
LABORATORY FOR tt MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

: .. .,/'tr'·· ,.,.._.
' I " ·~ •'-!
.~ r ~':· r; b""-; c ~
·~ t. ;,,\ -1 :·/ .. ~

'• t·; '•'$ ~ I

~~Wi:SQ

Progress Report 15
July 1977 - June 1978

~·· - 4 --- ·-··------· • ' " . .._-;. ; . .'. ~ 1t• ... ~·~ _£_l".f\.'l"E~l~ l
·., · · · • · ·• .-.~ tn1 pub~~:.:: re:~ l

i.-a.itn.t,.;nni · '. '. :;_-;-jt~d f ---···. -·----·-··· . - ___ .. ___ .

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

79 09 17 064

SECURITY CLASSIFICATION OF THIS PAGE (lt'llan Dete Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

iT. REPORT NUMBER

LCS Progress Report 15
12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

(
/ ["'· ,.,~ !~G"~

Lab~ratory for Computer
t• W 97 I &IJSUl 11£)

Science / 6A~~A~B6d'EPoRT • PER100 covERED

Progress Report 7/77-6/78
1-1-...:P..:.r~o_q.....,_r.e;:.;s;.;s;.....:.;R:.:e"'"po~r:..:t::.....:.l~5.,..•,,,...-.------J

"July 1977 - June 1978
7. AUTHOR(•)

t...__!.ab2ft!:.Qr.Y _fQJ:. Computer Science
{3_ ""---.'!!:.:./_~.':!....~uzo-,g, Di rector

•. La'b'b'r9ft8\liy°Wlf 1 tb~lW ~~~ .tfte,H•
(formerly Project MAC)

,,

Massachusetts Institute of Technology
i;;il.l;;_Iorhnl'llnnv--5.rularP ..£amhrjnnP MA

0

nn1q
II. CONTROLLING 0'711CE NAME AND ADDRESS ~- ii: -;;: J

Advanced Research Projects Agency l/'/l_z-'(11' ~ul~ ~Y9/
Department of Defense ~~-~:.::~~~~:::;;::~;;;;~;;sE.-i1a:~~fi£us:------------i
1400 Wilson Blvd., Arlington, VA 22209 195

''o·)llj2ljllTORINji l.,GENcy tt.'ME • ADQRESS(lf dlll•renl fto111 Conlrolllnf Offlc•) rnce or Nava1 Kesearcn _,.----

~~~~~!:~~~n °~y~~:m~a~~ogram @)_/ 9 %,? 
Ar 1 i ngton, VA 22217 ·' ___ _J__!_. 

II. DISTRIBUTION STATEMENT (of tlll• Report) 

IS. SECURITY CLASS. (of Ihle report) 

Unclassified 
IS.. DECLASSIFICATION7DOWNGRADING 

SCHEDULE 

Approved for public release; distribution unlimited 

'.; ;/-!--- ·-~·/·; ., ( ~ // . ·;·· -;- ;;~~---~/] 
·--.?-/ . I , ' I 

1..l_ ~--
17. DjSTRIBUTION ST~TEMEN~T ;of Ille •ll~trect .,,_ l•red In Bloclr 20, It ~llerent ,_ R ... rt) 

/ 11/ ~Y·- /- 1
" 

1
/ ~ ~ 

L--------------·--·---,,..,,- .... .,.. ... ____ .., .... _.,.,,,,. -·----'"' ---
II. SUPPLENENTA,.Y NOTEf 

Geographically Distributed Systems 
Local Network 

Semantics of Distributed Systems 
Planning Systems 

Single-user Computer Data Intensive Planning 
Distributed Operating Systems 

II. KEY WORDS (Conlin- on re•erH •Ide It neceH_,. •d ld9ntlly ,,,. bloclr n-llw) 

Real-time computers Computer Languages 
On-line Computers Computer Networks 
Multi-access Computers Information Systems 
Dynamic Modeling Progra11111ing Languages 
Computer Systems Computation Structures 

20. ABSTRACT (Conllnue on r••erH •Id• It neceH_,. •d ld9ntlly br llloclr -hr) 

~ 

Automata Theory 
Morse-Code 
Knowledge-Based Ststems 
Complexity 
Personal Computers 

Annual sumnary report of progress made at the Laboratory for Computer 
Science under this contract during the period July 1977 - June 1978. 

'\ 

EDITION O' I NOV II II O•IOLIETIE ' 

S/N 0102·014•6601 ------ It 
/ 

,

'.- llE/CU,RIT.::LAll.,ICATION O' THll ~AOIE (WllM D•I• ... ,-:::, . 

'Y/ZJ .· / -fl 



Work reported herein was carried out within the Laboratory for Computer Science 
(formerly Project MAC), an M.l.T. interdepartmental laboratory. During 1977-1978 the 
principal financial support (651.) of the Laboratory has come from the Defense 
Advanced Research Projects Agency (DARPA), under Office of Naval Research Contract 
NOOO 14-75-C-066 I. DARPA has been instrumental in supportine most of our research 
during the last 15 years and is gratefully acknowledged here. 

Reproduction of this report, in whole or in p•t, is permitted for any purpose of the 
United States Government. Distribution of this report in uiimited. 



LABORATORY FOR COMPUTER SCIENCE 
PROGRESS REPORT 15 

JULY 1977 - JUNE 1978 

LABORATORY FOR COMPUTER SCIENCE 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

CAMBRIDGE, MASSACHUSETTS 02139 

Access1 c:: Pr!' , ___ - _____ ......,,._, 
N'Il: C.,.:.l 

D~C: TAS 
Lri~.!::r: .;.u· .r:' :1 
J~: t~~-·jc. • :-:~: _____ ----. 

I i. ·-----------

_J . _' .. :'c • • ·'_' .~: J. -·----. 

I , . -..... "" ~ : ~ ·1._ (" . '"'.C ! . __ . 
i r, . ~- i l ::. :: . r:-~· 

}+ \ '''f 
-----· - _____ ... 



TABLE OF CONTENTS 

INTRODUCTION 

COMPUTER SYSTEM~~-$EARCH GROUP 

A. Introduction 
8. Distributed Update Management 
C. Systems Issues in Communications 
D. Issues in Object-Oriented System 

A. Introduction 
8. Automatic Data Base Design 
C. Query Optimization 
D. Transaction Cost Estimation 
E. Automatic Data Error Detection 
F. Automatic Data Error Correction 
G. Data Base Modeling 
H. Office Automation 

DISTRIBUTED SYSTEM -~~MANTICS WORKING GROUP 

A. Introduction 
8. Study of Applications 
C. The Target of the Project 
D. Entities 
E. Reliability Issues 
F. language Constructs for Sending and Receiving Messages 
G. Protection Issues 

DOMAIN SPECIF~ SYSTEMS RESEARCH GROU' 

A. Introduction 
B. CONSORT: Compile-Time Technology 
C. MuNet: Object-Time Technology 

KNOWLEDGE BASED-SYSTEMS GROUP 

A. Research Summary 
B. Knowledge Representation and Natural Language Processina 
C. Natural language Query to an On-Line Data Dictionary 
D. Automatic Programming 
E. Scope of Our Current Work 
F. Very High level Language Design and Implementation 
G. Data Processing System Design 
H. Automatic Code Generation 

1 

5 

7 
7 
7 
8 

13 

15 
15 
18 
21 
23 
24 
26 
29 

37 

39 
41 
43 
46 
50 
54 
58 

67 

69 
69 
70 

75 

77 
77 
78 
18 
78 
79 
80 
81 



LOCAL AREA NETWORK WORKING GROUP 

A. Introduction 
8. Hardware 
C. Software 

PROGRAMMING METHODOLOGY GROUP 

A. Introduction 
8. CLU Definitions 
C. CLU Implementation 
0. Specification and Verification of Data Abstractions 
E. Incorporating Abstract Data Types in Stack-Based languages 
F. Synthesis of Synchronization Code 

PROGRAMMING TECHNOLOGY GROUP 

A. Introduction 
8. Morse-Code 
C. Interpersonal Communication 
0. Other Projects 

TECHNICAL SERVICES GROUP 

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS 

85 

87 
87 
89 

93 

95 
95 
96 

101 
101 
105 

121 

123 
123 
131 
134 

145 

149 



M. L Dertouzot 
J. Moses 

M. E. Baker 
P. G. Heinmiller 
H. s. Huahet 
E. I. Kampits 
C. P. Kent 
T. L Liahtbu'n 
G. W. Oro 
G. L Wallace 

G. W. Brown 
L S. Cavell•o 
M. J. Cwminp 
s. Geitz 
J.Janee 

ADMIMSTRATION 

Acedenic Stiff 

Adninl1tretl¥e stiff 

s.ort Stiff 

llrectar 
Anodete Director 

Adninittretlve Anltt.lt 
Ubrsien 
Adnini1tr1t1ve Servlcee 
Admini1tr1tlve Officer 
Attletent FilCll Offtcs 
FilCll Officer 
Fla eanutent 
Purc:hlll .. Apnt 

0. Kontrinua 
E. Proflro 
T.Rlmoe 
T.Selly 
P.Vn:lnl 



INTRODUCTION 

INTRODUCTION 

This annual report to the Defense Advanced Research Projects agency (DARPA) 
describes research performed at the M.l.T. laboratory for Computer Science (formerly 
Project MAC), funded by that agency and monitored by the Office of Naval Research 
during the period July 1, 1977--June 30, 1978. The gap between our previous 
January-based reports and this July-based report is bridged by Interim Progress 
Report 14/ l 5 which covers the period January 1, 1977--June 30, 1977. Starting with 
Oiis Progress Report 15, as mutually agreed, we will describe research activities 
through consecutive annual progress reports coincident with the M.l.T. fiscal year and 
LCS annual report cycles. 

The Laboratory for Computer Science is an M.l.T. interdepartmental laboratory 
whose principal goal is research in computer science and engineering. Founded in 
1963 as Project MAC (for Multiple Access Computer and Machine Aided Cognition), the 
laboratory developed the Compatible Time-Sharing System (CTSS), one of the first 
lime-shared systems in the world, and Multics--an improved time-shared system that 
introduced several new concepts. These two major developments stimulated research 
activities in the application of on-line computing to such diverse disciplines as 
engineering, architecture, mathematics, biology, medicine, library science, and 
management. Since thAt time, the Laboratory's objectives expanded, leading to 
research across a broad front of activities that now span four principal areas: 

The first such area involves the study and synthesis of intelligent programs by 
capturing, representing, and using knowledge which is specific to the problem domain. 
DARPA funded research in this area includes the use of knowledge in programs that 
comprehend typed natural-language (English) queries and the use of Morse-code 
knowledge by programs that can detect Morse-code signal$ in extremely noisy 
environments. 

The second research area has as its purpose the achie~ment of sizable 
improvements in the ease of utilization and cost effectiveness of machines, 
programml.!!.g_ lan_g.!:!!l_g~~nd_~y-~~ms. It is this research that is predominantly 
supported by DARPA. 1,. this ¥ea the Programming Methodology research group 
strives lo f!Chi-ev" this broad goal through a top-down approach for the development of 
programs subject to certain constraints that are imposed upon the programmer. 
Toward the same goal, the Domain Specific Systems research group is exploring the 
programming of real-time systems from higher-level, domain-specific languages for the 
control of physical processes. Other research in this area includes the study of very 
large data bases, the architecture of individual "personal" machines, and the 
organization of geographically distributed systems of computers. The latter research 
program is carried out by the Computer Systems and Programming Methodology 
research groups from the points of view of achieving cohesive applicat;ons on 
interconnected autonomous systems, exploiting the decreasing costs of processors and 
memories, improving overall performance and reliability, protecting information, and 
ensuring privacy. . .. , 

The Laboratory's third principal area of research involves exploration and 
development of theoretical foundations in computer science and is sponsored primarily 
by· the National Science Foundation. 



INTRODUCTION 2 

The fourth area of Laboratory research is entitled Computers and People and 
entails societal as well as technical aspects of the interrelationships between people 
and machines. This area is sponsored primarily by industrial or1anizations. 

During the past year. the Laboratory consisted of 221 members--36 faculty, 11 
visitors, 56 professional and support staff, 85 graduate and 33 undergraduate 
students--organized into 14 research groups. The academic affiliation of most of the 
faculty and students is with the Department of Electrical Engineering and Computer 
Science. Other departments represented in the Laboratory membership are 
Mathematics, Architedure, Humanities, The Sloan School of Management, and the 
Division for Study and Research in Education 

Technical results were disseminated through the publications of the Laboratory 
members, lCS Technical Reports (TR183-TR201), lCS Technical Memoranda (TM87-
TM 105), as well as through articles in the technical literature. 

Since 1 977, geographically distributed systems have evolved into a major 
laboratory focus. involving about half of our laboratory presonnel. Research in this 
area strives to make possible geographically distributed systems consisting of a large 
number of processors. The central theme of our research involves local autonomy of 
each processor, as well as application cohesiveness of the overall system. The theme 
is pursued at the various levels of representation that characterize this research. In 
particular, al the hardware level, the Domain Specific Systems research group is 
developing a single-user computer that will be manufactured for us by the Heath 
Company; while the Technical Services group is pursuin1 the network that will link at 
least 100 of these machines within our laboratory. Al the operating system level, the 
Domain Specific Systems research group is pursuing research in and development of a 
distributed operating system that will reside on those machines. The Computer 
Systems research and Programming Methodology groups are pursuing a general­
purpose language especially suited to the semantics of distributed systems. Al the 
applications level our Programming Technology group is researching the structure of a 
system that makes possible planning In the presence of large amounts of data in the 
context of energy policy planning. 

Michael l. Oertouzos 
Director 

Assembly and compilation of this DARPA report was done by Paulyn G. Helnmiller under 
the overall responsiblilly of Or. Eva I. Kampits 



5 

COMPUTER SYSTEMS RESEARCH 

0. 0. Clark, 
Acting Group Leader 

F. J. Corbato 

k. T. Pogr&n 

R. Baldwin 
H. Carter 
N. Chiappa 
C. Davis 
C. Hornig 
J. Maloney 

A. Benjamin 
E. Ciccarelli 
S. Kent 
A. Luniewski 
A. Mason 

V. Newcomb 

O. Morgan 

Academic Staff 

Research Staff 

Undergraduate Students 

Graduate Students 

Support Staff 

Visitors 

• on leave September 1977 - August 1978 

C.S.R.GROUP 

J. H. Saltzer, 
Group Leader• 

L. Svobodova 

0. Wells 

T. McMahon 
K. Nyberg 
R. Planalp 
S. Ratliff 
C. Schieck 
A. Urbina 

A. Mendelsohn 
W. Montgomery 
D. Reed 
K. Sollins 

M. Webber 

A. Takagi 



7 C.S.R.GROUP 

COMPUTER SYSTEMS RESEARCH 

A. INTRODUCTION 

During this year, the Computer Systems Research Group was engaged in a 
variety of projects related to the development of a distributed computing system. The 
two most important of these projects, the development of a high-spE::ed local network 
and a preliminary study of the semantics of distributed computing, were performed 
jointly with other research groups in the laboratory, and are described unf:fer the 
Distributed System Semantics and Local Area Network working groups. This section 
describes a number of smaller activities, generally related to distributed systems. 

B. DISTRIBUTED UPD~ TE MANAGEMENT 

Work was largely completed on two Ph.D. theses on this area. D. Reed 
proposed an algorithm for coordinating the update of information items at several 
physical sites, by creating a single coordinator for any given update. The approach 
explicitly takes into account the various failures that may occur, and also makes it 
possible to create new collections of items to be updated in a coordinated manner 
without changing previous users of those items. W. Montgomery has developed an 
alternate coordination scheme in which messages requesting updates are properly 
ordered at several sites by defining a logical communication net through which the 
messages are sequenced. Finally, A. Takagi, a visiting scientist from Nippon Telepraph 
and Telephone Corp. (Tokyo, Japan), developed a coordination scheme in which 
transactions are allowed to use new, yet uncommitted values produced by other 
transactions. If a transaction aborts, all tr:ansactions that used values produced by such 
an aborted transaction have to be backed out. Mechanisms were develDped to handle 
the back out problem cleanly and efficiently. This scheme increases the effective 
degree of concurrency in accessing the database while it presents consistency 
constraints as dictated by a particular application. 

C. SYSTEMS ISSUES IN COMMUNICATIONS 

S. Kent worked on problems of computer and communication security as part of 
our distributed systems research effort. One aspect of this work involves the 
determination of security requirements associated with a class of broadc.ast 
communication scenarios which are expected to be employed in distributed systems, 
and the development and analysis of protocols necessary to achieve these 
requlreme!nts. Another aspect of the work involves development and evaluation of 
mechanisms lo support protected subsystems in "hostile" distributed system sites. 

E. Ciccarelli completed his research on the design ot network control programs 
(NCPs). The thesis presenting this research discusses the design of NCPs for operating 
systems structured around a "security kernel." The design seeks to minimize and 
simplify the kernel-residel')l parts of the NCP, so that the dependence of the operating 
systems's security on the operation of the NCP is reduced and better understood. The 
thesis presents a general model for an NCP and analyzes sources of network 
dependence, complexity, and potential security problems.' An implementation design for 
the kernel-resident part of the NCP is presented, primarily network-independent and 
structured by P. Janson's type-extension discipline. Implementation of the user-domain . fl" _,_, __ . 

Jij :..n!C!DING PAGE NOT FILMED 
BLANK 



C. S. R. GROUP 8 

parts of the NCP is discussed, demonstrating the network-independence of the kernel, 
and considering problems of efficiency. In particular, for systems where the general 
user process cannot provide adequately fast response to incoming messages, two 
techniques are available: one uses separate, "streamlined" processes to handle 
frequent simple responses; the other involves a special-purpose "buffer processor" 
network host, designed to provide the quick response. A very simple protocol for such 
buffer processors is presented, which interfaces to end-to-end reliable or secure 
communication protocols in a modular fashion, and which allows buffer processors to 
remain insecure. 

D. tSSUES IN O~JE~T -O~IENTED SYSTEM 

A. Luniewski is developing an abstract architecture for computers suited for 
supporting an "object-oriented" language such as CLU. The architecture supports the 
efficient use of small objects, and permits the uniform use of base-level and user­
defined object types. In addition to considering the issue of data abstractions, 
"objects," the architecture addresses the issues of flow controi and control 
abstractions and attempts to provide a uniform mechanism for the implementation of 
control abstractions. 

K. Sollins is studying certain specific issues that arise in a distributed system 
supporting object-oriented addressing, in particular the problem of copying objects 
from one machine to another. When copying an object into a new naming context, it is 
necessary to insure that names of other objects stored in that object are resolved 
correctly. 

.' '.;. 



9 C.S.R.GROUP 

Publications 

1. d'Oliveira, Cecilia. A Conjecture About Computer' Decentralization. B.S. thesis, 
M.l.T., Laboratory for Computer Science, LCS/TM-90. Cambridge, Ma., October 
1977. 

2. Kent, Stephen. "Network Security: A Top Down Approach Shows Problems: 
Data Communications. June 1 978. 

3. Kent, Stephen. "Encryption-Based Protection for Interactive User /Computer 
Communication." IEEE Proceedings 5th Data Communication Symposium. 
Snowbird, Ut., September 1977. 

4. Saltzer, Jerome. "Naming and Binding of Objects." Operating Systems. Lecture 
Notes in Computer Science, Vol. 60. Edited by R. Bayer. New York: Springer­
Verlag, 1978. 

5. Svobodova, Liba. "Performance Problems in Distributed Systems." Conference 
of the Canadian Information Processing Society. Edmonton, Alberta. May 1978. 

6. Svobodova, Liba. "Performance Evaluation in View of Changing System 
Structures." Performance of Computer Installations. Amsterdam: North-Holland 
(To be Published). 

Theses Com~~ 

1. Bradford, Richard. "Linking a Datatrol Credit Management System to an IBM 
S/370." unpublished B.S. Thesis, M.l.T., Department of Electrical Engineering and 
Computer Science, January 1978. 

2. Ciccarelli, Eugene. "Multiplexed Communication for Secure Operating Systems." 
unpublished M.S. Thesis, M.1.T., Department of Electrical Engineering and 
Computer Science, January 1978. 

3. Kauffman, James. "A Design of a One-Pass Interactive Text Formatter." 
unpublished B.S. Thesis, M.l.T., Department ·of Electrical Engineering and 
Computer Science, May 1978. 

4. Krizan, Brock. "A Minicomputer Network Simulation System." unpublished M.S. 
Thesis, M.l.T., Department of Electrical Engineerin1 and Computer Science, 
September 1977. 

5. Levine, Paul. Facilitating Interprocess Communication in a Heterogeneous 
Network Environment." unpublished M.S. Thesis, M.1. T., Department of Electrical 
Engineering and Computer Science, July 1977. 

6. McMaster, James. "A Profile System for the Data General Nova." unpublished 
B.S. Thesis, M.1.T., Department of Electrical En1ineering and Computer Science, 
July 1977. 



C. S. R. GROUP 10 

7. Selinger, Robert. "Operating System Support for a Data Base Management 
System." unpublished B.S. thesis. M.l.T., Department of Electrical Engineering 
and Computer Science. May 1978. 

Theses in Progress 

1. Montgomery, Warren. "Robust ·Synchronization of Access lo Shared Information 
in a Distributed System." Ph.D. Thesis, M.l.T., Department of Electrical 
Engineering and Computer Science, expected dale of completion, January 1 979. 

2. Nevins, Russell. "An Efficient Logic Simulator for the Trident Guidance 
Computer." M.S. Thesis, M.l.T., Department of Electrical Engineering and 
Computer Science, expected date of completion, September 1978. 

3. Reed, David. "Naming and Synchronization in a Decentralized Computer System." 
Ph.D. Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, September 1978. 

4. Sollins, Karen. "Copying in a Distributed System.• M.S. Thesis, M.l.T., Department 
of Electrical Engineering and Computer Science, .expected date of completion, 
January 1 979. 

5. Strazdas, Richard. "A Network Traffic Generator for DECNET." M.S. Thesis, 
M.l.T., Department of Electrical Engineering and Computer Science, expected dale 
of completion, June J 978. 

6. Woltman, George. "Controlling Terminals with High-level Protocols." M.S. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, August 1978. · 

7. Wyleczuk, Rosanne. "Timestamps and Capability-Based Protection in a 
Distributed Data Base System." M.S. Thesis, M.l.T., Department of Electrical 
Engineering and Computer Science, expected data of completion, January 1979. 

Talks and Presentations 

l. Clark, David. "The Multics Kernel Design Project.• ACM Sixth Symposium on 
Operating Systems Principles. PlWdue University, Lafayette, In., November 1977. 

2. Clark, David. Session Chairman "Distributed Data Base Implementation." 16th 
Annual lake Arrowhead Workshop, lake Arrowhead, Ca., August 1977. 

3. Kent, Stephen. "Encryption-Based Protection for Interactive User /Computer 
Communication." IEEE 5th Data Communications Symposium. Snowbird, Ut., 
September 1977. 

4. Kent, Stephen. Panelist "Requirements, Theory, and Problems of Network 
Security." National Telecommunications Conference 77, Lot Ancelet, Ca., 
December 1971. 



11 C.S.R.GROUP 

5. Kent, Stephen. "Network and Communication Security.• Invited lecturer North 
Carolina Slate University, Raleigh, NC., April 1978. 

6. Montgomery, Warren. "Measurements of Sharing in Multics." ACM Sixth 
Sympo_~!!,.1!!._ on O_J?~rating Systems Principles. Purdue University, Lafayette, In., 
November I 977. 

7. Reed, David. "Synchronization with Eventcounls and Sequencers.• AC~ Sixth 
~~os!um ~~OJ'-~.!a~_ $}'~~..!!'~ Prine~_!. Purdue University, Lafayette, In., 
November 1977. (To be published in Communications of the ACM.) 

8. Reed, David. "Naming and Synchronization in a Distributed Computer System." 
Xerox Palo Alto Research Center, Palo Alto, Ca., February 1978; University of 
Southern California, Los Angeles, Ca., February 1978; IBM San Jose Research 
Center, San Jo!le, Ca., Febrw:try ) 978; IBM Thomas J. Watson Research Center, 
Yorktown Heights, NY., March 1978. 

9. Reed, David. "Naming of Objects in Distributed Autonomous Computer Systems." 
University of Minnesota, Minneapolis, Mn., January 1978. 

10. Saltzer, Jerome. Panelist "The Role of Performance Modeling in System Design." 
ACM __ Six!.!l_?J~.E?.Q~!um ~~-~erating Systems Principles, Purdue University, 
Lafayette, In., November I 977. 

11. Saltzer, Jerome. Lecturer "Naming and Binding of Objects." Technical University 
of Munich, Germany, July 28 to August 5, 1977; Technical University of Munich, 
Germany, March 30 to April 6, .1978. 

12. SvobodovA, liba. Panel Session Chairman "Performance Evaluation in View of 
Changing System Structures." International Conference on Performance of 
Computer lnsta~at!_~ Gardone Riviera, Lake Garda, Italy, June 1978. 

13. Svobodova, Liba. Chairman "Computer Performance Evaluation Applications: 
Analysis of Distributed Systems." ACM SIGMETRICS/CMG VIII Conference, 
Washington, D.C., December 1977. 

14. Svobodova, liba. Lecturer, Sl!mmer School on C2mputer Systems Performance 
EvalualiQ!J, Sogesta, Italy, 1978. 

Committee Memberships 

Clark, David. DARPA IPTO TCP Working Group 

Reed, David. DARPA IPTO TCP Working Group 

Seltzer, Jerome. DARPA IPTO Working Group 



M. Hammer, Group Leader 

E. Cardoza 
A. Chan 
S. Danberg 
J. Kunin 

B. Berkowitz 
J. Oellaquilla 
S. Karkula 
J. Koschella 
R. Leong 

M. Nieuwkerk 

13 

PATA BASE SYSTEMS 

~cademic Staff 

Graduate Students 

Undergraduate Students 

Support Staff 

0. Mcleod 
B. Niamir 
S. Sarin 
S. Zdonik 

H. Shao 
0. Stutz 
M. Tuceryan 
L. Wang 
G. Woltman 

G 
. 

.:;: PAGE NOT FILMED 



15 DA TA BASE SYSTEMS GROUP 

DATA BASE SYSTEMS 

A. INTRODUCTION 

Our research efforts this year had two principal themes: data base performance 
and data base semcmtics. The former area includes such issues as· automatic data base 
design, query optimization, and transaction cost estimation; the latter encompasses our 
efforts in the automatic detection and correction of data errors, user interface design, 
and data base modeling. In addition, we initiated this year a project in the area of 
office automation; we belit}ve this to be a natural outgrowth of our other activities, 
since most office applications are data intensive. 

B. AUTOMATIC DAT A BASE DESIGN 

Our work in automatic data base design has had three foci: testing and 
extending earlier work in attribute partitioning; automating the physical design process 
by utilizing a co,,ceptual schema of the data base; and developing an approach to 
distributed data base design. 

8. Niamir has completed his work on the problem of attribute partitioning in a 
self-adaptive relational database system. The objective of attribute partitioning is to 
minimize the volume of information transferred between a random access secondary 
storage device and primary memory. Partitioning the attributes of a file means storing 
a subset of the attributes (columns) of a file (relation) 'together, separate from other 
subsets of attributes. In a partitioned file environment, when a query requests a 
group of attributes that have been stored together in the same subfile, only that 
subfile need be accessed. Attribute partitioning is a viable database design 
optimization strategy because of the following two reasons: 

1 The great majority of queries made lo a database request only a subset of the 
· attributes of a me; 

2. Most queries made to a database require that more than one tuple be retrieved 
from the file. Attribute partitioning may be defined as the task of assigning the 
attributes of a file to the same subfile whenever they are consistently retrieved 
together. The consequence of attribute partitioning is the localization in the 
same physical area of information that is predominantly requested together. 

The approach we have taken to finding a near-optimal atlribute partition of a file, 
in the context of a given query pattern, is a heuristic one. We use a stepwise 
minimization state-space heuristic search strategy to determine a locally optimal 
attribute partition. We have identified a group of such heuristics that have 
consistently found the optimal partition for example problems (where the optimal 
partition was known lo us). 

We have devoted considerable effort to experimentally verifying the desirability 
of our attribute partitioning heuristics. We have conducted a series of more than I 00 
experiments. In each experiment we specified the f ollowin1 file and query pattern 
parameters: the number of attributes in the file (we have considered files with 5, 6, 
7, 8, 1 5, 22, and 30 attributes), the len1th and selectivity of each attribute, the set of 

'PBCIDIMG PAGI MOT FU.HID 
WLAMK 

~ ........ _ _....,., . ...,,.-.:'"".--.·--,--~- ·-- ~~,...·.--• ... ....,·-·-r_..~ 



DATA BASE SYSTEMS GROUP 16 

attributes that are indexed by a secondary index, the number of queries in the query 
pattern, the frequency of each query, the predicate of each query, and the attributes 
to be selected and projected by et1ch query. The space of all possible file parameters 
and query pattern part1meters is much larger than what can be fully covered. 
However, we did range parameter values over a wide spectrum; and the results 
obtained from our series of experiments have been sufficiently consistent to make us 
believe that the same results will hold for almost any reasonable specification of the 
above parameters. 

The conclusion we have reached as a result of this program of experimentation 
may be summarized as follows. For experiments with files of 8 attributes or less (in 
which we knew the optimal partition of the file by running an exhaustive enumeration 
procedure that evaluated t1ll posaible partitions), the two main heuristics we developed 
(the fast pciirwise grouping heuristic and the single attribute degrouping-regrouping 
heuristic), when used in conjunction with one another, always found the optimal 
partition. For experiments with files of more than 8 attributes, it was observed thrtt 
the above two heuristics found a partition which was significantly superior to the 
unpartitioned file, and which was superior to partitions found by other heuristic search 
techniques. This result, rind the rapid convergence of the two heuris~ics in finding the 
optimal partition, have led us to believe that these two heuristics will consistently find 
at least a near optimal partition. 

The improvement in database performance as a result of attribute partitioning 
can be significant. The number of page accesses made to an optimally partitioned file 
is between 407. and 70% of the number of page accesses made when the file is left 
unpartitioned. For files with a large number of attributes, the improvement in 
performance is even greater. 

Our two attribute partitioning heuristics also operate in modest time, on the 
order of the number of attributes in the file. 

We may also conclude, from the rapid convergence of our heuristics, that most 
of the advantage of attribute partitioning may be realized by degrouping a few of the 
most active attributes of the unpartitioned file and storing it separately in its own 
subfile. If searching for the optimal partition is not computationally practical, then it 
should be possible to separate the most active attributes of the file and still realize a 
significant reduction in the database performance cost. 

L. Wang has been extending previous results on attribute partitioning and index 
selection. In our earlier work on attribute partitioning, it was assumed that the set of 
attributes that were indexed would remain constant during the course of searching for 
the optimal partition; in our index selection studies, it was assumed that all attributes 
of the files were stored together in a sin&le fife. By simultaneously considering the 
problems of finding the optimal attribute partitioning and finding the optimal index set 
for a file, it is hoped that the res~ting partition (and Its accompanying set of indices) 
will have a still lower performance cost, compared to when the attribute partitioning 
and the index selection are considered as two Independent problems. A new heuristic 
based on the attribute partitionln1 heuristic has been developed end will be 
experimentally verified. 



17 DATA BASE SYSTEMS GROUP 

A. Chem h<1s been working on the problem of optimizing the performance of 
integrated d<1t<1bases. An integrnted database is a collection of data used for a variety 
of application functions in an enterprise. To cope with the evolution of applications, 
the physic<1I org<1niz<1tion of an integrated database must be optimized for the 
prev<1iling access requirements. By providing a non-procedural interface between the 
applic<1tion progr<1ms And the d<1tabase, it is possible to tune the perform<1nce of the 
database, by Adjusting its physicAI representation, and still have only minimal impact on 
the logic of the applic<1tion progr<1ms. Among the conventional (hierarchical, network 
and relatioMI) data models, the relational approach comes closest to providing users 
with A logical view th<1t is independent of the actual storage structures used to 
represent the data, and that facilitates the reorganization of data bases and 
reoptimization of queries against them. However, the implementations of relations in 
current rel<1tional systems have not been supportive of performance levels competitive 
with dat<1b<1ses betSed on the network or hierarchical data models. We believe this is 
partly due to the failure of current relational systems to use more complex storage 
structures, such as partitioning a relation vertically or horizontally in its physical 
representation, or using physical pointers to provide rapid access paths between 
relations. A more important reason may be the failure to introduce certain kinds of 
redundancy at the physical level in order to eliminate or reduce the cost of cross­
ref erencing between relations. For exan1ple, it may be desirable to replace the 
represent<1tion of two third normAl form relations by their join at the physical level. 
However, to do so requires the semantic knowledge that the two relations are non­
loss joinable. 

It is our objective to investigate a wide range of implementation alternatives for 
relational databases and to automate the physical design process for them. Because of 
the vast design spAce thAt modern file organization techniques provide, the use of 
formal mathematical progrnmming techniques to se<1rch for the optimal orgetnization ·is 
not a feasible approach. Instead, we are developing heuristics for the synthesis of a 
good, stable physical org<miz<1tion for the prevailing access requirements. Our approach 
is iterative and goal directed. From the knowledge of the semantic concepts 
represented by the rel<1tions, an initial tentative implementation is selected. This is 
then successively modified and refined by examining the performance bottlenecks it 
presents in the processing of the transactions that constitute the data base usage 
pattern. The automatic designer will be provided with knowledge regarding the types 
of perturbations of a physical organization that may relieve a given type of processing 
bottleneck. 

We feel thAt a logical schema described purely in relational terms does not 
provide enough semantic information for this design process, information which is 
usually available to, and used by, a human designer. Our approach, therefore, is to 
provide input to the automettic designer of the conceptual schema of the database, 
which contains information about the semantics of the database. The designer will then 
generate (algorithmically) a relational schema for the database; this will be the schema 
with which application programs will interc'ICl. At the same lime, semantic information 
that might be useful to the physical design process will be extracted. For example, 
this will allow the automatic designer to decide whether derived information as 
expressed in the conceptual schema should be recomputed when required, or should 
be represented via controlled physical redundancy. 



DAT A BASE SYSTEMS GROUP 18 

An important objective for database integration is improved consistency in the 
stored data. Therefore, we intend to include in the conceptual schema the 
specification of some basic validity constraints on the database, ones which will be 
automatically maintained by the database system during database modifications. We 
believe that certain types of constraints are more fundamental than others (in the 
sense that they are application independent), and that these should be directly 
embedded in the data model to simplify the specification of the usage pattern and to 
guide the physical database design process. 

The descriptions of the conceptual schema used by the automatic designer is 
couched in terms of the Semantic Data Model, which was developed by our group and 
is described in a subsequent section. 

E. Cardoza is studying the data base design problem for distributed relational 
database management systems. The major aim of this work is to allocate the data base 
among the different sites of the network so as to minimize such costs as response 
time, storage charges, and updating costs. Although a great deal of literature has 
appeared on the file allocation problem for networks, this earlier work has ignored a 
number of important f<1ctors 'in modern distributed data base management. 

1. For example, user accesses hiwe typically been modeled simply as accesses to a 
~!~gL~ file from a given node; queries involving two different relations (or files) 
are not directly modeled. Thus the cost advantage of a single site having two 
different relations which are often used together is not taken into account. 

2. The cost effects of synchronization mechanisms for performing updates of files 
with multiple copies is not modeled in earlier work. 

3. Earlier models assume that a complete file is the unit of assignment to the 
various sites. The possibility of reducing costs by allowing vertical and/or 
horizontal partitioning of files in the assignment of the data base has not been 
considered. 

We are engaged in the preliminary design of a system to select near-optimal 
distributions for a distributed data base, taking into account the above factors. A 
crucial part of this system is an evaluator that assesses the cost of any proposed 
distribution in the context of a given usage pattern. The focus of our initial effort is 
on a design system for the SOD- J distributed data base system. 

C. QUERY OPTIMIZATIO~· 

We hltve been engaged in a number of efforts relating to the optimization of 
queries made against a data base. The first relates to determining which of several 
processing techniques for a given•high-level query is most effective, in the context of 
a particular data base organization. James Koschella and Edward Cardoza have 
considered this problem in the context of the Datalanguage data acc'!ss language of the 
Datacomputer. The specific problem that has been addressed is the following. for 
purposes of the study, a query in Oatalangua1e is considered as having the form 

for XI in RI with Bl(XI) 



19 DATA BASE SYSTEMS GROUP 

' For X2 in R2 with 82(Xl, X2) 

For Xn in Rn with Bn(Xl, X2, ... , Xn) 

where X 1, X2, ... , Xn Rre tuple vAriables which range over (respectively) the relations 
R 1, R2, ... , Rn of the dalA bAse, and where Bj(X 1, X2, ... , Xj), for each j is a Boolean 
predicate on the tuple variRblcs XI, ... , Xj. 
The problem is lo find a reordering (Xi 1, Xi 2, ... , Xin) of X 1, ... , Xn such that the query 
expressed in the form 

For Xi 1 in Ri 1 with Bit'(Xi1) 
For Xi 2 in Ri 2 with Bi2'(Xi 2) 

would entail the minimal amount of cost (of all reorderings) using the query processing 
strategy of t'ie Datacomputer. 

A number of heuristics, similar in spirit to the Decomposition Method of Wong 
and Youseffi, hAve been proposed which find a "good" if not an optimal reordering in an 
efficient manner. A study and validation of these heuristics is currently being 
conducted. 

In a similar vein, S. Oanberg has been developing techniques for concurrently 
evaluating multiple queries against a single data base, overlapping their processing 
requirements. 

S. Zdonik has been studying the use of data base semantics for the optimization 
of data base queries. Contempon:iry data base languages enable users to express 
queries in .terms of predicates that the selected data must satisfy. Conventional query 
optimization techniques seek only to find the most efficacious way of using available 
access structures to answer the given query; our approach attempts to exploit the 
semantics of the query, either in processing it or in transforming it into an alternative 
form, semantically but not syntactically equivalent to the original, which can be 
processed in a way more efficient than any means of answering the original. Obviously, 
such transformations must preserve the meaning of the query and they must take into 
account the avaihtble access structures that can be used in answering queries. 

Consider the following examples. 

1. Get the mimes of All employees whose job type is pilot. 
If all pilots work in the flight department, then the query could become: 
Get the nAmes of rill employees of the flight department whose job type is pilot. 
This is a desirable transformAtion if determining the members of the flight 
department is a relatively inexpensive operation, and if the number of 
employees in the flight department is much less than the total number of 
employees. 



DAT A BASE SYSTEMS GROUP 20 

2. Get all the ships whose maximum speed is greater than 25 knots. Suppose that 
a ship is either a tanker, a merchantman, or a naval ship, and that the maximum 
speed of a lanker is 15 knots and of a merchantman 20 knots. Then the original 
query can be rephrased as "get all naval ships whose maximum speed is greater 
than 25 knots." This transformation may improve query processing if there is 
some file structure (such as an inversion) that makes finding naval ships an 
efficient operation. 

The main features of our approach to semantic query optimization are the 
following: 

1. These techniques are !:'Qt concerned with processing strategies based on 
properties of Boole<tn connectives or operations on data structures. That is the 
province of conventional optimization techniques. 

2. Semantic query optimization will usually produce a new query that is a 
trnnsformation of the original text. The new text may involve conditions on 
different semantic structures than those used in the original query, but it must 
be semantically equivAlenl lo the original in the sense of producing the same 
output set. 

3. In semantic query optimization, we will utilize domain specific knowledge to 
perform transformations. This knowledge is expressed in the form of predicate 
calculus constraints, statements of conditions that must be met by all legal 
configurations of the drila b;ise. These constraint expressions are rehtted to the 
semantic integrity predicAtes used for data error detection. 

4. In order to make use of some rich semantic information, we employ an effective 
data model that is higher level than the relational model, but that can easily be 
supported by a relational system. This model is based on the notions of entities 
and associations And is closely akin to the Semantic Data Model developed in our 
group and described in this report. 

We have identified several different kinds of optimizations. Some of these 
transformations are: 

1. Term Replacem~nt 

· Here, the goal is to substitute for one or more terms in the original query a 
collection of terms that are equivalent to the originals but are less costly to 
evaluate. To achieve these replacements, one needs to use constraints of the 
form: Pl <""> P2, where Pl and P2 are predicates on entities in the data base 
schema. 

Here, one adds terms to the original query, with the goal of having these new 
(and inexpensive) terms evaluated before evaluating existing expensive terms.in 
the query; this should reduce the scope of application of the expensive term. 
The cost of evaluating these new terms must, of course, be less than the savings 



21 DAT A BASE SYSTEMS GROUP 

achieved in the processing of the old expensive terms. The kind of constraint 
that is useful here is of the form: P1 => P2. In this case, if a query contains Pt 
as a subexpression, then adding P2 to it as a conjunct does not change its 
meaning. 

3. Term Modification ---·--- --·- --. - --· 

This optimization transforms an existing term in the query into an alternate form, 
one that involves revised conditions on the same entities. The new form might 
be more efficiently evaluated or might be amenable to further semantic 
optimization. 

This class of optimizations does not entail source level transformation, but is 
based on passing Additional information to the search engine that actually 
retrieves reco1"ds of interest. For example, if we know an upper bound on the 
number of records thAt sAtisfy a condition, then we can instruct the search 
engine not to C1tlempt to find more thAn that number, enabling it to terminate 
some searches early. 

We rire engaged in devising an architecture for a system that, given a query, will 
decide what optimiziltions might be desirable to apply to it, search for relevant 
constraints, and effect cost-improving transformations. 

Underlying All of our work in database system performance is the notion of a 
transaction cost estimator, a system that can predict the cost that a DBMS will incur in 
the processing of a transaction. We have developed the underlying technology for 
such a system, and have sought lo test its applicability to operational data base 
systems. To that end, Brian Berkowitz has been working on a transaction cost 
estimator for the Oatacomputer, an operational DBMS that supports a relational data 
model and allows for the construction ilnd maintenance of large databases. The goal of 
this work is to produce ~m estimator that will examine a Datacomputer transaction and 
produce an estimate of the amount of time needed to process it. The transC1ction cost 
estimator will use a statistical description of the contents of the data base as well as 
parameters describing system looo in order to produce an estimate of the amount of 
time thril will elapse between the time when the transaction is issued and the time 
when the Datacomputer has completed processing the transaction. A transaction cost 
estimator could be used to provide the user of the Datacomputer with an estimate of 
how long it would tAke the Datacomputer to process a proposed transaction; it would 
also be useful in i:tn i:tutomatic dah1base design system. 

Our efforts so far have been directed towards estimating the amount of time 
necessAry to process retrieval lrilnsactions. These are transactions lhAt examine 
records in a database but do not add or delete records or change the contents of any 
.records. We hi:tve identified three basic components of the processing of a retrieval 
transaction. These are the number of pttge ttccesses needed to read pages containing 
data utilized by the trAnsaction, the amount of cpu time necessary to process the 



DATA BASE SYSTEMS GROUP 22 

transaction, and the page f<lults tht1t occur when code or data accessed in processing 
the transaction is swapped out because of high demand for memory in the 
Oatacomputer's multiprogramming environment. These page faufts do not count the 
page accesses necessary to read in records used by the transaction. The first two 
parameters are dependent only on the translation and the contents of the database. 
The number of page faults is dependent on the transaction, the contents of the 
database, and also the total demand for pages by all current users of the 
Oatacomputer. The three parameters can be combined with a statistical description of 
system load to produce an estimate of the total time needed to process the 
transaction. 

We have developed cost estimators to estimate the number of pages read in 
retrieving dt1ta and Also the amount of cpu time 1 equired to process a transaction. We 
have considered two c<1ses in estimating the number of pages read by a transaction. 
The first case is where the records to be retrieved are randomly distributed 
throughout the file. Modifying a previously developed page accessing function we have 
developed a formula which predicts the number of pages read in this case. The 
formula is derived using combinatorial techniques, and produces its estimate based on 
the number of records in a file, the number of records on a page, and the number of 
records to be retrieved. 

The second type of file that we have considered .is a clustered file. If a file is 
clustered on A field F, then all records with the same F value are located near each 
other. If we retrieve records with field F equal to some value k, only a small portion 
of the file will have to be read. It is also possible for a file to be clustered on several 
levels. The primary example of this is a multi-level sorted file. If a file is sorted using 
key MONTH, DAY, <1nd TIME, then the file is clustered on MONTH, clustered on 
MONTH,DAY (i.e. <111 records with the same MONTH and DAY values are near each 
other) and clustered on MONTH,DAY,TIME. We have developed an estimator which 
predicts the number of pages read in reading records that satisfy Cl particular predicate 
from a multi-level clustered file. The estimator converts the predicate into a more 
convenient form for processing (a disjunction of conjuncts such that no record in the 
file satisfies more than one conjunct). The converted predicate is then used lo 
produce an estimate using a hierarchical model of the file and utilizing a statistical 
description of the me·s contents. 

This estimator WAS implemented and experiments were conducted to lest its 
validity. A database was constructed and over 800 transactions were considered. The 
estimated number of pages retrieved was compared to the actual number of pages 
retrieved in processing each transaction. The average error was small (about 71.) 

An estimator was also built to predict the cpu lime required· to process a 
transaction. The Oatacomputer processes a transaction by first compiling the 
transaction into machine code, which is then run. The cpu time used to process a 
transaction is therefore the .sum of the cpu time used to compile the transaction and 
the cpu time used in running the compiled code. An estimate of the cpu time required 
to compile the transaction is generated by an estimator using some measures of the 
complexity of the code (e.g., number of lines of code). This estimator was developed 
ueing an empirical study of the cpu lime required to compile many different types of 
transactions. The cpu lime required to run the compiled code is estimated by usin1 a 



DATA BASE SYSTEMS GROUP 

"shadow compiler". The estimr1tor we have built simulates the compiler. It parses the 
transaction, just as the Oatr1computer compiler does, and uses the parsed trcinsaction in 
a "code genen:itor" ph<ir.e. Where the code g~nerator in the Dali.computer generates a 
code frcigment, the edimator we have built g€'nerates estimates of the amount of time 
necessary to run that porlicul;ir code frngmenl. The estimator uses knowledge about 
how the Oatacomputer compiles a transaction, and also statistical descriptions of the 
contents of files, in order to produce an estimate of the total cpu time required to run 
the machine code generated for a transaction. 

E. ~~TO~A I!G_ Q~:r" _ERRQ~ __ DET_ECJlO_N. 

We have continued our work in the areA of database error-detection; our 
principal focus here is on building an Assertion-based error-detection system. In our 
approach, the possible error stales of a dah1base are described, by the OBA or some 
other authority, in terms of semrintic integrity assertions. The database system will 
then assume responsibility for detecting any violations of these assertions that are 
caused by updates to the datab<1se. When compared with existing ad-hoc techniques 
(where "edit-routines" are written by hand for each of the update transactions on the 
database),_ this e1ssertion-based approach to integrity checking has the advantages of 
increased reliability and modifiability. 

The me1in problem with this declarative approach to integrity checking is one of 
performimce. The obvious w<1y to monitor a set of integrity assertions is to reevaluate 
each assertion every time the database is updated, and this can be prohibitively 
expensive. 

Our approach to the performance problem in assertion-based integrity checking 
is to "compile" Assertion-monitoring procedures based on an analysis of the effects of 
anticipated upd<1te trnnsriction types on the given set of assertions. We assume that 
the update transactions on a dritabase belong to a limited set of frequently-performed 
operation types. For each such operation type, a detailed analysis is performed that 
results in the generation of an efficient procedure that can be used to precisely 
identify the assertions that mt1y be violated whenever an operation of the given type 
is invoked by ~ user of the database. The procedures generated have the following 
features that contribute to efficient error-detection: 

I. They are compttrable in efficiency with integrity-checking procedures that an 
intelligent Application programmer might write for the given operations and 
assertions. 

2. When a user attempts to perform an update operation, the associated integrily­
checking procedure can be run before the database is modified. Thus, if 
assertions are viol<1ted And it is found necessary to reject the update, there is 
no need for the dat<1b11se system to perform expensive backing out of the 
update. 

'Ne have been working on the design and implementation of an assertion 
processing c;ystem t"at performs the above generation of efficient integrity-checking 
procedures. In our design, this synthesis proceeds in two stages: 



DATA BASE SYSTEMS GROUP 24 

1. A logical analysis phase, which generates a set of alternative test procedures 
for each operation type. 

2. An optimization and selection phase, where for each operation type a single test 
procedure is selected from the associated set of alternatives, based on its 
expected cost of execution in the context of the underlying physical 
representation of the database. 

The first stage above, referred to as "perturbation analysis," was discussed in a 
previous Progress Report. S. Sarin has recently completed the design of an algorithm 
that performs this anC1lysis. The algorithm takes as input a database schema definition, 
a set of update operC1tions, and a set of integrity assertions, all expressed in high-level 
terms that are independent of the physical representation of the database. For each 
update operation, the algorithm generates "perturbation information" for the component 
expressions of the various ttssertions, which describes how the values of these 
expressions are affected by the given database update. This information is then used 
to construct a set of alternative tests (expressed in the same high-level nonprocedural 
language as the assertions) for the assertions under the operation. The main thrust in 
this algorithm is the identification of conditions under which it can be proved that the 
operntion will not violC1te a given assertion; the conditions identified are such that 
they can be efficiently tested when the update operation is invoked, and thus lead to 
efficient tests of the assertions. 

This perturbation e1nalysis Algorithm he1s been implemented by D. Slutz, using the 
langue1ge MDL (an extended LISP) on a PDP-I 0 computer. The procedure was tested 
on some example datcibase definitions (including descriptions of update operations and 
integrity assertions), Rnd produced the desired results. Testing of this system will 
continue. 

For the second phase of the assertion processing system, R. Leong has been 
working on the development of R "test selection" procedure. The input to this 
procedure consists of the oulput of the perturbation analysis phase (namely, the sets 
of alternative tests associated with the update operations), plus a description of how 
the database is represented in terms of file structures and access methods. For Mch 
update operation, the procedure then selects a lest that has the lowest (or close to 
the I owe st) expected cost of execution among all the tests in the set of Alternatives 
associated with the operation. The selection procedure translates the high-lev.cl 
descriptions of the tests into diltAbase inlf')ractions expressed in the data manipulation 
language of the underlying d<1tabase management system; it then uses a transaction 
cost estimRtor to d'etermine the expected costs of performing these interactions 
whenever an operation of the given type is invoked. (For the initial design of the test 
selection procedure, we h;:ive i'lssumed that the database is implemented on the 
Datacompuler. However, we expect that the techniques we have developed will be 
applicable to other dAtabase mAnagcment systems as well.) 

S. Zdonik hAs been involved in the design and implementation of a front-end 
processor (called DatA Doctor) that does automatic error correction of database 
transactions. This type of system is particularly useful in an environment in which 



25 DA TA BASE SYSTEMS GROUP 

large volumes of data cire being keyed by hand into a database, and where mimual 
correction of detected errors is impractical. 

Our goal is to build a system that can automatically detect and correct many of 
the errors that occur when a tram:action against a data base is keyed into the system. 
After detecting thilt «n error exists in a trans;iclion, the system will attempt to identify 
the precise location C'\nd nature of the error, and then seek to correct it, based on an 
analysis of the erroneous value ;ind of the (presumably correct) contents of the data 
base. (Of course, the fei'lsibility of this step is limited by the amount of redundancy in 
the transaction and in the data base.) We draw heiwily on a semantic model of the 
data base to detect erroneous data values and to guide the correction process. Our 
approach to error correction is heavily based on the premise that erroneous data 
values rire caused by a set of "error mechanisms," a (relatively) small and knowable 
set of events that c;in c;iuse the transformation of a correct value into an incorrect 
one. Typic;il error mechanisms might include character duplication, character 
transposition, confusion of visu;illy similar characters, and so on. Once the locus of an 
error has been established, we employ an analysis of the various mechanisms to 
determine which is most likely to have been the cause of this particular error. Then 
the effects of that mechanism can be "undone" in order to reconstruct the original 
uncorrupted value. 

Data Doctor detects errors by means of constraints, predicates that express 
conditions on the data base that must hold after every trans; ction with it. When a 
transaction is submitted to Data Doctor, it evaluates these constraints that are relevant 
to the transaction; the failure of any of these indicates the possibility of an error in 
the transaction. In our system, ee1ch constraint evaluates to a value between 0 and I, 
0 representing certain data error <.:1d I indicating perfect data correctness; an error 
condition is signalled by a number of constraint evaluations returning values below a 
given threshold. In this situation, the system analyzes the "symptoms" of the faulty 
transaction and attempts to "diagnose" the nature of its error. 

The major system modules are summarized in the following list. 

The constraints checker is responsible for evaluating those constraints relevant 
to the submitted transaction. 

The likelihood evt'lluator decides whether or not the scores returned by the 
pr.evious module indicate a situation that requires error correction or whether 
the report represents a real but unlikely situation 

The locus finder applies certain heuristics to the evolving pattern of constraint 
failures to estabhsh a list of possibly erroneous fields in the transaction. An 
example of a heuristic thttt might be used by this module is that if all fields after 
field n Are involved in constraint violations but none of the fields beforf' t'nd 



DATA BASE SYSTEMS GROUP 26 

including field n are, then we should suspect field 2n+ I as the site of a missing 
field or a missing separator. 

The mechanism chooser selects the most likely error mechanism and the most 
likely plt\Ce to apply it, in order to produce a new set of transaction values that 
can be re-entered into the constraints checker. 

The above modules arc listed in the order in which they are invoked during the 
operation of the Data Doctor System. The system continues to call these modules until 
a set of data values that satisfies the Likelihood Evaluator has been found or until the 
known set of mechanisms has been exhausted. In the latter case, the set of values 
that produced the best score will be selected as the best guess. In practice, Data 
Doctor's corrected values would be reviewed by a human authority before being 
installed. 

We have completed cin initial implementation of the system that assumes that 
there is at most one error in A trnnsriction. G. Woltman, M. Tuceryan, and S. Zdonik 
have Also been inve.sligAting the design of an error correction system able to handle 
multiple errors in a given report. We have investigated two special cases of this 
problem in some detail. 

I. Two errors in the same field (i.e., two error mechanisms applied at the same 
locus). 

2. Two errors in semantically related fields 

In the first cAse, the brute-force method of applying all the possible mechanisms 
to all possible positions WAS immediately discarded as impractical. Instead, a set of 
heuristics was developed to eliminate certain combinations of mechanisms based on 
observations of the suspicious value. Furthermore, a method of using predicated 
values for the erroneous field was designed. 

In the second case, we considered errors in two fields that are related with 
respect to some set of constraints. It is possible for the two errors to occur in such a 
way that the constraints that check their consistency do not notice that anything is 
amiss. Here, a procedure for determining the possible field combinations that could be 
in error was developed. 

The conventional approi'tches to the structuring of di:tla provided by 
contemporary data base management systems are in many ways unsatisfactory for 
modeling data bAse application environments. The features they provide are too low­
level, computer-oriented, and rt>presentational to allow the semantics of a data base to 
be directly expressed in its structure. 0. Mcleod has designed the umnnti< dnta m{lf/r/ 
( S l>M) as a natural application modeling mechanism that can capture and express 
the structure of an application environment. The design of the SOM is specifically 
based on a detailed analysis of the most important semantic problems of 



27 DATA BASE SYSTEMS GROUP 

conventional data base structuring mechanisms. 

It is intended that the features of the SOM correspond to the principal 
intentional structurns naturally occurring in contemporary data base applic._tions. 
The SOM provides a rich but limited vocabulary of data structure types and 
primitive operations, r.trikinc a balance between semantic expressibility and 
controlled complexity. Furthermore, facilities for expressing derived (conceptually 
redundant) information are an <?ssential part of the SOM; derived information is as 
prominent.in an SOM data base as is primitive data. 

In brief, an Sf>M d11r11 /irHr is a collection of classes. A d11JS is a collection of 
rnt1rirs. The structure of an SDM data base is defined by an ST>M schn1111, which 
describes the classes that constitute it. Classes are collections of entities that 
are meaningful in the application environment. (Examples here are selected from 
a data base used to support the monitoring of ships with potentially hazardous 
cargoes entering U.S. coastal waters.) Classes are used to model collections of 
objects (SHIPS), events (OIL_SPILLS), "type" abstractions (SHIP _TYPES), 
aggregates of other entities (CONVOYS), and "values" (SHIP _N.AMES, 
HULL_NUMBERS). 

Each class has a collection of att1i~11ftr associated with it, whose purpose is 
to describe the members of that class or the class as a whole. There are three 
types of attributes: 

1. Mtml·cr att1i~11rrs describe aspects of each member of a class, by linking the 
member to one or more related entities in the same or another class. For 
example, the members of class SUIPS have attributes Name, Home_port, and 
Engines, which give the ship's name, its home port, and link it to its engines 
(respectively). 

2. An attribute of each member of a class that has the same value for all 
members of that class is a daJHfttnminrd att1ib11ft. Such an attribute is a 
member attribute, but it is associated with the class as a whole because the 
attribute has the same value for all class members. For example, to capture 
the fact that no oil tanker can sail faster than some top speed, the class­
determined attribute Absolute_top_speed of class OIL_TANKERS would be 
defined. 

3. A class atrri/iutr describes a property of a class taken as a whole. For 
example, the class PORTS has the attribute Number _of_ports, which gives 
the number of ports currently in the class. 

Derived, as well as primitive classes are prominent in typical SOM data 
bases. Not only is the class SHIPS defined in the example data base, but so is 
OIL_TANKERS (a subclass of SUIPS). Analogously, derived attributes can be 
defined in terms of primitive ones. For example, one might define the attribute 
Inspections of Oll_TANKERS as the inversion of the attribute Tanker_inspectcd of 
INSPECTIONS. A comprehensive vocabulary of types of clan and attribute 
derivation specifications which are directly useful in supporting the easy definition 
of derived information in an SOM data base has been developed. The principal 



DATA BASE SYSTEMS GROUP 28 

subclass definition primitive is "restrict," and is used to define OIL_TANKE~S in 
the example above. Similarly, "invert" is used to define the derived attribute 
Inspections of Oll_TANKERS. These arc only examples of the full spectrum of 
definitional primitives provided by the SOM. 

The SOM is designed to enhance the effectiveness and usability of data base 
systems in the following ways: 

1. SOM data bases are to a large extent self-documenting, in the sense that 
the description and structure of a data base is expressed in terms which 
are close to those used by users in describing the application environment. 

2. The SOM can support powerful user interface facilities, and can improve the 
user interface effectiveness for a variety of types of users (who have 
varying needs and abilities). Significantly, SOM data bases capture 
information in a form accessible to its users, and allow derived information 
helpful in new data base uses to be defined in the data base structure. 

3. The SOM can be used as a tool in the data base design process. The SOM 
aids in the identification of relevant information ·in a data base application 
environment, as well as in organizing that information and relating it to its 
possible uses. This can greatly improve the design of lower-level, 
conventional data bases. 

One focus of our research has bc<?n on data base user interface facilities 
based on the SOM. First, a powerful semantics-based data base query and update 
language ~or the SOM (called the intrrn<fiC1n /Mmfllism) has been designed. This 
language provides a rich but limited set of built-in data base operations, and 
allows user-defined transactions to be defined in terms of these primitives. The 
combination rules are simple, but the vocabulary of primitives allows a good deal 
of flexibility in describing data base retrievals and modifications. 

The SOM also supports an incremental, interactive interface for the "naive" 
nonprogrammer, called the intm1cfiC1n fC1rm11lation ntfoim (IF A). The IFA guides a user 
through the data base in the process of formulating a query or update request 
against it. The IFA assumes that the user is largely naive of the data base 
content and structure, and that the user has limited experience with computerized 
data bases. The operation of the IFA relies heavily on the SOM data base 
description and structuring primitives, e.g., derived class and derived attribute 
specifications. In addition, the algorithm used by lhe IFA embodies a specific 
structured, stepwise methodology for expressing data base queries. It is by 
means of this methodology that the lFA can provide effective support of users 
naive of a data base's detailed content and strudure. A prototype lFA is 
currently running, and is being extended to handle a wider spectrum of user 
needs. 

In addition. to this application, the SOM has been used by a number of other 
projects in our group as a means of describin1 the semantics of a data base. We 
anticipate that the need for such a semantic description mechanism will 1row as 
ever more powerful capabilities are demanded of data base systems. 



29 DA TA BASE SYSTEMS GROUP 

H. Q[fJC~_AUTO_MATJON 

We have begun a research effort involving several significant issues in the 
application of computer systems to the office domain. The term "office automation" has 
recently become so pervAsive as to lose any precise meaning; we interpret it to meetn 
the application of computer-based systems to enhance the productivity of office 
personnel and the efficiency of office operations. Current commercial entries in the 
office automation field include such toofs as word processing and electronic mail 
systems. It is our contention, however, thAt computer scientists must look beyond 
products of this sort to gain the understanding of the underlying nciture and purpose of 
offices that is necessary to have the greatest impact on office operation. 

The major activities in offices include information processing, communication, 
record keeping and decision making. General-purpose devices such as calculators and 
copying machines, as well AS the more recent developments mentioned above, support 
workers in performing a variety of tasks necessary to accomplish these activities. 
Such tools ~-e~~£1rii.z~ tasks; they do not !'~to'!!!'!! function. We feel that major 
enhancements in office productivity will derive not from task mechanization, but from 
the study, and subsequent automation, of office functions. 

In order to bring computer technology most effectively to bear upon offices, it is 
necessary to develop an undersh1nding of the nature of office activities. A crucial 
dimension in the Ant1lysis of this domain is task structure. A structured task is one that 
is amencible to algorithmic specification and description. Unstructured tasks are those 
which cannot be so described because they inherently require human intelligence and 
judgment. Most office procedures consist of a mixture of both kinds of functions. For 
example, the processing of a purchase requisition might first involve some highly 
structured processing to assure that the requisition is valid. This would be followed 
again by an unstructured decision by a buyer to determine how and where the goods 
should be purchased, based upon complex criteria involving past experience and 
personal contact with vendors, outstanding or anticipated orders, etc. This decision is 
followed by further structured activities which produce a purchase order, send copies 
to various offices, and mt1intain Appropriate records. 

It is our thesis tht1t the greatest gains in office productivity can be achieved by 
systems which both automate the structured, routine activities in an office procedure, 
and provide office workers with an integrated working environment and a powerf11I r.r.t 
of tools so that activities which cannot be automated can be carrir-i out rnore 
effectively. The goal of an office automation system should not be merely to eliminate 
paper from existing tasks, but rt1ther to implement as effectively as possible the 
essentit1I purpose and function of the office. We believe that the analysis and 
specification of office procedures, the design of support tools, and the organization of 
the office system as a whole, should be based upon this underlying perception of the 
role of computer systems in the office. 

Therefore the goals of our research are twofold: to develop powerful 
computer-based tools for the integrnted electronic office environment, in order to 
provide $Upport for office workers performing intelligent decision-making functions; 
and to investigate tools and techniques for the analysis of office function and the 



DATA BASE SYSTEMS GROUP 30 

design of computer systems to implement those functions. We also plan to construct a 
testbed environment in which to test, analyze and assess these developments in a 
realistic environment. 

A major component of our work is the study of a large number of office 
situations, in order to develop an understanding of office functions, to identify 
applications where our efforts crin provide high impact, and to build up a case file for 
subsequent development work. J. Kunin has completed an initial set of office case 
studies, which give detailed procedure descriptions of about fifteen offices at MIT. In 
addition, S. Kinkula has completed an undergraduate thesis describing the 
administrative operations of A television station. 

As we have noted, while the current state-of-the-art in office systems consists 
of independent tools which mechanize individual tasks, futlWe technology will involve an 
integrated electronic office environment. We are developing the design for an 
interface to this system, a work stRtion which we have termed the "electronic desk." 
The major issues involved in this work are the human engineering of the interface, and 
the development of active support tools. · 

A primRry use of the electronic desk will be as an interface to advanced 
operational decision-support tools. Our development of support tools is predicated 
upon the design of active rather than passive aids. If a system is provided with limited 
knowledge about an office's organization and activities, including the specific identity of 
types of decisions to be made and their information requirements, it can exhibit 
"intelligent" behavior in support of the ofiice worker. Its capabilities may include 
management of complex communications processes and other activities extended over 
time; generation of reminders, alerts and warnings; provision of unsolicited but 
relevant information; and detection of errors and anomalies. Bookkeeping support, 
convenient access to informrition, and active assistance will enable decisions to be 
made in a more timely, informed, and organized manner. 

The second major area of our research uses the environment provided by the 
integrated system as a context in which to automate office procedures. We are 
engaged in the development of methodologies and tools for the construction of 
automated office systems, based on knowledge about t.he organization and function of 
an office. We feel that this knowledge can best be expressed in terms of a non­
procedural problem-oriented specification language. A language of this type provides a 
user with both a conceptual framework for approaching the analysis of office functions, 
and a set of high-level structures natural to the problem domain in which to specify 
them. J. Kunin has begun work on the design of this facility, known as the Office 
Specification Language <OSL). 

The design of OSL is based on the premise that there is a high degree of 
commonality of structure i:tmong the vi:trious procedures performed by a wide variety 
of offices, operating in seemingly disparate application environments. By identifying 
major types of activities carried out in offices, we have begun to abstract a set of 
semantic constructs which will evolve into the primitives of the language. 

The specification of office procedures involves knowledge of three types: data, 
organization, and function. OSL provides constructs for describing the form and 



31 DATA BASE SYSTEMS GROUP 

structure of dttta used in the office, the inter- and intra-office organizational structure, 
and the specific functions for which the office is responsible. In the functional 
specification, the processing requirements are described in terms of a set of activities 
we have identified e1s canonice1I. These activities include structured processes, (such 
as me1ne1gement of communications, data mttnagement, logging and account reconcilie1tion), 
as well as unstructured e1ctivitics, or decisions, (such as scheduling, allocation, selection 
and verification). We ttre continuing the development of OSL, which we expect will be 
used as tt framework and tool for formttl analysis and communication of office 
procedures, ttnd tts an input language to ttn c:tutomation system. 

Upon completion of the preliminttry version of OSL, we anticipate building a 
prototype automrition system. This will consist of several components. One will be a 
translator, which e1ccepts OSL as in·put and transforms the specification into an internal 
representation suitClble for expressing knowledge about the procedures and the de1ta 
and organizationi'\I context in which to execute them. Another will be the program that 
interprets the internal repre5entation. This system will keep track of when activities 
should be executed, automatically implement the structured activities as specified, and, 
maintain all bookkeeping needed to support human decision making. 



DATA BASE SYSTEMS GROUP 32 

Publications 

1. Hammer, M. and Mcleod, D, "The Semantic Data Model: A Modelling Mechanism 
for Data Base Applications." P..!'..oceedings of ACM SIGMOD International 
Conference on the M!l'!!'g~'!"l_ent~D~lc!· Austin, Tx. June 1978. 

2. Hammer, M. and Sarin S.K. "Efficient Monitoring of Database Assertions." to 
appear in ~CM Tril.!'!~E.~!jpns on D<;itabase Sysl~ms. 

3. Hammer, M. "Very High Level Programming Languages." Proceedif!i!.._~!he 
So_U~_iu:!!_Sp~~iH~~Q~-~!'~-l~sting_~~~nolott...Iransfer Conference: Washington, 
0.C., Navy Laboratory Computing Committee and Office of Naval Research, April 
] 978. 

4. Hammer, M. and Shipman, D. "An Overview of Reliability Mechanisms for a 
Distributed Data Base System." ~!~~~~~l}g_s of the 1978 Spring IEEE CO~PCq~ 
~onference. San Francisco, Ca., March 1978. 

5. Hammer, M. "The Impact of Data Management Research." !nfotech State of the 
Art Repo_rJ..9.f!..Pat~l:>_<!~e_J~chno!~Y· London: lnfotech, 1978. 

6. Hammer, M. "The Impact of Automatic Programming Research." f.'~_eedings of 
the 1978 f!.!~i9!!.'!L£o_f'!lPl!l.e! Conferenc~. Anaheim, Ca., June l 978. 

]; Hammer, M., "Research Directions in Data Base Management." ~roceedj!!is of th~ 
~~nf ~-~~~--o~ _R~~~a.rchJJir:.~~!lons i'!_~oftware Technology. Providence, R.1., Air 
Force Office of Scicntifi~ Research, Army Research Office, and Office of Naval 
Research. October 1977. 

8. Mcleod, D. "A Framework for Data Base Protection and Its Application to the 
INGRES and System R Data Base Management Systems." Proceedings of the 
1977 IEEE COMPSAC Conference. Chicago II., 1977. 

9. Niamir, B. At~ribute .. Parti!ioning. in A Self-adaptive Relational Database System. 
M.l.T., Laboratory for Computer Science, LCS/TR-192. Cambridge, Ma., January 
1978. 

Theses Completed 

1. Berkowitz, B. "Cost Models for the Datacomputer." unpublished S.B. Thesis, 
M.l.T., Department of Electrical Engineering and Computer Science, May 1978. 

2. Chuang, K.M. "On Representing the Distribution of Values in Data Bases." 
unpublished S.B. Thesis, M.l.T., Department Electrical Engineering and Computer 
Science, September 1977. 

3. Danberg, S.A. "Evaluating Queries Concurrently In a Shared Database System." 
unpublished S.M. Thesis, M.l.T., Department of Electrical Engineering and 
Computer Science, June 1978. 



33 OAT A BASE SYSTEMS GROUP 

4. l<arkula, S. "lnformr1tion Flow in an Organization with Implications for Office 
Automr1tion." unpublished~S.B. Thesis, M.l.T., Department of Electrical Engineering 
and Computer Science, June, 1978. 

5. Niamir, B. ~-tt~ib_ute __ PClr_titioning_i!!_~ __ $.~l_!:_~d.~..e!!ve Relati.on~I Da~_~as_e_J;ysJe~ 
S.M. Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
Je1nue1ry I 978. 

6. Sarin, S. K. "Automt1tic Synthesis of Efficient Procedures for Database Integrity 
Checking." unpublished S.M. thesis, M.l.T., Department of Electrical Engineering 
and Computer Science, August I 977. 

7. Shao, H. "Verification of the Structural Integrity of DBTG Dr1tabases." 
unpublished SB. Thesis, M.l.T. Department of Electrical Engineering and Computer 
Science, May I 978. 

8. Stutz, 0. "Ant1lysis of the Effects of Updates on Database Integrity." unpublished 
S.B. thesis, M.l.T., De.pt1rtment of Electrical Engineering and Computer Science, 
~fay 1978 .. 

9. Tuceryan, M., "Detection and Correction of Semantically Related Errors in 
Database Updr1tes." unpublished S.B. thesis. M.l.T., Department of Electrical 
Engineering And Computer Science, June 1978. 

I 0. Woltman, G., "Detection and Correction of Multiple Common-Site Errors in 
Database Updates." unpublished S.B. thesis, M.l.T., Department of Electrical 
Engineerin~ And Computer Science, June 1978. 

Theses i~ Progress 

1. Chan, A. "A Methodology for Automating the Physical Design of Integrated Data 
Bases." Ph.D. Thesis, M.l.T. Department of Electrical Engineering and Computer 
Science, expected date of completion, August J 978. 

2. Oell'Aquila, J.B. "Error Detection and Correction in Database Updates Using 
Imprecise Constraint Predicates." S.B. Thesis, M.l.T., Department of Electrical 
Engineering and Computer Science, expected date of completion, August 1 978. 

3. l<oschefla, J., "Some Optimizations of Nested Data Base Queries." S.B. Thesis, 
M.1.T., Department of Electrical Engineering and Computer Science, expected date 
of completion, ~fay I 979. 

4. Kunin, J. "AnAlysis and Specification of Office Procedures." Ph.D. Thesis, M.l.T. 
Department of Electrical Engineering and Computer Science, expected date of 
completion, December 1979. 

5. Leong, R. "Cost Minimization in Database Validity Checking." S.B. Thesis, M.1.T., 
Department of Electrical Engineering and Computer Science, expected date of 
completion, August I 978. 



OAT A BASE SYSTEMS GROUP 34 

6. Mcleod, D. "The Semantic Data Base Model and Its Associated Structured User 
Interface." Ph.D. Thesis, M.l.T., Department of Electrical Engineering and 
Computer Science, expected date of completion, August 1978. 

7. Wang, L. "Simultaneous File Partitioning and Index Selection in a Self-Adaptive 
Data Base Management System." S.B. Thesis, M.1.T., Department of Electrical 
Engineering and Computer Science, expected date of completion, August 1978. 

8. Zdonik, S. "Semantic Query Optimizati.on in Data Base Systems." S.M. Thesis, 
M.l.T., Department of Electrical Engineering and Computer Science, expected date 
of completion, May 1979. 

Talks 

1. Hammer, M. "Application Oriented Software Research." Conference Of'.'_[~e(!!'ch 
Qirectio~~-i!i_l;~f!wa_r~J.e.fl}~~l~gy_, Providence, R.I. October 1977. 

2. Hammer, M., "Research Directions in Data Base Management." ~on[erence_C?.!! 
Research Dir~~li~~_l!!__~~tw~~-Iechnol~ Providence, R.I. October 1977. 

3. Mcleod, D. "A Framework for Data Base Protection and Its Application to the 
INGRES and System R Data Base Management Systems." IEEE COMPSAC 
~o_l![er~~-~. November 1977. 

4. Mcleod, 0. "Relational Data Base Management." California State University, 
Norlhridge, Ca. November 1977. 

5. Hammer, M. "Model-Based Error Detection and Correction." NR_!. WorkshoR_~ 
lssu~s in DataJ3ase_ Err~_I)-~te~tio_~ Washington, D.C. January 1978. 

6. Mcleod, D. "The Semantic Data Base Model and Its Associated Structured User 
Interface." Presented at California Slate University, San Luis Obispo, CA, 
October I 977; University of California, Davis, CA, November 1977; California 
State University, Northridge, CA, November 1977; Rand Corporation, January 
1978; Lawrence Berkeley Laborittory, Berkeley, Ca. January 1978; University 
of Southern California, Los Angeles, Ca. February 1978. 

7. Hammer, M., "Very High Level Programming Languages." Software Specific!lio_f! 
and Tesfulg_J_!!ch'!_~ki&Y. Tr~_'!_sfer...£<!".'~rence, Washington, D.C. April 1978. 

8. Hammer, M. "Applications Programming Methodology." Burroughs <;orporation 
~o~p~t~- ~.i~~~_and_T~~~!l~!C?&Y_ ~~min<!} Nassau, Bahamas. April 1978. 

9. Mcleod, D. "Language Issues in Relational Data Base Systems." Boston Area ACM 
SIGPLAN Meeting, Boston, Ma. M1ty 1978. 

10. Mcleod, 0. "The SemAntic DRta Model: A Modeling Mechanism for Dal& Base 
Applications." ~C~_S!~~po International Conference on the Mana1ement of 
Oat'!, Austin, Tx. May 1978. 



35 DATA BASE SYSTEMS GROUP 

11. Hammer, M. "The Architecture of the Automated Office." M.l.T. Industrial Liason 
Program SymposiumJ Cambridge, Ma. May 25, 1978. 

12. Sarin, S. K. "Efficient Monitoring of Database Assertions." 1978 ACM SIGMOO 
International Conference on Management of Data, Austin, Tx. May 1978. 



37 

DISTRIBUTED SYSTEM SEMANTICS 
WORKING GROUP 

B. H. Liskov, 
Acting Group Leader 

0. 0. Clark 

A. Luniewski 
0. Reed 
E. Slark 

V. Chambers 

Academic Staff 

Graduate Students 

Support Staff 

I. Greif 
L. Svobodova 

E. Moss 
C. Schaff erl 

A. Rubin 

~[ :== PAGI NOT Fl~ 



A. INTRODUCTION ---- --------· ----

39 D. S. S. WORKING GROUP 

DIST_RIBl)J~9-~~(STEM SEMANTICS 
yJO_RKING GROUP 

Preliminary work on the structure of distributed systems, reported in last year's 
progress report in the section on the Computer Systems Research Group, resulted in 
the formation of a working group, composed largely of people from the Computer 
Systems Rese<1rch Group and the Programming Methodology Group. This is the report 
of that working group. 

Computer systems should reflect lhe structure and needs of the problems to 
which they are being applied. For many applications, a distributed computer system 
represents a natural rcc1lization. For both technical and economic reasons, it is likely 
that for many existing applications, distributed computer systems will replace 
conventional computer systems built around a large central processor, and that new 
applications will emerge based on distributed information processing. However, before 
such systems are feasible, a better understanding of how to construct them is needed. 
Our project is aimed at providing this understanding. 

The move towards distributed processing has become feasible mainly because of 
the rapidly dropping cost of computer hardware and the increasing power and 
flexibility of mini and mkrocomputers. The move toward distributed systems will be 
dictated, however, by their "naturalness," and by the many technical advantages they 
offer over centralized systems. These advantages include the following: 

Availability of information can be increased by replicating it at several nodes. 
This arrangement not only increases the access bandwidth to the information, but 
in case of a failure of one of the nodes or a failure of some communication link, 
the information remains accessible. 

2. Protection 

Distributed systems provide a better environment for protecting information 
stored in the system and for coping with run-time errors resulting from 
hardware failures or residual design and implementation errors. These 
advantages arise from the actual physical separation of independent or loosely 
coupled computr1lions and information that belongs lo different users. The 
physical boundaries of individual nodes provide "firewalls" that (if properly 
designed) will prevent spreading of errors originating in a particular node lo the 
rest of the system. Such boundaries can also be utilized to protect information 
stored at individui'll nodes from unauthorized access or modification by other 
nodes. As the most severe protection measure, a self-contained node can be 
guaranteed privacy during some sensitive operation by physically detaching it 
from the rest of the system. 



0. S. S. WORKING GROUP 40 

The physical separation of computations and information may lead to a reduction 
in software complexity. Also, distribution reduces the level of hardware 
resource shAr.ing, and, consequently, will reduce the complexity of software for 
resource allocation, scheduling, and protection. Lower software complexity 
makes verification of design and implementation more feasible. 

As more users join the system or new services are added, it is not necessary to 
mAke any physical replacements in a distributed system. Rather, one or more 
new nodes need to be added to the system. Distributed systems can grow more 
gradually than systems with a large central processor. 

Thus, there are mAny sound reasons why applications should be implemented as 
distributed systems. However, there are a host of unsolved technical problems in 
building and programming a network of minicomputers to give the appearance of a 
coherent system. The project discussed in this report is to develop an integrated 
programming language And operating system to support a well-structured design and 
implementation of distributed applications. 

The area of "distributed systems" has become a popular source of systems 
research projects. It has Also become an important term in marketing computer 
equipment. Unfortunately, because of this popularity, the terms "distributed systems" 
and "distributed processing" are frequently misused, often referring to such 
conventional concepts as remote job entry, use of terminal concentrators, or 
multiprocessor org~mizafions. 

The distributed systems considered in our project can be described loosely as 
organizations of highly autonomous information processing modules, called nodes, which 
cooperate in a manner that produces an image of a coherent system on a certain 
defined level. Autonomy is the key characteristic that eliminates most multiprocessor 
organizations from this class of distributed systems. Certainly, a distributed system has 
more than one processor, since it has at least one processor in each node. However, 
in a distributed system, the nodes are highly independent, each having its own primary 
memory, possibly even some secondary storage, and its own interface through which it 
communicates with its environment (e.g. user terminals, sensors). The individual nodes 
are connected by a communication network; the communication delay may be highly 
variable and unpredictable. The communication network might be a long-haul network 
such as the ARPANET [ 151, a local arei:i network [2], or a suitable combination of these 
two types. Each node has Access to its own memory only; that is, inter~node 
communication is possible only by explicitly exchanging messages, not through shared 
memory. Finally, physical (geographical) reorganization of the nodes and the 
communciation network is assumed not to impair the system's functionality; the only 
change might be in the system's performance. 



41 0. S. S. WORKING GROUP 

2. Co_l"l)P.!lrJ.S~ri-~f _Our l\pproach_wit_h_ ~e!at_ed Work 

The assumption of autonomy of the nodes that compose a distributed system is 
the most importcint ingredient that distinguishes our work. However, once autonomy is 
assumed, the next issue thrit ririses is to devise techniques that permit the programs 
running on the autonomous nodes to communicate in a coherent fashion. We are aiming 
at a high level of coherf'nce th;it is application-independent but permits communication 
among the nodes in ripplirntion-oriented terms. This high level of application­
independent coherence distinguishes our approach from other work that is based on 
the assumption of autonomous nodes. Most work has either provided a very low level 
of coherence (e.g. the ARPANET) or has provided coherence within a specific 
application (e.g. the NSW works manager [12]). There is some work related to ours in 
progress at Xerox PARC, but again this work is focusing on a very specific 
application--office automation. 

The problem of simultaneous updat~, making an identical or a logically related 
change at severnl sites, has received considerable study [5,10,13,14,16,18, 21]. 
However, we remilin unconvinced that a solution to this particular problem is crucial to 
our research. Rather, we view our system as providing an environment in which any 
one of several simultilneous update algorithms can be implemented as needed. This 
point distinguishes our work from SOD- I [ 16 ], for example, since that project assumes 
a very particular technique for implementing simultaneous update. SDD-1 also makes 
very restrictive assumptions about the autonomy of the nodes of the system. 

Distributed systems have only lately become a focus of programming language 
research. In the past, programming languages have mostly not addressed concurrent 
programs. More recent languages (e.g. Concurrent Pascal [ 1 ]) Modula [22]) have had 
features for concurrency, but within the context of a single processor: these 
languages are based on the assumption that programs interact through shared memory, 
which is not consistent with the concept of autonomous nodes with private memory. 
There is related work at Oxford ( 9], the University of Rochester [ 6] and at MIT [ 4, 7], 
but this work does not place strong emphasis on integrating the language and operating 
system features. 

Indeed, we feel that ot,ir emphasis on the integration of language and system is a 
key factor that distinguishes our work from other related work. Much of what 
distributed programs do, falls into what is usually considered to be the systems area; 
including such topics as synchronization of access to shared information and protection. 
However, programs are written in a programming language, and proper primitives in 
that language can grecttly influence the structure of programs. By integrating the two 
areas we expect to achieve a greater impact on the construction of distributed 
systems than could be accomplished in either area separately. 

B. STUDY OLlPP~J~A TIO~~ 

It is essentittl that the mechanisms we develop to support construction of 
distributed applications will cover the ret1I distributed processing problems. To this 
end, we have studied a number of applications, both by direct observation [I 9,20] and 
by surveying related work as discussed earlier. This study was hampered by the lack 
of existing distributed systems; for example, banking systems are not yet distributed, 



D. S. S. WORKING GROUP 42 

although a distributed system is being planned. Therefore, we had to supplement our 
study by sketching designs for future systems. 

Several different classes of distributed activities have been identified: 

A message is sent to a remote node instructing some server at the node to 
perform a certain operation; a reply (requested information or an 
acknowledgement if no data is to be returned) confirms that the operation has 
been performed. The mail system in the ARPANET is an example of this type of 
application. 

To preserve the integrity of a database, it may be necessary to provide a 
mechanism that guarantees that either all updates specified by a transaction will 
be performed, or none, no matter how the transaction fails. 

If large quantities of drit<1 residing at different nodes are processed, a problem 
may arise even if no updt1les are performed, which is to minimize the data 
moved between nodes in order to perform the desired operation. An example is 
query processing in a distributed database system. 

This describes systems where the cost (overhead) of maintaining a centralized 
global view of the system slate and control is prohibitive. In such systems, each 
node knows only a pt1rtial state of the system and has to make intelligent 
guesses about the rest of the system. An example of such an application is a 
dynt1mic routing t1lgorithm for store-and-forward networks. 

This is a distributed version of a general purpose time sharing system. The 
assumption is that it is not possible to restrict in advance the modes of sharing 
among users. It is necesst1ry to communicate both data and programs, but from 
the point of view of the mech<tnics of the actual exchange of information this 
type of system could be included in the first category. 

The distribution can lake place along two main lines, based on functional 
separability or on the non~uniform distribution of the use of databases. Functional 
distribution means that different nodes support different services. Such systems seem 
natural for control of industriAI processes, where different nodes control different parts 
of a process, or in such systems as aircraft, where different nodes process information 
from different sensors. However, this approach seems to be also advantageous in 
service sectors such as banking· ( I 9J 



43 D. S. S. WORKING GROUP 

Another category of distributed systems is a system where an individual 
processor supports the same services but on a different part of a database. A typical 
example is a bank with many brnnch offices. Each branch has its local accounts, but it 
should be able to serve a bank's customer whose account is at another branch. Since 
such remote requests are much less frequent than manipulation of the local accounts, 
partitioning of the bank's accounts database (that is, maintaining accounts on a 
computer at their local branch) is a natural approach. 

It mu-st be said thAt the division between functionAI distribution and database 
distribution is not cleAn; in most cases, a distributed system will to some extent 
include both. The lciltcr case, however, implies an int~grated database, while in the 
former case (functional distribution) the databases used by individual servers are much 
more independent. In some ways, the functional distribution is a more general case. A 
distributed database represents a special problem, the need to enforce consistency 
constraints that sp;m several nodes. It is not clear how often this problem actually 
arises, but it cannot be ignored. 

It can be concluded thAt tho basic paradigm in the class of distributed systems 
that our project is ciddressing is the invocation of remote servers. This can be viewed 
as a communication protocol of much higher level th<1n, for example, the host-to-host 
communication protocols currently employed in the ARPANET. The implementation of 
such high level protocols, however, may need to differ, depending on the type of 
application, and possibly on the efficiency and reliability requirements of the 
application. Therefore, we should not aim to design such high level protocols, but 
instead develop a set of too!! that t acilitale design and implementation of such 
protocols. 

Finally, an application study by d'Oliveira [3] revealed an important result that 
there are strong pressures toward decentralization for sociological and political rather 
than technical reasons. These non-technical pressures imply to us that decisions about 
the distribution of information among the various nodes will be made for external 
reasons that only the application itself can specify. Thus, the application builder must 
have control over And understand the placement of information. 

As was mentioned earlier, we view a distributed system as a collection of 
autonomous nodes that only communicate by information exchange over the 
communication network that connects them. In such a system, at least two levels of 
coherence must be enforced. One level is the application level itself. The second 
level is the set of internode communication protocols that facilitate the physical 
exchange of information (packets of bits). But there is a large gap between the 
application and the low level communication protocols. Usually, this gap results in a 
rather ad hoc implementation of the application. 

Our target is an intermediate level, called the programming system, which will 
support a well-structured design, implementation, maintenance and control of 
distributed applications. This level is more than a programming language in a traditional 
sense. Rather, this level is envisioned as a set of tools that include primitives found in 
conventional higher level languages such as Pascal or PL/ 1, but also primitives normally 



0. S. S. WORKING GROUP 44 

assumed to be a part of an operating system, for example, long-term storage and 
cataloging of information or control of protection safeguards. Thus, this programming 
level will integrate the programming language and the operating system. More strongly, 
this level will integrate a programming language and a distributed operating system. 
The design goals for the programming system include: 

a. Aim for as high A level as possible, but application independent. Our system is 
intended to be used to implement many diverse applications, for example, both 
command And control systems and administrative systems like inventory control 
systems. To adequately support such a class of applications, the language should 
be as high level as possible but general purpose. One need that all applications 
share is the ability to exchange· potentially quite sophisticated messages. 

b. Support well-structured programming. Since our primary motivation is to ease 
the task of the applicAtion programmer, we feel that the embedded language 
should borrow from existing language work, in particular building on languages 
such as CLU [ 11] and Alphard (23], which aid in the production of well­
structured programs by providing powerful abstraction mechanisms. Of particular 
importance is the data abstraction, which consists of a set of objects together 
with a set of operations that provide the only means for manipulating those 
objects. Data abstractions have so far been investigated mainly in the context 
of centralized processing. We believe that they will be even more useful in 
distributed systems, because they provide a powerful tool in organizing a 
coherent structure for distributed systems by permitting the data of the 
application and the allowed distributed sharing to be described in application­
oriented terms. 

Since we are dealing with a distributed environment where an operation defined 
on the application level may require the assistance of several nodes, the 
language must support concurrent activities (process abstractions). Extensions 
of sequential languages will be necessary to achieve this. To enhance ease of 
use, we will keep the language as conventional and conservative as is consistent 
with our other goals. 

c. Support communicAtion in terms of abstract objects. Automonous procram units 
need to communicate in terms of the kinds of high level objects they manipulate. 
For example, the ARPANET supports one sort of -mch level object," the ASCII 
file, but any other form of data must be transmitted as a sequence of bits and 
explicitly transformed from one representation to another by a user written 
program. The IAnguage should support communication via messages composed of 
abstract objects. Two advAntages arise from this approach. First, a cle·ar 
statement cAn be made About the properties of data that the units depend on. 
Second, the approach clArifies the processing that is needed to translate an 
object in memory into a message transportable by the communication network 
and vice versa: the translAtion is accomplished using special operations of the 
object's type. Note thAl this translation is always needed; a language that 
requires messages to be composed of low level objects simply obscures this 
fact. 



45 D.S. S. WORKING GROUP 

d. Allow explicit control of the application distribution. Conceptually, the target 
level can be viewed as an abstract network of processes where application­
defined processes communicate via messages that contain high level commands, 
data and responses. In an ideal situation, this is all that would need to be seen 
by the application progr;immer. However, underneath this abstract network is 
the set of physical nodes and the communication lines that connect them. Our 
study of applications has indicated that the mapping of the objects used by an 
application into the physical set of nodes has to be made visible to the 
application programmer. We are also assuming that objects do not move 
dynamically from node to node, depending on the degree of demand (such 
dynamic migration is often assumed in the "distributed" systems consisting of 
many, relatively tightly coupled, mini or microprocessors). Rather, when a 
specific node is chosen to be the (new) home of a particular object, an 
insb;llation of the object has to be explicitly requested, using commands 
provided by the progrnmming system. This assumption is based on the belief, 
discussed earlier, that such placement decisions will often be based on non­
technical factors external to the system [3]. 

e. Support sharing. The programming level must support sharing of objects that 
reside at different nodes and belong to different users, where what objects can 
be shared is defined by the application. An important aspect of sharing is to 
provide controls that regulate the patterns of sharing so that protection and 
synchronization constraints are properly met. It is also necessary to solve 
problems of naming across nodes. 

t. Support reliable (robust) operations. Reliability is one of the most important 
goals of our project. A distributed system, by its very nature, provides a 
~te~tia! for enht1nced relit1bility. However, to exploit this potential, the system 
and the application have to be properly designed. An arriving message must be 
tested for integrity and Authenticity, using a combination of automatic system 
features and application dependent procedures, and there must be control over 
timeouts and the number of retries for messages sent but for which a reply has 
not been received. It is also desirable to have a means of specifying that an 
online backup copy is requested for an object. 

I· Support changing patterns of use. We cannot expect an application to be 
written once and never modified. First, the system will grow by the addition of 
new nodes. Second, new patterns of use will arise involving existing or new 
pieces of information. Thus, we can expect synchronization and protection 
constraints to ch;inge with time. This change must not cause upheaval in the 
design of existing pttrts of the application. 

We want to emphttsize thAt the envisioned programming system is not intended 
for the end user, but for the application builder (programmer), although in some 
environments (such as LCS) there is of ten little distinction between the two classes of 
users. Also, it should not be necessary for all nodes in the distributed system lo 
support the full language; ettch node need only support the appropriate (high level) 
lnlernode communication protocol. 



D. S. S. WORKING GROUP 46 

D. ENTITIES 

In this section we discuss the universe of entities (e.g. programs, data) that take 
part in a distributed computation. We are not concerned with all aspects of the 
behavior of the entities, but rather limit our attention to questions concerning the 
locations of entities within the network and the possible relationships among the 
entities. We assume that each entity has an identity that is permanent; an entity can 
be referred to by giving its !'!ame. 

1. location of Entities ·---·---

The universe of entities is spread across the physical nodes that make up the 
network. One question that arises concerns the location of entities: is an entity 
permanently located C\t a pelrticular node, or can it move from node to node? 

To make a decision here, we must consider several issues: 

a. Earlier we discussed our conclusion, based on an analysis of applications, that the 
application progrnmmers must be able to control the location of entities. Note 
that, C\t the least, this conclusion precludes automatic relocation of entities by 
the system, although relocation under program control would still be possible. 

b. We are assuming that nodes are autonomous and possibly heterogeneous. Even 
under program control it is possible to move an entity to an autonomous node 
only if that node is willing to accept it. Furthermore, if that node is different 
from the current home node of the entity, considerable translation may be 
needed to effectively move the entity. 

Therefore, we believe that entities should have a permanent location at some 
node in the network. An entity comes into existence at some node (when it is created) 
and remains at that node until it is destroyed. Moving an entity can be accomplished 
by having a program crettte C\' new entity and letting it "take over" from the old one; 
however, the relationship between the two entities is not recognized by the system, 
and represents a higher level concept of identity than that introduced above. 

One consequence of this decision is that it will be easy for the system to create 
unique ·names for enUties and to interpret entity names, since the node of residence 
can be part of the nC\me. 

2. Types of Entities 

One of the fundamental decisions in developing a model of computation is to 
determine whether the entities used in the model are all uniform or to determine 
whether there are different classes of entities. Basically, the uniformity concerns the 
ways in which the entities may be used (and may use other entities). An example of a 
system in which all entities are uniform is the Actor System [7): here every entity is 
an actor, and an actor is used by sending it a message (which is also an actor). 

We have chosen to have different kinds of entities in our model. At this level of 
discussion, we are interested in distinguishing only two kinds of entities: processes 



47 0. S. S. WORKING GROUP 

and everything else. A P~PC:f.?S_~ is active, and is thought of as being the execution of a 
sequential program. Non-process entities, which we will call ~ects, are passive, i.e., 
they do not originate any activity. Examples of objects are integers, arrays, stacks, 
procedures, etc. Objects have a ~-l-~l~ (value) that may change. If the state can 
change during the objecrs lifetime, then the object is !!'ulable. 

A process can communicate with another process by sending it a message. We 
assume that the synt<1x and semC1ntics of message passing is independent of the nodes 
of residence of the two communicrtting processes (although certain optimizations can be 
performed by the sr;tem if both processes reside at the same node). A process can 
use an object by performing (invoking) an operation on it (or by invoking it if it is a 
procedure); Again, the semantics of invocation is the same regardless of the nodes of 
residence.• 

We have just described a model in which there are two basic primitives: 
invocation and message passing. We intend that the semantics of invocation is distinct 
from message passing: the primitives <1re really different. (We expect that these two 
primitives will also be distinguished syntactically, but that is a separate decision.) 

If an actor-like view is triken, there is only one basic primitive, message passing, 
so our model seems more complicritcd. However, we believe that it is more natural 
than the actor model <md will therefore be easier for programmers to understand. It 
programs built out of actors are exAmined, it is clear that there are "data-like" actors, 
"procedure-like" actors and "process-like" actors. We believe these differences are 
fundamental and should be reflected in the language and its semantics. 

Now we address the subject of entities referring to entities. An entity may 
refer to another entity by using or contAining its name. For example, a process will 
have local variables that may contain the names of other entities (both processes and 
objects); as the process executes, it can use these names. A data object is 
represented by some storage (at its node of residence), and some ef this storage may 
contain names of entities (agAin both processes and objects). 

One possibility is to place no restrictions on what entities can refer to other 
entities. Thus, a process could perform an operation on an object whether that object 
resided at the sAme node or not. Invocation of an operation on a remote object can be 
made to work, but hAs a disAdvAntage in that what appears to be a simple invocation 
will involve internode communicAlion, and therefore can take a long time (although the 
semantics is still that of invocation). <The invocation must take place at the object's 
node, since the object cAnnot move to the invoker's node.) 

We have chosen to restrict the objects that a process can refer to such that: 

a. All these objects are at the same node as the process. 

b. These objects are llliY_ate to the process: no other process can refer to them. 



D.S. S. WORKING GROUP 48 

There are no restrictions on the processes to which a process can refer. It is easy to 
enforce the above restriction r1s follows: messages can contain the names of 
processes but not the names of objects. A model obeying this restriction is illustrated 
in Figure 1. The nodes labeled Pi are processes, while nodes labeled Qi are objects. 
Two kinds of directed arcs are shown. A solid arc from entity x lo entity y means y is 
a process and x names y, while a dashed arc means y is an object and x names y. Note 
that objects can name both processes and objects. 

A process may ultimately refer to an object in the course of its execution it 
there is a path from the procc5s to the object consisting entirely of dashed arcs. We 
will call the set of objects that a process may refer to its local address space. 

Note that in this model, processes are analogous to nodes of the network: each 
process has a private memory and can communicate with other processes only by 
sending messages. Thus the universe of entities represents an abstract network. (The 
Abstract network model is possible because we distinguish processes from other 
entities. We believe this is another reason why it is worthwhile to make the 
distinction.) 

The abstract network model has several advantages: 

a. The programmer organizes the locations of entities by considering where to 
locate the abstrnct nodes (e.g., each process with its local memory). This seems 
easier than worrying about eC1Ch entity individually. 

b. Operations are always invoked locally. This is simpler to implement than remote 
invocation, and also avoids some arbitrary time delays. (Of course, the operation 
invocation itself might send a message, e.g., to some process whose name was 
contained in the object.) 

c. Management of storage for objects (e.g., garbage collection) can be done locally 
on each node. 

Although two processes cannot refer to the same object, they can ~ an 
object if they both name the process that can refer to the object. Such a process is 
called a eua rd j an; it may guard one or several objects. The job of a guardian is lo 
synchronize possibly concurrent requests to perform operations on the. guarded 
objects. In Figure J, P3 is a gu;irdian for 07, which is shared by P 1 and P2. 

A guardian should not be assumed to know ii. pr j or j about all processes that 
may request operations on the guarded objects. Furthermore, if a process requests an 
operation on data that Are Available only through the guardian, such a request may fail, 
since the guardian may refuse to release requested data, or in some cases may even 
destroy the data al its own discretion. 

The abstract network model requires two extensions to be useful. First, the 
requirement that local address spaces of processes are disjoint may need to be 
relaxed. To obtain sufficient pArallelism, it will probably be necessary to support 
complicated guardians consisting of several processes that share objects. This could 
be 



07 

\ 
\ 
\ 

P3 

/ 
/ 

49 

01 f / 
I / 

/?if./ 
( o~\ ..... _ \ 

105 

0. S. S. WORKING GROUP 

P2 

Figure I. Example of Ponsible Relationship of Processes and Objects 



D. S. S. WORKING GROUP 50 

accomplished by a special syntactic construct, something like a serializer (8), that 
defines the processes making up the guardian and their intercommunication; all the 
processes in the guardian would reside at the same node. 

Second, in the case of a guardian that guards several objects, some efficient 
mechanism is needed that permits a user process to specify to the guardian the 
particular object of interest, and for the guardian to determine that the object so 
specified is one it guArds. The system provides no guarantee, however, that such an 
object continues to exist as long as the user can specify it. 

Reliability is and will be one of the major issues in information processing 
systems. As discussed earlier, distributed systems provide a potential for enhanced 
reliability; however, this potential needs to be exploited through proper design. This 
section discusses the reliability problems in distributed systems and the mechanisms 
needed to achieve reliable operation of a distributed application. 

For the purpose of the discussion of reliability issues, the implementation of the 
abstract network introduced in the preceeding section is divi.ded into two levels: the 
appl i cat j on illtl and the system~. The system level is all the mechanisms 
needed to support the view presented to the application programmer (that is, the run­
time support of the programming system). The application level is built using the tool!i 
provided by the programming system. 

Reliability mechAnisms are those mechanisms that assist in detection of, reporting 
and recovery from errors and failures. An error is an internal state of an entity that, if 
no special recovery steps are tt1ken, will result in a failure of the entity (or, in case of 
data objects, failure of an operation on the entity). Some errors can be handled 
entirely by the entity itself, and thus remain invisible to the entities that are in some 
way dependent on that entity (users of that entity); such errors are said to be 
mll.kmf. Detected errors that cannot be handled internally should be reported to the 
users, by signalling a li!..i..LlJ~. Undetected errors turn into failures; it is possible 
that a user of such an entity can detect this kind of failure, but the problem is much 
more complex than with the reported failures. 

To achieve reliable operations from the application point of view, both the 
system level and the application level have to include mechanisms for detection and 
handling of errors and failures. For simplicity, the following discussion uses the term 
failure to indicate reported and unreported failures as well as errors. For each type 
of failure, it is necessary to decide where it can be detected and how it should be 
handled. Some classes of failures, detected within the system level, can be masked, 
but for others a failure has to be reported to. the application level. Some failures, 
however, are application dependent and therefore, their detection and handling has to 
be left to the application level. (In the class of system level failures, there is a gray 
area where a decision has to be made as to whether these failures will be masked by 
the system level or reported to the application level.) Thus, the system ought to 
provide suffic;ient mechanisms for masking certain classes of failures arising from the 
operation of the hardware and the software that supports the application programs. 
However, the system also has to provide suitable language constructs for the 



51 0. S. S. WORKING GROUP 

application programmer lo fticilitale handling of the application specific failures and 
communication of the system detected failures to the application programs. 

The abstrnct network is supported by a physical network of nodes and 
communication fines. Figure 2 shows the abstract network mapped into the physical 
network and the communic<11ion processes that control the physical delivery of 
messages among the nodes. The application processes exchange messages that, 
logically, contain v<1lues of <1bstrnct objects meaningful at that level. The values of 
these objects have to be translated or encoded into a string of bits for delivery to 
another node and decoded to the proper abstract objects at the receiving node. At 
the sy.stem level, messages, now in the form of a string of bits, may have to be 
partitioned into packets. The messages are checksumed, so that transmission errors 
can be detected. It is difficult to correct transmission errors at the receiving node, 
since transmission errors t1rc bursty (t1ffect not just a single bit, but several bits). 
Checksum facilitates detection of errors, where the number of detectable simultaneous 
errors is determined by the size of the checksum field. Correction is performed 
through retransmission. In gencrnl, once a message has been translated into a string of 
bits, the communication protocols should take care of the correct transmission. 
However, the primary responsil;>ility for checking that a message has been ~ on, 
that is, ensuring that a process that sent a message will not wait indefinitely, and also 
that the message contt1ins vr1lues acceptable from the application standpoint, must rest 
with the application. 

Section F discusses the lr1ngur1ge constructs needed to permit an application 
process to deal with failures of another application process with which it is 
communicating or attempting to communicate, to defend itself from improper use, and to 
deal with the failures in the system level. This section concentrates on the system 
level. 

A truly reliable system level should be prepared to deal not just with 
communication errors tht1t result in a loss or garbling of messages sent across a 
physical communication link. A reliable system level should not lose messages that 
have been presented to it by the application processes and gueued for delivery. That 
is, the message queues should be L~..!..itlli in case of a physical failure of a node. 
This requirement becomes very important if lnmslation from an abstract data object to 
the corresponding bit representation is a costly operation, or if the input to such a 
translation step is not automatically repeated (e.g. message typed by a user). This 
argument can be extended to the requirement that the system should tY.a..u.nl~e. 
de I j very of all mess<1gec; it has accepted from the application processes. That means 
that in addition to provic,ling recoverable queues for messages that have not been sent 
yet, the system must continue trying to send the queued messages until it eventually 
succeeds. At the receiving node, the messages have to be stored again in recoverable 
queues, until they are picked up by the target application process. 

Note that the recoverable queues and persistent retransmission could be pushed 
onto the application level. Putting it in the system level frees the programmer from 
some of the work needed lo satisfy the reliability requirements and hopefully increases 
efficiency. However, the reliability mechanisms do represent potentially large 



D. S. S. WORKING GROUP 52 

Nl 

I 
communicatio:l 
mediut.t -._,. 

I --------.., 
L_ ---------

Pi application processes 
Ni nodes 
Ci communication processes 

N3 

Solid lines: possible communications on the application level 
Dashed lines:. flow of informAtion between processes 

Figure 2. The Abstract Network: Communication on the Application 
Level and on the System Level 

N2 



53 0. S. S. WORKING GROUP 

overhead, and their use should not be imposed on all communications. The basic 
communication scheme should be simple, fast, and inexpensive. We will investigate 
whether it is possible to vary the degree of reliability provided by the system by 
letting the application programmer choose from several different protocols; such 
protocols would be implemented as extensions (abstractions) built from the basic 
protocol. 

In addition to the problem of communication, it is necessary to address the 
problem of reliability for individual objects in the system. This problem has three 
aspects: 

a. no information should be accidentally lost or damaged 

b. operations on objects should perform correctly (conform to the specification) 

c. objects should always be available to qualified users (subject to protection 
constraints). 

Redundancy is ilnportrint for all three cispects. Two or more copies of an object stored 
and controlled in im independent way decrease the probability that the object will be 
lost or damaged as a result of a failure of the storage device or the processor 
manipulating the information. Also, if an operation on an object fails, it may be 
necessary to undo the effects of the operation (for example, an operation may have to 
be aborted because of a detected deadlock or because of a failure of some entity it 
uses). Redundant copies 1nake it possible to restore the current state or to backup 
some earlier state of im object. 

The issues reg<1rding the reliability of individual objects are not specific to a 
distributed system; fill.'i information processing system should support backup and 
recovery of stored objects. Distributed systems, however, can increase the availability 
of information and services. "Availability" can be interpreted as the delay experienced 
when accessing a particular object. This definition has two connotations: one is the 
efficiency of the system, that is, the actual physical delay and queuing time in the 
abstract network (case E); the other source of delays are the failures in the abstract 
network, that is, the reliability aspects (case R). Redundancy is used for both of these 
subcases: 

Case R: If some particular node or communication with a particular node fails, 
it should be possible for the other nodes to continue their work. Since the 
failed (or inaccessible) node may contain objects needed by the other nodes, 
to increase availability means to maintain several copies of shared 
(shareable) objects on different nodes. 

Ca~_~_I: Even if the system never fails, a single copy may not provide 
sufficient availability. A single copy of information or service may become a 
bottleneck; also, the communication delays, especially in a long-haul 
network, may be subst<1ntial, and it thus may be desirable lo have a local 
copy (and, consequently, support multiple copies). 



0. S. S. WORKING GROUP 54 

The question that needs to be answered is to what extent the individual copies 
have to be mutually com:istenl. It is important to distinguish between the two cases 
since the right solutions to the problem of mutual consistency are significantly dif f erenl. 
In case R, only one copy needs to be actively used, that is, an object has a mft.tlll 
copy and one or more p~ copies. The changes made to the master copy must be 
propagated to the backup copies, immediately if every state of the object must be 
recoverable, or periodically upon special command if in a case of a failure it is 
sufficient to back out to some consistent state, not necessarily the lltl consistent 
state. In case E, all copies must be available for active use. It is often assumed that 
all copies must always be the same, but this requirement may defeat the very purpose 
for which the multiple copies were introduced: reduction of delays. The delay caused 
by synchronization of updates with other updates and accesses of multiple copies may 
exceed the delay th<1t wo•ild result if only one copy were maintained. In case E it 
seems much more realistic to allow for multiple versions of an object; the local copy 
may not always be the most current version, but the most current version is known 
and a local copy of it can be obtained upon request. 

The system level ought to support, in a selective way, the kind of redundancy 
required for case R. However, as discussed for case E, maintaining several equivalent 
copies of an object at different nodes can be expensive. One possible solution is to 
make individual nodes ultra reliable and use redundant communication paths between 
any pair of nodes. Selected objects then ought to be suitably replicated within a 
single node. For many applications, this may be the right approach. Case- E is more 
complex and more applic<1tion dependent. The application user, as well as the 
application programmer, m~y need to be aware that several versions of an object 
exist. Thus, case E should be left to the application level. A possible scenario is a 
system that on the application level supports multiple versions of selected objects, 
where the most current version is backed up on the system level. 

F. LANGUAGE: CON$_T_f!UGI_$_£9R_ SE~DING AND RECEIVING MESSAGES 

An important issue in designing a language for distributed systems is how the 
language recognizes pairing of messages. The basic scenario in the abstract network is 
one process sending a message to another process requesting some action; later there 
should be another messrige, flowing in the other directior., indicating the result of the 
action. It must be possible to express in the language that the two messages are 
related. In addition, it is necessary to address the problem that the reply may never 
arrive, or that the request message crinnot be sent. Several approaches are possible 
that differ in how long (for what event) the sending process must wait before it can 
proceed. Closely related to this degree of waiting is what kind of failures are 
detectable as part of the send command. 



55 0. S. S. WORKING GROUP 

In this approach, the sending process is forced lo wail until the response comes 
back from \he receiver, or some timeout or failure results. A possible syntax might be: 

~enQ C(args) !<? A ~~eo~! time: 

Rl(formals) ~2- SI; 

R2(formals) c!.~ St; 

failure (formals) ~....Q Sfailure; 

timeout ~~ Stimeout; 

end· . __ '.] 

Here A is a process etnd C(aq;s) is the message, consisting of a command, C, and some 
arguments. The remainder of the construct lists the various possible responses, 
together with the appropriate action to be taken by the sending process. Rl, R2, etc., 
are responses for A; some might be normal, and some abnormal. "Failure" covers 
various failures that are detected either by the system or by the receiving process A. 
The arguments of "failure" specify the type of failure. Some examples of a detected 
failure are: 

a. the message as specified cannot be constructed 

b. the specified process (A) no longer exists 

c. the target node is inaccessible 

d. congestion (the target node or the target process (A) does not have enough 
but fer space) 

e. the message cannot be decoded (the abstract objects contained in a message 
cannot be reconstructed). 

Which of these failures are visible at the application levPI depends on the design of 
the system level. As discussed in Section E, the system level might be designed in 
such a way that message delivery is guaranteed. This wouiJ eliminate the need lo 
cope with the failures of the type c and d at the application level. 

The timeout action is tcikcn if "time" is exceeded. If the system is designed for 
guaranteed delivery, the timeout action that terminates the send commAnd should 
t elease the buffers in which the system keeps the message for delivery to the target 
application process. It should be understood that this timeout is for the pair of 
messages to be exch;inged between processes in the abstract network; a different 
timeout value is used in the underlying system to govern retransmission of packets. 



0. S. S. WORKING GROUP 56 

A different kind of "send" command is needed in the receiving process, since the 
receiving process must be able to respond to the command without waiting for the 
original se:inder process to respond back. To receive messages, A might use a 
construct: 

command case ---- - -·- ---· 

C(formttls) Q_(! ... r~pJy R(args); ... ; 

Here, A is waiting for one of a number of messages; if several are available, one is 
selected in a fair way. The messAge is then decoded, the contained dt1ta assigned to 
the formats, and the statements associated with the selected message are executed. 
The r.~12.l:t comm<md sends a message back to the process .hat sent the message. 
Another form of reply: 

rep!Y R( ttrgs) to B 

which explicitly names the process to reply to will probably also be needed. (This 
would permit a third process to be the replier to the original sender.) 

The approach sketched Above has the obvious advantage of pairing sends and 
receives. It also has some obvious disadvantages. For one thing, there are two send 
commAnds. More importimt, however, is the loss of parallelism. If the sending process 
had other tasks to do while its request was being processed, it must either not do 
them, thus reducing efficiency, or it must spawn another process to do these tasks. 
Thus a language supporting this approach must provide rich facilities for parallelism. 
(Nole: this is not the only reason for .which such facilities for parallelism might be 
needed. See the discussion of guardians in Section 0.) 

This approach is the opposite of the waiting approa::h: the sending process does 
not wait at all but continues running, performing actions on the local objects, or 
possibly even sending more messages. When it needs a response that is not ready, it 
wails for it. The langu<lge now has to provide additional constructs that allow the 
programmer lo distinguish which response goes with which request and to specify that 
the process wishes to wttit tor the reply to a specific message, rather than a reply to 
any mess~ge that may have been previously sent. 



57 D. S. S. WORKING GROUP 

There are various ways in which these problems might be solved. For example, 
send commands might be labelled: 

SI: ~enc1 C)(args) ~~Al; 

S2: seaj_ C2(args) to A2; 

In this approach, each ~c....rut command has a continuation (as in Actors [7]) that can be 
named to identify the responses of interest in reel j es. Following reel j es would be 
the list of alternative responses, as shown in the preceding section, to the message 
sent by statement SI. Note tht1t the errors arising in turning Ci(args) into a message 
would be exceptions (abnormal terminations) of the grut command; failures such as 
(c), (d) and (e) described earlier would have to be reported outside of the lllld 
command (in reel j es). 

Another possible approach is to use ports: 

~~!ld.. C(args) t.~ A ~Jy-to P 

where P is a port that can be named by more than one gru1 command. Ports offer 
flexibility in expressing different patterns of requests and replies, both between a 
single pair of processes and in cases where a process communicates with several other 
processes. The port scheme could be further extended to allow the programmer to 
use a spedat port for replies indicating a failure: 

se~ C(args) to A reply-to P failure-to F 

The port F could be viewed as an entry to the ·complaint department" of the 
respec;live application process. 

The no-wait approach permits parallelism and is more flexible, especially in 
connection with ports. However, the linguistic mechanisms needed to enable the 
programmer to do the matching introduce extra complexity; how much flexibility is 
gained and how much complexity is added requires further study. The no-wait 
approach does not eliminate the need for supporting timeout, but now the timeout is 
specified at the point where the process must wait for the reply. 

This approach again mtikes the sender wait, but instead of waiting for the reply 
from the target process, the sender must wait only for some indics.tion about the 
progress in the delivery of the message. For example, in Hoare's language (9], the 
sender waits until the replier receives the message. 

The first question to ask is: does this approach offer the programmer any 
advantages over the other two approaches? Since sends and replies are not explicitly 



D. S. S. WORKING GROUP 58 

paired, from this point of view the in-between approach offers similar advantages and 
disadvantages as the no-wait approach. What is gained over the no-wail approach is 
that certain failures, for exAmplc, (c) and (d), or possibly even (e) can be treated as 
exceptions of the send comm;md. More importantly, the completion of the send 
command indicates thr1t a me;mingful message (to some extent) has been received, and, 
if the buffer into which the message has been placed is recoverable, it can be 
guaranteed that the message eventually will be processed. It is not clear, however, 
whether the guaranteed receipt and eventual processing of the message are really that 
important, or more precisely, whether it is important to know this right after the send 
command, instead of later when waiting for the results. It should be noted that there 
is a substantial loss of parallelism over the no-wail approach. 

The in-between approach is often advocated on implementation grounds, as a 
means to prevent flooding of the receiver. Flooding means that messages are 
delivered faster than the receiver crin process them. Since the buffer space of the 
receiver is always limited, either some control must be provided to stop the flow of 
messages or some messt1ges must be discarded. In a system with shared memory, a 
very efficient implementation is possible, namely, each process has one send buffer, 
and the message is held there until the receiver wants it. In a system without shared 
memory such as our distributed system, this approach is clearly impractical, since extra 
messages would be needed to inform the communicating parties that a message is 

. ready (sender to receiver) and that it can- be transferred (receiver to sender). In a 
distributed system, the messages that cannot be processed immediately must be held 
not in the buffers of the sender but in the buffers of the receiver. Still, after a 
message from a particular sender has been discarded by the receiver for the lack of 
buffer space, the in-between t1pproach can prevent the sender from sending additional 
messages. However, the flooding problem will be more appropriately handled on a 
lower level, especiAlly in connection with the guaranteed delivery scheme. 

In a distributed system, the protection problem can be simplified if we 
distinguish between inter-node and intra-node protection mechanisms. In the class of 
distributed systems considered in our project, a likely case is that a particular node is 
utilized by one user or at most by a set of cooperating and mutually trusting users. In 
this case, intra-node mechanisms are not required to have power sufficient to protect 
against subversion and malice. This is in strong contrast to a system such as Multics 
[ 1 7], and many other time-shared and multiprogrammed systems that were designed to 
operate properly with a set of mutually hostile users. The protection mechanism 
required in a single node is that which protects adequately against error and 
forgetfulness. This latter problem, while less severe than the problem that results 
from fully suspicious cooperation, is still not trivial. Presumably, the programmer must 
be provided a means of partitioning his computations, so that certain objects 11re 
accessible only in cerlc1in computations. This mechanism will allow him to debug new 
versions of software without running the risk of destroying existing objects. 

We propose that a capability mechanism be the mechanism to provide this intra­
node protection. By capability we me;in an unforgeable identifier for an object, which 
identifies the type of the object. ("Capability" is often used to mean more than an 
unfor1eable identifier: a capability may also include a specUication of the access 



59 D. S. S. WORKING GROUP 

rights, that is, a specification of which of the operations defined for the type of the 
object in question are actuillly allowed on that specific object. However, access 
control can also be rithieved by making the object appear to be of the type that 
imposes the desired restrictions.) It must be presented as part of addressing an 
object. By constrnining a procedure to execute with a limited collection of capabilities, 
it is easy to guarantee that the procedure will not do arbitrary damage to stored 
inf or ma ti on. 

Capabilities have cert<1in dis<1dvantages as a protection mechanism, but they are 
not apparent in this context. For example, inside a single node it should not be 
necessary to <1sk the question "Who <1re all the people who can get to this object?" 
This is a question that capabilities c<1nnot easily answer. A properly designed 
cataloging mechanism will provide all the functionality in this direction that is required. 
Most import<mtly, the efficiency of capabilities becomes very important in this context 
in comparison to an Alternative mechanism such as access control lists. Since we 
assume a world with a large number of small objects, it is clearly impossible to imAgine 
that every object comes complete with an access control list; the overhead of an 
access control list for each object might be substantially larger than the object itself. 
Capabilities, on the other hand, need be no more th<1n slightly enlarged addresses. We 
thus propose that the intra-node protection mechanism is based on capabilities, with 
some sort of capability cataloging mechanism playing the role now associated with the 
traditional file system. 

Let us begin the discussion of inter-node protection by considering a point of 
policy rather than mechanism: the claim that protection between nodes should be 
based on an access control list mechanism rather than a capability mechanism. This 
clP!m is not based on difficulty of implementation; either mechanism can be imagined. 
Rather, it is based on our perception of the high level needs of distributed applications. 
A fundamental way to characterize the difference between capabilities and access 
control lists is that capabilities do not provide any easy answer to the question "Who 
are all the people who can get to this object?" while access control lists make it very 
cifficult to ask the question "Whal are all the objects that I can gel lo?" If one 
considers real world protection problems, including those drawn from domains other 
than the computer domain, the more workable model of protection generally turns out 
lo be that based on access control lists. While capabilities are often used in the real­
world, the most obvious example being keys, the drawbacks are well known. Keys are 
subject to unauthorized duplication, loss, theft, etc. More relevantly, capabilities (or 
keys) do not provide a means to support accountability. 

Both inter-node and intra-node protection requires partitioning of computations 
into non-overlapping access domains. The abstract network derived in Section D 
already provides such partitioning: each "node" in this abstract network has its own 
local address space inaccessible to other nodes. The decisions about intra-node and 
inter-node protection mechanisms can be extended to the abstract network: 
specifically, capability mechanisms will be used inside an abstract node, while access 
control lists will be employed for inter-node communication. 

One of the basic goals of our project is to allow the application programmer to 
work with application-oriented entities. The same concern applies in the area of 
protection. Thal is, protection constraints should be expressible in application-oriented 



D. S. S. WORKING GROUP 60 

terms. Powerful abstraction mechanisms and the concept of abstract nodes both 
contribute towards this goal. 

Let us look now at the inter-node protection problem in the abstract network 
from a slightly different viewpoint. It will be a rare case where a request occurring 
between nodes consists of nothing more than the reading or writing of a single 
primitive object. In most cases, we can expect the request to be composed of an 
aggregate of reads and writes on various objects, which the requesting node views as 
atomic. This is generally referred to as an atomic transaction. The thing that must be 
protected from outside is the right to execute this atomic transaction. It is quite 
possible that the isolated reads and writes that are required as part of this transaction 
are not legitimate for the outside user except as a part of this or some other 
transaction. The classic example is where we are willing to release the average of a 
set of numbers, but not the numbers themselves. 

Thus, we are faced with the problem of concisely expressing higher level 
protection constraints. One possibility, which we propose to reject quickly, is that the 
inter-node message may consist of an arbitrary algorithm, expre · !d in terms of 
primitive read and write operations, and this algorithm will be examined and confirmed 
at the receiving node before execution to ensure that it conforms to the higher level 
security constraints. The construction of a verification algorithm that ensures that an 
arbitrary program conforms to one of the number of high level protection constraints 
would be a challenge to the most optimistic of the program verification researchers. 
Thus, we are led to the conclusion that the language in which an inter-node request is 
expressed must have primitives whose functionality closely matches the expressed 
protection constraints, so that it is easy to confirm that a proposed transaction does or 
does not fall within the bounds of the outstanding protection constraints. 

We postulate the idea, common in data management systems, that different users 
of a data base have different views of the data base, often called different data 
models. From the outside, the data model appears to describe physically stored 
information and the acceptable operations on it. However, internally, the data model 
may have little correspondence to the information actually stored. Rather, it may be 
realized as algorithms that derive the modeled data from the information actually 
stored. Thus, we first see users being divided into large groups, based on which data 
model they use, and then being further divided within those groups according lo which 
operations they can perform on the data model provided. For example, some users 
may be able to read certain records, others to read and write them. Each data model 
implies the existence of an algorithm to translate between that data model and the 
actually stored information. It is these algorithms that must be provided in advance, 
one set for each data model. The programming system must provide facilities for 
creating such data models, mapping them into the actual stored information, and 
synchronizing read and write operations oricinating from different data models. 

We have stated this paradigm in terms of the traditional vocabulary of data 
management. Let us state it again in a different vocabulary, that of typed objects. An 
abstract type, which allows only certain well defined operations on the objects of that 
type, while in reality it may perform arbitrary computation on a possibly lar1e number 
of objects that constitute its representation, is very close tO the idea of a data model. 
The traditional view of data models permits a low-level information entity lo be shared 



61 D. S. S. WORKING GROUP 

by different users through a variety of data models. To support this view via abstract 
types, it must be possible to m;:inipulate a single low level object as part of a number 
of different abstract data objects, depending on the rights of the different users. The 
idea of data models is that different users have different views of the world, but, 
fundamentally, they do turn out to be views of the same world. Thus, in some sense, 
they must ultimately rest on the same physical data. 

The inter-node protection can be enforced as follows. Any outside user 
(process) perceives the information in a particular (abstract) node as a number of 
objects that can be manipulated independently, and a set of permissible operations on 
those objects. These externtilly visible objects are arranged in such a way that there 
are no explicit protection constraints that tie one object to imother. A message 
arriving at a node to manipulate one of these objects must be processed by some 
active entity (e.g. a process), which confirms that the requestor of the action· has the 
right to perform it, and then implements the operation at the node by invoking 
operations on other objects, not directly accessible from outside. We will refer to this 
entity as a. protect j o..n !l~.nl The protection agent could be the same entity as the 
guardian discussed in Section D. The guardian, however, presents only a single view ·of 
the guarded objects. The protection requirements described above lead to a model 
outlined in Figure 3. In this model, the protection function is separated from the 
synchronization function. The protection agents ·represent different views of the 
guarded objects. The guardian controls the actual physical access to the guarded 
objects; it imposes synchronization constraints on requests passed to it from the 
protection agents. 

While there are an infinite number of protection checks that the protection agent 
may wish lo perform in a particular case, there are three checks that can normally be 
expected to occur. First, the protection agent will wish to confirm that the originator 
of the message has the right to invoke the protection agent at all. Second, the 
protection agent may wish to confirm that the particular object or objects involved in 
the operation requested are indeed accessible to the requeslor, and third, that the 
particular operation to be performed on the object is permitted for the requestor. For 
example, a data base manager may wish to confirm that the requestor can invoke it, 
then it may wish to confirm that the particular record being manipulated is accessible 
to the requestor, and then it may wish to determine whether or not updates or just 
reads are permissible for that requestor. In any particular case, one or more of these 
steps may be omitted. Thus, for example, provided that a user has a right to invoke a 
protection agent at all, he may have the right to manipulate any object normally made 
accessible through that agent. The user may also be permitted to perform any of the 
operations defined on the objects. In that case, only the first of the three tests need 
be performed. 

We should now pause and consider how this representation of protection 
meshes with the conclusion drawn earlier that inter-node protection should be 
expressed in terms of access control lists. Clearly, the use of access control lists 
implies that the protection agent must be able to reliably determine the originator of 
every message. Using the terminology developed for characterization of protection 
mechanisms in a centralized system, we will assume that every message, at Its origin, 
has associated with it a pr j nc j pa I j denli f I er. which identifies the entity to be 
held accountable for the request in the message. Some techniques such as encryption 



D. S. S. WORKING GROUP 62 

G -- / 
/ /?---.....,_ ~ ( GJ I \"-

{ B $'\ 
\ 

/ I \ 
/ J 

\0 61 , _____ _,,/ 

A, B. C: protection asents 
G: suardian 

guarded 
objects 

Nl 

Fiaure 3. Inter-node Protection Mechanism in Abstract Network; the Proce11 
P (Abstract Node N2) Can Reach the Objects Guarded by G 
(Abstract Node NI) Only Throuah the Protection Apnt 8 

N2 



63 D. S. S. WORKING GROUP 

will be used to ensure the believability of the principal id by the recipient of the 
message, if the message htts originated from a different physical node than the 
recipient; however, we will not describe such a technique here. Using this principal id, 
the first protection check described ttbove is easy to implement. We can associate 
with every protection ttgent an access control list, and insist that the principal 
identifier associated with the message be on that list before the protection agent be 
invoked at all. The second test, that of ensuring that this principal is allowed to 
manipulate the particular objects in question, can be handled in a variety of ways. One 
obvious technique is to associate with each entry in the access control list, a list of all 
the objects that the particular principal is allowed to use. The protection agent can 
then refer to the list to determine the access privileges of the requestor. If the third 
type of protection check is required, it can be implemented as part of this same list, by 
associating with the entry for each object a notation describinc the particular 
operations that this principal is permitted lo perform on that object. 



D. S. S. WORKING GROUP 64 

REFERENCES 

1. Brinch Hansen, P. "The Programming language Concurrent Pascal." IEEE 
Transactions on Software Engineering. Vol. SE-1 No. 2 ( 1977), 199-207. 

2. Clark, D.D. et al. "An Introduction to local Area Networks.• M.l.T.1 Laboratory 
for Computer Science, Computer Systems Research Division, RFC-163. April 
1978. DRAFT 

3. d'Oliveira, C.R. An Analysis of Computer Decentralization. M.l.T., laboratory for 
Computer Science, LCS/TM-90. Cambridge, Ma., 1977. 

4. Dennis, J.B. First Version of a Data Flew Procedure language. M.1.T., laboratory 
for Computer Science, LCS/TM-61. Cambridge, Ma., 1975. · 

5. Eswaran, K.P. et al. "The Notions of Consistency and Predicate locks in a 
Database System." Communications of the ACM, Vol. 19 No. 11 (November 
1 977), 624-633. 

6. Feldman, J.A. ~_f!,QBt::.'!!'llmi~g_ Methodology for Distributed Computing. University 
of Rochester, Department of Computer Science, TR-9. Rochester, N.Y., 1977. 

7. Hewitt, C. Viewing Control Structures as Patterns of Passing Messages. M.l.T., 
Artificial Intelligence Laboratory, A.l.M.410. December 1976. 

8. Hewitt, C. el al. "Parallelism and Synchronization in Actor Systems." ACM 
Conference on Principles of Programming Languages. Los Angeles, Ca., January 
1977. 

9. Hoare, C.A.R. "Communicating Sequential Processes." Oxford University, 
University Computing Laboratory, Programming Research Group. Oxford, England. 
1977, DRAFT. 

10. Lampson, B., and Sturgis, H. "Crash Recovery in a Distributed Data Storage 
System." 1976. (To appear in Communications of ACM. 

11. Liskov, B. et al. "Abstrr1ction Mechanisms in CLU." Communications of ACM, Vol. 
20 No. 8 (August 1977), 564-576. 

12. Millstein, R.E. "The National Software Works: A Distributed Processing System." 
· Proceedings of the ACM Annual Conference. Seattle, Wa.1 October 1977. 

13. Montgomery, W. "Robust Synchronization in a Distributed Information System." 
M.l.T., Department of Electrical Engineering and Computer Science, Ph.D. Thesis 
(in progress). 

14. Reed, 0.P. Naming and Sy~chronizalion in a Decentralized Computer System. 
M.l.T., laboratory for Computer Science, LCS/TR-205. Cambrid1e1 Ma., 1978. 



65 0. S. S. WORKING GROUP 

15. Roberts, LG., and Wessler, B.D. "Computer Network Development to Achieve 
Resource Sharing." ~E!~~LG_C?_nference Proceedings. Vol. 36, 1970. 

16. Rothnie, J.B. et al. J'h~_R~_L!ndant Update Methodology of SDD-1: A System for 
Oistribut~c!__Q~t~pases. Computer Corporation of America, Report CCA-77-02. 
Cambridge, Ma., February 1 977. 

I 7. Saltz er, J.H. "Protection and the Control of Information Sharing in Multics." 
~ommunicaJions __ <?f _!_he A_~~J Vol. 17 No. 7 (July 1974), 388-402. 

18. Stearns, R.E. et al. "Concurrency Control For Database Systems." IEEE 
fu'_'!'P_~siU!!l.E_'!.fElm~a![~~;;_p_f Co~~uter Science. Houston, Tx., October 1976. 

19. Svobodova, L. "Distributed Computer System in a Bank: Notes on the First 
National City Bank." M.1.T., Laboratory for Computer Science, Computer Systems 
Research Division, RFC-155. Cambridge, Ma., January 1978. 

20. Svobodova, L. "Distributed Computing in the Bank of America." M.l.T., Laboratory 
for Computer Science, Computer Systems Research Division, RFC-157. 
Cambridge, Ma., February 1978. 

2J. Thomas, R.H. ~?_o~_!i~D_to the Update Problem for Multiple Copy Data Bases 
which Use Oist~l~!Jted ,~_Q!ltrol. Bolt, Beranek ll.. Newman, Inc., Report No. 3340. 
Cambridge, Ma., July 1 ~ 76. 

22. Wirth, N. "Modula: A Language for Modular Multiprogramming." Software 
Practice and Experience, Vol. 7 No. 1 (January 1977). 

23. Wulf, W.A. et al. "An Introduction to the Construction and Verification of Alphard 
Programs." IEEE Transactions on Software Engineering, Vol. SE-2 No. 4 
(December 1976). 



67 

DOMAIN SPECIFIC SYSTEMS RESEARCH 

S. A. Ward, Group Leader 
M. L. Oertouzos 

P. Houpt 

R. Archer 
C. Baker 
C. Cesar 
J. Gula 
R. Halstead 
A. Mok 
J. Pershing 

Y. Gilbert 
T. Hayes 
R. Mclellan 

C. Eliot 
N. MacKenzie 

Academic Staff 

Research Staff 

Graduate Students 

Undergraduate Students 

Support Staff 

.,.-·. 

P. Jessel 

A. Reuveni 
B. Schunck 
E. Strovink 
T. Teixeira 
C. Terman 
J. Wahid 

J. Sieber 
S. Tomlinson 

J. Pinell• 

lf l Jl '.( ___ ,. __ ;..pgcEDING PAGE NOT FILMED 
BLANK 



69 O.S.S.R. GROUP 

DOMAIN SPECIFIC SYSTEMS RESEARCH 

A. INTRODUCTION 

Research of the D.S.S.R group during the past year has been directed toward the 
general problem of real time computation, with two major projects (CONSORT and the 
MuNet) emerging as foci for parallel research efforts which are expected to converge 
in the n.ext year or so. Each of these projects has been described in previous 
progress reports; the following paragraphs serve lo illuminate their respective current 
status and goals. 

B. CONSORT: COMPILE-TIME TECHNOLOGY 

CONSORT is a tool for the design of programs for a limited but important class of 
applications involving hard real-time constraints (e.g. control of physical processes or 
signal processing). During the past year an initial implementation of CONSORT has been 
completed by T. Teixeira, J. Pershing and A. Mok, and has been demonstrated in a "toy" 
application (balancing an inverted pendulum) by J. Wahid. A brief film of the 
demonstration is in preparation. 

The current implementation translates a source program consisting of a block 
diagram (which may be input graphically) and produces an object program which runs 
on a single 8080 microprocessor. Static control structures are devised by CONSORT to 
meet real time performance criteria specified (in the source diagram) as latency 
constraints which dictate minimum rates at which data values must propagate through 
the diagram. A source program may consist of multiple pages, each corresponding to a 
particular control strategy . For example, object-time linkage mechanism provides for 
orderly transition between pages (passing state information to maintain continuity) as 
the target system passes from one phase of its operation to the next. 

Experience with the current CONSORT implementation has been both encouraging 
and suggestive. Although many aspects of this initial effort are tentative and 
unpolished, the general approach it illustrates seems well suited as a basis for the 
construction of powerful engineering tools. In addition, the simple, very high level 
semantics of CONSORT programs together with specification of concrete performance 
criteria provide a nearly ideal context for the development of a variety of radical 
program transformation and optimization techniques. Current research by C. Terman 
and Teixeira explores such techniques and compiler organizations which exploit them, 
pursuant to a CONSORT reimplementation effort to begin in the next few months. 
Goats for the new implementation include: 

1. Use of radical optimizations--e.g. substitution of table lookup for expression 
evaluation--to meet otherwise intractable real-time specifications. 

2. Exploitation of more sophisticated (e.g. dynamic) control structures and 
multiprocessor target systems (ultimately, the MuNeU. Relevent scheduling and 
partitioning problems are currently under study by Mok. 

3. A variety of improvements in the human interface aspects of the system. 
< fl"' .fi'&'-• . 

~ PACE NOT FIUIED __ I 



O.S.S.R. GROUP 70 

C. MUNET: OBJECT-TIME TECHNOLOGY 

Our in\eres\ in multiprocessor systems is \he potential they provide for a single, 
uniform target environment covering a wide range of the cost/performance spectrum. 
Such graceful scaling characteristics are particularly attractive in real time applications, 
where slight ch;mges in a system's performance requirements may necessitate 
complete abandonment of a previous implementation in favor of a reimplementation on 
incompatible higher performance hardware. In addition, many "soft" real-lime systems 
(e.g. for patient monitoring or industrial control) explicitly require extensibility over a 
wide range; as a result, such systems are typically over engineered so as to provide 
sufficient computation resources for the largest anticipated expansion. 

Previously reported work by R. Halstead and S. Ward has led to a design for the 
MuNet, a multiproces!;or architecture designed to address these issues. It consists of a 
sparsely connected network of small processors which support a message-passing 
protocol similar to (and inspired by) Hewitt's Actors. Noteworthy characteristics of the 
MuNet include: 

l. At the lowest level, it supports a universe of data and code objects, each 
represented as a block of storage whose size may not exceed a system-wide 
constant. Thus higher level aggregate data must be represented as composites 
e.g. arrays of arbitrary size are represented as trees. 

2. Neither objects nor object references imply absolute locality; thus in general, 
objects may be freely moved about the network (e.g. on the basis of dynamic 
load considerations). 

3. The basic computation step (called an event) is time-bounded by a system-wide 
constant. 

4. Each processor maintains an event list consisting of a FIFO queue of pending 
computations steps. The size of a processor's event list provides a first-order 
measure of the lo<1d on that processor; in particular, it provides a bound on the 
amount of lime which may elapse before that processor will attend to a new 
event added to the bottom of the queue. This characteristic leads to interesting 
fairness and real-time properties. 

5. Events may be moved between neighboring processors based on run-time load 
(e.g. to equalize event list sizes). 

Implementation of a small (ten processor) prototype system is currently in 
progress. Major components of this effort include object management and scheduling 
(Halstead), compiler design and implementation (E. Strovink), operating system (J. 
Gula), and reliability measures (C. Baker). 



71 0.S.S.R. GROUP 

A primitive version of the MuNet is expected to be operational during the Fall 
term, 1978, at which time various improvements and modifications will doubtless 
immediately suggest themselves. After a period of fine tuning, a variety of benchmark 
tests will be run to determine how various performance aspects scale with network 
size; we hope to find a nearly linear relationship over an interesting class of 
computations. 

The absolute performance characteristics of this system will be of secondary 
importance, and may be less than impressive for several reasons. First, the generality 
and power of the MuNet environment stems in part from its heavy dependence on 
garbage-collected heap storage. Secondly, the partitioning of programs and data 
dictated by the system imposed time and space bounds introduce a certain amount of 
run-time overhead. Thirdly, little emphasis will be placed on the optimization of 
compiled code, at least initially. These factors may degrade performance by a factor of 
as much as ten or twenty in typical applications; thus the ini.tial ten-node network may 
be outperformed in many cases by high-quality conventionally compiled code running on 
a single processor of comparable performance. This effect will be balanced by a 
compensatory increase in the flexibility and capacity of the multiprocessor system, and 
eventually should be largely mitigated by technical improvements. 



O.S.S.R. GROUP 72 

Publications 

1. Halstead, R. Mu_lliple-processor Implementations of Messace-Passing Systems. 
M.l.T., laboratory for Computer Science LCS/TR-198. Cambrid1e, Ma., January 
1978. 

2. Teixeira, T. Real-Time Control Structures for Block Diagram Schemata. M.l.T., 
Laboratory for Computer Science LCS/TR-204. Cambrid1e, Ma., January 1978. 

3. Terman, C. The ~ecification of Code Generation Algorithms. M.l.T., laboratory 
for Computer Science LCS/TR-199. Cambridge, Ma., January 1978. 

4. Ward, S. "Domain Specific Languages for Microprocessor-based Systems." 
Control Engineering, Vol. No. 24 (November 1977) 115. 

5 Ward, S. "Approximate Contour Maps in Real Time." to appear in The 
Communications of the ACM, Vol. 21 No. 9 (September 1978). 

Theses Completed 

1. Gilbert, Y. "An Error Reporting Scheme for LR Parsers." unpublished S. 8. Thesis 
M.l.T., Department of Electrical Engineerin1 and Computer Science, June 1978 

2. Mok, A. "A F"rontend for a Morse Code Recognizer by Context." unpublished S. 
8. Thesis, M.I. T., Department of Electrical Engineering and Computer Science, 
June 1977. 

3. Mok, A. "Task Scheduling in the Control Robotics Environment." S. M. Thesis 
M.l.T., Department of Electrical Engineering and Computer Science, June 1977 
(also, laboratory for Computer Science, LCS/TM-77 CafY!bridge, Ma., 1976) 

4. Pershing, J. "Design of A Domain Specific Metacompiler for Systems Using 
Graphical Input as a Source Language." unpublished S.M. Thesis M.l.T., 
Department of Electrical Engineering and Computer Science, January 1978. 

5. Sieber, J. "A Packetized Communications Protocol for Remote File Access in the 
Laboratory." unpublished S. 8. Thesis, M.l.T., Department of Electrical 
Engineerin1 and Computer Science, June 1978. 

6. Wahid, J., "Implementation of Linear Quadratic Gaussian Compensators on 
Microprocessors." unpublished S. M. Thesis, M.l.T., Department of Electrical 
En1ineerin1 and Computer Science, June 1978. 



73 D.S.S.R. GROUP 

Theses in Progress 

1. Archer, R. "Representation and Analysis of Real-Time Control Structures." S. M. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, September 1978. 

2. Baker, C. "Reliable Distributed Object Management Schemes." S. M. Thesis, 
M.l.T., Department of Electrical Engineering and Computer Science, expected date 
of completion, May 197.8. 

3. Cesar, C. "Real Time Simulation Random Logic." Ph.D. Thesis, M.1.T., Department 
of Electrical Engineering and Computer Science, expected date of completion, 
May 1978. 

4. Gula, J. "A Distributed Operating System for an Object Based Network." S.M. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, September 1978. 

5. Schunck, 8. "Analysis of the Effect of LQG Control on Computer Structures." S.M. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, June 1978. 

6. Tomlin.son, S. "A Renaissance Machine Architecture." S. B. Thesis, M.l.T., 
Department of Electrical Engineering and Computer Science, expected date of 
completion, December 1 978. 

1. Ward, S. "An Invitation to DELPHI." M.l.T. Alumni Seminar, Cambridge, Ma. July 
1977. 

2. Ward, S. "Towards a Renaissance Computer Architecture." MIDCON 77 Chicago, 
II. November 1977. 



W. A. Martin, Group Leader 
l. 8. Hawkinson 

G. P. Brown 

R. Baron 

J. H. Thompson 

B. Demps 
V. E. Lewis 

75 

KNOWLEDGE-BASED SYSTEMS 

Academic Staff 

Research Staff 

Graduate Students 

Undergraduate Students 

Support Staff 

G. R. Ruth 
P. Szolovilt 

G. S. Burke 

R. Bruccoleri 

R. E. Wagner 

:..pqcm1MG PAGE NOT FILMED 
m.AMk 



77 KNOWLEDGE-BASED SYSTEMS GROUP 

KNOWLEDGE-BASED SYSTEMS 

During the past year, our research was organized around three projects: 

1. Knowledge Representation and Natural Language Processing--W. A. Martin. P. 
Szolovits, l. B. Hawkinson, R. Bruccoleri, J. H. Thompson 

2. Natural Language Query to an On-line Oictionary--W. A. Martin. G. P. Brown 

3. Very High level Language Research--G. R. Ruth, G. S. Burke 

8. KNOWLEDGE REt:>J!E;~~.NTATION AND NATURAL LANGUAGE PROCESSING 

The goal of this project is to create a programming sys•:" 1 '1WL II) which will 
facilitate the creation of knowledge based application system~ I ne programming 
system is to include a general purpose natural languag(· · front end." The major 
implemented components of this system are: 

1. The Linguistic Memory System (LMS). This reads, prints, and manages a special 
data structure--Hawkinson. 

2. A set of knowledge representation conventions and a grammar of English-­
Martin. 

3. A parser--Szolovits and Martin. 

LMS maintains a semantic net. Each node of this net is named by an expression 
formed by the binary combination of symbols and expressions naming other nodes. 
Each node has a reference (property) list. A decision was made lo break this list into 
zones and this is being implemented. Simultaneously, LMS is bein1 transfered lo the 
MIT A.I. Laboratory LISP machine. 

The grammar now covers about half the material in a typical English Handbook. 
We hope to cover all of such a handbook within the next year, making ours the most 
complete system. The gr<1mm11r is specified using semantic ne~ and ATN networks, but 
differs from other systems in that production rules are used in the disambiguation of 
word and phrase senses. For example, for any transitive verb, v, if we can say "I v'ed 
the x," we can ;ilso say "x's· v e<1sily" e.g. "I killed the bug," "bugs kill easily." The 
formation of this latter sense from the former is specified in our system by a 
production rule. The rule is invoked by the parser whenever it is faced with an 
intransitive use of a transitive verb. 

The parser is completely implemented with the exception of facilities for 
handling conjunction. The implementation emphasized clarity and flexibility rather than 
speed with the result that the average sentence takes roughly 10 cpu seconds to 
parse. Our current goal, for example, is to reduce this by an order of magnitude using .,...,,_._,.. 

~ H 

0 

~ PACI MOT FtLllED 



KNOWLEDGE-BASED SYSTEMS GROUP 78 

compilation. W. A. Woods achieved this sort of speed reduction on his system, but he 
had to reduce the coverage of grammar to do it. We hope to avoid this. 

C. NA TUR AL LANGUAG~-_Q~-~~y TO AN ON-LINE DATA DICTIONARY 

This project is intended to apply the general facilities just described. In a large 
organization, people of ten have questions as to what data is available in computer 
analyzable form. This program will enter into a dialogue with a data base administrator 
in order to acquire a semantic level description of the organization's data bases. The 
system will drive the dialogue by menu selection. The system will then stand ready to 
answer users' questions about what data is available 

The general aim of t1utomatic programming is to make the computer directly 
available to an end user with a problem to solve. The traditional method of system 
development proceeds roughly as follows: 

Step_l.: The user's desires and business are explained to a consultant. 

Step 2: The consultant situation specifies the user's requirements for data 
processing. 

Step 3: A softw'are system analyst studies the specifications and fills in the 
remaining details. 

Step 4: A progrt1mmer tt1kes the completed desicn and writes a procram that 
implements the design. 

Step 5: A compiler processes the program and produces machine level code. 

Obviously in this scenario the manager is far removed from the final result and the 
programmer is not generally cognizant of the real problem beinc solved. Every step 
adds to the time required to go from thought to action. Every step communicates 
imperfectly with its neighbors. 

E. SCOPE OF OUR CUR~ENT WQRK 

The current protoSystem I project is concerned with the automation of steps 3 
and 4. At step 3, one enters the realm of programming-language-like facilities. A 
specification is provided which, when fleshed out, serves as input for step 4. An 
analyst selects data structures, data access methods, and alcorllhms. The analyst gets 
size and access data and knows the performance requirements, then chooses an 
efficient design. The analyst does not, in general, create new data orcanizations, etc, 
but rather selects from those he already knows. Given the alternatives available to an 
analyst, choice criteria, and basic data about the system behavior, it Is possible to 
automate the analyst function. An automated analyst should be more thorouch and 
conscientious than a human one and much faster. 

Step 4, from design to code, i1 the (relatively) strplchtforward process of 



79 KNOWLEDGE-BASED SYSTEMS GROUP 

determining 1/0 and flow of control details and generating high-level code and JCL. 

F. VERY HIGH LEVEL_~~~GUAGE DESIGN AND IMPLEMENTATION 

Seeking entry into the software development process at step 3, and given the 
above view of that process, the ProtoSystem I project has evolved into the study of a 
Very High Level Language, HIBOL [High level Business Oriented Language, also known as 
SSL (System Specification Language)], and an underlying automatic design and 
implementation system for it. [Needless to say, there have been a number of Very 
High Level Languages designed for business data processing, (e.g. the work of Hammer 
et al. at IBM Yorktown Heights, Prywes at the University of Pennsylvania, and 
Nunamaker). They vary in the detail and programming expertise that is expected of a 
user. The Very High Level Language systems also differ to the extent that automated 
design and code generation are performed. In fact, few systems provide these final 
steps or do so efficiently. The development of a Very High Level Language begins with 
a particular data processing domriin rind creates a language that captures and simplifies 
the important aspects of it so that its common data processing requirements are easy 
to describe. The langl!age should allow only the functional specification of applications 
in the domain; ideally, the design and implementation is completed automatically. It is 
important that the language not allow· too detailed a specification of processing and 
data. This'would hamper the flexibility of the later design process. 

The HIBOL language serves the business data processing domain. The language 
is non-procedural, "gotoless," and is not universal. It provides a stylized way of 
specifying file-oriented batch-processing systems. 

A major concern of the VHLLs at the internal level is modelling of and proper 
handling of dab• sets with missing records. HIBOL provides a concise and powerful way 
of dealing with data aggregates. The language has a single data type, the flow. This 
construct is a concepturil data aggregate and represents a collection of uniform records 
that are individually and uniquely indexed by a multicomponent key. Each record has a 
single data field in addition to the key information. Scalar operators, "+," "*," etc. can 
be applied between flows. This causes the operation to be successively applied to all 
corresponding records (those with the same indices) of the argument flows. The result 
is a new flow which can be named or used as an intermediate value. There is a 
conditional value operator (similar to a "CASE" statement) which applies its tests and 
then performs the selected value expression as the individual records are processed. 
The primitive predicates allowed are the algebraic ordering predicates, ">," "=," and 
"<." The usual composition of these primitive predicates is allowed. 

There is a class of reduction operators permitted on flows and flow expressions. 
Each (n-element) key is considered as a point in an n-dimensional space. A flow with 
keys in a smaller dimensional space is produced. All records of the input flows which 
project onto a single output record are "folded" into an accumulator so that the 
maximum, minimum, count, or sum of the projected records can be taken. 



KNOWLEDGE-BASED SYSTEMS GROUP 80 

The restriction of a single datum per flow record allows the flows lo be treated 
much like arrays in some programming languages. In particular, the treatment of 
operations on flows is similar to those operations on arrays in APL, although there is no 
explicit control of iteration details accessible to the designer in HIBOL. (There is also a 
mechanism for describing report contents and formatting in HIBOL.) 

A major accomplishment of our research this year was the formalization by R. 
Baron of the sem~mlics of HIBOL in his master's thesis. He begins by defining the 
BASBOL (Basic business Oriented Language), a semantically clean and explicit language 
for defining the semantics of a class of languages that manipulate data files in a batch 
processing environment. The language has a single data type, the flow, which is an 
aggregate of several data, each with identical structure. Each datum contains a value 
field and an index which uniquely identifies the datum. The single executable 
statement in BASBOL is the assignment statement, which specifies how lo generate a 

. single flow from other flows. Arithmetic, logical and various reduction, injection and 
projection operators provide the basis for the processing of the indexed data in flows. 

For reasons of simplicity in reading and writing, the HIBOL language includes a 
number of defaults concerning the treatment of missing data. Although every attempt 
was made to make the resultant semantics natural, the potential for ambiguity existed. 
Baron was able lo use BASOOL to resolve all potential ambiguities in a satisfactory 
way and lo define the semantics of HIBOL cleanly and rigorously. This not only proves 
the integrity of the language, but provides the basis for experimentation in the 
development of extended and/or alternative semantics, as well. 

G. DAT A PROCESSING SYST~M DESIGN 

ProtoSystem I consists of four major modules. [A more detailed and 
comprehensive overview of the system is given in the 1976 Progress Report and in 
TM- 70 (Ruth).] Control passes successively through three; the fourth is a utility. A 
Parser accepts HIBOL statements and produces "first cut" computations and "first cut" 
data sets. The Structural Analyzer (a utility component) models the properties of 
these primitive entities. The Optimizing Designer arranges and combines computations 
into programs and data sets into multi-field data sets. It also determines data set 
organization, blocking factors, key sort order, and access technique. These are chosen 
to provide minimal overall run-time cost. The Structural Analyzer is continuously used 
by the Designer lo model the properties of the proposed computations and data sets. 
Lastly, the. finished design of computations and data sets is passed to a Pl/I Code and 
JCL Statement Generator. 

The greater p1ut of our research effort over the last few years has been 
addressed to the optimization of data processing system designs. Designer programs 
employing varying strategies and techniques have been written by Kornfeld, Alter, and 
Morgenstern, all aimed at minimizing the costs of programs produced from HIBOL 
descriptions. Program cost is dominated by read/write costs. The optimizers 
reorganize the programs within the confines of the generalized computation and data 
set formats. As indicated in the previous paragraph, these designers deal with gross 
pro1ram and data organization, not with such traditional issues as common 
subexpression elimination or strength reduction. The savin~s produced by the latter 



81 KNOWLEDGE-BASED SYSTEMS GROUP 

techniques are insignificant compared lo 1/0 costs. [For an amplified view of the 
issues and techniques involved in design and optimization see TM-72 (Ruth).] 

Two questions immediately Arise concerning any optimizing designer: ( 1) does it 
produce correct designs (i.e. does it preserve the semantics of the HIBOL program) and 
(2) how well does it optimize? We have taken great pains to ensure and verify the 
accuracy of our Designer, but Assessing the quality of its optimization has been a more 
difficult problem. To be sure, we have verified that it performs the more obvious 
efficiency enhancements, but further investigation was deemed. necessary. 

To this end we have developed a "manuAI Designer" this year that allows the 
user entry to the software development somewhere between steps 3 and 4. This 
designer provides an Implementation Specification Language (ISL) for specifying all the 
details of an implementation that have been mentioned above. Using this tool and a 
translator thAt trAnsforms Designer output to ISL we can now easily vary the 
automatically produced designs for experimental purposes. As an aid to the human 
user the manual Designer checks the consistency and completeness of the ISL design. 
This has also proven useful in further verification of the automated Designer's 
accuracy. 

The data driven nature of computations provides an important opportunity for 
optimization. A compulAtion's iteration through its input data sets is performed for 
some critical set of keys. Through structural analysis each collection of input data sets 
that encompasses this set of keys is calculated. The optimizer must choose the 
collection that minimizes auxiliAry data set reads and that can be organized as a 
sequential and sorted data set. Through the use of Baron's semantic analysis of HIBOL 
and experimentation with the manual Designer it was found that the automatic Designer 
was too conservative in some cases, selecting an unnecessarily large number of driving 
data sets, and thus producing suboptimal designs. We have been able to make 
significant improvements to the optimizing Designer using the results of this 
investigation. 

H. AUTOMATIC CODE GENER~_TION 

Step 4 of the software production process is automated by the Pl/I and JCL 
Code Generator. This module adds the implied 1/0 access routines and loop iteration 
control to the assignment statement expansion dictated by HIBOL to produce a number 
of finished programs. In the code expansion, it is imperative not to cause "READ" 
operations for data that might not be needed. 1/0 is a bit tricky because for some 
access routines, the support code may be in different places or even distributed 
across several places. The data driven character of the loops introduces scme 
sequencing problems. The mAin one is ensuring that records in a data set not having 
all possible key tuples are not read in the wrong order. 

Extensive manual verification of the Pl/I and JCL Code Generator had been 
pert ormed and the time came for machine verification. This year we tested the code 
produced tor syntactic correctness through compilation on the UCLA 360/91 OS-MVT 
system. We have also begun further testing by running the compiled code on that 
system with sample input tiles. 



KNOWLEDGE-BASED SYSTEMS GROUP 82 

Publications 

I. Brown, G. P. "Failure Handling in a Dialogue System." Proceedings of the Fifth 
International _J~_int _G~J!f~~!~-~n Artificial Intelligence-Vol. J. M.t. T., Cambridge, 
Ma., August 1977. Pittsburgh, Pa.: Carnegie-Mellon Ur,iversity, 1977. 

2. Mark, W. "The Reformulation Approach to Building Expert Systems." Proceeding!_ 
of the Fifth lnte'1l_atio~~Ll~lnt Conference on Artificial Intelligence-Vol. 1. M.I. T., 
Cambridge, MR., August 1977. Pittsburgh, Pa.: Carnegie-Mellon University, J 977. 

3. Martin, W. A. "Comment following article by Schank and Lehnert." Research 
DirectJ~ns in $~tt~~r~ Technology..:. Edited by Peter Wegner. Cambridge, Ma.: 
M.l.T. Press. To appear. 

4. Martin, W. A. "Descriptions and the Specialization of Concepts." Proceedings of 
!he Fifth .l'!~:!!:!!.'li~".l-~!.)oif'!~ _ Co_nJ~rence on Artificial Intelligence, Vol. 2. M.l.T., 
Cambridge, Ma., Aygust 1977. Pittsburgh, Pa.: Carnegie-Mellon University, 1 977. 
Also available as M.l.T., LAboratory for Computer Science, M.l.T./LCS/TM-101, 
Cambridge, Ma., March 1978. 

5. Martin, W. A. "Remarks on Knowledge-Based Programs." Proceedings of the 
Fifth lnternationa!_Joirit Conference on Artificial Intelligence, Vol. 2. M.l.T., 
Cambridge, Ma., August 1977. Pittsburgh, Pa.: Carnegie-Mellon University, 1977. 

6. Ruth, G. R. "Automatic Programming: Automating the Software System 
Development Process." ~_esearch Directions in Software Technology. Edited by 
Peter Wegner. Cambridge, Ma.: M.l.T. Press, J 978. 

7. Ruth, G. R. "Automatic Programming, A Survey." Proceedings of the Annual 
Conference_ of t~e_ As,~C>_!:_l«!lion for Computing Machinery. Seattle, Wash., October 
1977. 

8. Ruth, G. R. "Protosystem I: An Automatic Programming System Prototype." 
Proceedings of th~-~~tionAI Computer Conference, 1978. Anaheim, Ca. Montvale, 
N.J.: AFIPS Press, June 1978. 

9. Swartout, W. R. "A Digitalis Therapy Advisor with Explanations." Proceedin1s of 
the Fifth lnterna1ional Joint Conference on Artificial Intelligence, Vol. 2. M.l.T., 
Cambridge, Ma., August I 977. Pittsburgh, Pa.: Carnegie-Mellon University, I 977. 
Also available as M.1.T., Laboratory for Computer Science, M.l.T./LCS/TR-176. 
Cambridge, Ma., February 1977. 



83 KNOWLEDGE-BASED SYSTEMS GROUP 

Theses C~leteQ 

1. Baron, R. 8. "Structural Analysis in a Very High Level Language." unpublished 
M.S. Thesis, M.1.T., Department of Electrical Engineering and Computer Science, 
September 1977. 

1. Bruccoleri, R. E. "English Conversational Error Correction in a Natural Language 
Parser." M.S. Thesis, M.l.T., Department of Electrical Engineering and Computer 
Science, expected date of completion, September 1978. 



85 

LOCAL AREA NETWORK 
WORKING GROUP 

Academic Staff 

D. D. Clark, Acting Group Leader 

K. T. Pogran 

S. Kent 
A.H. Mason 

R. Baldwin 
H. Carter 
N. Chiappa 
C. Hornig 
J. Maloney 

P. Baskin 
O. Feingold 
V. Newcomb 

Research Staff 

Graduate Students 

Undergraduate Students 

Support Staff 

A. Mendelsohn 
D. Reed 

T. McMahon 
S. Ratliff 
C. Schieck 
A. Urbino 

J. D. Ricchio 
M. Webber 

:.nEcEDING PAGE NOT FILMED 
BLANK 



87 

LOCAL ~REA NETWORK 
WORKING GROUP 

L. A. N. WORKING GROUP 

The LCS local Area Network project is a joint effort of the Computer 
Systems Research group and the Technical Services group. To those who have 
observed progress on the lCS Network only through these annual reports and 
other written communications from the Laboratory, it may seem that little progress 
has been made in J 977-78. In our previous annual report, for example, we stated 
that "the first three nodes on the net are expected to be operational within the 
next two months," and this most certainly did not happen. One year later, we 
state again that we expect to have a small, initial network in operation within a 
few months. 

The appearance of little progress during the past year is deceiving, for as 
will be detailed below, it has been a year of great activity, from which we have 
learned a lot. Perhaps the most significant lesson learned, which we commend to 
anyone interested in implementing a local area network in the near future, is this: 
the technology of local area networks is not "off-the-shelf," neither the hardware 
nor the software for a high-bandwidth general purpose local area data 
communication network is available in a form in which it can be procured, installed, 
and be immediately operational. Organizations interested in installing local area 
networks should realize that today, at least, implementation of a local area 
network entails development efforts in both the hardware and software domains. 

Lest this sound like too dire a prediction for the field of local area 
networking, let us add some rays of hope: interest in the field is growing, and 
expertise in it is following close behind, not only at the laboratory for Computer 
Science, but at other centers as well. Most importantly, development efforts, both 
here and elsewhere, are gaining momentum. It is our goal to bring the design of 
the Local Network Interface, the hardware base for the LCS Network discussed 
below, to a point where it can be manufactured as a product. Whether or not it 
becomes available as a commercial product, its design will be in the public domain. 

The effort that has gone into the development of the lCS Network falls into 
two broad categories, hardware development and software development. We 
shaH now examine the progress that has been made in each of these two areas 
during the past year. 

B. HARDWARE 

As was mentioned in the CSR section of our last annual report, the primary 
hardware component of the LCS Network is a device called the local Network 
Interface, or LNI. The LNI was designed by a group at the University of California 
at Irvine headed by 0. Farber, under contract to DARPA. Use of the LNI as the 
hardware bne for the LCS Network was attractive to us for several reasons. 
First, althot..:;h it was specifically designed to control a ring network patterned 
after the Distributed Computing System ring network previously developed by 0. 
Farber at UC-Irvine, its internal structure was general enough that it could be 

~ p---·-

. ( ( ·-PRECEDING PAGE NOT FILMED 

~ BLANK 



l. A. N. WORKING GROUP 88 

modified to control a cable packet broadcast contention network, exemplified by 
the Ethernet developed at the Xerox Palo Alto Research Center. This flexibility 
would enable us to easily implement subnetworks of each type as part of the 
overall LCS Network, and would further our goal of comparing the two networks 
under operational conditions. Second, development of both the LNI and the LCS 
Network was funded by DARPA; it thus made a good deal of sense to join in the 
development of one hardware device, rather than have two devices produced 
through separate efforts. Third, the Laboratory for Computer Science, 
traditionally a software-oriented laboratory, wished to avoid the major hardware 
development effort that would be necessary to implement our own network 
hardware. 

The estimate made in last year's annual report that the first few network 
nodes would become operational early in the 1977-78 year did not pan out. The 
first Local Network Interface arrived in October, rather than in mid-summer as had 
been anticipated. More significantly, it arrived essentially undebugged; IC. Pogran 
tackled what turned out to be a major hardware debugging effort in conjunction 
with M. Lyle of the University of California at Irvine. Laboratory involvement in 
LNI development led to the creation, in January, 1978, of a new Technical 
Services group within the Laboratory, headed by IC. Pogran, and the investment in 
a hardware development capability which the Laboratory h~ hoped to avoid, had, 
instead, been made. 

The first two Local Network Interfaces were essentially operational by the 
end of May, connected as peripherals to the same POP-11 /40 for checkout 
purposes, communicating over what amounted to a two-host ring network, and 
properly performing hardware-level network communication functions. 
Communication between two POP-11 's using the same two LNl's is to be 
demonstrated during June, with delivery of a third up-to-date LNI expected at the 
end of the month. 

Further hardware projects outlined in last year's annual report ~till remain 
to be done. These include development of a version of the LNI to interface to the 
Laboratory's PDP-1 O's and DECSYSTEM-20, and addition of "packet buffers" to 
the LNI to facilitate use of much higher network transmission rates than the 1 Mb/s 
currently employed, and to facilitate interfacing of the LNI to lower-speed 
computers such as microprocessor-basE!d syrtems. Also, a major redesign of the 
LNI is contemplated, which will include: design improvement in all aspects of the 
LNI; "modularization" to enable interchange of major components of the LNI, such 
as the host interface (POP- I I OMA, POP-I 0 1/0 Bus, etc.), Name Table associative 
address store, and packet buffers; modification for control of an Ethernet-like 
network, to be implemented as another module of the LNI. 



89 L. A. N. WORKING GROUP 

A few words should be said about the complexity of the current LNI. In its 
present form, the LNI comprises approximately 350 TTL SSI and MSI integrated 
circuits, apportioned as follows: 

LNI "proper" 120 

POP-II full-duplex OMA 100 

Name Table Controller 25 

Name Table Cells (8) 90 

Test and diagnostic -1.5. 

Total 350 

Assembled, the cost of each interface is approximately 12,500: 

Wired backpanel, chassis, etc. 11,700 

Integrated Circuits 450 

Miscellaneous parts 50 

Final assembly, checkout, etc. 

Total 12,500 

The LNI is of a complexity that, once its design is stable, it could reasonably be 
implemented as a single LSI "chip," or perhaps, at most, two chips. This could be 
done either via a funded research project, or at the initiative of an LSI 
manufacturer who sees a market for it. Certainly, the potential is there; the 
basic design concepts of the LNI are sound, and the day of local area networks is 
just dawning. 

C. SOFTWARE 

The delay in the availability of working Local Network Interfaces for the LCS 
Network has had both positive and negative impacts upon the implementation of 
software for the Network. Primarily, the software involved is the low-level or 
end-to-end communications protocol software which must be implemented on all 
LCS Network hosts. The delayed arrival of the LNl's has had a negative impact in 
that there has been no hardware for which to write and debug device drivers and 
similar software for the various machines and systems which will be part of the 
Network; it has had a positive impact in that it has given us more time to pursue 
the convergence of the Data Stream Protocol (DSP) initially designed for the LCS 
Network with the Transmission Control Protocol (TCP), the internetworking 
protocol 



l. A. N. WORKING GROUP 90 

We reported in last year's annual report that DSP was the end-to-end 
protocol of choice for the LCS Network, but that we were "involved in an effort to 
bring DSP and TCP together again, since TCP is the ARPANET standard for end-to­
end communication in the 'internet' environment." This effort placed us squarely 
in the fray of internetwork protocol development; D. Clark and 0. Reed have 
attended TCP Working group meetings, and D. Clark has become involved in other 
activities of the Internetwork Working group. 

The Data Stream Protocol had its roots in TCP I, the original internet 
protocol. DSP was a "leaner" protocol than TCP I, providing the same functionality 
with a simpler structure. It was intended to be less cumbersome, and better 
suited to the high bandwidth environment of a local area network. However, 
because the LCS Network will not exist by itself in a vacuum, but will instead be 
interconnected to the ARPANET and, through it, to other networks, its protocols 
must be aware of and be capable of dealing with the internet environment. Thus, 
TCP and the LCS Network protocol must somehow mesh. 

The result of a year's work by the TCP Working group is TCP Ill, an 
improved protocol for internetworking which was strongly influenced by DSP. 
Though TCP Ill is not the ideal protocol for a local area network, it is a reasonable 
protocol, and in the interests of compatibility with the internet environment, we 
have adopted it for use with the LCS Network. DSP, then, has served as a "straw 
man" that has helped TCP to evolve. 

Implementation of TCP Ill has begun at LCS, as well as at other internet 
locations. By May of 1978, implementation of TCP Ill was underway for both the 
UNIX and Multics systems. There are two UNIX systems at LCS. One, on a POP-
11/40, will serve as the prototype of the LCS Net-ARPANET gateway; the other, 
operated by the Domain Specific Systems Research group, is a POP-11 /70 which 
will be a major host on the LCS Network. The TCP implementation for UNIX is 
based on an ARPANET NOP implementation for UNIX done at the University of 
Illinois and the Rand Corporation. The Multics system run by M.l.T.'s lnformatfon 
Processing Services will initially not be on the LCS Network, but with its TCP 
implementation, it will be able to communicate with LCS Network hosts via the 
ARPANET and the LCS Net-ARPANET gateway. 



91 L. A. N. WORKING GROUP 

Theses Completed 

1. Ratliff, Steven. "A Dynamic Routing Algorithm for a local Packet Network." 
unpublished S.B. Thesis, M.l.T., Department of Electrical Engineering and 
Computer Science, February 1978. 

2. Urbina, Alejandro. "Performance of a Terminal Concentrator Under a Data 
Stream Protocol." unpublished S.B. Thesis, M.l.T., Department of Electrical 
Engineering and Gomputer Science, December 1977. 



B. H. Liskov, Group Leader 

R. W. Scheifler 

R. R. Atkinson 
V. A. Berzins 
T. Bloom 
0. Kapur 
V. Ketelboeter 
M. S. Leventhal 

S. C. Garrard 
P. Leach 

S. Barefoot 

R. Ber1eron 

93 

PROGRAMMING METHODOLOGY 

Academic Staff 

Research Staff 

Graduate Students 

Undergraduate Students 

SupPort Staff 

Visitors 

fl'*· Ji'A---- • 

I. Greif 

J.E. Moss 
R. N. Principato 
J. C. Schaff erl 
R. W. Scheifler 
L.A. Snyder 
M. K. Srivas 
E.W. Stark 

E. R. Schienbrood 
C. M. Tan 

A. L. Rubin 

A.Merey 

II ;.puc£DING PAGI NOT Fn.MED 

~- BLANK 
_I 



95 PROGRAMMING METHODOLOGY GROUP 

PROGRAMMING METHODOLOGY 

The research efforts of this group are directed at developing tools and 
techniques for simplifying the production of software that is not only reliable, but easy 
to understand and maintain as well. At the center of our work is a programming 
methodology we have developed, whereby programs are constructed through a top 
down decomposition process driven by the recognition of abstractions [ 1]. A major 
focus of our research in previous years has been the design of a programming 
language-system, CLU, which supports this methodology; CLU provides powerful 
abstraction mechanisms that we believe are well matched lo the task of building 
quality software. 

This past year we have concentrated on writing both formal and informal 
definitions of CLU, to ensure that all features of the language and their interactions are 
well understood; we also worked on the implementation of CLU. We have continued 
our study of specification and verification techniques for programs based on data 
abstractions. In addition, we have explored the semantics and implementation of a 
CLU-like language that does not require a heap and garbage collection, and we have 
developed a method for automatically synthesizing synchronization code from 
specifications. 

8. CLU DEFINITIONS 

With the design of CLU essentially complete, we have turned to the task of 
writing complete definitions, both formal and informal. A description of the CLU 
exception handling mechanism, which supports the construction of fault tolerant 
programs, is given in [2], along with a discussion of the many design issues involved. In 
addition, a new version of the CLU Reference Manual is now nearly complete [3]. 

Two formal definitions of CLU have been made. J. C. Schaffert [ 4] has given an 
operational semantics using a new semantic method that he has developed, and R. 
Scheifler [5] has finished a denotational semantics using the Scott-Strachey approach 
to langucige definition. This research has provided us with the opportunity to evaluate 
various features of CLU from a new viewpoint. Although our understanding of the 
meaning of CLU programs has not really changed, several places were discovered 
where our understanding of what constitutes a legal program was faulty or incomplete, 
and changes. were made to CLU as a result. Schaffert's work has demonstrated the 
usefulness of his technique for a non-trivial language, and Scheifler's definition is being 
used on an informal basis lo verify the correctness of the legality-checking portion of 
the current CLU compiler. 

fl"- Ji'A''-' -

t~I :..pncEDING PAGE NOT FIIMED 
' !LANK ..... 



PROGRAMMING METHOOOLOGY GROUP 96 

C. CLU IMPLEMENTATION 

As reported in last year's progress report [61 we are currently engaged in a 
second implementation of the CLU compiler and system, motivated chiefly by the desire 
for a relatively efficient and transportable implementation. The new implementation 
runs on a DEC PDP-10 under the ITS operating system, and we are in the midst of 
bringing up a version to run under TOPS-20. 

At present there are three majo1 components to the CLU system. The CLU 
compiler translates source text into a machine independent macro language called 
CLUMAC. The CLUMAC agsembler, run automatically under control of the compiler, 
turns this intermediate text into binary code. A third program, CLUSYS, is used as the 
execution environment for CLU programs, and contains a loader, support routines, 
debugging facilities, and a simple expression evaluator. 

Both the compiler and the assembler are written almost entirely in CLU itself. 
Most of CLUSYS is written in a mixture of CLUMAC and PDP-10 assembly language, 
and at present must be assembled using the standard ITS assembler, MIDAS. However, 
we are upgrading the CLUMAC assembler to handle "hand coded" as well as compiler 
generated text, so that our dependence on MIDAS can be eliminated. 

An important difference between the new implementation and the previous one, 
in which the intermediate language was MDL (a high level, USP-like language), is the 
way in which parameterized modules are implemented. Below, we first briefly describe 
parameterized modules, and then turn to their implementation. 

1. Parameterized Modules 

In CLU, procedures, iterators, and clusters can all be parameterized. 
Parameterization provides the ability to define a class of related abstractions by means 
of a single module. Parameters are limited to just a few types, including integers; 
strings, and types. The most interesting and usefut of these are the type parameters: 
objects in CLU can grow and shrink dynamically, so size parameters are not needed. 

When a module is parameterized by a 'type parameter, this implies that the 
module was written without knowledge of what the actual parameter type would be. 
Nevertheless, if the module is to do anything wi_th objects of the parameter type, 
certain operations must be provided by an actual ·type. Information about required 
operations is described in a where clause, which ·is part of the heading of a 
parameterized module. For example, 

set = cluster [t: type] is create, insert, delete, elements 
where t has equal: proctype (t, t) returns (bool) 

is the heading of a parameterized cluster defining a generalized set abstraction. Sets 
of many different element types can be obtained from this cluster, but the where 
clause states that the element type is constrained to provide an tqual operation. 

As a second example, the parameterized procedure in Figure 1 defines a class of 
summing functions for collections (such as sets and arrays) of integers. 



97 PROGRAMMING METHODOLOGY GROUP 

sum = proc [struc: type] (s: slruc) returns (int) 
where struc has elements: ilertype (slruc) yields (int) 
x: int:"" 0 
for ell: int in strucSelemenls(s) do 

x := x +ell 
end 

return (x) 
end sum 

Figure 1. Example of a parameterized procedure. 

The where clause constrains the legal actual type parameters to those having an 
tltmtnrs iterator of the appropriate type. 

To use a parttmeterized module, actual values for the parameters must be 
provided, using the general form 

module_name [ parameter _values] 

Parameter values must be computable at compile-time. Providing actual parameters 
selects one abstraction out of the class of related abstractions defined by the 
parameterized module; since the values are known at compile-time, the compiler can 
do the selection and can check that the where clause restrictions are satisfied. The 
result of the se•ection, in the cflse of a parameterized cluster, is a type, which can then 
be used in declarations and operation names; in the case of parameterized procedures 
or iterators, a procedure or iterator is obtained, which is then available for invocation. 
For example, sum(ser[intJJ is a use of the two abstractions shown above, and is legal 
because int provides an t'qual operation and w[int] provides an tltmt1.ts iterator. 

2. Implementation 

There are a number of basic schemes for implementing parameterized moduf es. 
These schemes can be characterized by the time at which the binding of actual 
parameter values takes place. The possible times include compile time, load time 
(after compilation but prior to execution), and run time (either at the first use of each 
distinct set of parameter values, or at every use). The result of binding parameters is 
called an instantiation. 

In a compile-time binding scheme, the compiler produces a distinct object module 
for each distinct set of parameter values; each use of a formal parameter in the 
source text is replaced by the corresponding actual parameter, and then the resulting 
text is compiled to obtain the instantiation. In the load-time and run-time schemes, a 
parameterized abstraction is compiled into a single, parameterized object module; this 
module is later inslttnliated by supplying actual values for the parameters. 

The compile-time scheme js similar to macro processing, and has many of the 
associated advantages and disadvantages. Its primary advantage results from the 
greater context that is available to the compiler when compiling any particular 
Instantiation of a parameterized abstraction. This increased context allows the 
generation of more time-efficient object modules, both bec.ause of the creater 



PROGRAMMING METHODOLOGY GROUP 98 

opportunities for optimization and because run-time binding is avoided. The primary 
disadvantages of this scheme are the increased number of compilations performed and 
the increased amount of space needed to store the object modules. 

In the load-time ttnd run-time schemes, binding is performed on object modules. 
The binding does not require that a new copy of an object module be created for each 
set of parameter values; rather, the code of the module and most of its local data can 
be made independent of the particular parameter values, and thus can be shared by 
the various instantiations. 

There are two possible run-time schemes. In the first, the binding of parameters 
takes place each time a parameterized object module is invoked. The parameter 
values are passed to the object module as extra, hidden arguments, and are referred 
to by the object module just like the normal, explicit arguments. This was the scheme 
used in our previous implementation of CLU. In the second scheme, which is the one 
used in the current CLU implementation, a new object module is created once for each 
distinct set of parameter values; the binding occurs at the first use during execution. 
(Alternatively, one could run through storage looking for uses of parameterized 
modules and force binding to take place before execution.) The new object module is 
created by building a new structure containing the parameter-dependent data; the 
code of the module and its parameter-independent data are shared by the various 
instantiations. 

Compile-time and load-time schemes all require that every possible set of 
parameter values supplied to an abstraction be determined before execution begins. 
In CLU, the possible parameter values are restricted to "compile-time computable" 
constants. However, despite this restriction, it is possible to implement recursive 
parameterized abstractions that use an unbounded number of distinct parameter values, 
as the following perfectly legal module (inspired by [ 7]) demonstrates: 

agen = proc [t: type] (n: int) returns (any) 
if n <= 0 

then return (array[t]lnew ()) 
else return (agen[array[t]} (n - 1)) 
end 

end agen 

An invocation n.~rn[T](n), where T is an arbitrary type, eventually produces a 
new array. The important characteristic of agtn, however, is that agtn calls itself 
recursively with a parameter array[t] that is distinct from the original parameter t; in 
fact, it is distinct from any previous parameter to agtn within a single recursive chain 
of calls. For any positive n, an invocation of one instantiation of agtn will use n distinct 
additional instantiations of agtn. For example, the invocation agtnint](3) will result in 3 
recursive instantiations of ngen: 

agen [array [int]] (2) 
agen [array [array [int]]] (J ) 
agen [array [array [array [int]]]] (0) 



99 PROGRAMMING METHODOLOGY GROUP 

Thus there exist finite CLU programs that use at run-time an unbounded number 
of instantiations of parameterized abstractions. To handle such programs, it is 
therefore necessary to support the dynamic instantiation of parameterized abstractions 
at run-time. For a compile-time scheme to be correct, one must recognize modules 
such as agfn and either consider them to be illegal, or provide some means for 
implementing them that avoids compiling an infinite number of object modules. 

As was mentioned above, the current CLU implementation utilizes a run-time 
scheme wherein a new object module is created once for each distinct set of 
parameter values. Since in the implementation there is no single object module for a 
cluster as a whole, but rather individual object modules for each cluster operation, the 
following (somewhat simplistic) description focuses on the representation of routines. 
Types are represented, by objects called typt drscriptors; however, type descriptors 
are used primarily in various forms of identification, and their internal format is not of 
particular importance here. 

The implementation makes use of two types of objects, call blocks and rntr1 blcicks. 
A call block is a description of a routine to be invoked, and contains the routine name, 
the actual parameters for the routine and a type descriptor for the data type, if the 
routine is a cluster operation. An entry block represents an invocable entity (i.e., a 
non-parameterized routine or an instantiation of a parameterized routine); it contains 
references to constituent objects containing the code for the routine, the parameter­
independent data, and the parameter-dependent data. The parameter-independent 
data consists of literal values, such as real numbers and strings, and call blocks for 
invoked routines th<tt are not dependent on the parameters. There is parameter­
dependent d<tta only in entry blocks for instantiations; this data consists of the actual 
parameters and call blocks for invoked routines that depend on those parameters. 

For example, Figure 2 shows the entry block for the instantiation rnm[set[int]]. 
This entry block refers to one parameter-independent call block, for intlacfd, and one 
parameter-dependent call block, for sct[int]Sl'!rments. Notice that in the call block for 
ut[int JSrtrmrnts there are no routine parameters; this is because tltments has no 
parameters besides those of its containing cluster. A call block for mm[set[int]] is 
shown in Figure 3. Note that here there is a routine parameter, but no type 
descriptor, since rnm is not an operation of a cluster. 

The uninstantiated form of a parameterized routine is also represented by an 
entry block, to be used as a template when building instantiations. In the parameter­
dependen' data of this entry block, each would-be reference to the itli ach.~al 
parameter is instead a reference to a dummy descriptor for "the itli parameter." For 
example, the template for sum looks like Figure 2, except that references to srr[inl] 
are replaced by references to "the first parameter." 

Whenever an attempt is made to invoke a routine through a call block, a dynamic 
linker intervenes. If the entry block for the specified routine already exists, the call 
block is replaced by that entry block, thus snapping the link. If the entry block does 
not yet exist, i.e., a parameterized routine is being instantiated with a new set of 
parameters, a new entry block must first be created from the template entry block for 
the routine. The new entry block shares the code and the parameter-independent data 
with the template (and all other instantiations), but has a completely new copy of the 



PROGRAMMING METHODOLOGY GROUP 100 

parameter-dependent data in which every reference to a dummy descriptor for "the itli 
parameter" is replaced by a reference to the corresponding actual parameter. 

It is important to realize that instantiation merely involves substituting actual 
parameters into the parameter-dependent data template; no attempt is made to 
simultaneously snap the call blocks in the resulting data. One reason for this is that 
attempts to instantiate certain routines (such as agrn above) would cause an infinite 
number of subsidiary instantiations. A second reason is that some (possibly many) of 
the call blocks may never be used, so snapping them is a waste of time. For example, 
code lo handle potential, but unexpected, exceptions may never be executed. 

code: 

parameter­
indcpcndcnt 
data 

parameter­
dcpenclent 
data: 

other info: 

C? 

parameters: 
set[int] 

type: 
int 

name: 
"add" 

type: 
set[int] 

name: 
"elements" 

Figure 2. Entry block for sum[set[intU 

name: 
"sum" 

parameters: 
set[int] 

Figure 3. Call block for sum[set[intU 



101 PROGRAMMING METHODOLOGY GROUP 

The above description omits a number of details that are largely related lo 
aspects of performance. For ex;imple, the parameter-dependent data in an entry block 
is actually separated into two parts: data dependent solely on cluster parameters, and 
data dependent on routine parameters (ttnd perhaps also on cluster parameters); in 
this way, all operations of a parnmeterized type can share that data dependent on just 
the cluster parameters, while those (rare) operations that are additionally 
parameterized have separate, additional data dependent on those parameters. 
Although these details are important to the actual implementation, they do not 
fundamentally alter the description just given, and so will not be pursued here. 

0. ~~CIFICATI_Q~_A_NQ_~RIFIC:~TIPN OF DATA ABSTRACTIONS 

We have continued our work on specification techniques for data abstractions. 
R. Principato has completed a formalization of the state machine technique [8], which is 
based on the work of Parnas [91 but makes use of hidden functions to define delayed 
effects of operations [ 10, 11, l 2l V. Berzins [ 13] is completing a formalization of the 
abstract model specification technique [ 14, 15]; his technique is powerful enough lo 
permit the specification of mutable data abstractions and operations that raise 
exceptions. D. Kapur [ 16] is completing a formalization of the algebraic technique, 
using a model theoretic approach that permits the relationships between existing 
methods [ 1 7, 18) to be elucidated. 

E. INCO_~PORAJtN~_[\~ST~~~JJ!~JA TYPES IN STACK-BASED LANGUAGES 

E. Moss has investigated how abstract data types might be included in a 
programming language based on stack rather than heap implementation [ 19~. The 
decision to use a heap is fundamental to CLU, and we fell that it contributed greatly to 
the simplicity of the language. However, there is a demand for languages supporting 
abstract data types w1thout requiring ga..,oage collection (e.g., the DOD/ 1 language 
[20]). Our goal wris to investigate a possible design for such a language. CLU was 
used as the base for the alternative design, not only because it is a complete language, 
but also because it serves as a basis for comparison and evaluation of the resulting 
design. 

In the sections below, we discuss the major decisions in the alternative design. 

The semantics of CLU rests upon the fundamental notion of an object, and the 
secondary concepts of ~ari!!_~les_ and ~ssig_nment. Objects are abstractions of memory. 
Objects reside in a universe of objects; they may be created freely, and continue to 
exist as long as they are accessible. Objects may refer to other objects, and general 
sharing and cycles of references are permitted. Some types of objects (e.g., arrays) 
may grow and shrink dynamically. A heap implementation with some form of garbage 
collection is required to support the full semantics of CLU. 

CLU variables merely ref er to objects. In most cases variables are implemented 
as pointers to the storage representing the object to which they refer. Assignment 
copies only the reference, not the object, and hence affects no objects. Argument 
passing to procedures is defined in terms of assignment: the formal arguments are 



PROGRAMMING METHODOLOGY GROUP I 02 

assigned (references to) the actual argument objects. Thus, the new procedure 
activation shares objects with its caller. (This is not the same as passing a reference 
to a variable, which is never done.) We call this argument passing technique call-by­
sharing. 

These basic notions of object, variable, assignment, and argument passing need 
to be changed to permit slt1ck implementotion. First, variables are changed to be cells 
physically containing the objects to which they refer. This ties the storage and lifetime 
of objects to that of variribles, which are allocated on the stack. Next, components of 
aggregates (such as arrays and records) are changed to be physically contained in the 
aggregate object, rnther than merely pointed to. However, objects continue to pfAy an 
important role in the semantics. For example, an array variable contains an array 
object, and is not a collection of scalar variables. (We will come back to this point in 
Section E.3.) Thus there is no notion of sub-variables: either one assigns entire 
objects, or one uses operations of the type to manipulate and update objects of that 
type. 

In the new design, assignment and argument passing are not defined as they are 
in CLU. Procedure invocation becomes the semantic base. Procedures take all 
arguments by reference, but there are two classes of arguments: input arguments and 
output (or result) arguments. Result arguments are variables that the procedure must 
write but cannot read (since they may be uninitialized). The two classes of arguments 
are separated in the procedure header: 

p = proc (a, b, c: int) returns (m, n: int) 

They are also separated in invocations, with the result arguments appearing to the left 
of the assignment symbol, e.g.: 

x, y :"' p(t, u, v) 

Thus, assignment is defined by procedures that write into their result arguments. The 
built-in types provide operations to copy an input object into any given variable, and 
all other assignments are built up from these operations. This definition of assignment 
avoids much unnecessary copying. 

In addition to the form 

<list of result variables> := <procedure Invocation> 

defi.ned above, a definition is needed for forms such as 

x := y 

where 1 Is a vari;tble. For convenience, we define such forms lo be equivalent to 

x := tScopy(y) 

where t is the type of 7. 



I 03 PROGRAMMING METHODOLOGY GROUP 

As in CLU, the semantics of expressions are defined in terms of procedure calls. 
Here, howevp,r, anonymous temporary variables must be created to receive the results 
of the expressions and pass them on. The process of creating temporaries can be 
viewed as a syntactic transformation, and so we can think of expressions as a 
convenient shorth11nd for a series of procedure calls. For example, 

is equivalent lo 

x := 2 * z + 5 

ti: int:= intSmul(2, z) 
x := intSadd(t 1, 5) 

Since variables, and hence objects, are to be allocated on the stack, the size of 
objects now becomes important. For example, in CLU a siring variable may refer to 
strings of any length. This is because strings are allocated in the heap and variables 
merely point lo them. In the new language, the length of strings becomes important, 
since variables must physically contain them. The obvious solution is to add 
appropriate parameters to each type, to specify the size information. However, since 
to many programs the exact size does not matter, it is desirable to have the ability to 
write modules that handle all sizes of objects of a particular type. Indeed, using the 
CLU parameterization features, this is entirely possible. However, CLU's parameter 
mechanism is oriented towards statically (compile-time) known parameters, and it is 
often desirable to put off size choices until run-time. Furthermore, objects of different 
sizes will be of different types. 

Distinguishing types based on object size leads to some problems. One difficulty 
is that each type in CLU hrts a distinct set of operations. Consider the stringSfetch 
operation, which returns the ith chr1racter of a string given the string and i as 
arguments. There will now be A different stringSfetch for each size string, written 
string[n]SUetch where n is the size of the string. Even worse are binary operations, 
for example, string!llt (which compares two strings and returns true if the first 
lexicographically precedes the second); these operations now take two parameters-­
one for the size of each argument. It becomes very tedious and error prone to keep 
track of such parameters. 

To solve these problems, we devised a size parameterization mechanism where 
size parameters did not determine type, and where size parameters could be specified 
at run-time. Some other considerations also influenced the design of the mechanism. It 
was clear that size information had to be associated with variables in order to 
determine storage requirements. However, the compiler introduces temporary 
variables for expression evaluation, as explained above. How is the size of a 
temporary determined? 

The solution chosen was to have procedure headings specify their result sizes 
as a function of their input sizes. For example, the header of stringlconcat would 
specify that the size of its result string is the sum of the sizes of its two input strings. 
This works fine if the result argument is a temporary created by the compiler, but 



PROGRAMMING METHODOLOGY GROtJP l 04 

what if the result argument is an already declared variable supplied by the user? It is 
undesirable to require an exact match in size; for example, in invoking stringSconcat, 
any variable big enough to hold the result should be acceptable. The solution here is 
to decouple the sizes of objects and variables by requiring only that the object fit in 
the variable. In the general case this requires a run-time check since the sizes of both 
objects and variables may not be known until run-time. 

One might suppose that comparisons of size parameters would be the basis for 
run-time size checks. However, user-defined types lead to a problem: the user is 
allowed to define the concrete size parameters in terms of the abstract size 
parameters using arbitrnry expressions. Thus the concrete and abstract size 
information may not be related in any simple way, and storage requirements may not 
even increase monotonically with the abstract size. We decided that a comparison of 
the size of the object and variable in terms of storage units (e.g., words) be 
performed. This is not an entirely satisfactory solution, although it is simple and 
efficient; this problem needs more work. 

The syntax we chose for size parameters was the following: 

<type-name> [<regular parameters>;< size parameters>] 

In those contexts where a type is needed but no size information is required (e.g., as 
inputs to procedures), the size inJormation is ignored and may be omitted. Means are 
provided for accessing the size parameters of input arguments, etc. 

3. Access to Components o_f_illij~~ts 

The design as described so far is sufficient for most purposes, but has a 
limitation. The semantics of procedure invocation imply that the objects returned in 
result argument variables are always newly created. Thus there is no way to pass a 
component of an aggregate object to a procedure; only a copy of it may be passed, 
since fetching the component is done with a procedure call, which necessarily creates a 
copy. 

It would be possible to define access to record and array components specially 
to avoid this problem. However, such a solution would not generalize to user-written 
aggregate types (e.g., sets, lists). Therefore, we added a new kind of module, called a 
select~, for returning a component of an Aggregate by sharing. Record and array 
component access is defined by built-in selectors, and users may define selectors for 
their own types in terms of these built-in selectors. 

It should be noted that restrictions on user-written selectors need more 
investigation. For example, rules are needed that simplify aliasing prevention. Also, 
we imposed syntactic restrictions on the use of selectors to prevent dangling 
references (selectors effectively return a reference), but our solution is not as clean 
as we would like. 

4. Areas and Pointers 

To compensate for the lack of a heap, we extended our original design, adding 



105 PROGRAMMING METHODOLOGY GROUP 

areas and ~ointers. An area is a block of storage set aside for dynamic allocation. The 
entire block may be allocated in a stack frame, in a manner similar to declaring a large 
array. Objects may be created in an area at will (so long as the storage set aside is 
not exhausted). Areas are similar to the collections of Euclid (21 ], but may contain 
objects of differing sizes and types. Objects allocated in an area are referred lo by 
using pointers. A pointer is restricted to refer either lo nothing (a null pointer) or lo 
objects of one particular type in one particular area. Nole that pointers do not refer 
lo variables, in keeping with our object-oriented view. 

An object allocated in an area may be modified (by operations of its type), but 
cannot be assigned to or explicitly destroyed. Instead, an area can be garbage 
collected, using an implementation provided by the programmer. The area mechanism is 
designed to permit a wide variety of implementations, allowing the implementer 
freedom to adjust time-space efficiency trade-offs. 

Because every pointer into an area, and indeed every variable that might 
directly or indirectly contain a pointer into an area, must contain the name of the area 
in its type, when the scope of an area is exited there can be no dangling references 
into the area. Hence the storage associated with the area may be safely reclaimed. 
Enforcement of the above rule is done by the normal type-checking function of the 
compiler. 

We have designed a language that supports abstract data types without 
requiring a heap. This involved adjusting the basic semantics of CLU to allow stack 
implementation, and then solving some problems that derived from this change. Jt is 
interesting to note that features similar to those described above have appeared in 
designs having the same goal. For example, Alphard [22) has a mechanism very similar 
to our selectors, and the 000/1 specification (20] leads to mechanisms similar to our 
size parameters. 

The resulting language is definitely more complex than CLU. Furthermore, it 
appears that the added complexity is inherent, since Alphard and the 000/ l designs 
have the same sorts of complex features. The only reason for pursuing designs such 
as ours is the efficiency gained by omitting heap management and garbage collection. 
As more efficient garbage collection methods become available, which recent 
developments in parallel and incremental garbage collections indicate may happen in the 
near future, langutiges such as CLU will have less efficiency penalty. Hence we hope 
that our design will become obsolete and simpler languages will be acceptably efficient 
for almost all purposes. 

F. SYNTHESIS OF SYNCHRONIZATION CODE 

When dealing with abstract data objects that are shared among different 
concurrent processes, some form of control over the ordering of accesses lo objects Is 
required. M. Laventhal has developed a method for automatically synthesizing source 
language synchronization code, given a synchronization constraint expressed in a 
problem specification language [23l The following sections describe the specification 
language and the synthesis method. 



PROGRAMMING METHODOLOGY GROUP I 06 

1. The SpE;cification Langu!!&~ 

The data objects with which this research is concerned are the sort provided in 
programming languages supporting the notion of abstract data types, such as CLU [I], 
ALPHARD [ 15]. or Simula [24J In these langu;iges, associated with an abstract data 
lype there is a set of basic procedures, or operations, and only these operations are 
allowed to manipulate the lower-level representation of the abstract objects. Higher­
level procedures can access the objects only by invoking the operations. 

A basic assumption is that the units upon which synchronization should be 
performed are the basic operations of the abstract data type. Only these operations 
are allowed lo access and manipulate the data representation of the abstract objects, 
and so it is here thtit decisions can be made as to what pattern of accesses is 
necessary to me1inte1in interne1I consistency. The centralization of these operations in 
one module (such as a CLU cluster) permits a single expression of constraints to cover 
all accesses of the objects. Since the programming language ensures that all accesses 
are made through the basic operations, the discipline required for synchronization can 
be enforced universally; this would not necessarily be true if higher-level procedures 
were chosen for synchronization. On the other hand, to the user of an abstraction the 
exact implementation of the basic operations is unknown (and may change without 
warning). Synchronization constraints at any lower level, i.e., involving code internal to 
these operations, therefore would not be meaningful to 'the user. It is exactly al the 
level of the basic operations of a data type that the two viewpoints of the 
implementer and the user can and should be resolved in a smooth interface. This is 
true for the synchronization component of the interface just as much as for the data 
component. 

A strict division is assumed between the synchronization and data manipulation 
functions involved in accessing a shared data object. This is based on the philosophy 
that the task of synchronization belongs in a separate language construct, whose sole 
function is synchronization. The operations of the abstract data type do not .contain 
synchronization code, but are written Assuming synchronization exists that is sufficient 
lo prevent any conflicts between concurrent operation activations. Synchronization is 
taken to be uniform across all objects of the same type, reflecting· the belief that a 
type consists not only of data mc:mipulation operations but their synchronization as well. 
That is, all objects of a given type are synchronized in the same way. 

The model of synchronization used assumes there is an abstract protection 
mechanism that conceptually surrounds each data object on which accesses must be 
synchronized (see Figure 4). This mechanism, called the guardian of the data 
abstraction, monitors all manipulations of the object, in a manner similar to the 
"secretary" concept proposed in [2S]. Through this monitoring, the guardian is able to 
maintain the ~nchroniz_~1ion state of the resource, an abstract representation of the 
history of accesses to the object. (This Is to be contrasted with the "data state" of 
the object, which is the state explicitly manipulated by the basic operations.) The 
euardian uses the synchronization state information to temporarily block any process 
attempting an access that is unsafe in the current synchronization state. The blocked 
process is allowed to proceed when the synchronization slate has chanted in such a 
way that the access can safely occll". 



I 07 PROGRAMMING METHODOLOGY GROUP 

guardian 

object 

enter re_g_uest 
~ 

exit 
~ 

Figure 4. The Guardian Model. 

Accessing an abstract data object consists of invoking one of the operations of 
the type to which the object belongs. The distinguishing features of the approach 
concern the structure imposed on synchronized accesses of the object. As indicated in 
Figure 4, every <1ccess involves a fixed sequence of events. The process wishing lo 
make an access first communicates this desire to the guardian; this is called the 
"request" event for the access. When the guardian permits the initiation of the access 
on the actual data object, the "enter" event occurs. The termination of the access is 
communicated lo the guardian in the "exit" event. 

The guardian model assumes that the set of all events concerning a particular 
data object is totally ordered. That is to say, while many procecl.lre activations can be 
executing concurrently, only one request, enter, or exit event •sociated with a given 
object can occur at a time. This total ordering property is comssable lo the fact that 
the "arrival ordering" for any particular actor in [26] is total, ft relies ultimately on 
some sort of arbitration mechanism for each data object. 

The guardian model parfldigm of request-enter-procedure body execution-exit 
forms the basis of the specification language. A synchronization specification is written 
for an abstract data type, and is intended to apply independently to every object of 
that type. The specification expresses a constraint on the ordering of accesses to 1tn 
object, and represents the only such constraint. This means that any ordering of 
events consistent with the specification is valid, and in particular that procedure 
activations are allowed to execute in parallel unless constrained otherwise by the 
specification. 

Specifications for synchronization problems can be written in a language based 
on this model. An access of an object is denoted by the operation being performed 
and the activation number of the access using that operation within the history of 
accesses of the object. For example, Pi represents the Hh activation of operation p 
on an object. One of the events associated with this access is denoted by adding the 
event name as a superscript, e.g., p{equesl being the "request" for the Pi access. The 
total ordering of all events associated with a given data object is defined by a relation 
denoted ==>. 

Specifications in the language are written as predicate calcutus formulas that 
constrain the time ordering relation ==>. For example, a specification for a readers­
writers database with priority given to writers [27) is expre99ed as: 



PROGRAMMING METHODOLOGY GROUP I 08 

((writeienter ==> write;enter) :> (writeiexit ==> writejenter)) " 

((writeiexit -=-:-> readk enter) v (reac\, exit ==> writeienter)) /\ 

((write.request ,,,=> read.enter) :>(write.enter ==> read·enter)) 
I J I J 

The first clause states that activations of operation "write" must take place one at a 
time and in the order requested. (F'ree variables such as i and j are universally 
quantified, so this constraint applies to all values of i and j, and therefore to all 
activations of "write.") The second clause requires activations of operations "write" 
and "read" to be mutually exclusive, in that one must exit before the other can enter. 
The third clause gives priority to activations of "write" over those of "read," by stating 
that any activation of "write" that is requested before an activation of "read" has 
actually entered must enter first. 

The problem specification is a non-procedural representation of a 
synchronization property at the level of events. In synthesizing an implementation for 
a specified property, it is necessary to derive a procedural representation of the same 
property. The synthesis is accomplished in two steps. The first stage is a 
transformation from non-procedural to procedural form. The intermediate form is called 
the solution specification. It can be described without reference to the exact details 
of particular source language constructs. The second stage constructs an actual 
implementation. 

In the solution specification, the form chosen lo represent the synchronization 
state of an object is the number of events of each class that have occurred in the 
history of the object. This quantity is denoted by the term "count(ec)," where ec is 
the class of events to which the quantity refers. An event class exists for each event 
(request, enter, exit) for each operation. For example, counl(prequesl) represents the 
total number of "request" events for operation p. 

Of the three types of events, "request" and "exit" events are generated from 
outside the synchronization mechanism, while "enter" events are generated by the 
synchronization mechanism itself (see Figure 4 above). For this reason, "enter" events 
are the only ones whose liming can be cor\lrolled by the synchronization code. The 
abstract solution to a synchronization problem can be represented by the condition on 
the synchronization state that must be true for each kind of "enter" event to be 
allowed. 

Applying the method to the example specification above for the readers-writers 
database with writers' priority, the followine conditions are derived for the "enter" 
event classes. For readenter: 

count(writerequest) ~ cCU1t(writeexit) 

For wrlte•nl•r: 

count<writeenter) s: cCU1t(write•xit) f\ cCU1l(read9"ter) • count(reec:t9xit) 

The condition under which .,. ectiv1tlon of •reld" m1y enter it that the number of 



109 PROGRAMMING METHODOLOGY GROUP 

"request" and "exit" events for operation "write" be equal, so that there are no 
unfulfilled requests or active executions of "write." The condition under which an 
activation of "write" may enter is that ( 1) the number of "enter" and "exit" events for 
operation "write" be equal, so that there are no other active executions of "write," 
and (2) the number of "enter" and "exit" events for operation "read" be equal, so that 
there are no active executions of "read" as well. 

A synchronization slate expressed in terms of the number of events of each 
class lacks sufficient power to represent solutions to many synchronization properties 
of interest. For this reason, solution specification conditions must sometimes refer not 
only to the current state but also lo synchronization stales associated with previous 
events in the computation. When a condition derived for the solution specification 
involving the current state is insufficient, the synthesis algorithm uses previous state 
information to correct the condition. It is also possible to specify properties in which 
the synchronization behavior depends on the arguments to the procedure activations 
that constitute the accesses of interest. This is reflected by the presence in the 
solution specification of argument-dependent conditions. 

Besides serving as a convenient intermediate form for the synthesis algorithm, 
the solution specification also can be used to test the soundness of the original 
problem specification. In particular, a potential for deadlock or starvation within a 
synchronization constraint can be determined by testing the conditions under which 
different kinds of accesses are blocked. 

Once the solution specification is derived, it is fairly straightforward to 
implement it in terms of a suitable source language synchronization mechanism. Each 
quantity of the form count(ec) must be represented by an integer variable. This 
variable is initialized to 0, and incremented by 1 at the appropriate point in the access. 
Before the "enter" event may occur, the corresponding condition from the solution 
specification must be tested. If the condition is not true, then the process must wait 
until it becomes satisfied. To protect the integrity of the synchronization data, the 
Incrementing and testing must be done within critical sections of code that are 
guaranteed to be indivisible. A convenient construct with which to implement the 
synchronization code is the monitor (28), since the procedures of a monitor are 
implemented as critical sections and the monitor "wail" and "signal" mechanisms are 
suitable for controlling the blocking and unblocking of processes. 

The !'Tlonitor for a data type contains three procedures for each operation p of 
the type. These procedures represent the three event classes associated with p, and 
are named p_requesl, p_enter, and p_exit. The form that operation p must take is 
illustrated in Figure 5. The identifier "m" is the name of the constructed monitor, and v 
is the vector of arguments to operation p. 



PROGRAMMING METHODOLOGY GROlJ' 110 

p"" proc ... ; 
call m.p_request(v); 
call m.p_enter( v); 

. (body of p) 

call m.p_exit(v); 
end p; 

------·---·-····--·--·----·-----·-·-······--------·······-------·-·-·····---------------····--·--········· 
prequest: increment count(prequest) by 1 
penter: wait until entry condition is satisfied, 

then increment count(penter) by 1 
execute body of operation p 
pexit: increment count(pexit) by 1 

Fieure 5. Monitor calls within operation p. 

Figure 6 shows the monitor derived for the writer's priority specification shown 
above. In this monitor, the integer variables wr, wn, wx, rn, and rx, represent 
count(writerequest), count(writeenter), count(writeexit), count(readenter), and 

count<readexit), respectively. There are also condition variables writeentry and 
readentry, corresponding to the conditions in the solution specification; their 
associated Boolean predicates are 

readentry: wr ,.., wx 
writeentry: wn = wx f\ rn =- rx 

Notice that count(readrequest) does not appear in the solution specification, so that no 
variable is needed for it, and thus a procedure read_request is not required. 

The choose statement used in Figure 6 is a variation of Dijkstra's ruarded 
command (29]. The meaning of this statement is the following: The "guards" B; are 
simply Boolean expressions. If one or more of these guards it true, then one of the 
true guards Bj is selected (non-determinately, but the choice must be fair) end the 
corresponding statement sj is executed. If none of the 1u1rds is true, then the 
statement terminates. 

4. Evaluation 

The specification language has proved to be quite convenient for writing 
synchronization specifications. Since all of the standard logical operators of predicate 
calculus can be used, and formulas of arbitrary complexity conatructed, any constraint 
on time ordering can be exPf'.e$sed. The specifications are relatively easy to write and 
to understand, since each logical operator has a natural interpretation. The 
e><tensibility of the lan1uage permits a complex ipecification involvinc many constraints 
to be expressed as a conjunction of individual clauses, each one specifyin1 a sintle 
constraint. This feature, Illustrated In (23) enhances both constructability and 
comprehensibility. 



111 PROGRAMMING METHODOLOGY GROUP 

wpdb =monitor; 
wr, wn, wx, rn, rx: integer; 
readentry, writeentry: condition; 

write_request = procedure; 
wr := wr + I; 
choose 

end; 

conditionSqueue(readentry) /\ wr = wx: 
condit ionSsignal( readentry); 

conditionSqueue(writeentry) /\ wn = wx /\ rn = rx: 
conditionSsignal(writeentry); 

end write_request; 

write_enter = procedure; 
if wn I wx v rn f rx then conditionSwait<writeentry) end; 
wn := wn + I; 
choose 

end; 
end write_enter; 

conditionSqueue(readentry) /\ wr = wx: 
conditionSsignal(readentry); 

conditionSqueue(writeentry) /\ wn = wx /\ rn = rx: 
conditionSsignal(wrileentry); 

write_exit = procedure; 
wx ;= wx + J; 
choose 

end; 
end write_exit; 

conditionSqueue(readentry) /\ wr = wx: 
conditionSsignal(readentry); 

conditionlqueue(writeenlry) /\ wn"" wx /\ rn • rx: 
conditionlsi1nal(wrileentry); 

read_enter = procedure; 
if wr f wn v wn f wx then conditionlwail(readenlry); end; . 
rn := rn + 1; 
choose 

end; 
end read_enter; 

conditionlqueue(readentry) f\ wr = wx: 
conditlonlsi1nal(readentry); 

conditionlqueue(writeentry) /\ wn = wx f\ r.n "' rx: 
conditlonlsi1nal(wrileenlry); 



PROGRAMMING METHODOLOGY GROUP 112 

read_exit .,, procedLWe; 
rx := rx + I; 
choose 

end; 
end read_exil; 

conditionSqueue(readenlry) /\ wr = wx: 
conditionlsignal(readenlry); 

conditionlqueue(writeentry) /\ wn = wx /\ rn = rx: 
conditionlsicnal(writeentry); 

wr, wn, wx, rn, rx := 0, 0, 0, 0, O; 
end wpdb; 

Figure 6. Monitor for writers' priority database. 

The efficiency of synthesized implementations is reasonable for a large class of 
problems, assuming fairly simple code optimization techniques are employed. The fact 
that all synchronization code manipulates only integer-valued quantities, and that entry 
conditions always consist of linear equalities or inequalities of such quantities, keeps 
the implementations efficient. The efficiency can be enhanced if obvious optimizations 
are applied lo the results of the straightforward synthesis. For example, by a simple 
analysis one can prove that, in the monitor in Figure 6, the choose statements in 
write_request, write_enter, and read_enter can all be eliminated, as can the first 
clause of the choose statement in read_exit. 

There are some limitations in the synthesis method. Due to the relatively rigid 
structure of the solution specification, certain interesting synchronization properties 
cannot be captured. For example, the commonly used first-come-first-served 
specification cannot be expressed in the solution specification. Further, the monitor 
implementation may be extremely complex and inefficient for certain classes of 
specifications, such as those that depend on procedure arguments whose range of 
values is unknown; it is not known, however, if such specifications are really useful in 
practice. 

Another serious problem with the synthesis method is its practicality. The 
algorithm as it stands cart be used m~mually by a person to implement a synchronization 
constrai-nt ~'<Pi essed in the specification language, or lo informally check a hand-coded 
implementation. However, further work is needed lo automate the algorithm. The 
synthesis method described here can only be viewed as a slartin1 point for pursuin1 
this 1eneral approach. 



113 PROGRAMMING METHODOLOGY GROUP 

REFERENCES 

1. Uskov, Bar.bara H.; Snyder, L. Alan; Atkinson, Russell R.; and Schaffert, J. Craig. 
"Abstraction Mechanisms in CLU." Co!!lmunications of the ACM, Vol. 20 No. 8 
(August 1977), 564-576. 

2. Uskov, Barbara H., and Snyder, L. Alan. Structured Exception Handling. M.1.T., 
Laboratory for Computer Science, Computation Structures Group, Memo 155-1. 
Cambridge, Ma., September I 978. 

3. Liskov, Bcirbara H.; Moss, J. Eliot; Schaffert, J. Craig; Scheifler, Robert W.; and 
Snyder, L. Alan. CLU Reference Manunl. M.l.T., Laboratory for Computer Science, 
Computation Structures Group, Memo 161. Cambridge, Ma., July I 978. 

4. Schaffert, J. Craig. A Formal Definition of CLU. M.l.T., Laboratory for Computer 
Science, LCS/TR-] 93. Cambridge, Ma., January I 978. 

5. Scheifler, Robert W. ~-Q~!'otational Semantics of CLU. M.l.T., Laboratory for 
Computer Science, LCS/TR-201. Cambridge, Ma., June 1978. 

6. "Programming Methodology Group." Progress Report July 1976 - July 1977. 
M.I. T., laboratory for Computer Science, LCS/PR-XIV. Cambridge, Ma., 135-161. 

7. Gries, David, and Gehani, N. "Some Ideas on Data Types in High-Level Languages." 
Communications of the ACM, Vol. 20 No. 6 (June 1977), 414-420. 

8. Principato, Robert N., Jr. A Formalization of the State Machine Specification. 
M.1.T., Laboratory for Computer Science, LCS/TR-202. Cambridge, Ma., July 1978. 

9. Parnas, David l. "A Technique for the Specification of Software Modules, With 
Examples." ~omm1;inications of the ACM, Vol. 15 No. 5 (May 1972), 330-336. 

10. Price, W. L. "Implications of a Virtual Memory Mechanism for Implementing 
Protection in a Family of Operating Systems." Ph.D Thesis, Carnegie-Mellon 
University, Pittsburgh, Pa., June 1973. 

11. Robinson, Lawrence, and Levitt, Karl. "Proof Techniques for Hierarchically 
Structured Programs." ~ommuni~ations of the ACM, Vol. 20 No. 4 (April 1977), 
271-283. 

12. Roubine, O., and Robinson, Lawrence. SPECIAL Reference Manual. Stanford 
Research Institute, Technical Report, CSG-45. Stanford, Ca., August 1976. 

13. Berzins, Valdis A. Abstract Model Specifications for Data Abstractions. Ph.D 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
forthcoming. 

14. Hoare, C. A. R. "Proofs of Correctness of Data Representations." Acta 
Informatica, Vol. 1 No. 4 (1972), 271-281. 



PROGRAMMING METHODOLOGY GROUP 114 

15. Wulf, William A.; London, Ralph; and Shaw, Mary. "An Introduction to the 
Construction and Verification of Alphard Programs." ~EE Transactions on 
Softwtlre Engi!'eering, Vol. SE-2 No. 4 (December 1976), 253-265. 

16. K~pur, Deepak. :ro~_~r~~-~Th_eory ol Data Abstractions. Ph.D Thesis, M.1.T., 
Department of Electrical Engineering and Computer Science, forthcoming. 

1 7. Goguen, Joseph A.; Thatcher, James W.; Wagner, Eric G.; and Wright, Jesse 8. 
"Abstract Data Types as Initial Algebras and the Correctness of Data 
Representations." P.!.Q.~~din&!_of Conference on Computer Graphics, Pattern 
Recognili~!.U~.'!d Data Str~tures, IEEE, Los Angeles, Ca., 1975, 89-93. 

18. Guttag, John V. Th~ccification and Application to Programming of Abstract 
Data Types. University of Toronto, Computer Systems Research Group, CSRG-
59. Toronto, Canada, J 975. 

19. Moss, J. Eliot. ~~~tract Data Types in Stack Based Languages. M.l.T., Laboratory 
for Computer Science, LCS/TR-J 90. Cambridge, Ma., February 1978; 

20. ~t~~I~!!· Department of Defense, Requirments for High Ord_~r Computer 
Programming Languages, June 1978. 

21. Lampson, Butler W.; Horning, James J.; London, Ralph l.; Mitchell, James G.; 
and Popek, Gerald L. "Report on the Programming Language Euclid." SIGPLAN 
Notice~, Vol. 12 No. 2 ff ebruary 1977). · 

22. Wulf, William A., et. al. An Informal Definition of Alphard (Preliminary). 
Carnegie-Mellon University, Computer Science Department, Report CMU-CS-78-
105. Pittsburgh, Pa., Febrwiry J 978. 

23. Laventhal, Mark S. Synthesis of Synchronization Code for Data Abstractions. 
M.l.T., Laboratory for Computer Science, LCS/TR-203. Cambridge, Ma., July 
1978. 

24. Dahl, Ole-Johan, and Hoare, C. A. R. "Hierarchical Program Structures ... 
Structured Prog!:_~i:!lming. New York: Academic Press, 1972, 175-220. 

25. Dijkstra, Edsger W. "Hierarchical Ordering of Sequential Processes." Operating 
Syst~ms I~.~~!!~1,1~!· Edited by C. A. R. Hoare and R. Perrott. New York: 
Academic Press, 1972, 72-93. 

26. Hewitt, Carl; Bishop, Peter; and Steiger, Richard. "A Universal Modular Actor 
Formalism for Artificial Intelligence." Proceedings of Third International Joint 
Conference on Artifical Intelligence, Stanford, Ca., 1973, 235-245. 

27. Courtois, P. J.; Heymans, F.; And Parnas, David L. "Concurrent Control with 
'Readers' and 'Writers'." Communications of the ACM, Vol. 14 No. 10 (October 
1971), 667-668. 



115 PROGRAMMING METHODOLOGY GROUP 

28. Hoare, C. A. R. "Monitors: An Operating System Structuring Concept.• 
Comml!f!Lc~_lior:i~-2!_the~~ Vol. 17 No. I 0 (October 1974), 549-557. 

29. Dijkstra, Edsger W. "Guarded Commands, Nondeterminacy and Formal Derivation 
of Programs." ~_?_mmuaj~~!ions of the ACM, Vol. J 8 No. 8 (August 1 975), 453-
457. 



PROGRAMMING METHODOLOGY GROUP 116 

Publications 

1. Berzins, Valdis, and Kapur, Deepak. Denotational and Axiomatic Definitions for 
Path Expressio".l_~ M.I. T., Laboratory for Computer Science, Computation 
Structures Group, Memo 153-1. Cambridge, Ma., November 1 977. 

2. Greif, Irene G. "A Language for Formal Problem Specification." Communications of 
the AC~ Vol. 20 No. 12 (December 1977), 931-935. 

3. Liskov, Barbara H. "Practical Benefits of Research in Programming Methodology." 
AFIE~f9_1:!_fer~ris:e Ptoceed.Ln_g~, Vol. 47, Anaheim, Ca., June 1978, 666-667. 

4. Liskov, Barbara H., and Jones, Anita K. "A Language Extension for Expressing 
Constraints on Data Access." ~_mmunications of the ACM, Vol. 21 No. 5 (May 
1978), 358-367. 

5. Liskov, Barbara H., and Snyder, l. Alan. Structured Exception Handling. M.l.T., 
laboratory for Computer Science, Computation Structures Group, Memo 155. 
Cambridge, Ma., December 1 977. 

6. Liskov, Barbara H.; Snyder, l. Alan; Atkinson, Russell R; and Schaffert J. Craig. 
"Abstraction Mechanisms in CLU." Communications of the ACM, Vol. 20 No. 8 
(August 1977), 564-576. 

7. Moss, J. Eliot. Af>~~_r~~LP<!ta _ _Iypes in Stack Based languages. M.I. T., laboratory 
for Computer Science, LCS/TR-190. Cambridge, Ma., February 1978. 

8. Schaffert, J. Craig. A Formal Definition of CLU. M.l.T., Laboratory for Computer 
Science, LCS/TR-1 93. Cambridge, Ma., January 1978. 

9. Scheifler, Robert W. "An Analysis of lnline Substitution for a Structured 
Programming Language." Q_ommunication of the ACM, Vol. 20 No. 9 (September 
1977), 647-654. 

10. Scheifler, Robert W. ~~!:!_~talional Semantics of CLU. M.l.T., Laboratory for 
Computer Science, LCS/TR-201. Cambridge, Ma., June 1978. 

11. Scheifler, Robert W., and Snyder, L. Alan. CLU Information Package. M.l.T., 
Laboratory for Computer Science, Computation Structures ~roup, Memo 154. 
Cambridge, Ma., November 1977. 

Accepted for Publication 

1. Liskov, Barbara H. "Remarks on the Construction of Large Programs." To be 
published in Th~J!!lP..~~! of Research on Software Technology. Edited by P. 
Wegner. Cambridge, Ma.: M.l.T. Press. 

2. Liskov, Barbara H., and Berzins, Valdis. "An Appraisal ~f Program Specifications." 
To be published in The ll_!lpact of Research on Software Technology. Edited by 
P. Wegner. Cambridge, Ma.: M.l.T. Press. 



11 7 PROGRAMMING METHODOLOGY GROUP 

1. Garrard, Stephen C. "An Arithmetic Compiler for the Digital Acoustic Signal 
Simulator <DASS)." unpublished S.8. Thesis, M.l.T., Department of Electrical 
Engineering and Computer Science, May 1978. 

2. Laventhal, Mark S. ?y_~tb_~sis of Synchronization Code for Data Abstra~tions. Ph.D 
Thesis, M.1.T., Department of Electrical Engineering and Computer Science,. June 
1978. 

3. Moss, Eliot. ~bs_t~.cic:_LDa!a_J_yp_~s in Stack Based Languages. S.M. Thesis, M.l.T., 
Department of Electrical Engineering and Computer Science, November 1977. 

4. Principato, Robert N., Jr. A Formalization of the State Machine Specification 
I~c:!'_rii_g1:1~_.. S.M. and E.E. Thesis, M.1.T., Department of Electrical Engineering and 
Computer Science, May 1978. 

5. Schaffert, J. Crnig. A Formal Defini!jon of CLU. S.M. Thesis, M.l.T., Department of 
Electrical Engineering and Computer Science, January J 978. 

6. Scheifler, Robert. ~Q~'lQtt1tional Semantics of CLU. S.M. Thesis, M.l.T., 
Department of Electrical Engineering and Computer Science, May 1978. 

7. Shienbrood, Eric R. "A Translator for the Language CLUMAC." unpublished S.B. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, May 
1978. 

Theses in Progress 

1. Berzins, Valdis. "Abstract Model Specification for Data Abstractions." Ph.D. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, January I 979. 

2. Bloom, Toby. "An Ant1lysis of Synchronization Methods for Modular Programs." 
S.M. Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, J<muary I 979. 

3. Kapur, Deepak. "Towards a Theory of Data Abstractions." Ph.0 Thesis, M.l.T., 
Department of Electrical Engineering and Computer Science, expected date .of 
completion, June 1979. 

4. Leach, Paul. "Designing a Gt1rbage Collector in a Strongly Typed Language." S.8. 
Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
expected date of completion, January 1979. 

5. Snyder, L. Alan. "A Structured, Verifiable Machine Architecture to Support an 
Object-Oriented Language." Ph.D Thesis, M.l.T., Department of Electrical 
Engineering e1nd Computer Science, expected date of completion. January 1979. 



PROGRAMMING METHOOOLOGY GROUP 118 

6. Zilles, Stephen N. "Data Algebra: A Specification Technique for Data Structures." 
Ph.O Thesis, M.l.T., Department of Electrical Encineerinc and Computer Science, 
expected date of completion, June 1979. 

I. liskov, Barbara H. Chairman of Panel Session on Program Specification 
Techniques, IFl~ol'gres~1 Toronto, Canada, August 1977. 

2. Liskov, Barbara H. "An Appraisal of Program Specifications." Conference on 
~~-~-~rch .PJ.r.~cJions in Software Technology, Providence, R. I., October 1977. 

3. Liskov, Barbara H. "CLU Abstraction Mechanisms and Their Implementation." 
SIGP!:_AN Mf~ti~g, Boston, Ma., November 1977; Cornell University, Ithaca, N. Y., 
December 1977. · 

4. Liskov, Barbara H. "Abslrnction Mechanisms in CLU." University of Waterloo, 
Waterloo, Canada, November 1977; Bell Laboratory, Indian Hill, II., November 
1977. 

5. Liskov, Barbara H. Session Chairman, History of Programminc Languages 
Conference, Los Angeles, Ca., June 1978. 



A. Vezza, Group Leader 

E. R. Banks 
J.M. Berez 
M. S. Blank 
M. F. Brescia 
M. S. Broos 

T. A. Anderson 

S. H. Berez 
8. T. Berkowitz 
N. M. Bult 
0. l. Dill 
T. K. Johnson 
G. E. Kaiser 
P. C. Lim 

S. P. Briggs 

121 

PROGRAMMING TECHNOLOGY 

Academic Staff 

Research Staff 

Graduate Students 

Undergraduate Students 

~ort Staff 

J. C. R. Licklider 

S. W. Galley 
D.S. Gerson 
P. O. Leblinc 
C. L. Reeve 
D. Sherry 

S. C. Phillips 
T. J. Platt 
8. J. Roberts 
W. A. Seltzer 
S. H. Soto 
W. W. St. Clair 



123 PROGRAMMING TECHNOLOGY GROUP 

PROGRAMMING TECHNOLOGY 

The Programming Technology group is engaged in two distinct research and 
development programs. The program in Morse code has as its main goals the 
development of the conceptual insight necessary to develop a computerized Morse 
code operator And the design and implementation of a prototype of such a computer 
system (COMC0-1)[ 1). The Morse code program covers four areas: signal processing, 
Morse code transcription, sender recognition, and understanding of the network 
conversations among operators thAt are CArried on in a special language consisting of 
"Q-signs," "Pro-signs," and "Call-signs." The other research program is concerned with 
the facilitation of interpersonal communication through the use of computer message 
systems[ I ]. The work on interpersonal communication has involved the design and 
implementation of a computer message system that embodies in it a model, as yet very 
simple, of an org1mizt1tion. The model is used to track action status and to aid the 
communication process. 

9. MORSE G_QQ~ 

COMC0-1, the prototype computerized Morse code operator, is composed of 
three major subsystems. 

1. A signt1I acquisition and processing module produces a file of mark (dot and dash) 
and space durations based on analysis of a signal. 

2. A transcription module converts the mark and space durations into a lattice of 
possible transcriptions of the message, where each branch of the lattice is a 
vocabulary element from a large but finite vocabulary. This module begins by 
performing a MAUDE-like [I] assignment of each code element lo its apparent 
type, and then passes that result to COMDEC (COmputerized Morse DECoder), 
which builds the lattice of transcriptions. 

3. Finally, the trt1nscriptions suggested by COMDEC are evaluated by CATNIP, a 
parser based on augmented transition networks, which attempts to derive 
coherent, "grammatical" tninsmissions from them. 

It is clear that good Morse operators have conceptual models of the Morse code 
environment that they use to help them perform their task. They have models of 
Morse "sot.lnds"--sequence$ of dots and dashes with rhythm and timing information-­
and map these sounds into the letters and words. They have models of the language 
constructs that are used, be they English, another natural language, or the chatter 
language. Operators form models of other operators' mamerisms and use these models 
in the translation and understanding processes and in identifying other operators. 
Operators also have models of the Morse code and radio domains. It is common 
knowledge that "TH" is often sent with a short space between the letters, so that a 
machine often interprets it as "6" (thus "6E" Is really "Tt-Ei. Sinilerly, "Atr Is often 
Interpreted as "P" (thus "PD" Is really "AM>i. In the radio domain, knowledte about 



PROGRAMMING TECHNOLOGY GROUP 124 

CATNIP 
Cllotter a 

Header 
Understondono 

System 

COMOEC 

Transcription 
System 

Siona! 
Procenino 

System 

Soon al 

Fieure I. The Three Major Modules of the Morse Code System 
and the Domain Models They Use. 

the spectral frequency to which relevant operators' transmitters are tuned, what a 
particular transmitter sounds like, how a signal fades and returns--all these form the 
models that help operators identify, track, transcribe and understand one another. It is 
the human being's ability to interpret Morse sounds in the context of such mental 
models that allows her or him to perform so well. 

At this point a slight digression is in order. Listening to a Morse code 
conversation among a group of operators, ·one notices three distinct aspects of the 
conversation. These correspond to (i) network chatter, (II) message headers, and (iii) 
message bodies. The chatter section is often very poorly sent. Characteristically, 
many letters and words are slurred or separated and corrupted by other operator 
lapses. Yet receivinc operators have little difficulty understanding chatter, because 
they have a model of the global situation: what question was asked by whom, who it 
currently wailing on the network, who has messa1e traffic for whom, and to forth. This 
model and the ability to understand the conversation it vitally important to trnetion. 



125 PROGRAMMING TECHNOLOGY GROlJ> 

Headers of messages are structured but, unfortunately, not rigidly. Again, to 
translate them correctly one must have some understanding of what headers are about. 
For instance, dates may be sent as "8 Dec 78" or "8 12 78" or "81278" and times may 
be sent as "1 OOOZ" or "1000". We have written the dates and times in an ideal 
manner, but, in fact, they might be--as a result of operator lapses--segmenled quite 
differently, so that parts of numbers are run together or a number is split apart, and 
one or more numbers might contain a mark-error. One other aspect of numbers is very 
important. All numbers in Morse code are five marks long--see [2] under Morse 
code--yet they are often abbrevic:1ted and sent as what are called cut-numbers. Again, 
context is often required to perform translation correctly. 

The body of amateur rndio message traffic is typically English with some 
abbreviations. To attempt to understand all of the English language would be far 
beyond the scope of this research. We have built into the system just enough 
knowledge to let it perform in a creditable fashion. Our experience indicates that a 
vocabulary, some rules about where numerals can occur in text, rules about how to 
handle error signs, and a measure of closeness in a Hamming-like space (for correcting 
operator induced irregularities) are absolutely essential to the correct translation of 
plain text. Our experience suggests that knowledge about idiosyncratic and irregular 
behavior of individual operators facilitates translation. 

Military message traffic differs slightly because the body may consist either of 
plain text or of cipher groups. A message sent in cipher has no language context, but 
knowledge about the number of groups in a message, the number of characters in a 
group, and whether groups are alphabetic, numeric, or mixed is necessary to translate 
such a message. 

Figure J shows A block diagram of the three major modules of the Morse code 
system COMC0-1. Also shown are the necessary domain models required by each 
module in order for it to oerfotm its task properly. The wavy line in the diagram 
indicates that the signal processing system, which is composed of special hardware and 
a PDP-11 computer, is not il"te.grated with the other major modules which are 
COMOEC, the transcription (or translation) module, and CATMP, the chatter and header 
understanding module. The last two are software modules written in MOL (a USP-like 
language) [3] and running under TOPS-20 [ 4] and ITS [SJ Experiments are conducted 
independently for the signal processing system, and human intervention is required to 
transfer the results to the other two modules. COMDEC and CATNIP are well 
integrated, with appropriate feedback, and externally they appear to behave as one 
system. 

A few phrases about each domain model may prove helpful: 

a. Model of the radio domain situation--how the individual transmitters of interest 
sound, i.e., whether a transmitter has any characteristic envelope or carrier 
distortions, and if so what kind and a measure of the amounts. 

b. Model of the Network situalion--which operators are logged into the network, 
which are off control frequency, which are on control frequency and where each 
operator's transmitter is tuned relative to those of the other operators on his 
frequency. This last bit of information turns out to be quite Important, es we 



PROGRAMMING TECHNOLOGY GROUP 126 

will show later, even thouch all the operators •e workinc in a thirty to fifty 
Hertz band. 

c. Models of senders--the irrellJlarities a particul• sender may introduce, such as 
his or her idiosyncrasies of language, a proclivity to introduce e>etraneous dots 
or omit dots, etc. 

d Models of language--the full gamut of possibilities are required for parsing and 
understanding chatter, but we have rather simple models for harding message 
bodies such as a vocabulary and some simple rules for handling some special 
constructs and numbers. 

e. Models of the situation--the system must know when a question is asked and 
the possible range of expected answers; it must k~ that a frequency change 
has been ordered or negotiated and how to respond appropriately, and so forth. 

2. Morse Code Tra!'scr_iption 

The capabilities of COMOEC, the Morse code transcription module, were 
expanded and improved during the past year (lebling, Sherry). The major thrust of 
development during the year has been to augment COMOEC's abilities in transcribing 
Morse code into plain text sent in an environment more closely approximating 
conditions of live communication between operators. There were two areas in which 
this effort concentrated, each of which will be discussed in turn: 

a Improving the transcriber's performance on transmissions composed primarily of 
"network chatter," the specialized languace of the Pro-sicns, Q-signs and Call­
signs used by Morse code operators; 

b. Design and implementation of an interface between the COMOEC transcriber and 
CATNIP, a parser for Morse traffic network interactions. 

2.1 Network Chatter: 

The part of Morse code known familiarly as "network chatter" has several 
characteristics which set it apart from transmissions in English. Specifically, because 
the vocabulary is limited (typically under I 000 common words, Pro-signs, Q-signs and 
Call-signs), and the context of the transmission is often rigidly prescribed. the quality 
of the code sent is considerably lower than for English transmissions. The code is 
likely to contain many more space-errors and mark-errors than a message in plain 

~· . 

The most common type of error in "network chatter" Is that of running words 
together. There are two main reasons why this is true. First, certain sequences are 
perceived by the sender as sin1le words, such as a Q-sicn followed by a question 
mark. Second, certain sequences, throu1h repetition. have become so easy to send 
that the operator sends them mechanically, tendinc lo compre11 them into one burst of 
code. · 



127 PROGRAMMING TECHNOLOGY GROUP 

In "network chatter," the many numbers involved are often sent as "cut 
numbers." A cut nu~_ber is a standard Morse code number in which the leading or 
trailing dash sequence has been replaced by one (usually longer than average) dash. 
For example, a cut "O" (normally five dashes) consists of a single long dash, often 
indistinguishable from a Morse "T". A cut "I" looks like an "A", and a •9• like an "N". 
To correctly transcribe these transmissions, cut numbers must be correctly 
distinguished from the letters they resemble. 

Another common problem in "chr1tter" is that, in certain contexts, numbers are so 
common that the receiving operator expects them, and can compensate for a high level 
of errors in sending. It is common for a sender to transmit single cut numbers if the 
context demands a number (this is rare in English transmissions), or to transmit a "5" 
(normally five dots, and the only digit composed only of dots) as any non-zero number 
of dots. 

COMDEC has been modified to deal with these and other problems that have 
arisen in the transcription of "chatter." Some of the specific modifications that have 
been made include the following. 

1. The heuristics have been improved that decide when a letter-space or mark­
space is a possible word-space. Specifically, a simple routine to recognize 
punctuation mr1rks and other commonly run-together code elements was written. 
Additionally, certain code sequences commonly run together because of their 
"rhythm" (such as dot-dash-dot-dash) are now recognized. 

2. A module was added to the standard transcription sequence which recognizes 
and transcribes sequences of V's, which are commonly sent as an aid in receiver 
tuning. 

3. The number-transcription module has been expanded lo deal with cut numbers 
on the same basis as standard five-mark numbers. 

4. Words are now checked as they are placed in the transcription lattice to see if 
they introduce a "number context." If they do, the number-transcription routine 
is called and informed that such a context exists (which makes it more tolerant 
of errors and cut numbers). 

5. The for mat in which code samples are stored has been expanded to allow 
miscellaneous information about the code--most importantly, the locations of 
sender changes--to be stored with the code sample. 

These, and other changes not mentioned specifically, have improved COMDEC's 
performance on "chatter" considerably, as will be seen later. 

2.2 CATNIP lnterfa_ce 

The second area of COMDEC development (Lebling, Sherry) has been the design 
and implementation of an interface between COMOEC and CATMP (see below). This 
development included a redesign of the top-level transcriber of COMOEC. Previously, 
COMDEC transcribed an entire "message," which could include several sender changes, 



PROGRAMMING TECHNOLOGY GROUP 128 

as one unit. It now treats a transmission by a sender as the basic unit, running all 
transcription modules on that transmission be1ore even running MAUDE on the next 
transmission. 

The interface with CATNIP was designed lo allow the two lo pass information 
back and forth without requiring each to know the data structures of the other, or to 
view the other as anything more than a "black box." The interface module is thus very 
simple. CATNIP calls it with a pointer into the code, and COMDEC returns the 
transcriptions al that point in the lattice, sorted by quality (best transcription first). 
With each transcription is a simple evaluation of it ("good," "indifferent," "bad") and a 
pointer to where the next transcription comes from if this one is correct. 

What goes on "behind CATNIP's back" is that the interface module has a record 
of which parts of the message have been transcribed, and, if necessary, it transcribes 
more of the message before returning to CATNIP. If the area in which CATNIP is 
working has already been transcribed, the information it wants is already there. 
Consequently, COMOEC and CATMP operate more or less in parallel and, 1iven the 
simplicity of their interface, could even be in different processes. 

2.3 An Example 

Here is an example of a transcription of "chatter," in. which two senders, code­
named ROCK and SALT, are trying to establish contact. The special abbreviations used 
in this example are as follows: 

&;) "Previous portion of code is erroneous; ignore it." 
ANS answer 
OE "This is ... " 
K Over 
PSE please 
R Roger 
QRK "What is my intelligibility?" or "Your intelligibility is ... • 
QRO "Shall I increase transmitter power?" or "Increase transmitter power." 
QRQ "Shall I send faster?" or "Send faster." 
QSA "What is my signal strength?" or "Your sicnaf strength is .. : 
QSV "Shall I send V's?" or "Send V's." 
QTC "How many messages do you have?" or i have ... messa1es." 
V [aid in receiver tuning) 

MAUOE's transcription: (Curly brackets {} surround 1 sequence of marks sent es one 
letter.) 

SALT: {VW} V{VV} {WV} R OC K ROCK RO CK OE SAL T SALT QSA? K 

{WV} {VVVJ V{W} ROCKROCKROCK DE SALT SALT QS{.-.. --.. J QRK? TA 

{WV} {VW} {VVV}ROCK{.-.---JCKROCKROCKDE SI • S Al T SAL T SAL T 
QSA? QRTA? QSANONO QRKNONTM QSV QSV K 



129 PROGRAMMING TECHNOLOGY GROUP 

jVVVVV}VVVIAIAV ROCK ROCKROCKROCKRMTCKROCKROCKROCKDE SALT 
QSA? QRK? QSANONOQRKNONOWEST ANS PSE ANS QRQ QRQ QTC QTC 
QTC K 

ROCK: lVV}V SALT OE ROCKQSA2 QSA2QRKi1E QRKi1 QS A? QR K? K 

SALT: ROCKTIE SAL TQSAH QRKH TTAAETTT? KA• 

ROCK: DE ROCKRRR QROQROQSVQSVK 

SALT: DE SALT R {VV}VV{VVVVVVHVVVVVV}V{VV}V E ... 

COMOEC's transcription: (Curly brackets {} enclose an untranscribed mark. Pointed 
brackets <> enclose a word obtained by correcting a mark-error. Square brackets [] 
enclose an error sign and the error to be ignored. COMOEC's errors are underlined.) 

SALT: VVV VVV VVV ROCK ROCK ROCK DE SALT SALT QSA ? K 

VVV VVV VW ROCK ROCK ROCK OE SALT SALT QSA ? QRK ? <M> 

WV VVV VVV ROCK ROCK ROCK ROCK OE [xxxxx ~]SALT SALT SALT QSA 
? QRK ? QSA NO NO QRK NO NO QSV QSV K 

VVV ROCK ROCK ROCK ROCK ROCK ROCK ROCK ROCK OE SALT QSA ? QRK 
? QSA NO NO QRK NO NO <PSE> ANS PSE ANS QRQ QRQ QTC QTC QTC K 

ROCK: WV SALT OE ROCK QSA 2 QSA 2 QRK 5 QRK ~ QSA ? QRK ? K 

SALT: ROCK OE SALT QSA <5> QRK <5> QRO ? <K> ITl 

ROCK: OE ROCK ~NR~ RQRO QRO QSV QSV K 

SALT: DE SALT R VVV ... 

COMOEC made four errors in selecting the best transcription, but CA TMP, with 
its superior "knowledge," was able to correct all of them. In each case the correct 
transcription was available in the lattice, but COMDEC did not select it as the best. 
CATNIP was able to reject the incorrect transcriptions and select the correct ones in 
each case: "K" instead of "<M>", "5" instead of "[@]", nothing instead of "{T}", and "R 
R" instead of "<NR>". 

3. CATNIP Chatter an~t.!iea~er Understanding System 

CATNIP is a semantir.-syntaclic augmented-transition-network (ATN) parser 
(Sherry, Kaiser, Vezza) that chooses a path through the lattice of possible translations 
created by COMDEC. 

CATMP uses ATN diagrams to choose the correct word from a lattice of possible 
translations. It starts in a certain state of the transition network, and progresses from 
one state to another, depending on the next word or words In the lattice. With each 



PROGRAMMING TECHNOLOGY GROUP 130 

state is associated a list of words, and with each word a new state. CATNIP matches 
the list of words from the state with the list of words possible al that point in the 
translation lattice; matches yield valid new slates. 

It that were all, the network would simply be an unaugmented transition network. 
However, CATNIP retains a context, which it changes (usually with every word) and 
which can be tested when it is trying to match the words. The context includes such 
things as who is the sender of the current transmission, who is the receiver, who is the 
net controller, and so on. ATNs, as opposed to unaugmented transition networks, are 
good for parsing grammars that are dependent on the context and on pasi: occurrences 
[6]. 

Naturally, ambiguities creep in. Sometimes more than one match is possible; 
CATNIP allows for this by processing one of the new valid states and saving all the 
others. The context l'tt that point is saved with the states that were saved. CATNIP 
has the ability to return to the saved states and try those alternate paths. 

Finally, CATNIP also has a limited understanding of the events on the net. 
Understr1nding these events is important in understanding the state of the net at any 
point (how many operators are working, who they are, who is talking, etc.) and it is 
important in choosing the correct word at a particular point in the translation. 

The context is used as the "understanding" pert of CATNIP. Take the following 
transmission as an example: 

ROCK ROCK ROCK OE SALT SALT QSA ? QRK ? K. 

Upon completion of the parse, the parser would retain a context that contained the 
information that the receiver was ROCK, the sender was SALT, and SALT had asked 
ROCK two questions: "What is my signal strength?" and "What is my intelligibility?" 

Retaining this kind of context helps find the right translation and decide later 
ambiguities (such as who is the receiver at a certain point, if he or she was not 
explicitly named). The successive contexts also furnish a synopsis of the entire 
session after the parser is finished. 

CATNIP is a recursive procedure that allows one lo name A. TN diagrams of 
simple structures (such as Q-signs that are often used), and to use those as parts of 
other diagrams without actually duplicating the simple diagrams. Thus a more 
structured "grammar" can be created without over complicating the data base. 

Figure 2 shows a typical A TN diagram. The circles with either an "S" or a 
number in them indicate the stales of the transition network. A diagram is always 
entered in the start, "S", state and a return from a diaaram is always achieved from 
one of the states allowing a return. A state allowing a return to a caller is indicated 
by partial shading of the circle. Each italicized ARC label such as· Header indicates a 
call to another diagram; in lower case are labels such as "location", which indicate that 
the labeled input that will parse is a location (such 11 "BOSTON" or "BOS"); arcs 
labeled with a number sian "•" mean that a number is ecceptabfe as input (with the 
perentheelzed 1tatement lndicatina the meanin1 of the number, e.1.1 (nr-1r) mean• 



131 

BT 

PROGRAMMING TECHNOLOGY GROUP 

ARC-S,S:HR NW 
OK BK 

R RR 
BT 

ARC - 1,1' TFC K 
NR NW 
BT 

Figure 2. Augmented Transition Network Diagram Called "Traffic Header." 

number of groups); and arcs labeled in upper case mean that literal input of one of the 
specified labels is acceptable. The system currently contains about 25 diagrams with 
an average complexity of the one shown in Figure 2. 

The research in interpersonal communication has continued at a low level with 
further design and implementation of the Data-based Message Service (OMS) [ l] as 
described below (Broos, Berez, Brescia, Galley, Vezza). OMS is "data-based" because 
the messages it manages are data in a number of similar on-line relational data bases, 
which may contain thousands or even tens or hundreds of thousands of messa1es. 

The general model on which OMS is designed is that of a typical office. The 
interface at an intelligent terminal between OMS and a user is desl1ned to be 



PROGRAMMING TECHNOLOGY GROUP 132 

comfortable and familiar to people not used to working with computers. Concepts and 
terminology from typical office methods of managing paper-based messages (letters, 
memos, and so on) are used wherever possible, rather than computer terminology. 

A person is registered as a OMS user in a special table in the data base 
containing a unique name for the person and a unique password. As part of its simple 
model of an office, OMS recognizes that a person can "wear different hats," that is; 
assume different organizational rol~ at different times. Thus roles are also registered 
in the data base, along with a list of which people are allowed to assume each role. A 
person can assume a role (if desired) either at the beginning of an operating session 
with OMS or during a session, and OMS will refer to that role's data base instead of 
her or his personal de1ta base. Records of acts performed by a person assuming a role 
Include the name of the person that pert ormed the act. 

One example of a role is that of shift supervisor in a plant which operates 
around the clock. During each shift, a different person normally assumes the role of 
shift supervisor. Messages concerning the operation of the plant are normally sent lo 
the shift supervisor, to be acted upon by whoever is currently assuming that role. A 
message sent to the actual person expected to be assuming the role may not be acted 
upon if that person is sick and being replaced, or if the shift terminates before the 
message reaches her or him. 

As stated above, each role is registered in the OMS data base, along with a list 
of which people are allowed to assume each role. Associated with each person in this 
list are two things. First is a list of which commands the person is authorized to enter 
(execute) while assuming that role; actually other "authorizations" are listed here too, 
such as whether the person acting in the role can be assigned action on a message. 
Second is an indication of which aspects of the data base are shared in common with all 
people assuming the role, and which aspects are personal, that is, independent of other 
people assuming the same role. These "aspects" include everything about the data 
base except the messages and data-base indexes themselves, which are always shared 
by everyone that assumes the role, to prevent confusion. (Since the "desk-lop bins" 
and "file cabinet" are in effect mutually exclusive parts of an office's storage, they are 
always either all personal or all common.) 

The utility of authorizing certain people, but not others, lo perform certain 
commands while assuming a role should be clear; for example, an administrative 
assistant might be authorized to assume the supervisor's role to read and file all 
messages except those marked personal. 

To see the utility of common versus personal aspects of a role's data base, 
consider the above examples. A shift-supervisor role could be registered with all 
aspects common to all users of that role, if that were the desired mode of operation, 
so that, for example, a message seen by one person would appear to have been seen 
by the other people assuming the role also. Thus, each person assumin1 the role has 
complete authority (and responsibility) for changing the role's data base in any way. 
On the other hand, when an administrative assistant uses OMS and assumes the 
supervisor's role, the role data might say that seeina a messa1e would remove a •not-



133 PROGRAMMING TECHNOLOGY GROUP 

seen" tag from the message only for the assistant and not for the supervisor, while 
sending a message would add a "sent" tag for both of them. Thus, the assistant may 
have t1uthority to send messages (presumably routine ones) for the supervisor (as a 
role) but the system must be clever and not change the supervisor's "seen" tags when 
the assistant is t1cting the supervisor's rol~. 

This role mechanism provides a useful way to construct a public "bulletin board." 
A bulletin board is a role that can be assumed by any person at all, but l'l~ vttriable 
aspects of the bulletin board data base are shared in common: each person can keep 
track, with the "text-not-seen" tag, of which messages she or he has not read~ each 
person can note, with the "pending" bin, which messages he or she ought to tali.. ~ome 

action on; each person can display or print messages in personalized formats; ettch 
person can forward a message to any user to obtain a copy (really just a citation) in a 
personal dttta base; and so forth. 

The notion of treating a bulletin board as a role is quite natural, though perhaps 
surprising when one first encounters it. In a typical paper-wo~ io office environment, 
one must go to a particular place (desk, work station, etc.) to as::;ume a functional role. 
Similarly, one must go to a particular public place to scan and read messages posted on 
a public bulletin board. It is relatively difficult to act as a person or role while reading 
messages on a bulletin board, simply because one is not physically in the place where 
one has the facilities and tools for taking action. If one wants a copy of a bulletin 
board message, one has to use the nearby copying machine and then carry the copy 
back to one's work station. A OMS bulletin board is thus a close analog of one in the 
paper world, with the additional abilities to personalize it a great deal. 

2. Other Changes 

To supplement the many ways that OMS aids formal communication, both within 
an organization and between it and the outside world, there is now a way for a user to 
send transient messtiges, called !!!Eld~· An alert is not stored in the data base; it is 
just displayed on the recipient's terminal. There are two kinds of alerts: "must-see" 
alerts are gur1ranteed to be seen by the user, either immediately or at the beginning of 
his or her next session; "see-if-here" alerts are either $een immediately by the user 
(if he or she is currently using OMS) or thrown away. Alerts are also sent by OMS 
itself, to inform users of changes in the data base of which they should be aware. For 
example, when OMS delivers a new message to a user, it sends a "see-if-here" alert: 
if the user is currently using OMS, she or he may want to see the message 
immediately; otherwise, he or she will no doubt see the message during the next 
session anyway. 

The top line of t1 OMS terminal's display is now used as a status line. (The top 
line was previously used to "flash" short responses to the user's commands. Command 
responses are now put right next to the displayed command on the screen.) On the 
status line, the "virtual terminal" module displays current status information, including 
the user's name and current role, operating-system load, the amount of central­
computer processing time used so far, and the date and time. 

A OMS folder (the analog of a manila file folder in a conventional office) now has 
a kind of audit trail stored with it: a "log" that simply lists all chances made to the 



PROGRAMMING TECHNOLOGY GROUP 134 

folder, namely adding and removing messages and changing the folder itself (for 
example, access to it). To complement this unstructured log, the "virtual terminal" 
module of OMS now has the capability to search the text currently displayed in the 
terminal's "information window,ff both visible text and that which is scrolled out of 
view; thus a user can find references to a given message in a folder log by first 
displaying the log on the termincil and then searching in the terminal for the message's 
identifying number. A OMS folder now can have annotations stored with it, in analogy 
lo written annotations on the outside or in(;ide of a manila folder; a user with any 
access at all to the folder can see all its annotations. 

Fixed sequences of commands can now be "canned" and put in the data base by 
a privileged user, and thereafter other users can activate a command sequence and 
then copy the commands in order, one at a time, from the data base to the active 
(bottom) line of the terminal's "command window.ff Each command can in turn be 
entered as it is or modified ·in the terminal first. "Canned" command sequences are 
useful both for demonstrating or teaching the features of the message service and for 
entering frequently-used but (mostly) unchanging command sequences. 

A search-cost estimator was added, which estimates how many messages must 
be examined (rather than found through indexes) in an imminent search and, if the 
number exceeds a threshold, requires the user to confirm the need for the lengthy 
search before proceeding. The estimate is the best one available for the 
implementation that is both conservative and not itself lime-consuming. 

Soon after the new TOPS-20 system (see below) was installed, OMS was easily 
converted to run under it as well as under the Tenex operating system. A standard 
script of commands ran about three limes as fast as on a PDP-10 KA processor. 

0. OTHER PROJECTS 

In January t 978 the Laboratory took delivery of a DECsystem-2050T. Design 
work began on modifications to the TOPS-20 operating system to support device­
independent display-terminal use by user programs (Gerson). 

The hardware configuration of the new system includes: 

a. 512 x 1024 x 36 bits of core storage (two MB20 units) 

b. 2 x 1024 x 36 bits of semiconductor cache storage 

c. 120 million x 36 bits of disk storage (three RP06 units on one RH20 channel), 
divided by the operating system into two units of "public structure" and one unit 
of demountable structure 

d. two nine-track tape drives (TU45 units on one RH20 channel) 

e. 32 terminal lines (two OHi I units) 



135 PROGRAMMING TECHNOLOGY GROUP 

f. an ARPA network interface, but with no available connection to the network as 
yet (one is on order). 

2. Keyword Extractio_n and Document Clas~ification 

Work continued this year at a relatively low level on the keyword extractor and 
the document classifier which is based on it (Dill) [ 1]. Most of the effort was devoted 
to testing the document classifier in order to determine its possible usefulness for 
severnl t1pplications, t1nd to gain insight on the most desirable course its development 
should follow in the future. As a consequence, the document classifier is in the 
process of.being extensively modified at this time. 

The ability of the document classifier to identify the topic area of an English 
paragraph would suggest at least two obvious general applications: the automatic 
classification of documents (such as the preparation of a newspaper index), and the 
detection and identification of the mention of a given topic area or areas. The current 
emphasis is on the latter application. 

The document classifier is automatic, and it takes advantage of information 
provided by EPARSE (an English parser) [I] and the keyword extractor. EPARSE 
parses an English sentence, providing syntactic information such as the parts of speech 
of the words in the sentence and their functions, in addition to morphological 
information and information stored directly in the dictionary. It also provides limited 
semantic inf or ma ti on both by specifying the position of the various words in a hierarchy 
of all the words in its dictionary--in which objects are specified as parts or types of 
other objects (the "kind" relation)--and by specifying a context for many nouns, verbs, 
and adjectives. A context is the "topic of discussion" in which a word is likely to occur 
(for example, "calculus" would probably be mentioned in the context MATHEMATICS). 
From this information, the keyword extractor selects what it believes to be the most 
useful keywords in the document. 

The document classifier t1ltempts to match these keywords against words which 
have been previously determined to represent certain categories. The information 
about categories is contained in a structure called a model. When a keyword in any of 
the categories matches a keyword from a document, the weight (a real number) 
immediately following it is added to a cumulative total which is used as an indicator of 
how well that particular document fits the model of categories in which the particular 
keyword appears. If, when the keywords are exhausted, the total is greater than a 
model's threshold, the document is classified with the name of the model and the 
accumulated weight. 

A typical model looks like this: 

Name of model: TAXATION 
Threshold: 1. 7 

Classifiers: "tax credit" ( 1.0), "gasoline tax" ( 1.0), "luxury tax" ( 1.0), "automobile 
tax" ( 1.0), "import duty" ( 1.0), "tax administration" ( 1.0), "excise tax" ( 1.0), 
"social security" (0.6), "value-added tax" ( 1.0), "property tax" ( l.0), "sales tax• 
( 1.0), "income tax" ( 1.0) 



PROGRAMMING TECHNOLOGY GROUP 136 

Key nouM: "tax" (0.8), "crop" (0.8) 
Key-noun meanings: TAX ( l .0) 
Key proper names: "internal revenue service" ( 1.0) 
Key verbs: "tax" (0.6) 
Key-verb meanings: [none] 
Verb-object combinations: "deduct tax" ( 1.0), "evade tax" ( 1.0), "pay tax" ( 1.0), 

"collect tax" ( J .0) 
Subject-verb combinations: [none] 
Transformations: [none] 
Generalizations: [none] 
Contexts: .PUBLIC-ADMINISTRATION (0.2), ECONOMICS (0.2), GOVERNMENT (0.2), 

MONEY (0.2) 
Unknowns: "revenue" (0.4), "treasury" (0.4) 

Tes ting of the keyword extractor and document classifier against extracts from 
newspapers has indicated that the most useful information for classification is the 
limited semantic informRtion provided by the parser, particularly the contextual 
information. This is not particularly surprising, since we want to classify most of the 
documents on the basis of their topic areas, which are exactly the contexts in which 
they are likely to occur. This information cannot be provided in any detail without 
some sort of syntactic analysis, because it depends on the parser's ability to provide 
syntactic constraints on word meanings in the sentence. Thus, the contextual 
information is derived from entire sentences and paragraphs; not from single words. 
For example, a document on the subject of calculus would probably be in the topic 
area of MATHEMATICS, and we might want to classify it accordingly. However, the 
word "calculus" also occurs in the domain of medicine, for an abnormal deposit, such as 
a kidney stone. In order to distinguish between these two meanings, we would 
probably have to use contextual information derived from other parts of the sentence, 
paragraph and article, which may be constrained by the syntax of the sentences : in 
which they occur. 

A simple but powerful parser for a restricted subset of the English language for 
use as the human interface in a restricted domain was developed (Anderson, Blank, 
Lebling). The parser handles nouns, verbs, direct objects, indirect objects, adjectives 
and incomplete specifict1tion, the last by responding with a question. The parser was 
tested in a game situation called "Dungeon." The capability of the parser to handle a 
larger domain such as that of the OMS world of office automation was also investigated 
(Anderson, Broos, Lebling). 

The Dungeon world consists mainly of objects (nouns) and actions (verbs). The 
parser handles mainly imperative sentences, plus a few simple interrogatives ("What is 
a grue?"). The relationship between nouns and verbs in the parser is divided between 
the verbs and the objects being acted upon. For example, in Dungeon, the user's 
sentence "Give bomb to thief" is evaluated by allowing the "thief" (an object) to have 
the first crack at the parsed sentence. The thief's "give" component (a function or 
"handler") checks to see if a bomb Is being given and, if so, refuses to accept it, 
printing an appropriate message and terminating the evaluation. The "troll," however, 
It not so smart. If one attempted to live the bomb to the troll, which has no "live" 



137 PROGRAMMING TECHNOLOGY GROUP 

handler, the "bomb" would be given a chance to handle the sentence. If the bomb had 
no "give" handler, or if its "give" handler saw nothing interesting about the sentence, 
the sentence would eventually be handled by the global "give" handler by defc-ult. 

A parallel example exists in office management scenarios. If a shipping clerk told 
the system to "Ship fuel on United #564", it would recognize "United u564" as a 
commercial air flight (a class of objects) and would further recognize that it is a 
passenger flight as opposed to freight. The passenger flight handler could examine the 
object of the sentence "fuel," sec that ,pne of its attributes was "dangerous," tell the 
clerk that dangerous cargo cannot be shipped on commercial passenger flights, and 
terminate the evaluation. If it were a freight flight, there would be no reason to check 
the attributes of the cargo, so the indirect object handler would let the parse continue. 
The direct object, "fuel", would get next crack at the sentence. It may look at the 
indirect object and test its own attributes to see if the pressure and temperature 
changes encountered in air freight render that mode of transportation unsuitable. 

At first glance, parcelling the decisions out to so many different units of the 
model appears to be a mistake, inviting confusion. However, it makes a lot of sense to 
localize the decisions in the units most directly affected. In the above example, the air 
freight handler doesn't need to know anything about fuel except that it is dangerous. 
It has its own small set of rules, one of which is that you can't carry dangerous cargo 
on a passenger flight. Presumably, the rules were defined by some expert i11 the air 
freight business, who knows nothing about the effects of temperature and pressure 
changes on different types of fuel. Such checks are properly made by the fuel module, 
whose rules are defined by a fuel expert. If the evaluation managed to get by both 
modules, it would be handled by the "ship" function, which would simply check to see if 
the types of the object and indirect object were legal for the action being performed, 
i.e., it would make sure that the direct object was a physical object and that the 
indirect object was a mode of transportation. Checks about the availability of the 
flight in question and whether the proposed cargo will fit would properly be the 
province of the air freight module. 

Incomplete instructions would also be handled by the different modules. "Ship 
fuel" would elicit the response "By what means of transportation" from the "ship" 
handler, which would notice the Absence of any indirect object. If the user had been 
"talking" about fuel, however, "Ship on United tt564" could easily supply the direct 
object. It would of course, have to inform the user of what assumptions it made, such 
as "Fuel shipped on United airlines freight flight tt564, departing National airport at 
12:02 p.m." Similarly, "Ship fuel by air" might cause the "air" handler to query the user 
as to what airline, what flight, etc., or it might be able to schedule the shipment on the 
first available flight with enough space to handle it, if it had access to that type of 
Information. 

A mechanism such as this would provide a way to make the system "smarter" 
Incrementally. For example, the "air" handler mentioned above coufd be implemented in 
the simple way at first, and upgraded later when the air freight reservation da.ta 
bec1tme available. 

One of the extensions of the parser which would have to be made would be to 
enable it to understand and handle more than one object with the same name. 



PROGRAMMING TECHNOLOGY GROUP 138 

Currently, there is only one thief, one troll, etc., although there are objects of the same 
type that are distinguished by color. The parser would have lo be able to handle 
similar objects as an aggregate ("ships"), as the subset of an aggregate ("container 
ships"), as a dync:tmic subset ("container ships on the East coast with cargoes of 
machine parts"), and as individuals ("The Mara Maru"). Some actions may be applied 
only to individuals of a class, some only to aggregates, and some to either. The 
extended parser would have to understand set operators. Also, the mechanisms for 
resolving "it" would have to be extended to "them." 

The illusion of English understanding created by the current parser in the game 
Dungeon is due in large part to the fact that the user is unknowingly using a very 
restricted set of nouns and verbs. The restricted nature of this set is not normally 
apparent to the user because the nature of the game itself dictates what operations 
and objects are appropriate. Thus users restrict their own choices naturally. Whether 
this could be carried over into an office situation where the range of actions and 
objects is finite, but much larger than the range in the Dungeon, is still an open 
question. 

4. Recognition of Cursiy~$cri.J!! 

A computer recognition procedure can be defined as one in which the input is 
some representation of nn object and the output is another representation of the same 
object. In the case of computer recognition of cursive script, the input consists of the 
cursive stroke(s) used to represent some word, and the output is the coded character­
string representation of the same word. 

Cursive-script recognizers can be separated into two categories: char~cter­
oriented Jtnd word-oriented. A character-oriented recognizer attempts to separate 
those parts of a script stroke that correspond to the individual letters in the word. 
The cursive representation of each segment identified as a character is then replaced 
with its coded character representation. 

There are two difficulties with character-oriented systems. The first is that the 
probability of correctly recognizing a script sample goes down exponentially as the 
length of the word represented by the script goes up. For a word of length N, the 
probability of correctly recognizing it is the Nth power of the probability of recognizing 
a single character. Character-oriented recognizers also have a disadvantage in that 
they can produce a character string that is not a legal word [8,9l 

Word-oriented recognizers operate by translating the cursive script of an entire 
word into the character representation of an entire word. This is done by determining 
general attributes of the script sample, such as the number of loops. The recognizer 
then uses the attributes that have been determined from a sample to ref er to a data 
base. This data base contains the information about attributes for all the words the 
recognizer is expected to recognize. Only the attributes for leeal words are stored in 
the data base, so only legal words can result, no matter what the script sample looks 
like. The disadvantage of this type of recognizer is that a mistake It elobel to the 
word and not localized to a character. Thus the recopzer In makins • mistake cotAd 
produce a word which in no obvious way resembfes the intended word [7,IOJ 



139 PROGRAMMING TECHNOLOGY GROUP 

In an underg.raduale thesis this year, Platt reported on a word-oriented 
recognizing system called SCRAP (SCRipt Attribute Processor)[ 11]. SCRAP was 
designed to produce more than one result for each sample, with information on the 
degree of fit of the sample lo the attributes in the data base. Some of the operating 
characteristics of the SCRAP program were determined by experimentation using over 
a thousand samples of words recorded from nine subjects. 

SCRAP takes AS input the coordinate data from a script sample and produces as 
output a string which is the ASCII representation of a word corresponding to the 
unknown sample. Actually SCRAP produces a list of strings, and thus SCRAP could be 
useful tts rt front-end processor for a more advanced system, such as a text-editing or 
interpersonal mcsst1gc system (see above). This list of strings is ordered in terms of 
how well ettch word matches the unknown sample as a possible result, with the first 
words being the better matches. If, because of the writer's style, the sample does not 
fit ideal script form, then SCRAP may not produce the intended word as the best 
possible mttlch, but the intended word may be one of the other strings produced. This 
would ttllow a program that c.an use ridditional information, such as context, to process 
the list produced by SCRAP. Such a system could produce a more reliable recognition 
of a sample than could a recognizer alone, either a word- or a c;haracter-oriented 
recognizer. 

The data base used by SCRAP is formed with data taken from real samples of 
script. Thus another function of SCRAP is to store information concerning attributes as 
well as to retrieve them. In addition SCRAP can be used lo describe the distribution 
of word objects in the dt1ta sp<1ce imposed by the partitioning of the data space by the 
attributes being used. The seven attributes used by SCRAP are the number of 
strokes, the number of ascending characters, the number of descending characters, the 
number of local vertical maxima, the total amount of curvature, the total amount of 
positive (counter-clockwise) curvature, and the number of times the curvature changes 
sign. 

An undergraduate thesis [ 12] by Butt describes the design and implementation 
of a bi-lingual text entry and editing system for Urdu and English. It is an interactive 
character-oriented system and uses variable width characters displayed on a raster­
scan bit-map display monitor. The graphic representations used for the Urdu 
characters are shindardized so as to bring out the similarities between the different 
forms of each character. The system is implemented in USP and, in addition to the 
standard editing features, allows mixing English and Urdu. 

Urdu is one of the most widely used languages in the Indian subcontinent. 
Besides being the second official language of the people of Pakistan, Urdu is also used 
in many parts of India. 

Urdu is similar in script to Arabic and Persian. It is written from right to left and 
the characters have a number of different graphical representations although there are 
only thirty seven (37) charac,ters in the alphabet. The graphic symbol used for a 
character depends on the position of the character in the word and its right and left 
neighbors. The symbols are standardized and would not appear exactly as they would 



PROGRAMMING TECHNOLOGY GROUP 140 

in cursive script. When writing lkdu by hand, one has a greater degree of freedom 
and as A result the script is highly embellished. 

The keyboard presents only 37 characters to the user and the appropriate form 
of the charittter is ;iutom;itically chosen by the editor. Furthermore the editor chooses 
proper alternate forms as necessary when characters are inserted or deleted during an 
edit operation. The different graphical representations of the characters have 
different widths, in order to make the words readable, and the editor takes the 
v•iable widths into Recount to display the text in its proper connected form. 



141 PROGRAMMING TECHNOLOGY GROUP 

REFERENCES 

Nole: The form XXX.nn.nn denotes a Programming Technology Group document. 

1. M.I. T. Laboratory for Computer Science. Progress Report XIV. Cambridge, Ma. 
1978. 

2. W-~~-~~!'s __ N_~~--C_olleg!.~J~ Dictionary. Springfield, Ma.: G. & C. Merriam 
Company, J 974. 

3. Galley, S.W. and Pfister, Greg. ~DL Primer and Manual. Cambridge, Ma.: M.l.T. 
Laboratory for Computer Science, J 977. 

4. DECSYSTEM-20 User's Guide. Maynard, Ma.: Digital Equipment Corporation, 
1978. 

5. Eastlake, D.; Greenblatt, J.; Holloway, J.; Knight, T.; and Nelson, S. ITS---1.§. 
Ret~rence M~".1!!.!lJ. Cambridge, Ma.: M.l.T. Laboratory for Computer Science, 
I 969. 

6. Woods, William A. "Transition Network Grammars for Natural language Analysis." 
CO'!'_f!!Uni_~!!!!~ns of the Association for Computing Machinery, Vol 13 No 1 O, 
(I 970). 

7. Kolers, Paul A. and Eden, Murray, eds. Recognizing Patterns. Cambridge, Ma.: 
M.I. T. Press, 1968. 

8. Sayre, Kenneth M. Machine RecognitiQn of Handwritten Words; A Project Report. 
Notre Dame, In.: Philosophic Institute for Artificial Intelligence, University of 
Notre Dame, J 973. 

9. Frishkopf and Harmon, "Machine Reading of Cursive Script." Information Theory. 
Edited by Colin Cherry. Washington D.C.: Butterworths, J 961. 

10. Earnest, L.D. "Machine Recognition of Cursive Writing." Information Processing. 
1%~ . 

11. Platt, Timothy J. "A Preprocessor for a Script Recognition System." unpublished 
S.B. Thesis, ~UT., Department of Electrical Engineering and Computer Science, 
May I 978. 

12. ·Butt, Nayyar. "A Bi-lingual Text Entry and Editing System for Urdu/English." 
unpublished S.B. Thesis, M.I. T., Department of Electrical Engineering and 
Computer Science, May l 978. 



PROGRAMMING TECHNOLOGY GROUP 142 

Publications 

1. Licklider, J.C.R. "Future Directions in Computer Networking Applications." 
Computer Netw~_kin~he University: Success and Potential, Proceedings 
EOUCOM F!!!!_~o_!tlerence 1976. Chapter 4, 27-39. Princeton, N.J.: 
lnteruniversity Communications Council, 1977. 

2. Licklider, J.C.R. "Library Network: Should They Deal with Containers or Contents 
of Knowledge?" ~O.,!!IEUte~~ctworking in the University: Success and Potenli.!!.i 
Proceedings EDUC_OM Fall C<!_nference 1976. Chapter 15, 113-117. Princeton, 
N.J.: lnteruniversity Communications Council, I 977. 

3. Louis T. Rader et Al. ~ev!ew of a New Data Management System for the Social 
Secu.!_ity Admini~l.!.Ation. Panel on Social Security Administration Data Management 
System, Committee on T elecommunications--Computer Applications, Assembly of 
Engineering, National Research Council, National Academy of Sciences, Washington 
o.c., 1978. 

4. Louis T. Rader et al. Review of Requirements Definition and Systems 
Architecture of a New Data Management System for the Social Security 
Administration. Panel on Social Security Administration Data Management System, 
Committee on Telecommunications--Computer Applications, Assembly of 
Engineering, National Research Council, National Academy of Sciences, Washington 
0.C., I 978. 

Theses C~_'!'Pl~~-c! 

1. Butt, Nayyar. "A Bi-lingual Text Entry and Editing System for Urdu/English." 
unpublished S.B. Thesis, M.1.T., Department of Electrical Engineering and 
Computer Science, May 1978. 

2. Platt, Timothy J. "A Preprocessor for a Script Recognition System." unpublished 
S.B. Thesis, M.l.T., Department of Electrical Engineering and Computer Science, 
May 1978. 

1. Vezza, Albert. "Computers as a Communication Tool for Office and Home." M.l.T. 
Alumni Summer College, Cambridge, Ma. July 10-16, 1977. 

2. Licklider, J.C.R. "Human Factors in Message Systems." Session on Electronic Mail 
I: Design. IFIP Congress 77. Toronto, Ontario, Canada. August 11, 1977. 

3. Vezza, Albert. "Design of an Electronic Message System." Session on Electronic 
Mail I: Message System Designers. IFIP Congress 77. Toronto, Ontario, Canada. 
August 11, 1977. 

4. Licklider, J.C.R. "Communication Between Systems Scientists and Human Factors 
Engineers." NATO Meeting. Brussels, Belliurn. October 25-27, 1977. 



143 PROGRAMMING TECHNOLOGY GROUP 

5. Licklider, J.C.R 'libraries and Information Networks." Conference on Library 
~Y-~!ems. Pittsburgh, Pennsylvania. November 15, 1977. 

6. Licklider, J.C.R. "Televislas Revisited: Technology-Based Opportunities for 
Public Television." Carnegie Commission on the Future of Public Broadcasting. 
Columbia, S.C. March 16, 1978. 

7. Vezza, Albert. "Electronic Message Systems." Industrial liaison Symposium on 
Office Automation, M.l.T., Cambridge, Ma. May 1978. 



K. T. Pogran, Group Leader 

C. Schieck 

P. Baskin 
O. Feingold 

145 

TECHNICAL SERVICES 

Research Staff 

Undergraduate Students 

Support Staff 

J. D. Ricchio 

(-~~lWG PAGI - F~ 
r ILAJUC _I 



TECHNICAL SERVICES GROUP 147 TECHNICAL SERVICES GROUP 

TECHNICAL SERVICES 

The Technical Services group was formed on January 1, 1978 to fill a variety of 
Laboratory wide needs that have arisen as a result of our growing computational 
resources and expected future activities. The functions performed by the group 
include: 

1. Completion and maintenance of hardware for the LCS Network. 

2. Development and maintenance of standards for intra-laboratory communications, 
terminals and related equipment. 

3. Liaison for the Laboratory's ARPANET IMP and TIP. 

4. Partial maintenance of LCS computers, terminals, and other peripherals; in 
particular, maintenance of the laboratory's collection of approximately 75 Digital 
Equipment Corporation VT-52 CRT terminals. 

5. Development, construction within the laboratory, and sub-contracting to outside 
organizations of special equipment, e.g. interfaces, as required by new equipment 
acquisitions and LCS research group needs. 

6. Development and maintenance of an LCS electronics laboratory facility for the 
construction and maintenance of equipment outlined above. 

From January through July of 1978, the bulk of the work of the group centered 
around the development and debugging of the local Network lnterf ace (LNI) for the LCS 
Network. This work is described in the "Local Area Network Working Group" section 
of . this report. 



149 

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS 

.·.f*"-·~-
f:tl 

'~ 
~ED11'G PAGE NOT FILMED 

ILANK __ __., 



151 

TECHNICAL MEMORANDA 

TM-10 Jackson, James N. 
Interactive Design Coordination 

for the Building Industry 
June 1970 

* TM-11 Ward, Philip W. 
Description and Flow Chart of the 

PDP- 7 / 9 Communications Package 
July 1970 

* TM-12 Graham, Robert M. 
File Management and Related Topics 

(Formerly Programming Linguistics 
Group Memo No. 6, June 12, 1970) 

September 1970 

* TM-13 Graham, Robert M. 
Use of High Level Languages 

for Systems Programming 
(Formerly Programming Linguistics 
Group Memo No. 2, November 20, 1969) 

September I 970 

*TM-14 Vogt, Carla M. 
Suspension of Processes in a Multi­

processing Computer System 
(Based on M.S. Thesis, EE Dept., 

February l 970) 
September I 970 

*TM-15 Zilles, Stephen N. 
An Expansion of the Data Structuring 

Capabilities of PAL 
(Based on M.S. Thesis, EE Dept., 
Junt:1 1970) 

October 1970 

TMs 1-9 were never issued. 
,,,,,. _J~-·~·-

PUBLICATIONS 

AD 708-400 

AD 711-379 

AO 712-068 

AD 711-965 

AD 713-989 

AD 720-761 
:. 

., , 1 

: i": --PUCll>IMG PAGE NOT FILMED 
:, ' BLANK i __ 



153 PUBLICATIONS 

tTM-24 Goldstein, Robert C., and Alois J. Strnad 
The MacAIMS Data Management System 
April 1971 

AO 721-620 

TM-25 Goldstein, Robert C. 
Helping People Think 
April 1971 

AD 721-998 

TM-26 lazeolla, Giuseppe ~· 
Modeling and Decomposition of 

Information Systems for Performance 
Evaluation 

June 1971 
AO 733-965 

tTM-27 Bagchi, Amitava 
Economy of Descriptions and 

Minimal Indices 
January I 972 

AD 736-960 

TM-28 Wong, Richard 
Construction Heuristics for Geometry 

and a Vector Algebra Representation 
of Geometry 

June 1972 
AO 743-487 

•TM-29 Hossley, Robert and Charles Rackoff 
The Emptiness Problem for Automata 

on Infinite Trees 
Spring 1972 

AD 747-250 

tTM-30 McCray, William A. 
SIM360: A S/360 Simulator 
(Based on 8.S. Thesis, ME Dept., May 1972, 
October I 972 

AO 749-365 

TM-31 Bonneau, Richard J. 
A Class of Finite Computation Structures 

Supporting the Fast Fourier Transform 
March 1973 

AO 757-787 



PUBLICATIONS 154 

TM-32 Moll, Robert 
An Operator Embedding Theorem for Complexity 

Classes of Recursive Functions 
May J 973 

AD 759-999 

•TM-33 Ferrante, Jeanne and Charles Rackoff 
A Decision Procedure for the First Order 

Theory of Real Addition with Order 
May 1973 

AD 760-000 

•TM-34 Bonneau, Richard J. 
Polynomial Exponentiation: The Fast 

Fourier Transform Revisited 
June 1973 

PB 221-742 

TM-35 Bonneau, Richard J. 
An Interactive Implementation of the Todd-

Coxeter Algorithm 
December 1973 

AD 770-565 

TM-36 Geiger, Steven P. 
A User's Guide to the Macro Conlrol lanpge 
December 1973 

AD 771-435 

•TM-37 Schoenhage, A. 
Real-Time Simulation of Multidimensional 

Turing Machines by Storage Modification 
Machines 

December 1 973 
PB 226-103/AS 

•TM-38 Meyer, Albert R. 
Weak Monadic Second Order Theory of 

Succesor is not Elementary-Recursive 
December 1973 

PB 226-514/AS 

TM-39 Meyer, Albert R. 
Discrete Computation: Theory and ()pen 

Problems 
January 1974 

PB 226-836/ AS 



155 PUBLICATIONS 

TM-40 Paterson, Michael S., Michael J. Fischer 
and Albert R. Meyer 

An Improved Overlap Argument for On-Line 
Multiplication 

January 1974 
AD 773-137 

TM-41 Fischer, Michael J., and Michael S. Paterson 
String-Matching and Other Products 
January 1974 

AD 773-138 

*TM-42 Rackoff, Charles 
On the Complexity of the Theories of Weak 

Direct Products 
January 1974 

PB 228-459/ AS 

TM-43 Fischer, Michael J., and Michael O. Rabin 
Super-Exponential Complexity of Presburger 

Arithmetic 
February 1974 

AO 775-004 

TM-44 Pless, Vera 
Symmetry Codes and their Invariant Subcodes 
May 1974 

AD 780-243 

*TM-45 Fischer, Michael J., and Larry J. Stockmeyer 
Fast On-Line Integer Multiplication 
May 1974 

AD 779-889 

tTM-46 Kedem, Zvi M. 
Combining Dimensionality and Rate of Growth 

Arguments for Establishing lower Bounds 
on the Number of Multiplications 

June 1974 
PB 232-969/AS 

TM-47 Pless, Vera 
Mathematical Foundations of Flip-Flops 
June 1974 

AD 780-901 



PUBLICATIONS 156 

TM-48 kedem, Zvi M. 
The Reduction Method for Establishing 

Lower Bounds on the Number of Adcitions 
June 1974 

PB 233-538/AS 

TM-49 Pless, Vera 
Complete Classification of (24,12) and (22,11) 

Self-Dual Codes 
June 1974 

AD 781-335 

TM-50 Benedict, G. Gordon 
An Enciphering Module for Multics 
B.S. Thesis, EE Dept. 
July I 974 

AD 782-658 

tTM-51 Aiello, Jack M. 
An Investigation of Current language Support for 

the Data Requirements of Structured Programninc 
M.S. & E.E. Theses, EE Dept. 
September 1974 

PB 236-8 I 5/ AS 

TM-52 Lind, John C. 
Computing In Logarithmic Space 
September 1974 

PB 236-167/AS 

TM-53 Bengelloun, Safwan A. 
MDC-Programmer: A Muddle-to Datalanguage 

Translator for Information Retrieval 
B.S. Thesis, EE Dept. 
October 1974 

AD 786-754 

tTM-54 Meyer, Albert. R. 
The Inherent Computation Complexity of Theories 

of Ordered Sets: A Brief Survey 
October 1974 

PB 237-200/AS 

TM-55 Hsieh, Wen N., Larry H. Harper and John E. Savqe 
A Class of Boolean Functions with linear 

Combinatorial Complexity 
October 1974 

PB 237-206/ AS 



157 PUBLICATIONS 

TM-56 Gorry, G. Anthony 
Research on Expert Systems 
December 1974 

TM-57 Levin, Michael 
On Bateson's Logical Levels of Learninc 
February l 975 

TM-58 Qualitz, Joseph E. 
Decidability of Equivalence for a Class 

of Data Flow. Schemas 
March 1975 

PB 237-033/AS 

tTM-59 Hack, Michel 
Decision Problems for Petri Nets and Vector 

Addition Systems 
March 1975 

PB 231-916/AS 

TM-60 Weiss, Randell B. 
CAMAC; Group Manipulation System 
March 1975 

PB 240-495/ AS 

TM-61 Dennis, Jack B. 
First Version of a Data Flow Procedure Lancuage 
May l 975 

TM-62 Patil, Suhas S. 
An Asynchronous Logic Array 
May 1975 

TM-63 Pless, Vera 
Encryption Schemes for Comput~r Confidentiality 
May 1975 

AD AOI0-217 

tTM-64 Weiss, Randell B. 
Finding Isomorph Classes for Combinatorial Structures 
M.S. Thesis, EE Dept. 
June 1975 

TM-65 Fischer, Michael J. 
The Complexity Necation-Limited Networks -

A Brief Survey 
June 1975 



PUBLICATIONS 158 

•TM-66 Leung, Clement 
Formal Properties of Well-Formed Dale 

Flow Schemas 
B.S., M.S. It· E.E. Theses, EE Dept. 
June J 975 

•TM-67 Cardoza, Edward E. 
Computational Complexity of the Word Problem 

for Commutative Semigroups 
M.S. Thesis, EE & CS Dept. 
October 1 975 

TM-68 Weng, Kung-Song 
Stream-Oriented Computation in RectM"sive Dela Flow Schemas 
M.S. Thesis, EE &· CS Dept. 
October 1975 

•TM-69 Bayer, Paul J. 
Improved Bounds on the Costs of Optimal and 

Balanced Binary Search Trees 
M.S. Thesis, EE & CS Dept. 
November 1975 

TM-70 Ruth, Gregory R. 
Automatic Design of Data Processlnc Systems 
February 1976 

•TM-71 Rivest, Ronald 

AD A023-451 

On the Worst-Case of Behavior of Slrinc-Seerchlnc Alcorithml 
April 1976 

•TM-72 Ruth, Gregory R. 
Prolosyslem I: An Automatic ProerM'nl'llinc System Prototype 
July 1976 

TM-73 Rivest, Ronald 
Optimal Arrangement of Keys in 1 Hnh Table 
July 1976 

TM-74 Melvania, Nikhil 
The Design of a Modular Laboratory for Control Robotics 
M.S. Thesis, EE & C~ Dept. 
September 1976 

AD A026-912 

AD A030-418 



159 

TM-75 Yao, Andrew C., and Ronald I. Rivest 
K + J Heads are Beller than K 
September 1 976 

•TM-76 Bloniaz, Peter A., Michael J. Fischer and Albert R. Meyer 

PUBLICA TIC>NS 

AD A030-008 

A Nole on the Average Time to Compute Transitive Closwes 
September 1976 

TM- 77 Mok, Aloysius IC. 
Task Scheduling in the Control Robotics Environment 
M.S. Thesis, EE & CS Oepl 
September 1 976 

•TM-78 Benjamin, Arthur J. 
Improving Information Storage Reliability 

Using a Data Network 
M.S. Thesis, EE & CS Dept. 
October 1976 

TM-79 Brow:!, Gretchen P. 
A System to Process Dialogue: A Progress Report 
October 19.76 

TM-80 Even, Shimon 
The Max Flow Algorittvn of Clinic and Karzanov: 

An Exposition 
December 1976 

TM-81 Gifford, David K. 
Hardware Estimation of a Process' Primary 

Memory Requirements 
S.S. Thesis, EE & CS Dept. 
January 1977 

TM-82 Rivest, Ronald l., Adi Shamir and Len Ademan 
A Method for Obtaining Digital Signatwes and 

Public-Key Cryptosystems 

AD A030-402 

AD A033-394 

AD A033-276 

(formerly On Digital Signatwes and Public-Key Cryptosystems) 
April 1977 

AD A039-036 



PUBLICATIONS 160 

* TM-83 Baratz, Alan E. 
Construction and Analysis of Network Flow Problem 

which Forces Karzanov Al&orithm to ()(n3) Rwnns 
Time 

April 1977 

•TM-84 Rivest, Ronald L., and Vaughan R. Pratt 
The Mutual Exclusion Problem for Unreliable Processes 
April 1977 

•TM-85 Shamir, Adi . 
Finding Minimum Cutsets in Reducible Graphs 
June 1977 

TM-86 Szolovits, Peter, Lowell B. Hawkinson and William A. Marlin 
An Overview of OWL, A Lanaua1e for 

Knowledge Representation 
June 1977 

TM-87 Clark, David., editor 
Ancillary Reports: Kernel Desi1n Project 
June 1977 

TM-88 Lloyd, Errol L. 
On Triangulations of a Set of Points in the Plane 
M.S. Thesis, EE I(: CS Dept. 
Jufy 1977 

TM-89 Rodriguez, Humberto Jr. 
Measuring User Characteristics on the Multics System 
B.S. Thesis, EE & CS Dept. 
August 1977 

TM-90 d'Oliveira, Cecilia R. 
An Analysis of Computer Decentralization 
B.S. Thesis, EE & CS Dept. 
October 1 977 

TM-91 Shamir, Adi 
Factoring Numbers In 0 (log n) Arithmetic Steps 
November 1977 

AD A040-698 

AD A04l-372 

AD A045-526 . 

AD A047-709 



161 PUBLICATIONS 

TM-92 Misunas, David P. 
Report on the Workshop on Data Flow 

Computer and Program Organization 
November 1977 

TM-93 Amikura, Katsuhiko 
A Logic Design for the Cell Block of 

a Data-Flow Processor 
M.S. Thesis, EE & CS Dept. 
December l 9 77 

tTM-94 Berez, Joel M. 
A Dynamic Debugging System for MOL 
B.S. Thesis, EE & CS Dept. 
January 1978 

AD AOS0-191 

TM-95 Harel, David 
Characterizing Second Order Logic 

with First Order Quantifiers 
February I 978 

TM-96 Hare!, David, Amir Pnueli and Jonathan Stavi 
A Complete Axiomatic System for Proving 

Deductions about Recursive Programs 
February I 9 78 

tTM-97 Hare!, David, Albert R. Meyer and Vaughan R. Pratt 
Computability and Completeness in 

Logics of Programs 
February 1978 

TM-JS Hare!, David and Vaughan R. Pratt 
Nondeterminism in Logics of Programs 
February 1978 

TM-99 laPaugh, Andrea S. 
The Subgraph Homeomorphism Problem 
M.S. Thesis, EE ~ .. CS Dept. 
February 1978 

TM-100 Misunas, David P. 
A Computer Architecture for Data .. Flow Computation 
M.S. Thesis, EE & CS Dept. 
March 1978 

AD A052-538 



PUBLICATIONS 162 

TM-101 Martin, William A. 
Descriptions and the Specialization of Concepts 
March J 978 

TM-102 Abelson, Harold 
lower Bounds on Information Transfer 

in Distributed Computations 
April 1978 

TM-103 f-tarel, David 
Arithmetical Completeness in logics of Programs 
April 1978 

TM-1 04 Jaffe, Jeffrey 
The Use of Queues in the Parallel Data 

Flow Evaluation of "If-Then-While" Procrams 
May 1978 

TM-105 Masek, William J., and Michael S. Paterson 
A Faster Algorithm Computinc Strine 

Edit Distances 
May 1978 

AD A052-773 



163 PUBLICATIONS 

TECHNICAL REPORTS 

•TR-1 Bobrow, Daniel G. 
Natural language Input for a Computer 

Problem Solving System, 
Ph.D. Thesis, Math. Dept. 
September I 964 

AD 604-730 

•TR-2 Raphael, Bertram 
SIR: A Computer Program for Semantic 

Information Retrieval, 
Ph.D. Thesis, Math. Dept. 
June 1964 

AD 608-499 

•TR-3 Corbato, Fernando J. 
System Requirements for Multiple-Access, 

Time-Shared Computers 
May 1964 

AD 608-501 

•TR-4 Ross, Douglas T., and Clarence G. Feldman 
Verbal and Graphical language for the 

AED System: A Progress Report 
May 1964 

AD 604-678 

tTR-6 Biggs, John M., and Robert D. Logcher 
STRESS: A Problem-Oriented languace 

for Structural Engineering 
May 1964 

AD 604-679 

•TR-7 Weizenbaum, Joseph 
OPL-1: An Open Ended Programminc 

System within CTSS 
April 1964 

AD 604-680 

•TR-8 Greenberger, Marlin 
The OPS-1 Manual 
May 1964 

AD 604-681 

----------------------
TRs 5, 9, 1 O, 15 were never issued 



PUBLICATIONS 164 

• TR-11 Dennis, Jack B. 
Program Structure in a Mulli-Acce51 . 

Computer 
May 1964 

* TR-1 2 F ano, Robert M. 
The MAC System: A Progress Report 
October 1 964 

•TR-13 Greenberger, Martin 
A New Methodology for Computer Sindation 
October 1 964 

* TR-14 Roos, Daniel . 
Use of CTSS in a T eachinc Environment 
November J 964 

tTR-16 Saltzer, Jerome H. 
CTSS T echnicat Noles 
March 1965 

t TR-1 7 Samuel, Arthur l. 
Time-Sharing on a Multiconsole Computer 
March 1965 

• TR-18 Scherr, Allan lee 
An Analysis of Time-Shared Computer Systems, 
Ph.D. Thesis, EE Dept. 
June 1965 

• TR-19 Russo. Francis John 
A Heuristic Approach to Alternate Routinc in a Job $hop. 
B.S. & M.S. Theses, Sloan School 
June 1965 

•TR-20 Wantman, Mayer Elihu 
CALCtLAD. An On-tine System for 

Al1ebreic Computation and Anelytit, 
M.S. Thesis. Sloan School 
Septenlber 1965 

AD 608-500 

AD 609-296 

AD 609-288 

AD 661-807 

AD 612-702 

AD 462-158 

AD 470-715 

AD 474-018 

AD 474-019 



165 PUBLICATIONS 

•TR-21 Denning, Peter James 
Queueing Models for File Memory Operation, 
M.S. Thesis, EE Dept. 
October 1 965 

AO 624-943 

tTR-22 Greenberger, Martin 
The Priority Problem 
November 1 965 

AO 625-728 

•TR-23 Dennis, Jack 8., and Earl C. Van Horn 
Programming Semantics for Multi-

programmed Computations 
December 1965 

AD 627-537 

*TR-24 Kaplow, Roy, Stephen Strong and John Brackett 
MAP: A System for On-Line Mathematical 

Analysis 
January 1966 

AD 476-443 

•TR-25 Stratton, William David 
Investigation of an Analog Technique 

to Decrease Pen-Tracking Time in 
Computer Displays, 

M.S. Thesis, EE Dept. 
March 1966 

AO 631-396 

tTR-26 Cheek, Thomas Burrell 
Design of a Low-Cost Character 

Generator for Remote Computer Displays, 
M.S. Thesis, EE Dept. 
March 1966 

AD 631-269 

tTR-27 Edwards, Daniel James 
OCAS - Qn-Line ~ryptanalytic ~id 
~stem, 

M.S. Thesis, EE Dept. 
May 1966 

AD 633-678 



PlB..ICATIONS 166 

*TR-28 Smith, Arthur Anshel 
Input/Output in Time-Shared, Segmented, 

Multiprocessor Systems, 
M.S. Thesis, EE Depl 
June 1966 

AD 637-215 

*TR-29 Ivie, Evan Leon 
Search Procedures Based on Measures 

of Relatedness between Document~ 
Ph.D. Thesis, E~ Dept. 
Ji.me 1966 

AO 636-275 

*TR-30 Saltzer, Jerome Howard 
Traffic Control in a Multiplexed 

Computer System, 
Sc.O. Thesis, EE Dept. 
July 1966 

AO 635-966 

*TR-31 Smith, Donald L. 
Models and Data Structures for Digital 

logic Simulation, 
M.S. Thesis, EE Dept. 
August J 966 

AO 637-192 

*TR-32 T eitelman, Warren 
PILOT: A Step Toward Man-Computer 

Symbiosis, 
Ph.D. Thesis, Math. Depl 
September 1 966 

AO 638-446 

•TR-33 Norton, lewis M. 
ADEPT - A Heuristic Proeram for 

Proving Theorems of Group Theory, 
Ph.D. Thesis, Math. Dept. 
October 1 966 

AD 645-660 

•TR-34 Ven Horn, Earl C., Jr. 
Computer Design for Asynchronously 

Reproducible Multiprocessinc. 
Ph.D. Thesis, EE Dept. 
November 1966 

AD 650-407 



167 PUBLICATIONS 

•TR-35 F enichel, Robert R. 
An On-Line System for Algebraic Manipulation, 
Ph.D. Thesis, Appl. Math. (Harvard) 
December 1966 

AO 657-282 

tTR-36 Martin, William A. 
Symbolic Mathematical Laboratory, 
Ph.D. Thesis, EE Dept. 
January 1967 

AO 657-283 

tTR-37 Guzman-Arenas, Adolfo 
Some Aspects of Pattern Recognition 

by Computer, 
M.S. Thesis, EE Dept. 
February I 96 7 

AO 656-041 

tTR-38 Rosenberg, Ronald C , Daniel W. Kennedy 
and Roger A. Humphrey 

A Low-Cost Output Terminal For Time-
Shared Computers 

March 1967 
AD 662-027 

tTR-39 Forte, Allen 
Syntax-Based Analytic Reading of 

Musical Scores 
April 1967 

AD 661-806 

tTR-40 Miller, James R. 
On-Line Analysis for Social Scientists 
May 1967 

AD 668-009 

tTR-41 Coons, Steven A. 
Surfaces for Computer-Aided Design 

of Space f"orms 
June 1967 

AO 663-504 

tTR-42 Liu, Chung L., Gabriel 0. Chang 
and Richard E. Marks 

Design and Implementation of a Table-
Driven Compiler System 

July 1967 
AD 668-960 



PUBLICATIONS 168 

tTR-43 Wilde, Daniel U. 
Program Analysis by Digital Computer, 
Ph.D. Thesis, EE Dept. 
August 1967 

AD 662-224 

tTR-44 Gorry, G. Anthony 
A System for Computer-Aided Diagnosis, 
Ph.D. Thesis, Sloan School 
September I 96 7 

AO 662-665 

•TR-45 Leal-Cantu, Nestor 
On the Simulation of Dynamic Systems 

with Lumped Parameters and Time Delays, 
M.S. Thesis, ME Dept. 
October I 96 7 

AO 663-502 

•TR-46 Alsop, Joseph W. 
A Canonic Translator, 
B.S. Thesis, EE Dept. 
November 1 96 7 

AO 663-503 

tTR-47 Moses, Joel 
Symbolic Integration, 
Ph.D. Thesis, Math. Dept. 
December I 96 7 

AD 662-666 

tTR-48 Jones, Malcolm M. 
Incremental Simulation on a Time-

Shared Computer, 
Ph.D. Thesis, Sloan School 
January I 968 

AD 662-225 

•TR-49 luconi, Fred l. 
Asynchronous Computational Structures, 
Ph.0 Thesis, EE Dept. 
February 1 968 

AD 667-602 

•TR-50 Denning, Peter J. 
Resource Allocation in Multiprocess 

Computer Systems, 
Ph.D. Thesis, EE Dept. 
May 1968 

AO 675-554 



169 PUBLICATIONS 

•TR-51 Charniak, Eugene 
CARPS, A Program which Solves 

Calculus Word Problems, 
M.S. Thesis, EE Dept. 
July 1968 

AD 673-670 

•TR-52 Oeitel, Harvey M. 
Absentee Computations in a MlJtiple-Access 

Computer System, 
M.S. Thesis, EE _Dept. 
August 1968 

AD 684-738 

•TR-53 Slutz, Donald R. 
The Flow Graph Schemata Model of 

Parallel Computation, 
Ph.D. Thesis, EE Dept. 
September I 968 

AD 683-393 

•TR-54 Grochow, Jerrold M. 
The Graphic Display as an Aid in the 

Monitoring of a Time-Shared Computer 
System, 

M.S. Thesis, EE Dept. 
October I 968 

AD 689-468 

•TR-55 Rappaport, Robert L. 
Implementing Multi-Process Primitives 

in a Multiplexed Computer System, 
M.S. Thesis, EE Dept. 
November I 968 

AD 689-469 

•TR-56 Thornhill, Daniel E., Robert H Stotz, Douglas T. Ross 
and John E. Ward (ESL-R-356) 
An Integrated Hardware-Software System 

for Computer Graphics in Time-Sharing 
December I 968 

AO 685-202 

tTR-57 Morris, James H. 
Lambda-Calculus Models of Programmint 

Languages, 
Ph.D. Thesis, Sloan School 
December 1 968 

AO 683-394 



Pl&.ICATIONS 170 

•TR-58 Greenbat.rn, Howard J. 
A Simulator of Multiple Interactive 

Users to Drive a Time-Shared 
Computer System. 

M.S. Thesis, EE Dept. 
January J 969 

AD 686-988 

tTR-59 Guzman, Adolfo 
Computer Recognition of Three-

Dimensional Objects in a Visual 
Scene, 

Ph.D. Thesis, EE Dept. 
December 1 968 

AD 692-200 

•TR-60 Ledgard, Henry F. 
A Formal System for Defining the 

Syntax and Semantics of Computer 
Languages, 

. Ph.D. Thesis, EE Oepl 
April 1969 

AD 689-305 

tTR-61 Baecker, Ronald M. 
Interactive Computer-Mediated Arimation, 
Ph.D. Thesis, EE Dept. 
JWM! 1969 

AD 690-887 

•TR-62 Tillman, Coyt C., Jr. (ESL-R-395) 
· EPS: An Interactive System for 

Solving Elliptic Boc.nfary-Value 
Problems with Facilities for D,ta 
Manipulation and General-Purpose 
Computation 

JWM! 1969 
AD 692-462 

•TR-63 Brackett, John W., Michael Hammer and Daniel 
E. Thornhill 
Case Study in Interactive Graphics 

Procramming: A Circuit Drawing 
and Editing Procram for Use with 
a Stora1e-Tube Display Terninal 

October 1969 
AD 699-930 



171 PUBLICATIONS 

tTR-64 Rodriguez, Jorge E. (ESL-R-398) 
A Graph Model for Parallel Computations, 
Sc.D. Thesis, EE Dept. 
September 1 96 9 

AD 697-759 

tTR-65 DeRemer, Franklin l. 
Practical Translators for LR(k) 

Languages, 
Ph.D. Thesis, EE Dept. 
October 1969 

AD 699-501 

tTR-66 Beyer, Wendell T. 
Recognition of Topological Invariants 

by Iterative Arrays, 
Ph.D. Thesis, Math. Dept. 
October 1969 

AD 699-502 

•TR-67 Vanderbilt, Detin H. 
Controlled Information Sharing in 

a Computer Utility, 
Ph.D. Thesis, EE Dept. 
October 1969 

AD 699-503 

•TR-68 Selwyn, Lee L. 
Economies of Scale in Computer Use: 

Initial Tes ts and Implications for 
The Computer Utility, 

Ph.D. Thesis, Sloan School 
June 1970 

AD 710-011 

•TR-69 Gertz, Jeffrey l. 
Hierarchical Associative Memories 

for Parallel Computation, 
Ph.D. Thesis, EE Dept. 
June 1970 

AD 711-091 

tTR-70 Filial, Andrew I., and Leslie A. Kraning 
Generalized Organization of Large 

Data-Bases: A Set-Theoretic 
Approach to Relations, 

B.S. I.· M.S. Theses, EE Dept. 
June 1970 

AD 711-060 



PUBllCATIONS 172 

•TR-71 Fiasconaro, James G. 
A Computer-Controlled Graphical 

Display Processor, 
M.S. Thesis, EE Dept. 
June 1970 

AO 710-479 

TR-72 Patil, Suhas S. 
Coordination of Asynclvonous Events, 
Sc.D. Thesis, EE Dept. 
June 1970 

AD 711-763 

•TR-73 Griffith, Arnold K. 
Computer Recognition of Prismatic 

Solids, 
Ph.D. Thesis, Math. Dept. 
August 1970 

AD 712-069 

TR-74 Edelberg, Murray 
Integral Convex Polyhedra and an 

Approach to lntegralization, 
Ph.D. Thesis, EE Dept. 
August 1970 

AO 712-070 

tTR-75 Hebalkar, Prakash G. 
Deadlock-Free Sharing of Resol.rces 

in Asynchronous Systems, 
Sc.D. Thesis, EE Dept. 
September 1970 

AO 713-139 

•TR-76 Winston, Patrick H. 
Learning Structural Descriptions 

from Examples, 
Ph.D. Thesis, EE Dept. 
September J 970 

AO 713-988 

TR-77 He11erty, Joseph P. 
Complexity Measures for LantUltl• 

Recoption by Canonic Systems, 
M.S. Thesis, EE Dept. 
October 1970 

AO 715-134 



173 PUBLICATIONS 

•TR-78 Madnick, Stuart E. 
Design Strategies for File Systems, 
M.S. Thesis, EE Dept. & Sloan School 
October 1 9 70 

AD 714-269 

TR-79 Horn, Berthold K. 
Shape from Shading: A Method for 

Obtaining the Shape of a Smooth 
Opaque Object from One View, 

Ph.D. Thesis, EE; Dept. 
November 1970 

AD 717-336 

TR-80 Clark, David 0., Robert M. Graham, 
Jerome H. Saltzer and Michael 0. Schroeder 

The Classroom Information Md Compulinc 
Service 

January 1971 
AD 717-857 

•TR-81 Banks, Edwin R. 
Information Processinc and Transmission 

in Cellt.Aar Automata, 
Ph.D. Thesis, ME Dept. 
January 1971 

AD 717-951 

•TR-82 Krakauer, Lawrence J. 
Computer Analysis of Visual Properties 

of Curved Objects, 
Ph.D. Thesis, EE Dept. 
May 1971 

AD 723-647 

•TR-83 Lewin, Donald E. 
In-Process Manuf acturlnc Quality 

Control, 
Ph.D. Thesis, Sloan School 
January 1971 

AO 720-098 

•TR-84 WinogrAd, Terry 
Procedures as a Representation fClf 

Data in a Computer Program for 
Understanding Natural Lancuace, 

Ph.D. Thesis, Math. Dept. 
February 1 971 

AD 721-399 



PUBLICATIONS 174 

tTR-85 Miller, Perry l. 
Automatic Creation of a Code Generator 

from a Machine Description, 
E.E. Thesis, EE Dept. 
May 1971 

AD 724-730 

tTR-86 Schell, Roger R. 
Dynamic Reconfiguration in a Moc:U• 

Computer System, 
Ph.D. Thesis, E~ Dept. 
June 1971 

AD 725-859 

TR-87 Thomas, Robert H. 
A Model for Process Representation 

and Synthesis, 
Ph.D. Thesis, EE Dept. 
June 1971 

AD 726-049 

TR-88 Welch, Terry A. 
Bounds on Information Retrieval 

Efficiency in Static File Structwes, 
Ph.D. Thesis, EE Dept. 
June 1971 

AD 725-429 

TR-89 Owens, Richard C., Jr. 
Primary Access Control in L•1•-

Scale Time-Shared Decision Systernt, 
M.S. Thesis, Sloan School 
July I 971 

AD 728-036 

TR-90 lester, Bruce P. 
Cost Analysis of Debuceins Systernt. 
B.S. ll M.S. Theses, EE Depl 
September l 971 

AD 730-521 

•TR-91 Smoliar, Stephen W. 
A Parallel Processln1 Model of 

Musical Structwes, 
Ph.D. Thesis, Math. Dept. 
September l 971 

AO 731-690 



175 PUBLICAT~ 

TR-92 Wang, Paul S. 
Evaluation of Definite lnteerals 

by Symbolic Manipulation 
Ph.D. Thesis, Math. Dept. 
October 1971 

AD 732-005 

TR-93 Greif, Irene Gloria 
Induction in Proofs about Proerams, 
M.S. Thesis, EE Dept. 
February 1972. 

AD 737-701 

TR-94 Hack, Michel Henri Theodore 
Analysis of Production Schemata 

by Petri Nels, 
M.S. Thesis, EE Dept. 
February 1972 

AD 740-320 

tTR-95 F aleman, Richard J. 
Essays in Alg~aic Simplification 
(A revision of a Harvard Ph.D. Thesis) 
April 1972 

AD 740-132 

TR-96 Manning, Frank 
Autonomous, Synchronous Counters Constructed Only of 

J-K Flip-Flops, 
M.S. Thesis, EE Dept. 
May 1972 

AD 744-030 

TR-97 Vilfan, Bostjan 
The Complexity of Finite Functions 
Ph.D. Thesis, EE Dept. 
March 1972 

AO 739-678 

TR-98 Slockmeyer, Larry Joseph 
Bounds on Polynomial Evaluation Al1orithms 
M.S. Thesis, EE' Dept. 
April 1972 

AD 740-328 



PUBLICATIONS 176 

TR-99 Lynch, Nancy Ann 
Relativization of the Theory of Computational Coq>le><ity 
Ph.D. Thesis, Math. Dept. 
June 1972 

TR-100 Mandi, Robert 
Further Results on Hierarchies of Canonic Systems 
M.S. Thesis, EE Dept. 
June 1972 

TR-1 OJ Denris, Jack B. 
On the Design and·Specificalion of a Common Base Lancue1e 
June 1972 

TR- I 02 Hossley, Robert F. 
Finite Tree Automata and .. -Automata 
M.S. Thesis, EE Dept. 
September 1972 

*TR- I 03 Sekino, Akira 
Performance Evaluation of Multiprosrammed Time-Shsed 

Computer Systems 
Ph.D Thesis, EE Dept. 
September J 972 

TR- I 04 Schroeder, Michael D. 
Cooperation of Mutually Suspicious Subsystems 

in a Computer Utility 
Ph.D. Thesis, EE Dept. 
September 1972 

TR- I 05 Snith, Burton J. 
An Analysis of Sorting Networks 
Sc.D. Thesis, EE Dept. 
October J 972 

TR- I 06 Rackoff, Charles W. 
The Emptiness and Complementation Probl ... 

for Automata on Infinite Trees 
M.S. Thesis, EE Dept. 
January 1973 

AD 744-032 

AD 744-206 

AD 744-207 

AD 749-367 

AD 749-949 

AD 750-173 

AD 751-614 

AD 756-248 



177 PUBLICATIONS 

TR-107 Madnick, Stuart E. 
Storage Hierarchy Systems 
Ph.D. Thesis, EE Dept. 
April 1973 

AD 760-001 

TR-108 Wand, Mitchell 
Mathematical Foundations of Formal Language Theory 
Ph.D. Thesis, Math. Dept. 
December 1973 

TR-109 Johnson, David S. 
Near-Optimal Bin Packing Algorithms 
Ph.D. Thesis, Math. Dept. 
June 1973 

PB 222-090 

TR-110 Moll, Robert 
Complexity Classes of Recursive Functions 
Ph.D. Thesis, Math. Dept. 
June 1973 

AD 767-730 

TR-111 .Linderman, John P. 
Productivity in Parallel Computation Schemata 
Ph.D. Thesis, EE Dept. 
December 1 973 

PB 226-159/ AS 

TR-112 Hawryszkiewycz, Igor T. 
Semantics of Data Base Systems 
Ph.D. Thesis, EE Dept. 
December 1973 

PB 226-06 l /AS 

TR-113 Herrmann, Paul P. 
On Reducibility Among Combinatorial Problems 
M.S. Thesis, Math. Dept. 
December 1973 

PB 226-157/AS 

TR-114 Metcalfe, Robert M. 
Packet Communication 
Ph.D. Thesis, Applied Math., Harvard University 
December 1973 

AD 771-430 



PUBLICATIONS 178 

TR-ll5 Rotenberg, Leo 
Making Computers Keep Secrets 
Ph.D Thesis, EE Dept. 
February 1974 

PB 229-352/ AS 

TR-ll6 Stern, Jerry A. 
Backup and Recovery of On-Line Information 

in a Computer Utility 
M.S. & E.E. Theses, EE Oepl 
January 1974 

AD 774-141 

TR-117 Clark, David D. 
An Input/Output Architecture for 

Virtual Memory Computer Systems 
Ph.D. Thesis, EE Dept. 
January 1974 

AO 774-738 

TR-118 Briabrin, Victor 
An Abstract Model of a Resewch Institute: 

Simple Automatic Proeramminc Approach 
March J 974 

PB 231-505/AS 

TR-119 Hammer, Michael M. 
A New Grammatical Transformation into 

Deterministic Top-Down Form 
Ph.D. Thesis, EE Depl 
February 1974 

AD 775-545 

TR-120 Ramchandani,Chander 
Analysis of Asynchronous Concurrent Systems 

by Timed Petri Nets 
Ph.D. Thesis, EE Depl 
February 1974 

AD 775-618 

TR-121 Yao, Foon1 F. 
On lower Bounds for Selection Problems 
Ph.D. Thesis, Math. Depl 
M•ch 1974 

PB 230-950/AS 



179 PUBLICATIONS 

TR-122 Scherf, John A. 
Computer and Data Security: A Compretiensive 

Annotated Bibliography 
M.S. Thesis, Sloan School 
January 1974 

AD 775-546 

TR-123 Introduction to Multics 
February 1974 

AD 918-562 

TR-124 Laventhal, Mark S. 
Verification of Programs Operating on Structured Data 
B.S. & M.S. Theses, EE Dept. 
March 1974 

PB 231-365/AS 

TR-125 Mark, William S. 
A Model-Debugging System 
8.S. & M.S. Theses, EE Dept. 
April 1974 

AD 778-688 

TR-126 Altman, Vernon E. 
A Language Implementation System 
8.S. & M.S. Theses, Sloan School 
May 1974 

AD 780-672 

TR-127 Greenberg, Bernard S. 
An Experimental Analysis of Program Reference 

Patterns in the Multics Virtual Memory 
M.S. Thesis, EE Dept. 
May 1974 

AD 780-407 

TR-128 Frankston, Robert M. 
The Computer Utility as a Marketplace for Computer 

Services 
M.S. & E.E. Theses, EE Dept. 
May 1974 

AD 780-436 

TR-129 Weissberg, Richard W. 
Using Interactive Graphics in Simulating the Hospltal 

Emergency Room 
M.S. Thesis, EE Dept. 
May 1974 

AD 780-437 



PUBLICATIONS 180 

TR-130 Ruth, Gregory R. 
Analysis of Algorithm Implementations 
Ph.D. Thesis, EE Dept. 
May 1974 

AD 780-408 

TR-131 Levin, Michael 
Mathematical logic for Computer Scientists 
June 1974 

TR-132 Janson, Philippe A, 
Removing the Dynamic linker from the Secllity 

Kernel of a Computing Utility 
M.S. Thesis, EE Dept. 
June 1974 

AD 781-305 

TR-133 Stockmeyer, Larry J. 
The Complexity of Decision Problems in 

Automata Theory and logic 
Ph.D. Thesis, EE Dept. 
July 1974 

PB 235-283/AS 

*TR-J34 Ellis, David J. 
Semantics of Data Structures and References 
M.S. 8.· E.E. Theses, EE Dept. 
August 1974 

PB 236-594/AS 

TR-135 Pfister, Gregory F. 
The Computer Control of Changing Pictures 
Ph.D. Thesis, EE Dept. 
September 1974 

AD 787-795 

TR-136 Ward, Stephen A. 
Functional Domains of Applicative lenguaaes 
Ph.D. Thesis, EE Dept. 
September 1974 

AD 787-796 

TR-137 Seif eras, Joel I. 
Nondeterministic Time and Space Complexity 

Classes 
Ph.D Thesis, Math. Dept. 
September 1974 

PB 236-777/AS 



181 PUBLICATIONS 

TR-138 Yun, David Y. Y. 
The Hensel Lemma in Algebraic Manipulation 
Ph.D. Thesis, Math. Dept. 
November 1974 

AD A002-737 

TR-139 Ferrante, Jeanne 
Some Upper and Lower Bounds on Decision 

Procedures in Logic 
Ph.D. Thesis, Math. Dept. 
November 1974 

PB 238-121/AS 

TR-140 Redell, David D. 
Naming and Protection in Extendible 

Operating Systems 
Ph.D. Thesis, EE Dept. 
November 1974 

AD AOOl-721 

TR-141 Richards, Martin, A. Evans and R. Mabee 
The BCPL Reference Manual 
December 1974 

AD A003-599 

TR-142 Brown, Gretchen P. 
Some Problems in German to English 

Machine Translation 
M.S. ~· E.E. Theses, EE Dept. 
December I 9 7 4 

AD A003-002 

TR-143 Silverman, Howard 
A Digitalis Therapy Advisor 
M.S. Thesis, EE Dept. 
January 1975 

TR-144 Rackoff, Charles 
The Computational Complexity of Some 

logical Theories 
Ph.D. Thesis, EE Dept. 
February I 9 75 

•TR-145 Henderson, D. Austin 
The Binding Model: A Semantic Base 

for Modular Programming Systems 
Ph.D. Thesis, EE Dept. 
February I 9 75 

AD A006-961 



PUBLICATIONS 182 

t TR-146 Malhotra, Ashok 
Design Criteria for a Knowledce-Based 

English language System for Manacement: 
An Experimental Analysis 

Ph.D. Thesis, EE Dept. 
February 1975 

TR-147 Van De Vanter, Michael L 
A Formalization and Correctness Proof 

of the COO. Language System 
M.S. Thesis, EE Dept. 
March 1975 · 

TR-148 Johnson, Jerry 
Program Restructuring for Virtual Memory Systems 
Ph.D. Thesis, EE Dept. . 
March 1975 

t TR- I 49 Snyder, Alan 
A Portable Compiler for the Lancuec• C 
8.S. & M.S. Theses, EE Dept. 
May 1975 

* TR-150 Rumbaugh, James E. 
A Parallel Asynchronous Computer Architecture 

for Data Flow Prograns 
Ph.D. Thesis, EE Dept. 
May 1975 

TR-151 Manning, Frank 8. 
Automatic Test, Configuration, and Repair 

of Cellular Arrays 
Ph.D. Thesis, EE Dept. 
Jme 1975 

TR-152 Qualitz, Joseph E. 
Equivalence Problems for Monadic Schemas 
Ph.D. Thesis, EE Dept. 
Jme 1975 · 

AD A009-218 

AD AOl0-218 

AD AOl0-918 

AD AOl2-822 

AD A012-823 





Pt.B.ICATIONS 184 

* TR-162 Kent, Stephen T. 
Encryption-Based Protection Protocols for 

Interactive User-Computer Conlnuicalion 
M.S. Thesis, EE & CS Oepl 
Jtnt 1976 

TR-163 Montgomery, Warren A. 
A Secure and Flexible Model of Process lritiation 

for a Computer Utility 
M.S. ~ E.E. The~es, EE A CS Oepl 
June 1976 

TR-164 Reed, David P. 
Processor Multiplexing in a layered OperatirJI Syst• 
M.S. Thesis, EE & CS Dept. 
JtAy 1976 

TR-165 Mcleod, Dennis J. 
Hgh level Expression of Semawitic lntearity 

Specifications in a Relational Data Base Syst• 
M.S. Thesis, EE & CS Oepl 
September J 976 

TR-166 Chan, Arvola Y. 
Index Selection in a Self-Adaptive Relational 

Data Base Management System 
M.S. Thesis, EE & CS Dept 
September J 976 

TR-16 7 Jenson, Philippe A. 
Usinc Type Extension to Or1enize Virtulll Menay 

Mechanisms 
Ph.D. Thesis, EE A CS Dept. 
September 1976 

TR-168 Pratt, Vauchan R 
Semantical Considerations on Aoyd-Hose Lotk: 
September 1976 

TR-169 Safran. Charles, James F. Desforps and Ptilip N. Tlichlit 
Diecnostic Planning and Cancer Mlnlcement 
September 1976 

AO A026-91 l 

AD A034-184 

AO A034-185 



185 PUBLICATIONS 

TR-170 Furtek, Frederick C. 
The Logic of Systems 
Ph.D. Thesis, EE lt· CS Dept. 
December 1976 

TR-171 Huber, Andrew R. 
A Multi-Process Design of a Pagins System 
M.S. & E.E. Theses, EE & CS Dept. 
December 1976 

TR-172 Mark, William S. 
The Ref ormulati0n Model of Exp8rtise 
Ph.D. Thesis, EE & CS Dept. 
December 1976 

AD A035-397 

TR-173 Goodman. Nathan 
Coordination of Parallel Processes in the Actor 

Model of Computation 
M.S. Thesis, EE & CS Dept. 
December 1976 

TR-174 Hunt, Douglas H. 
A Case Study of Intermodule Dependencies in a 

Virtual Memory Slbsyslem 
M.S. & E.E. Theses, EE & CS Depl 
December 1976 

TR- I 75 Goldbers. Harold J. 
A. Robust Environment for Procram Development 
M.S. Thesis, EE & CS Dept. 
February 1977 

TR-176 Swartout, William R 
A Dilitalis Therapy Advisor with E>eplMatians 
M.S. Thesis, EE & CS Dept. 
February 1977 

TR-177 Meson, Andrew H. 
A layered Virtual Memory Manacer 
M.S. & E.E. Theses, EE & CS Dept. 
May 1977 

•TR-178 Bishop, Peter B. 
Computer Systems with a Very L•1e Addrett 

Space and Garbace Collection 
Ph.D. Thesis, EE & CS Pept. 
May 1977 

AD A040-601 



Plll.ICATIONS 186 

TR-179 K•eer, Pu A. 
Non-OiscretiCMWY Accen Control for Decentr._. 

eon.um, Syst.,.. 
M.S. Thetis, EE Ir CS Depl 
May 1977 

TR-180 LU'iewski, Allen W. 
A Simple end Aexible System lriti*8tion Medmll• 
M.S. Bi E.E. Theses, EE I CS Depl 
May 1977 

TR-181 Mayr, Ernst W. 
The Complexity of the Finite ~t Pr.._ 

for Petri Nets 
M.S. Thetis, EE I CS Dept 
June 1977 

TR-182 Brown, Gretchen P. 
A Framework for Pracecslit• Di ... 
June 1977 

TR-183 Jaffe, Jeffrey M. 
Semiline• Sets and Applicatiane 
M.S. Thetis, EE I CS Depl 
J-'y 1977 

•TR-184 Levine, Pu H. 
Fecilitatinc lnterprocen eo.-ncatfan In 1 

... , ... .,..._. Network Envir.....t 
B.S. I M.S. Thnet, EE I CS Depl 
J&Jy 1977 

TR-185 Golchlrt, Barry 
Deadlock Detection in Canlput• Netw.b 
B.S. I M.S. Thetel, EE I CS Dlpt. 
Sept ..... 1977 

TR-116 Ack...., W.n B. 
A Struchre M1mary for o.ta Flow CGnlput9'I 
M.S. 'fhlllt. EE I CS o.pt. 
_.......1977 

ADA040-804 

ADA042-370 

ADACMS-901 

ADA047-0ZS 

MJA047-o21 



187 PUBLICATIONS 

TR-187 Long, William J. 
A Program Writer 
Ph.D. Thesis, EE & CS Dept. 
November 1977 

AD A047-595 

TR-188 Bryant, Randal E. 
Simulation of Packet Communication 

Architecture Computer Systems 
M.S. Thesis, EE & CS Dept. 
November 1977 

AD A048-290 

TR-189 Ellis, David J. 
Formal Specifications for Packet 

Communication Systems 
Ph.D. Thesis, EE & CS Dept. 
November 1977 

AD A048-980 

TR-190 Moss, J. Eliot B. 
Abstract Data Types in Stack Based lancua1es 
M.S. Thesis, EE It· CS Dept. 
February 1978 

AD A052-332 

TR-191 Yonezawa, Akinori 
Specification and Verification Techniques 

for Parallel Programs Based on Message 
Passing Semantics 

Ph.D. Thesis, EE & CS Dept. 
January 1978 

AD AOSl-149 

TR-192 Niamir, Bahram 
Attribute Partitionin1 in a Self-

Adaptive Relational Databate System 
M.S. Thesis, EE & CS Dept. 
January 1978 

AD A053-292 

TR-193 Schaff erl, J. Craig 
A F ormel Definition of CLU 
M.S. Thesis, EE & CS Dept. 
January 1978 



Pl&.ICATIONS 188 

TR-194 Hewitt, Carl and Henry Baker, Jr. 
Actors and Continuous Functionals 
February 1978 

AD A052-266 

TR-195 Bruss, Anna R. 
On Time-Space Classes and Their Relation 

lo the Theory of Real Adcilion 
M.S. Thesis, EE l<: CS Dept. 
March 1978 

TR-196 Schroeder, Michael 0., David D. Cl•k, 
Jerome H. Sallzer and Douclas H. Wells 

final Report of the Multics Kernel Oesien Project 
March 1978 

TR-197 Baker, Henry Jr. 
Actor Systems for Real-Time Computation 
Ph.D. Thesis, EE & CS Dept. 
March 1978 

AO AOS3-328 

TR-198 Halstead, Robert H., Jr. 
Multiple-Processor Implementation ol 

Message-Passing Systems 
M.S. Thesis, EE l<: CS Dept. 
April 1978 

AO A054-009 

TR-199 Terman, Christopher J. 
The Specification of Code Generation Al1orilhml 
M.S. Thesis, EE & CS Oepl 
April 1978 

AO A054-301 

TR-200 Harel, David 
Loaics of Proararns: Axiomatics and Dncriptive 

Power 
Ph.D. Thesis, EE & CS Dept. 
May 1978 

TR-201 Scheifler, Robert W. 
A Denotational Semantics of CLU 
M.S. Thesis, EE &: CS Dept. 
June 1978 



189 

PROGRESS REPORTS 

•Project MAC Progress Report I 
to July 1964 

. •Project MAC Progress Report 11 
Jl,lly 1 964-July 1 965 

•Project MAC Progress Report 111 
July 1 965-July 1966 

•Project MAC Progress Report IV 
July 1 966-July 1 96 7 

•Project MAC Progress Report V 
July 1967-Jufy 1968 

•Project MAC Progress Report V1 
July 1968-July 1969 

•Project MAC Progress Report VII 
July 1969-Jufy 1970 

•Project MAC Progress Report VIII 
July 1970-July 1971 

•Project MAC Progress Report IX 
July 1971-July 1972 

•Project MAC Progress Report X 
July 1972-July 1973 

•Project MAC Progress Report XI 
July 1973-July 1974 

•laboratory for Computer Science Progrel8 Report XII 
July 1974-July 1975 

PUBLICATIONS 

AD 465-088 

AD 629-494 

AD 648-346 

AD 681-342 

AD 687-770 

AD 705-434 

AD 732-767 . 

AD 735-148 

AD 756-689 

AD 771-428 

AD A004-966 

AD A024-527 



PUBLICATIONS 190 

•laboratory for Computer Science Progress Report XI 
July 1975-July 1976 

laboratory for Computer Science Progress Report XIV 
July .. 976-July 1 977 

AD A061-246 

AD A061-932 

Copies of all reports with AD and PB runbers listed in PU:>lications may be secured 
from the National Technical Information Service, Operations Division. Springfield, 
Virginia, 22151. Prices vary. The AD or PB number must be supplied with the 
request. 

* Out of Print reports may be obtained from NTIS if the AD number is supplied (see 
above). Out of Print reports without an AD or PB runber •e \Nbtainable. 



OFFICIAL DISTRIBUTION LIST 

Defense Documentation Center 
Cameron Station 
Alexandria, VA 22314 

12 copies 

Office of Naval Research 
Information Systems Program 
Code 437 
Arlington, VA 22217 

2 copies 

Office of Naval Research 
Branch Office/Boston 
Building 114, Section D 
666 Summer Street 
Boston, MA 02210 

1 copy 

Office of Naval Research 
Branch Off ice/Chicago 
536 South Clark Street 
Chicago, IL 60605 

1 copy 

Office of Naval Research 
Branch Off ice/Pasadena 
1030 East Green Street 
Pasadena, CA 91106 

1 copy 

New York Area 
715 Broadway - 5th floor 
New York, N. Y. 10003 

1 copy 

Naval Research Laboratory 
Technical Information Division 
Code 2627 
Washington, D. C. 20375 

6 copies 

Aasistant Chief for Technology 
Office of Naval Research 
Code 200 
Arlington, VA 22217 

1 copy 

Office of Naval Research 
Code 455 
Arlington, VA 22217 

1 copy 

Dr. A. L. Slafkosky 
Scientific Advisor 
Commandant of the Marine Corps 
(Code RD-1) 
Washington, D. C. 20380 

1 copy 

Office of Naval Research 
Code 458 
Arlington, VA 22217 

1 copy 

Naval Ocean Systems Center 
Advanced Software Techonolgy 
Division - Code 5200 
San Diego, CA 92152 

1 copy 

Mr. E. H. Gleissner 
Naval Ship Research & Development Center 
Computation & Math Department 
Bethesda, MD 20084 

1 copy 

Captain Grace M. Hopper (008) 
Naval Data Automation Command 
Washington Navy Yard 
Building 166 
Washington, D. C. 20374 

1 copy 

Mr. Kin B. Thompson 
Technical Director 
Information Systems Division 
(OP-91T) 
Off ice of Chief of Naval Operations 
Washington, D. C. 20350 

1 copy 

Captain Richard L. Martin, USN 
Commanding Officer 
USS Francis Marion (LPA-249) 
FPO New York, N. Y. 09501 

l copy 




