see the speed and enthusiasm with which Logo is gaining popularity. Abelson's
Logo for the Apple 11, published in May, has provoked wide interest, and a number of
additional books about Logo and Logo programming are already underway.

But despite this optimism and enthusiasm, there is need for serious concern. For,
as the world has discovered educational computing, it will also soon discover that
the mere proliferation of computers (even Logo computers) is no magical cure-all for
educational problems. In the LCS Educational Computing Group, we are
confronting major issues that will need to be addressed before computation can play
an effective role in education: '

1.1. Computer-based Education Requires a New Perspective

We have long argued that a computer-based approach cannot be simply a matter
of transposing traditional material to a new medium. The computational framework
is at once a challenge and an opportunity

- to change the nature of the knowledge being transmitted: in science and
mathematics, especially, to take advantage of constructive, process-
oriented formulations of technical ideas, which are often more
assimilable and more in tune with intuitive modes of thought than the
axiomatic-deductive formalisms in which these ideas are usually
couched

-to change the relation between the student and the knowledge: to
structure richly interactive environments in which *“learning through
discovery” becomes more than just a well-intentioned phrase, which
allow for the personal involvement and agency that we are convinced is
essential to truly effective education

This past year saw the publication and enthusiastic response to Abelson and

EDUCATIONAL COMPUTING GROUP

diSessa’s book Turtle Geometry, a computational approach to mathematics ranging
from elementary geometry through General Relativity that has been acclaimed as
“the first step of a revolutionary change in the entire teaching/learning process."
We think it is crucial to continue to explore the way in which computation can
provide an intellectual framework for substantial reformulations of traditional
disciplines. During the fall semester, we led a seminar for MIT undergraduates,
aimed at developing similar new treatments of topics in physics. Our long-range
plan is to incorporate the computational perspective in a substantial way into the MIT
undergraduate curriculum, beginning with experimental alternatives to the freshman
calculus and physics courses. Much of our work in system development (discussed
below) is aimed at providing suitable computational tools to support such an
experiment.

1.2. Teacher Training and Curriculum Development Remain Serious
Problems

Very little of the vast amount of computer-aided instruction that is currently making
its way into schools reflects the kind of intellectual reformulation envisioned in the
paragraphs above. But valuable as a book such as Turtle Geometry is as a source of
ideas, it is a great leap, even for the most gifted and diligent teacher to transform that
into a curriculum. And “model” mathematics and physics courses at MIT are of
extremely limited value for elementary and secondary school teachers. More
formidable stiil, is the challenge of realizing the educational potential of the
computer in the home. In addressing these issues, we look forward to working with
Dr. Sylvia Weir, who will be joining our group at LCS during the coming months. Dr.
Weir and her research team have been active in teacher training and curriculum
development (as well as in computer-based instruction for special needs students)
and we expect that her efforts will enable the group to make major contributions in
these areas.

1.3. Educational Computer Systems Are Not Sufficiently Powerful or
Flexible

It may seem strange that we began working on a new computer system even before
Logo became commercially available. But Logo, a language tailored for the personal
computers of 1981, is not sufficient for the next round of computer applications. The
increasing use of personal computers in homes, schools, and workplaces ensures
that we will very soon reach the point where most of the people who interact directly
with computers are non-computer specialists, people for whom the computer must
be a useful tool without demanding inordinate computational sophistication or effort.
These people will require computing systems with broad functionality, including, for
example,

|

EDUCATIONAL COMPUTING GROUP

- the ability to edit and manipulate text, and to store and retrieve text
using a structured filing system

- the ability to search and manipulate data bases
- the ability to use and to modify pre-written programs

- the ability to write new programs, thereby extending the system's
underlying capabilities

The traditional approach to designing such tools has been to adhere to the paradigm
of the general-purpose time-sharing systems of the 1970’s, that is, to produce
systems whose functionality derives from the fact that they incorporate a large
number of special-purpose independent subsystems. We are convinced, however,
that most non-specialist users of computers are best served by providing a
computational environment that is integrated and coherent, in which all of the basic
capabilities can be assimilated to a single, uniform, easily understood computational
scheme.

Over the past year, under DARPA funding, we have been working on a system
called Boxer, which is designed to be the base for an integrated computational
environment that provides a broad array of functionality for non-expert users. The
Boxer language, like Logo, sits in the line of Lisp inspired languages, but with some
crucial distinctions. In particular, Boxer makes the user interface much more
integral to the meaning of the system than any previous language. This allows the
user’s stance toward the system to be much more the naive realism of ““what you see
is what you have,” and thus enhances communication of the model of the system
that we intend the user to have. Boxer also makes use of a pervasive spatial
metaphor in which linguistic structures and relations are mirrored in the spatial
relations shown on the screen.

Although we are most interested in Boxer's potential for educational use, it should
be clear that such a system will have a applications over the whole range of personal
computation. In the face of the advantage of an integrated system, in which learning
any one functionality automatically carries competence into other areas. it is striking
that any examples of integrated computational environments suitable for beginning
users do not exist. Instead. most current work on designing "usable systems’ stifl
aims largely at providing separate systems for separate functions, apparently
because these different functions have been associated with different pre-computer
technologies and because development projects tend to regard their task as one of
providing only the functionality that has traditionally found a place in some individual
““job category.”

46

EDUCATIONAL COMPUTING GROUP

Here is a summary of our progress to date on the integrated system:

- We bhave outlined the semantics for Boxer and implemented an
interpreter for it on the Lisp Machine.

- During the summer and fall of 1981 we designed, implemented, and
tested (on naive subjects) a prototype editor system on the Lisp
Machine.

- During the Spring of 1982 we began implementation of a second
prototype, including an editor, parser, and data base functions.

- We are beginning to write more substantial programs in the system
which will give us needed feedback on facilities needed and potential
problems with the user interface.

- We have experimented with on-line documentation, taking advantage of
the unique capabilities of the system.

- We have implemented (in Lisp, on the Lisp Machine) exampies of
advanced educational physics systems, which we intend that Boxer will
eventually be able to support. '

In the following sections, we begin by setting forth some general principles which
have guided us in the design of a system for non-expert users. We then sketch the
Boxer system as it currently stands. Finally, we outline the next steps in the
implementation effort as we see it and our projected activity over the next year.

2. DESIGNING SYSTEMS FOR NON-EXPERT USERS

What issues face one in the design of an integrated computational environment for
non-expert users? One stands out above all others: that the user should perceive
the system as understandability and simple. While efficiency and power can serve as
measures for systems intended for experts, learning and understanding are
paramount in a system that can be used by the majority of people. In order to design
effective computational environments we must therefore try to understand the
mental models that people form of these and other complex systems.

Unfortunately, cognitive science and psychology have not yet provided the wealth
of well-elaborated theory and empirical studies of understandability one would like to
have before beginning a design exercise. Although there are the beginnings of such
theories [6], we are still at a stage of announcing principles at best just before
applying them, and in fact, often explaining those principles through their

47

r W

[N ‘_4._‘

.

(&l

EDUCATIONAL COMPUTING GROUP

application. Our research on the Boxer system is as much an attempt to explore the
principles of designing computer systems so as to be understandable as it is an
attempt to develop a particular system. Indeed, from the larger perspective of
“engineering for understandability,” the possibility of designing compuiw.ional
systems may well motivate theories of understandability in the same way that the
technology for fabricating steam engines prompted the development of
thermodynamics.

In his paper [1]. A. diSessa sets forth principles of understandability for integrated
computational environments, together with their application to the design of Boxer,
identifying paradigmatic classes of models that users make of complex systems,
each with its own strengths and weaknesses. His analysis shows how the crucial
notion of “simplicity’’ takes on a much more textured and complex character than
might be the case if one had used less developed notions of what it is to
“understand.” it also suggests the possibility (even necessity) of using different
models of “‘understanding” for different purposes, and for a gradual shift in the kind
of model employed as a user becomes more experienced.

An expert's view of “‘simplicity’ is likely to be linked to issues of consistency, and
to the ease of maintaining a simple computational mode! that provides a complete
image of the system’s behavior. But no matter how simple such a model might be
from a computational point of view, it is bound to be complex to the beginner, who
likely has no intuition for the kinds of things the model might explain. Rather than
attempting to start with a picture of the whole, the novice user needs to be able to
isolate manageable portions of the system via a set of working hypotheses and
master these sections before moving onwards. We believe that this is possible in a
system where the user can initially invoke a set of familiar real-world models for the
machine and then modify these to accommodate to the less familiar aspects of
computing. A major goal of ‘‘engineering for understandability,” is thus to smcoth
the way from simplicity as it appears to the beginner (that is, in the familiar) to
simplicity as it appears to the expert (that is, in the logical and consistent).

3. A BOXER OVERVIEW

This section highlights some of the important features of the Boxer system as it is
currently being implemented on the Lisp Machine.

3.1. Boxer Uses a Consistent Spatial Metaphor

Particularly since the advent of bitmap displays, the visual medium has served a
more and more important role at the interface between man and machine. But
surprisingly little use has been made of the medium to develop and support user
models, rather than simply to expand the bandwidth of the user interface. In

48

.

EDUCATIONAL COMPUTING GROUP

contrast to pop-up menus and iconic mnemonics, we use the video screen to attack
the f.-damental problem of understandability of the basic organization and
operation of the computational environment.

The Boxer system is structured in terms of a comprehensive spatial metaphor. In
particular, spatial organization has strong semantic content; elements of the
environment are places, and their spatially visible relationships have structural
meaning in the environment. Perhaps most important, all computational objects are
represented, created and manipulated in essentially the same way, and the user can
for almost all purposes pretend that the objects are their visual representation. What
we want the user to see on the screen is, as close as we can arrange it, the
computational system itself rather than a multiply-filtered or side-effect dominated
view of it. Taking this “‘naive realism’ so seriously. in fact, separates this endeavor
most strongly from all previous computer language designs. Qur goal is to provide a
general-purpose and powerful computational tool that the beginning user will find at
once attractive, that is, possible to understand and control immediately, and
instructive, that is, whose less familiar aspects can be learned incrementally and

naturally.

3.2. Data is Organized Spatially

ORVE'S BOX
Papars + (2% Turtie-stuff bl el
fait + (™= Systea-documentation = (=
Calendar =+ [
Figure 1

Figure 1 shows the Educational Computing group box. Like all boxes, it contains
text (i.e. characters) and other boxes. The shading on the small boxes indicates that
these boxes are shrunken, i.e., that we do not see there details. The arrows denote
names for boxes. (The arrow is the general way that assignment is indicated in
Boxer.) By using the Lisp Machine locator device (the mouse) the user can enter
any of these inferior boxes, or exit the current box to get to the superior box. This
box shows that sharing among people is accomplished by having everyone operate
in a single box (virtual world).

49

EDUCATIONAL COMPUTING GROUP

LCS Educatienat Computing Group

Hath - (&= Rndyd (™= Davel < (=
Gregork < (&%) fatthiasS < (™ Laural -« (me.
g

Ericy (™= MaxM < (™ Ralphh
Oebbial « (&= JisD .
Figure 2

We can enter into Dave’s box (Figure 2) by positioning the cursor over the box and
hitting a key. At this level we can see that Boxer acts as a directory in normal
operating systems such as Unix. One important ditference is that the Boxer
structure is the directory, and the user moves around within the structure.

~

January

Ray

January v (M February < [March (& Rpral *
fay * (o=, June + o July * (& Rugust ~—= pown
Seplesber ~ (8um QOctober [O; Noveaber = (& Decesber < [St }

Figure 3

= - Ostm
- . Febryary = Rarceh

-

P

By

S n 1

(§-

G= [i= -

G (is [t (i
S (=

G
(¥

(1
(4

[a

= 15 [i”

(= [

Th

soem.

L

1)

>
27

. . fAipral

lf [

e
—

IPRE

| T w
¥

(i -

(3
~

[¥% G

Figure 4

In Figure 3 we enter Dave's CALENDAR box. This is a collection of sub-boxes, one
for each month. Figure 4 shows the MAY box expanded in place, so that we can see
its contents. Boxes can be expanded or shrunk under user control, by means of the

buttons on the mouse.

————-—— — June

1
|
|
|
!
i
5

ot
—d
~

T'._* S ———

EDUCATIONAL COMPUTING GROUP

. Finish first draft of progress report.

. Lecture by Perlimutler st 4:08,

Figure 5

Figure 5 shows us inside the box for May 21. This box contains only text, which
can be edited at will. The Boxer incorporates a real-time visual editor. Any keys hit
cause letters to be inserted at the cursor position in the box. In addition there is a
MAKE-BOX key which inserts a box at the current cursor position. Unlike traditional,
non-integrated systems, this editor is always present as part of the user interface,
whether the user is managing data, running programs, or working with text.

3.3. The Spatial Metaphor Pervades The System

So tar, we have seen that Boxer’s spatial organization carries a powerful metaphor,
that of “moving through™ a hierarchical structure. This organization was inspired by
the Spatial Data Management System [2] designed by the MIT Architecture Machine
Group. But Boxer goes beyond spatial data management. in using the same
geometric organization for all of the following hierarchies, which are treated

separately in most programming systems:

- the organization of a user’'s programs and data according to specitic
applications

- the organization of shared meanings for programming language
identitiers (i.e., the organization supplied by the scoping rules or block
structure of a programming language)

-the organization of sharing procedures and data among different
program modules'

- the hierarchical structurc of data objects (i.e., the organization provided
by arrays or lists)

1This is closely related to scoping of identifiers, yet distinct from it. 1t is supplied in Smalitalk, for
example. by the class hierarchy. which 18 a mechanism in addition to Smalltalk's dynamically scoped
dentifiers. Act! [3] supplies a similar delegation hierarchy. while maintaining lexical scoping of
identihers. The Lisp Machine uses dynamically scoped identifiers and supplies the flavor system to
deal with this kind of sharing.

51

EDUCATIONAL COMPUTING GROUP

-the hierarchical structure of expressions within the programming
language itself

3.4. Programs Can Be Constructed Concretely

In Boxer, any text appearing on the screen, whether typed by the system, typed by
the user, previously executed or not, is available to be manipulated, edited, or re-
executed with “do-it.”" This principle of ‘‘what you see is what you have’ enables a
mode of program construction, known as concrete programming, whereby the user
types and executes statements one by one and then at some later time indicates that
the typed statements (possibly after editing them) should be incorporated into a
program. This on-the-fly programming methodology has the further integrative
effect of minimizing the distinction between constructing a program and running it.

As a simple scenario of this style of programming, Figure 6 shows us working in the
Turtle part of Boxer system, this is an environment in which we can write and
execute graphics programs. The small box marked LIBRARY in the upper right hand
corner is the geometry /local library that contains definitions of symbols that are local
to the TURTLE box. In this case they might be built-in procedures for manipulating a
graphics cursor, together with any symbols we will define in this environment. We'll
assume that the built-in graphics primitives are FORWARD and RIGHT. FORWARD
causes a graphics cursor to move forward leaving a trail on the screen. RIGHT
causes the cursor to rotate in place. Such a graphics cursor is called a “turtle.”?

Turtle

_I\!,

P

Turtle

Dete.

s

foruard 100 LL - (P o Ll o+ oo

forusrd 100

Figure 6 Figure 7

We can now type text to be edited and/or executed. For example, typing
FORWARD 100 (Figure 6) followed by “do-it" will make the turtie cursor move
forward and draw a line 100 units long. Once the text of the FORWARD command is
on the screen, it can be re-executed any number of times by pointing to it and

2Drawing pictures by moving a cursor with FORWARD and RIGHT commands leads to a new
approach to the study of geometry, called “Turtle Geometry'" [4].

52

EDUCATIONAL COMPUTING GROUP

specifying “do-it.”" We are also free to edit any command that appears on the screen.
For example, if we would rather try "FORWARD 50," all we have to do is move the
k cursor to the proper position and change the input.

Tuetle
3

L~ (=

ror'uard 100
Figure 8

Figure 8 shows us adding and executing another command, which makes the turtle
rotate right 90 degrees. If we leave both commands on the screen, then we
automatically obtain the functionality of a menu for issuing graphics commands. In
fact, the turtle box could have been stored like this to begin with, so that a user
entering the turtie environment could automatically obtain such a menu.

vrile Turtle
e ro

gy LLaphm, s

e — cerner o om i
forusrd 100 foruard 100 |
right 98 . right 90

Figure 9 Figure 10

In Figure 9, we have grouped the commands by drawing a box around them. Now
pointing to this new box and indicating “do-it” will make the turtle draw a right-angle
commer. In Figure 10, we have named the box CORNER. This effectively defines
CORNER as a procedure.

EDUCATIONAL COMPUTING GROUP

a4 N
Vurtle Turtle
LL » o=

corneron tL = (2 o
foruard 100 Bqusre LL - oo -y
o Jright 90 jcorner # PET— "'l‘
orva H
" K
repest ¢ [l:—_'?_l ‘, t_‘_"__‘ S

| C 07 reapeat 4 [———]

corner

Figure 11 Figure 12

Figure 11 shows us drawing a square by repeating CORNER four times. Note how
boxes are also used to organize the structure of the REPEAT statement, thus
incorporating the syntactic grouping runctionality of the BEGIN-END blocks of Algol-
like languages. Figure 12 shows CORNER and the REPEAT statement grouped
together to form a procedure called SQUARE. CORNER is placed in the local library
for SQUARE, which effectively defines it as a procedure local to SQUARE.

-

fTurtle

L~

Turtie-senu =+ 1
- !

foruard 100 back 180/ ght 98 left 30/

L L —

‘houn‘n‘c tearscreen ‘

Figure 13

Figure 13 shows a more elaborate menu for the turtle environment. This illustrates
how the system provides the menu functionality found in many novice-oriented
systems. But in Boxer, a menu is no longer a special feature which a program may or
may not have. Instead, the user moves freely from employing menus, to creating and
editing them. He does this the same way he does anything else; to employ an
already created menu, he points to his choice and presses DOIT; to create or edit a
menu, he points to the part he wants to change and types in or deletes a command.

R p——p—

EDUCATIONAL COMPUTING GROUP

3.5. Boxes Provide Block Structure and Local Variables

Figure 12 shows SQUARE with its local procedure, CORNER. This indicates how
the system provides the block structure of Algol-like languages, because the nesting
of the boxes also determines the nesting of environments as far as the scoping of
variables is concerned. ldentifiers are searched for first within the local library of the
box in which the code is being executed, then in the local library of the containing
box, and so on. For instance, we could edit the SQUARE procedure so that the size
of the squares drawn will be determined by a variable SIZE. as shown in Figure 14.

rur st

L+ (o=
‘Squlr! - B
[D —————
[s-:e = !

corTner -« r————————
foruare 100

Front 90 i

input si120

repeat 4 Ei———]
’ ornsr

Figure 14

The INPUT statement indicates that SIZE is to be an input to SQUARE, which will
be installed in local library (in the box provided) when the procedure is called. Note
that SIZE appears as a free variable in CORNER, which accesses it by virtue of the
fact that CORNER also is located in the local environment for SQUARE.

Boxer interpretation can be viewed in an ‘‘Algo! Contour Model-like” manner.
Identifiers are searched for in the succession of local libraries, starting with the box
where reference to the identifier is made, and working outward. When a procedure
is called, the box which is the procedure is copied into the calling environment,
inputs are entered into the box’s local library and the code portion of the box is
executed. Incidentally, this shows how the “box" representation automatically
incorporates a contour model that can be used to explain the semantics of the
system.

3Note that this implies that free variables in the procedure body will be searched for, first in the
procedure’s local library and then in the calling environment. Boxer is thus an dynamically scoped
language rather than a lexically scoped one. One major reason for this choice is so that boxes can be
used for "message passing” as explained below. Even though the language is dynamically scoped,
the abilty for a procedure to carry its own local library means that the usual “funarg problems” of
dynamically scoped languages can in practice be avoided.

55

=¥

fu

EDUCATIONAL COMPUTING GROUP

system with multiple turtles. We can implement a turtle. say TURT1, as a box

the variables are assigned appropriate initial values as shown in Figure 15. (Note

3.6. Boxes Provide Object-Oriented Programming

Besides serving as procedures and environments, boxes also can be used to
program in an object-oriented, or ‘message-passing"’ style.

As an example, we'll implement a turtle as an object. and show how to build a
containing these variables in its local library. for example. by building a box in which

that POS, as a vector, is represented as a box containing two numbers.)

furtle Turtile
[TURTL = — L+ e TURTL = — T e
- De— - Dee—
| rpos R Lt 'pos = e
’ l1ee se i 108 S#
heading - ;- ‘ ghe;c.ng‘_::'.—l-&m
jl foruard S#
Figure 15 Figure 16

To make TURT1 go FORWARD, turn, or draw a square, we simply execute the
appropriate commands from within the TURT1 box, as shown in Figure 16. Notice
that the dynamic scoping discipline determines that the POS and HEADING variables
accessed by FORWARD and RIGHT will be the ones local to TURT1.

Another way to make TURT1 move is to use the TELL command, as in
TELL TURT1 [FORWARD 100]

In general, TELL means “execute the following command within the designated
box.” This provides the capability that would be expressed in actor languages as
“'sending the object TURT1 the message FORWARD 50.”

T WY

EDUCATIONAL COMPUTING GROUP

[Turile

(.3

Turtle

TURTL » LL - &=

TURTY - (=] L+ (=

TURT2 - g

tell TURTL (forward 100]

tell TURTZ tsquare S8

Figure 17 Figure 18

Of course, we could have another turtle, TURT2 that is identical to TURT1 except
for its name, and could give commands to them either by entering the appropriate
turtle box and typing the command. or by using TELL, as shown in Figure 18. Notice
that TURT1 and TURT2 share knowledge about FORWARD. RIGHT and SQUARE by
virtue of their inclusion in the TURTLE box. Alternatively. if we wanted TURT2 to
execute FORWARD commands in some special way, we could do this by including
the specia! FORWARD as a local procedure within TURT?2. Then whenever we
entered the TURT2 box, or used TELL TURT2, we would obtain this local FORWARD
procedure. Moreover, in a situation such as

TELL TURT1 [SQUARE]

TELL TURT2 [SQUARE]
we would have TURT1 executing SQUARE using the default FORWARD procedure
(i.e., the one contained in the TURTLE local library) and TURT2 executing SQUARE
using its local FORWARD procedure. This example shows how the hierarchical box
Structure can be used to capture the “class-subclass’ structure of actor languages.

3.7. Boxes Are a Natural Vehicle For System Documentation

e ——

Editor functions g
Boxer lanquage [{amdl

|

ﬁbo-.r l.ﬁg;uge b Data RNaniputation furzt.ers
l-n(nr.u descr.plion
}--porlant funclions
‘ar i thaet e furctions

predicate functieng

[- —
wabe-te
'JOIP»!oth
| jjern-botlos
I get-nin
geti-rc
gel-~aped
ifcr!l

tu\-hrsl R
=

(0 [y i1 lv

LLLLLEEE

Turtie functions

Fbure 19 FnUfe 20

L)

EDUCATIONAL COMPUTING GROUP

Figure 19 shows part of the on-line documentation of the Boxer system, designed
and implemented by David Neves. As with any boxes. this is simply typed in as text,
and the user of the documentation consults it by moving around within it. Figure 20
shows use moving into the “Important Functions” sub-box of the documentation,
and expanding the box dealing with data manipulation functions.

Joi1n-right <boxl> <box2>

Joins the right side of boxi to the !eft side of box2.
iExasple : (>
run-ee e:aapie (@

ark the following box and
e ecute 1t to see an e.ample of ,oin-right.

HARLIE ARF

[TPLE BRKER ANEIE nuaaj
c

Figure 21

Figure 21 shows the documentation for the JOIN-RIGHT command, which
concatenates two boxes horizontally. (Boxer includes a full repertoire of procedures
for manipulating boxes as data objects.) The documentation includes an innovation
by Neves called a *‘run-me example.” This is simply a box that the user can mark
and execute in order to see an example of the command in operation. Again, the
uniformity of the Boxer system allows these examples to be constructed simply as
text, just as menus are constructed as ordinary text (Figure 13).

4. NEXT STEPS WITH BOXER

The impiementation of the Boxer system described in the previous section is
almost complete, and we expect to finish the implementation on the Lisp Machine
over the summer. After that, a few missing features need to be added, most notably
tacilities for dealing with sharing, error handling. and interactive help. At this point
we will be ready to begin sample “application” programs in Boxer, and to testiton a
wider scale with novice users.

Also, within the next year we must decide upon the implementation of Boxer on
another machine. The Lisp Machine is fine tor developing prototypes but our system
can only improve with its use by a large group of diverse people; system developers
by definition do not make good novice users and we must expect to modify our ideas
and our implementations according to the reactions of novices. Once the design is
stable we propose to implement it on a cheaper personal computer. The primary
constraints are that the machine we choose must have a bit-mapped display, a

EDUCATIONAL COMPUTING GROUP

mouse (or a similarly easy to use pointing device), and substantial address space.
As of now no such inexpensive machine is being sold but we expect this situation to
change within the next year.

59

EDUCATIONAL COMPUTING GROUP

References

1. diSessa, A."A Principled Design for an Integrated Computational
Environment,"” to appear, 1981.

2. Bolt,R.A. Spatial-Data-Management, Massachusetts Institute of
Technology, Cambridge, MA, 1979.

3. Lieberman, H. "Sharing Knowledge by Delegating Messages,” MIT
Artificial Intelligence Laboratory Memo, Cambridge, MA, 1979.

4. Abelson, H.and diSessa, A.Turtle Geometry: The Computer as a
Medium for Exploring Mathematics, MIT Press, Cambridge, MA, 1981.

Publications

1. Abelson, H.and diSessa, A.Turtle Geometry: The Computer as a
Medium for Exploring Mathematics, MIT Press, Cambridge, MA, 1981.

2. diSessa, A. “An Elementary Formalism for General Relativity,”” American
Journal of Physics (May 1981).

3. diSessa, A.‘The Computer and Mathematical Experience,”
Proceedings of the Fourth International Congress on Mathematics
Education, in press.

4. diSessa, A.“Unlearning Aristotelian Physics: A Study of Knowledge-
Based Learning,” to appear in Cognitive Science.

5. diSessa, A. ‘‘Phenomenology and the Evolution of Intuitions,” to appear
in Mental Models, D. Gentner and A. Stevens, (Eds.) Lawrence Erlbaum
Press.

Talks

1. diSessa, A. "The Role of Experience in Learning Physics,"” Symposium
on Mental Models at the Annual Cognitive Science Society Meeting, San
Francisco, CA, August 19-20, 1981.

2. diSessa, A. "Phenomenology and the Evolution of Intuition," University
of Rochester, Rochester, NY, October 30, 1981.

3. diSessa, A. "Learnability Principles for the Design of Computational

Environments,”" Xerox Palo Alto Research Center, Palo Alto, CA,
rinuary 21,1982,
60)

w

Yo

EDUCATIONAL COMPUTING GROUP

. diSessa, A. "The Role of Experience in Learning and Knowing Physics,"

invited address at the annual Joint Meeting of the American Physical
Society--American Association of Physics Teachers, San Francisco, CA,
January 26, 1982.

. diSessa. A. "Computers in Math and Science Education: The Rebirth of

Exploration?" Columbia University, Teachers College, New York, April
12, 1982.

. diSessa, A. "Turtle Geometry--What's It About" and “Advanced Topics

in Turtle Geometry: Physics and Differential Geometry," Sessions at the
Third Annual ECOO Conference on Computers in Education, Toronto,
Canada, April 29, 1982. At the same conference "The Future of
Computers in Education” (panelist).

. diSessa, A. "Philosophical Issues in the Design of Computer

Languages,” a discussion with Adele Goldberg and Ken lverson
contrasting Logo, Smalltalk and APL, Canadian ACM, SIG APL Meeting,
April 28, 1982.

. diSessa, A.Workshop on Intuitive Physics, University of Rochester,

Rochester, NY, May 17-29, 1982.

. Neves,D. “Boxer: An Integrated System for Novice Computer Users,” at

the Workshop of Very High Level Languages, University of Pennsylvania,
Philadelphia, PA, February 1982.

61

Academic Staff

Arvind, Group leader

Research Staff

R. Thomas

Gracduate Students

R. lannucci K. Pingali
V. Kathail W. Seltzer
J. Pineda

Undergraduate Students

S. Gray S. Heller
D. Perich J. Rodriguez
K. Suh

Support Staff

K. Warren

-\

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

1. INTRODUCTION

The Functional Languages and Architectures group is studying new computer
structures to exploit the parallelism which is easily found in many functional
programs. Our approach in studying parallelism is based on a highly dynamic
interpreter for dataflow graphs called the U-interpreter [1] Since we believe the
success of a general-purpose multiprocessor computer depends on its effective
programmability and its efficient utilization of resources we are concerned not only
with hardware issues but also with associated system problems such as high level
language support, communication requirements, and efficient distribution of
workload over the machine. We anticipate that a variety of approaches, languages,
etc. will be applied towards resolving these problems depending on the application
context.

We are continuing our work in developing the high level dataflow language id and
compilers for it to generate machine code for a prototype dataflow machine. We
have started the process of specifying the functionality of each component of the
prototype machine in enough detail to facilitate hardware implementation.

Our group, together with Computation Structures Group organized the ACM
Conference on Functional Programming Languages and Computer Architecture in
Portsmouth, NH (October 18-22, 1981). Approximately 200 people from all over the
world participated in the conference to hear 26 papers and 2 panel discussions on
.arious functional languages, logic programming, and reduction and dataflow
architectures for executing side-effect free languages. An edited transcript of the
questions and answers that followed every presentation and the two panel
discussions is u~der preparation and will soon be published as a technical report.
Arvind and Tilak Agerwala of IBM also edited a special issue of IEEE Computer
Magazine on Dataflow Systems (February 1982).

2. LANGUAGE RELATED WORK

Arvind, D. Brock. and K. Pingali have investigated the extension of Backus' FP
language to permit user-defired higher order functions. Although the importance of
higher order functions is not always fully appreciated, we feel that it is imperative
that functional languages support them. Backus' FFP language has this power, but
it comes at a price, i.e.. FFP is not extensional. We have extended Backus' language
FP to support higher order functions without disturbing the mathematically useful
properties of FP, most importantly, its algebraic identities [5] whose variables range
over all FP programs. The oniy price we pay for this e»i~nsion is the relative
complexity of the semantic domain of the extended FP in comparison with the
semantic domain of FP.

FUNCTIONAL LANGUAGES

AND ARCHITECTURE GROUP

As part of his master's thesis, K. Pingali studied the problem of implementing
streams so that stream programs are safe for data driven evaluation. For a simple
stream language L 5, which is a subset of Id, he developed a scheme for transforming
any program in L into an L, program that is safe for data driven evaluation. The
transformation scheme is also relevant for demand driven evaluation because the
transtormed scheme generates far fewer suspensions than the source program. The
language L has the usual stream operators first, rest, cons, and in addition, it allows
other operators that are one-in-one-out. We are investigating the extension of the
techniques developed to a language L, which includes the filter operator that does
not have the one-in-one-out property. Even though this work is being pursued in the
context of dataflow, it has direct implications for the general problem of efficient
code generation from functional languages. The techniques being developed will
substantially improve the efficiency of current lazy interpreters for functional
languages.

The Id compiler project to translate a subset of Id (i.e., Id without streams and
managers) to Lisp was completed by V. Kathail and K. Pingali. This Id compiler is
part of IdSys (an abbreviation for Id System) which is essentially an environment for
writing, compiling, debugging and running Id procedures. 1dSys currently runs on
the XX system (DEC-20) in the Laboratory for Computer Science. A manual for using
IdSys is also available [9] The compiler was used by students in the dataflow course
6.847, and is currently being used to write a statistical program package by George
Gedeon in the center for advanced engineering studies.

A compiler to translate Id (excluding managers) into dataflow graphs has also been
completed. It generates an abstract parse tree which is used in the following pass to
determine the rarity of expressions, the variables used in an expression, and the
point at which each variable is defined. Most of the semantic error analysis is done
during this pass. A subsequent pass over the parse tree then generates dataflow
graphs. The graphs generated by the compiler differ in soiiw respect from the ones
described in [1] because of the special treatment given to I-structures [4].

Ki Suh is working on the program which will translate dataflow graphs into the
actual instructions for the tagged-token machine as described in This program will
form the final phase of the code generation process, and will be integrated with the
rest of the compiler. Work on the detection of I-structures, i.e., to determine when a
general structure can safely be assumed to be an i-structure, and certain
optimizations like constant propagation, dead code elimination, code-block merging,
etc. is in progress.

-

-~ . . .,

—

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

3. ADATAFLOW ARCHITECTURE AND PROTOTY PE
IMPLEMENTATION

During the last year our group has made significant progress in finalizing the
design of the 64 processor prototype dataflow machine. The work concentrated on
specifying the instruction set and a hardware design of the processing element to be
built in the laboratory by the end of 1983. We have now begun the process of
specifying the major subsystems of the prototype machine in terms of a Pascal
program which implements the functionality of each subsystem. These programs
will serve as detailed and unambiguous specifications for these subsystems and will
serve as input to subsequent steps in prototype implementation as well as
communicating our design to others. Pascal was chosen for this task because it is
widely known, transportable. and is readily adaptable to the uses we expect of the
functional specifications such as software simulation, transliteration to microcode,
and eventually specification for custom VLSI chips. R. Thomas is coordinating the
work on these specifications and has completed the specifications for the |-structure
controller.

3.1. Instruction Set Specification

Arvind and V. Kathail had specified the outline of an instruction set to handle
procedures, loops and |-structures in the previous year {2]. However, the instruction
set needed many more details concerning the format of values and tokens, and
addressing mechanism. Arvind and R. lannucci have completed these specifications
and in the process have also made changes in the format of the instructions [3] A
better scheme than the one given in [2] for mapping U-interpreter generated activity
names onto fixed-size hardware tags has also emerged from discussions within the
group. The new tagging scheme (as suggested by V. Kathail) and the instruction set
are reported in [3]. In the following we describe the salient changes and new
features of the instruction set.

Constant Specitication - Constants are now associated only with loops and stored
in program memory instead of |-structure memory. This change was made to avoid
an indefinite wait by the ALU in fetching a constant from the local I-structure storage.
Special treatment of constants in procedures has been eliminated because it
seemed to offer no practical advantage.

Instruction Format - Instructions can have as many as three operands. In case of a
three operand instruction, one operand must be a constant. Inclusion of a field
known as the disposition of an operand allows any input to be ignored and thus, to
be used as a trigger. Destination fields in instructions are independent of physical
location to permit dynamic loading of procedures without moditying the code.

FUNCTIONAL LANGUAGES

AND ARCHITECTURE GROUP

Generation of Tags - An algorithm for generating the tag and the PE number for an
output token from the input tag and destination information is specified. Previously a
maximum of 16 concurrent procedure and loop activations were permitted in a PE.
The new scheme allows up to 16 concurrent invocations -of each individual code
block. In the case of procedure code blocks, the number of concurrent activations
can be even larger because it is possible to use the iteration field to distinguish
between many activations of the same procedure. The new tagging scheme still
uses only 28 bits (4 for color, 16 for the instruction address within a PE, and 8 for
iteration number) but is able to use all 2?8 names for naming activities.

New Instructions - A complete set of instructions has been included to manipulate
token values at the bit and byte level.

Aithough the specification of the instruction set is almost complete, some problems
remain in the generation of code for data structure operations. Generation of |-
structure instructions requires type information which either is not available in Id or
is ditficult to derive. Also, we plan to use I-structures to implement streams but the
translation of streams into |-structure instructions has not been worked out yet. A
complete set of instructions to implement managers can be specified only after
stream implementation is better understood.

3.2. Alternatives for Hardware Implementation of the Prototype

We considered a large variety of strategies for implementing a prototype datafiow
machine. Although we plan to eventually implement our design with custom VLSI
chips we have selected a lower risk implementation technology for the first 64
processor demonstration machine which is to be constructed using AMD 2903 and
other off-the-shelf components. Other strategies we considered were:

1) One or more off-the-shelf single-board microprocessors (M68000) to
emulate each PE and a "migration strategy" to incrementally
incorporate custom VLSI chips;

2) One 8-bit EPROM programmable microprocessor chip (M68701) per PE
subsection;

3) Three microprocessor chips on a single board to functionaily emulate a
PE;

4) One AMD 29116 and other off-the-shelf chips on a board to implement
each subsection of a PE;

5) Custom gate array implementation in cooperation with an industrial
partner.

67

FUNCTION/.L LANGUAGES
AND ARCHITECTURE GROUP

The analyis of all but the last two of these approaches was reported by R. lannucci
[6]. We chose the micro machine based on the AMD 2903 and other oif-the-shelf
chips as the most realistic strategy tor a group of our size to accomplish while having
very good performance, flexibility, and applicability for design of the eventual custom
VLS implementation.

3.3. The Micro Machine Prototype

Each Pz of this machine will be a fairly high-performance 32-bit micro
programmable machine (containing at least 256K bytes of dynamic RAM).
R. lannucci and R. Thomas designed this machine [6] and its micro assembler so
that it sup sorts efficient implementation of the dataflow machine instruction set. For
example, the low-level structure of the micro machine relies on microcode-level
context switching in the spirit of the Xerox Alto [11] and Dcrado [7]. (Such hardware
supported context switching is extremely important for efficient implementation of
the rather fine-grained parallelism of our dataflow PE.) Furthermore, the data paths,
memory, e¢nd arithmetic elements are sufficiently wide (32 bits) so that no convoluted
code is nzeded to manipulate normal data objects (e.g., floating-point numbers,
memory addresses). Automatic alignment circuitry and length/boundary hardware
eliminate problems in manipulating objects smaller than 32 bits. The control storage
subsysterr implements a very sophisticated yet simple branching mechanism to
allow for 2-way, 4-way, 8-way, ..., or 256-way branching on any data object. Multi
way branching can be performed on contiguous and noncontiguous bits within the
same eigat-bit byte. And finally, the maintenance subsystem contains a
microprocassor which is separate from the main data paths; it facilitates
initializatic n, testing, debug, and control of the micro machine. The primary memory
(constructad from 64K bit or 256K bit dynamic RAMs) will be error corrected to
further enhance the machine’s reliability.

The syntax of micro instructions to be accepted by the micro assembler is
equational, with limited use of keywords for branching and other controls. One of
the major issues in the design of such a micro assembler is the problem of assigning
micro instructions to control storage addresses. Due to the regular nature of micro
instructior addressing (we have not used a blocked control storage structure), this is
a containeble problem. Assignment can be done quite effectively as a three step
process:

1) Selezt cells for the targets of all multi way branches starting with 256-
way, then 128-way, etc.;

2) Selest cells for all fixed odd/even pairs:

- 2-way branching using the odd/even select mechanism;

N ——

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

- Subroutine linkages;

-Micro instructions using immediate constants and their
SUCCESSOTrS;

3) Assign the remaining micro instructions freely to the remaining cells.

3.4. System Level Support

Implementation of a usable prototype machine involves a great deal of support
software and hardware for tasks such as down loading code. debuggers, test jigs,
etc. R. Thomas has impiemented a flexible debugging system which can be easily
configured for minimum M68000 systems such as the service processor on the micro
machine. Two UROP students directed by R. Thomas and a bachelors thesis
student project have also contributed in this area. J. Rodriguez wrote a program for
transferring information (using a 9600 baud serial link) between a M68000
microprocessor and a Data 1/0 System 19 PROM programmer. This program makes
it convenient to down load code or data from XX to a M68000 microprocessor and
subsequently to program it into EPROMs, PROMs, or PAL chips for use in the
prototype. S. Gray worked on supervisor calls which would allow sophisticated
debuggers and 1I/0 handlers to be constructed on the M68000 service processor of
the micro machine. And D. Perich worked on a parallel-port interface which will be
used to connect the prototype dataflow machine and a VAX11-750 host computer.

3.5. VLS!I Implementation

Since VLSI is the most suitable technology for implementing dataflow
multiprocessors, we believe that it is imperative to develop and maintain expertise in
VLS! design. We view this as long term, high payoff research in which
characteristics unique to VLS| may be exploited in future dataflow architectures.

Interconnection Networks - In conjunction with his Vi-A Co-op assignment with Bell
Laboratories, Wayne Seltzer has complcted the VLS! design of a communications
module for the tagged-token dataflow architecture [10] The CMOS integrated circuit
of approximately 40,000 transistors functions as an 8x8 packet router. An
asynchronous protocol allows a number of these chips to be interconnected in a
variety of topologies to provide an arbitrarily large packet-switched communications
network. Packets, of up to 128 bits, serially enter one of the router's eight input
ports. A routing address in the packet is used to determine the output port
destination. The router maintains flow control through the network with on-chip
buftering and internally arbitrates output port contention.

Waiting-Matching - The waiting-matching section in each PE of our prototype

69

m

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

machine brings together operands for subsequent execution by associatively
matching the tags carried on input tokens. Towards providing a low-cost
implementation for this function, J.Pineda and R.Thomas specified [8] the
functionality of a fully associative content-addressable memory (CAM) which
J. Pineda then designed and implemented as a NMOS VLSI chip. The chip provides
sixty-four 32-bit words and can be cascaded to extend the number of words. Either
a 16-bit or 32-bit data bus can be used depending on packaging (currently the chip
is packaged in a 40-pin DIP providing a 16-bit data bus; 56 pins would be needed for
a 32-bit bus). The chip was fabricated in the spring of 1982 by Bell Labs; J. Pineda
has tested a large percentage of the chip using facilities at Prime Computer
including a Fairchild Sentry tester and probe station. These tests revealed three
design errors: two missing wires and one logical error. By using micro probes to
substitute for the missing wires, most of the remainder of the chip has been
determined to be functional. A corrected version of the chip was sent for fabrication
in June 1982.

70

r

DY AL

m

¢ FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP
References
& 1. Arvind, Gostelow, K.P. and Plouffe W. "An Asynchronous Programming
i Language and Computing Machine.” Technical Report TR 114a,

Department of Information and Computer Science, University of
California - Irvine, Irvine. California, December 1978.

k 2. Arvind, and Kathail. V. "A Multiple Processor Dataflow Machine that
Supports Generalized Procedures,” Proceedings of the 8" Annual
Symposium on Computer Architecture, Minneapolis, MN, May 1981.

k 3. Arvind, and lannucci, R. A. "Instruction Set Definition for a Tagged-

. Token Data Flow Machine," Memo 212, Computation Structures Group,
MIT Laboratory for Computer Science, Cambridge, MA, December 1981
(revised May 1982).

4. Arvind and Thomas, R.E. "I-Structures: An Efficient Data Type for
Functional Languages,” MIT/LCS/TM-178, MIT Laboratory for
Computer Science, Cambridge, MA, September 1980, (revised October
1981).

5. Backus, J. "Can Programming be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs,” CACM, 21,8
(August 78), 613-641.

6. lannucci, R.A. "Implementation Strategies for a Tagged-Token Data
Flow Machine,” Memo 218, Computation Structures Group, MIT
Laboratory for Computer Science, Cambridge, MA, June 1982,

7. Lampson, B. W., and K. A. Pier "A Processor for a High-Performance
Personal Computer,” Xerox Palo Alto Research Center, Palo Alto, CA,
January 1981

8. Pineda, J.and Thomas, R. "Preliminary Functional Specification of a
CAM for use in a Tagged-Token Dataflow Processor," unpublished note,
December 11, 1981.

9. Pingali, K.and Kathail, V. "IdSys Manual," Memo 211, Computation

Structures Group, MIT Laboratory for Computer Science, Cambridge,
MA, December 1981.

71

el

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

10.

Seltzer, W. A. "A Communications System for a Multiprocessor Dataflow
Computer Architecture,” S.M. and S.B. Thesis, MIT Department of
Electrical Ergineering and Computer Science, Cambridge, MA,
(expected August 1982).

"ALTO: A Personal Computer System - Hardware Manual," Xerox Palo
Alto Research Center, Palo Alto, CA, May 1979.

Publications

. Agerwala, T. and Arvind "Guest Editorial -- Special Issue on Data Flow

Systems" Computer Magazine, (February 1982) 10-13.

Arvind and Brock, J.D. "Streams and Managers," Memo 217,
Computation Structures Group, MIT Laboratory for Computer Science,
Cambridge, MA, To appear in Springer-Verlag Lecture Notes on
Computer Science series.

Arvind and Gostelow, K.P. "The U-interpreter," Computer Magazine,
(February 1982) 42-49.

Arvind and lannucci, R. A. "Instruction Set Definition for a Tagged-
Token Data Flow Machine,” Memo 212, Computation Structures Group,
MIT Laboratory for Computer Science, Cambridge, MA, December 1981
(revised May 1982).

Arvind and Pingali, K. "Safe Data-driven Evaluation," Proceedings of the
Symposium on Functional Languages and Architecture, Goteborg,
Sweden, June 1981 (revised April 1982).

Arvind and Thomas, R. E. "l-structures: An Efficient Data Type for
Functional Languages,"” MIT/LCS/TM-178, MIT Laboratory for
Computer Science, Cambridge, MA, June 1980 (revised October 1981).

lannucci, R.A. "Implementation Strategies for a Tagged-Token Data
Flow Machine," Memo 218, Computation Structures Group, MIT
Laboratory for Computer Science, Cambridge, MA, June 1982.

Pineda, J. and Thomas, R. "Preliminary Functional Specification of a
CAM for use in a Tagged- Token Dataflow Processor," unpublished note,
December 11, 1981,

Pingali, K. and Kathail, V. "IdSys Manual," Memo 211, Computation

72

e >

T I

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

Structures Group, MIT Laboratory for Computer Science, Cambridge,
MA. December 1981.

Theses Completed

. Perich, Daniel N.. "A Parallel Interface Between a PDP-11/40 and a

Motorola 68000." M.S. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge. MA, May 1982.

Theses in Progress

. Pingali, Keshav, "Streams in Applicative Languages,” MIT Department

of Electrical Engineering and Computer Science, Cambridge, MA,
expected August 1982

. Seltzer, Wayne A."A Communications System for a Multiprocessor

Dataflow Computer Architecture,” S.M. and S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA,
expected August 1982.

Talks

. Arvind, "Safe Data-driven Evaluation” Workshop on Functional

Languages and Computer Architecture, Gothenberg, Sweden, June
1981.

. Arvird, "A Dataflow Architecture with Tagged tokens," I.L.T., Kanpur,

INDIA, July 2, 1981.

. Arvind, "A Dataflow Architecture with Tagged Tokens," University of

Wisconsin, Madison, Wisconsin, September 24, 1981.

. Arvind, "A Dataflow Architecture with Tagged Tokens,"” Memorial

University, St. John, New Foundland, Canada, November 30, 1981.

. Arvind, "A Dataflow Architecture with Tagged Tokens," MIT Laboratory

for information and Decisions, Cambridge. MA February 23, 1982,

. Arvind, "A Dataflow Architecture with Tagged Tokens,”" University of

Rhode Island, RI. March 3, 1982.

. Arvind. "A Dataflow Architecture with Tagged Tokens," Intermetrics

Seminar, Cambridge, MA March 10, 1982.

73

N |

FUNCTIONAL LANGUAGES
AND ARCHITECTURE GROUP

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Arvind, "In praise of Functional Languages and Dataflow
Architectures,” Workshop on Language Issues in High Speed Scientific
Computing, Glenaden Beach, Oregon, March 17, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens,” Intel
Corporation, Aloha, Oregon, March 19, 1982,

Arvind, "A Dataflow Architecture with Tagged Tokens,"” MIT-IBM
Workshop, Lenox, MA, April 15, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens,” Workshop on
Parallel Processing, Courant Institute , New York, April 23, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens," Siemens,
Munich, May 4, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens," Gesellschaft fur
Mathematik und Datenverarbeitung Mbh, Bonn, May 6, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens," Kiel University,
Kiel, Germany, May 7, 1982.

Arvind, "A Dataflow Architecture with Tagged Tokens," MIT-VLSI
Research Review, May 17, 1982,

lannucci, R., "Dataflow Computer Architecture: An Introduction," IBM
Glendale Laboratory, Endicott, NY, January 6, 1982.

Pingali, K. and Kathail, V., "A Dataflow Instruction Set Which Supports
Generalized Procedures,” Workshop on Instruction Set Design and
Code Generation for Data-Driven Computing Systems, July 6-8, 1981.

Thomas, R."An Incremental Hardware Strategy for Implementing a

Prototype Dataflow Machine,” Workshop on Instruction Set Design and
Code Generation for Data-Driven Computing Systems, July 6-8, 1981.

74

INFORMATION MECHANICS

Academic Staff

E. Fredkin, Group Leader

Research Staff

T. Toffoli
G. Vichniac

Graduate Students

R. Giansiracusa N. Margolus

Undergraduate Students

R. Fearing
A. Hofmann
W.L. Lee

Support Staff
R. Hegg

F.

INFORMATION MECHANICS

1. CONSERVATIVE LOGIC AND REVERSIBLE COMPUTING

One of the goals of conservative logic is to explore ways of realizing virtually
nondissipative computing. To this purpose, it is necessary to achieve a very close
match between the logical structure of the desired computation and the structure of
the physical computer that should carry it out.

In previous years, we had shown that the '"thermodynamical limit" to
computation—characterized by Landauer in a well-known paper—does not apply to
computation based on reversible primitives, and that such primitives are sufficient
for constructing a universal computer. We also showed that such reversible
primitives admit of a simple classical-mechanical realization.

1.1. Quantum-mechanical Computation

The next step in this program is to arrive at a quantum-mechanical realization of
reversible computation. In the past year, we have made much progress in
understanding under what conditions it is possible to make a quantum-mechanical
system carry out in an exact way deterministic, computationally-universal processes
in a nondissipative way. In fact, we have devised a general method for constructing
a quantum-mechanical Hamiltonian describing a general-purpose computer. This
method constitutes a great simplification with respect to some recent work by
Benioff in the same area.

We are collaborating with Richard Feynman in identifying specific quantum-
mechanical effects capable of realizing universal, reversible primitives such as the
Fredkin gate or the Interaction gate.

1.2. SQUARELAND

We have devoted much time and effort to the design, construction, and testing of
SQUARELAND, a high-performance machine dedicated to the simulation of cellular
automata.

In this machine. the new state of the cellular-automaton array is computed in a
conventional manner from the old state through sequential scanning, but all
operations—including access to a cell's neighbors—are pipelined. Thus the local
transition function can be computed with absolutely no overhead. In this way, with
low-power Schottky TTL logic one can achieve a scan rate of 80 nsec per cell. This
speed is amply sufficient to permit one to siave the scanning of the array
(256x256 = 65,636 cells) to the scan rate of an ordinary CRT monitor (60
frames/sec), thus bypassing the need for a separate display memory. The present
version can handle up to eight bit-planes, corresponding to up to 256 states per cell.

76

INFORMATION MECHANICS

Double-butfering and an original addressing scheme greatly reduce memory-access
bandwidth, and allow one to use slow and inexpensive memory for main storage.

In conclusion, SQUARELAND permits one to view in real time the behavior of
cellular automata at a rate and a resolution comparable to that of a Super-8 movie. A
number of original t~chnical solutions permit one to achieve this performance using
perhaps $200's worth of readily available IC chips.

We have started using SQUARELAND for gaining an intuitive feeling on the
behavior of a variety of cellular automata. and for testing a number of working
hypotheses. This activity is very similar to experimental research in the natural
sciences. but is directed at studying the properties of "artificial" universes whose
rules can be arbitrarily specified. Using SQUARELAND, we plan to isolate and study
in a stylized way specific features of physics from a computational viewpoint.

1.3. Discrete Computational Prototypes for Physics

Our work on the physics of computation was complemented by research on
computational prototypes for physics. We have studied questions concerning the
thermodynamics of discrete systems, computational models of quantum mechanics,
models for the EPR paradox based on local interactions, the possibility of defining a
simplectic (viz. Hamiltonian) dynamics for discrete systems. We have done much
groundwork in the hope of arriving at a reasonable extension to discrete dynamics of
Noether's theorem (which characterizes the connection between symmetries and
conservation laws in continuous physical systems).

Our group organized an Information Mechanics Workshop, held in the second half
of January 1982 in the British Virgin Islands. with the participation of a number of
distinguished physicists and computer scientists. In this workshop, particular
emphasis was given to the connections between abstract computation and
theoretical physics.

1.4. Computation and Lattice Dynamics Seminars

We have collaborated with Hyman Hartman in organizing biweekly seminars on
Computation and Lattice Dynamics. There are a number of homogeneous physical
systems with local interactions (crystals, spin-glasses, doped crystals, etc.) whose
analysis brings very closely together concepts of physics and of computation. In
fact, such systems can be thought of as "accidental” (i.e., naturally occurring)
parallel computers, some of them capable of performing amazing distributed-
processing feats.

In these seminars, discussions were centered on presentations offered by

77

INFORMATION MECHANICS

members of our group as well as a number of physicists from MIT's Center for
Theoretical Physics, Harvard. Boston University, and Northeastern.

2. SEMI-INTELLIGENT CONTROL

Semi-intelligent control is an original approach to the problem of controlling
machinery through the use of a distributed network of microprocessors. This
approach stresses the use of local, uniform, and redundant information to drastically
reduce bandwidth, and the systematic use of look-up tables (rather than analytic
methods) to build up flexible learning and performance in control tasks.

In the past year we have continued work on a number of pilot activities in this area.
Having completed construction of the hinge system (a very simple, man-sized robot
which should be able to stand up, balance itself, and walk in hops), we have started
exercising it, first with manual control and then by feeding to it canned strings of
commands (with no feedback). We plan to compare the behavior of the actual hinge
robot with that of the simulation that we have been running on a LISP machine, in
order to adjust the simulator’s parameters and eventually drive the robot by means of
the same programs that now run the simulation. To this purpose, we will equip the
hinge robot with sensors capable of producing adequate feedback.

A student has just completed another project in this area, dealing with simple
methods of recognizing objects by acoustic means. The project is centei .2 on the
POLAROID sonar pulser/detector, and uses a microprocessor to drive the sensor
and perform the lowest level of data acquisition and analysis.

78

INFORMATION MECHANICS

S

Publications

1. Fredkin, E. "Digital Information Mechanics." transcripts of a talk given to
the Information Mechanics Workshop, British Virgin isfands, January
1982, now being revised and expanded into a technical memo.

2. Fredkin, E. and Toffoli, T. "Conservative Logic." International Journal of
Theoretical Physics. 21 (1982), 219-253.

3. Toffoli, T."Physics and Computation,” International of Journal
Theoretical Physics, 21 (1982), 165-175.

k-) 4. Toffoli, T."SQUARELAND: A High-performance Cellular-automaton
Machine," to appear.

Theses Completed

1. Payton, D."A Predictive Learning Control System for an Energy
Conserving Thermostat,” S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, August 1981.

Theses in Progress

1. Giansiracusa, R. "Adaptive Multileve! Modeling of Complex Dynamical
Systems,” Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected September 1982.

2. Margolus, N. "Physics and Computation," Ph.D. dissertation, MIT
Department of Physics, Cambridge, MA, expected June 1983.

Talks

1. Fredkin, E. "Digital Information Mechanics,” Information Mechanics
Workshop, British Virgin Islands, January 18-29, 1982,

2. Fredkin, E."Information and Physics," concluding address at the
Livermore Laboratory Conterence on High-Speed Computing, Gleneden
Beach, Oregon, March 16-18, 1982.

3. Margolus, N. "Energy and Entropy in Cellular Automata.”" Computation
and Lattice Dynamics Seminars, MIT Cambridge, MA, October 1981.

4. Margolus, N."The Role of Energy and Entropy in Reversible

January 18-29, 1932,

79

m ” w

INFORMATION MECHANICS

5.

10.

11,

12.

13.

14.

15.

Margolus, N. "A Local Quantum Mechanical Description of Reversible
Cellular Automata,” Information Mechanics Workshop, British Virgin
Islands, January 18-29, 1982.

Toffoli, T. "Conservative Logic," invited talk at GMD, St. Augustin, West
Germany, July 1981.

Toftoli, T. "Semi-intelligent Control," invited talk at GMD, St. Augustin,
West Germany, July 1981.

Toffoli, T."Nondissipative Computation,” Computer Science and
Systems Seminar, University of Bridgeport, October 1981.

Toffoli, T."SQUARELAND: A Practical Tool for Viewing the
Thermodynamics of Crystals and Lattice Systems," Computation and
Lattice Dynamics Seminars, MIT, Cambridge, MA, October 1981.

Toffoli, T. "How Linear Systems Can do Universal Computation: Two
Approaches," Information Mechanics Workshop, British Virgin Islands,
January 18-29, 1982.

Toffoli, T."Cellular Automata and Physics," Information Mechanics
Workshop, British Virgin Islands, January 18-29, 1982,

Vichniac, G. "Simulating Lattice Systems With Cellular Automata,"
Information Mechanics Workshop, British Virgin Islands, January 18-29,
1982.

Vichniac, G. "Reversible Difference Equations and Limit Cycles,"
Information Mechanics Workshop, British Virgin Islands, January 18-29,
1982.

Vichniac, G. "The Copenhagen Interpretation of Quantum Mechanics,"
Information Mechanics Workshop, British Virgin Islands, January 18-29,
1982.

Vichniac, G. "Vers le Lagrangien de I'ordinateur," Physics Colloquium,
University of Montreal, Montreal, Quebec, April 16, 1982.

MESSAGE PASSING SEMANTICS

Academic Staff

C. Hewitt, Group Leader

Research Staff

H. Lieberman

Graduate Students

G. Barber W. Kornfeld
E. Ciccarelli P. Koton
S.P. de Jong

Undergraduate Students
B. Pines D. Theriault

Support Staff

J. Jones

Visiting Scientists

G. Attardi M. Simi

N -

MESSAGE PASSING SEMANTICS

1O TRODUCTION

An important skill in programming is being able to visualize the operation of
procedures, both for constructing programs and debugging them. Tinker is a
programming environment for Lisp that enables the programmer to "see what the
program is doing” while the program is being constructed, by displaying the result of
each step in the program on representative examples. To help the reader visualize
the operation of Tinker itself, an example is presented of how he or she might use
Tinker to construct an alpha-beta tree search program.

2. TINKER

Tinker helps programmers visualize the operation of their programs:
Visualization is a powerful tool in programming. Designing a program requires being
able to visualize what the program should do. Debugging a program requires
localizing bugs to the piece of code responsible, which is often done by visualizing
the steps the program goes through and comparing the actual result to the intended
behavior. One reason people find programming so difficult is that it taxes their ability
to visualize procedures. The enormous amount of detail contained in successive
states that programs go through overwhelms most people’s ability to keep these
details in their heads. Consequently, a programming environment oriented toward
helping a user visualize the operation of programs should be very successful in
making programming easier.

Tinker is an experimental system which helps a user write Lisp programs, and
enables the user to "see what the program is doing" while the program is being
constructed. Tinker lets the programmer put together a program step-by-step, and
shows the resuit of each operation as it is performed. Tinker makes programming
easier by explicitly displaying information about intermediate states of programs
which the programmer would otherwise have to keep in his or her head.

With each piece of code in a program, Tinker associates the value which resulted
from that code, to help the programmer in visualizing the effects of that code. When
each operation in the program is performed, Tinker displays the output, such as text
or graphics, to help the programmer visualize the progress of the program up to that
point.

3. USING EXAMPLES

Tinker uses specific examples to aid visualization of programs:
Programming is the art of teaching procedures to a computer. But conventional
programming differs from the way in which pcople teach cach other procedures in at
ivast one mportant respect: the use of examples. People are much more skuliul at

an

MESSAGE PASSING SEMANTICS

learning procedures f Goteacher prosonts spoecitic oxampices than i tho teasher

presents the abstract algorithm in its most general form. Why is this so?

As each step of the algorithm is presented, the student can follow along, noting the
effect of that particular step on the particular situation presented. The teacher
points out which features of the situation are important and which are accidental,
and the student abstracts the example to learn a procedure for the general case.
When a new situation is presented, the student can check each step against his
understanding of the exampie. f no example is present, the student is forced to
imagine what the effects of each step will be on typical cases. This places a severe
burden c¢n the student's short-term memory. Examples help a student learn a
procedure by giving the student a tool for visualizing the operation of the procedure.
Learning procedures by examples also gives the student the opportunity to start by
learning a very simple version of the procedure, then extending the procedure
incrementally by considering more complex examples and special cases.

Since the power of examples in learning is so compelling, it seems strange that we
should not be able to use examples in teaching a procedure to a computer. Tinker
uses examples to make the programming process more natural, closer to the way in
which people communicate procedures to each other. With Tinker, a program is
written by presenting a specific example, and working out the steps of the procedure
on that example. Tinker shows the result of cach step as it is given, remembers the
sequence of steps, and dgeneralizes a program. More than one example may be
shown, and Tinker has the capability to combine several examples to produce a
procedure containing a conditional.

A word of caution: the reader should be careful not to confuse Tinker with previous
research labeled programming by example. This line of research attempted to infer
a procedure from the procedure’s input-output history, a list of argument-value pairs.
The programmer would present example inputs and desired results, without any
indication of how the result should be obtained from the input. For instance, the
programmer would tell the system that (REVERSE NIL) is NiL and (REVERSE '(A B
C)) should result in (C B A), and the system shculd synthesize the usual recursive
definition of REVERSE in terms of CONS. This approach met with some limited
success for simple examples, but quickily becomes intractable for larger examples.
Imagine showing a beginner the initial position for chess and checkmate positions,
and expecting the beginner to learn chess strategy!

One problem with creating programs from input-output histories is that any given
example is generalizable in a potentially infinite number of ways. The system must
have some criteria for choosing which generalization to make. Any particular criteria
tend to be applicable only in a limited domain, since people might want to take the
same example and generalize it in ditterent ways.

MESSAGE PASSING SEMANTICS

Tiskei's appraach hopes to retaln the natuialress of pic sonting proceduras in
terms of examples, while using explicit knowledge about the procedure supplied by
the programmer to make example-based programming feasible for realistic
problems. Often, it is easier for the programmer to begin by working out steps of the
procedure, even if he is not sure exactly what steps are necessary, than by
specifying the exact form of the answer. The precise appearance of the answer
often emerges only after the procedure has been observed in typical situations.
Tinker’s value lies in showing the programmer the results of all the intermediate
steps on examples, making it much easier to detect bugs and understand the
program’s performance.

4. PROGRAMMING WITH TINKER

Tinker lets you write programs and debug them simultaneously: "Seeing
what the program is doing" is especially important for debugging. Sometimes, of
course, a program is wrong because the programmer has chosen an algorithm that
is completely wrong, and the programmer must change some misconceptions and
totally rewrite the program. But more often, the programmer’s conception of the
program is for the most part correct, but some part of the program doesn’t
implement what the programmer had in mind.

Finding a bug in a program is often a task of localization -- trying to find a specific
part of the program which is malfunctioning and is responsible for the whole
program’s misbehavior. Localization of bugs is a matter of examining successive
states the program goes through, and deciding at each point whether the state of the
program conforms to the programmer’s expectations. When a state that doesn’t
meet expectations is encountered, the operation which produced that state can be
held responsible for the bug. Most debugging tools (such as tracing and
breakpoints) are oriented towards showing the user intermediate states of the
program between the start of the program, and its output.

Of course. preventing the introduction of bugs inio a program is to be preferred to
removing bugs once they have been introduced into a program. Tinker takes as
inspiration the debugging technigue of observing intermediate states of a program,
and applies this technigue to program construction. As a program is constructed
with Tinker. the user can confirm that each step satisfies expectations. If an
unwanted result is produced, the offending operation can be retracted immediately,
before its effects propagate to other parts of the program. This avoids burying the
erroneous operation beneath many other, possibly unrelated operations, only to
have to fish it out again when some larger program of which it is a part misbehaves.

Conventional programming separates writing a program and debugging a program
into two distinct activities. Since a long time passes between the time an operation is

84

—_——

" SRS |

s MESSAGE PASSING SEMANTICS
S
written into a program and the time the programmer discovers that the operation is
the cause of a bug, it is easy to torget exactly why the operation was put there and
the relationship of the operation to the rest of the program. iInstead, Tinker
interleaves the debugging process with the program writing process, making the
introduction of bugs into programs much less likely.

5. AN ANALOGY

To illustrate the importance of displaying intermediate states in visualizing
procedures, here is an analogy drawn from chess. Below are two representations of

a chess game.

L7/ 4 W an
227 Ri2URR
W, 0, 0

\

. A

White Black ,/;// 3 /é%// ,,//////7 /47 .
1 P-04 P-04 , 525 U Y
2 P-QB4 PXP "\'T/c A

3 N-QB3 N-0QB3 %, 2 / /

Figure 7-1

When a chess game is represented using a chessboard, it is easy to keep track of
what's going cn in the game. The chess player looks at the current state of the
board, and uses the positions of the pieces to decide what the next move should be.
The player can use the current board position to think about the consequences of
each of the alternatives for the next move to be made.

When a chess game is represented only as a list of moves, it becomes so difficult to
keep track of what's happening in the game that only a few, exceptional blindfold
chess players are capable of playing in this fashion. The list of moves contains just
as much information as the chessboard, yet since the intermediate states are not
explicitly represented, the player must try to imagine what the board looks like after a
series of moves, a staggering task for any but the most expert.

85

. . . &, . . .M

MESSAGE PASSING SEMANTICS

Convontionol progiaaiining is a Wil Ehe playving blindiold chess. When the
programmer "makes a move" (writes the next function call or program statement),
he must imagine what the result of that move will be on the objects he is
manipulating. He must keep the current state in his head, and use the current state
to decide what the next operation in the program should be. A common source of
bugs is to forget or to misremember some important aspect of the current state of
the program, and specify some erroncous operation.

Tinker is like a "programmer’s chessboard"” in that after each programming
operation is specified, the result is shown immediately. Tinker's immediate,
yraphical feedback makes it much easier to decide what the next operation in the
program should be, since it relies to a much lesser extent on the programmer’s short
term memory. Programming with Tinker should be easier than traditional
programming in the same way that playing chess using a chessboard is easier than
playing blindfold chess.

6. GRAPHICS

Examples are especially important for graphics programs: Although Tinker
is independent of the subject matter of the program, the advantages of Tinker’s
programming methodology come through especially clearly in graphics
programming. In graphics, the examples are pictures. The ability to “see what a
program is doing" is essential for graphics programming. It is important to be able to
watch pictures appear on the screen as the program is running to assess its
performance. The programmer must be able to associate pieces of code with parts
of the picture.

While specifications for programs which manipulate text can be given as symbolic
descriptions, specifications for graphics programs are pictures. The only way to tell
if a graphics program works correctly is to look at the pictures it produces and see if
they look right. Thus, formal methods can never completely supplant testing for
determining the correctness of graphics programs. Tinker provides an environment
for constructing graphics programs where pictures appear on the screen
immediately as each graphic operation is introduced into the program. The
programmer can immediately see whether the operation specified produced the
intended picture.

Tinker uses graphics to improve the quality of the programming
environment: A goal of Tinker has been to explore how new personal computers
with high resolution graphics displays can be used to radically improve the
programming process. Most programming environments commonly in use today
were originally designed in the days when computers were limited to character-only
disptays or printing terminals. With high-resolution graphics displays, the screen

20

MESSAGE PASSING SEMANTICS

Sah be divided into windows. rectangular Greas of the cercen vihere text and
graphics can be displayed independently. Personal computers can have pointing
devices like the mouse. Our programming environments need to be restructured to
take advantage of these new facilities.

In Tinker, programming happens as much as possible by selecting from a menu,
where the system display a list of possible choices, and the user picks a choice by
pointing, instead of by typing commands. This is better, especially for beginners,
since the user doesn’t have to remember what choices are available, or remember
the syntax of commands, or be proficient at typing.

An example problem: Alpha-beta tree search: The best way to visualize the
ideas behind Tinker is to watch an example of Tinker in action. Within the limitations
of the paper-and-print medium, we will now try to give the reader some feel for what
it is like to use Tinker for everyday programming. The problem we have chosen to
present is an alpha-beta tree search aigorithm, This is a
classic problem in Artificial Intelligence, first arising in chess-playing programs. It
has wide application in many problems involving two-person games, planning of
actions, and problems requiring search through a space of possible situations. The
program must decide what actions to take by searching a tree of possible situations.
Each node of the tree represents a situation, each arc an action that can be taken to
transform one situation into another. In chess, the situations are board positions,
the actions chess moves.

The search proceeds by imagining the effect of each possible move and exploring
its conseqt:ences. When planning an action, you say "Suppose | make this move...",
then turn around and take the point of view of your opponent, imagining "Suppose
he then makes this response to my move...", and planning your next response
accordingly.

Situations at each node are described by a static evaluation, a numerical
assessment of the relative advantage for the player at that node. Situations better
for you are given higher numbers, those better for your opponent lower numbers.
You always choose your best move and your opponent is likely to choose the action
best for himself. The value of the top of the tree is determined by the maximum of
the values of the nodes immediately below it. The value of the each node at the next
level down is determined by maximizing the values of the nodes immediately below it,
and so on, alternating minimizing and maximizing steps at each ievel. This is called
the minimax search procedure.

Here is a picture of a tree of possible situations, with the leaf nodes of the tree
marked with numbers indicating their static evaluations, and nonterminal nodes
marked with their minimax vaiues. We show a downward pointing arrow at a node to
indicate taking the minimum or the vaiues of branches below that node. and an
upward pointing arrow to indicate taking the maximum of valucs below the node.

a7

MESSAGE PASSING SEMANTICS

_.A

F
13
q
43 41]
q
4 3 1 2 9
iGraphics
Figure 7-2

In certain situations, like the one illustrated above, it’s not always necessary to
explore the entire tree. The next picture shows the same tree, but captures the
process of exploring the tree at a time before every node has been explored.

First we explore the left side, yielding 3, the minimum of 4 and 3. Now, imagine that ‘ 1
we've explored the left side of the right branch, yielding 1, but have not yet explored |
the rightmost branch.

We can immediately conclude the value of the right side of the tree must be "at
most 1", since if the number is any higher than 1, 1 would be the minimum of the two.
Since the maximum of 3 and "some number which is at most 1" is 3, there's no need
to explore the rightmost branch. Thus we can deduce the value of the entire tre.
without knowledge of every terminal node. This is called the alpha-beta heuristic,
and it can save a lot of work in tree search problems. <

By contrast, on the foliowing tree, the alpha-beta heuristic is not applicable.

838 |

MESSAGE PASSING SEMANTICS

t3

Graphics

Figure 7-3

4
foraphics

Figure 7-4

Since the value 7 of the third branch exceeds the value of the left side of the tree,

89

P ML

MESSAGE PASSING SEMANTICS

3, we are forced to explore the fourth branch. Indeed, the value of the fourth branch,
6 turns out to be the value for the entire tree in this case.

To illustrate the essential ideas clearly, we will restrict ourselves to considering a
very simple variety of the alpha-beta search technique. Extensions to more complex
versions, such as pruning other branches of the tree, dealing with non-binary trees,
etc., can be readily imagined.

We are now going to use Tinker to develop a program to search trees using the
alpha-beta heuristic. Just as the two example trees are presented to explain the
alpha-beta algorithm to the reader, we will use the same two example trees to show
Tinker how to perform the alpha-beta search procedure.

7. A GUIDED TOUR OF THE TINKER SCREEN

Before embarking on our project of defining the alpha-beta search procedure, we
will take a few moments to explain the mechanics of writing programs with Tinker.
This picture shows a typical Tinker display.

Each Tinker operation begins by choosing a menu operation from the £dit Menu in
the upper left hand corner. In this example, we move the mouse cursor to the
operation TYPEIN and EVAL, and press a button on the mouse. The TYPEIN and
EVAL operation lets us enter an ordinary piece of Lisp code and have it evaluated.

Tinker then prompts us in the Typing Window, at the bottom of the screen, asking
Type something to evaluate: and we reply by typing in some Lisp code. Whenever
Tinker needs to ask the user a question or print some information, it does so in this
window. and the user types all input to Tinker here. The code in this example calls
an already-defined function named DISPLAY-TREE-AND-LABEL which draws trees
on the screen, telling it to draw a tree stored in the variable named CUTOFF.

The title line of the Snapshot Window in the middle of the screen reads: Defining
(HISTORY). The code which appears in the snapshot window is always considered
to be code which defines the body of some Lisp function. In this case, there's a top
level function named HISTORY.

As a result of the TYPEIN and EVAL operation, the text Result: TREE-DISPLAYED,
Code: (DISPLAY-TREE-AND-LABEL CUTOFF) appears in the snapshot window.
This displays the code entered, along with the value, TREE-DISPLAYED, produced
by that piece of code. Whenever some code is evaluated to produce a value, Tinker
always remembers and displays the code that was responsible for producing that
value. When defining a new function, the Result: ... part of a !ine in the snapshot
window represents the result of performing the function's steps on some particular

MESSAGE PASSING SEMANTICS

Tinker EDIT menu

NEW EXAMPLE for function ORY))
Give something a NAME I
Fill in an ARGUMENT
EVALUATE something
Make a COMNDITIONAL
Edit TEXT
Edit DEFINITION
Step BACK
UNFOLD something
COPY something
DELETE something
UNDELETE thing deleted
URDO the last command

[TYPEIN s0d EVAL { DEFUN HISTORY ())
TYPEIN, But EvaL (DEFINE-EXANPLES (DUOTE HIST §

RETURN 2 wvalue

LEAVE Tinker INALS (LLCP Abbrev Electric Shift

Graphics

— W

9 3 1 2

Detining (HISTORY):

Result: TREE-DISPLAYED, Code: (DISPLAY-TREE-AND-LABEL CUTOFF)

. ow
2
-
[and

Type something to evaluate:

(DISPLAY-TREE-AND-LABEL CUTOFF)

05 (LTSP Fbbrey Electric Choft-iccrs Hristory

GG LAY

Figure 7-5

D-A143 459

UNCLASSIFIED

LABORATORY FOR COM’UTER SCIENCE 'PROGRESS REPORT 19 1
JULY 1961-30 J UlE 19.. lﬁSSﬁCHUSETTS INST OF TECH
CAMBRIDGE LAB F COIIPUTER SCIENCE. . _ M L DERTOUZ0S
01 MAY 84 H!TILCS-PR-19 NO9914-75-C-0661 F/G 9/2

e

b fjzs
32 |
w22 ’

o

ITFFEER

I

- P

T
s = o -
22 s s ‘

A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MESSAGE PASSING SEMANTICS

example, while the Code: ... part represents the general case for the function. In this
way, Tinker can display to the user both particular examples and the code for the
general case simultaneously. The commands in Tinker's command menu are mostly
editing commands which edit the objects that appear in the snapshot window.

As a result of executing the code (DISPLAY-TREE-AND-LABEL CUTOFF), in the
Graphics Window at the top right hand corner of the screen. we see a picture of the
tree. The graphics window is used to display drawings which illustrate the behavior
of the program.

The Function Detinition Window at the top center of the screen shows the textual
definition of Lisp functions generated by Tinker. Although Tinker has its own
representation for programs, it produces ordinary Lisp code, which can be compiled
for efficiency.

Expressions can be constructed incrementally after viewing their parts:
Once Tinker evaluates some code. displaying the code and its result in the snapshot
window, the programmer may use both the code and the result as part of some
larger expression. The programmer can enter another function call, and specify that
something displayed in the snapshot window is to be used as an argument to that
function. When the function call is finally evaluated, the specific value of the
argument is used to compute the value of the function, and the code which
produced the argument becomes part of the expression for the function call. In this
way, the programmer can examine the values of small pieces of code to make sure
they are correct, before making them part of some larger expression.

Here's a simple example of this. We're going to display another tree on the screen,
but this time we'd like to look at the printed representation of the tree before
constructing the expression to display it.

We use the TYPEIN and EVAL operation, and type in the variable named
EXPLORE-FULLY which holds the tree. The snapshot window looks like this:

Result: #,(A TREE ((4 3) (7 6))), Code: EXPLORE-FULLY

This shows us the printed representation of the value of the variable EXPLORE-
FULLY In this example, trees are defined to print out the numbers which label the
leat nodes of the tree. The tree EXPLORE-FULLY has a right branch whose leaves
are 4 and 3, a left branch with leaves 7 and 6.

92

M s e e - >

MESSAGE PASSING SEMANTICS

Next, we choose the operation TYPEIN, but DON'T EVAL. which puts up a piece of
unevaluated code in the snapshot window.

Defining (HISTORY):
Result: #,(A TREE ((4 3) (7 6))), Code: EXPLORE-FULLY

Code: (DISPLAY-TREE-AND-LABEL)

The line in the snapshot window for the call to the function DISPLAY-TREE-AND-
LABEL only has a Code: part, since we haven't evaluated it yet. Now, we choose the
operation Fill in an ARGUMENT. Since DISPLAY-TREE-AND-LABEL is the only
tunction on the screen that needs an argument, and the tree is the only thing that
could possibly be the argument, Tinker immediately constructs the function call.
Tinker has a policy of automatically selecting the "obvious" choice, when only one
object on the screen is plausible to choose as an argument to the current menu

operation.

Defining (HISTORY):
Code: (DISPLAY-TREE-AND-LABEL (A TREE ((4 3) (7 6))))

Evaluating this piece of code with the operation EVALUATE something displays the
tree on the screen in the graphics window, and changes the snapshot window to:

Defining (HISTORY):
Result: TREE-DISPLAYED, Code: (DISPLAY-TREE-AND-LABEL

EXPLORE-FULLY)

Notice that the variable EXPLORE-FULLY which produced the tree becomes part
of the code for the function call, rather than just the tree itself (as a constant).
Whenever a value is used in further computation, Tinker carries along the code
which produced that value. This shows how Tinker can build up complicated
expressions one step at a time, while displaying to the programmer the result of each

step.

MESSAGE PASSING SEMANTICS

We begin with a top-down implementation plan for alpha-beta search:

When designing an algorithm. a programmer usually starts with very vague ideas
about the problem, and gradually works them out to be more and more specific. In
the early stages of working on a problem. it is common to have in mind some
examples of how the finished program should behave. without having very definite
ideas of what the code should look like. It is also typical to have a rough
implementation plan. which maps out a strategy for implementing the task, again
without committing the programmer to specific details of the code. An
implementation plan might involve proposing a few major subroutines and data
structures and the communication between them. Decisions made in the
implementation plan are often revised in the process of working on the
implementation.

In conventional programming, debugging and testing on the machine cannot
proceed until a proposed solution becomes specific enough to actually start writing
complete pieces of code. Tinker aims to involve the machine at an earlier stage.
The programmer should be able to begin working with Tinker as soon as he or she
knows some good examples for the problem, and has in mind an implementation
plan which is capable of performing the procedure on the examples.

We begin working on the alpha-beta problem with a rough implementation plan.
Our plan should include provision for viewing graphically the progress of the alpha-
beta search as it explores the tree. Since the program is to be written by presenting
specific example trees, we will be able to see dynamically what the program is doing
by watching the search procedure move across the nodes of the tree.

We can do this by first displaying the whole tree by drawing only its arcs on the
screen. As the search examines each node and decides on a value for that node, we
will have our program label the node with its value. This will enable us to see what
nodes are being looked at by the program, and in what order the nodes are
examined.

Like in most programming situations, we start with a set of already-defined
procedures and data structures, and these facilities are available for constructing
new programs. We will assume that certain support routines and data have been
defined before the start of our session, and we will not present the details of these, to
avoid distracting us from the alpha-beta algorithm itself.

First, we will assume that the data structure used to represent trees has already
been defined. A tree is either a LEAF node. or it has LEFT and RIGHT branches,
each of which is a tree. The functions LEFT-SIDE and RIGHT-SIDE extract the two
branches from the tree, and the predicate LEAF? asks whether a tree is a leaf node.

94

M e e e -

MESSAGE PASSING SEMANTICS

Trees may have LABELs at their nodes. We will assume that a set of example trees
has been prepared for this session, including the trees CUTOFF and EXPLORE-

FULLY.

We will also assume primitive graphics procedures for displaying trees on the
screen. The procedure DISPLAY-TREE draws the arcs of the tree on the screen,
and DISPLAY-DOTTED-TREE draws them with dotted lines. LEFT-SIDE and RIGHT-
SIDE of a tree display the arcs as they traverse them. LABEL-NODE displays the
label at a particular node, and DISPLAY-TREE-AND-LABEL displays a tree and
labels all its nodes. We could define the tree data structure and display tunctions
using Tinker if we wished.

We will adopt a top-down strategy for implementing the alpha-beta search. We will
start with a top-level function which we will call ALPHA-BETA. which will initialize the
display. This will then call a "workhorse" function AB which will compute the alpha-
beta value of each node. recursively walking down the tree until leaf nodes are
encountered. We will separate the work of AB into two subroutines, AB-LEFT and
AB-RIGHT which compute the alpha-beta of the left and right branches of a tree,
respectively. The crucial subroutine AB-PRUNE will make the decision whether or
not the alpha-beta heuristic is applicable, allowing us to "prune" some branches of
the tree.

The process of detining the alpha-beta search with Tinker will require three main
examples. We will start by presenting the tree CUTOFF which illustrates the
application of the alpha-beta heuristic. This tree will serve as the first example for
the alpha-beta function. The search will be defined recursively in terms of a walk
down the tree data structure until a leaf node is reached. Computing the alpha-beta
value of a leaf node will be the second example. showing how the recursive
procedure bottoms out. Next, the tree named EXPLORE-FULLY will provide a
contrasting example, demonstrating that the alpha-beta heuristic is not applicable in
all cases.

The first example shows how to apply the alpha-beta heuristic: We are
now ready to begin writing the code for the alpha-beta search. The way we start
defining a new function in Tinker is to present an example function call, showing a
typical case in which we will use the function. We work out the steps corresponding

to the procedure on the test case.

We construct a call to the ALPHA-BETA function, just as if we had already defined
the function. As an example tree, we supply a tree named CUTOFF, the tree we
originally used above to illustrate the alpha-beta heuristic. We use the TYPEIN, but
DON'T EVAL operation.

85

aet'A

S .l

IR

MESSAGE PASSING SEMANTICS

Defining (HISTORY):
Code: (ALPHA-BETA CUTOFF)

Now, instead of evaluating that form, we instead tell Tinker that this is a NEW
EXAMPLE for tunction, for the function ALPHA-BETA. Tinker responds by changing
the snapshot window to tell us we're defining an example for ALPHA-BETA, and
creates a variable to name the argument to ALPHA-BETA. We name the argument

TREE using the Give something a NAME operation.

LP 1 4
Result: #,(A TREE ((4 3) (1 2))). Code: TREE.

The first action taken by the program should be to initialize the display, drawing the
arcs of the tree, but without labeling any of its nodes. We use the function DISPLAY-
DOTTED-TREE to display the shape of the tree on the screen, using dotted lines
which will be filled in incrementally as the procedure traverses the tree.

£ PHA-BETA R ;
Result: #,(A TREE ((4 3) (1 2))). Code: TREE
Result: TREE-DISPLAYED, Code: (DISPLAY-DOTTED-TREE

TREE)

In the graphics window, a picture of the example tree appears.

Now, we pass along the tree to the workhorse function AB.

PHA-
Result: #,(A TREE ((4 3) (1 2))). Code: TREE.
Result: TREE-DISPLAYED, Code: (DISPLAY-DOTTED-TREE
TREE)
Code: (AB (A TREE ((4 3) (1 2))))

We choose the command NEW EXAMPLE for function, which recurses, pushing

96

il

e e -
MESSAGE PASSING SEMANTICS -

A
[}
/N
’ \
4 \
’ AY
4 \
/ \
4 \
4 \
7 \
’ \
[}) -
[4) (Al
t [}
[] [}
t \ 7
!) !)
’) ’)
!)] \
f \ ! \
] \ U \
! \ [} \
’) ? .
Eﬂoo

Figure 7-6
from defining the function ALPHA-BETA to defining the function AB. After we
conclude the definition of AB, Tinker will return us to defining ALPHA-BETA.

1

T ;
Result: #,(A TREE ((4 3) (1 2))), Code: TREE
In traditional, bottom-up

Tinker encourages a kind of top-down debugging.
debugging, subroutines must be defined before their callers can be tested. Tinker
allows programming a top-level routine first, then when the need for a subroutine is

felt, introducing an example for the subroutine.
Since we intend AB to recurse down the branches of the tree, the first action

should be to extract the left branch from the tree.

A
Result: #,(A TREE ((4 3) (1 2))), Code: TREE
Result: #,(A TREE (4 3)), Code: (LEFT-SIDE TREE)

We introduce a new AB-LEFT function, and provide it with the left branch of the

tree as an example. We name this branch LEFT-TREE.
97

|

MESSAGE PASSING SEMANTICS
Defining (AB-LEFT (A TREE (4 3))):

Result: #,(A TREE (4 3)), Code: LEFT-TREE

The plan for the AB-LEFT function is to call AB recursively on each of its branches
in turn, then compute the minimum value of the branches, and use that value to label
the LEFT-TREE. This performs a "min" step of the "minimax” search.

First, we extract the LEFT-SIDE of the tree, since we have to recurse down two
levels of the tree at a time.

£ini -LEFT REE :
Result: #,(A TREE (4 3)), Code: LEFT-TREE
Result: #,(A LEAF (VALUE 4)), Code: (LEFT-SIDE
LEFT-TREE)

This yields a leaf node in our example. We recursively call AB on the left branch.

13. THE ALPHA-BETA FUNCTION BOTTOMS OUT WHENIT
ENCOUNTERS A LEAF NODE

. -LEF :
Result: #,(A TREE (4 3)), Code: LEFT-TREE
Code: (AB (A LEAF (VALUE 4)))

Taking the alpha-beta value of a leaf node is a fundamentally different example
from computing the alpha-beta of a tree, since we want the ALPHA-BETA function to
be recursive in the case of a tree, but to stop wher: it encounters a leaf node. So,
instead of evaluating the call to AB, we tell Tinker this is a NEW EXAMPLE for the
function AB.

What action should AB take when it reaches a terminal node of the tree? The AB
function should just return the value associated with that node as the alpha-beta
value of the node. In addition, it should display the node on the screen, using the
predefined function named LABEL-NODE.

98

e
E ————————— T e S T e

e

MESSAGE PASSING SEMANTICS

i A :
Result: #,(A LEAF (VALUE 4)), Code: TREE
Result: 4, Code: (LABEL-NODE TREE)

in the graphics window, the value 4 appears at the node. This demonstrates to
Tinker that whenever the search procedure reaches a leaf node, it should label that
node with its value, so that we can see what the search is doing. As the search
progresses down the branches of the tree, it will replace the dotted lines for arcs of
the tree with solid lines.

Figure 7-7

This is all we want to do to complete the leaf node example for AB, so we choose
RETURN a value, returning the value 4. Tinker writes the Lisp code for AB and
displays it in the Function Definition window.

(DEFUN AB (TREE)
(LABEL-NODE TREE))

That definition may look silly, but it is correct for the examples we've shown it so

99

L

MESSAGE PASSING SEMANTICS

far. Tinker develops functions by a series of partial definitions. As each example for
a particular function is completed. Tinker produces a definition which is sufficient to
make the procedure work as specified on the examples presented so far. When
additional examples for an already-existing function are presented, Tinker can
integrate the procedure for the old examples with the procedure for the new one.
When we complete the example for AB of a full-blown tree, the code for AB will
become more sophisticated. Tinker has the ability to improve the definitions of
functions by adding more examples incrementally.

The search completes the left branch and proceeds to the right side:

Tinker now knows how to perform the AB of a leaf node, so we can apply the
definition to the other leaf node on the left branch of the tree. This displays the value
3 on that leaf node.

Defining (AB-LEFT (A TREE (4 3))):

Result: #,(A TREE (4 3)), Code: LEFT-TREE
Result: 4, Code: (AB (LEFT-SIDE LEFT-TREE))
Result: 3, Code: (AB (RIGHT-SIDE LEFT-TREE))

Figure 7-8

100

The next step is to complete AB-LEFT by using the aipha-beta values of the leaves
to compute an alpha-beta value for the left side of the tree. The left branch of the
tree should be labeled 3 since it should carry the minimum of the two values 4 and 3

on its branches.

v m

MESSAGE PASSING SEMANTICS

Defining (AB-LEFT (A TREE (4 3))):

Result: #,(A TREE (4 3)), Code: LEFT-TREE
Result: 3, Code: (MIN (AB (LEFT-SIDE LEFT-TREE)) (AB

(RIGHT-SIDE LEFT-TREE)))

finin B-LEFT (A Y

Result: #,(A TREE (4 3)), Code:
Result: 3, Code: (LABEL-NODE LEFT-TREE "|" (MIN (AB **)

(RB **)))

LEFT-TREE

(The double stars "**" indicate places _where Tinker elided some details of the
code, since the entire code was too large to fit on one line of the screen all at once.)

Graphics

3
13 L
[)
[}
[}
[})
L \
[)
[\
[\
¢]
[4 .
4 3
.
Figure 7-9

Seeing that the left side of the tree has been fully labeled, we can be assured that

101

-_—i . .

.A‘

|

MESSAGE PASSING SEMANTICS

the definition for AB-LEFT has been completed. Tinker's ability to provide visual
feedback incrementally during the construction of a program is helpful in "keeping
our place” in the developing program. After choosing RETURN a value, Tinker
displays the code for AB-LEFT in the function definition window.

(DEFUN AB-LEFT (LEFT-TREE)
(LABEL-NODE LEFT-TREE

"l"
(MIN (AB (LEFT-SIDE LEFT-TREE))
(AB (RIGHT-SIDE LEFT-TREE)))))

After having explored the left half of the tree, the next task is to define the iction
AB-RIGHT to explore the right half. If we had been doing a standard ...max
search, the same subroutine would suffice for both sides of the tree. Thest :hwe
are going to define is asymmetrical. using the knowledge gleaned during st v .ng
the left side of the tree to potentially save work exploring the right side.

The AB-RIGHT function needs to know the value of the left side of the tree, which
we'll name LEFT-EXPLORED, as well as the right side of the tree, named RIGHT-
TREE. We present a NEW EXAMPLE for AB-RIGHT.

finin B-RIGH A TREE
Result: 3, Code: LEFT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE

The third branch, the left side of RIGHT-TREE is explored unconditionally
whenever we explore a RIGHT-TREE. This again makes use of the definition of AB
on a leaf node that we completed earlier.

-RIGHT 7 (A TREE
Result: 3, Code: LEFT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: 1, Code: (AB (LEFT-SIDE RIGHT-TREE))

And now the third of four leaf nodes is marked with its value on the screen. We will

102

N |

MESSAGE PASSING SEMANTICS

i,

e

ny

43 \
L]
)
]
)
\
]
)
1
)
‘
4 3 |
\Graphics
Figure 7-10

introduce the subroutine AB-PRUNE which "prunes" branches of the tree which can
be ignored during the search procedure. AB-PRUNE needs the value of the third
branch, which we name RIGHT-EXPLORED.

fining (AB-PRUNE 3 1 (A TREE
Result: 3, Code: LEFT-EXPLORED
Result: 1, Code: RIGHT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE

Now, in this case, without exploring the remaining unexplored branch, we can
immediately decide that RIGHT-TREE ought to be "at most 1", so we’ll put a label on
the tree to indicate this.

Defining (AB-PRUNE 3 1 (A TREE (1 2))):
Result: 3, Code: LEFT-EXPLORED

Result: 1, Code: RIGHT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: 1, Code: (LABEL~NODE RIGHT-TREE "<"
RIGHT-EXPLORED)

103

8

#

w—m -

MESSAGE PASSING SEMANTICS

P
-
l‘—’
-
-

-
PR

4 3 1
Eraphics
_

Figure 7-11

At the top level of the tree. the maximum of 3 and "at most 1" is 3 regardless of the
exact value of the unexplored branch, so we can return 3 as the answer. Completing
this yields definitions for AB-PRUNE and AB-RIGHT.

Defining (AB-PRUNE 3 1 (A TREE (1 2))):

Result: 3, Code: LEFT-EXPLORED

Result: 1, Code: RIGHT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE

Result: 1, Code: (LABEL-NODE RIGHT-TREE "<*
RIGHT-EXPLORED)

Result: 3, Code: LEFT-EXPLORED

(DEFUN AB-PRUNE (LEFT-EXPLORED RIGHT-EXPLORED
RIGHT-TREE)
(LABEL-NODE RIGHT-TREE "<" RIGHT-EXPLORED)
LEFT-EXPLORED)

104

Y Y

PESSUDUSN

&’. MESSAGE PASSING SEMANTICS

B-RIGHT 3 (A TREE (1 2))):
Result: 3, Code: LEFT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: 3, Code: (AB-PRUNE LEFT-EXPLORED (AB **) ...)

(DEFUN AB-RIGHT (LEFT-EXPLORED RIGHT-TREE)
(AB-PRUNE LEFT-EXPLORED
(AB (LEFT-SIDE RIGHT-TREE))
RIGHT-TREE))

Returning to the definition of AB on the whole tree, we use the value returned by
AB-RIGHT to label the top node.

efining (AB (A TREE 2
Result: #,(A TREE ((4 3) (1 2))). Code TREE
Result: 3, Code: (LABEL-NODE TREE "1™ (AB-RIGHT (AB-LEFT

‘.) ‘.))

We have completed the second example for the function AB, showing Tinker how
to take AB of a tree, in addition to AB of a leaf node. When Tinker sees two different
examples for the same function, it compares the code for the two examples. If the
examples differ, Tinker asks us to define a predicate which distinguishes between
the two cases. Tinker displays two snapshot windows, one showing the situation
when we were defining AB on a leaf, one showing the situation defining AB on a tree.
We write code that will appear simultaneously in both windows. The object is to
define code that will yield true in the top window, false in the bottom window. This
assures that our predicate correctly distinguishes between the two cases. This
method of defining conditionals is especially useful in avoiding infinite loop bugs,
caused by a predicate continually going down the same branch all the time.

in this case, to distinguish between a leaf node and a full tree, we write a predicate
which asks the node whether or not it is a leaf.

(In Lisp, NiL represents false, and anything other than NIL represents true, so the
tree in the top snapshot window answered yes to the question, the bottom window
answered no.)

105

MESSAGE PASSING SEMANTICS

i3 St
\
\
\
\
\
)
]
\
\
4 3 i
Grapbhics
e ———
Figure 7-12

Tinker now generates a definition of the AB function containing a conditional.

(DEFUN AB (TREE)
(IF (LEAF? TREE)
(LABEL-NODE TREE)
(LABEL-NODE TREE
ﬂ‘”
(AB-RIGHT (AB-LEFT (LEFT-SIDE TREE))
(RIGHT-SIDE TREE)))))

We could also present further examples for AB, and Tinker would create additional
conditional clauses separating one case from another. For example, we should
probably add to AB another case in which the argument is not any kind of a tree at
all, so we can demonstrate a negative example as well as a positive one. The action
in this case should consist of printing out some sort of error message. This is the
way type checking can be introduced in Tinker.

This completes also the top-level ALPHA-BETA function.

106

MESSAGE PASSING SEMANTICS

Give something a NAME

Fill in an ARGUMENT
EVALUATE something

Make a COMDITIONAL

nker EOIT menu (RB (RI
IN and Al GHT-SIDE LEFT-TREE))))) '3
TY L ut N VAL
NEW EXA'MPLE for function (DEFUN AB-PRUNE (LEFT-EXPLOR !

ED RIGHT-EXPLORED RIGHT-TREE |
)

(LABEL-NODE RIGHT-TREE ° |
$° RIGHY-EXPLORED)
LEFT-EXPLORED)

Edit TEXT - -
Edit DEFIHITION N B REC, (LEFT-EXPLOR Y 43 “4h
Step BACK (AB-PRUNE LEFT-EXPLORED) \
UNFOLD something (AB (LEFT-SIDE RIGHT-TREE)) '
COPY something RIGHT-TREE)) \
DELETE something M
UNDELETE thing deleted '
UNDO the last command .
. LEAVE Tinker 4 3 !
RETURN a value

Graphics

Predicate TRUE for: Hesult: 4, Code: (LABEL-NODE TREE)
Reae-

Result: #,(A LEAF (VALUE d4)), Code: TREE
Result: T, Code: (LEAF? TREE)

Predicate FALSE for: Result: 3, Code: (LABEL-NODE TREE ** ,,,)

(%HBEL—HODE TREC

3)?

Type something to evaluate:

(LERAF? TREE)

!

EARCS TUISP AEb-ev tiectric Shif

Result: #,(A TREE ((4 3) (1 2))), Code: TREE
Result: NIL, Code: (LEAF? TREE)

~T° (AB-RIGHT (AB-LEFT (LEFV-GIDE TREL)) (RIGHT-SIDE TREE!

t-fock) History $

————
:

PN

1 PYER PRI N & - R

Figure 7-13

107

Ty ——y

MESSAGE PASSING SEMANTICS

(DEFUN ALPHA-BETA (TREE)
(DISPLAY-DOTTED-TREE TREE)
(AB TREE))

Another example shows the alpha-beta heuristic doesn’'t always work:

The program can now perform alpha-beta searches of trees -- but only for
examples where we can apply the alpha-beta heuristic. At this point, Tinker has
over-generalized the procedure to conclude that the alpha-beta heuristic works for
all trees. This is not always the case for our desired search procedure.

To correct this, we can show Tinker another example. this one representing the
class of trees for which it is necessary to explore the whole tree to compute an
alpha-beta value. The tree EXPLORE-FULLY has that property.

16,
43 46
4 t] y 6
Mm
Figure 7-14

The only subroutine involved in this change is AB-PRUNE, since AB-PRUNE alone
is responsible for exploring the rightmost branch of the tree. As you will recall, AB-
PRUNE takes three arguments, the alpha-beta value for the left side of the tree, the
value of the third branch and the as yet unexplored rightmost branch of the tree. In

108

MESSAGE PASSING SEMANTICS

the case of the tree EXPLORE-FULLY, LEFT-EXPLORED is 3. RIGHT-EXPLORED is
7, and the RIGHT-TREE has leaves 7 and 6.

Defining (AB-PRUNE 3 7 (A TREE (7 6))):
Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-~EXPLORED

Result: #,(A TREE (7 6)). Code: RIGHT-TREE

We must explore the rightmost branch of the tree, and label the right tree with the
minimum of the two leaves on the right side of the tree.

Defining (AB-PRUNE 3 7 (A TREE (7 6))):
Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED

Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: 6, Code: (AB (RIGHT-SIDE RIGHT-TREE))

fining (AB-PRUNE 3 7 (A TREE
Result: 3, Code: LEFT-EXPLORED
Result: 7, Code: RIGHT-EXPLORED
Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: 6, Code: (MIN RIGHT-EXPLORED (AB (RIGHT-SIDE
RIGHT-TREE)))

fin AB-PRUNE 3 7 (A TREE :
Result: 3, Code: LEFT-EXPLORED
Result: 7, Code: RIGHT-EXPLORED
Result:#,(A TREE (7 6)), Code: RIGHT-TREE
Result: 6, Code: (LABEL-NODE
RIGHT-TREE "|" (MIN RIGHT-EXPLORED (AB **)))

The value for the top of the tree is the maximum of the values for the two branches.
Since the two branches of the trees have values 3 and 6, the maximum is 6.

109

I RARRRRN i

YR

M 20

MESSAGE PASSING SEMANTICS

Defining (AB-PRU A TR
Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED

Result: #,(A TREE (7 6)). Code: RIGHT-TREE

Result: 6, Code: (MAX LEFT-EXPLORED (LABEL-NODE
RIGHT-TREE ...))

This comprises a second example for the function AB-PRUNE. Tinker again
creates two snapshot windows, asking us to distinguish between the two cases, one
in which the alpha-beta heuristic is used, one where the tree is explored in its
entirety.

The predicate which distinguishes between the two cases tests whether or not the
alpha-beta value for the left side of the tree, LEFT-EXPLORED, exceeds the third of
the four branches, RIGHT-EXPLORED. In both cases. the left branch evaluated to 3,
but in the first case, RIGHT-EXPLORED was 1, which is smaller than 3, but in the
second case it was 7, which is greater.

T . . . R -
[X] E -
Result: 3, Code: LEFT-EXPLORED
Result: 1, Code: RIGHT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: T, Code: (> LEFT-EXPLORED RIGHT-EXPLORED)

i
LEFT-EXPLORED **)
Result: 3, Code: LEFT-EXPLORED
Result: 7, Code: RIGHT-EXPLORED
Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: NIL, Code: (> LEFT-EXPLORED RIGHT-EXPLORED)

This yields the following code for AB-PRUNE:

110

wof'a

MESSAGE PASSING SEMANTICS

(DEFUN AB-PRUNE (LEFT-EXPLORED RIGHT-EXPLORED

RIGHT-TREE)
(IF (> LEFT-EXPLORED RIGHT-EXPLORED)

(THEN (LABEL-NODE RIGHT-TREE "<" RIGHT-EXPLORED)
LEFT-EXPLORED) ‘
(MAX LEFT-EXPLORED
(LABEL-NODE RIGHT-TREE

!
(MIN RIGHT-EXPLORED (AB

(RIGHT-SIDE RIGHT-TREE)))))))>

Let’s try alpha-beta search on a large tree: Our alpha-beta search procedure
is now complete. To illustrate its behavior, we can try it out on a large and compiex
example which will exercise all of the cases the program knows about. We will try it
out on the following tree, called BIG-TREE. Here are successive stages of the alpha-

beta program at work.

- - -

Figure 7-15

In this example, you can see two distinct alpha-beta cutotfs. The first two nodes
looked at were 8 and 7, so their common ancestor is labeled with the minimum, 7.
Since 5 for the next leaf node is less than 7, the program did not need to explore the

next node.
1M1

MESSAGE PASSING SEMANTICS

875 6898
&m ‘

Figure 7-16

2e--""

- -
- - -

Figure 7-17

At the very top of the tree, 7 is computed for the value of the left side of the tree.
The left half of the right side yields 2 which is less than 7. This time the program
could cut oft an entire section of the tree, rather than just the single-node cutoffs we
saw previously. This saved almost a quarter of the work involved in examining the
entire tree!

112

MESSAGE PASSING SEMANTICS

875 €689832S51

[Graphics

Figure 7-18

We hope this example has successfully illustrated how Tinker uses an example-
based programming methodology, incremental program construction, and
immediate graphical feedback to make programming easier and more reliable.

113

[N]

MESSAGE PASSING SEMANTICS

X
AL

Give something a NAME
Fill in an ARGUMENT
EVALUATE something
Make a CONDITIONAL

Edit TEXT
Edit DEFINITION
Step BACK
UNFOLD something
COPY something
DELETE something
UNDELETE thing celeted
UNDO the last commanc
LEAVE Tinker
RETUR!. = value

un HISTORY ())

Hu;w EXAMPLE for function|(DEFUM ALPHA-BETR (TREE)

(BISPLAY-DOVTED-TREE
TREE)
(RB TREE))

(DEFUN RB-PRUNE (LE. T-EXPLLR |
ED RIGHT~EXPLORED RIGHY-TREE |

(IF (> LEFT-EXPLORED
RIGHT-EXPLORED ¢

-~

(THEN

(LABEL-NODE RICH !
T-TREE RIGHI-EXPLORED)

LEFT-"XPLORED,

IRRX _FT-EXFLL: 2t

IARCS L. .oP Foorev Elect-ic Sh °

L

875 668983251

Graphics

[Defining {HISTONY 1.

esult: 3, Code: [ALPHA-BETA CUTOFF)
Result: 6, Code: (ALSHA-BETA EXPLORE-FULLY)
Result: 7, Code: (ALPHA-BETA BIG-TREE)

(RLPHR-BETRA BIG-TREE)

Type something to evaluate:

Z“mxmr” Electric SR Ti-Tocks H.story
- i Ty R ?p‘.:_—f - —.-'—-13

Font: W [RELFIBT »

o rady by

Figure 7-19

114

10.

11.

12.

MESSAGE PASSING SEMANTICS

Publications

. Attardi, G.and Simi. M. "The Power of Programming by Example,"

Workshop on Office Information Systems, Saint-Maximin, France,
October 1981.

Barber. G. "Embedding Knowledge in a Work Station, 2nd International
Workshop on Oftice Information Systems, Saint Maximin, France, North
Holland, October 1981.

Barber, G., and Hewitt, C., "Foundations for Office Semantics," 2nd
International Workshop on Office Information Systems, Saint Maximin,
France, North Holland, October 1981.

Barber, G., "User Interfaces for Problem Solving Support, N.Y.
University Symposium on User Interfaces, New York, N.Y., May 1982,

Barber, G., "Supporting Organizational Problems Solving with a Work
Station, ACM Conference on Office Information Systems, June 21-23
1982, Philadelphia, PA.

Barber, G., "Supporting Organizational Problem Solving with a Work
Station, ACM Transactions on Office Information Systems, January
1983, To appear in Proceedings of the ACM Conference on Office
Information Systems, June 1982,

Brown, F.M. "Dynamic Program Building, "“Software Practice and
Experience," August 1981.

Byrd, R.J. Smith, S.E., and de Jong S.P.,, "An ACTOR based
Programming System,"” Proceedings of the ACM-SIGOA Conference on
Oftice Information Systems, Philadelphia, Pennsylvania, June, 1982

Curry, G.J. Programming by Abstract Demonstration, Ph.D. Dissertation
78-03-02,University of Washington at Seattle, 1978

Halbert, D. "An Example of Programming by Example,” S.M thesis
University of California, Berkeley, Berkeley, CA, 1981.

Kornfeld, W. "Applications of LISP to Music," Computer Music Journal,
Vol. 4, No. 2, 1980.

Kornfeld, W. "A Synthesis of Languagc Ideas for Al Control Structures,"

115

MESSAGE PASSING SEMANTICS

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

MIT Artificial Intelligence Laboratory, Working Paper 201, Cambridge,
MA, 1980

Kornfeld, W. “The Use of Parallelism to implement a Heuristic Search,"
Proceedings of the 7th International Joint Conference on Artificial
Intelligence, Vancouver, 1981,

Kornfeld, W. "Combinatorially Implosive Algorithms,"” Communications
of the ACM, 1982.

Kornfeld, W., "Concepts in Parallel Problem Solving,” Ph.D dissertation,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, 1981.

Kornfeld, W., and Clinger, W. "Nondeterminism and Intelligence," to
appear 1982.

Knuth, D.and Moore, R.W. "An Analysis of Alpha-Beta Pruning,"
Artiticial Intelligence Journal, Vol. 6, No. 4, 1975.

Lieberman, H. "Constructing Graphical User Interfaces by Examples,"
Graphics Interface '82 Conference, Toronto, Canada, May 1982.

Lieberman, H., "Testing Your Program While You Write It," Workshop
on Effectiveness of Program Testing and Proving Methods, Catalina
Island, California, May 1982.

Lieberman, H., "Seeing What Your Programs Are Doing,”" MIT Artificial
Intelligence Memo 656, MIT Artificial Intelligence Laboratory,
Cambridge, MA February 1982.

Lieberman, H., "Tinker: Example-Based Programming for Artificial
Intelligence,” Seventh International Joint Conference on Artificial
Intelligence, Vancouver, B. C. Canada, August 1981

Lieberman, H.and Hewitt, C, "A Session with Tinker: Interleaving
Program Design with Program Testing," Proceedings of the First LISP
Conference, Stanford, tUniversity, August 1980.

Lieberman, H. and Hewitt, C. "A Real Time Garbage Collector Based on
the Lifetimes of Objects,” Communications of the ACM, October 1981,

Neves, D., "Learning Procedures from Examples," Carnegie-Mellon
University, 1980

116

'

25.

26.

10.

MESSAGE PASSING SEMANTICS

Pangaro, P., "The Animation System EOM," Creative Computing,
November 1980.

Smith D.C., "Pygmalion: A Creative Programming Environment," Ph.D
dissertation Stanford University, 1975,

Talks

Barber, G. "Embedding Knowledge in a Work Station.” 2nd International
Workshop on Office information Systems, Saint Maximin, France, North
Holland, October 1981.

Barber, G."User Interfaces for Problem Solving Support,” N.Y.
University Symposium on User Interfaces, New York, N.Y., May 1982.

Barber, G., "Supporting Organizational Problem Solving with a Work
Station,” ACM Transactions on Office Information Systems, January
1983,

de Jong S.P., Chairperson, "Prospects for more Intelligent Office
Systems,” ACM-SIGOA Conference of Office Information Systems,
Philadelphia, Pennsylvania, June 1982.

de Jong, S.P., Programming Committee, ACM-SIGOA Conference of
Office Information Systems, Philadelphia, Pennsylvania, June 1982.

Kornfeld, W., "Everything You Always Wanted to Know About MUZACS
But Were Afraid to Grovel Through the Code to Find Out,” MIT Artificial
Intelligence Laboratory, Cambridge, MA, January 1981.

Kornfeld, W., "The MUZACS Symbolic Music Editor,” Le compositeur et
I'ordinateur (the composer and the computer) Conference, IRCAM,
Centre Pompidou, Paris, France, February 1981.

Kornfeld, W.. "Compiling Pattern Directed invocation into Message
Passing,” Second Annual Workshop on Distributed Problem Solving,
Dedham, MA, June 1981,

Kornfeld, W., "Virtual Collections of Assertions," Jet Propulsion
Laboratory, Pasadena, CA. November 1981.

Lieberman, H., "Research at the MIT Al Lab: Act 1 and Tinker,"” 9 March
1982, Boston University

117

MESSAGE PASSING SEMANTICS

11,

12.

13.

Lieberman, H., "Example-Based Programming for Artificial
Intelligence,” Xerox Palo Alto Research Center, Palo Alto, CA August
1981,

Lieberman, H., "Act 1: An Object-Oriented Parallel Message Passing
Language for Artificial Intelligence,” Conference on General Purpose
Homogeneous Parallel Computer Architectures, Endicott House,
Dedham, MA, June 1981.

de Jong, S.P., "Course Instructor for 'Relational Data Bases", Session
on Query-by-Example, Continuing Education Institute, September 1982. .

118

e

_ .

OFFICE AUTOMATION

Academic Staff

I. Greif M. Hammer
M. Sirbu

Research Staff

T. Anderson R. lison
L. Rosenstein

Graduate Students

Y. Bakopoulos M. Good

B. Berkowitz J. Kunin

D. Carnese B. Niamir

J. Cimral S. Sarin

E. Gitbert J. Sutherland
S. Zdonik

Undergraduate Students

A. Adamoli A. Mondori

B. Bauman J. Nachimson
pP. Czarnecki J. Nitchman
K. Hsu A. Tallian

Y. Hui S. Trieu

Y. Kim J. Yoon

W. Mok M. Zurko

Support Staff

C. Hengeveld

‘o OFFICE AUTOMATION

1. OVERVIEW
The activities of the Office Automation Group this year were in three areas:

- Office Studies: completion of the design of OSL, the Office
Specification Language; extensions to the OAM, Oftice Analysis
Methodology; longitudinal studies of office productivity.

- Multi-person Informational Work: design and implementation of several
prototypes for cooperative calendar management activities; a facility for
meeting support; design of support tools for builders of multi-person

applications.
[

- The Office Workstation: continued design and implementation of
ECOLE, the integrated multi-function workstation, including a new
implementation of ETUDE, the document preparation system.

Research in each of these three areas is described in the following sections.

2. OFFICE STUDIES

Understanding and modeling office work has been a major thrust of the research in
this group for several years. The Office Analysis Methodology (OAM) was developed
in 1980 and tested in 1981. The Office Specification Language (OSL) was also under
development during that period. In contrast to the short term descriptive analysis of
an OAM studies, we have also been pursuing a program of longitudinal studies
aimed at understanding impact of office automation of office productivity.

In the past year, the OSL effort has culminated with the completion of the Ph.D
thesis by Jay Kunin, Analysis and Specification of Office Procedures. The results of
the testing of OAM and OSL carried out as part of Kunin's thesis research have
prompted changes and additions to OAM.

This section contains a review of the OAM research, followed by a discussion of
longitudinal studies.

2.1. OAM

The Methodology as Tested: A very simple outline of OAM is given below for
those who may not be familiar with it. It is followed by a discussion of the problems
that have been identified and one solution that has been proposed.

OAM starts by telling the analyst how to approach the office. It discusses the
reasons for doing an analysis of an office and how these different reasons can result

120

OFFICE AUTOMATION

in different approaches to the office and different problems while doing the study.
For example, a study performed because upper management has said that an office
is to be automated requires that the analyst work hard to achieve rapport and a
helpful, friendly atmosphere with the office staff, while a study that is done at the
request of the office manager and with the help of a person from the office requires
less effort in these areas.

The next step in an OAM study is to meet with the office manager. This meeting
has several purposes. The first is to lay a groundwork for the study. The analyst
explains what OAM is and outlines the amount of time and effort that will be required
from office personnel, typically 3-5 hours each. The analyst should also be certain
that the exact scope and purpose of the study are defined. The next step is for the
analyst to ask about the office itself: the mission. the internal structure, its place in
the organization, what other offices it communicates with, and so forth. Finally, the
analyst should make arrangements to have the manager tell the office staff about the
study and let them know who the analyst is.

The analyst then interviews the office staff, looking for procedures, objects and
functions. Each interview takes about an hour, and the analyst uses the model of the
office to direct the interview. OAM provides a lot of detail about interviewing
techniques. After the first few interviews, the analyst starts writing a first draft of the
description. After each interview, the analyst will add to, or modify, the description
according to the information obtained. When all of the interviews are finished, the
analyst finishes the description, then circulates it back to the people who were
interviewed for them to read. A few days later, the analyst goes back to do a second
round of interviews, looking for mistakes in the description, adding material that was
not obtained in the first round of interviews, and asking about exceptions and
variations to procedures.

The pattern of interview, circulate description, and interview again, is repeated
until the analyst has obtained a complete description of the office and all of the
people who are interviewed agree that this is so. Theoretically it ought to happen in
two rounds of interviews. but in practice the analyst often has to go back to at least
some people a third time. When the consensus is reached, the analyst gives a copy
of the final description to the manager, then goes back to interview the manager
again. At this interview, the analyst asks about any changes to the description and
about any generai exceptions that apply to the office as a whole. Once the
manager’s changes and data are incorporated into the final description, the process
is finished.

Problems with OAM: OAM does produce good descriptions of the current
operations of offices, but there are several problems with it. First, it takes too much
effort to do an OAM study, compared to the value of the resuits. This implies that

121

OFFICE AUTOMATION

either the amount of time required must be reduced, or the value of the analysis must
be increased. In most offices, the OAM analyst must interview nearly everyone in the
office at least twice. This quickly becomes very time consuming. In addition, the
amount of detail that is gathered requires great effort from the analyst to organize.
The result of all of this effort is simply a description of the current operations of the
office. While such a description is necessary to ensure that everyone involved in the
automation process starts with the same information, it is only a small part of the
process. The key questions are not how the office currently works, but what is
wrong with how it currently works and how can that be fixed? OAM does not answer
these questions.

A second problem with OAM is that it is useful only in certain types of offices. OAM
works best for offices that have at least some structure. This is not to say that it
needs as much structure as most of the data processing techniques, in fact, studying
an accounting or payroll operation that has not been automated will not make use of
many of the capabilities of OAM. However, offices that are totally unstructured, such
as offices whose sole purpose is to work on special projects, will not be easy to study
with OAM and the results will be quite unsatisfactory. In addition, even within a semi-
structured office, some office personnel, particularly managers, will have fairly
unstructured jobs. The standard OAM interview will fail here, since there will be no
structure to guide the interview and no way to find the information specified by OAM.

Changes to OAM: OAM assumes that, since at the early stage of office analysis
one does not know what information will be needed later, the initial description
should contain all information that might be relevant. This attention to every detail is
part of the reason why doing an OAM study requires so much effort. OAM can be
streamlined to some extent by reducing the amount of detail that is collected. This
requires making a new assumption: that the initial study, is simply that, an initial
study. This study will be somewhat different from an OAM study,and focuses on
identifying problem areas. Later studies can gather additional details when it is
known exactly what data should be collected. This change to OAM is a small one,
and not very exciting in a theoretical sense, but it will make the new methodology
much more practical to use.

Another small, but practical change to OAM, will be to incorporate the use of
questionnaires. Questionnaires can help to reduce the amount of time spent in
interviews by asking for much of the background data necessary to understand the
context of the office. Again, there is no change to the theory here, merely current
practice, but it is a change that is badly needed and will be included in the new
methodology.

Extending OAM: OAM in its current form is designed to gather information about
the operations of an office. It does not explicitly gather information about areas of

122

OFFICE AUTOMATION

office work that are badly in need of change, nor does it identify leverage points,
those places where change will be most effective. Somehow one is supposed to be
able to figure out these things from the written description of current operations.
This is much more difficult than it seems. It seems that the problem is not the lack of
a method for going from the description to identification of leverage points, but
rather that there is information missing from the writeup that is necessary to the
identification process. Furthermore, the process of identifying leverage points
should be going on in parallel to the OAM study.

Those who have done OAM studies have noticed that the analyst who did the study
has a very good idea as to what the problem and opportunity areas are. This
information is not collected in any specific way by the methodology, rather it is
something that the analyst runs into in the course of collecting the information that
actually is specified.

The genetal structure of an OAM study--the manager interview, then two or more
rounds of interviews with the office personnel, etc.--is entirely valid and will be kept
in the new methodology. Suggestions about how to approach an office, the social
issues, etc. remain also remain. The idea of having a mental model is useful in doing
the interviews. The function and procedure model will also still be valid, although
perhaps not as important as before. And in general, the idea of finding out what
currently happens and describing it is valid. What will change are:

- the level of detail gathered about various processes,

- the emphasis on only describing current operations.

A New Theory: In some of the offices that we have studied, there have been
cases where what seemed like problems were not, in fact, the real problems at all.
For example, in the Office of Sponsored Programs, (the OSP) the officers who are
responsible for the various programs were found to talk to each other a lot on the
telephone. The obvious application of technology to this situation is to put in an
electronic mail system. This has two results:

- the "shadow time" lost in dialing, busy signals, leaving messages, etc.
would be eliminated,

- the officers could deal with questions from other officers as they have
time, rather than interrupting their current activities to do so.

Further investigation in the OSP found that the officers were talking to each other
trying to find acceptable contract language for sponsored research proposals they
were reviewing. If a database of previous contracts and precedents appropriately
arranged for easy access, were installed, a lot of the communication between

123

OFFICE AUTOMATION

officers could be eliminated. Eliminating communication always sounds dangerous,
but in this case, a lot of time that the officers themselves would rather spend doing
other things, would be saved. This is an example of the symptom of a probiem (too
much time on telephones) being absolutely clear, while the actual problem (need for
particular kind of data) is obscure.

Automation can benefit an office in two ways. It can solve the problems of which
the office staff are aware, and it can improve the operations of the office in ways that
the staff had not expected. The problems of which the office staff are aware are
usually symptoms of an underlying cause. The symptoms are usually obvious, often
at the task level, but finding the real causes can be more difficult. The example
above is a rather extreme one, in the sense that the cause was very deeply hidden.
Most causes will be more obvious. There is, then, the following hierarchy. Office
personnel will be very aware of symptoms. The analyst should be able to gather
plenty of data about symptoms just by asking the office personnel what they have
problems with. The office personnel may or may not be aware of causes. The
analyst must always be looking for those cases where the causes are not obvious, or
are not the ones that the office personnel believe. Finally, the office personnel will
not be aware of opportunities. Opportunities, by their very nature, depend on some
knowledge of what the available technology can do, and office personnel, with a very
few exceptions, will not have this knowledge. Therefore, the analyst must identify
the opportunities based on the data obtained from the study and her knowledge of
the available technology.

The New Methodology: A new methodology is being developed. While the final
form has not yet been developed, the current version is as follows. This
methodology will be revised and tested during the next year.

1) Manager interview. This will be as described in the OAM paper, perhaps
made simpler by the use of interview forms. In addition to the usual
questions, however, the analyst will also ask about general problems
that are known to plague the office. Answers from the manager might
be things like slow turnaround of paperwork, too much paper, files
cannot be found when needed, etc. These will all be symptoms which
the analyst should keep in mind during the staff interviews so as to look
for causes.

2) The analyst should then do the first round of interviews. The aim here is
to understand the procedures, main lines and major exceptions. The
level of detail should be somewhat less than was collected under the old
OAM, but not too abstract either. At the end of the first round of
interviews, the analyst should feel comfortable that she knows how the
office works, but should not feel that she could take over any of the jobs
and perform it fairly well.

124

=

I DR

N R » —

OFFICE AUTOMATION

In addition to understanding procedures and so forth, the analyst should
ask the interviewee about any problems that he may have in
accomplishing his jcb. This type of question, as well as questions about
which tasks consume time, and how effort is allocated as compared to
how it is supposed to be allocated, are all aimed at uncovering
symptoms. If the analyst runs into an underlying cause it should be
noted, as should hints for later follow-up. but the major emphasis in
these interviews should be on finding the symptoms and understanding
the general functioning of the office.

The analyst should be doing the analysis even while she is interviewing.
As symptoms are uncovered, she should be looking for underlying
causes in all-future interviews. While, especially in the first round, the
idea is not to be uncovering causes, meaningful hints may appear at any
time.

3) The analyst should then prepare two items. The first is the standard
OAM writeup of the procedures (excluding the database sections and
the environment sections unless there is some reason to believe that
they are important). The second item is a list for the analyst of all of the
symptoms that have been observed, and where they fit into the
procedures (if they do). We will probably make some sort of form with a
page for each symptom listing what it is, which procedures it is tied to,
and with spaces for working back through the why’s.

4) Circulate the writeup back to the office staff for their corrections. The
list of symptoms does not go back to the office staff. While the office
staff are reading the writeup, the analyst should be thinking about the
symptoms, to figure out what why questions might be appropriate for
each, and who to ask about each one.

5) Do the second round of interviews. There are two objectives at this
stage. First to be sure that the analyst has no major misconceptions
about the procedures. Since we are trying to streamline the detail in the
procedure descriptions, We believe that two rounds at this will really be
enough and that the analyst should not have to go back again. In
addition, in most cases, there should not be major changes at this point.
For this reason, the analyst should call each of the interviewees and ask
if they have major changes that require an interview to explain. We
believe that in most cases, the respondent can write the changes onto
the writeup and the analyst can call back to ask about any changes that
are not obvious. This should streamline the operation somewhat.

125

OFFICE AUTOMATION

The other objective for the second round is to uncover the causes, if
any, for the symptoms. [n order to do this, the analyst should have a
second interview with any of the staff that she has determined to be
important in answering the why's. The purpose of this interview would
be to try to work backwards down the why train to the end, if possible.
This may be somewhat difficult since the analyst will not be working from
a model. In addition, this process may require talking to the same
people several times in different interviews.

6) Prepare the final writeup and symptom/cause chart. The
symptom/cause chart shows the symptoms that were found along with
the cause or causes for each one and the chain that led to those causes.

7) Final manager interview. Send the materials in 6 to the manager, then
get his feedback, particularly with regard to the accuracy of the analysis
of the causes. The manager may know that what the analyst thought
was unchangeable is in fact changeable, or vice versa. The analyst also
discusses with the manager which problems can be solved with
technology, which with rationalization or other organizational change,
and which have no solution within the analyst's expertise. Discuss the
general forms and costs of the various solutions and determine what the
constraints are on feasible solutions. Explain the importance of
involving the staff in any final decision and ask the manager to setup a
meeting with the office staff to discuss these matters.

8) Circulate the final version of the writeup to the office staff.

9) Meet with the office staff (or representatives thereof) and the manager to
discuss the symptom/cause findings. Again, the staff may suggest that
the analyst was wrong in places, or may think of other items to be added.
When consensus is reached about the symptom/cause list, present the
possible solutions, and the applicable constraints, and get feedback
from the staff concerning them.

10) Draw up a plan for future action. This can be done either at the meeting
with the staff or later with just the manager. The plan should indicate
what solutions will be adopted or investigated and what work needs to
be done to do that.

This methodology produces three documents, the writeup describing current
operations, the symptom/cause/solution chart, and the plan for future action.

126

> VN

y V.

OFFICE AUTOMATION

2.2. Longitudinal Studies

Office systems technology is rapidly being introduced in diverse user
environments. While great claims have been made for these technologies, few
careful studies have been done to determine their impacts on the office. In
particular, careful comparison of offices before and after the implementation of new
office systems technology is required to determine the nature and extent of these
impacts. During the past year we have been developing methodologies for
measuring the impact of office systems through before/after or longitudinal studies
and have conducted a small scale longitudinal study at MIT's Industrial Liaison
Oftice.

The impacts of office systems technology are expected to be diverse and
widespread from changes in productivity to changes in working style and
relationships. Our work has focused on developing methods for measuring impacts
in three areas: productivity, quality of working life, and organizational structure. Of
these three, changes in productivity are the most important, and in some ways the
most difficult to measure. Investments in office systems technology are justified on
the basis of their contribution to office productivity; yet measuring white collar
productivity has been and remains a difficult problem.

Building on our research in office analysis methodologies (OAM), we have
formulated a strategy for identifying productivity measures in the office. OAM
focuses at the departmental level, and attempts to identify the principal business
functions of the department. Similarly, we believe it is important to look at the
impacts of office systems technology at the departmental, as opposed to the
individual level. We have attempted to use the functional description of the office
produced in the course of an OAM study as a means of identifying the outputs which
should be measured in any longitudinal study.

For evaluating the impact of office systems technology on the quality of working
life we have developed a questionnaire which is based in part on the Job Diagnostic
Survey developed at the Michigan Survey Research Institute.

As a test of our approach to evaluating the impacts of office automation, we have
been conducting an evaluation at MIT's Industrial Liaison Office. On July 1, 1981,
the ILP installed an integrated office support system based on a DEC VAX 11/780
and software support for document editing and formatting, electronic mail, a spelling
checker, personal databases, and departmental databases (the latter did not
become available until March, 1982).

Prior to the installation of the system, a QWL questionnaire was distributed at the
ILP. In February, 1982, the guestionnaire was distributed a second time and the
results compared. A total of 11 persons completed both the pre- and post-

127

BN

OFFICE AUTOMATION

implementation questionnaires. The small samples size must be considered in
evaluating the significance of the findings.

The results of the comparison are complex and difficult to interpret. There was an
increase in the level of satisfaction with the working environment and the resources
available to perform one’s tasks. Responses to the equipment itself was generally
positive.

There was also an increase in the perceived pace of the work (although this may
be accounted for by the fact that preliminary data were collected during the slower
summer months and post data were collected in the busier month of February).

Work was also perceived to be less diverse and less challenging after the
implementation of the system. On the other hand, Administrative personnel did
report an increase in the opportunities to learn new skills. Support personnel felt
more autonomous, and felt they had more say in how work should be done, and what
resources should be allocated.

User reactions to the system appeared to be highly correlated with their prior
expectations. Those who expected to like the system before it was installed
generally did so. Those whose prior attitudes were more negative, generally were
less happy with the final result. This suggests the importance of preparing user
groups prior to the installation of new technology.

The results of the surveys will be further analyzed in future work, and a third survey
will be conducted when the users have had even more time to adjust to the system.

3. MULTI-PERSON INFORMATIONAL WORK

The project on muiti-person informational work is concerned with the ways that
people work together on office activities and the use of computers in support of
cooperative work efforts. We have developed approaches to supporting two kinds of
interactions:

-In real-time meetings all participants are present and on-line
simultaneously. The computer can supply participants with both shared
and private work spaces during their meetings. The shared space is a
part of each participant’s screen on which all participants see the same
information.

-In meetings over time participants work at their own pace but obey
certain agreed to conventions for communication with their co-workers.
The computer can support the observance of these conventions based
on information about the roles and working relationships among co-
workers.

128

h . .8

OFFICE AUTOMATION

Our approach has been to build prciotype multi-person applications and then to
analyze their implementations in order to identify and build a set of software
packages and design guidelines for the builder of other multi-person application
software. In the following sections we describe our prototypes for calendar
management, our work on real-time communications. and requirements for database
support of "working relationships.”" We conclude with a brief discussion of plans for
the coming year.

3.1. Calendar Management and Meetings Over Time

While individual time management support in the form of personal reminders and
ticklers can serve an important function, the real power of a calendar management
package is in its facilities for coordination among individual calendars. If it can
support scheduling of meetings among individuals (without the sacrifice of privacy of
personal calendar information), access to public "resource"” calendars (e.g. for
conference room reservations) and notification of company-wide events from a
central calendar, then an on-line calendar becomes an attractive alternative to the
convenient paper calendar in the pocket. Calendar management is a cooperative
activity and calendar management software should be designed and built with this in
mind.

Roles and Working Relationships: An individual may choose to share his
calendar information with others, but the calendar is his private database and he
controls all access to it. Acting as the owner of his calendar, he may give access to
his secretary or to certain working group members so that they can write in his
calendar to schedule meetings. Since strangers may want to request appointments,
he might also specify that members of the public can "write" in his calendar -- an
appointment added by an individual member of the public is interpreted as a request
for a meeting at a given time. A group member might only be able to cancel an
appointment that he himself added to the owner’s calendar while a secretary may
have broader capability to modify the schedule.

A secretary and a manager might have to cooperate in maintaining the manager's
calendar. Their working relationship definition includes

-a distinction between personal and business appointments (only
business appointments would be handled by both people)

- conventions about erasures (should an appointment canceled by the
secretary disappear or be brought to the manager's attention as
"canceled")

- conventions about notification (how should new appointments written by
one be brought to the other person's attention?)

129

OFFICE AUTOMATION

The working arrangement might change over time and its "definition” should be
modifiable.

Communications Needs: People tend to keep their own schedules in individual
databases. When those databases are implemented on paper calendars,
secretary/manager cooperation can be quite complicated. Often the secretary and
the manager keep their own separate records of the manager's schedule and have
to communicate on a regular basis to keep the copies consistent. Scheduling of
meetings involves similar coordination among "group members.” Just as the
secretary and manager have to keep their calendars consistent, meeting participants
must maintain the consistency of information about the meeting. Typically the initial
scheduling is done in several passes starting with collection of scheduling constraint
information followed by negotiation and selection of a meeting time. Coordination is
then needed to communicate changes, e.g. to change the meeting location.

Most commercially available on-line calendars are either individual user tools or
support communication by using the mail subsystem for notification. We have two
comments on the use of electronic mail for scheduling meetings. First, simple
notification {(a one way communication) is often not adequate. Negotiation might
involve a series of communications based on examination of calendar information
about conflicts, etc. Second, even when simple notification is appropriate, this
approach provides only a poor approximation to an intelligent tickler file. A mail
subsystem will only be able to inform the user that he has new mail -- not that he has
a new meeting. A calendar subsystem designed to interpret changes by users as
communication might be able to report that "You have a new meeting with Joe on
your calendar but it contlicts with your squash game."

Integration of messages with the calendar information becomes even more
important in meeting scheduling when large numbers of messages may be received
regarding a single meeting. The user should be able to choose to be notified only
after a significant set of answers have been received. That may mean anything from
waiting until all answers are received, to notification after a majority of ceople have
declined to attend, to notification only if no one can attend. These kinds of
summarics are generally not within the capabilities of mail facilities.

Prototypes for Calendar Management: Last year we built PCAL, a personal
calendar system. It served two important purposes in the Multi-Person Informational
Work project. Its code has been available for use by a large number of
undergraduates who have experimented with adding a number of multi-person
features. Also, last fall we made PCAL available to users of our DEC 2060. Since
then, a number of people at MIT and elsewhere have been using PCAL for
maintaining their own calendar information. These people have provided us with
valuable feedback on our design and have been available as users and testers of
some of the multi-person features.

130

L e

T R

OFFICE AUTOMATICN

The following versions of PCAL were implemented this year. Several were
experiments with notions of roles as described above. Others explored additional
kinds of coordination among calendar or modifications to the user interface of
PCAL.

- Roles -- secretary/manager/public: This version of the calendar
supports three user roles and several types of appointments.

Appointments can be flagged as private or protected. Private
F appointments are viewable only by the manager, protected

appointments are viewable by the manager and his secretary, other
appointments can be viewed by anyone who reads the calendar. The
secretary and manager are supported in the following working
* . agreement: new or changed appointments entered by the secretary are

brought to the manager’s attention; items requiring secretary action can
be found by the secretary on an "action items" list.

- Defining Roles: This calendar relieves the user of having to explicitly
] mark appointments as either private or protected by allowing him to set
certain defaults according to the time at which an appointment is
scheduled. It is possible to define a number of kinds of hours: business
hours, office hours, private hours, etc. What is more, it is possible to
name and define new roles by indicating for the new role the names of
the people who can assume that role and the kinds of access they can
have to each kind of hour. Thus one might define a "group member" to
be someone who can read all business hour appointments, and write on
the calendar to make appointments during office hours. For all other
hours he may only see whether the calendar owner is busy or not.

- A Resource Calendar: This calendar is essentially a sign-up sheet for a
conference room with two roles. A user must either act as an
"allocator"” or as a "requestor.” Some users may be entitled to act in
either role and can change roles while using the calendar. A requestor
can enter appointments only if they do not conflict with appointments
already in the calendar and he can cancel only his own appointments.
An allocator can override a request by canceling an appointment made
by a requestor.

-A Remote "Events" Listing: This is a calendar for public events, plus
facilities in the personal calendar for integrating items from this calendar
with one’s own personal calendar entries.

- Remote access to personal calendar: Facilities for locating and reading
calendars from a host machine other than the one on which the
database is stored.

131

;L. . .sa. . . 4

e

R

A A e e e e o e e e

OFFICE AUTOMATION

- Supporting a variety of terminal types: In PCAL, when a user is entering
an appointment into the calendar, he has the option of requesting that a
form appear on the screen to prompt him for information. Presentation
of these forms depends on terminal type. This version of the calendar
includes alternative implementations of the forms that can be used on a
variety of terminals. Also, in cases where PCAL does not recognize the
user’s terminal type, a default terminal setting is made and the user is
questioned about his terminal to see if a better quality interface can be
supported.

- "Direct Manipulation"”: Some users have found the command language
interface to PCAL to be unnatural as compared to their models of paper
calendars which can be written on directly. We experimented with direct
manipulation of the calendar in a new feature for maintaining a "things-
to-do" list as part of the calendar database. This experiment revealed
limitations of the current window package which we are now addressing.

- Pattern Matching to Retrieve Appointments: In PCAL, appointments can
be retrieved from the calendar by date and time. This version of the
calendar allows a user to fill in some fields of an appointment form and
then matches the partially filled form against appointments in the
calendar. This provides the user with and easy to use retrieval
mechanism.

3.2. Real-Time Communication

Sunil Sarin has been working on the development of tools to support real-time
communication through computerized real-time sessions in which multiple users at
their separate workstations can jointly view and manipulate a "shared information
space.”" The participants in such a session would typically use a separate voice
channel (e.g., a "conference call") to engage in discussion and negotiation. Our
research is focused on the computer-based facility that provides session
participants with a view of and command interface to the shared information space;
we shall refer to this facility as the system below.

Windows: Shared and Private Workspaces: In our view, the function of a real-
time session service is to provide users with a means for sharing windows that
provide A command interface for viewing and manipulating application data. The
command interface to a shared window should, as far as possible, be identical to the
interface presented to a solitary user interacting with the application on his own.
The ability to enter commands using this interface should be potentially available to
all the participants sharing the window, unless the user in charge of the window
wishes to limit this ability (e.g., by specifying that certain participants can only be
“"interested observers").

132

PN)

OFFICE AUTOMATION

A reasonable means for mediating participants' attempts to enter commands
should be provided. This, which we shall call floor-mediation by analogy with voice
conferencing. may be done manually (by a participant designated as session
chairperson, with aid from the system in the form of a queue of outstanding
participant requests for the floor), or automatically by the system (which would
require some policy for determining when to take the floor away from the current
participant and grant the next request, e.g., if the current participant is inactive for a
few seconds or has had the floor for a long period of time); a mixture of both
methods. with the system mediating the floor except when the chairperson explicitly
overrides it, may often be desired.

The participants in a real-time session should be allowed to create an arbitrary
number of windows; a given window might be shared among the entire group, or be
private to a single participant, or even be shared among some subgroup of the
session participants (allowing "side conversations”). A window that is shared
among two or more participants should be displayed identically on the screens of
these participants. Each participant should be aware of which other participants are
viewing the same window and which participant currently has the floor; the
participants should be informed whenever the group structure changes (when the
floor is passed, when one of the participants stops viewing the window, or when a
new participant joins the group).

Each participant should be able to choose and modity the placement of shared and
private windows on his workstation screen. While a given participant will enter input
to only one window at a time, subject to floor mediation, he may concurrently view as
many active windows on his screen as he chooses to. To avoid taxing his sensory
abilities, he can choose to stop paying attention to a window (or to all of them, if he
needs to respond to some outside interruption) at any time -- the other participants
viewing the window should be informed thereof. The other participants should also
be informed when the participant directs his attention to the window once again, at
which point the returning participant should be presented with an up-to-date display
of the state of the window and also with a notification of any events of significance
that occurred during his temporary absence. (Such notification should also be
available to a new participant when he views a shared window for the first time.)

Participants should not only be ab!> to create multiple windows, they should also
be allowed to define relationships among them (such as to see ditferent "views" of
the same information, based on access rights or levels of detail, in different
windows), and to perform commands that span window boundaries (such as copy
information from a shared window into a private window, edit it privately in that
window, and write the revised information back into the shared window when ready).

In our view, the function of a real-time session service is to provide users with a

133

OFFICE AUTOMATION

means for sharing windows that provide a command interface for viewing and
manipulating application data. The command interface to a shared window should,
as far as possible, be identical to the interface presented to a solitary user
interacting with the application on his own. The ability to enter commands using this
interface should be potentially available to all the participants sharing the window,
unless the user in charge of the window wishes to limit this ability (e.g., by specifying
that certain participants can only be "interested observers").

A reasonable means for mediating participants’ attempts to enter commands
should be provided. This, which we shall call floor-mediation by analogy with voice
conferencing, may be done manually (by a participant designated as session
chairperson, with aid from the system in the form of a queue of outstanding
participant requests for the floor), or automatically by the system (which would
require some policy for determining when to take the floor away from the current
participant and grant the next request, e.g., if the current participant is inactive for a
few seconds or has had the floor for a long period of time); a mixture of both
methods, with the system mediating the floor except when the chairperson explicitly
overrides it, may often be desired.

The participants in a real-time session should be allowed to create an arbitrary
number of windows; a given window might be shared among the entire group, or be
private to a single participant, or even be shared among some subgroup of the
session participants (allowing '"side conversations™). A window that is shared
among two or more participants should be displayed identically on the screens of
these participants. Each participant should be aware of which other participants are
viewing the same window and which participant currently has the floor; the
participants should be informed whenever the group structure changes (when the
floor is passed, when one of the participants stops viewing the window, or when a
new participant joins the group).

Each participant should be able to choose and modify the placement of shared and
private windows on his workstation screen. While a given participant will enter input
to only one window at a time, subject to floor mediation, he may concurrently view as
many active windows on his screen as he chooses to. To avoid taxing his sensory
abilities, he can choose to stop paying attention to a window (or to all of them, if he
needs to respond to some outside interruption) at any time -- the other participants
viewing the window should be informed thereof. The other r- ‘icipants should also
be informed when the participant directs his attention to the window once again, at
which point the returning participant should be presented with an up-to-date display
of the state of the window and also with a notification of any events of significance
that occurred during his temporary absence. (Such notification should also be
available to a new participant when he views a shared window for the first time.)

134

OFFICE AUTOMATION

Participants should not only be able to create multiple windows, they should also
be allowed to define relationships among them (such as to see different "views" of
the same information. based on access rights or levels of detail. in different
windows}, and to perform commands that span window boundaries (such as copy
information from a shared window into a private window, edit it privately in that
window. and write the revised information back into the shared window when ready).

RTCAL: The Real-Time Calendar: As an example of real-time communication,
we have compieted the implementation of a first prototype system, RTCAL, that
allows users to exchange calendar information in real time in order to select a
mutually agreeabfe time for a meeting. The "shared window” in this system displays
the aggregation of the participants’ schedule cards, indicating which blocks of time
are free and which are unavailable because one participant or more has a conflict.

Commands are provided to explore this shared space to find suitable meeting
times, and to call a vote by "proposing" a specific time. Only one participant at a
time can enter these commands. and the permission to do so (control of the floor) is
mediated by the session chairperson. A special set of control commands is provided
to allow participants to request control (such requests being queued until granted)
and for the participant currently in control to give it up; the chairperson can also at
any time preempt control of the shared space.

A participant can temporarily leave the session at any time, and when he returns he
will get an up-to-date display of the shared space, together with a list of meeting
times proposed in his absence. A section of each participant’s screen is reserved for
a "private window" in which detailed information from the participant's calendar, not
shown in the shared space, is displayed in order to aid him in decision making. The
private window is always kept current with respect to the shared space by updating it
whenever the latter is moved to show a different date and time.

This initial experiment in reai-time communication has provided considerable
insight into the issues that arise when trying to support such collective activity on-
line. The user interface turned out to be more complicated than anticipated. The
design of good interfaces for the solitary user is hard enough and is the subject of
much current research; the situation in a real-time session is exacerbated because
many things can be changing simultaneously and rapidly, not under the control of
the participant observing the session from his workstation. With both session status
information and application information on the screen, it is hard for a participant to
notice changes to one while concentrating on the other.* In our experiment with

4Some of these problems are exacerbated by the limitation of existing alphanumeric display
terminals, the interface being particularly bad on terminals that do not support any form of
highlighting, and would probably he alleviated with the larger screens and color capabitities of more
modern workstations.

135

m

¢ OFFICE AUTOMATION

RTCAL, we have developed session implementation techniques of general
applicability, which we will be using in future prototypes. An example is the session

k‘— initiation protocol:

- Current protocol: Available participants are looked up in a "catalog" or
"name server" that specifies where session invitation messages should
be sent. Both the invitation and the reply carry an identifier for a "port"

h or "socket" to which session-related communications are to be

directed. This message exchange can also carry application - specific
information needed to properly set up the session. In the case of RTCAL,
the invitation from the chairperson carries a description of the meeting
to be discussed and scheduled, while the reply from a participant carries
information from that participant's calendar for presentation in the
shared space.

- Future protocol: we are examining additional methods for making initial
rendezvous, such as posting the session invitation in a predetermined
shared file in order to aliow any user who notices it to join the session,
without changing the basic invitation-reply sequence.

Prototype Designs: We are applying our experience with RTCAL to new prototype
systems. Two of these, a general-purpose session controller for sharing existing
interactive programs, and a joint document editing system, have been designed and
are in the initial stages of implementation. We are also designing a next-generation
meeting scheduling system that will provide a more flexible and powerful interface
than RTcAL, and will also provide better integration of real-time sessions with
"delayed" communication services (the latter not being supported in RTCAL).

The general-purpose session controller can be used by a group of users to
conduct a joint interaction with any existing interactive application program. The
controller views the program to be shared as a mapping from an "input stream" to
an "output stream.”" These streams are usually connected directly to the individual
user's terminal, but can in fact, be directed to a "pseudo-terminal" that can be
controlled by another program. The session controller takes this approach and
allows input to the program to come from any of the participants in the session,
subject to a floor-mediation policy such as the ones described above, and to
broadcast program output to all participants’ terminals.

The general purpose controller will facilitate the following:

- Support for participants with different terminal types. The shared
program will be made to believe it is interacting with some standard
terminal type having only those capabilities (such as cursor motion or
insertion and deletion of lines and characters) that every participant’s

136

OFFICE AUTOMATION

terminal can support. Output from the shared program will usually
contain terminal-dependent "escape sequences” for performing screen
operations; these can be translated by the session control program into
sequences that achieve the desired eftect on each participant's
terminal.

- Support for multiple windows viewing different programs. Users will be
allowed to specify that a given shared program use only a certain
section of the screen for output. The session control program will define
the shared program’s terminal to have the desired size and will translate
operations on this "virtual screen" into operations on the corresponding
section of participant's physical terminal screens. The session control
program will also remember the state of each shared program’s virtual
screen, allowing users to overlay windows without losing the state of
any.

- Support temporary absences of participants from a session. A copy of
the shared program’s screen state will be supplied to a participant
returning from a temporary interruption; the same can also be done for a
new participant joining the session late. Alternatively, a returning or
newly-joined participant could be given the option of "replaying” a
transcript of program output -- this would allow him to review the activity
that took place in his absence, although it would take him longer to
"catch up" with the others in the session.

The advantage of the above general-purpose session controller is that any existing
interactive program can be easily shared in a real-time session without modification;
session participants would interact with programs that are already familiar to them.
However, we view it as a short-term tool, whose usefulness will be limited in future
computing environments that consist of distributed high-performance workstations.
The main limitation of the general-purpose session controller derives from its very
generality -- it makes few assumptions about the application program being shared
in a real-time session, other than that the program responds to characters typed on
an input stream and produces characters on an output stream. Since the application
program is viewed as a "black box,"” its internal functions are not visible to the
session controller. It is thus impossible to separate various application modules
(such as keystroke parsing, command execution, display, and file system or
database interaction) and distribute some of the data and computation among
session participants' workstations. There are a number of other difficulties having to
do with protection and identification of users.

An alternative approach to real-time sessions is to integrate rather than separate
session control and application functions. This approach is exemplified by RTCAL,

137

OFFICE AUTOMATION

described above, and by the joint document editing system. This system will allow a
group of users to jointly view and edit text documents, using the command interface
of an existing display-based editor. The system will support simultaneous editing in
multiple windows, shared and private. Unlike the general-purpose session
controller, however, the joint document editor will provide commands for moving text
between windows, be they shared or private.

Plans: We are also studying the integration of real-time sessions with delayed
communication services, with the objective of presenting users with a uniform
interface regardless of which "mode" of communication they may be using at a
given time. As we have noted, it is our premise that communications about
application information, should be an integral part of the application database and
should not require separate general-purpose mechanisms such as electronic mail.
The same mechanisms used by people communicating asynchronously over time
(such as object histories, structured annotations, and voting on proposed changes)
should be available without modification to the participants in a real-time session.

One mechanism we believe will be useful in this context is that of placing a
"watch" on application objects of interest to a user; its purpose will be to provide the
user with a notification whenever some other user modifies the watched object (or
performs any of some specified set of operations on the object). This will be a useful
tool not only for long-term tracking of changes to an object, but also in real-time
communication. A group of users viewing a shared object through one window
would be informed if the same object were updated via another window. The
participants would be able to specify whether the window should be automatically
updated when such a change occurred. Alternatively, they might prefer to see a
"data changed"” message that persists until such time as they explicitly request to
see the updated information.

This same mechanism should also provide a basis for users to rendezvous and
initiate real-time sessions. Thus, two users who discover that they are concurrently
working on the same document would be able to start a joint editing session if they
so desired. Such a facility would permit users to conduct many impromptu real-time
sessions that they would not otherwise have held because of the need for prior
coordinatior this would make a real-time session service all the more useful.

We will be exploring the above issues in a prototype system that supports meeting
scheduling through both real-time and delayed communication. While we are at
present building separate prototypes for specific applications (such as meeting
scheduling and document editing), we are using similar protocols and data
structures in the construction of these systems. As we gain experience with these
techniques, many of which we have presented here, we expect to be able to develop
a collection of "software tools" that can be coupled with application modules in
order to realize the desired real-time session interface.

138

PRED

-

Y

Vam

e T r

OFFICE AUTOMATION

3.3. Workstation Database: Roles and Working Relationships

We envision the office workstation as presenting alternative views to the
workstation database. The following sections suggest database facilities and data
structures that could be used to support multi-person applications on the office
workstation.

Database Organization for Calendar Management: For calendar
management we suggest that the calendar be organized so that

- users assume a role when using the calendar (such as owner, secretary,
public)

- items in the calendar are annotated with information about roles

- items in the calendar are annotated with information about status of the
item:who wrote it, whether it is "new" from the point of view of certain
users,etc.

- descriptions of working relationships are maintained in the database.

The calendar management subsystem would then be able to support cooperation
in the following ways:

- the calendar information can be presented in a manner appropriate to
one's role {e.g. only business appointments will be displayed to the
secretary).

- users can be notified of new items, changed items, etc.

- users can be relieved of composing text for messages to be sent to, e.g.,
meeting participants, whenever all of the necessary information can be
gathered from calendar entries.

Notification can take many forms from highlighting new appointments when they
happen to be displayed, to flashing a warning on the screen that there are new
appointments to sending mail to participants who are unlikely to look at their
calendars. Whether or not there is notification can be role or working relationship
dependent -- the manager might want to be informed of new appointments that are
early in the morning, but might prefer not to have spccial notification of
appointments during normal working hours for which he regularly checks his
calendar. This agreement can be described in the working relationship part of his
database.

Communication about meeting scheduling can be accomplished in a similar

139

i

X

OFFICE AUTOMATION

manner. A meeting can be highlighted on a participant’s calendar when it is a
request requiring his answer. It may remain flagged as tentative while its time is
being negotiated. It may become highlighted on the caller's calendar once all
participants have responded to the requests. A summary of the caller’'s calendar
might inciude the notice that "All the answers are in on another meeting." The caller
can then examine a report on the answers and decide either to schedule the meeting
or to continue negotiations.

Another Example: Word processing subsystems of workstations provide support
for the individual worker and do not directly support groups of people who must
cooperate in the work of producing a document. In a multi-person document writing
system, an author may be someone who can create, add to or modify a document.
An editor can change an existing document. A commentator might be able to use
"blue-pencil” to edit a document. That is, he can indicate need for changes but old
and new versions are visible and can be reviewed by the author. Publication
consists of making the document available to the public in some form. A publisher
may have this ability to "release" a document. Co-authors of a document may
cooperate in a number of possible working relationships. If they work as equals,
each may have authority to make final changes to the document, although in
practice co-authors may want to review each other’s changes. Co-authors need not
have equal status. Each may have primary responsibility for a section of the
document (one author may act as editor of his section and commentator on others).
When authors have different skills and knowledge, as with an engineer and technical
writer, many passes of editing, commenting, and rewriting may be required to meet
the standards of both.

Co-authors need to be able to inform each other of the status of their work, to
request comments from other authors, and to write comments on each other’s work.
When working on documents written on paper, group members often use the
document itself as the communication medium. Marks in blue-pencil ard comments
on margins allow editors and commentators to communicate with authors. If an
author gives copies of his paper to a number of people, he may compare individual’s
comments or even collate their comments onto one master copy before proceeding
to modify his text.

When working on-line one might choose to simulate the paper approach by
keeping separate copies for each author, editor, etc. However, one should not
underestimate the value of that blue-pencil when shifting from paper to on-line word
processing. Collating of comments and coordination of divergent copies can be very
difficult on-line since it so easy for individuals to make widespread changes that
completely overwrite old copy. Comments may be mixed in with the text and authors
can easily be confused as to which version of the documents (their own or one that
an author revised) they are viewing.

140

OFFICE AUTOMATION

To support joint document writing on-line we suggest that documents be stored in
a database that is organized as follows:

- the documents should be structured: chapters, sections, paragraphs,
sentences should be separate items in the database

- multiple versions of important components of each document should be
maintained (such as versions reflecting changes of different individuals)

- comments should be components of documents that can be associated
with other components (so that a comment can be "about" a particular
sentence)

- information should be maintained for each document about roles,
working relationships and actions by individuals.

With this data a joint document writing subsystem can provide user friendly
interface to "blue-pencilled” text with the following options:

- a comparison of old and new versions
- old versions with comments in a side margin
- the new version with changed sentences highlighted

- a summary of the "status" of the documents such as an outline in which
a chapter heading is highlighted if that chapter has been changed.

As in the calendar, these presentations can all be role specific. Thus changes
could be highlighted only if they are relevant to the user in his current role. For
example, one might see different changes highlighted when one acts as "author in
charge of chapters one and two" than one would as, say "publisher.” Notification
can be done automatically, where appropriate, so that an author might be informed
that, "Your co-author has completed his editing changes to section three."

3.4. Plans

Our immediate plans for further research on cooperative office work are in the
following two areas:

-user interface design -- to determine appropriate presentation of i
information, for example, to aid users in distinguishing their own work ﬂ
from that of others

141

OFFICE AUTOMATION

- database organization -- to abstract from our prototype implementation
general principles for combining working relationship information with
application specific information.

Spanning both of these areas is research on the user interface to the database: we
will develop an end-user language for defining new working relationships. The
definitions will be in terms that are relevant to the working situation, but will be
translated into definitions of database structures and constraints on views of the
data.

Longer term goals for the project include extension of our approach to a wider
range of cooperative activities and implementation of cooperative applications
subsystems on an integrated multi-function workstation. We are beginning
implementation of a prototype joint document writing system and are developing
scenarios for additional applications. Future implementations of the calendar will
use the database facility currently being impiemented as part of ECOLE, described in
the next section.

4. THE OFFICE WORKSTATION

Our research in office workstations during the past year has been in three areas:
providing a general operating environment for a workstation, reimplementing the
ETUDE document system, and designing other systems that will run on the
workstation.

All systems running on the workstation operate under a general operating
environment called ECOLE, and use the ECOLE command handler (parser) and
window (screen) management system.

ECOLE is written in the programming language MDL. A machine independent
version of MDL is being developed by another group at the M.L.T. Laboratory for
Computer Science. This system, known as MiM (Machine Independent MDL) will
allow us to transfer our system to other computers with a minimum of effort. We are
cooperating with the group developing MIM, and helping their development, so that
we may use the MIM system as soon as possible.

We are also extending the MDL language, adding support to its TYPE mechanism,
to allow us to manipulate objects in the system independently of knowing their actual
representation. This will allow us to represent objects manipulated by the
workstation differently, without making any changes to the software that operates on
those objects.

We first describe ETUDE and its subsystems: these include a spelling checker and

OFFICE AUTOMATION

a table system as well as a prototype page layout subsystem. Following that are
discussions of the various ECOLE components, including the command handler, the
window management system, and the database. Finally, the extensions to MDL are
described and requirements for a graphics facility are presented.

4.1. The ETUDE System

We are completely reimplementing the ETUDE document system. In the original
system, ETUDE handied its own command input and display output. In the current
system, we are interfacing instead to similar routines in ECOLE. More
fundamentally, however, we have redesigned the underlying document
representation for several reasons:

- The original document representation was inefficient in its use of
storage space, and this had a negative effect on the speed of the
system. Our new implementation uses storage space more efficiently,
and will be more responsive to user commands.

- In the old document representation, the document’s editorial structure
and outward appearance were inextricably intertwined. In the new
implementation, the outward appearance is completely separated from
the editorial structure, allowing the same document content to appear
differently.

- The old document structure only allowed text characters to be inserted
in a document. The new document structure is more flexible and allows
different objects to be included in a document.

- We switched programming environments (from CLU to MDL) to gain
flexibility in

- bringing our system up on various hardware platforms, such as the
Apollo or the VAX.

In the new version of ETUDE we are correcting a deficiency in the user interface of
the previous version. The original implementation of ETUDE required the user to be
aware of, understand, and maintain the hierarchical document structure. Even when
the user did understand the hierarchy, the system was sometimes cumbersome to
use, and mistakes were easily made. For example, to insert a section in the
document, the user had to position his cursor between two existing sections. Not
only was this difficult to do, it was also hard to judge if the cursor were correctly
positioned; the cursor could appear at the same location on the screen even though
it was actually in different positions in the editorial hierarchy. If the user's cursor

143

)

OFFICE AUTOMATION

was positioned inside a paragraph when he created a section. the section would be
created within the paragraph, resulting in an incorrect document structure.

The new implementation of ETUDE will enforce a document structure (or
document grammar). This grammar will indicate, for example. that a section must be
contained directly within a chapter in the document. With this notion in the system,
the user need not be aware of the editorial structure hierarchy. When he wishes to
insert a section, all he does is issue that command, and the system will determine,
from the grammar, the appropriate place to actually create the new section.

In addition to simplifying the user interface. we are making other changes to
decrease the time it takes to respond to a user's command. In particular, we have
developed some new schemes to increase the system's response time when the user
is doing simple editing, such as inserting and deleting characters.

4.2. The Spelling Checker

The spelling checker is an interactive spelling checker and corrector, similar in
many ways to the DEC-20 SPELL program and the ITS SPELL program.

The spelling checker has been implemented in the MDL programming language on
a DECSystem-20. It is intended to run as a subsystem under ETUDE (referred to
here as the spell subsystem). Because the checker is not yet fully integrated with
ECOLE and ETUDE, the user is always in the spell “subsystem.”” The commands
currently available for the spelling checker are given CHECK and CORRECT. When
integration is complete. it is expected that the user will ask to CHECK or CORRECT
his document while he is editing it in ETUDE.

The user interface and document interface are, for the most part, provided by
ECOLE and ETUDE and simply used by the checker. The current version of the
checker checks text files rather than ETUDE documents, and this current version will
be described. In addition, the changes to be made for checking an ETUDE
document will be noted. A description of a typical checking scenario follows.

The user selects a command or asks for help. If the user asks for help, the list of
commands and their descriptions are displayed. After a CHECK or CORRECT
command. ECOLE passes control to the checker.

The algorithm used by the checker is similar to that of other interactive checkers.
First, the user is asked if he wants to load a dictionary. [f so. the checker loads the
user’'s dictionary before it begins checking. It displays ""CHECKING' on the screen
so the user will know that it is working. The checker procecds through the text file
one word at a time, looking each word up in the dictionary. When a word isn't found
in the dictionary. it is displayed in capital letters followed by a portion of its context

144

OFFICE AUTOMATION

as it appeared in the text file. If an ETUDE document is being checked, the word will
be highlighted on the screen. The text of the document will already be displayed so
there is no special handling of the word's context.

Next, the checker asks the parser to prompt the user with a question mark and get
his command. The table below lists the user's possible responses when a misspelled
word is found. For some responses. the checker calls the parser again to prompt the
user for further information (e.qg., for a filename if the command is “‘load" or “save,”
or for a woid if the command is “‘replace’).

COMMAND MEANING

ACCEPT Accept the current word

INSERT Insert word into personal dictionary
GUESS Display a 1list of guesses

REPLACE Replace current word with typed word
CLEAR Clear personal dictionary

LOAD Load a personal dictionary

SAVE Save personal dictionary

+MISSPELLINGS Record misspellings and replacements
in personal dictionary

-MISSPELLINGS Do not record misspellings and replacements
QUIT Quit checking this document

HELP or 7 Display this list of commands

Spelling Checker Commands

After receiving the command and any other necessary information, the checker
can then proceed to execute the command and continue checking. When the
checker reaches the end of the document, the user is asked if he wants to save his
personal dictionary (if he has a personal dictionary).

Finally, the checker indicates it has finished by displaying “DONE" on the screen
and returns. When checking an ETUDE document, the checker might move the
document’s cursor to the end of the region just checked or perhaps to its original

145

N SN |

OFFICE AUTOMATION

position when it has finished checking; this could be in addition to displaying done or
a substitute methiod of indicating that checking has been completed.

4.3. The Table System

This project involved creating a prototype table subsystem within the framework of
an integrated office workstation. Tables are widely used in business, governmental,
industrial and scientific communities for presenting information in a clear and
concise manner. Because it is so widely used, a table system is a desirable
component of an office workstation.

Our table system will have the integrated capabilities of interactive editing,
formatting and mathematical derivation. The integration of all these capabilities is
essential for general office use. Tables can be defined, formatted and inserted in
documents all with one consistent set of commands.

Tables are presented in a variety of formats in different contexts, either out of
necessity or to achieve greater clarity. For example, a user may want every entry in a
table to have three significant digits after the decimal point because of the precision
requirement of his data. Another user may want his data to be printed in the unit of
thousands with trailing digits truncated although he may want to include the other
digits in mathematical calculations. A user may want vertical lines to be inserted
between major sections of the table for clearer organization. The user should be
able to format a table interactively using a set of simple formatting commands.

Many entries in a business statistical table contain information derived from
another part of the table. When one part of the table is changed, other parts of the
table that are dependent on it need to be changed also. Automatic derivation of
entries in the table from other parts of it is an essential feature of an automated
system. Automatic derivation is achieved by storing the relationships between
different parts of the table and triggering the re-evaluation of those relationships
when the user changes an entry that defines other entries.

4.4. Page Layout

Brian Berkowitz worked on the formatting aspects of the ETUDE Il system. He
develeped a functional specification for the formatting system and developed some
prototype formatting software.

The functional specification proposed that ETUDE Il be able to produce
sophisticated documentation such as typeset technical reports and users manual.
This requires that the system be able to:

- produce paginated documents consisting of multi-column pages. A

146

OFFICE AUTOMATION

user will be able to specify constraints associated with document
structures (e.g.. paragraphs, sections, quotations, and footnotes)
indicating the situations in which it is inappropriate to break such
document structures over column and page boundaries.

- automatically place figures and tables on pages according to page
layout templates developed by the user or his/her organization. The
figure placement algorithm will work closely with the page makeup
algorithm to try o place a figure on the same page or column as its
reference.

- handle complex table-like document structure consisting of several text
and pictures components that are arranged spatially according to user
desires (e.g., a picture, its caption, and credits or an entry in a sales
catalogue).

- handle footnotes, indices, tables of contents, marginal notes, and
references between document structures (e.g., a reference within a
paragraph to a figure, footnote, or section).

As a first step toward implementing this formatter, we developed a line formatter;
this module maintains the ETUDE Il document as a continuous sequence of justified
lines. The line formatter produces the data structure that can be used by the
redisplay module to display the lines of text and also by the page makeup module to
produce final document pages. The line formatter was designed to change the line
structure in an incremental fashion, attempting to minimize the amount of
computation necessary to re-format the text when an editing change is made. It can
therefore be used to format text interactively.

We have also developed a prototype page makeup subsystem. This subsystem
was designed to test out algorithms for breaking text into pages that include a
mixture of text and figures. The prototype is batch oriented and transforms the data
structure produced by the line formatter into a series of pages. The prototype is
reasonably sophisticatcd and can produce either single or double-column paginated
8cocuments. It can handle footnotes as well as place figures referenced in the text
using a library of predefined page layouts. The algorithm uses several different
kinds of constraints in order to produce pages. [t will not necessarily produce an
optimal solution. but uses hcuristic technigues to try to produce a compromise
between the numerous and often conflicting constraints:

- page-break rules associated with the document structures (paragraphs,
quotations. sections. etc.) that dctermine where it is appropriate to
brecak such structures. An example rule is, “'a paragraph should not be

147

m_w —

OFFICE AUTOMATION

broken across a column unless it is at least five lines long and at least
two lines of the paragraph appear at the bottom of the first column and
at the top of the second column.”

- balance rules indicating the desired depth of the page and the
importance of setting pages at full depth and balancing columns,

- figure placement: These indicate the desired placement of a figure in
terms of where on the page or spread (i.e., a pair of pages consisting of
a left hand page and a right hand page when a document is printed
double sided) the figure should be located

- desired spacing between document elements and the extent that the
system is allowed to deviate from this desired spacing: Usually it is
possible to slightly alter the vertical spacing between paragraphs (or
even the spacing between lines) to produce balanced columns.

The algorithm is completely automatic at this stage. Our goal is to eventually
produce a page formatter that can be used in an interactive fashion allowing the user
to issue commands that manually alter the format of the page in order to reformat
unattractive pages. We would like to enable the user to specify why the page was
unattractive (e.g., because a figure was improperly placed or because a list with too
few elements was broken). As the user specifies his desires to the page makeup
algorithm by manually altering a few documents, the system will be able to better
produce documents according to the desires of the user.

4.5. Command Parsing

ECOLE was designed as an operating system for the workstation; it provides
essential services both to application programs and to the user. The command
parser provides a common user interface that can be used by most applications,
thus making the entire system easier to use: the user need learn only one set of
conventions in order to take full advantage of any application’s user interface. The
sharing of code tends to produce better application programs: the application can
be written without repeating the design of a good command parser.

The command parser that ECOLE provides was intended to work for many
applications. As a result, it is almost entirely table-driven: with the exception of
system-wide functions like MENU, no command is ‘built-in.’ In addition to parsing the
user's input, the parser supervises the execution of commands; thus, most
applications can be implemented without a top-level command loop. Rather, the
application programmer needs to implement only the code for the individual
application commands, ECOLE will ensure that the code for each command is called
with suitable arguments.

148

OFFICE AUTOMATION

The parser works off a hierarchy of three types of tables. The first, a character
table, translates physical keystrokes on the workstation keyboard into logical
characters recegnized by the rest of the system. This approach frees the system
from dependence on a particular terminal type or keyboard layout; if the system is
being moved to a terminal with different keypads, one need only invent a new
character table defining the mapping between the escape sequences sent by the
terminal and the logical characters in the system--one does not have to write any
new code to support the new keyboard layout. This approach has the additional
advantage that several keys on the terminal can be made to map into the same
logical character, and that each application can, if it chooses, change the definitions
of keys on the terminal.

The second table type is by far the most complex. Command tables define the
acceptable commands and command syntaxes for each application. The model
used is pseudo-English imperative sentences: commands are assumed to be of the
form

verb object object
. The command table contains verb descriptions, specifying the name of each verb
and the type of each of its arguments. Thus, ETUDE might have a command

move region

cursor
. Each argument type is described by a syntax, which is a transition network where
the condition for traversing an arc can be described by a function. Thus, application
code can, if necessary, be called even during the parsing of a command.

The third table type is the dispatch table, which provides a mapping between
operations and functions to execute them. This allows applications to share
command tables while providing different services, or to provide the same service
with different command tables.

ECOLE provides a framework for the implementation of applications by specifying
when application code will be invoked and with what arguments. It is instructive
here to consider a simple example. Let us suppose that ETUDE has been
implemented using ECOLE, and that a user wants to say

goto end-of next chapter
. He will first type goto. which ECOLE will look up in the current command table; it
will find a description of goto as a verb with one argument, a 1Tocation. It happens
that end-of next chapter is an acceptable description of a location. according
to the location syntax; when a terminal node of the syntax is reached, ECOLE will
invoke application code for the first time. It executes the LOCATION operation, with
the characters typed by the user to specify a location: end-of next chapter.

The application will have a LOCATION operation defined in its dispatch table; the

149

m -

OFFICE AUTOMATION

function specified there will examine the user's input. and the current state of the
application. and return an object representing the location specified by the user.
EcoLE will then notice that all the arguments for GOTO have been supplied; it will
invoke the GOTO operation of the application, with the object returned by the
LOCATION operation. This two-level approach to command parsing and execution
imposes some structure on the application, and simplifies it in the process. That is,
there must be separate code for specifying a location and for performing a goto; this
makes it easier to implement other commands that also use locations.

Once the application has returned from its GOTO operation, ECOLE will invoke the
REDISPLAY operation to update the application’s part of the workstation screen; it
will then invoke the STATUS-LINE operation to update the status display on the
screen. Thus, the application can be assured that its display will always be current,
without adding code in each command to update it.

This example has glossed over several issues, which we will discuss briefly here.
First, one of the principles of ECOLE is that the user should not be constrained to use
a particular form of input. If the user wishes, he can specify GOTO either by typing
the special GOTO key, by spelling out ‘goto’, or by selecting Goto from a menu of all
possible commands. This is true at any point in the parsing of a command: the user
can always obtain a menu of all possibilities, and select from that. he can also spell
out the names of special keys if he wishes (if, for example, he's unfamiliar with the
layout of the particular keyboard he’s using).

Second, at any point there is a hierarchy both of dispatch tables and of command
tables. If the STATUS-LINE operation is not defined in the application’s dispatch
table, ECOLE will fall into the system default status line function. Similarly, system-
level functions can be made available in all applications simply by including the
system command table in the set of command tables, along with the application
command table.

Finally, ECOLE attempts to be very flexible while providing a lot of support for the
simple cases. Thus, arcs in syntaxes have programs associated with them in the
most general case. They may, however, have simpler things: sets of logical
characters, or sets of names, that must be typed in order to traverse the arc. In
addition, general parsing routines have been written for the most common cases:
there are predefined functions for parsing filte names, numbers, and so on. As an
example of the flexibility that is possible. an arc in a syntax can have a command
table associated with it. Once ECOLE has decided that it wants to traverse that arc, it
will start a recursive invocation of the command parser, using the command table
associated with the arc as the primary command table. Commands from that table
will be exccuted until one of them causes the recursive parser to terminate (another
system service); at that point. parsing of the original command will resume.

150

OFFICE AUTOMATION

Thus, the ECOLE command parser provides a powerful, flexible user interface for
many applications. Itis not yet in a final form: the HELP and UNDO functions have not
been implemented. and there are some applications where it is not really suitable.
The major flaw is that ECOLE requires all arguments to a command to be specified on
the command line; a desirable alternative is to specify some of the arguments on the
command line, and the rest by filling in a form.

4.6. Display Management

In the prototype version of ETUDE, the problem of organizing and displaying
information on the screen was addressed in an ad-hoc manner. To satisfy our goal
of a workstation that integrates ditferent office applications and that allows the user
to easily switch between applications. we needed a more systematic way of handling
the physical displv.

This is the job of the ECOLE display manager. The display manager provides
output services for application programs, just as the ECOLE command parser
provides input services. These services inviude:

- primitive output operations for displaying text (in multiple fonts) and
graphics, and to mark points on the display with cursors

- a method for organizing information on the display

- mechanisms for efficiently updating the display image.

The central concepts in the display manager are the virtual screen and window.
Virtual screens provide an interface between application programs and the physical
display. A virtual screen serves three purposes. First, it defines a local coordinate
system that is independent of its location on the physical screen. Second, output
directed to a virtual screen is confined within its boundaries. Finally, a virtual screen
hides from applications the low-level characteristics of the actual display (for
example, the character sequences used to change fonts).

A window, on the other hand, represents the association between a virtual screen
and an image of a data structure. Windows are usced for organizing information on
the display. The physical display is a limited resource that must be shared among
the currently active subsystems. In addition. individual subsystems require a similar
mechanism for organizing the information they want to present to the user.

In last year's report we described a prototype implementation of the display
manager that was done on CLU. In that implementation. windows could be arranged
hierarchically (i.e.. on~ .indow could contain a serics of other windows), and could
overlap and obscure one another. The display manager automatically kept track of
the part of cach window that was currently visible on the display.

151

-

m

OFFICE AUTOMATION

Various external factors caused us to switch languages from CLU to MDL. which
required a new implementation of the display manager. The language switch was
beneficial because it gave us the opportunity to reconsider the architecture of the
display manager; feedback from users (notably, the PCAL implementors) greatly
helped in this re-evaluation. The current (MDL) implementation shares some of the
characteristics of the CLU version, although it is less ambitious in its capabilities and
therefore more efficient and practical.

An important goal of the current display manager implementation is to avoid
unnecessary and duplicate tests within the basic display manager code. For
example, in the CLU implementation of the display manager, virtual screens
automatically clipped output at their edges. in many applications, including ETUDE,
information is always formatted before it is output; the goal of formatting is to fit the
information into a given boundary, which is usually the same as the virtual screen. In
these cases, any tests done during output will duplicate similar tests done during
formatting. In the current implementation, therefore, clipping is enabled only when
required by an application.

Another difference between the CLU and MDL versions of the display manager is
that the latter has no inherent notion of overlapping windows. This means that
appiications are not unnecessarily burdened with the overhead associated with
overlapping windows. Windows created by applications generally do not overlap; for
example, ETUDE does not use overlapping windows to display the image of a
document page. An application can, however, choose to overlap its windows,
provided it manages the conflict between windows.

The process of updating a subsystem’s window is handled using an ECOLE
command. In the same way the the programmer specifies a function for performing
a MOVE command, he also specifies a function for performing the REDISPLAY
command. The command parser treats these commands identically, even though
REDISPLAY cannot be directly invoked by the user. The programmer’s redisplay
function is given the window as an arguinent, from which it can access the data
structure to be displayed and a virtual screen.

A redisplay function can be as simple or complicated as needed. Simple
applications can just update the entire window. For applications (such as ETUDE)
whose window changes only slightly after every command, an incremental redisplay
function is appropriate. The purpose of incremental redisplay is to speed up the
redisplay process and minimize the area of the display that changes after each
command.

To help support incremental redisplay functions, each window contains a slot that
programmers can use to store information about what is displayed in a window. This
information, which can be in any format. is then used by the redisplay function to
determine what parts of the window need to be updated.

152

~-

T e v - -

OFFICE AUTOMATION

4.7. Object Management

S. Zdonik has been working on the design of an object management system for
integrated office workstation applications. An office workstation is a tool that is used
by an office worker to produce objects that are required for the effective execution
of their job. Examples of office object types are documents, graphics. calendars,
and data tables. Modern workstations provide tools for producing various object
types, but lack tools for the effective management of these objects. One reason for
this void is that the characteristics of these object management systems have not as
yet been clearly defined.

Traditional file systems provide facilities for the archival storage and retrieval of
objects that are created in user programs. Database management systems provide a
means of describing the semantics of a particular type of object, but the kinds of
objects that they can handle are very inflexible. An object management system
combines the advantages of both a file system and a database management system
in that it can store arbitrarily defined programming language objects and at the same
time maintain a high-level description of their meaning and intended behavior. The
high-leve! description for ail object types is in terms of a single model. The object
management system can access this description, and, thereby, assist users in
locating objects that meet their requirements,

The prob'em that is explored in this work is development of an appropriate model
for defining the semantics of heterogeneous object types that are produced in an
office environment. We begin by identifying the goals of an object management
system:

1) Object structure specification. It is desirable to have a mechanism
for describing the structure of the objects that are being managed by the
object management system. A report might be described as containing
a set of chapters, a set of appendices, and a bibliography. The object
management system should also be able to access any of these object
components, such as a single chapter of a report.

The system would also accept descriptions of the objects that can
appear as legal components of another object. For example, one could
specify that a group project report can only contain chapters that have
been written by members of the research group.

2) Relationships among objects. The object management system will
store many objects of many different types. It is essential that the
system have a means for expressing relationships among objects. A
given paper might be related to some meeting object that represents a
time when the authors will get together to discuss its content.

183

[)

OFFICE AUTOMATION

3) Retrieval of objects. An object management system, much like a
database management system, provides a means for describing the
properties of objects such that they can be used tor retrieval later. In a
database management system, users are often interested in performing
retrievals such as Get all employees who make more than $30K. In an
object management system, a user might ask for all reports that are
longer than 20 pages and that have been written by peoprle who make
more than $30K.

4) Effective memory utilization. Another important function that an
object management system should perform is the management of the
way in which large objects are read into main memory. Since the system
will have access to a large amount of information about the semantics of
an object, we expect that it can do a good job of retrieving those pieces
of a large object that are most likely to be needed.

5) Object contrpl. Object control is concerned with controlling the ways
in which an object is used, including who is allowed to perform actions
on objects and how multi-user action is to be managed. The user should
have easy to use facilities for specifying these usage constraints.

6) Side effects to change. There must be a way to describe what actions
are to be taken when some change happens.

7) Alternative views of an object. There should be a way to describe
the construction of different objects based on the same underlying
information base. An example of a different view of an object is the
outward appearance of a document. Different outward appearances
can be computed based on the ultimate output device.

The object management system must support the expression of high-fevel
semantics of objects. The object semantics is described in terms of a high-level data
model that we believe is flexible enough to express the meaning and behavior of a
large class of office objects. The data model that we are proposing has facilities for
describing four distinct aspects of objects. These aspects are:

Content Objects can be made up of other objects. The components of an
object are the other objects from which a given object is
constructed. The content is the part of the object that is edited
by one of the workstation subsystem programs. The content is
also what gives the object its identity. Changing (i.e., editing) the
content creates a new object.

154

IS |

L 2]

OFFICE AUTOMATION

Attributes Attributes are like the fields of a record in a database
management system. They are (object.attribute.value) tuples in
which for a given object the attribute name has the value value.
Changing an attribute does not create a new object; it simply
updates a recorded property of the object.

History The history of an object is the record of the different forms that a
conceptual object takes on in the course of its evolution. For
example, chapter one of May's monthly report may have been
revised many times before it is accepted as a final product. The
intermediate versions all represent the same conceptual entity,
chapter one of May’s report. The way in which this history is
managed can be specified in the history aspect of an object-
schema class definition.

Control The control aspect relates to how an object can be used and
what should happen when the object is used. The use of an
object can include operations such as reading, writing, creating
or updating one or more of its aspects. An example of the kind of
control that one could specity would be the sending of a
message to the author of a document whenever someone else
creates a new version.

4.8. Extensions to MDL

Workstations should be able to operate in a heterogeneous environment. Two
kinds of heterogeneity are relevant. Logical heterogeneity involves different
specializations of the same basic idea. For example, sentences, sections, and text
galleys can all be viewed as specializations of the concept of a sequence. Physical
heterogeneity involves different computer representations of individual concepts.
For example, lists, arrays, hash tables, and character strings are all possible
implementations of sequences. Programs written to deal with heterogeneity can
operate on a wider variety of objects, thus increasing the value of individual software
components.

The ability of programs to deal with logical and physical heterogeneity is critically
dependent on the host programming language. Since the MDL language was not
designed with heterogeneity as a principal goal, D. Carnese extended the language
to provide increased support for both types of heterogeneity. Five new capabilities
were added: generic procedures, classes and implementations, multiple coexisting
implementations, implementable procedures, and subclasses.

Generic procedures: A generic procedure is one which can execute different

165

OFFICE AUTOMATION

bodies of code depending on the type of one or more parameters. For example, a
generic DD procedure could invoke different procedures if its arguments were
numbers. matrices, or columns of a table. Almost cvery programming language has
built in generic operations (e.g., for +). but programmer-definable generics are
much less. common.

Definab e generics are important for several reasons. Procedures can be more
robust, siice they can accept a wider variety of inputs. Program packages which
define dif erent kinds of objects can be combined more easily, since name conflicts
among th2 packages can be resolved by making each procedure an alternative of a
generic. And the name space of programs are reduced, since generic alterratives
for different types are all invoked by the same name.

Classe: and implementations:

The coricept of “abstract types” has gained wide currency in the past decade.
The essertial idea is to use one kind of structure to represent the desired behavior of
a group 0 objects, and another kind for the internal representation of the objects. In
this way a "sequence"” may be implemented in terms of "lists,”" "arrays" or other
data structure.

The principal utility of classes and implementations is that programs can be
designed to operate on any object which is an instance of a class, regardless of its
implemen:ation. Thus, changing the implementations of ECOLE objects does not
require chianging the application software which uses The result is that the objects
that ECOL E programs manipulate can be physically heterogeneous over time.

A well-khown problem with a simple class/implementation mechanism (e.g., such
as the on2 pioneered by the Clu group) is that all instances of a class in a given
environme:nt are forced to use the same implementation. In order to further facilitate
physical heterogeneity, we allow objects of the same class but different
implementations to coexist. This facility is referred to as Coexisting Implementations.

Implementable procedures is a mechanism for allowing procedures to be written in
terms of tt e most suitable of the co-existing implementations.

Subclasses: It is possible to define a class mechanism in which each class is
logically ir dependent from all others. However, it is often the case that the instances
of one cliss can be considered as instances of other classes. For example,
“manuals’, “‘brochures’, and “annual reports” can all be considered to be special
cases of ‘documents”. As a consequence of the logical heterogeneity of the
ECOLE environment, many such relationships exist between ECOLE classes.

Our class mechanism allows classes to be defined as subclasses of existing

156

OFFICE AUTOMATION

classes. If A is a subclass of B, all the operations of B are defined to be applicable to
instances of A. and instances of A can be used wherever instances of B are
appropriate. Unlike other languages which allow subclass-like structures (e.g..
Smalltalk and Lisp Machine Lisp). the semantics of subclasses prescribe that for all
operations of superclass B. the externally-observable behavior of instances of A and
B should be identical.

4.9. Constraint-Based Graphics Editing System

It is natural for an advanced document preparation system to provide facilities for
including non-textual information in a document. The most important non-textual
information prevalent in traditional documents are graphs. With the advent of high-
resolution bit-mapped displays as the preferred device for user-machine interaction
and matrix printers for hardcopy generation. the need to interactively create graphs
and compose them with text in a unified preparation environment is felt more than
ever.

Bahram Niamir has been working on a language for representing graphical objects
that would allow easy modification of such objects and would also support the
integration of complex graphs with documents constructed by an ETUDE-like text
editor in the process of document preparation. '

We have identified three engineering principles in the construction of a graphics
system for document preparation:

- Structured Graphics - The graphics system must allow for the
creation of complex graphic objects whose parts are related both in
topology and geometry to other parts of the object.

. Interactive User Interface - It is clear that the only natural and
acceptable way to create and edit graphs is to manipulate the end object
directly on the screen.

- Text-Graphics Integration - In order to fully integrate graphs with text
or text within graphs (e.g.. captions and legends), text and graphics
must both be viewed as the same ‘document,’ albeit of different types.

Structured Graphics: A structured graphics system is one that contains inherent
knowledge of the composition and interrelationships of graphic objects and their
sub-parts. A structured graphics system maintains sufficient knowledge of the
graphic object in order to present to the user the object in itself rather than some
appearance of the object on the screen. The concept of a structured graphics editor
is similar to that of a structured text preparation sysicm where the document is

157

Al
.

OFFICE AUTOMATION

structured and the editor uses the structure to edit, format, and provide an interface
for the document to the user.

In a simple structured system, objects are represented not by their appearance (as
done in an image editor) but by their geometry. That is, an object is a set of primitive
poinis, lines. curves, and surfaces. Each of these parts may be individually selected,
added. removed, or altered. Some systems structure their objects further by
allowing for the clustering of primitive parts into sub-objects of their own and
allowing for the naming of such sub-objects. Thus an object becomes a hierarchy of
sub-objects. This hierarchy may be used in the process of creating objects and the
selection and manipulation of an object's parts. Further structuring may be attained
by sharing of sub-parts between objects (resulting in non-tree like objects) and by
having object types from which individual objects are instantiated.

A graphic object also has a topology. The topology of an object is the relationship
among the points of the object, irrespective of the size, location, or inclination of the
object (the object's geometry). For example, a parallelogram is topologically
determined by the property that opposite pairs of vertices are equidistant. A
structured system must be able to represent object topology irrespective of the
object geometry.

The language we use to represent an object’s topology and geometry is based on a
system of simultaneous equations. Each equation (also known as a constraint)
signifies a relationship among the points and vectors of the object. In a
parallelogram, the variables in the constraint equation are the four vertices and two
adjacent sides. An appropriate system of 3 constraints among these variables
determines a parallelogram.

In addition to its system of constraints, an object also has an appearance. The
appearance of an object are the actual lines, curves, and surfaces drawn on the
screen as bounded and determined by the variables of the object. In order for an
object to have an appearance, its system of constraints must be fully determined.
The variables of an object so not necessarily appear in its drawing. However, the
topology of an object need not be visible and discernible by its appearance.

A system of constraints is procedural in the sense that the value of a variable is
algorithmically determined from the values of other variables, and the structure of an
object is determined by calling sub-objects and passing constraints as parameters to
them. A system of constraints is declarative in the sense that it represents topology
and geometry without specifying how the object is to be constructed. A distinct
advantage of constraints is the non-procedurality. The identity of an object does not
depend upon the order by which the constraints are defined to reach at the object,
neither does it matter in what order the sub-objects of the object are defined to reach
at the object. The non-procedurality of systems of constraints make them
particulariy atiractive to interactive manipulation.

158

OFFICE AUTOMATION

Interactive User Intertace: An interactive graphics system allows that the
graphic object to be directly manipulated in terms of its end representation on the
screen rather than to its source spccification. In our constraint-based system, the
user will create, select. and alter an object by issuing interactive commands that
appear to manipulate the end representation on the screen. However, these
commands will be translated into internal operations that insert. delete, or modity the
constraints of the object. The user may also issue commands that alter the
appearance of the object without affecting i1ts constraints.

Altering the constraints of an object is conceptually extremely simple. The old
constraint is deleted, the new constraint is added, and the system is re-determined
for the new object. If the new constraint over-determines the system, a warning is
issued and the command is ignored. It is expected that many structure editing
commands may be categorically translated into simple constraint insertion and
deletion operations. Also. by the fact that the system of constraints is non-
procedural. a change to an object will propagate only to other objects that depend
on the first object. In a procedural language. the user is often forced to create
objects in a specific order which makes later objects depend upon earlier objects (in
size. location. etc.). A change to an object will affect all succeeding objects even if
the user did not intend such a dependency.

Objects that are not fully determined can also be drawn if the user creates default
constraints that will fully determine the object. Such default constraints exist only to
provide the object with an appearance. Default constraints are always overridden if
other constraints are entered that make the system over-determined. Hence an
under-determined object may still be drawn and interactively altered even though it
represents a family of objects. For example. if the constraint governing the height of
a rectangle is made into a default constraint, the rectangle will have an
undetermined height, but will still have an appearance for further interactive
manipulation.

Text-Graphics Integration: The major issues in text-graphics integration are as
follows:

- Two-dimensional page layout and the spatial integration of text inside a
document and a graph created by a constraint-based editor. Our
approach here is also constraint based. Each graph will be constrained
within a rectangular frame and the page layout system must know about
the concept of a frame and be prepared to modify the layout as the
frame changes.

- Text within graphs (captions and legends) must be set by the full power
of the text editor. Hence text must be treated as text rather than as a

OFFICE AUTOMATION

special kind of graphical object. Again. the vehicle of integration will be
rectangular frames to contain the text.

| - The command interface to the graphics editor must conceptually mimic

the command interface to the text preparation system.
- Cross-referencing between text in separate frames, or between graphic

| objects in separate frames must be allowed. For example, the height of
a bar in a bar graph might depend on the text entered in a table entry
elsewhere.

v

)

)

N

g 160

OFFICE AUTOMATION

Publications

. Good. M.D. "An Ease of Use Evaluation of an Integrated Document
Processing System,” In Proceedings of Human Factors in Computer
Systems. Gaithersburg, Maryland. March 15-17, 1982, pp. 142-147. Also
available as Office Automation Group Memo OAM-036, January 1982.

. Good, M.D. "An Ease of Use Evaluation of an Integrated Editor and
Formatter,” MIT/LCS/TR-266, MIT Laboratory for Computer Science,
Cambridge. MA, November 1981. Revised version of S.M. Thesis.

. Good, M.D. "How to Use ETUDE," MIT Office Automation Group Memo
OAM-034, Cambridge, MA, with Eric Munro.

. Greif, . "Computer Support for Cooperative Office Activities," In
Proceedings of the 1982 Office Automation Conferen ce, San Francisco,
Calitornia, April 1982, AFIPS Press.

. Greif, |. "Cooperative Office Work, Teleconferencing and Calendar
Management: A Collection of Papers,” MIT/LCS/TM-218, MIT
Laboratory for Computer Science, Cambridge, MA, December 1981.

. Greif, | "PCAL: A Personal Calendar,” MIT/LCS/TM-213, MIT
Laboratory for Computer Science, Cambridge, MA, December 1981.
Office Automation Group Memo.

. Greif, | "Teleconferencing and the Computer-Based Office
Workstation," In Teleconferencing and Interactive Media '82, Madison,
Wisconsin, May 19-21, 1982,

. Greif, I."The User Interface of a Personal Calendar Piogram,”" In
Proceedings of the NYU Symposium on User Interfaces, New York
University, New York, N.Y., May 26-28, 1982,

. Sirbu, M., Shoichet, S., Kunin, J., Hammer, M. and Sutheriand, J. "OAM:
An Office Analysis, Methodology," In Proceedings osf the 1982 Office
Automation Conference, April 1982, AFIPS Press.

Theses completed

. Bauman, B.D. "A Distributed Database Facility for a Personal Calendar
System,"” S.B. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1982.

161

N |

OF rICE AUTOMATION

10.

11.

12.

Blake, L. "Attitudinal Effects of Office Automation on the Workers at
LL.P.," S.B. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1982.

Czarnecki, P.A. "Semcal: Avoiding Data Deluge in the Office
Environment,” S.B. Thesis. MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, June 1982.

Good, M.D. "An Ease of Use Evaluation of an integratedd Editor and
Formatter," S.M. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, August 1981.

Hsu, K.H. "Sharing of an Office Calenddar,” S.B. Thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1982.

Kim, Y. "Resource Sharing in an Automated Calendar System - PCAL,"
S.B. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1982.

Mok, W.N.K. "The Design, Implementation and integration of a Table
System,” S.B. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1982.

Mondori, A. "Evaluation and Modification of Calendar’'s Terminal
Interface,” S.B. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1982.

Nitchman, J.E. "An Interactive Spelling Checker and Corrector for
ETUDE," S.B. Thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, June 1982.

Rosenstein, L.S. "Display Management in an Integrated Office
Workstation,” S.M. Thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, February 1982.

Tallian, A.E. "Match: A Query System for the Personal Calendar," S.B.
Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1982,

Zurko, M.E. "Protection Numbers on XX: from Obscurity to Clarity," S.B.

Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge. MA, June 1982.

162

e OFFICE AUTOMATION

Theses in Progress

1. Adamoli, A.J. "Simultaneous Joint Editing of Text Documents,” S.B.
Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, Expected August 1982.

2. Carnese, D.J. "The Simplicity/Performance Conflict in Type Definition,"
S.M. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, Expected August 1982.

3. Niamir, B. "Constraint-Based Interactive Graphics Editing for Document
Preparation,” Ph.D. Dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, Expected
December 1982.

4. Sarin, Sunil D. "Remote Meeting Support Through Interactive Sharing of
Computer-based Information,” Ph.D. Dissertation, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
Expected December 1982,

5. Zdonik, S.B. "An Object Management System for Integrated Office
Workstation," Ph.D. Dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, Expected January
1983.

Talks

1. Good, M.D. "An Ease of Use Evaluation of an Integrated Document
Processsing System," Digital Equipment Corporation Human Factors
Steering Group, Hudson, MA, March 3, 1982.

2. Good, M.D. "Human Factors in Computer Systems,” Gaithersburg,
Maryland, March 15, 1982.

3. Greif, |. "Computer Support for Group Activities," MIT Laboratory for
Computer Science, Cambridge, MA, November 24, 1981.

4. Greif, . "Cooperative Office Activities: Calendar Management and
Desk-to-Desk Conferencing," Exxon Office Systems, Princeton, NJ,
June 8, 1982.

5. Greif, 1. "Cooperative Office Activities," ILP Symposium on Developing
and Implementing a Corporate Office Automation Program, May 26,
1982.

163

OFFICE AUTOMATION

6.

10.

1.

12

13.

14.

15.

16.

17.

18.

Greif, 1. "Cooperative Office Activities,” Office Automation Conference,
San Francisco, CA, Aprit 5, 1982.

Greif, I. "OAM and OSL: An Office Automation Methodology (a two day
course)," The lIsrael Institute of Productivity, Israel Centre for
information Systems Center for Productivity, Tel Aviv, Israel, Jui, 1981
and "Research in Office Automation at the MIT Laboratory for Computer
Science."

Greif, I. "Research in Office Automation at MIT Laboratory for Computer
Science," Apple Computer, Cupertino, CA, August 1981.

Greif, I. "Update on Research in Office Automation at LCS," Office
Automation Roundtablel, DARCOM, April 22, 1982.

Greif, I. "The User Interface of a Personal Calendar Program,” NYU
Symposium on User Interfaces, New York University, New York, NY, May
26-28, 1982.

Sirbu, M. "Advances in Electronic Mail," Pergammon Infotech State of
the Art Tutorial, London, England, October 9-11, 1981.

Sirbu, M. "Integrating Personal Computers, Word Processing and
Timesharing," 1982 Office Automation Conference, April 1982.

Sirbu, M. "Office Automation and Communications,” Technology
Education Associates Seminar, Sydney, Australia, July 13-15, 1981.

Sirbu, M. "Understanding Managerial Group Work," 1982 Office
Automation Conference, April 1982.

lison, R."Document Processing Languages,” Integrating CAD/CAM
and Electronic Publishing - Sponsored by the Graphic Communications
Association, April 1982,

llson, R. "Systems for Enhancing Human Information Exchange Series
- Etude System - (two talks)," IBM Systems Research Institute,
December 1981.

Zdonik, S.B. "Logical Design of Databases," Keynote Address to DRS
Users Group, Boston, MA, November 1981.

Zdonik, S.B. "Panel on Office Database Systems," Panel member,
SIGMOD '81, May 1981.

164

PROGRAMMING METHODOLOGY

Academic Staff
B. H. Liskov, Group Leader
Visitors
N. A. Lynch J. E. Stoy
Research Staff
P. R. Johnson R. W. Scheifler
Graduate Students

T. Bloom B. M. OKi
S. Y. Chiu J. C. Schatftert
J. A. Goree, Jr. E. W. Stark
C. Henderson E. F. Walker
M. P. Herlihy W, E. Weihl
J. N. Lancaster

Undergraduate Students
W. Berger B. O’'Connor

M. Dulong
Support Staff
A. Rubin

PROGRAMMING METHODOLOGY

1. INTRODUCTION

This year we have continued our work on linguistic support for the construction
and execution of distributed programs. We have focused on the development of a
new language and its support system. This new language is now called Argus; it is a
substantial extension of CLU [1], with new features to support concurrency,
distribution, and reliability. Argus is described in [2].

During the current year we have concentrated on completing the design of Argus.
As part of this effort, we have looked at example distributed applications to evaluate
the expressiveness of various features. We show one such example below. Our
tentative conclusion based on such examples is that Argus provides a good
framework for distributed programs. Of course, we must wait for Argus to be
implemented, and used in constructing real applications, before we can make a
more informed judgment.

In addition to our work on the Argus design, we have also prepared for the Argus
implementation. Our initial implementation will be on Vax's running Unix and
communicating over an ethernet. A major step in the Argus implementation is
moving CLU to the Vax. This move has been accomplished, and an implementation
of CLU on the Vax under Unix is now available for distribution.

In conjunction with our work on the Argus design and implementation, we have
also been studying the semantic foundations of Argus. For example, Argus makes
use of nested atomic actions. Precise definitions of the semantic concepts in Argus
are needed, both to support reasoning about Argus programs, and to support
reasoning about the correctness of the Argus implementation.

The remainder of this section is organized as follows. In Section 2 we give a
summary of the major features of Argus. Section 3 contains an example Argus
program and a discussion of the expressive power of Argus. Finally, in Section 4 we
describe a portion of the semantic model of nested actions.

2. SYSTEM OVERVIEW

In Argus, a distributed program is composed of a group of guardians running on
nodes (computers) connected (only) via a communications network. A guardian
encapsulates and controls access to one or more resources. The external interface
of a guardian consists of a set of operations called handlers, which may be invoked
by other guardians. The guardian executes the calls on these handlers,
synchronizing them as needed. Furthermore, it may refuse to perform an access
desircd by a caller if the caller does not have proper authorization. Handler
invocation is performed using a message-based communication mechanism with

166

[~

PROGRAMMING METHODOLOGY

at-most-once semantics: ecither the request is delivered and acted on exactly once,
with exactly one reply received, or the request is never delivered and the sender is so
informed.

Internally, a guardian contains data objects and processes. The processes
perform handler calls (there is a separate process for each call) and background
tasks. Some of the data objects comprise the global state of the guardian; these
objects, such as the actual resou.ces, are shared by the processes. Other objects
are local to the individual processes.

A guardian’s global state may consist of both stable and volatile objects. Stable
objects are written periodically to stable storage devices. These are devices that,
with very high probability, do not lose the information entrusted to them [3]. After a
crash of the guardian’s node. the language support system re-creates the guardian
with the stable objects as they were when last written to stable storage, as discussed
further below. A process is started in the guardian to re-create the volatile objects.
Once the volatile objects have been restored, the guardian can resume background
tasks, and can respond to new requests.

Although the processes inside a guardian can share objects directly, direct sharing
objects between processes in different guardians is not permitted. The only method
of inter-guardian communication is by invoking handlers, and the arguments to
handlers are passed by value: it is impossible to pass a reference to an object in a
message.

In almost any system where on-line data is being read and modified by on-going
activities, there are important consistency constraints that must be maintained.
Such constraints apply not only to individual pieces of data, but to distributed sets of
data as well. The main issues here are the coordination of concurrent activities
(permitting concurrency but avoiding interference), and the masking of hardware
failures.

The distributed state of a system is a collection of data objects that reside at
various guardians in the network. Some of these objects are stable, for which the
probability of loss of information due to hardware failures is extremely small. Other
objects are volatile, with a relatively high probability of loss, and as such must
contain only redundant information it the system as a whole is to avoid loss of
information.

An activity can be thought of as a process that attempts to examine and transform
some objects in the distributed state from their current {initial) state to some new
(final) state, with any number of intermediate state changes. Our approach to
maintaining consistency is to make activities atomic. Two properties distinguish an
activity as being atomic: indivisibility and recoverability. By indivisibility, we mean

167

k!

PROGRAMMING METHODOLOGY

that the execution of one activity never appears to overlap (or contain) the execution
of any other activity. By recoverability, we mean that the overall effect of the activity
is all-or-nothing: either all of the objects remain in their initial state, or all change to
their final state. If a failure occurs while an activity is running, either it must be
possible to complete the activity, or to restore all objects to their initial states.

We call an atomic activity an action. An action may complete either by committing
or aborting. When an action aborts, the effect is as if the action had never begun: all
modified objects are restored to their previous state. When an action commits, alf
modified objects take on their new states; only at this point do changes to stable
objects become permanent.

Actions can be nested. An action may contain any number of subactions, some of
which may be performed sequentially, some concurrently. This structure cannot be
observed from outside: the overall action still satisfies the atomicity properties.
Subactions appear as atomic activities with respect to other subactions of the same
parent. Subactions can commit and abort independently, and a subaction can abort
without forcing its parent action to abort. However, the commit of a subaction is
conditional: even if all subactions commit, aborting the parent action will abort all of
the subactions. Further, changes to stable objects become permanent only when
top-level actions commit.

To implement atomicity, we need to synchronize access to shared objects, and we
need to be able to undo the changes made to objects by aborted actions. Such
synchronization and recovery are not provided for all objects. For example, objects
that are purely local to a single action do not require these properties. The objects
that do provide these properties are called atomic objects, and atomicity is
guaranteed only when the objects shared by actions are atomic objects.

Atomic objects are encapsulated within atomic abstract data types. Atomic types
have operations just like normal data types, except that operation calls provide
indivisibility and recoverability for the calling actions. Argus provides, as built-in
types. atomic arrays, records, and variants, with operations nearly identical to the
normal arrays, records, and variants provided in CLU. In addition, objects of built-in
scalar types, such as characters and integers, are atomic, as are structured objects
of built-in immutable types, such as strings, whose components cannot change over
time. Users can also define new atomic types.

Qur implementation of built-in atomic objects is based on a read/write locking

model. Before an action uses an object, it must acquire a lock in the appropriate

mode. To keep the locking rules simple, we do not allow a parent action to run
concurrently with its children. An action may obtain a read lock on an object
provided every action holding a write lock on that object is an ancestor. An action
may obtain a write lock on an object provided every action holding a (read or write)

168

L .

PROGRAMMING METHODOLOGY

lock on that object is an ancestor. When a write lock is obtained, a volatile version of
the object is made. and the action operates on this version.

When an action aborts. its locks and versions are discarded. When a subaction
commits, its locks and versions are inherited by its parent. When a top-level action
commits, its locks are discarded but its versions become the new values of their
respective objects. and any new versions of stable objects are written to stable
storage, to be used as the initial versions following a node crash. To ensure global
consistency, a two-phase commit protocol is used for top-level actions. In the first
phase, an attempt is made to verify that all focks are stilf held, and to record the new
version of each modified stable object on stable storage. If the first phase is
successful, then in the second phase the locks are released, the recorded versions
become the current versions, and the previous versions are forgotten. If the first
phase fails, the recorded versions are forgotten and the action is forced to abort,
restoring the objects to their previous states.

3. A SIMPLE MAIL SYSTEM

In this section we present a very simple mail system. Although we have chosen
inefficient implementations for some features, and have omitted many necessary and
desirable features of a real mail system, we hope to give some idea of how a real
system could be implemented in Argus.

The interface to the mail system is quite simple. Every user has a unique name
(user_id) and a mailbox. However, mailbox locations are completely hidden from the
user. Mail can be sent to a user by presenting the mail system with the user’s user_id
and a message; the message will be appended to the user's mailbox. Mail can be
read by presenting the mail system with a user’s user_id; all messages are removed
from the user’'s mailbox and are returned to the caller. For simplicity, there is no
protection on this operation: any user may read another user’s mail. Finally, there is
an operation for adding new users to the system, and some operations for
dynamically extending the mail system.

All operations are performed within the action system. For exampie, a message is
not really added to a mailbox unless the sending action commits, messages are not
really deleted uniess the reading action commits, and a user is not really added
unless the requesting action commits.

The mail system is implemented out of three kinds of guardians: mailers,
maildrops and registries. Mailers act as the front end of the mail system: all use of
the system occurs through calls of mailer handlers. To achieve high availability,
many mailers will exist, e.g.. one at each physical node. A maildrop contains the
mailboxes for some subset of users. Individual mailboxes are not replicated, but

169

|

PROGRAMMING METHODOLOGY

multiple. distributed maildrops are used to reduce contention and to increase
availability, in that the crash of one physical node will not make all mailboxes
unavailable. The mapping from user_id to maildrop is provided by the registries.
Replicated registries are used to increase availability, in that at most one registry
need be accessible to send or read mail. Each registry contains the complete
mapping for all users. In addition registries keep track of all other registries.

Figure 1 defines a number of abbreviations for atomic types used in implementing
the mail system. For simplicity, we use only types obtained from the built-in atomic
type generators struct and atomic_array. together with the abstract types user_id
and message, whose implementations we omit. Structs are immutable records: new
components cannot be stored in a struct object once it is built. Since structs are
immutable, they are atomic. Atomic arrays are one-dimensional, and can grow and
shrink dynamically. Of the array operations used in the mail system, new creates an
empty array, addh adds an element to the high end, trim removes elements,
elements iterates over the elements from low to high, and copy copies an array.
Read locks on the entire array are obtained by new, elements, and copy, and write
locks are obtained by addh and trim.

The mailer guardian definition is presented in Figure 2. The is clause lists the
various ways of creating instances of the guardian; all of the guardians presented in
this section have a single create operation. The handles clause lists the externally
available handlers of the guardian. Then follows the stable and volatile variables
comprising the global state of the guardian. The recover code is used to reinitialize
the volative variables after a crash. The background code is used to perform any
background tasks needed by the guardian. Finally there are the implementations of
the creation operations and the handlers.

Figure 9-1: Abbreviations

mailbox = struct[mail: messagelist, % messages for
user: user_id] % this user
atomic_array[message]
atomic_array[mailbox]
atomic_array[registry]
atomic_array[steering]
struct users: userlist, % users with mailboxes
drop: maildrop] % at this maildrop
atomic_array[user_id]

messagelist
mailboxlist
registrylist
steeringlist
steering

userlist

170

"]

PROGRAMMING ME THODOLOGY

Figure 9-2: Mailer Guardian

mailer = guardian is create
handles send_mail, read_mail,
add_user, add_maildrop, add_registry

stable some: registry % stable handie
best: registry % volatile handle
recover
best . = some % reassign after crash
end
background

while true do
enter topaction
best ;= ... % choose closest responding registry
end
sleep(...)
end
end

create = creator (reg: registry) returns (mailer)
some : = reg
best: = reg
return(self)
end create

send_mail = handler (user: user_id, msg: message)
signals (no_such_user)
best.lookup(user).send_mail(user, msg)
resignal no_such_user
end send_mail

read_mail = handler (user: user_id) returns (messagelist)
signals (no_such_user)
return(best.lookup(user).read_mail{user))
resignal no_such_user
end read_mail

171

PROGRAMMING ME THODOLOGY

add_user = handler (user; user_id) signals (user_exists)
drop: maildrop : = best.choose()
all: registrylist : = best.all_registries()
coenter
action
drop.add_user(user)
action foreach reg: registry in registrylistdelements(all)
reg.add_user(user. drop)
abort resignal user_exists
end
end add_user

add_maildrop = handler ()
all: registrylist : = best.all_registries()
drop: maildrop : = maildrop$create()
coenter action foreach reg: registry in registrylist$elements(all)
reg.add_maildrop(drop)
end
end add_maildrop

add_registry = handler ()
ail: registrylist : = best.all_registries()
new: registry : = registry$create(all, best.all_steerings())
coenter action foreach reg: registry in registrylistfelements(all)
reg.add_registry(new)
end
end add_registry

end mailer

A mailer must be given a registry when created; this registry is the mailer’s stable
"handle" on the entire mail system. The mailer also keeps a volatile handle: the
registry representing the "best" access path into the system. The background
code is used to periodically choose a new registry to play this role; the closest
responding registry would be an appropriate choice.

A mailer performs a request to send or read mail by first using the best registry to
determine the maildrop of the specified user, and then forwarding the request to that
maildrop. The syntax for invoking a handler of a guardian is

expression.handler_name(arguments)

where the expression evaluates to a guardian object. A mailer adds a new user by

e PROGRAMMING METHODOLOGY

first using the best registry to choose a maildrop. and then concurrently asking
maildrop to create a mailbox and informing all registries of the new user/maildrop
pair. The coenter statement is used to create concurrent subactions; the foreach
clause indicates that a separate subaction should be spawned for each registry in
the list a/l. Note that if the user is discovered to exist at any registry, the overall
action aborts.

A new registry is added by extracting the entire user-to-maildrop mapping and the
list of all registries from the best registry, and using them to create a new registry.
The other registries are then informed of the new registry so they may add it to their
registry lists. Finally, a new maildrop is added by creating one and informing all
registries of its existence.

Figure 3 shows an implementation of the registry guardian. The state of a registry
consists of an array of registries, together with a steering list associating an array of
users with each maildrop. When a registry is created, it is given an array of all other
registries. to which it adds itself, and the current steering list. The add_user handler
checks to make sure the user is not already present, and adds the user to the user
array for the given maildrop. The add_maildrop and add_registry handlers perform
no error-checking because correciness is guaranteed by the mailer guardian.

An implementation of the maildrop guardian is given in Figure 4. The state of a
maildrop consists of an array of mailboxes; a mailbox is represented by a struct
containing a user_id and an array of messages. A maildrop is created with no
mailboxes. The add_user handler can be invoked to add a mailbox. Note that this
handler does not check to see if the user already exists; this checking is performed
by the registries. The send_mail and read_mail handlers use linear search to find the
correct mailbox. When the mailbox is found, send_mail appends a message to the
end of the message array; read_mail first copies the array, then deletes all messages,
and finally returns the copy. Both handlers assume the user exists; this is
guarantced by the registries.

Finally, in Figure 5, we chow a simple use of the mail system, namely, sending a
message to a list of users. with the desire that the message be delivered only if all of
the users exist. and otherwise to get back a list of all non-existent users. The
massage is sent to all of the users simultaneously, and the non-existent users are
collected in an array. Although a non-atomic array is used, its addh operation is
defincd to be indivisible. so no explicit synchronization is needed here. After all
sends are completed, if the array is non-empty, the overall action is aborted, thus
ensuring that none of the users are sent mail.

173

Uy e
'e PROGRAMMING METHODOLOGY

Figure 9-3: Registry Guardian

] registry = guardian is create
[| handles lookup. choose, all_registries, all_steerings,
add_user, add_maildrop. add_registry
{ stable registries: registrylist % all registries
h stable steerings: steeringlist % all users and maildreps

create = creator (rest: registrylist, steers: steeringlist) returns (registry)
registrylistbaddh(rest, self) % add self to list
registries : = rest
%,y steerings : = steers
return(self)
end create

lookup = handler (user: user_id) returns (maildrop)
signals (no_such_user)
for steer: steering in steeringlist$elements(steerings) do
for usr: user_id in userlist$elements(steer.users) do
if usr = user
then return(steer.drop) end
end
end
signal no_such_user
end lookug

choose = handler () returns (maildrop) signals (none)
if steeringlist$empty(steerings)
then signal none end
drop: maildrop : = ... % choose, e.g., maildrop with least users
return(drop)
end choose

all_registries = handler () returns (registrylist)
return(registries)
end all_registries

all_stcerings = handler () returns (steeringlist)

return(steerings)
end all_steerings

174

PROGRAMMING METHODOLOGY

add_user = handler (user: user_id, drop: maildrop) signals (user_exists)
for steer: steering in steeringlist$elements(steerings) do
for usr: user_id in userlist$clements(steer.users) do

if usr = user
then signal user_exists end
end

if steer.drop = drop
then userlistSaddh(steer.users, user) end % append user
end
end add_user

add_maildrop = handler {drop: maildrop)
steeringlist$addh(steerings, steering${ users: userlist$new(),
drop: drop})
end add_maildrop

add_registry = handler (reg: registry)
registrylist$addh(registries, reg)
end add_registry

end registry

3.1. Remarks

Close examination of the mail system will reveal many places where the particular
choice of data representation leads to far less concurrency than might be expected.
For example, in the maildrop guardian, since both send_mail and read_mail modify
the message array in a mailbox, either operation will lock out all other operations on
the same mailbox until the executing action commits to the top level. Even worse,
since both send_mail and read _mail read the mailbox array, and add_user modifies
that array, an add_user operation will lock out all operations on all mailboxes at that
maildrop. In the registry guardian. an add__user operation will lock out /ookup
operations on all users with mailboxes at the given maildrop, and an add_maildrop
operation locks out all lookup operations.

in a real system, this lack of concurrency would probably be unacceptable. What
is needed are data types that allow more concurrency than simple atomic arrays.
For example, an associative memory that allowed concurrent insertions and iookups
could replace the mailbox array in maildrops and the steering list in registries; a
queue with a "first-commit first-out" semantics, rather than a "first-in first-out”
semantics, could replace the message arrays in maildrops. Such types can be built

as user-defined atomic types, although we will not present implementations here.

175

m .
‘o PROGRAMMING METHODOLOGY

Figure 9-4: Maildrop Guardian

maildrop = guardian is create handles send_mail, read_mail, add_user
stable boxes: mailboxlist : = mailboxlist$new()

create = creator () returns (maildrop)
ﬂ return(self)
end create

send_mail = handler (user: user_id. msg: message)
for box: mailbox in mailboxlist$elements(boxes) do
if box.user = user
then messagelistfaddh(box.mail, msg) % append message
return
end
end
end send_mail

read_mail = handler (user: user_id) returns (messagelist)
for box: mailbox in mailboxlistdelements(boxes) do
if box.user = user '
then mail: messagelist : = messagelistscopy(box.mail)
messagelistdtrim(box.mail, 1, 0) % delete messages
return{mail)
end
end
end read_mail

add_user = handler (user: user_id)
mailboxlistfaddh(boxes, mailbox${ mail: messagelisténew(),
user: user})
end add_user

end maildrop

The concurrency that is built in to the mail system leads to a number of potential
deadlock situations. For example, in the registry guardian, two instances of
add_user could simultaneously read the same user array, and then simultaneously
attempt to modify that array, neither succeeding because the other still holds a read
lock. In the mailer guardian, deadlock is possible if two different add__user,
add_maildrop, or add_registry requests modify registries in opposite orders.

176

PROGRAMMING METHODOLOGY

Figure 9-5: Distributing Mail

distribute_mail = proc (m: mailer, users: idlist, msg: message)
signals (no_such_users(idlist))
idlist = array[user_id]
enter action
bad: idlist : = idlist$new()
coenter action foreach user: user_id in idlist$elements(users)
m.send_mail(user, msg)
except when no_such_user: _
idlist$addh(bad, user) % indivisible
end
end
if ~idlist$empty(bad)
then abort signal no_such_users(bad) end
end
end distribute_mail

Some of these deadlock situations would go away if data representations allowing
more concurrency were used. For example, the use of a highly concurrent
associative memory for the steering list would allow add_maildrop requests to run
concurrently. In other cases, the algorithms must be modified. For example, to
avoid a deadlock between two different requests to add the same user, the mailer
add_user operation could pick a distinguished registry, such as the first one in the
list of all registries, and perform the registry add_user operation there sequentially
before performing all of the rest concurrently. To avoid deadlock between
concurrent add__maildrop and add__registry requests, the mailer add__registry
operation could first get a write lock on the registry list of a distinguished registry,
and add_maildrop could be forced to obtain its registry list from that same registry.

It may be argued that the strict serialization of actions enforced by the particular
implementation we have shown is not important in a real mail system. This does not
mean that actions are inappropriate in a mail system, just that the particular
granularity of actions we have chosen may not be the best. For example, if an action
discovers that a user does (or does not) exist, it may not be important that the user
continues to exist (or not exist) for the remainder of the overall action. It is possible
to build such "loopholes" through appropriately defined abstract types. As another
example, it might not be important for all registries to have the most up-to-date
information, provided they receive all updates eventually. In particular, when adding
a new user, it may suttice to guarantee that all registries eventually will be informed
of that user. This could be accomplished by keeping appropriate information in th.
stable state of a mailer guardian, and having the background process of that mailer
be responsible for eventually informing all registries.

177

PROGRAMMING METHODOLOGY

4. THEORETICAL STUT!ES: CONCURRENCY CONTROL FOR
RESILIENT NESTED ACTIONS

4.1. Motivation

Argus is based in part on a nested transaction model of programming which
generalizes the single-level transaction model often used for databases. (See [4], for
example.) Thus, the implementation of Argus poses problems similar to (and more
difficult than) those which arise in implementing single-ievel transaction systems. An
entire field of research, "concurrency control theory," is directed towards
understanding the requirements and implementation of single-level transaction
systems. We are generalizing this theory to handle nested transactions.

The concurrency control problem is roughly as follows. Data in a large
(centralized or distributed) database is assumed to be accessible to users via
transactions, each of which is a sequential program which can carry out many steps
accessing individual data objects. It is important that the transactions appear to
execute "atomically,” i.e., without intervening steps of other transactions. However,
it is also desirable to permit as much concurrent operation of different transactions
as possible, for efficiency. Thus, it is not generally feasible to insist that transactions
run completely serially. A notion of equivalence for executions is defined, where two
executions are equivalent provided they "look the same” to all transactions and to
all data objects. The serializable executions are just those which are equivalent to
serial executions. One goal of concurrency control design is to insure that all
executions of transactions be serializable.

Several characterization theorems have been proven for serializability; generally,
they amount to the absence of cycles in some relation describing the dependencies
among the steps of the transactions. A very large number of concurrency contro!
algorithms have been devised. Typical algorithms are those based on two-phase
locking [4] and those based on timestamps (5], [6]. Although many of these
algorithms are very different from each other, they can all be shown to be correct
concurrency control algorithms. The correctness proofs depend on the absence-of-
cycles characterizations for serializability.

The nested-transaction model generalizes the earlier model in two important ways:
by the nesting structure and by explicit consideration of aborts.

At first glance, the basic correctness criteria for nested transactions seem to be
clear enough (intuitively) to allow implementors a sufficient understanding of the
requirements for their implementation. However, some subtle issues ot correctness
arise in connection with the behavior of failed sub-transactions. For example, a
pleasant property for an implementation to have is that "orphans” (sub-transactions

178

PROGRAMMING METHODOLOGY

of failed transactions) should see "consistent” views of the data (i.e., views that
could occur during an execution in which they are not orphans). We go to
considerable lengths to insure this property, but it is difficult for us to be sure that we
have succeeded.

In order for us to be able to prove that our implementation satisfies its correctness
requirements. it seems that we must generalize concurrency control theory to
incorporate consideration of nesting and aborts.

4.2. Work Completed

We have begun to generalize the basic theory of concurrency control to treat
nested transaction with aborts. In this section, we outline the steps which have

already been accomplished.

Action Trees: First, we have defined a simple "action tree" structure. This
structure describes the ancestor relationships among executing transactions and
also describes the views which different transactions have of the data.

Formally, we assume a priori existence of a universal tree of possible transactions,
hereafter called "actions"”, with fixed designation of ancestor relationships and
sequential dependencies among actions. A (virtual) action U, the parent of all top-
level actions, has been added for the sake of uniformity. The leaves of this tree of
actions are called Accesses, and model program steps which actually access data
objects. The objects they access and the functions performed on those objects are
assumed to be fixed a priori. In any particular execution, only some of these
possible actions will be "activated.”

An action tree describes a snapshot of an execution. It consists of a subset of the
set of all actions, together with status information (‘active,” ‘committed’ or 'aborted’)
for each non-access action and a fabe/, indicating data value read, for each access.

We have defined the important concept of visibility of one action in an action tree,
to another. One action, A, is visible to another action, B, if A is committed up to the
least common ancestor of A and B. That is, A is not hidden from B by an intervening
failure or still-active action.

We have defined the notion of "serializability” for action trees. It amounts to the
existence of a total ordering for each set of siblings in the tree, such that all the data
values seen by the accesses are consistent with execution of the siblings in the
given order. This consistency specifies that an access, B, only sees the effects of
preceding accesses to the same object which are visible to B.

The most basic correctness requirements for nested transaction systems involve

179

_ . A, . . A

PROGRAMMING METHODOLOGY

only those actions whose effects are "permanent” (formally, those which are visible
to U). Thus, for any action tree T, we have defined the permanent part of T, perm(T).
The most basic correctness requirement is that any action tree T created by our
implementation have perm(T) serializable.

The style in which we have defined serializability is more fundamental than the way
it is defined in "traditional” concurrency control theory. Unlike the earlier
definitions, this definition is applicable to systems which use multiple versions, as
well as systems that use single versions of data objects. The earlier definitions
included implicit information about versions. and so have required extensions [7],
[8] to handle algorithms such as Reed's. In order to obtain a cycle-free
characterization for serializability, however, it is necessary to put some information
about versions back in. Thus, we define a structure similar to an action tree, but with
a little more information.

Augmented Action Trees: In order to prove that our particular algorithm
satisfies this basic correctness requirement, it is helpful to introduce additional
structure into action trees, obtaining augmented action trees (AAT's). AAT's
describe exactly which version (i.e. result of a particular other access to the same
object) is read by each access. The definition of serializability is easily extended to
AAT's, so that it is obvious that AAT serializability implies ordinary action tree
serializability.

We prove a characterization for AAT serializability, in terms of absence of cycles in
an appropriate dependency relation on actions.

Operations on Action trees and AAT’s: The basic strategy we would like to
follow is to define a set of operations on action trees which can be used to generate
action trees. The actual strategy used is a little more complicated, however. Some
of the correctness conditions we want to require involve relationships bastween
"input requests" (originating from user programs) and "output steps" performed by
the algorithm. (For example, our algorithm should only create a particular action A if
the user program has actually requested the creation of A.) A convenient way to
handle such conditions uniformly with invariants on action trees is to augment the
global state information -- instead of a global state which consists of an action tree
only, we let it be a pair (S, T) consisting of a summary of requests and an action tree.
Then the operations we define will be operations on such pairs (S, T).

There are seven kinds of operations on pairs (S, T). Three "input operations"
model requests by the user programs -- to create actions, and to commit and abort
non-access actions. Four "output steps” model steps of the algorithm -- to create,
commit and abort non-access actions and to perform accesses. Each operation has
a set of conditions under which it is defined on (S, T), and a particular etfect on (S,
™.

180

Ao

——~————

PROGRAMMING METHODOLOGY

A sequence of operations is correct provided either (1) some input operation is
undetined on the result of its prefix, or else (2) all operations (both input and output)
are defined, and for any (S, T) created during the execution of the sequence,
perm(T) is serializable.

A similar set of definitions is given for AAT's. Interestingly, for AAT’s, it is the case
that the last condition (the serializability of perm(T)) actually follows from the
definability conditions.

Execution Model: We wish to show that particular algorithms "generate" only
correct operation sequences. In order to do this. we must define an execution model
for distributed algorithms. and describe the sense in which an instance of the model
generates operation sequences.

The model we define is a very simple automata-theoretic model, in which local
computation steps are modeled by local state transitions, while communication is
modeled by remote state transitions. We assume a homomorphism from automaton
steps to operations on action trees (or AAT's). In this way, an execution sequence
for the automata maps to an operation sequence for action trees (or AAT’s).

Correctness Proof for Moss’ Algorithm: A slightly simplified version (in which
reads and writes are not distinguished) of Moss' algorithm [3] has been described
using the given execution model, and a correctness proof carried out. The
correctness proof has quite an interesting structure:

We imagine that the various nodes of the system implementing the algorithm are |

cooperating to create a virtual "global state,” which is a request summary, AAT pair.
The major work of the proof is showing that, provided the input operations are
always defined on this global state, the output operations are also always defined.

A helpful device is to define a "possibilities” mapping from node states to sets of
request summary, AAT pairs. This mapping describes the possible pairs which the
node thinks could comprise the global state. We show that at all times during the
execution, the true (virtual) (S. T) is in each node’s set of possibilities. We also show
that each node always performs coperations that are defined for all (S, T) in its set of
possibilities. Therefore, the required definability conditions are satisfied.

4.3. Extensions

We are currently extending the treatment in this paper to Moss' complete
algorithm, which achieves extra concurrency by distinguishing "read” and "write"
accesses and processing them differently. It appears that a rather general approach
to modeling data objects and their accesses, including the case we have already
treated and the read-write case as special cases, will turn out to be appropriate.

181

A

A

n)

PROGRAMMING METHODOLOGY

Our framework ought to be suitable for proving correctness of other
implementations of nested transactions, such as Reed’s [6]. We plan to study the
applicability of our framework to Reed’s algorithms.

The definitions we have developed so far just express the simplest correctness
requirements, not subtle conditions such as correctness of orphans’ views. We also
do not address issues of fairness and eventual progress. We hope that the
framework presented here will extend to allow expression of these other properties,
and to allow correctness proofs for the difficult algorithms which guarantee these
properties.

182

PROGRAMMING METHODOLOGY

References

. Liskov., B.H., Snyder, L.A., Atkinson, R.R. and Schaffert, J.C.

"Abstraction Mechanisms in CLU," Communications of the ACM 20, 8
(August 1977), 564-576.

. Liskov, B.and Scheifler, R.W. "Guardians and Actions: Linguistic

Support for Robust, Distributed Programs," Proceedings of the 9th
Annual ACM Symposium on Principles of Programming Languages,
January 1982, 7-19.

. Lampson, B.and Sturgis, H. "Crash Recovery in a Distributed Data

Storage System," Xerox PARC, Palo Alto, CA, April 1979.

. Eswaren, K. P., Gray, J. N,, Lorie, R. A. and Traiger, I. L. "The notions of

consistency and predicate locks in a database system,"
Communications of the ACM 19, 11 (November 1976).

. Lamport, L. "Time, Clocks and the Ordering of Events in a Distributed

System," Communications of the ACM 21, 7 (July 1978).

. Reed, D. P. "Naming and Synchronization in a Decentralized Computer

System," MIT/LCS/TR-205, MIT Laboratory for Computer Science,
Cambridge, MA, 1978.

. Kanellakis, P.and Papadimitriou, C."On Concurrency Control by

Multiple Versions," Proceedings of the ACM Symposium on Principles of
Database Systems, March 1982, 76-82.

. Bernstein P.and Goodman N. "Concurrency Control Algorithms for

Multiversion Database Systems," 1982 ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, August 1982,
209-215.

. Moss, J.E.B. “Nested Transactions: An Approach to Reliable

Distributed Computing,” MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA, 1981.

183

PROGRAMMING METHODOLOGY

10.

Publications

Burns, J., Jackson, P., Lynch, N., Fischer, M. and Peterson, G. "Data
Requirements for implementation of N-Process Mutual Exclusion Using
a Single Shared Variable," Journal of the ACM, January 1982, 183-205.

DeMillo, R., Lynch, N.and Merritt, M. "Cryptographic Protocols,"
Proceedings of the 14th ACM Symposium on Theory of Computing,
1981, 383-400.

Fischer, M. and Lynch, N."A Lower Bound for the Time to Reach
Interactive Consistency,”" Information Processing Letters 14, 4 (June
1982), 183-186.

Herlihy, M. P. and Liskov, B.H. "A Value Transmission Method for
Abstract Data Types," Computation Structures Group Memo 200-1, MIT
Laboratory for Computer Science, Cambridge, MA, August 1981. To
appear in ACM Trans. on Programming Languages and Systems.

Liskov, B.H. "On Linguistic Support for Distributed Programs,"
Proceedings of the IEEE Symposium on Reliability in Distributed
Software and Database Systems, July 1981, 53-60. Also published in
IEEE Trans. on Software Engineering, SE-8, 3 (May 1982).

. Liskov, B, H. "Report on the Workshop on Fundamental lIssues in

Distributed Computing,"” ACM Operating Systems Review 15, 3 (July
1981), 9-38. Also published in ACM SIGPLAN Notices 16, 10 {(October
1981), 20-49.

Liskov, B. H., and Scheifler, R. W. "Guardians and Actions: Linguistic
Support for Robust, Distributed Programs,”" Proceedings of the Ninth
Annual ACM Symposium on Principles of Programming Languages,
January 1982, 7-19. Also Computation Structures Group Memo 210,
MIT Laboratory of Computer Science, Cambridge, MA, November 1981,

Lynch, N. "Upper Bounds for Static Resource Allocation in a Distributed
System," Computer and System Sciences 23, 2 (October 1981) 254-278.

Lynch, N. "Accessibility of Values as a Determinant of Relative
Complexity of Algebras," Computer and System Sciences 24, 1
(February 1982), 101-113.

Lynch, N. "Multilevel Atomicity," Proceedings of the ACM Symposium
on Principles of Database Systems, March 1982, 63-69.

184

-l

® PROGRAMMING METHODOLOGY

11. Fischer, M., Griffeth, N. and Lynch, N. "Global States of a Distributed
[System," IEEE Trans. on Software Engineering SE-8, 3 (May 1982),
b 198-202.

12. Fischer, M., Griffeth, N., Guibas. L. and Lynch, N. "Probabilistic Analysis
of a Network Resource Allocation Algorithm," AMS Workshop on
Probabilistic Algorithms, June 1982,

Theses Completed

1. Berger, W. "Extension of a Real-time Display Editor," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

2. DuLong, M. "Formatter for Ada Source Programs,” S.B. thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

3. Schaffert, J.C. "The Specification and Proof of Data Abstractions in
Object-oriented lLanguages,” Ph.D. dissertation, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
September 1981.

Theses in Progress

1. Bloom, T. "Dynamic Module Replacement in a Distributed System."
Ph.D. dissertation, MIT Department of Electricai Engineering and
Computer Science, Cambridge, MA, expected September 1982,

2. Stark, E. W. "Foundations of a Theory of Specification for Distributed
Systems," Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge. MA, expected January 1983.

3. Henderson, C. "Locating Migratory Objects in an Internet," S.M. thesis,
MIT Department of Electrical Engirieering and Computer Science,
Cambridge, MA, expected August 1982.

Talks

1. Liskov, B. "On Linguistic Support for Distributed Computing,"

IEEE Symposium on Reliability in Distributed Software and
Database Systems, Pittsburgh, PA, July 20, 1981
University of Washington, Seattle, WA, August 1981.

185

_

PROGRAMMING METHODOLOGY

Invited Lecture at the inaugural Symposium, Cross Currents in
Computer Science, University of New Hampshire,
Durham, NH, October 23, 1981

Quality Software Meeting, Rockport, MA, October 30, 1981

General Electric Co., Schenectady, NY, November 10, 1981

Wang Institute, Tyngsboro, MA, December 1981.

2. Liskov, B. "Argus: A Language for Distributed Programs."

Boston University, Boston, MA, February 10, 1982.
Harvard University, Cambridge, MA, March 11, 1982.
Prime Computer, Framingham, MA, April 11, 1982,
Yale University, New Haven, CT, April 29, 1982.

3. Liskov, B. "Guardians and Actions: Linguistic Support for Robust,
Distributed Programs,” Ninth Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, NM, January 1982.

4. Lynch, N. "Towards a Theory of Complexity for Distributed Systems,"

MIT, Cambridge, MA, Fall 1981
Harvard University, Cambridge; MA, Fall 1981
Yale University, New Haven, CT, Fall 1981

186

PROGRAMMING TECHNOLOGY

Research Staff

S.T. Berlin

M. Blank, M.D.
S.W. Galley

L. Hawkinson
P.D. Lebling

J.C.R. Licklider

S. Pinter

C.L. Reeve

R.Sangal

A. Vezza, Group Leader

GRADUATE STUDENTS

B.T. Berkowitz T.F. Michalek

D. Lee S.I. Ross

P.C.Lim A. Yeh

Undergraduate Students

S. Barber S. Malone

T. Bollinger S. Nandapurkar

D. Brackman R. Osgood

D. Dufour J. Pezaris

S. Ferguson R. Rotman

K. Hartman M. Terpin

T. Kim M. Vermeulen
R. Wikrama

Support Staff
N. Mims D. Venckus

lﬁ‘% 459 LABORATORY FOR comrm SCIENCE PROGRESS REPORT 19 4 5 . Hll
JULY 1981-3. JUNE 19.. CU) MASSACHUSETTS INST olF)U ;sgll

CAMBRIDGE LAB FOR COMPUTER SCIENCE.. M L DERT
UNCLASSIFIED @1 NAY 84 HlTlLCS-PR-19 NOBdi4-75-C-0661 F/8 9/2

v v v v v e

1.0 L J2s 23
"mg Et 22
L &" 22

” s
122 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREA! OF STANDARDS-1963-A

PROGRAMMING TECHNOLOGY

1. INTRODUCTION TO PLANNING SYSTEM

The major activity of the Programming Technology Group this past year has been
concerned with further development of the Planning System. The development
activity has been focused on four major areas: (1) The muiti-media aspect of the
Advanced Message System (AMS); (2) a two dimensional user interface to the
planning system; (3) PLAID in the areas of knowledge representation; planning
graphs and reasoning capabilities; and (4) the machine independent MDL (MIM)
system and environment including a VAX version of MIM which should achieve initial
operational status within about a month.

2. ADVANCED MESSAGE SYSTEM

There have been four main areas of development in the Advanced Message
System over the last year. First has been upgrading the Reader and Composer of
the message system to handle multi-media (Lebling). Second was the development
of a FAX decoding and display program in MDL (Galley). Third was the
implementation of an encoder and decoder to transform multi-media messages into
byte streams (Hartman). Fourth has been the implementation of a generalized two
dimensional work space simulator and interface to the planning system. (Lebling).

2.1. Reader and Composer

The Reader and Composer can now deal with multi-media text as defined by
ARPAnet protocols [1][2][3] Elements consisting of media other than normal text are
logically inserted into the message by the user typing (for example) "Insert Fax
{PDL>FOOQ.FAX". Work is proceeding on actually displaying these alternate media
on our recently acquired BBN BitGraph terminal. At present, on non-graphic
terminals (VT100s, for example), the media are not displayed. Instead a token is
placed in the text field which indicates the presence of non-text media. This token
may be edited as though it were part of the text the user typed.

When a message is received in multi-media form, the analogous process is carried
out to display it; the Reader gives the user as much information as it can (usually just
the medium and the origin of the "unpresentable" medium). The presentation is
modular, so that when multi-media capable terminals appear, it will be possible to
upgrade the presentation with little trouble.

2.2. Facsimile Images

Programs in MIM (machine-independent MDL) to decode, scale, and display
facsimile images on the Apollo DOMAIN work-station were constructed.

188

PROGRAMMING TECHNOLOGY

The programs can decode images encoded according to the standards defined by
Arpanet protocols [4][5]{6]. These standards derive from the Dacom 450 and from
the CCITT Draft Recommendation T.4 (Group 3) facsimile apparatus for document
transmission. The standard specifies a two-dimensional run-length coding
algorithm. Timing trials showed that FAXMIX in MIM was able to be decoded using
the 2060 in 115 seconds. This is comparable to another implementation of a
decoding program written in another language.5 Because both the DOMAIN
physical display surface and a virtual screen in the DIGRAM graphics system (under
development by Lim) have only 1024 pixels from top to bottom, while the standard
height of a facsimile image is some 2200 pixels, programs to shrink decoded images
by half were constructed.

Currently the decoding program expects a file specification as its input, further
work will focus on decoding and displaying FAX images contained in messages
rather than files, displaying images for a user more easily and naturally, and
encoding synthetic images with the CCITT method.

2.3. Dynamic Recursive Work Sheet Simulator

A generalized worksheet simulator has been written which builds on the ground
cleared by VisiCalc. The goal has been to produce a multi-sheet, multi-user, data-
based planning aid. To this end, query facilities have been implemented, including
the ability to use worksheets as databases. Additionally, some of the recognized
deficiencies of the commercially available VisiCalc have been remedied.

The query facility is based on two relatively simple additions to the basic work
sheet simulator. First, the ability to manipulate references to locations in the
worksheet. Second, the ability to have a function analogous to "for-each” or MDL
MAPF. An example may help clarify these additions.

Suppose a worksheet contains a database of products in a certain area.
Successive rows in the worksheet would be different suppliers for the product, and
each column would have a meaning. For example, a row might consist of a supplier,
a price, and how long delivery of an order would take. The user would set up the
selection criteria for a particular order:

AND(PRICE<100,DELAY<10)

This expression would determine whether some particular entry fits the selection
criteria, but it is not general in that it points to absolute locations within a worksheet
(i.e, PRICE and DELAY). However, if one can get a pointer to a worksheet entry into
some other entry (say, E), one can reference locations relative to it:

5A.R. Katz's implementation in L10.

189

e ——r —w - —— ~ =

N TR

rv -

PROGRAMMING TECHNOLOGY

AND(PRICE(E)<100,DELAY(E)X10)

Assuming PRICE and DELAY are appropriate offsets into a record, the user can
test a record by pointing to it from E. The only other facility needed is the MAPF that
lets successive records be examined:

FIND(AND(PRICE(*)<100,DELAY(*)<10),SUPPLIERS(A1...A100))

Where the special symbol * means "the record currently being examined." If a
record matches the test, a pointer to it is returned. By making the requirements
(maximum price and maximum delay) variables, a forms based query system comes
into existence.

FIND(AND(PRICE(*)<PMAX,DELAY(*)<DMAX),SUPPLIERS(A1...A100))

The user might see only Supplier Frobozz Electric Maximum Price 100.00 Price
95.95 Maximum Delay 10 days Delay 7 days

By changing the price or delay criteria, the user would see which suppliers are
acceptable. Commands exist to step through the records which match a given
search specification.

Some of the additional capabilities which have been implemented include:

- The ability to have any number of worksheets loaded at once. In
addition, different worksheets may be displayed in each window.
Changes in one worksheet which impact others cause automatic
updating just as though only one worksheet existed.

- The ability to reference entries in different worksheets than the current
one. Inthe example above, "SUPPLIERS" is a separate worksheet from
the one in which the querying is being done. Other worksheets will be
loaded dynamically as needed if they are referenced by a worksheet
already loaded.

- String comparison operations, including substring operations, prefix
matching, and exact matching.

- The ability to define new operators. These will be dynamically loaded as
needed.

- "Area" operations (as opposed to "entry" and "range" operations). For
example, the "Print” command (used for getting hard copy of a
worksheet) will take an arbitrary sub-part of the worksheet as one of its
arguments.

190

PROGRAMMING TECHNOLOGY

- Form definition and filling commands. A group of entries may be defined
as a form, after which the user may use the "Fill" command to step
through those entries sequentially.

Many of the deficiencies of the commercially existing VisiCalc have been removed.

- The command parser determines heuristically whether a given line of
input is a command (such as "global format integer"), a string entry
(such as "Maximum Price") or an expression (such as "PRICE + 100").

- The user is completely free to use forward and circular references. This
means that the layout constraints imposed in the basic VisiCalc (that all
references must be either to previous rows or previous columns) are
removed. The user is therefore free to organize the worksheet in his
own way.

- Any column may have its width set independently of the other columns.
In VisiCalc all columns must have the same width.

- Any entry or range may be named, and these names may be used in
place of the absolute entry coordinates at any time.

It is intended that the worksheets or parts thereof will be usable as media in the
message system.

3. KNOWLEDGE-BASED PLANNING AIDS

The principal objective in this research area is the development of a high-level
planning aid system, to be known as PLAID. (Hawkinson, Sangal, Ross, Michlich,
Terpin, Yeh) The primary purpose of PLAID will be to assist planners in developing
plans, but PLAID will also be useful in monitoring what it has helped plan.
Monitoring aids in PLAID will include query, history/status report, and
alert/reminder facilities.

PLAID encourages a structured style of planning by (1) requiring that every plan
have one or more topics, (2) allowing a plan to be separately elaborated for distinct
subtopics of its topics, and (3) allowing plans for distinct subtopics of a topic to be
combined to form a new plan for that topic. Thus, for example, a plan for a project
might be separately elaborated for each of several tasks, and then resulting plans for
the tasks might be combined in various ways to form new elaborated plans for the
project. PLAID supports concurrent exploration of alternatives by allowing a plan to
be separately elaborated for each of several alternative (and typically conflicting)
hypotheses. As might be expected, separate elaboration of plans for alternative

191

._.L

P A_‘.AL_L‘ -

- Ve

Y S

If.’

PROGRAMMING TECHNOLOGY

hypotheses or for distinct subtopics is allowed at any point, and hence relationships
between an original plan and elaborations of it can become arbitrarily complex. For
example, a particular elaboration could be an alternative elaboration of a plan for a
subtopic of some alternative elaboration of a plan for a subtopic of the original topic.

To enable a planner to visualize the present state of his planning, PLAID will be
capable of displaying graphically the relationships between an original plan and
various of its elaborations (each of which is itself a distinct plan). A planner may
operate on such a p/anning graph by (1) selecting a particular plan (node) for further
elaboration; (2) adding a hypothesis; (3) specifying subtopics of the topic of the
currently selected plan, to allow separate elaboration of the plan for each subtopic;
(4) specifying a set of alternative hypotheses, to allow separate elaboration of the
currently selected plan for each of these alternative hypotheses; (5) specifying a set
of plans to be combined; (6) discarding plans that are no longer of interest; (7)
selecting the best among a set of alternatives (implicitly discarding the rest); etc.

In addition to providing operations on planning graphs, PLAID will assist planners
by (1) evaluating plans upon request, (2) detecting "obvious inconsistencies" (often
constraint violations) in pians and helping resolve them, (3) presenting work sheet
views of plans and allowing indirect amendment of plans via such work sheets, and
(4) producing documents based on plans. A plan evaluator now being developed in
a Master’s thesis (Ross) attempts to determine a plan’s resource requirements and
likelihood of success. Resolution of a detected inconsistency in a plan involves the
revision or retraction of at least one hypothesis or belief (possibly even a constraint
or rule); the revision or retraction of a hypothesis or belief necessitates
reconsideration, and usually revision or retraction, of all hypotheses and beliefs it
supports (inferentially). work sheets are a highly popular planning device, especially
as impiemented on display terminals. The coupling of worksheets to plans in
planning graphs provides a very powerful tool for planners, a tool which permits
planners to view plans from various perspectives, to make projections based on
plans, to compare alternative plans, to elaborate or revise plans indirectly by filling in
or changing values on work sheets, to maintain consistency among multiple work
sheets coupled to the same or related plans, to view the result of combining
separately elaborated plans (even as they are being revised by several individuals,
say), etc. Documents such as budget proposals can be automatically produced from
plans in much the same way as work sheets are automatically filled in from plans,
except that English paragraphs also have to be generated.

To make it practical to use PLAID in a new organization, PLAID must be able to
acquire and update whatever organization and application specific information it
needs from sources within the organization. Such information would include
individual facts and beliefs, descriptions of the organization and of its record-
keeping structures, program and project descriptions, procedures, rules and

192

rﬁwﬁ—*w‘“-w.ﬁ T T T

PROGRAMMING TECHNOLOGY

policies, constraints, event descriptions, and hypotheses for plans. Most such
information would be acquired by model-directed interview (with communication via
English phrases and displayed menus), but some might be acquired directly from
databases otherwise maintained by the organization.

3.1. PREP Development

Our knowledge representation system, PREP, has been improved at both the
design and implementation levels, especially in the areas of notation, concept types,
and belief representation. Planning graphs have been further developed and
implemented. Mark Terpin, an undergraduate member of our group, is using
planning graphs in a system to aid MIT computer science students in planning their
courses of study. :

Various reasoning capabilities are being added to PREP, some of a general nature
(e.g., inheritance, maintenance of viewpoints, and reasoning about time) and some
specific to planning (e.g., decomposition and plan evaluation). The more general
reasoning techniques are being developed in a Master’s thesis (Michalek) entitied "A
Rigorous Approach to Some Basic Inference Problems”; this thesis, which also
presents a formal semantics for PREP, was completed in May of 1982. The
techniques for plan evaluation will be the topic of a Master's thesis (Ross) tentatively
entitlted "A Plan Evaluation System"; completion of this thesis is expected by
September 1982. Another member of our group (Yeh) is working to develop a
Master’s thesis in the area of plausible reasoning.

Our knowledge representation methodology has been refined, particularly in the
area of actions and processes. Our sample knowledge base, which describes a
particular organization and its budget planning process, has been revised in
accordance with our refined methodology and models.

4. MIM DEVELOPMENT

Progress in the machine independent MDL (Reeve, Blank, Berkowitz, Lim,
Brackman, Berlin, Dufour, Hartman) project over the year has been in the areas of:
(1) Implementation of MIM for Apollo Domain; (2) Garbage collections/storage
management; (3) Flexible new stream 1/0 system; (4) MIM Graphics (DIGRAM); (5)
Porting parts of the MDL environment; (6) Working on the VAX implementation; (7)
Adding further optimizations to the compilers; (8) Increasing the robustness of the
various implementations.

193

K

PROGRAMMING TECHNOLOGY

4.1. MIM for the Apollo Domain

An open compiler that translates MIM virtual machine instructions to M68000
instructions was developed. The code produced by the open compiler in
conjunction with a kernel, implemented in assembly language for the Apolio Domain
provided the necessary scaffolding and foundation for bootstrapping the entire MIM
system onto the Apollo. This version of MIM was used as the basis for the design
and implementation of the DIGRAM Graphics System.

4.2. Garbage collection/Starage management.

Both a mark/sweep and full-copy garbage collector have been implemented for
MIM. They were both written in MDL and both work well. Both garbage collectors
run on the Apollo and TOPS-20. in addition, a flexible "zoned" storage system has
been implemented to permit both garbage collected and non-garbage collected
storage to co-exist.

4.3. Stream |/0 System

A completely new implementation of 170 is underway for MIM. An initial version is
up and running on the TOPS-20 version of MIM. Porting the 1/0 system will be
somewhat more difficult than other subsystems since 1/0 is inherently more machine
dependent that most programs.

4.4. MIM Graphics

MIM Graphics is provided by the DIGRAM system. Three aspects of it have been
under development: (1) Virtual graphics device (DIGS); (2) Graphics Run-Time
Support System (GRSS); (3) A Test application program.

The DIGS module provides basic graphics operations for programs written in MDL
in a uniform manner. The DIGS module provides graphic operations in Motorola
M68000 assembly language not provided by the Apollo Domain hardware. In
particular, that module provides the raster operctions (also known as bit-blt)
because the Apollo Personal Computer does not. DIGS also provides the triangle
tilling operations for filling polygon areas. DIGS provides the primitive operations of
DIGRAM.

GRSS provides graphics application programs with graphics input functions,
graphics output functions, and viewport manager functions. The graphics input
functions obtain input from graphics input devices. The graphics output functions
display lines and triangles, combine boxes with raster operations, and print text on a
viewport. The viewport manager functions manage those viewports, or virtual

194

[y #A‘A.

PROGRAMMING TECHNOLOGY

screens, by providing functions to create, modify, and destroy viewports. We have
written those functions in MDL, compiled them on MIT-XX computer, moved them to
the Apollo Personal Computer, and used those functions on the Apollo.

Finally, we have built a graphics application program to test the graphics system,
That program is a simple intelligent screen simulator which allows MDL to read input
from the keyboard and print output on the screen. In addition to the basic display
operations such as erasing a character for a delete operation, that intelligent screen
simulator uses the viewports in the graphics system to restrict the output to specific
areas of the screen. Since developing graphics programs is much easier when we
can see the program and the graphics output simultaneously, that intelligent screen
simulator will make the development of graphics programs quicker.

Most of the implementation mentioned above has been accomplished and a
Masters Thesis (Lim) describing the DIGRAM system in more detail was completed in
May.

4.5. Porting of the MDL environment to MIM.

The following subsystems have been moved from MDL to MIM: (1) EDIT-the MDL
structure editor; (2) PRINT-the MDL pretty printer; (3) &-Printer-the complex
structure printer; (4) PACKAGE-the MDL package system; (5) FINDATOM:-identifier
pattern matcher; (6) INT-the MDL interrupt system.

Thus approximately 75% of the MDL environment has been moved to MIM. The
MIM system is currently almost as powerful a program development environment
currently found in the MDL system. It is expected that by early next year the MIM
environment will achieve parity with the current MDL environment.

4.6. VAX Implementation.

An open-compiler and a MIM kernel are currently under development for the VAX
that was recently acquired. This implementation will run on the "personal" VAXes
that LCS has acquired. MIM will be up on the VAX in about a month.

4.7. Compiler Optimizations

As weaknesses in the code produced by the MIM compilers were encountered,
optimizations were included to correct these weaknesses. Optimizations were
added to both the MIMC compiler which compiles MDL into MIM and the various
MIMOC compilers which translates MIM into order code for the target machines.

195

P

DU

PROGRAMMING TECHNOLOGY

4.8. Robustness Enhancements

MIM has been acquiring some real users, inevitably each new real user uncovers
new bugs in the MIM. As the bugs have been addressed, the overall reliability of MIM
has increased. Our goal is to have MIM achieve the robustness of MDL by the end of

the year.

196

PROGRAMMING TECHNOLOGY

References

. Postel, J. B. "Internet Message Protocol” Arpanet Network Information

Center, Reprot RFC-759 August 1980.

. Postel, J.B. "A Structured Format for Transmission of Multi-Media

Documents” Arpanet Network Information Center, Report RFC-767
August 1980.

. Postel, J.B. "Rapicom 450 Facsimile File Format" Arpanet Network

Information Center, Report RFC-769 September 1980.

. Katz, A. "Decoding Facsimile Data from the Rapicom 450" Arpanet

Network Information Center, Report RFC-798 September 1981.

. Agarwal, A., O'Connor, M.J., and Mills, D.L. "Dacom in 50/500

Facsimile Data Transcoding,"” Arpanet Network Information Center,
Report RFC-803 November 1981.

. CCITT "Draft Recommendation T.4-Standardization of Group 3

Facsimile” Arpanet Network Information Center, Report RFC-804
undated.

Publications

. Dornbrook, M., Blank, M., "The MDL Programming Language Primer"

MIT Laboratory for Computer Science, Cambridge, MA, 1980.

. Licklider, J.C.R. "National Goals for Computer Literacy" in Book,

Computer Literacy, 1982, New York, 281-287.

. Licklider, J.C.R. "Teleconferencing: Working Together Across Space

and Time" in Book Innovations in Telecommunications (Part B), 1982,
New York, 949-993.

. Licklider, J.C.R. and Vezza, A."The Utility of Electronic Message

Systems"” in Book ELECTRONIC MAIL AND MESSAGE SYSTEMS:
Technical and Policy Perspectives, Arlington, VA, 11-31, 1981.

. Vezza, A.(ed.) "ELECTRONIC MAIL AND MESSAGE SYSTEMS:

Technical and Policy Perspectives,” American Federation of Information
Processing Societies, In¢c. 1981.

197

B ——

2]

PROGRAMMING TECHNOLOGY

Theses Completed

. Lim, P.C. "A Device-Independent Graphics Manager for MDL," S.M.

thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1982,

. Wallace, K.G. "Canonical Terminal Support in the TOPS-20 Operating

System,"” S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1982,

. Craig, T. "An Analytic Model for the Performance Evaluation of RMDS:

A Relational Database Management System, " S.M. thesis,
Department of Electrical Engineering and Computer Scic e,
Cambridge, MA, June 1982,

Talks

. Licklider, J.C.R. "Computer Literacy," Interdisciplinary Conference on

the Future of Literacy, University of Maryland, Baltimore County, MD,
April 1982.

. Licklider, J.C.R. "The Electronic School," Conference on the Future of

Electronic Learning, Columbia University, New York, NY, April 1982.

. Licklider, J.C.R. "Some Ideas About a Graphical Programming and

Program Monitoring Language,” ARPA Conference on Graphical
Representation of Software, Key West, FL, December 11-14, 1981,

. Licklider, J.C.R. "Education in the 1990s," Keynote Address at Fourth

Annual Computer Conference, Lesley College, Cambridge, MA, May 8,
1982.

198

REAL TIME SYSTEMS

Academic Staff
M.L. Dertouzos S.A. Ward, Group Leader
R.H. Halstead R.E. Zippel

Research Staff

J. Armmold J. Test
S. Keohan

Graduate Students

H. Alcabes J. Powell

T. Anderson D. Rubine
D. Esposito L. Seiler

D. Goddeau R. Simmons
M. Johnson T. Sterling
A. Lake T. Teixeira
J. Mandry C. Terman
R. McLellan J. Tnosi

A. Mok D. Vogel

Undergraduate Students

D. Alpern C.Li

S. Goldman J. Loaiza

B. Hankins T. Lukac

D. Hills J. Morrison

K. Holmes M. Nahabedian
W. Hughes G. Pratt

J. Kesselman N. Ronkin

G. Kramer M. Rose

J. Krueger E. Seidman

REAL TIME SYSTEMS

J. Lakos
C.Le

M. Brown
O. Feingoid
J. Hoppe
L. Kenen

Visitors

G.C. Clark

Support Staff

200

R. Speliman
T. Tsakiris

R. Kane
E. Tervo
P. Vancini

REAL TIME SYSTEMS

1. INTRODUCTION

Major projects within the Real Time Syst ms Group during the past year have been
(i) continuing development and technology transfer of the NU personal computer
system; (ii) continued study of multiprocessor architectures. leading to a new effort
directed at the design and construction of a substantial facility for experimentation
with multiprocessor systems:; (iii) substantial redesign of the TRIX network-oriented
operating system, along with initial stages of its corresponding reimplementation;
and (iv) continued work in the area of VLSI design, with particular emphasis on the
development of design tools.

2. THENU PERSONAL COMPUTER

During the past year, work on the Nu project has been largely in two areas: (i)
hardware redesign and other aspects of technology transter, in cooperation with
Western Digital; and (ii) development and enhancement of software, particularly the
microprocessor-based UNIX system which is currently used on the Nu.

Specific accomplishments include:

1) In cooperation with Western Digital, a substantial redesign of the Nu
implementation. Changes are directed primarily at performance
improvements over the existing prototypes, and include

a) Additional bus protocols for the efficient transfer of multi-word
packets. This extension improves the NuBus bandwidth to a
maximum of about 35 MBytes/second.

b) incorporation of a System Diagnostic Unit, which enhances
reliability and maintainability by independently verifying the
integrity of all major system components.

¢) Substantial changes to the M68000-based CPU card, including
addition of local cache and revised memory mapping.

2) Development of a display-multiplexing window system, and its
integration into UNIX (Test). The windows each provide the full
functionality of a virtual terminal, and may be reconfigured dynamically
under user control.

3) Continued improvements to, and maintenance of, our microprocessor-
based UNIX and C systems (Terman, Test).

As the Nu project enters its fifth year, several remarks on its retrospective

201

REAL TIME SYSTEMS

evaluation seem appropriate. The project’'s goals have been (i) tool building: to
provide the laboratory with a desperately needed resource; and (ii) technical: to
explore and exploit a number of architectural ideas and technology, ultimately in
order to influence the state of the art.

Progress toward the first of these goals has been disappointing. Production Nu's
are currently scheduled for early 1983, and we continue to anticipate their
widespread assimilation by LCS; however, delays in their availability have largely
eclipsed their critical role as laboratory resources. As the project began, there were
simply no commercially available personal computers which satisfied the
Laboratory’s projected needs; indeed, this void was the major impetus for the Nu
effort. Over the intervening years, plausible commercial alternatives have arisen,
partly as the result of the Nu and similar projects elsewhere. During this period, LCS
expended considerable manpower and frustration negotiating a series of
manufacturing arrangements (Exxon, Heath, Zenith, and Western Digital); while we
expect the Western Digital connection to prove fruitful, it seems clear that our
approach to technology transfer has not been an unqualified success.

By technical standards, however, the project has been both successful and
influential. The LCS prototypes became operational quickly (3 months for the initial
8086-based Nu, less than a year for the NuBus-based system) and have reflected
positively on the underlying architectural ideas. The Nu’s architects have devoted
substantial energy to interactions with manufacturers of similar machines, which
evidence considerable influence from the structure and goals of the Nu. System
software used on the Nu, most particularly our revisions of Western Electric’'s UNIX
software for microprocessor (8086, Z8000, M68000, and N16000) environments have
been widely circulated and are something of a standard on microprocessor-based
UNIX systems. We have repeatedly had the experience of discovering that the
microprocessor-based UNIX system we are being introduced to is running software
developed at RTS.

It is noteworthy that the Nu's architectural flexibility is attracting commercial
attention. Lisp Machines, Inc. is developing a NuBus-based LISP processor to be
available for the Western Digital machines. Western Digital, in turn, has plans to offer
a UNIX system which supports multiprocessor Nu systems.

3. MULTIPROCESSOR ARCHITECTURES

The period since June 1981 has seen continued development of the MuNet
multiprocessor project and Mulisp parallel programming language, as well as the
initiation of major new projects to build a multiprocessor experimentation facility and
a real-time interactive graphics system.

202

REAL TIME SYSTEMS

3.1. MuNet and Mulisp
Accomplishments during the past year include:

1) Development of an acceptably efficient simulator for the LCODE
"machine language" of the MuNet, along with an efficient translator
from Mulisp to LCODE (Halstead).

2) Augmentation of MulLisp and LCODE to handle "futures" as a
convention for argument passing (Ronkin).

3) Implementation of several test programs in MuL.isp, and the collection of
statistics about the achievable parallelism in their execution. Notable
among these programs are part of a graphics system (Simmons) and a
parallel alpha-beta search using the "mandatory work first" strategy
(Hankins).

The results obtained from these simulations are generally encouraging, but there is
a real need for a facility capable of handling larger programs with longer execution
times, for it is these programs that have the greatest need for parallel processing.
This need is a principal motivation for the multiprocessor experimentation facility,
discussed next. Long-term continuation of the MuNet research will involve the
development of substantial parallel programs using the multiprocessor
experimentation facility. The observed properties of these programs will then guide
the specification of a MuNet architecture, and the programs themselves can serve as
benchmarks against which proposed architectures can be judged.

3.2. A Multiprocessor Experimentation Facility

In order to involve large numbers of people in the development of parallel
programs, and thus amass a body of expertise concerning paraliel programming, it is
imperative to have an execution environment which rewards (with faster execution)
the construction of programs in a parallel manner. Researchers deeply committed to
parallel architectures will be willing to simulate parallel execution on a sequential
machine, and derive satisfaction from the timing numbers printed by the simulator,
but rapid progress in parallel architectures requires that a wider user community be
tapped. Furthermore, even researchers in the field will be reluctant to experiment
with programs whose simulation on a sequential machine is too time-consuming, yet
many of these larger-scale programs are precisely the ones that should receive more
attention. Finally, innovation often comes from unlikely sources, and the more
individuals of every persuasion are involved with parallel processing, the more
chance there is for innovation to occur.

A major difficulty facing anyone who would like to experiment with a parallel

203

o

REAL TIME SYSTEMS

implementation of some algorithm is the lack of any existing infrastructure for
executing programs on parallel machines. The prospect of man-years of tool-
building will dissuade all but the most dedicated advocate of parallel computing. We
believe this effect has operated in many instances within the Laboratory for
Computer Science, as well as outside.

Most candidate applications for parallel machines do not require highly specialized
architectures in order to benefit from parallel execution. Mostly, stable and robust
hardware is needed, along with a user-friendly program development system.
Almost always, even algorithms targeted for specialized hardware can profitably be
tested, debugged, and refined using a reasonably competent general-purpose
machine.

Accordingly, we propose to build a multiprocessor experimentation facility, to be
generally available to researchers at MIT who are interested in parallel computation.
We see two principal categories of users:

1) Serious developers of parallel architectures and languages who would
like to quickly breadboard their ideas prior to full implementation.

2) Workers in other disciplines who would like to investigate parallel
processing as a solution to their problems but cannot afford to construct
their own multiprocessor system.

Hardware and software design for the proposed multiprocessor experimentation
facility, whose working title is SPUDS, has been conducted during the past year (by
Zippel, Halistead, Anderson, Sterling, Alpern, Mercado, and Morrison). The broad
outline of the hardware design is firm; software design for a general-purpose user-
friendly programming environment has begun and is continuing.

Hardware Design: The principal hardware design goal is maximum use of
commercially available components, consistent with meeting the performance and
other objectives of the system. We have located a commercial source (Microbar
Systems) of unique processor and memory boards that are especially suitable for our
system. Each processor and memory card is dual-ported: one port connects to a
standard Intel Multibus (using four extra lines to allow 24-bit addresses), and the
other port connects to a special Microbar "fast bus." This organization makes it
possible to attach several processors to one Multibus by pairing each processor with
one or more memory cards to which it is directly connected by its own fast bus. Any
processor can still access any memory location in the system, but accesses to its
own set of memory cards are performed on its own fast bus and do not load the
Multibus. An incidental bonus is that accesses over the fast bus complete in 500 ns,
allowing 8MHz microprocessors to run at full speed.

204

R

— .y IS 3 S

P —
(]

REAL TIME SYSTEMS

One might propose constructing a large multiprocessor simply by connecting a
large number of such processor-memory pairs to a single Multibus. The fast-bus
transactions do allow one Multibus to serve more customers, but beyond a certain
number of processors, Multibus saturation is likely. There are also logical limits,
relating to the interrupt structure of the Multibus, that make it difficult to attach more
than eight processors to one Multibus. Therefore, some other strategy must be used
to build larger multiprocessors.

The RingBus: We plan to construct a multiprocessor out of "clusters,” each of
which is a Multibus backplane containing approximately four processor-memory
pairs as described above. Multi-cluster systems will be bound together by a special
segmented-bus structure (the "RingBus") that will function as a memory with up to
eight ports in which every memory location is accessible from every port. Physically,
the RingBus is packaged as a number of "sectors,” each of which is a board that
plugs into a Multibus, behaves like memory from the point of view of devices on that
Multibus, and is connected to other sectors. (Each sector also contains some
control registers.) The RingBus also contains one central arbiter board, which is
connecied to all the sectors and controls the granting of requests to use the
RingBus. RingBus design has heen performed primarily by Anderson, Halstead, and
Sterling.

The RingBus is a segmented bus in the shape of a ring, with each sector
corresponding to one segment of the bus. Switches between the segments are
controlled by the arbiter, and may be closed to fuse several segments together for a
particular transaction, or opened to allow segments to operate independently. Thus,
if each cluster is performing accesses to memory in its own sector of the RingBus, ail
such accesses can proceed concurrently, For a cluster to access memory in some
other sector, some number of segments must be assigned to form a connection
between the requesting cluster and the requested memory. The RingBus design is
thus optimized for local accesses, but is capable of performing nonlocal accesses
without great penalty. Several nonlocal accesses may even proceed concurrently,
provided they use non-overlapping sections of the RingBus.

The arbiter’s job is to choose between requests that require conflicting sections of
the RingBus. With the limitation of a maximum of eight sectors per RingBus, we
believe that a synchronous arbiter can be constructed that will act on requests within
200-300 ns -- an acceptable delay for global memory requests.

Expansion of the System: A full-size (eight-sector) RingBus, connected to
Multibuses with four processors each, will form a system with 32 processors, and
this is our intermediate-term objective. However, we would like to be able to
experiment with larger multiprocessors.

Redefining the RingBus to allow more ports entails increasing cost to maintain the

205

4
1

W |3 g

REAL TIME SYSTEMS

same pertormance level, and there are practical limits on how many processors can
be served by one Muitibus. Although shared memory is an efficient communication
technique for moderate numbers of present-day microprocessors, it does not scale
well. Therefore, larger systems that we would propose do not have any shared
memory that is accessible as ordinary memory to every processor in the system.
Rather, we propose to build larger systems out of several rings (one RingBus and up
to eight Multibuses per ring), using some commercially available point-to-point or
network communication hardware (e.g., 10 MB Ethernet) to connect them. - An
advantage of the basic SPUDS architecture is that one or more processors can be
dedicated to handle the communication protocol, if necessary, while remaining
tightly coupled to the processors they serve. There is thus almost unlimited potential
for constructing "smart peripherals” using only off-the-shelf hardware.

The proposed expansion via muitiple rings does not appear to require any
hardware work, but it must be kept in mind while designing the software
environment, to avoid making decisions which would preclude making effective use
of multiple-ring systems.

Metering: In addition to its shared memory and control functions, each RingBus
sector will perform a number of monitoring functions, allowing observation of usage
patterns both on the RingBus and on individual Multibuses. This will be generally
useful in tuning the performance of programs, and will also enable researchers in
architecture to measure the access patterns and other performance attributes of
their programs. Specification of the metering functions has been undertaken by
Sterling.

Hardware Plans: An operating prototype RingBus with two sectors is planned for
September 1982. By July 1982, we should have two Multibus cages and five
processor-memory pairs (we plan to use Motorola 68000 processors; Microbar also
sells Intel 8086/8087 boards). By summer of 1983, we plan to expand to a full-ring
32-processor system (approximate power: 10 MIPS), at an approximate parts cost
(including power supplies, connectors, etc.) of $5,000 per processor memory-pair.

Software Environment: The major goal of the software environment is to allow
use of the system at a number of levels of sophistication, from a bare machine (with
only downloading and contiguration support being used) through several levels of
utility subroutine support (e.g., at different levels different communication styles will
be supported; at some levels "one program per processor" will be the rule, but other
levels will support multiplexing a processor among a number of processes), to a
high-level language with parallelism integrated into its semantics. The software tools
will generally be structured so as to be accessible from the programming language
C, which we expect to be the primary implementation vehicle.

At all but the highest (parallel programming language) level, a user will write one or

206

N N M VR e N

s

REAL TIME SYSTEMS

more programs in C and specify a configuration in which they are to be downloaded.
A configuration language will allow a desired configuration pattern to be specified
without direct reference to specific processor names. This is being worked on by
Mercado and Halstead.

A set of communication and memory management utility routines is being specified
by Alpern. These routines will support message-based communication (may occur
even between different rings) and allocation of memory shared among a designated
set of processors (restricted to all be on the same ring).

A debugger is being specified by Morrison. Most of the debugger operations will
be performed on a host machine connected to SPUDS, but a basic set of "probe"
primitives on SPUDS itself will allow the debugger to perform its operations.

Zippel and Halstead have begun to design a multiprocessor Lisp (working title:
MultiLisp) to serve as an integrated high-level language tool for users of SPUDS.
MultiLisp will be influenced by the constructs of MuLisp and also, probably, by
SCHEME.

Specification will be completed, and implementation begun, on all of these
software tools during summer of 1982,

Higher-Level Software Tools: Several higher-level software projects
contemplate us.ng SPUDS as a source of computer power. Considerable work has
already been performed by Sterling on the specification of an event-based control
flow programming language and architecture, where the normal SPUDS processors
would act as slaves, directed to work on tasks by one or more specialized high-
performance "dispatcher" processors.

Another likely project is a generalized emulator facility that will use
multiprogramming to speed the simulation of computer architectures. A related
application of interest to Zippel is the simulation of LS! integrated circuits.

3.3. Interactive Real-Time Graphics

In developing multiprocessor architectures and languages, we must be guided by
experience with actual, substantial programs. A considerable amount of analysis of
numerical programs has been conducted in connection with the various data flow
computer architecture projects. Less attention has been given to coherent
programming methodologies for real-time problems, or for symbolic data-structure-
intensive programs (programs we would normally be inclined to write in a
programming language such as Lisp). There is reason to believe that real-time and
symbolic computation will benefit from different programming languages, and
perhaps different arcnitectures, than are suitable for purely numeric computation.

207

REAL TIME SYSTEMS

The MuNet project, discussed above, is concerned with finding languages and
architectures that are good for solving these problems. A problem that has both
real-time and symbolic components (as well as an appreciable numerical
component) is real-time, interactive, three-dimensional graphics. This has been
chosen as an application to be implemented on SPUDS using MultiLisp technology.
This will provide good calibration for the usefulness of MultiLisp and also provide a
benchmark (the graphics program) for judging proposed MuNet architectures.
Furthermore, it will attack a problem of considerable practical importance. It is likely
that a general-purpose multiprocessor can provide a more scalable, cost-effective
graphics system that the traditional approach of special purpose processors using
extremely high speed hardware.

Why a General-Purpose Machine? Many graphics researchers advocate
special-purpose VLS! hardware (e.g., the "Geometry Engine"). Special-purpose
hardware can certainly perform specific functions faster than general-purpose
hardware, but it is often difficult in special-purpose hardware to insert the flexibility
to respond to information that may become available at various points during
processing. For example, a geometry engine might take polygons in three
dimensions, transform them into the viewer's coordinate frame, clip them to a
window, perform a perspective transformation, and finally draw them. A general-
purpose machine, however, would be able to detect, after a few transformations, that
an entire object is behind the viewer, or obscured by another object, and thus save
the work of processing the remaining polygons associated with the object. A
general-purpose machine would also be able to adjust the amount of detail in an
object according to its distance from the viewer. These techniques could easily save
orders of magnitude of work, enough to more than compensate for the speed
advantage of special-purpose hardware.

Special-purpose hardware does have a place in graphics processing, but ideally it
would be as a simple speed enhancement for general-purpose operations (e.g., a
floating-point multiplier), so that there are many convenient opportunities in the
course of a computation for the flexibility and "intelligence" of general-purpose
computing to come into play.

The Planned Graphics System

The planned graphics system will execute on a full SPUDS system of 32 processors
or more. Output from the program will be in the form of a display list (more compact
than a bit map) in the shared memory of the RingBus. The display list will indicate
the left edge of every distinguishable region in the picture, along with the color of the
region. Smooth shading between colors will be possible for better modeling of
curved surfaces. A special piece of hardware (attached to some SPUDS cluster) will
fetch the display list and generate a color picture "on the fly" in raster-scan order.

208

Y

REAL TIME SYSTEMS

Current Status: A program (approximately 1500 lines of code) for displaying
polygonal shapes in three dimensions has been developed by Halstead. The
program produces the display list format discussed above. The display list can then
be viewed on a bit-map color monitor (512 x 512 pixels). Programming wizardry by
Goddeau has led to the generation of a number of interesting shapes to display. The
current program is being used to test the image quality that results from various
display approaches, preparatory to specifying display hardware design. Current
results suggest that picture complexities of several hundred polygons are feasible.

4. TRIX OPERATING SYSTEM

TRIX is a kernel operating system designed for use on a network of interconnected
processors; its general semantics and structure have been described in previous
progress reports and elsewhere. During the past year, work by Halstead, Sieber,
Test, and Ward of RTS and Dave Clark of the CSR group has led to a substantial
revision in its implementation strategy; a reimplementation of the newly structured
TRIX is in progress. We refer to the new implementation as TRIX 1.0, to distinguish it
from the previous TRIX O implementation which became operational in early 1981.

Briefly, the semantics of TRIX revolve around a stream communication mechanism,
rather than passive objects such as files or processes, allowing uniform and
transparent access to local and remote objects. The basis of TRIX semantics on
communication paths yields several interesting properties: (i) minimization of the
kernel system (directories and naming mechanisms, for example, may be left to
higher-level software); (ii) abstraction of function from implementation (a file
containing the digits of Pl, for example, may be indistinguishable from a process
which computes them on demand); and (iii) a single, "anarchistic” name space in
which interpretation of names and access to the services they denote is controlled
by local rather than global mechanism.

The initial implementation, TRIX 0, based its communications on a pure,
asynchronous message passing mechanism. A major defect in that implementation
is its tendency to impose certain overhead costs associated with its very general
message passing semantics on all programs, regardless of their requirements; thus
simple programs which conform naturaily {o the more conventional procedure call
semantics incurred an unwarranted performance overhead. TRIX 1.0 is thus
motivated largely by our desire to confine the costs of asynchronous message-
passing to those programs which require its power.

A key to the TRIX 1 implementation is the semantic distinction between the static
environment of a process and its more ephemeral state. To this end, we shall refer to
three interrelated kinds of resources supported by the system: domains, ports, and
threads.

209

eneet i

L. &

REAL TIME SYSTEMS

A domain comprises a set of addressable memory words at specific addresses and
a set of handles for ports, accessible via specific handle IDs. The concept of a
domain thus resembles the concept of an "address space," but note that a domain
does not have its own program counter, stack pointer, fast registers, etc. These are
the property of threads that may execute in the domain. The handles may be viewed
as a generalization of open file descriptors; the set of handles accessible to a
domain completely determine the capacity for communication between that domain
and the external world.

A port is a means for communication from one domain to another. Every port has
one specific domain that is its handler ; associated with every port are one or more
handles possessed by domains (possibly including the handler domain). Control may
be transterred from a domain that has a handle on a port to the handler domain of
that port by REQUEST or RELAY system calls.

A thread is a single sequential path of execution under TRIX; threads are the units
among which CPU time is divided and incorporate some of the elements of
"processes” in other systems. Each thread has a private stack, but also borrows
from the address space of whatever domain it is currently executing in. In general,
several threads can execute concurrently in the same domain, and a domain may
exist without any threads currently executing in it. A thread carries with it various
useful attributes, e.g. , saved register contents, scheduling information, etc.

Threads in TRIX are created using the SPAWN system call. A thread T, in general,
has a parent thread , which is the thread that executed the SPAWN operation that
created T. A thread is said to be its parent’s attached child . TRIX thus imposes a
tree structure on threads. As an option to the SPAWN system call, a thread can also
be created detached , which means that it has no parent thread.

The primary communication mechanism in TRIX is the message send or request
mechanism, in which a thread executing in a domain D having a handle on port P
moves into the domain D' which is the handler of port P. This process resembles the
domain call mechanism on some other systems, and is supported by the REQUEST
and RELAY system calls; return is effected via the REPLY system call. All three of
these allow the communication of some small amount of information (plus,
optionally, one port handle) directly with the call.

A call can also be accompanied by a data window giving the caller access to a
segment of the caller’'s address space, allowing transfer of data between caller and
caller domains by means of the FETCH and STORE system calls. Associated with the
data window are the address of the segment in the calling domain, the size of the
segment in bytes, and a "current position" offset in the segment. There is also an
allowed 170 direction , which may permit both reading and writing, or restrict access
to only one of these operations.

210

SN

REAL TIME SYSTEMS .

Unlike usual operating systems which provide for naming of files (and in some
cases a restricted set of other objects). TRIX is oriented toward the naming of
handles. In many cases this distinction is moot; e.g.. the view that the name
"keyboard” is associated with the keyboard input device is more or less equivalent
to the view that "keyboard" identifies the handle connected (by the system) to that
device. However, the naming of handles rather than their handlers has the effect of
abstracting function, i.e., input-output behavior, from implementation; it supports our
interposability desiderata, making (for example) interprocess communication ;
indistinguishable from file 1/0. Thus "date” names a handle which, when read,
produces the current date; the name is associated with the communication path, and
hence with the service performed, rather than (say) with an ASCII file containing the
date. The "date" handle may in fact be effectively connected to a clock device or to
a process which determines the date by interrogating a remote machine through the
network.

Similarly, a directory is typically a domain which associates names with handles.
Since it is accessed only via handles, however, the TRIX name semantics may be
arbitrarily extended using an infinite variety of programs and communications which
mimic the conventions of directories. For example, a compressed archive file A
might be implemented to follow directory protocols, so that naive reference to "A/x"
yields a handle which accesses (through a reformatting process) archive component
"x" of A; archived files can then be transparently accessed by programs ignorant of ,
the format -- or the existence -- of archives. In a distributed system, network
gateways may map remote file systems into the local name space. Thus a reference
to "/net/Joe/x" causes the local network server process, "/net", to forward a
reference to "x" to a network server process on Joe's machine, which in turn
accesses the handle "x" at the remote site. The effect is that the name graph on '
Joe's machine appears as a subgraph of the local graph rooted at /net/Joe.

Associated with each thread is a single stack, which is segmented by the kernel as
the thread passes from one domain to another. This segmentation affords a level of
protection, preventing the code in one domain from accessing data stacked in
another; each thread conceptually has it has its own private stack for each domain.

This scheme is designed to exploit the efficiencies of conventional stack
management (in particular, of the allocation of a single stack to each process) while
effectively isolating domains from one another. Moreover, it conveniently provides
tor the stacking of privileged kernel data pertaining to a REQUEST on the region of a
thread's stack corresponding to an inter-domain transition; this region, the kernel
request frame, provides protected storage for previous state information as well as
for the message itself. The protected storage of the message allows it to carry q
unforgeable system-protected capabilities, such as handles and data windows which
extend the powers of the target domain.

211 ' T
R —

REAL TIME . YSTEMS

5. VLSITOOLS

Work by Terman continued on the logic-level timing simulator RSIM. Considerable
time was spent comparing the predictions of RSIM with those of conventional circuit
analysis techniques. Several changes in the underlying model were incorporated
that greatlvy improved RSIM's accuracy; it is now possible to "tune” the simulation
parameters so that RSIM's predictions are quite :easonable.

Previously RSIM modeled each transistor with a characteristic resistance
determinec by the size and implant of the transistor. This is still true, but in addition
the contex” in which the transistor appears affects its characteristic resistance. For
example, rather than having a single resistance for all enhancement devices, RSIM
distinguish2s pulldowns, source-followers, and pass devices as three distinct
contexts and thus can model each separately with more accuracy.

The new model was tested at Digital Equipment Corporation which has started to
use RSIM as the timing and logic-level simulation tool for several of its projects. In
cooperation, we were able to adjust the simulation parameters so that RSIM's
predictions agreed to within 10% of the circuit analysis results -- RSIM's advantages
being greatly reduced computation requirements and the ability to simulate whole
chips.

The interpretive front-end for RSIM, called RNL, and our textual schematic system
NET were &lso improved, making them simpler to learn and use, and expanding their
capabilities to include cMOS. A project to embed simulation and network primitives
in a standa-d LISP (Franz Lisp under VAX/Unix) is now underway.

Finally, an investigation of special-purpose architectures for high-speed logic
simulation 'vas started. Several components of the project were completed:

1) A recognizer that develops a functional description of a circuit from a
transistor network, i.e., there is an automatic translation from what the
designer designed to a gate level description.

2) A prctotype compiler which produces VAX code that directly computes
the values for each network node. The compiler takes the functional
description from step (1) as input, assigns an evaluation order to each
operation, optimizes the sequence of operations (using constant
propagation, etc.), and then produces code for the target machine (in
this case a VAX).

3) The initial design of a highly-parallel simulation engine that might serve
as an alternative target for the compilation process. This MIMD
archi ecture offers the opportunity for performance improvements over
conventional generai-purpose SISD machines.

212

REAL TIME SYSTEMS

Work by Clark and Zippel has begun on the development of design aids for the
development of high performance integrated circuits. Towards this end we are
attempting build a system that makes available to an inexperienced designer as
much of the design skills of a more experienced designer as possible. The simplest
part of this system is a language for describing the topology of circuits in
algorithmic, hierarchical manner. This language also incorporates a simple
constraint system to allow for the specification of circuit parameters in a concise
manner. It has been used to construct a flexible system that synthesizes
conventional arithmetic logic units by Marc Rose.

A similar language has also been constructed for specifying signals in circuits. In
this latter language, signals can be cascaded easily (they behave like programs) and
again the parameters of the signals are controlled by a constraint system. This is
especially powerful in the signal domain as it makes it easy to specify coincident and
delayed edges, bootstrapped signals and concepts like noise and signal droop.

A 24x32 bit content-addressable memory chip design, reported previously, was
fabricated and evaluated (Johnson). The initial chips worked correctly and robustly,
tolerating power supply variations from 3.8 to 7.0 volts. They were somewhat slower
than desired (210 ns), owing primarily to limitations imposed by the fabrication
processes available to us.

Miscellaneous smaller VLSi-related projects include a simple register generator
(Lakos) which sizes various component transistors in order to meet prespecified
performance goals, and a 4kx1 static memory chip designed to operate under 100ns
(Kramer).

213

T

TN e we . w =

REAL TIME SYSTEMS

Publications

. Clark, D.. et. al. "TRIX 1.0 Implementation Outline," Internal

Memorandum, MIT Laboratory for Computer Science, Cambridge, MA,
October 1981.

. Clark, D., et. al., "The TRIX 1.0 Operating System," IEEE Distributed

Processing Quarterly, 1,2 (December 1981).

. Dertouzos, M.L., "Some Expected Computer Developments and

Consequences: The Next Two Decades," to appear in Proc., New
Telematics Service Day, E.A. Fiera Internazionale Milano Fair, Milan,
Italy, April 1982.

. Halstead, R.H., Jr., "Architecture of a Myriaprocessor," Advanced

Computer Concepts, J.C. Solinsky, ed., La Jolla Institute, La Jolla, CA,
1981, pp. 107-132.

. McLellan, H.R., and Ditzel, D.R., "Register Allocation for Free: The C

Stack Cache,"” Sigplan Notices, 17,4 (April 1982), pp.48-56.

. Zippel, Richard E., "Newton's Iteration and the Sparse Hensel

Algorithm," Proc. SYMSAC '81 , Snowbird, Utah, August 1982.
Talks

. Dertouzos, M.L., "Profitable Long-Range Industrial Research; A

Response to the Japanese Fifth Generation Computer Challenge,” MIT
Corporate Executive Officers Meeting, hosted by Data General
Corporation, Orlando, FL, February 1982.

. Dertouzos, M.L. Moderator "Home Information Systems" MIT Alumni

Association, Technology Day, MIT, Cambridge, MA, June 1982.

. Dertouzos, M.L. "Introduction of the Laboratory for Computer Science

and Distributed Systems,” MIT/Siemens Conterence on Distributed
Systems , Siemens AG, Munich, W. Germany, May 1982.

. Dertouzos, M.L. Panelist, IEEE Workshop on Communications Security,

Crypto81, Santa Barbara, CA, August 1981.

. Dertouzos., M.L. "Computers and Pcople Beyond 1984," MIT Alumni

Council, MIT Cambridge, MA, March 1982.

214

———— = -

PSRN |

10.

11.

12.

13.

14.

15.

16.

REAL TIME SYSTEMS

Dertouzos, M.L. "Computers: Developments and Consequences by the
Year 2,000," Inaugural lecture upon election to membership, Athens
Academy, Athens, Greece, February 1982.

Dertouzos, M.L. "The Japanese Fifth Generation Project: A Plan for
World Supremacy in Informatics,” Inaugural Board Meeting of Paris
World Center, Paris, France, March 1982.

Dertouzos, M.L. "Expected Technological Developments in the
Computer Field,” MIT Industrial Liaison Program, European Course on
Personal Computers, Networks, and Office Automation , Paris, France,
February 1982.

Dertouzos, M.L. "The Information Marketplace,” MIT Industrial Liaison
Program, European Course on Personal Computers, Networks, and
Office Automation , Paris, France, February 1982.

Dertouzos, M.L., "Ten Challenging Projects in Computer Science,"
University of Southern California, 10th Anniversary, Information
Sciences Institute, Marina del Rey, CA, May 1982.

Dertouzos, M.L., Panelist, "Encryption: The Policy lIssues,” MIT
Research Program on Communications Policy, MIT, Cambridge, MA,
December 1981.

Dertouzos, M.L., "People and Computers by 2,000 A.D.," 2800 Club, Ltd.
Conference on World Computing-- ICL's Role, London, England,
November 1981.

Dertouzos, M.L., "Computer Science Research Directions," Kellogg
National Fellowship Program, MIT Seminar Series, Cambridge, MA,
November 1981.

Dertouzos, M.L., "Computer Applications in the Home," MIT
Corporation Wives, MIT, Cambridge, MA, October 1981.

Halstead, R.H., Jr., "Object Oriented Multiprocessing,” IBM/MIT
Workshop, Lenox, MA, April 1982,

Halstead, R.H., Jr.,, "Object Oriented Multiprocessing,” Lawrence

Livermore Laboratory Workshop on Parallel Processing , New York, NY,
April 1982.

215

m

REAL TIME SYSTEMS

17.

18.

19.

21,

22,

23.

24.

25,

26.

7.

28.

Halstead, R.H., Jr., "Architecture of a Myriaprocessor," Invited Lecture,
Texas Instruments Research Laboratories, Dallas, TX, July 1981,

Johnson, M.G., "A Content Addressable Memory for Virtual Address
Translation,” Bell Laboratories, MAC-32 design group, Holmdel, NJ, 9
April 1982.

Johnson, M.G., "An NMOS Content Addressable Memory,"” MIT VLSI
Research Review, MIT, Cambridge, MA, 17 May 1982.

Mok, A., "Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment," Invited Lecture, Harris Corporation,
Melbourne, FL, 5 April 1982.

Mok, A., "Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment," Intel Corporation, Portland, OR, 16 April
1982.

Terman, C.J., "Simulation Tools for LSI Design,"” Bell Laboratories,
Murray Hill, NJ, November 1981.

Terman, C.J., "introduction to NET and RSIM," 2 lectures, Digital
Equipment Corporation, Hudson, MA, April 1982.

Terman, C.J., "Performance Estimation for Digital LS| Circuits," MIT
VLS| Summer Course, Cambridge, MA, June 1982,

Terman, C.J., "A Tour Through the MIT Digital LSI Design Tools," Harris
Corporation, Melbourne, FL, June 1982.

Ward, Stephen, "Introduction to Personal Computers,” MIT Industrial
Liaison Program, European Course on Personal Computers, Networks,
and Office Automation , Paris, France, February 1982,

Zippel, Richard E., "Abstract Data Types, Flavors, and Capsules," Texas
Instrument Corp., Dallas, TX, July 1981,

Zippel, Richard E., "Principles for High Performance MOS Design,"
Math Sciences Seminar, IBM Research Center, Yorktown Heights, NY,
December 1981.

Zippel, Richard E., "SCHEMA: A System for High Performance MOS
Design," University of California, Berkeley, February 1982.

216

s REAL TIME SYSTEMS

30. Zippel, Richard E., "Static RAM's and Design Systems," Digital
L Equipment Corporation, Hudson, MA, March 1982.

31. Zippel, Richard E., "A VLSI Workstation," Siemens Corporation AG,
Munich, W. Germany, May 1982.

32. Zippel, Richard E., "An Undergraduate Course in Digital MOS Circuits,”
h : MIT VLSI Research Review , May 1982.

Theses Completed

1. Alcabes, Harvey, "Syntactic Error Recovery in an LALR Parser," S.M.
thesis, MIT Dept. of Electrical Engineering and Computer Science,
Cambridge, Ma., completed July 1981.

2. Esposito, Dan, "An Algorithm for Eificient Digital Logic Simulation,"
S.M. thesis, MIT Dept. of Electrical Engineering and Computer Science,
Cambridge, Ma., completed August 1981,

3. Goldman, Seth, "A Digital Integrated Circuit Design for Conway's Life
Game and General Cellular Automata,” S.B. thesis, MIT Dept. of
Electrical Engineering and Computer Science, Cambridge, Ma.,
completed May 1982,

4. Hankins, Brenda, "Path Expressions-- An Extension to Mulisp," S.B.
thesis, MIT Dept. of Electrical Engineering and Computer Science,
Cambridge, Ma., completed May 1982.

5. Holmes, Kirk, "Implementation of Speech Recognition in a
Microprocessor Environment,” S.B. thesis, MIT Dept. of Electrical
Engineering and Computer Science, Cambridge, Ma., completed May
1982.

6. Hughes lil, T.W. L., "Othello," S.B. thesis, MIT Dept. of Electrical
Engineering and Computer Science, Cambridge, Ma., completed May
1982,

7. Kesselman, Joseph, "PROTEUS -- A Microprogrammable,
Multiprocessor Computer,” S.B. thesis, MIT Dept. of Electrical
Engineering and Computer Science, Cambridge, Ma., completed August
1981.

8. Lakos, John, "The Development of an nMOS VLS| Register Array

217

Rt -

REAL TIME SYSTEMS

10.

11,

12.

13.

14,

15.

Generator: RAG," S.B. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., completed May 1982.

. Le, Cahn, "A Deterministic Schedule for Process Control

Computations,” S.B. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., completed May 1982.

Lukac, Tibor, "A Color Graphics Terminal Incorporating a New
Generation Computer,” S.B. thesis, MIT Dept. of Electrical Engineering
and Computer Science, Cambridge, Ma., completed May 1982.

McMahon, Douglas, "Real-Time Acquisition of Signal Data to VAX
11/780 Database," S.B. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., completed May 1982.

Nahabedian, Markar, "Considerations for the Design of a Command
Processor for the TRIX Operating System,"” S.B. thesis, MIT Dept. of
Electrical Engineering and Computer Science, Cambridge, Ma.,
completed May 1982,

Ronkin, Nelson, "The Use of Futures in Parallel Processing Language
Constructs,” S.B. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., completed May 1982.

Rose, Marc, "A High Level Tool for the Computer-Aided-Design of ALU
Circuitry,” S.B. thesis, MIT Dept. of Electrical Engineering and Computer
Science, Cambridge, Ma., completed May 1982.

Vogel, Dan, "Real-Time Mapping of Signal Processing Jobs onto
Multiprocessor Networks,” S.B./S.M. thesis, MIT Dept. of Electrical
Engineering and Computer Science, Cambridge, Ma., completed May
1982.

Theses in Progress

. Anderson, T., "The Design of a Multiprocessor Development System,"

S.M. thesis, MIT Dept. of Electrical Engineering and Computer Science,
Cambridge, Ma., expected August 1982.

Goddeau, D."Learning and Adaptation in Large Scale Processor

Arrays,” S.M. thesis, MIT Dept. of Electrical Engineering and Computer
Science, Cambridge, Ma., expected December 1982.

218

REAL TIME SYSTEMS

)

| 3. Johnson, M., "Efficient Modeling for Short-Channel MOS Circuit
g Simulation,” S.M. thesis. MIT Dept. of Electrical Engineering and
F Computer Science, Cambridge, Ma., expected August 1982.

X 4. Lake, A, "Evaluation of Multiprocessor Communications
Architectures,” S.M. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma.. expected September 1982.

5. Mandry, J., "A Novel Priority State Controller for a Computer Bus," S.M.
thesis, MIT Dept. of Electrical Engineering and Computer Science,
k Cambridge, Ma., expected December 1982.

6. Mok, A., "Fundamental Design Problems of Distributed Systems for the
Hard Real-Time Environments,” PhD. thesis, MIT Dept. of Electrical
Engineering and Computer Science, Cambridge, Ma., expected
September 1982.

| 7. Powell, J. "Voice Entry for Interactive Control of a Small Computer,"
S. M. thesis, MIT Dept. of Electrical Engineering and Computer Science,
Cambridge, Ma., expected December 1982.

8. Sieber, J."TRIX: An Operating System Supporting Network
Communications,"” S.M. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., expected January 1982,

9. Teixeira, T.J. "Compiling Programs to Meet Performance
Requirements,” PhD. thesis, MIT Dept. of Electrical Engineering and
Computer Science, Cambridge, Ma., expected December 1982.

10. Terman, C. J. "Simulation Tools for LS| Design," PhD. thesis, MIT Dept.
of Electrical Engineering and Computer Science, Cambridge, Ma.,
expected August 1982

11. Troisi, J., "An Interpreter and Symbolic Debugger for C," S.M. thesis,
MIT Dept. of Electrical Engineering and Computer Science, Cambridge,
o Ma., expected December 1981.

219

SYSTEMATIC PROGRAM DEVELOPMENT

Academic Staff
J. Guttag, Group Leader

Graduate Students

S. Atreya R. Forgaard
R. Kownacki M. Srivas
J. Wing J. Zachary

Undergraduate Students
D. Detlefs

Support Staff
E. Pothier

Postdoctoral Fellow

P. Lescanne

~..A.\

oA

- Ve

SYSTEMATIC PROGRAM DEVELOPMENT

1. INTRODUCTION

Our objective is to facilitate the usetul application of precise specifications to the
development and maintenance of software. We believe the absence of adequate
tools for constructing and using specifications is the most significant bottieneck in
this area.

Until an implementation exists, a programming language can never be of more
than academic interest. The same is true for specification languages. To design a
programming language without due regard for implementation issues is a serious
mistake. The same is true for specification languages. Despite these truisms,
relatively little attention has paid to the issue of implementing specification
languages. We believe that this, more than anything else, is what has kept formal
specification languages from becoming a practical tool in the development of
software. A distinguishing aspect of our work is the emphasis on the development of
an integrated set of mental and software tools.

Part of the problem has been a failure to come to grips with just what it should
mean to "implement" a specification language. Our efforts in this area have been
strongly influenced by three critical working hypotheses:

1) Aimost all of the advantages of formal specifications over informal ones
rest upon the amenability of formal specifications to machine analysis
and manipulation,

2) Many of the benefits of any kind of specification come during the
process of constructing the specification, and

3) Most of the time one must deal with partial, rather than completed,
specifications.

2. SPECIFICATION LANGUAGES

2.1, Interface Languages

The semantics of an interface language is dependent on the semantics of the
target implementation language. Currently, CLU is being used as a sample target
implementation language. A suitable language for writing interfaces for CLU has
been developed. The three kinds of interface specifications in her model are
procedural, data, and iterator interfaces, corresponding to procedures, clusters, and
iterators in CLU. Procedural interfaces use types provided by data interfaces. These
types are defined by sorts defined in traits.

222

LYY

SYSTEMATIC PROGRAM DEVELOPMENT

An example of a procedural interface is as follows:

interface SetProc

imports SetDa 7% SetDa provides the type Set.
uses setlrait
provides

7 This procedure possibly mutates its second argument.
Intersect = proc (sl: Set, s2: Set)
pre true
modifies s2
post for all i [has(s2't,i) == has(slt,i) and
has(s2t,1)]
end Intersect

end SetProc

An identifier, x, denotes an object; in the pre- and post-conditions, x denotes the
initial state, x’ denotes the final state); xt denotes the value of the object x. All values
of objects are expressible as a ground term in the trait language. A procedural
interface heading looks similar to that of procedures in CLU. Pre- and post-
conditions contain assertions on the state of the CLU universe before and after the
call to the procedure. For the above example, the value of the set object s2 changes
to become the intersection of the initial values of the set objects s1 and s2.

An example of a data intertace, providing the type Set is as follows:

223

¢

SYSTEMATIC PROGRAM DEVELOPMENT

interface Setba

imports IntegerDa

uses setlrait

provides

Set = type (set, Singfieton, Union, Member)

Singleton =proc (i: Integer) returns (s: Set)
pre true
post s't == insert(empty, it)

end Singleton

% This procedure doesn't mutate either of its input arguments.
Union = proc (sl1: Set, s2: Set) returns (s3: Set)

pre true

post for all i [has(s3'*,i) == has(slt,i) or has(s2t,i)]
end Union

Member = proc (s: Set, i: Integer) returns (b: Bool)
pre true
post b't == has(st, it)

end Member

end SetDa

The meaning of the first line after "provides" is that a type induction rule for the
type Set is defined by the sort set (obtained from the trait setTrait). The induction
rule is

P(Singleton(i)), P(s1) and P(s2) implies P(Union(sl,s2))

P(s)

where i is of type Integer, s1, s2, and s are of type Set, and P is an arbitrary
predicate in first order predicate logic with equality.

An example of an iterator interface is as follows:

204

SYSTEMATIC PROGRAM DEVEL OPMENT

interface ttomslter

imports integerDa

tFlems = iter (s: Set) yields (i: Integer)
let n = nth iteration in
pre true
modifies s
post has(snt, it) and sn't == delete(snt it)

pre istmpty(snt)
post return
end [lems

end tElemstter

Since the arguments of an iterator can be mutated by the iterator or the loop body
invoking the iterator, we must be able to denote intermediate states of objects. We
use '"n" above as this "loop variable” so that "sn” denotes the object s at the
beginning of the nth invocation of Elems and "sn'" denotes the object s at the end.

3. THE SPECIFICATION EDITOR

We designed our shared specification language in tandem with a sophisticated
editing and perusing tool. Many language design decisions were influenced by the
presumption that specifications would be produced and read interactively using an
editor that would provide "real time" feedback. The first design is almost complete
[1], and we plan to begin implementation in the fall. The primary functions
performed by the editor are:

1) Supplying templates -- These are the basic building blocks of
specifications,

2) Generation of redundant information -- Information that will make the
specification easier to read,

3) Generation of different views -- It is often impossible for the author of a
specification to predict the level of detail that various readers will want
to see. The editor allows readers to control this,

4) Checking -- Our goal is to catch mistakes early. Experience indicates
that superficial errors, e.g., type errors, are often indicative of serious
underlying confusion, and catching them early is a valuable service,

SYSTEMATIC PROGRAM DEVELOPMENT

5) Keeping track of missing information -- Supplying the user with a list of
things that still need to be done, e.g.. inconsistencies to be resolved or
what information is necessary to complete a specification,

6) Specification to specification mappings -- A collection of syntactic
mechanisms for doing semantically significant things, e.g., abstracting,
renaming an operation, adding properties, or modifying a signature.

The editor provides comprehensive support for all phases of the construction and
use of specifications. Because of the high level of machine interaction that we feel is
essential to the specification process, we intend that the editor will be employed as
the sole means of performing specification tasks. We further expect that our shared
specification language will evolve along with the editor over the course of time.

We intend to establish a strong coupling between the language and its editor.
Because of this coupling, linguistic features that might otherwise be impractical are
rendered feasible. The design of Shroff has already been influenced to some extent
by the expectation of specialized editor support; future language changes can be
expected to be influenced to an even greater extent. Evidence of this influence can
be found in the techniques of specification construction encouraged by the textually
oriented semantics of Bicycle.

A Bicycle specification is a large body of trait, sort, variable, and function names
composed together. The acceptable compositions are defined by a variety of
syntactic rules. The intentional overloading and controlled collision of function and
sort names is an important technique of composition. Because of this, the exact
meaning of a name can in general be determined only through careful analysis of its
context. The amount of analysis required to validate compositions and examine
contexts has proven to be overly taxing when performed by hand; indeed, it has
limited the size and complexity of specifications we have been able to construct.
Were it not for the prospect of machine support, the language would require
extensive redesign.

The basic Bicycle constructs--"include,” "assume," "without," and "bind"--are
defined as textual transformations upon the traits in which they appear. It is
sometimes desirable to actually to perform a transformation in order to understand
its ramifications; conversely. it is sometimes useful to structure the complexity of a
trait by introducing a simplifying construct. Editor support in transacting the details
of these transtormations is essential.

In the case of consistency checking, the editor serves as a sort checker for the
Bicycle language; in the case of the transformation constructs, it acts as a language
interpreter. In both cases, features of the language are closely related to features of
the editor. The distinction between language and editor should gradually disappear.

226

e

SYSTEMATIC PROGRAM DEVELOPMENT

The set of abstract operations that the editor provides upon specifications is an
important part of its design. However, we believe that the details of the user
interface--the means by which these abstract operations are supplied--are an equally
important consideration. A carefully designed user interface is essential to attaining
the goal of restricting all manipulations of specifications to the editor, since
specifiers will be more likely to embrace a tool that is convenient to use. We also
believe that the style of the editor's user interface will strongly affect the style of
specifications written using it.

Although the two activities can be considered separately, the editor draws no hard
distinction between the phases of reading and writing specifications. The task of
specification generally involves both forms of interaction; the difference between the
two is more a matter of point of view than point of fact. For example, a specifier
might be reading a specification in order to modify it; similarly, a creator would
certainly require the tools available to readers in order to evaluate his work.
Separate means of reading and writing would only serve to reinforce an illusory
distinction; hence, a uniform user interface is presented at all times.

The user interface is designed for implementation upon a high-resolution display
terminal equipped with a pointing device. A high-resolution display permits a more
expressive interface because of the flexibility it possesses, while a pointing device
enables a convenient, rapid mode of pointing access to all text on the display. No
pains have been taken to enable a graceful realization of our design upon more
conventional display terminals. Although high-resolution terminals are presently
common only in research environments, we believe that they represent, as do formal
specifications, the technology of choice in the near future. The advantages of such
terminals outweigh the temporary drawback of availability. We wish to exploit these
advantages to the fullest.

We choose to ground the display upon a simple windowing mechanism featuring a
fixed number of windows. We make this decision for two reasons. First ,we wish to
free the specifier from the overhead of managing large systems of windows. We are
then able to fix the content type and interpretation of each window. By controlling
the methods of displaying specifications, we will be better able to encourage a
particular editing methodology.

The editor provides its comprehensive support on an incremental basis. The
specifier does not independently create text and periodically request the editor to
process it, as is the case in most programming environments. Instead, the editor
provides full support throughout all phases of editing. To realize this goal, the editor
is syntax-dirccted. It prohibits the introduction of syntactic errors where possible,
and incrementally detects and flags them where not.

The Bicycle specification language does not provide for syntactically correct

227

SYSTEMATIC PROGRAM DEVELOPMENT

intermediate forms; neither do specifications spring into existence in a completed
form. in order to view developing specifications syntactically. we must extend the
Bicycle syntax. We introduce a template oriented syntax for Bicycle. in which
generic stencils may stand in the place of incomplete portions of that text. The
process of creating a specification then becomes one of successively refining
templates.

One benefit of syntax-directed editing is the close involvement by the editor which
is possible during specification creation. Most syntax errors. by definition. are
impossible to commit; the remainder are immediately highlighted. The editor can
present a correctly formatted version of the text at all times. Work that remains to be
done can be noted and displayed to the specifier. Also. the editor can automatically
supply keywords and symbols as parts of templates. These possibilities serve to
reinforce the close relationship between the language and the editor. blurring the
distinction between the two even further.

The derivation process of specifications is rooted in an underlying system of
templates. We hold, however, that a style of text entry in which the user directly and
transparently performs expansion operations upon templates is unacceptable.
Instead, we provide a style of entry that allows the user to enter specification text
much as he would were he typing it as free text. The editor examines the text which
is entered, and performs template modifications as required. This style of editing is
more natural, and therefore more likely to be embraced by specifiers.

The editor’s syntax-directed interface contributes to the ease of initially creating
specifications. Our editor will provide more, however, than a mere means of creating
specifications. Support will be provided for reading, analyzing, and otherwise
manipulating specification text. A rich set of high-level operations will be provided
for this purpose. The effects of the invocation of a high-level operation are likely i)
be extensive. It is essential that specifiers be able to approach these operations with
a confidence that their invocation will not cause irrevocable damage. Thus, the
effects of all high-level operations are designed to be reversible.

Because of the textual motivation of the Bicycle constructs, operations for
interpreting the constructs are an important aid to reading specifications.
Operations upon the equations that ultimately define the abstract meaning of
specification are also necessary. Such operations will, of course, involve the use of
the thcorem proving subsystem. Operations which analyze the structure of
specifications, perhaps providing objective judgments of abstract qualities, will
provide a means of supporting particular specification styles. As we gain experience
with the craft of specification using an editor, we expect that other such high-level
operations will be clarified. A means for their invocation must accordingly be
designed into the editor.

228

e

B oo M

SYSTEMATIC PROGRAM DEVELOPMENT

The arguments to high-level operations are syntactically meaningful portions of
specification text. The editor provides a means of selecting those portions which are
intended to be arguments. Because the set of high-level operations is likely to be
both large and changing over time, a menu oriented style of invocation is provided.

4. THE SPECIFICATION LIBRARY

In order to deal effectively with the difficulties of constructing system and design
specifications, a specifier requires a well organized library of primitive abstractions.
We believe that the effort of specifying large software projects can be significantly
reduced by the existence of "building block" specifications which may be borrowed,
modified or instantiated as the specifier requires. The key issues involved in a library
system are convenience of use, provisions for growth and maintenance, and
compatibility with our overall specification environment, particularly the editor.

Throughout the past year, Sriram Atreya focused his research effort on the initial
design for such a fibrary [2]. He employed formal specifications as a tool in the
presentation of his design. We profited from his experience in writing a large scale
specification as well as by the actual product of his effort.

Experience with various programming libraries and other filing systems suggests
that a primary design consideration should be ease of use. The knowledge that a
needed abstraction exists is little consolation to a specifier if the method for
obtaining it is unclear. In order to deal with this problem, Atreya employs a method
which is a generalization of the common card catalog system utilized for libraries of
books. This involves the creation of an appropriate classification scheme combined
with a set of operators which permit a natural browsing process based on the
scheme.

The second major design goal arises from the consideration that a specification
library will certainly undergo frequent changes and will probably exhibit a steady
growth. A library must be designed with the concept of a long lifetime in mind.
Atreya addresses these problems by rejecting a static classification scheme in order
to maintain the balance of the library and to enhance its flexibility.

5. THE REWRITE RULE LABORATORY

An important benefit of formal specifications lies in the possibilities of checking for
consistency and constructing formal proofs of interesting properties. Naturally, we
would prefer to automate as much of this process as possible. Term rewriting
systems may be employed to obtain decision procedures for equational theories, the
formal basis of our approach to specifications. The principle goal of our rewrite rule
laboratory is to offer the cower of term rewriting systems to the specifier without

229

A

P

SYSTEMATIC PROGRAM DEVELOPMENT

requiring any particular knowledge of this model of computation. Pierre Lescanne
has successfully implemented the kernel of the laboratory, which we will discuss
below.

Two properties which are required by rewriting systems for theorem proving are
uniform termination and confluence. Uniform termination means that all rewriting
paths are finite. Confluence implies that whenever different rules are applied to the
same term, it is possible for the resultant rewriting paths to converge to one term.
When a rewriting system exhibits both of these properties. it is said to be convergent.
In order to use term rewriting systems to prove equalities in equational theories, we
require the systems to be convergent.

An extension of the Knuth-Bendix algorithm allows us to mechanically associate a
convergent system of rewrite rules with a set of equations. This algorithm produces
equations which a specific ordering algorithm orients to make rewrite rules.
Recursive decomposition ordering, given in [3], is an algorithm for proving uniform
termination of a rewriting system. The algorithm is based on a careful analysis of the
positions of operation symbols in terms to determine a precedence relation among
the operators. The behavior of the algorithm has been studied in various simple
cases, [4][5], as well as in the case of monadic terms on a totally ordered set of
symbols [6].

In February, Lescanne began work on an implementation of REVE, a software
system which manipulates rewrite rules and implements the Knuth-Bendix
procedure. REVE uses Knuth-Bendix to automatically find a convergent set of
rewrite rules corresponding to a set of equations when it is possible to do so. Once a
convergent term writing system has been obtained, REVE can use Knuth-Bendix to
prove theorems that normally require the use of induction.

He has tested it by proving some fairly difficult results in the axiomatization of
groups. Among these results were questions posed by Knuth and Bendix in their
paper. As an example, one of the problems solved by REVE is the following from [7]:
"Prove that binary algebras which satisfy the unique equation

x/ ((((x /7 xYy/7y)Y/Zz)y/ (((x/7 x)/Zx)/z)=y
where / is right division, are groups.”

The interesting feature of REVE lies in the integration of term orderings with a
Knuth-Bendix algorithm. These orderings are Decomposition Ordering [3] and
Recursive Path Ordering [8][9] This combination explains REVE’'s success in
proving results in the axiomatization of groups which were never before proven by
machine. The Knuth-Bendix algorithm used in REVE is from Huet [10] and [11]. the
unification algorithm is from Martelli and Montanari

230

SYSTEMATIC PROGRAM DEVELOPMENT

6. INTERACTIONS OUTSIDE OF LCS

The systematic program development group has make a point of maintaining close
contact with researchers outside of MIT. In particular, J. Guttag collaborates with
Jim Horning of Xerox PARC, Dave Musser and Deepak Kapur of General Electric
Corporate Research and Development, and John Williams of IBM Research at San
Jose. J. Wing also has done work at Xerox PARC [12][13].

231

yot'a

SYSTEMATIC PROGRAM DEVELOPMENT

o

10.

11,

References

. Zachary, J.L. "A Syntax-Directed Specification Editor," S.M. thesis, MIT

Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

Atreya, S. "Formal Specification of a Specification Library," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

Jouannaud, J-P., Lescanne, P. and Reinig, F. "Recursive Decomposition
Ordering,” Conf. on Formal Description on Programming Concepts,
Garmisch-Partenkirchen, Germany, 1982.

Reinig"

Lescanne, P."Decomposition Ordering as a Tool To Prove the
Termination of Rewriting Systems," Seventh 1JCAI, Vancouver, Canada,
1981, 548-550.

Lescanne, P."Some Properties of Decomposition Ordering,"
Symposium AFCET "The Mathematics for Computer Science, Paris,
March 1982.

Lescanne, P. "Two Implementations of the Recursive Path Ordering On
Monadic Terms,"” 19th Annual Allerton Conf. on Communication,
Control and Computing, Allerton House, Monticello, lllinois, 1981,
634-643.

Higman, G. and Neumann, B. H. "Groups as Groupoids With One Law,"
Publ. Math. Debrecen., (2), 1952, 215-221.

Dershowitz, N.and Manna, Z. "Proving Termination With Multiset
Orderings," Journal of the CACM, 22, 1979, 465-476.

Kamin, S. and Levy, J.J. "Attempts For Generalizing the Recursive Path
Ordering," to appear.

Huet, G."A Complete Proof of Correctness Of The Knuth-Bendix
Completion Algorithm,"” J. Comp. Sys. Sc., (23), 1981, 11-21,

Martelli, A. and Montanari, U. An Efficient Unification Algorithm,” ACM
Trans. Program. Lang. Syst., (4) 1982, 258-282.

232

D 3

M

12.

13.

SYSTEMATIC PROGRAM DEVELOPMENT

Wing, J.M. "Thoughts on Writing Specifications," Xerox Internal Memo,
Xerox Palo Alto Research Center, Palo Alto, CA, August 1981.

Wing, J.M. "Building Specifications Using PIE," Xerox Internal Memo,
Xerox Palo Alto Research Center, Palo Alto, CA, August 1981.

Publications

. Guttag, J.V., Kapur, D.and Musser, D.R. "On Proving Uniform

Termination and Restricted Termination of Rewriting Systems,” to
appear in SIAM Journal of Computing

Guttag, J.V., Horning, J.J., and Wing, JM. "On Putting Formal
Specifications to Productive Use," to appear in Science of
Programming.

Guttag, J.V., Horning, J.J., and Williams, J. "FP with Data Abstraction
and Strong Typing,” Proceedings of a Conference on Functional
Programming and Computer Architecture, October 1981.

Guttag, J. V., Kapur, D.and Musser, D.R. "Derived Pairs, Overlap
Closures, and Rewrite Dominoes: New Tools for Analyzing Term
Rewriting Systems," to appear in Proceedings of the 1982 ICALP
Conference, July 1982,

Guttag, J.V. "Notes on Using Types and Type Abstraction in Functional
Programming,” Functional Programming and its Applications, North
Holland (1982).

Guttag, J.V. "A Few Remarks on Putting Formal Specifications to
Productive Use,"” Proceedings of a Workshop on Program Specification,
Lecture Notes in Computer Science 134, Springer-Verlag (1982).

Jouannaud, J.P. and Lescanne, P. "On Multiset Orderings," to appear in
Inform. Proc. Ltrs.

Jouannaud, J-P., Lescanne, P. and Reinig, F. "Recursive Decomposition
Ordering,” Conf. on Formal Description on Programming Concepts,
Garmisch-Partenkirchen, Germany, 1982.

Lescanne, P. "Decomposition Ordering as a Tool To Prove the

Termination of Rewriting Systems,” Seventh IJCAI, Vancouver, Canada,
1981, 548-550.

233

SYSTEMATIC PROGRAM DEVELOPMENT

10.

11.

Lescanne, P. "Two Implementations of the Recursive Path Ordering On
Monadic Terms,"” 19th Annual Allerton Conf. on Communication,
Control and Computing, Allerton House, Monticello, lllinois, 1981,
634-643.

Lescanne, P."Some Properties of Decomposition Ordering,"
Symposium AFCET "The Mathematics for Computer Science, Paris,
March 1982.

Theses Completed

. Atreya, S. "Formal Specitication of a Specification Library," S.M. thesis,

MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

. Zachary, J.L. "A Syntax-Directed Specification Editor." S.M. thesis, MIT

Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1982.

Theses in Progress

. Wing, JM. "Bridging Algebraic Specifications and Their

implementations Via Interfaces,” Ph.D. dissertation, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA,
expected December 1982.

Talks

Lescanne, P., "Decomposition Ordering as a Tool to Prove the
Termination of Rewriting Systems," 7th International Joint Conference
on Artificial Intelligence, August 27, 1981.

Lescanne, P., "Two Implementations of Recursive Path Ordering on
Monadic Terms,"” 19th Annual Allerton Conf. on Communication,
Control, and Computing, Allerton House, Monticello, Illinois, October 1,
1981.

Lescanne, P., "Decomposition Ordering, a Kind of Simplification
Ordering Used to Prove Termination of Term Rewriting Systems,"
General Electric Research and Development Center, May 10, 1982.

. Lescanne, P., "Decomposition Ordering, a Kind of Simplification

Ordering Used to Prove Termination of Term Rewriting Systems," MIT
Laboratory tor Computer Science, Junc 1, 1982,

234

MR anain” Sataindingin,

L .2

SYSTEMATIC PROGRAM DEVELOPMENT

5. Lescanne, P., "Decomposition Ordering, a Kind of Simplification
Ordering Used to Prove Termination of Term Rewriting Systems,” Bell
Laboratories, Murray Hill, NJ, June 10, 1982.

235

VNS

— e d

M)

TM-10°

T™-11

T™-12

T™M-13

T™-14

TM-15

T™-16

T™-17

T™-18

T™-19

PUBLICATIONS

Technical Memoranda

Jackson, James N.
Interactive Design Coordination for the Building Industry, June
1970, AD 708-400

Ward, Philip W.
Description and Flow Chart of the PDP-7/9 Communications
Package, July 1970, AD 711-379

Graham, Robert M.
File Management and Related Topics June 12, 1970, September
1970, AD 712-068

Graham, Robert M.
Use of High Level Languages for Systems Programming,
September 1970, AD 711-965

Vogt, Carla M.
Suspension of Processes in a Multi-processing Computer
System, September 1970, AD 713-989

Zilles, Stephen N.
An Expansion of the Data Structuring Capabilities of PAL,
October 1970, AD 720-761

Bruere-Dawson, Gerard
Pseudo-Random Sequences, October 1970, AD 713-852

Goodman, Leonard |.
Complexity Measures for Programming Languages, September
1971, AD 729-011

Reprinted as TR-85

Fenichel, Robert R.
A New List-Tracing Algorithm, October 1970, AD 714-522

6TMs 1-9 were never issued.

PUBLICATIONS

T™-20

T™-21

TM-22

T™-23

T™-24

T™-25

T™-26

T™-27

T™.28

T™-29

T™M-30

TM-31

Jones, Thomas L.
A Computer Model of Simple Forms of Learning, January 1971,
AD 720-337

Goldstein, Robert C.
The Substantive Use of Computers For Intellectual Activities,
April 1971, AD 721-618

Wells, Douglas M.
Transmission Of Information Between A Man-Machine Decision
System And Its Environment, April 1971, AD 722-837

Strnad, Alois J.
The Relational Approach to the Management of Data Bases, April
1971, AD 721-619

Goldstein, Robert C. and Alois J. Strnad
The MacAIMS Data Management System, April 1971, AD 721-620

Goldstein, Robert C.
Helping People Think, April 1971, AD 721-998

lazeolla, Giuseppe G.
Modeling and Decomposition of Information Systems for
Performance Evaluation, June 1971, AD 733-965

Bagchi, Amitava
Economy of Descriptions and Minimal Indices, January 1972, AD
736-960

Wong, Richard
Construction Heuristics for Geometry and a Vector Algebra
Representation of Geometry, June 1972, AD 743-487

Hossley, Robert and Charles Rackoff
The Emptiness Problem for Automata on Infinite Trees, Spring
1972, AD 747-250

McCray, William A.
SIM360: A S/360 Simulator, October 1972, AD 749-365

Bonneau, Richard J.

A Class of Finite Computation Structures Supporting the Fast
Fourier Transform, March 1973, AD 757-787

238

TM-32

TM-33

T™M-34

TM-35

TM-36

T™-37

T™M-38

T™M-39

TM-40

T™-41

TM-42

PUBLICATIONS

Moli, Robert
An Operator Embedding Theorem for ComplexityClasses of
Recursive Functions, May 1973, AD 759-999

Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First Order Theory of Real Addition
with Order, May 1973, AD 760-000

Bonneau, Richard J.
Polynomial Exponentiation: The Fast Fourier Transform
Revisited, June 1973, PB 221-742

Bonneau, Richard J.
An Interactive Impiementation of the Todd-Coxeter Algorithm,
December 1973, AD 770-565

Geiger, Steven P.
A User’s Guide to the Macro Control Language, December 1973,

AD 771-435

Schonhage, A.
Real-Time Simulation of Multidimensional Turing Machines by
Storage Moditication Machines, December 1973, PB 226-103/AS

Meyer, Albert R.
Weak Monadic Second Order Theory of Succesor is not
Elementary-Recursive, December 1973, PB 226-514/AS

Meyer, Albert R.
Discrete Computation: Theory and Open Problems, January
1974, PB 226-836/AS

Paterson, Michael S., Michael J. Fischer and Albert R. Meyer
An Improved Overlap Argument for On-Line Multiplication,
January 1974, AD 773-137

Fischer, Michael J. and Michael S. Paterson
String-Matching and Other Products, January 1974, AD 773-138

Rackoff, Charles

On the Complexity of the Theories of Weak Direct Products,
January 1974, PB 228-459/AS

239

&

PUBLICATIONS

T™M-43

TM-44

TM-45

TM-46

T™M-47

T™-48

T™-49

T™M-50

TM-51

TM-52

TM-53

Fischer, Michael J. and Michael O. Rabin
Super-Exponential Complexity of Presburger Arithmetic,
February 1974, AD 775-004

Pless, Vera
Symmetry Codes and their Invariant Subcodes, May 1974, AD
780-243

Fischer, Michael J. and Larry J. Stockmeyer
Fast On-Line Integer Multiplication, May 1974, AD 779-889

Kedem, 2Zvi M.

Combining Dimensionality and Rate of Growth Arguments for
Establishing Lower Bounds on the Number of Multiplications,
June 1974, PB 232-969/AS

Pless, Vera
Mathematical Foundations of Flip-Flops, June 1974, AD 780-901

Kedem, Zvi M.
The Reduction Method for Establishing Lower Bounds on the
Number of Additions, June 1974, PB 233-538/AS

Pless, Vera
Complete Classification of (24,12) and (22,11) Self-Dual Codes,
June 1974, AD 781-335

Benedict, G. Gordon
An Enciphering Module for Multics, S.B. Thesis, EE Dept., July
1974, AD 782-658

Aiello, Jack M.

An Investigation of Current Language Support for the Data
Requirements of Structured Programming, S.M. & E.E. Thesis,
EE Dept., September 1974, PB 236-815/AS

Lind, John C.
Computing in Logarithmic Space, September 1974, PB
236-167/AS

Bengelloun, Safwan A.

MDC-Programmer: A Muddle-to Datalanguage Translator for
Information Retrieval, S.B. Thesis, EE Dept., October 1974, AD
786-754

240

T™M-54

TM™M-55

TM-56

T™M-57

TM-58

T™M-59

TM-60

TM-61

T™M-62

TM-63

T™M-64

TM-65

PUBLICATIONS

Meyer, Albert R.
The Inherent Computation Complexity of Theories of Ordered
Sets: A Brief Survey, October 1974, PB 237-200/AS

Hsieh. Wen N., Larry H. Harper and John E. Savage
A Class of Boolean Functions with Linear Combinatorial
Complexity, October 1974, PB 237-206/AS

Gorry. G. Anthony
Research on Expert Systems, December 1974

Levin. Michael
On Bateson's Logical Levels of Learning, February 1975

Qualitz, Joseph E.
Decidability of Equivalence for a Class of Data Flow Schemas,
March 1975, PB 237-033/AS

Hack, Michel
Decision Problems for Petri Nets and Vector Addition Systems,
March 1975 PB 231-916/AS

Weiss, Randell B.
CAMAC: Group Manipulation System, March 1975, PB
240-495/AS

Dennis, Jack B.
First Version of a Data Flow Procedure Language, May 1975

Patil, Suhas S.
An Asynchronous Logic Array, May 1975

Pless, Vera
Encryption Schemes for Computer Confidentiality, May 1975, AD
A010-217

Weiss, Randell B.
Finding Isomorph Classes for Combinatorial Structures, S.M.
Thesis, EE Dept., June 1975

Fischer, Michael J.
The Complexity Negation-Limited Networks - A Brief Survey,
June 1975

241

PUBLICATIONS

TM-66

T™-67

T™-68

T™-69

TM-70

TM-71

T™.72

T™-73

T™-74

T™-75

T™-76

Leung. Clement
Formal Properties of Well-Formed Data Flow Schemas. S.8.. S.M.
& E.E. Thesis, EE Dept.. June 1975

Cardoza, Edward E.
Computational Complexity of the Word Problem for Commutative
Semigroups, S.M. Thesis, EE & CS Dept., October 1975

Weng. Kung-Song
Stream-Oriented Computation in Recursive Data Flow Schemas,
S.M. Thesis, EE & CS Dept., October 1975

Bayer, Paul J.
improved Bounds on the Costs of Optimal and Balanced Binary
Search Trees, S.M. Thesis, EE & CS Dept., November 1975

Ruth, Gregory R.
Automatic Design of Data Processing Systems, February 1976,
AD A023-451

Rivest, Ronald
On the Worst-Case of Behavior of String-Searching Algorithms,
April 1976

Ruth, Gregory R.
Protosystem |1 An Automatic Programming System Prototype,
July 1976, AD A026-912

Rivest, Ronald
Optimal Arrangement of Keys in a Hash Table, July 1976

Malvania, Nikhil
The Design of a Modular Laboratory for Control Robotics, S.M.
Thesis, EE & CS Dept., September 1976, AD A030-418

Yao, Andrew C. and Ronald |. Rivest
K + 1 Heads are Better than K, September 1976, AD A030-008

Bloniarz, Peter A., Michael J. Fischer and Albert R. Meyer
A Note on the Average Time to Compute Transitive Closures,
September 1976

242

T™-77

T™-78

T™-79

TM-80

T™-81

T™-82

TM-83

™-84

T™-85

T™M-86

T™.-87

PUBLICATIONS

Mok, Aloysius K.
Task Scheduling in the Control Robotics Environment, S.A.
Thesis, EE & CS Dept., September 1976, AD A030-402

Benjamin, Arthur J.
Improving Information Storage Reliability Using a Data Network,
S.M. Thesis, EE & CS Dept., October 1976, AD A033-394

Brown. Gretchen P.
A System to Process Dialogue: A Progress Report. October
1976, AD A033-276

Even, Shimon
The Max Flow Algorithm of Dinic and Karzanov: An Exposition,
December 1976

Gifford, David K.
Hardware Estimation of a Process’ Primary Memory
Requirements, S.B. Thesis, EE & CS Dept., January 1977

Rivest, Ronald L., Adi Shamir and Len Adleman
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, April 1877, AD A039-036

Baratz, Alan E.
Construction and Analysis of Network Flow Problem which
Forces Karzanov Algorithm to O(n3) Running Time, April 1977

Rivest, Ronald L. and Vaughan R. Pratt
The Mutual Exclusion Problem for Unreliable Processes, April
1977

Shamir, Adi
Finding Minimum Cutsets in Reducible Graphs, June 1977, AD
AQ40-698

Szolovits, Peter, Lowell B. Hawkinson and William A. Martin
An Overview of OWL, A Language for Knowledge
Representation, June 1977, AD AQ41-372

Clark, David., editor
Ancillary Reports: Kernel Design Project, June 1977

243

NP

PUBLICATIONS

T™M-88

T™M-89

T™M-90

T™-91

T™-92

TM-83

TM-84

TM-85

T™M-96

T™M-97

Lloyd, Errol L.
On Triangulations of a Set of Points in the Plane, S.M. Thesis, EE
& CS Dept., July 1977

Rodriguez, Humberto Jr.
Measuring User Characteristics on the Multics System, S.B.
Thesis, EE & CS Dept., August 1977

d'Oliveira, Cecilia R.
An Analysis of Computer Decentralization, S.B. Thesis, EE & CS
Dept., October 1977, AD A045-526

Shamir, Adi
Factoring Numbers in O(log n) Arithmetic Steps, November
1977, AD A047-709

Misunas, David P.
Report on the Workshop on Data Flow Computer and Program
Organization, November 1977

Amikura, Katsuhiko
A Logic Design for the Cell Block of a Data-Flow Processor, S.M.
Thesis, EE & CS Dept., December 1977

Berez, Joel M.
A Dynamic Debugging System for MDL, S.B. Thesis, EE & CS
Dept., January 1978, AD A050-191

Harel, David
Characterizing Second Order Logic with First Order Quantifiers,
February 1978

Harel, David, Amir Pnueli and Jonathan Stavi
A Complete Axiomatic System for Proving Deductions about
Recursive Programs, February 1978

Harel, David, Albert R. Meyer and Vaughan R. Pratt _
Computability and Completeness in Logics of Programs,
February 1978

244

.

T™-98

T™-99

TM-100

TM-101

T™M-102

TM-103

T™M-104

TM-105

TM-106

TM-107

TM-108

TM-109

PUBLICATIONS

Harel, David and Vaughan R. Pratt
Nondeterminism in Logics of Programs, February 1978

LaPaugh, Andrea S.
The Subgraph Homeomorphism Problem, S.M. Thesis, EE & CS
Dept.. February 1978

Misunas, David P.
A Computer Architecture for Data-Flow Computation. S.M.
Thesis, EE & CS Dept., March 1978, AD A052-538

Martin, William A.
Descriptions and the Specialization of Concepts, March 1978,
AD AQ52-773

Abelson, Harold
Lower Bounds on Information Transfer in Distributed
Computations, April 1978

Harel, David
Arithmetical Completeness in Logics of Programs, April 1978

Jaffe, Jeffrey
The Use of Queues in the Parallel Data Flow Evaluation of "If-
Then-While" Programs, May 1978

Masek, William J. and Michael S. Paterson
A Faster Algorithm Computing String Edit Distances, May 1978

Parikh, Rohit
A Completeness Result for a Propositional Dynamic Logic, July
1978

Shamir, Adi
A Fast Signature Scheme, July 1978, AD AQ57-1562

Baratz, Alan E.
An Analysis of the Solovay and Strassen Test for Primality, July
1978

Parikh, Rohit
Effectiveness, July 1978

245

PUBLICATIONS

T™-110

T™-111

TM-112

T™-113

TM-114

TM-115

TM-116

T™-117

T™™-118

T™M-119

T™-120

Jaffe, Jeffrey M.
An Analysis of Preemptive Multiprocessor Job Scheduling,
September 1978

Jaffe, Jeffrey M.
Bounds on the Scheduling of Typed Task Systems, September
1978

Parikh, Rohit
A Decidability Result for a Second Order Process Logic,
September 1978

Pratt, Vaughan R.
A Near-optimal Method for Reasoning about Action, September
1978

Dennis, Jack B., Samuel H. Fuller, William B. Ackerman,

Richard J. Swan and Kung-Song Weng

Research Directions in Computer Architecture, September 1978,
AD A061-222 '

Bryant, Randal E. and Jack B. Dennis
Concurrent Programming, October 1978, AD A061-180

Pratt, Vaughan R.
Applications of Modal Logic to Programming, December 1978

Pratt, Vaughan R.
Six Lectures on Dynamic Logic, December 1978

Borkin, Sheldon A.
Data Model Equivalence, December 1978, AD A062-753

Shamir, Adi and Richard E. Zippel
On the Security of the Merkle-Hellman Cryptographic Scheme,
December 1978, AD A063-104

Brock, Jarvis D.
Operational Semantics of a Data Flow Language, S.M. Thesis, EE
& CS Dept., December 1978, AD A062-997

246

T™-121

T™-122

T™-123

T™-124

T™M-125

T™-126

T™-127

TM-128

TM-129

T™-130

T™-131

T™M-132

PUBLICATIONS

Jaffe, Jeffrey
The Equivalence of R.E. Programs and Data Flow Schemes,
January 1979

Jafte, Jetfrey
Efficient Scheduling of Tasks Without Full Use of Processor
Resources, January 1979

Perry, Harold M.
An Improved Proof of the Rabin-Hartmanis-Stearns Conjecture,
S.M. & E.E. Thesis, EE & CS Dept., January 1979

Toffoli, Tommaso
Bicontinuous Extensions of Invertible Combinatorial Functions,
January 1979, AD A063-886

Shamir, Adi, Ronald L. Rivest and Leonard M. Adleman
Mental Poker, February 1979, AD A066-331

Meyer, Albert R. and Michael S. Paterson
With What Frequency Are Apparently Intractable Problems
Difficult?, February 1979

Strazdas, Richard J.
A Network Traffic Generator for Decnet, S.B. & S.M. Thesis, EE &
CS Dept., March 1979

Loui, Michael C.
Minimum Register Allocation is Complete in Polynomial Space,
March 1979

Shamir, Adi
On the Cryptocomplexity of Knapsack Systems, April 1979, AD
AQ67-972

Greif, lrene and Albert R. Meyer
Specifying the Semantics of While-Programs: A Tutorial and
Critigue of a Paper by Hoare and Lauer, April 1879, AD A068-967

Adleman, Leonard M.,
Time, Space and Randomness, April 1979

Patil, Ramesh S.
Design of a Program for Expert Diagnosis of Acid Base and
Electrolyte Disturbances, May 1979

247

WM

PUBLICATIONS
TM-133 Loui, Michael C.
The Space Complexity of Two Pebble Games on Trees, May 1979
& T™-134 Shamir, Adi
How to Share a Secret, May 1979, AD A069-397
TM-135 Wyleczuk, Rosanne H.
B Timestamps and Capability-Based Protection in a Distributed
Computer Facility, S.B. & S.M. Thesis, EE & CS Dept., June 1979
TM-136 Misunas, David P.
Report on the Second Workshop on Data Flow Computer and
: Program Organization, June 1979
TM-137 Davis, Ernest and Jeffrey M. Jaffe
Algorithms for Scheduling Tasks on Unrelated Processors, June
1979
TM-138 Pratt, Vaughan R.
Dynamic Algebras: Examples, Constructions, Applications, July
1979
T™-139 Martin, William A. ‘ .

Roles, Co-Descriptors, and the Formal Representation of
Quantified English Expressions (Revised May 1980), September
1979, AD AQ74-625

TM-140 Szolovits, Peter '
Artificial Intelligence and Clinicai Problem Solving, September
1979

TM-141 Hammer, Michael and Dennis McLeod
On Database Management System Architecture, October 1979,
AD A076-417

TM-142 Lipski, Witold, Jr.
On Data Bases with Incomplete Information, October 1979

TM-143 Leth, James W.
An Intermediate Form for Data Flow Programs, S.M. Thesis, EE &
CS Dept., November 1979

TM-144 Takagi, Akihiro
Concurrent and Reliable Updates of Distributed Databases,
November 1979

248

TM-145

TM-146

T™M-147

TM-148

TM-149

TM-150

TM-151

TM-152

TM-153

TM-154

TM-1585

TM-156

PUBLICATIONS

Loui, Michael C.
A Space Bound for One-Tape Multidimensional Turing Machines,
November 1979

Aoki, Donald J.
A Machine Language Instruction Set for a Data Flow Processor,
S.M. Thesis, EE & CS Dept., December 1979

Schroeppel, Richard and Adi Shamir
AT = 0(2V?), S = 0(2"% Algorithm for Certain NP-Complete
Problems, January 1980, AD A080-385

Adleman, Leonard M. and Michael C. Loui
Space-Bounded Simulation of Multitape Turing Machines,
January 1980

Pallottino, Stefano and Tommaso Toffoli

An Efficient Algorithm for Determining the Length of the Longest
Dead Path in an "Lifo" Branch-and-Bound Exploration Schema,
January 1980, AD A079-912

Meyer, Albert R.
Ten Thousand and One Logics of Programming, February 1980

Toffoli, Tommaso
Reversible Computing, February 1980, AD A082-021

Papadimitriou, Christos H.
On the Complexity of Integer Programming, February 1980

Papadimitriou, Christos H.
Worst-Case and Probabilistic Analysis of a Geometric Location
Problem, February 1980

Karp, Richard M. and Christos H. Papadimitriou
On Linear Characterizations of Combinatorial Optimization
Problems, February 1980

Atai, Alon, Richard J.Lipton, Christos H.Papadimitriou and
M. Rodeh
Covering Graphs by Simple Circuits, February 1980

Meyer, Albert R. and Rohit Parikh
Definability in Dynamic Logic, February 1980

249

-

PUBLICATIONS

TM-157

TM-158

TM-159

TM-160

T™-161

TM-162

T™-163

T™M-164

TM-165

TM-166

T™-167

TM-168

Meyer, Albert R. and Karl Winklmann
On the Expressive Power of Dynamic Logic, February 1980

Stark, Eugene W.
Semaphore Primitives and Starvation-Free Mutual Exclusion,
S.M. Thesis, EE & CS Dept., March 1980

Pratt, Vaughan R.
Dynamic Algebras and the Nature of Induction, March 1980

Kanellakis, Paris C.
On the Computational Complexity of Cardinality Constraints in
Relational Databases, March 1980

Lloyd, Errol L.
Critical Path Scheduling of Task Systems with Resource and
Processor Constraints, March 1980

Marcum, Alan M.
A Manager for Named, Permanent Objects, S.B. & S.M. Thesis,
EE & CS Dept., April 1980, AD A083-491

Meyer, Albert R. and Joseph Y. Halpern
Axiomatic Definitions of Programming Languages: A Theoretical
Assessment, April 1980

Shamir, Adi
The Cryptographic Security of Compact Knapsacks (Preliminary
Report), April 1980, AD A084-456

Finseth, Craig A.
Theory and Practice of Text Editors or A Cookbook for an
Emacs, S.B. Thesis, EE & CS Dept., May 1980

Bryant, Randal E,
Report on the Workshop on Seif-Timed Systems, May 1980

Pavelle, Richard and Michael Wester
Computer Programs for Research in Gravitation and Differential
Geometry, June 1980

Greif, Irene
Programs for Distributed Computing: The Calendar Application,
July 1980, AD AQ87-357

250

-

T™M-169

T™-170

T™-171

T™M-172

T™-173

T™-174

TM-175

T™M-176

T™-177

TM-178

T™-179

TM-180

T™-181

PUBLICATIONS

Burke, Glenn and David Moon
LOOP Ilteration Macro, (revised January 198l) July 1980, AD
A087-372

Ehrenfeucht, Andrzej, Rohit Parikh and Gregorz Rozenberg
Pumping Lemmas for Regular Sets, August 1980

Meyer, Albert R.
What is a Model of the Lambda Calculus?, August 1980

Paseman, William G.
Some New Methods of Music Synthesis, S.M. Thesis, EE & CS
Dept., August 1980, AD A090-130

Hawkinson, Lowell B.
XLMS: A Linguistic Memory System, September 1980, AD
A090-033

Arvind, Vinod Kathail and Keshav Pingali
A Dataflow Architecture with Tagged Tokens, September 1980

Meyer, Albert R., Daniel Weise and Michael C. Loui
On Time Versus Space lll, September 1980

Seaquist, Carl R.
A Semantics of Synchronization, S.M. Thesis, EE & CS Dept.,
September 1980, AD A091-015

Sinha, Mukul K.
TIMEPAD - A Performance Improving Synchronisation
Mechanism for Distributed Systems, September 1980

Arvind and Robert E. Thomas
I-Structures: An Efficient Data Type for Functional Languages,
September 1980

Halpern Joseph Y. and Albert R. Meyer
Axiomatic Definitions of Programming Languages, 1l, October
1980

Papadimitriou, Christos H.
A Theorem in Database Concurrency Control, October 1980

Lipski, Witold Jr. and Christos H. Papadimitriou
A Fast Algorithm for Testing for Safety and Detecting Deadlocks
in Locked Transaction Systems, October 1980

251

PUBLICATIONS

T™M-182

TM-183

T™-184

T™-185

TM-186

T™-187

T™M-188

T™M-189

TM-190

TM-191

T™-192

TM-193

itai, Alon. Christos H. Papadimitriou and Jayme Luiz Szwarefiter
Hamilton Paths in Grid Graphs, October 1980

Meyer, Albert R.
A Note on the Length f Craig’s Interpolants, October 1980

Lieberman, Henry and Carl Hewitt
A Real Time Garbage Collector that can Recover Temporary
Storage Quickly, October 1980

Kung. Hsing-Tsung and Christos H. Papadimitriou
An Optimality Theory of Concurrency Control for Databases,
November 1980, AD AQ092-625

Szolovits, Peter and William A. Martin
BRAND X Manual, November 1980, AD A093-041

Fischer, Michael J., Albert R. Meyer and Michael S. Paterson
CapOmega()(n log n) Lower Bounds on Length of Boolean
Formulas, November 1980

Mayr, Ernst _
An Effective Representation of the Reachability Set of Persistent
Petri Nets, January 1981

Mayr, Ernst
Persistence of Vector Replacement Systems is Decidable,
January 1981

Ben-Ari, Mordechai, Joseph Y. Halpern and Amir Pnueli
Deterministic Propositional Dynamic Logic: Finite Models,
Complexity, and Completeness, January 1981.

Parikh, Rohit
Propositional Dynamic Logics of Programs: A Survey, January
198l.

Meyer, Albert R., Robert S. Streett and Grazina Mirkowska
The Deducibility Problem in Propositional Dynamic Logic,
February 1981

Yannakakis, Mihalis and Christos H. Papadimitriou
Algebraic Dependencies, February 1981

252

N

]

TM-194

TM-195

T™M-196

T™-197

T™M-198

TM-199

TM-200

TM-201

TM-202

T™-203

T™M-204

TM-205

TM-206

PUBLICATIONS

Barendregt, Henk and Giuseppe Longo
Recursion Theoretic Operators and Morphisms on Numbered
Sets, February 1981

Barber, Gerald R.
Record of the Workshop on Research in Office Semantics,
February 1981

Bhatt. Sandeep N.
On Concertration and Connection Networks, S.M. Thesis, EE &
CS Dept., March 1981

Fredkin, Edward and Toffoli Thomaso
Conservatie Logic, May 1981

Halpern, Josepth and Reif, J.
The Propositonal Dynamic Legic of Deterministic Well-Sructured
Programs, March 1981

Mayr, E. and Meyer, A.
The Complexity of the Word Problems for Communative
Semigroups and Polynomial Ideals, June 1981

Burke, G.
LSB Manual, June 1981

Meyer, A.
What is a Model of the lambda Calculus? Expanded Version, July
1981.

Saltzer. J. H. Communication Ring Initialization without Central
Control December 1981

Bawden, A., Burkc, G. and Hoffman, C. Maclisp Extensions, July
1981

Halpern, J.Y. On the Expressive Power of Dynamic Logic, I,
August 1981

Kannon, R. Circuit-Size Lower Bounds and Non-Reducibility to
Sparce Sets, Octoer 1981.

Leiserson, C. and Pinter, R. Optimal Placement for River Routing,
October 1981

253

»n!

PUBLICATIONS

T™-207

T™-208

TM-209

T™-210

T™-211

T™-212

TM-213

T™-214

TM-215

T™M-216

T™-217

T™M-218

T™-219

T™M-220

TM-221

T™M-222

LONGO. G. Power Set Models For Lambda-Calculus: Theories,
Expansions, Isomorphisms, November 1981

Cosmadakis, S and Papadimitriou, C. The Traveling Salesman
Problem with Many Visits to Few Cities, November 1981

Johnson, D.and Papadimitriou, C. Computational Complexity
and the Traveling Salesman Problem, December 1981

Greif, I. Software for the 'Roiels" People Play, February 1982

Meyer, A. and Tiuryn, J. A Note on Equivalences Among Logics
of Programs, December 1981

Elias, P. Minimax Optimal Universal Codeword Sets, January
1982

Greif, | PCAL: A Personal Calendar, January 1982

Meyer, A. and Mitchell, J. Terminations for Recursive Programs:
Completeness and Axiomatic Definability, March 1982

Leiserson, C.and Saxe J.Optimizing Synchronous Systems,
March 1982

Church, K. and Patil, R. Coping with Syntactic Ambiguity or How
to Put the Biock in the Box on the Table, April 1982.

Wright, D. A File Transfer Program for a Personal Computer,
April 1982

Greif, 1. Cooperative Office Work, Teleconferencing and
Calendar Managment: A Collection of Papers, May 1982

Jouannaud, J.-P., Lescanne, P and Reinig, F.Recursive
Decomposition Ordering and Multiset ORrderings, June 1982

Chu, T.-A. Circuit Analysis of Self-Times Elements for NMOS
VLSI Systems, May 1982

Leighton, F., Lepley, M. and Miller, G. Layouts fo the Shuffle-
Exchange Graph Based on the Complex Plane Diagram, June
1982

Meier zu Sieker, F. A Telex Gateway for the Internety, S.B.
Thesis. Electrical Engineering Dept., May 1982

254

TR-17

TR-2

TR-3

TR-4

TR-6

TR-7

TR-8

TR-11

TR-12

TR-13

PUBLICATIONS

Technical Reports

Bobrow, Daniel G.
Natural Language Input for a Computer Problem Solving System,
Ph.D. Dissertation, Math. Dept., September 1964, AD 604-730

Raphael, Bertram
SIR: A Computer Program for Semantic Information Retrieval,
Ph.D. Dissertation, Math. Dept., June 1964, AD 608-499

Corbato, Fernando J.
System Requirements for Multiple-Access, Time-Shared
Computers, May 1964, AD 608-501

Ross, Douglas T. and Clarence G. Feldman
Verbal and Graphical Language for the AED System: A Progress
Report, May 1964, AD 604-678

Biggs. John M. and Robert D. Logcher
STRESS: A Problem-Oriented Language for Structural
Engineering, May 1964, AD 604-679

Weizenbaum, Joseph
OPL-1: An Open Ended Programming System within CTSS, April
1964, AD 604-680

Greenberger, Martin
The OPS-1 Manual, May 1964, AD 604-681

Dennis, Jack B.
Program Structure in a Multi-Access Computer, May 1964, AD
608-500

Fano, Robert M.
The MAC System: A Progress Report, October 1964, AD 609-296

Greenberger. Martin
A New Methodology for Computer Simulation, October 1964, AD
609-2838

7Trs 5,9, ' 15 were never issued

255

)

PUBLICATIONS

TR-14

TR-16

TR-17

TR-18

TR-19

TR-20

TR-21

TR-22

TR-23

TR-24

TR-25

TR-26

Roos, Daniel
Use of CTSS in a Teaching Environment, November 1964, AD
661-807

Saltzer, Jerome H.
CTSS Technical Notes, March 1965, AD 612-702

Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer, March 1965, AD
462-158

Scherr, Allan Lee
An Analysis of Time-Shared Computer Systems, Ph.D.
Dissertation, EE Dept., June 1965, AD 470-715

Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop, S.B. &
S.M. Thesis, Sloan School, June 1965, AD 474-018

Wantman, Mayer Elihu .

CALCULAID: An On-Line System for Algebraic Computation and
Analysis, S.M. Thesis, Sloan School, September 1965, AD
474-019

Denning, Peter James
Queueing Models for File Memory Operation, S.M. Thesis, EE
Dept., October 1965, AD 624-943

Greenberger, Martin
The Priority Problem, November 1965, AD 625-728

Dennis, Jack B. and Earl C. Van Horn
Programming Semantics for Multi-programmed Computations,
December 1965, AD 627-537

Kaplow, Roy. Stephen Strong and John Brackett
MAP: A System for On-Line Mathematical Analysis, January
1966, AD 476-443

Stratton, William David

Investigation of an Analog Technique to Decrease Pen-Tracking
Time in Computer Displays, S.M. Thesis. EE Dept., March 1966,
AD 631-396

Cheek, Thomas Burrell

256

TR-27

TR-28

TR-29

TR-30

TR-31

TR-32

TR-33

TR-34

TR-35

TR-36

TR-37

PUBLICATIONS

Design of a Low-Cost Character Generator for Remote Computer
Displays, S.M. Thesis, EE Dept., March 1966, AD 631-269

Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid System, S.M. Thesis, EE Dept.,
May 1966, AD 633-678

Smith. Arthur Anshel
Input/Output in Time-Shared, Segmented, Multiprocessor
Systems, S.M. Thesis, EE Dept., June 1966, AD 637-215

lvie, Evan Leon
Search Procedures Based on Measures of Relatedness between
Documents, Ph.D. Dissertation, EE Dept., June 1966, AD 636-275

Saltzer. Jerome Howard TRatfic Control in a Muitiplexed
Computer System, Sc.D. Thesis, EE Dept., July 1966, AD 635-966

Smith, Donald L.
Models and Data Structures for Digital Logic Simulation, S.M.
Thesis, EE Dept., August 1966, AD 637-192

Teitelman, Warren
PILOT: A Step Toward Man-Computer Symbiosis, Ph.D.
Dissertation, Math. Dept., September 1966, AD 638-446

Norton, Lewis M, ADEPT - A Heuristic Program for Proving
Theorems of Group Theory, Ph.D. Dissertation, Math. Dept.,
October 1966, AD 645-660

Van Horn, Earl C., Jr.

Computer Design far Asynchronously Reproducible
Multiprocessing, Ph.D. Dissertation, EE Dept., November 1966,
AD 650-407

Fenichel. Robert R.
An On-Line System for Algebraic Manipulation, Ph.D.
Dissertation, Appl. Math. (Harvard), December 1966, AD 657-282

Martin, William A.
Symbolic Mathematical Laboratory, Ph.D. Dissertation, EE Dept.,
January 1967, AD 657-283

Guzman-Arenas. Adolfo
Some Aspects of Pattern Recognition by Computer, S.M. Thesis,
EE Dept.. February 1067, AD 656-041

257

PUBLICATIONS

TR-38

TR-39

TR-40

TR-41

TR-42

TR-43

"R-44

TR-45

TR-46

Rosenberg, Ronald C., Daniel W.Kennedy and Roger
A. Humphrey

A Low-Cost Output Terminal For Time-Shared Computers, March
1967, AD 662-027

Forte, Allen
Syntax-Based Analytic Reading of Musical Sccies, April 1967,
AD 661-806

Miller, James R.
On-Line Analysis for Social Scientists, May 1967, AD 668-009

Coons, Steven A.
Surfaces for Computer-Aided Design of Space Forms, June
1967, AD 663-504

Liu, Chung L., Gabriel D. Chang and Richard E. Marks
Design and Implementation of a Table-Driven Compiler System,
July 1967, AD 668-960

Wilde, Daniel U.
Program Analysis by Digital Computer, Ph.D. Dissertation, EE
Dept., August 1967, AD 662-224

Gorry, G. Anthony
A System for Computer-Aided Diagnosis, Ph.D. Dissertation,
Sloan School, September 1967, AD 662-665

Leal-Cantu, Nestor

On the Simulation of Dynamic Systems with Lumped Parameters
and Time Delays, S.M. Thesis, ME Dept., October 1967, AD
663-502

Alsop, Joseph W.
A Canonic Translator, S.B. Thesis, EE Dept., November 1967, AD

663-503

258

TR-47

TR-48

TR-49

TR-50

TR-51

TR-52

TR-53

TR-54

TR-55

TR-56

PUBLICATIONS

Moses, Joel
Symbolic integration, Ph.D. Dissertation, Math. Dept., December
1967, AD 662-666

Jones., Malcolm M.
Incremental Simulation on a Time-Shared Computer, Ph.D.
Dissertation, Sloan School, January 1968, AD 662-225

Luconi, Fred L.
Asynchronous Computational Structures, Ph.D. Dissertation, EE
Dept., February 1968, AD 667-602

Denning, Peter J.
Resource Allocation in Multiprocess Computer Systems, Ph.D.
Dissertation, EE Dept., May 1968, AD 675-554

Charniak, Eugene
CARPS, A Program which Solves Calculus Word Problems, S.M.
Thesis, EE Dept., July 1968, AD 673-670

Deitel, Harvey M.
Absentee Computations in a Multiple-Access Computer System,
S.M. Thesis, EE Dept., August 1968, AD 684-738

Slutz, Donald R.
The Flow Graph Schemata Model of Parz:'~l Computation, Ph.D.
Dissertation, EE Dept., September 1968, AD 683-393

Grochow, Jerrold M.

The Graphic Display as an Aid in the Monitoring of a Time-
Shared Computer System, S.M. Thesis, EE Dept., October 1968,
AD 689-468

Rappaport, Robert L.
Implementing Multi-Process Primitives in a Multiplexed Computer
System, S.M. Thesis, EE Dept., November 1968, AD 689-469

Thornhill, Daniel E., Robert H. Stotz, Douglas T. Ross and John
E. Ward

An Integrated Hardware-Software System for Computer Graphics
in Ti(ne-Sharing, December 1968, AD 685-202

259

A iaamiea o MR e

I

PUBLICATIONS

TR-57

TR-58

TR-59

TR-60

TR-61

TR-62

TR-63

TR-64

TR-65

TR-66

Morris, James H.
Lambda-Calculus Models of Programming Languages, Ph.D.
Dissertation, Stoan School, December 1968, AD 683-394

Greenbaum, Howard J.

A Simulator of Muitiple Interactive Users to Drive a Time-Shared
Computer System, S.M. Thesis, EE Dept., January 1969, AD
686-988

Guzman, Adolfo

Computer Recognition of Three- Dimensional Objects in a Visual
Scene, Ph.D. Dissertation, EE Dept., December 1968, AD
692-200

Ledgard, Henry F.

A Formal System for Defining the Syntax and Semaritics of
Computer Languages, Ph.D. Dissertation, EE Dept., April 1969,
AD 689-305

Baecker, Ronald M.
interactive Computer-Mediated Animation, Ph.D. Dissertation, EE
Dept., June 1969, AD 690-887

Tillman, Coyt C., Jr.

EPS: An Interactive System for Solving Elliptic Boundary-Value
Problems with Facilities for Data Manipulation and General-
Purpose Computation, June 1969, AD 692-462

Brackett, John W., Michael Hammer and Daniel E. Thornhill

Case Study in Interactive Graphics Programming: A Circuit
Drawing and Editing Program for Use with a Storage-Tube
Display Terminal, October 1969, AD 639-930

Rodriguez, Jorge E.
A Graph Model for Parallel Computations, Sc.D. Thesis, EE
Dept., September 1969, AD 697-759

DeRemer, Franklin L.
Practical Translators for LR(k) Languages, Ph.D. Dissertation, EE
Dept., October 1969, AD 699-501

Beyer, Wendell T.
Recognition of Topological Invariants by lterative Arrays, Ph.D.
Dissertation, Math. Dept., October 1969, AD 699-502

260

TR-67

TR-68

TR-69

TR-70

TR-71

TR-72

TR-73

TR-74

TR-75

TR-76

TR-77

PUBLICATIONS

Vanderbilt, Dean H.
Controlled Information Sharing in a Computer Utility, Ph.D.
Dissertation. EE Dept., October 1969, AD 699-503

Selwyn, Lee L.

Economies of Scale in Computer Use: Initial Tests and
Implications for The Computer Utility, Ph.D. Dissertation, Sioan
School, June 1970, AD 710-011

Gertz, Jeffrey L.
Hierarchical Associative Memories for Parallel Computation,
Ph.D. Dissertation, EE Dept., June 1970, AD 711-091

Fillat, Andrew I. and Leslie A. Kraning

Generalized Organization of Large Data-Bases: A Set-Theoretic
Approach to Relations, S.B. & S.M. Thesis, EE Dept., June 1970,
AD 711-060

Fiasconaro, James G.
A Computer-Controlled Graphical Display Processor, S.M.
Thesis, EE Dept., June 1970, AD 710-479

Patil, Suhas S.
Coordination of Asynchronous Events, Sc.D. Thesis, EE Dept.,
June 1970, AD 711-763

Griffith, Arnold K.
Computer Recognition of Prismatic Solids, Ph.D. Dissertation,
Math. Dept., August 1970, AD 712-069

Edelberg, Murray
Integral Convex Polyhedra and an Approach to Integralization,
Ph.D. Dissertation, EE Dept., August 1970, AD 712-070

Hebalkar, Prakash G.
Deadlock-Free Sharing of Resources in Asynchronous Systems,
Sc.D. Thesis, EE Dept., September 1970, AD 713-139

Winston, Patrick H.
Learning Structural Descriptions from Examples, Ph.D.
Dissertation, EE Dept., September 1970, AD 713-988

Haggerty, Joseph P.

Complexity Measures for Language Recognition by Canonic
Systems, S.M. Thesis, EE Dept., October 1970, AD 715-134

261

e

PUBLICATIONS

TR-78

TR-79

TR-80

TR-81

TR-82

TR-83

TR-84

TR-85

TR-86

TR-87

Madnick, Stuart E.
Design Strategies for File Systems, S.M. Thesis, EE Dept. & Sloan
School, October 1970, AD 714-269

Horn, Berthold K.

Shape from Shading: A Method for Obtaining the Shape of a
Smooth Opaque Object from One View, Ph.D. Dissertation, EE
Dept., November 1970, AD 717-336

Clark, David D., Robert M. Graham, Jerome H. Saltzer and
Michael D. Schroeder

The Classroom Information and Computing Service, January
1971, AD 717-857

Banks, Edwin R.
Information Processing and Transmission in Cellular Automata,
Ph.D. Dissertation, ME Dept., January 1971, AD 717-951

Krakauer, Lawrence J.
Computer Analysis of Visual Properties of Curved Objects, Ph.D.
Dissertation, EE Dept., May 1971, AD 723-647

Lewin, Donald E.
In-Process Manufacturing Quality Control, Ph.D. Dissertation,
Sloan School, January 1971, AD 720-098

Winograd, Terry

Procedures as a Representation for Data in a Computer Program
for Understanding Natural Language, Ph.D. Dissertation, Math.
Dept., February 1971, AD 721-399

Miller, Perry L.
Automatic Creation of a Code Generator from a Machine
Description, E.E. Thesis, EE Dept., May 1971, AD 724-730

Schell, Roger R.
Dynamic Reconfiguration in a Modular Computer System, Ph.D.
Dissertation, EE Dept., June 1971, AD 725-859

Thomas, Robert H.
A Model for Process Representation and Synthesis, Ph.D.
Dissertation, EE Dept., June 1971, AD 726-049

262

TR-88

TR-89

TR-90

- TR-91

TR-92

TR-93

TR-94

TR-95

TR-96

TR-97

TR-98

PUBLICATIONS

Welch, Terry A.
Bounds on Information Retrieval Efficiency in Static File
Structures, Ph.D. Dissertation, EE Dept., June 1971, AD 725-429

Owens, Richard C., Jr.
Primary Access Control in Large-Scale Time-Shared Decision
Systems. S.M. Thesis, Sloan School, July 1971, AD 728-036

Lester, Bruce P.
Cost Analysis of Debugging Systems, S.B. & S.M. Thesis, EE
Dept., September 1971, AD 730-521

Smoliar, Stephen W.
A Parallel Processing Model of Musical Structures, Ph.D.
Dissertation, Math. Dept., September 1971, AD 731-690

Wang, Paul S.
Evaluation of Definite Integrals by Symbolic Manipulation, Ph.D.
Dissertation, Math. Dept., October 1971, AD 732-005

Greif, Irene Gloria
Induction in Proofs about Programs, S.M. Thesis, EE Dept.,
February 1972, AD 737-701

Hack, Michel Henri Theodore
Analysis of Production Schemata by Petri Nets, S.M. Thesis, EE
Dept., February 1972, AD 740-320

Fateman, Richard J.
Essays in Algebraic Simplification (A revision of a Harvard Ph.D.
Dissertation), April 1972, AD 740-132

Manning, Frank
Autonomous, Synchronous Counters Constructed Only of J-K
Flip-Flops, S.M. Thesis, EE Dept., May 1972, AD 744-030

Vilfan, Bostjan
The Complexity of Finite Functions, Ph.D. Dissertation, EE Dept.,
March 1972, AD 739-678

Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms, S.M. Thesis, EE
Dept., April 1972, AD 740-328

263

PUBLICATIONS

TR-99

TR-100

TR-101

TR-102

TR-103

TR-104

TR-105

TR-106

TR-107

TR-108

TR-109

Lynch, Nancy Ann
Relativization of the Theory of Computational Complexity, Ph.D.
Dissertation, Math. Dept., June 1972, AD 744-032

Mandi, Robert
Further Results on Hierarchies of Canonic Systems, S.M. Thesis,
EE Dept., June 1972, AD 744-206

Dennis, Jack B.
On the Design and Specification of a Common Base Language,
June 1972, AD 744.-207

Hossley, Robert F.
Finite Tree Automata and w-Automata, S.M. Thesis, EE Dept.,
September 1972, AD 749-367

Sekino, Akira

Performance Evaluation of Multiprogrammed Time-Shared
Computer Systems, Ph.D. Dissertation, EE Dept., September
1972, AD 749-949

Schroeder, Michael D.
Cooperation of Mutually Suspicious Subsystems in a Computer
Utility, Ph.D. Dissertation, EE Dept., September 1972, AD 750-173

Smith, Burton J.
An Analysis of Sorting Networks, Sc.D. Thesis, EE Dept., October
1972, AD 751-614

Rackoff, Charles W.
The Emptiness and Complementation Problems for Automata on
Infinite Trees, S.M. Thesis, EE Dept., January 1973, AD 756<-248

Madnick, Stuart E.
Storage Hierarchy Systems, Ph.D. Dissertation, EE Dept., April
1973, AD 760-001

Wand, Mitchell
Mathematical Foundations of Formal Language Theory, Ph.D.
Dissertation, Math. Dept., December 1973.

Johnson, David S.
Near-Optimal Bin Packing Algorithms, Ph.D. Dissertation, Math.
Dept.. June 1973, PB 222-090

264

.

Y.

A

V.

TR-110

TR-111

TR-112

TR-113

TR-114

TR-115

TR-116

TR-117

TR-118

TR-119

TR-120

PUBLICATIONS

Moll, Robert
Complexity Classes of Recursive Functions, Ph.D. Dissertation,
Math. Dept., June 1973, AD 767-730

Linderman, John P.
Productivity in Parallel Computation Schemata, Ph.D.
Dissertation, EE Dept., December 1973, PB 226-159/AS

Hawryszkiewycz, Igor T.
Semantics of Data Base Systems, Ph.D. Dissertation, EE Dept.,
December 1973, PB 226-061/AS

Herrmann, Paul P. :
On Reducibility Among Combinatorial Problems, S.M. Thesis,
Math. Dept., December 1973, PB 226-157/AS

Metcalfe, Robert M.
Packet Communication, Ph.D. Dissertation, Applied Math.,
Harvard University, December 1973, AD 771-430

Rotenberg, Leo
Making Computers Keep Secrets, Ph.D. Dissertation, EE Dept.,
February 1974, PB 229-352/AS

Stern, Jerry A.
Backup and Recovery of On-Line Information in a Computer
Utility, S.M. & E.E. Thesis, EE Dept., January 1974, AD 774-141

Clark, David D.
An Input/Output Architecture for Virtual Memory Computer
Systems, Ph.D. Dissertation, EE Dept., January 1974, AD 774-738

Briabrin, Victor
An Abstract Model of a Research Institute: Simple Automatic
Programming Approach, March 1974, PB 231-505/AS

Hammer, Michael M.
A New Grammatical Transformation into Deterministic Top-Down
Form, Ph.D. Dissertation, EE Dept., February 1974, AD 775-545

Ramchandani, Chander

Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets, Ph.D. Dissertation, EE Dept., February 1974, AD 775-618

265

4.

_ N

N]

PUBLICATIONS

TR-121

TR-122

TR-123

TR-124

TR-125

TR-126

TR-127

TR-128

TR-129

TR-130

TR-131

Yao, Foong F.
On Lower Bounds for Selection Problems, Ph.D. Dissertation,
Math. Dept., March 1974, PB 230-950/AS

Scherf, John A.

Computer and Data Security: A Comprehensive Annotated
Bibliography, S.M. Thesis, Sloan School, January 1974, AD
775-546

infroduction to Multics
February 1974, AD 918-562

Laventhal, Mark S.
Verification of Programs Operating on Structured Data, S.B. &
S.M. Thesis, EE Dept., March 1974, PB 231-365/AS

Mark, William S.
A Model-Debugging System, S.B. & S.M. Thesis, EE Dept., April
1974, AD 778-688

Altman, Vernon E.
A Language Implementation System, S.B. & S.M. Thesis, Sloan
School, May 1974, AD 780-672

Greenberg, Bernard S.

An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory, S.M. Thesis, EE Dept., May 1974, AD
780-407

Frankston, Robert M.
The Computer Utility as a Marketplace for Computer Services,
S.M. & E.E. Thesis, EE Dept., May 1974, AD 780-436

Weissberg, Richard W.
Using Interactive Graphics in Simulating the Hospital Emergency
Room, S.M. Thesis, EE Dept., May 1974, AD 780-437

Ruth, Gregory R.
Analysis of Algorithm Implementations, Ph.D. Dissertation, EE
Dept., May 1974, AD 780-408

Levin, Michael
Mathematical Logic for Computer Scientists, June 1974.

266

et

- v

TR-132

TR-133

TR-134

TR-135

TR-136

TR-137

TR-138

TR-138

TR-140

TR-141

TR-142

PUBLICATIONS

Janson. Philippe A,
Removing the Dynamic Linker from the Security Kernel of a
Computing Utility, S.M. Thesis, EE Dept., June 1974, AD 781-305

Stockmeyer, Larry J.
The Complexity of Decision Problems in Automata Theory and
Logic, Ph.D. Dissertation, EE Dept., July 1974, PB 235-283/AS

Ellis, David J.
Semantics of Data Structures and References, S.M. & E.E.
Thesis, EE Dept., August 1974, PB 236-594/AS

Pfister, Gregory F.
The Computer Control of Changing Pictures, Ph.D. Dissertation,
EE Dept., September 1974, AD 787-795

Ward, Stephen A.
Functional Domains of Applicative Languages, Ph.D.
Dissertation, EE Dept., September 1974, AD 787-796

Seiferas, Joel 1.

Nondeterministic Time and Space Complexity Classes, Ph.D.
Dissertation, Math. Dept., September 1974.

PB 236-777/AS

Yun, David Y. Y.
The Hensel Lemma in Algebraic Manipulation, Ph.D.
Dissertation, Math. Dept., November 1974, AD A002-737

Ferrante, Jeanne

Some Upper and Lower Bounds on Decision Procedures in
Logic, Ph.D. Dissertation, Math. Dept., November 1974,

PB 238-121/AS

Redell, David D.
Naming and Protection in Extendible Operating Systems, Ph.D.
Dissertation, EE Dept., November 1974, AD A001-721

Richards, Martin, A. Evans and R. Mabee
The BCPL Reference Manual, December 1974, AD A003-599

Brown, Gretchen P.
Some Problems in German to English Machine Transiation, S.M.
& E.E. Thesis, EE Dept.. December 1974, AD A003-002

267

A}

PUBLICATIONS

TR-143

TR-144

TR-145

TR-146

TR-147

TR-148

TR-149

TR-150

TR-151

TR-162

TR-153

Silverman, Howard
A Digitalis Therapy Advisor, S.M. Thesis, EE Dept., January 1975.

Rackoff, Charles
The Computational Complexity of Some Logical Theories, Ph.D.
Dissertation, EE Dept., February 1975.

Henderson, D. Austin

The Binding Model: A Semantic Base for Modular Programming
Systems, Ph.D. Dissertation, EE Dept., February 1975, AD
A006-961

Malhotra, Ashok

Design Criteria for a Knowledge-Based English Language
System for Management: An Experimental Analysis, Ph.D.
Dissertation, EE Dept., February 1975.

Van De Vanter, Michael L.
A Formalization and Correctness Proof of the CGOL Language
System, S.M. Thesis, EE Dept., March 1975.

Johnson, Jerry
Program Restructuring for Virtual Memory Systems, Ph.D.
Dissertation, EE Dept., March 1975, AD A009-218

Snyder, Alan
A Portable Compiler for the Language C, S.B. & S.M. Thesis, EE
Dept., May 1975, AD A010-218

Rumbaugh, James E.
A Parallel Asynchronous Computer Architecture for Data Flow
Programs, Ph.D. Dissertation, EE Dept., May 1975, AD A010-918

Manning, Frank B.
Automatic Test, Configuration, and Repair of Cellular Arrays,
Ph.D. Dissertation, EE Dept., June 1975, AD A012-822

Qualitz, Joseph E.
Equivalence Problems for Monadic Schemas, Ph.D. Dissertation,
EE Dept., June 1975, AD A012-823

Miller, Peter B.
Strategy Selection in Medical Diagnosis, S.M. Thesis, EE & CS
Dept., September 1975.

268

TR-154

TR-155

TR-156

TR-157

TR-158

TR-159

TR-160

TR-161

TR-162

TR-163

TR-164

TR-165

PUBLICATIONS

Greif, Irene
Semantics of Communicating Parallel Processes, Ph.D.
Dissertation. EE & CS Dept., September 1975, AD A016-302

Kahn, Kenneth M.
Mechanization of Temporal Knowledge. S.M. Thesis, EE & CS
Dept., September 1975.

Bratt. Richard G.
Minimizing the Naming Facilities Requiring Protection in a
Computer Utility, S.M. Thesis, EE & CS Dept., September 1975.

Meldman, Jeffrey A.
A Preliminary Study in Computer-Aided Legal Analysis, Ph.D.
Dissertation, EE & CS Dept., November 1975, AD A018-997

Grossman, Richard W.
Some Data-base Applications of Constraint Expressions, S.M.
Thesis, EE & CS Dept., February 1976, AD A024-149

Hack, Michel
Petri Net Languages, March 1976.

Bosyj, Michael
A Program for the Design of Procurement Systems, S.M. Thesis,
EE & CS Dept., May 1976, AD A026-688

Hack, Michel
Decidability Questions, Ph.D. Dissertation, EE & CS Dept., June
1976.

Kent, Stephen T.

Encryption-Based Protection Protocols for Interactive User-
Computer Communication, S.M. Thesis, EE & CS Dept., June
1976, AD A026-911

Montgomery, Warren A.
A Secure and Flexible Model of Process Initiation for a Computer
Utility, S.M. & E.E. Thesis, EE & CS Dept., June 1976.

Reed, David P.
Processor Multiplexing in a Layered Operating System, S.M.
Thesis, EE & CS Dept., July 1976.

MclLeod, Dennis J.

269

PUBLICATIONS

TR-166

TR-167

TR-168

TR-169

TR-170

TR-171

TR-172

TR-173

TR-174

TR-175

TR-176

High Level Expression of Semantic Integrity Specifications in a
Relational Data Base System, S.M. Thesis, EE & CS Dept,,
September 1976, AD A034-184

Chan, Arvola V.

Index Selection in a Self-Adaptive Relational Data Base
Management System, S.M. Thesis, EE & CS Dept., September
1976, AD A034-185

Janson, Philippe A.
Using Type Extension to Organize Virtual Memory Mechanisms,
Ph.D. Dissertation, EE & CS Dept., September 1976.

Pratt, Vaughan R.
Semantical Considerations on Floyd-Hoare Logic, September
1976.

Safran, Charles, James F. Desforges and Philip N. Tsichlis
Diagnostic Planning and Cancer Management, September 1976.

Furtek, Frederick C.
The Logic of Systems, Ph.D. Dissertation, EE & CS Dept.,

December 1976.

Huber, Andrew R.
A Multi-Process Design of a Paging System, S.M. & E.E. Thesis,

EE & CS Dept., December 1976.

Mark, William S.
The Reformulation Model of Expertise, Ph.D. Dissertation, EE &
CS Dept., December 1976, AD A035-397

Goodman, Nathan
Coordination of Parallel Processes in the Actor Model of
Computation, S.M. Thesis, EE & CS Dept., December 1976.

Hunt, Douglas H.
A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem, S.M. & E.E. Thesis, EE & CS Dept., December 1976.

Goldberg, Harold J.
A Robust Environment for Program Development, S.M. Thesis,
EE & CS Dept., February 1977.

Swartout, William R.

270

“

D

TR-177

TR-178

TR-179

TR-180

TR-181

TR-182

TR-183

TR-184

TR-185

TR-186

TR-187

PUBLICATIONS

A Digitalis Therapy Advisor with Explanations, S.M. Thesis, EE &
CS Dept., February 1977.

Mason, Andrew H.
A Layered Virtual Memory Manager, S.M. & E.E. Thesis, EE & CS
Dept., May 1977.

Bishop. Peter B.

Computer Systems with a Very Large Address Space and
Garbage Collection, Ph.D. Dissertation, EE & CS Dept., May
1977, AD A040-601

Karger, Paul A.
Non-Discretionary Access Control for Decentralized Computing
Systems, S.M. Thesis, EE & CS Dept., May 1977, AD A040-804

Luniewski, Allen W.
A Simple and Flexible System Initialization Mechanism, S.M. &
E.E. Thesis, EE & CS Dept., May 1977.

Mayr, Ernst W,
The Complexity of the Finite Containment Problem for Petri Nets,
S.M. Thesis, EE & CS Dept., June 1977 .

Brown, Gretchen P.
A Framework for Processing Dialogue, June 1977, AD A042-370Q

Jaffe, Jeffrey M.
Semilinear Sets and Applications, S.M. Thesis, EE & CS Dept.,
July 1977.

Levine, Paul H.

Facilitating Interprocess Communication in a Heterogeneous
Network Environment, S.B. & S.M. Thesis, EE & CS Dept., July
1977, AD A043-901

Goldman, Barry
Deadlock Detection in Computer Networks, S.B. & S.M. Thesis,
EE & CS Dept., September 1977, AD A047-025

Ackerman, William B.
A Structure Memory for Data Flow Computers, S.M. Thesis, EE &
CS Dept., September 1977, AD A047-026

Long, William J.

271

PUBLICATIONS

TR-188

TR-189

TR-190

TR-191

TR-192

TR-193

TR-194

TR-195

TR-196

A Program Writer, Ph.D. Dissertation, EE & CS Dept., November
1977, AD A047-595

Bryant, Randal E.

Simulation of Packet Communication Architecture Computer
Systems, S.M. Thesis, EE & CS Dept., November 1977, AD
AQ048-290

Ellis, David J.
Formal Specifications for Packet Communication Systems, Ph.D.
Dissertation, EE & CS Dept., November 1977, AD A048-980

Moss, J. Eliot B.
Abstract Data Types in Stack Based Languages, S.M. Thesis, EE
& CS Dept., February 1978, AD A052-332

Yonezawa, Akinori

Specification and Verification Techniques for Parallel Programs
Based on Message Passing Semantics, Ph.D. Dissertation, EE &
CS Dept., January 1978, AD A051-149

Niamir, Bahram
Attribute Partitioning in a Self-Adaptive Relational Database
System, S.M. Tiesis, EE & CS Dept., January 1978, AD A"3-292

Schaffert, J. Craig
A Formal Definition of CLU, S.M. Thesis, EE & CS Dept., January
1978

Hewitt, Carl and Henry Baker, Jr.
Actors and Continuous Functionzls, February 1978, AD
A052-266

Bruss, Anna R.
On Time-Space Classes and Their Relation to the Theory of Real
Addition, S.M. Thesis, EE & C3 Dept., March 1978

Schroeder, Michael D., David D. Clark, Jerome H. Siitzer and
Douglas H. Wells
Final Report of the Multics Kernel Design Project, March 1978

Baker, Henry Jr.
Actor Systems for Real-Time Computation, Ph.D. Dissertation,
EE & CS Dept., March 1978, AD A053-328

272

TR-198

TR-199

TR-200

TR-201

TR-202

TR-203

TR-204

TR-205

TR-206

TR-207

PUBLICATIONS

Halstead, Robert H., Jr.
Multiple-Processor Implementation of Message-Passing
Systems. S.M. Thesis, EE & CS Dept., April 1978, AD A054-009

Terman, Christopher J.
The Specification of Code Generation Algorithms, S.M. Thesis,
EE & CS Dept., April 1978, AD A054-301

Harel, David
Logics of Programs: Axiomatics and Descriptive Power, Ph.D.
Dissertation, EE & CS Dept., May 1978

Scheifler, Robert W.
A Denotational Semantics of CLU, S.M. Thesis, EE & CS Dept.,
June 1978

Principato, Robert N., Jr.
A Formalization of the State Machine Specification Technique,
S.M. & E.E. Thesis, EE & CS Dept., July 1978

Laventhal, Mark S.
Synthesis of Synchronization Code for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1978, AD A058-232

Teixeira, Thomas J.
Real-Time Control Structures for Block Diagram Schemata, S.M.
Thesis, EE & CS Dept., August 1978, AD A061-122

Reed, David P.

Naming and Synchronization in a Decentralized Computer
System, Ph.D. Dissertation, EE & CS Dept., October 1978, AD
A061-407

Borkin, Sheldon A.

Equivalence Properties of Semantic Data Models for Database
Systems, Ph.D. Dissertation, EE & CS Dept., January 1979, AD
AQ66-386

Montgomery, Warren A,

Robust Concurrency Control for a Distributed Information
System, Ph.D. Dissertation, EE & CS Dept., January 1979, AD
A066-996

273

PUBLICATIONS

TR-208

TR-209

TR-210

TR-211

TR-212

TR-213

TR-214

TR-215

TR-216

TR-217

TR-218

TR-219

Krizan, Brock C.
A Minicomputer Network Simulation System, S.B. & S.M. Thesis,
EE & CS Dept., February 1979

Snyder, Alan

A Machine Architecture to Support an Object-Oriented
Language, Ph.D. Dissertation, EE & CS Dept., March 1979, AD
A068-111

Papadimitriou, Christos H.
Serializability of Concurrent Database Updates, March 1979

Bloom, Toby
Synchronization Mechanisms for Modular Programming
Languages, S.M. Thesis, EE & CS Dept., April 1979, AD A069-819

Rabin, Michael O.
Digitalized Signatures and Public-Key Functions as Intractable
as Factorization, March 1979

Rabin, Michael O.
Probabilistic Algorithms in Finite Fields, March 1979

McLeod, Dennis

A Semantic Data Base Model and Its Associated Structured User
Interface, Ph.D. Dissertation, EE & CS Dept., March 1979, AD
A068-112

Svobodova, Liba, Barbara Liskov and David Clark
Distributed Computer Systems: Structure and Semantics, April
1979, AD AG70-286

Myers, John M.
Analysis of the SIMPLE Code for Dataflow Computation, June
1979

Brown, Donna J.
Storage and Access Costs for Implementations of Variable
- Length Lists, Ph.D. Dissertation, EE & CS Dept., June 1979

Ackerman, William B. and Jack B. Dennis
VAL--A Value-Oriented Algorithmic Language: Preliminary
Reference Manual, June 1979, AD AQ72-394

Sollins, Karen R.

274

TR-220

TR-221

TR-222

TR-223

TR-224

TR-225

TR-226

TR-227

TR-228

PUBLICATIONS

Copying Complex Structures in a Distebuted System, SM.

Thesis, EE & CS Dept., July 1979, AD A072-441

Kosinski, Paul R.

Denotational Semantics of Determinate and Non-Determinate
Data Flow Programs, Ph.D. Dissertation, EE & CS Dept., July
1979

Berzins, Valdis A.
Abstract Model Specifications for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1979

Halstead, Robert H., Jr.

Reference Tree Networks: Virtual Machine and Implementation,
Ph.D. Dissertation, EE & CS Dept.,, September 1979, AD
AQ76-570

Brown, Gretchen P,
Toward a Computational Theory of Indirect Speech Acts,
October 1979, AD AQ77-065

Isaman, David L.
Data-Structuring Operations in Concurrent Computations, Ph.D.
Dissertation, EE & CS Dept., October 1979

Liskov, Barbara, Russ Atkinson, Toby Bloom, Eliot Moss, Craig
Schaffert, Bob Scheifler and Alan Snyder
CLU Reference Manual, October 1979, AD A077-018

Reuveni, Asher

The Event Based Language and Its Multiple Processor
Implementations, Ph.D. Dissertation, EE & CS Dept., January
1980, AD A081-950

Rosenberg, Ronni L.
Incomprehensible Computer Systems: Knowledge Without
Wisdom, S.M. Thesis, EE & CS Dept., January 1980

Weng, Kung-Song

An Abstroect Implementation for a Generalized Data Flow
Language, Ph.D. Dissertation, EE & CS Dept., January 1980

275

PUBLICATIONS

TR-229

TR-230

TR-231

TR-232

TR-233

TR-234

TR-235

TR-236

TR-237

TR-238

TR-239

Atkinson, Russell R.
Automatic Verification of Serializers, Ph.D. Dissertation, EE & CS
Dept., March 1980, AD A082-885

Baratz, Alan E.
The Complexity of the Maximum Network Flow Problem, S.M.
Thesis, EE & CS Dept., March 1980

Jaffe, Jeffrey M.
Parallel Computation: Synchronization, Scheduling, and
Schemes, Ph.D. Dissertation, EE & CS Dept., March 1980

Luniewski, Allen W.
The Architecture of an Object Based Personal Computer, Ph.D.
Dissertation, EE & CS Dept., March 1980, AD A083-433

Kaiser, Gail E.

Automatic Extension of an Augmented Transition Network
Grammar for Morse Code Conversations, S.B. Thesis, EE & CS
Dept., April 1980, AD A084-411

Herlihy, Maurice P. TRansmitting Abstract Values in Messages,
S.M. Thesis, EE & CS Dept., May 1980, AD A086-984

Levin, Leonid A.
A Concept of Independence with Applications in Various Fields
of Mathematics, May 1980

Lioyd, Errol L.
Scheduling Task Systems with Resources, Ph.D. Dissertation, EE
& CS Dept., May 1980

Kapur, Deepak
Towards a Theory for Abstract Data Types, Ph.D. Dissertation,
EE & CS Dept., June 1980, AD A085-877

Bloniarz, Peter A.

The Complexity of Monotone Boolean Functions and an
Algorithm for Finding Shortest Paths in a Graph, Ph.D.
Dissertation, EE & CS Dept., June 1980

Baker, Clark M.
Artwork Analysis Tools for VLSI Circuits, S.M. & E.E. Thesis, EE
& CS Dept., June 1980, AD AG87-040

276

TR-240

TR-241

TR-242

TR-243

TR-244

TR-245

TR-246

TR-247

TR-248

TR-249

TR-250

PUBLICATIONS

Montz, Lynn B.
Safety and Optimization Transformations for Data Flow
Programs, S.M. Thesis, EE & CS Dept., July 1980

Archer, Rowland F., Jr.
Representation and Analysis of Real-Time Control Structures,
S.M. Thesis, EE & CS Dept., August 1980, AD A089-828

Loui, Michael C.
Simulations Among Multidimensional Turing Machines, Ph.D.
Dissertation, EE & CS Dept., August 1880

Svobodova, Liba
Management of Object Histories in the Swallow Repository,
August 1980, AD A089-836

Ruth, Gregory R.
Data Driven Loops, August 1980

Church, Kenneth W.
On Memory Limitations in Natural Language Processing, S.M.
Thesis, EE & CS Dept., September 1980

Tiuryn, Jerzy
A Survey of the Logic of Effective Definitions, October 1980

Weihl, William E.

Interprocedural Data Flow Analysis in the Presence of Pointers,
Procedure Variables, and Label Variables, S.B.& 5.M.Thesis, EE
& CS Dept., October 1980

LaPaugh, Andrea S.
Algorithms for Integrated Circuit Layout: An Analytic Approach,
Ph.D.Dissertation, EE & CS Dept., November 1980

Turkle, Sherry
Computers and People: Personal Computation, December 1980

Leung, Clement Kin Cho

Fault Tolerance in Packet Communication Computer
Architectures, Ph.D. Dissertation, EE & CS Dept.,, December
1980

277

e

PUBLICATIONS

TR-251

TR-2582

TR-2583

TR-254

TR-255

TR-256

TR-257

TR-258

Swartout, William R.
Producing Explanations and Justifications of Expert Consulting
Programs, Ph.D. Dissertation, EE & CS Dept., January 1981

Arens, Gail C.
Recovery of the Swallow Repository, S.M. Thesis, EE & CS Dept.,

January 1981, AD A096-374

lison, Richard
An Integrated Approach to Formatted Document Production,

S.M. Thesis, EE & CS Dept., February 1981

Ruth, Gregory, Steve Alter and William Martin
A Very High Level Language for Business Data Processing,

March 1981

Kent, Stephen T.
Protecting Externally. Supplied Software in Small Computers,
Ph.D. Dissertation, EE & CS Dept., March 1981

Faust, Gregory G.
Semiautomatic Translation of COBOL into HIBOL, S.M. Thesis,

EE & CS Dept., April 1981

Cisari, C.
Applicatin of Data Flow Architecture to Computer Music
Synthesis, S.B./S.M. Thesis, EE& CS Dept., February 1981

Singh, N.

A Design Methodology for Self-Timed Systems, S.M. Thesis, EE &
CS Dept., Feburary 1981

278

e

bl

PUBLICATIONS

Progress Reports

Project MAC Progress Report 1, to July 1964
AD 465-088

Project MAC Progress Report Il, July 1964-July 1965
AD 629-494

Project MAC Progress Report lil, July 1935-July 1966
AD 648-346

Project Mac Progress Report IV, July 1966-July 1967
AD 681-342

Project MAC Progress Report V, July 1967-July 1968
AD 687-770

Project MAC Progress Report VI, July 1968-July 1969
AD 705-434

Project MAC Progress Report Vil, July 1963-July 1970
AD 732-767

Project MAC Progress Report VIli, July 1970-July 1971
AD 735-148

Project MAC Progress Report 1X, July 1971-July 1972
AD 756-689

279

L,

b

PUBLICATIONS

Project MAC Progress Report X, July 1972-July 1973
AD 771-428

Project MAC Progress Report X|, July 1973-July 1974

AD A004-966

Laboratory for Computer Science Progress Report Xil,
July 1974-July 1975, AD A024-527

Laboratory for Computer Science Progress Report Xlli,
July 1975-July 1976, AD AO61-246

Laboratory for Computer Science Progress Report XIV,
July 1976-July 1977, AD AD61-932

Laboratory for Computer Science Progress Report 15,
July 1977-July 1978, AD A073-958

Laboratory for Computer Science Progress Report 16,
July 1978-July 1979, AD A088-355

Laboratory for Computer Science Progress Report 17,
July 1979-July 1980, AD A093-384

Laboratory for Computer Science Progress Report 18,
July 1980-June 1881

-}

| FILMED |

8-84

DTIC

