
IBM Service Management
architecture

&

D. Lindquist

H. Madduri

C. J. Paul

B. Rajaraman

In this paper we describe the IBM Service Management (ISM) architecture, a service-

oriented architecture designed to automate and simplify the management of business

services. We describe the four major components of ISM: portal-based user interfaces,

a process layer that includes the process runtime and service management solutions,

an information layer that includes a configuration management database, and

operational management products and their integration with service management

processes. We describe the way in which the service management solutions are based

on industry best practices, and in particular ITILt (Information Technology Infrastruc-

ture Libraryt). We discuss our experiences implementing ISM and conclude with ideas

for future work, including how ISM lays out the groundwork for the future

implementation of autonomic functions.

INTRODUCTION

Many information technology (IT) organizations are

asked to reduce costs and improve the quality of

service at the same time that the complexity and the

change and compliance requirements are accelerat-

ing. The traditional approach to systems manage-

ment, which tends to create organizational ‘‘silos’’ of

expertise for specific management domains, no

longer meets these demands.

A number of studies indicate that nearly 70 percent

of chief-information-officer (CIO) budgets cover

labor costs, and of these, more than half are

expended on operations. The efficiency of tradi-

tional IT operations appears to be waning. The root

cause of this inefficiency is most likely complexity.

Enterprise application configurations frequently

evolve into haphazard interconnections of accumu-

lated software and hardware that look like complex

wiring diagrams. It is not uncommon for an

enterprise to have dozens of applications based on

different application architectures. As these complex

topologies grow, operations teams are addressing

complexity with the help of advanced resource-

oriented tools, which leads to islands of expertise:

server experts, application experts, storage experts,

network experts, security experts, and so on.

Although effective within each domain, this ap-

proach is not effective in managing complex

application environments.

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 423

In summary:

� Traditional systems management processes are

fragmented by resource domain (networks, stor-

age, servers, applications, databases, etc.), and

there are few tools that integrate these processes.
� The effectiveness of IT processes depends upon

authoritative configuration data, but these data

rarely exist. Consequently, it is difficult to

generate a comprehensive and accurate picture of

the state and configuration of the IT environment.
� The various systems management products are

not integrated, which leads to inefficient manual

tasks. Because user interfaces (UIs) and data

models are not integrated, the opportunities for

automation are limited and the use of best

practices in IT governance is impeded.

IBM Service Management (ISM) is an approach

designed to automate and simplify the management

of business services. In this paper we describe the

ISM architecture, a service-oriented architecture

(SOA) that builds upon tools, techniques, and

architectures for business-process implementation

and transformation, information management tech-

nologies, and the breadth of the industry opera-

tional-management technologies.

The ISM architecture illustrated in Figure 1 is

comprised of four major components: (1) a user

interface that represents a portal-based integration

of UIs for user interactions and collaboration

(labeled Portal-Based User Interfaces), (2) a process

layer that includes the entity labeled Process

Runtime and Services and the entity labeled Service

Management Solutions, (3) an information layer

represented by the configuration management da-

tabase (CMDB), and (4) an operational-manage-

ment-technologies component represented by the

entities labeled operational management products

(OMPs) and the adjacent integration modules.

Figure 1
IBM Service Management architecture

Portal-
Based
User
Interfaces

Service Management Solutions

Process Runtime and Services

IT Infrastructure
(Server, Storage, Network, Security, Software, Applications, Transactions, Services)

Service
Catalog

IT
Asset
Mgmt

Enterprise
Asset
Mgmt

Service Desk
Service Delivery and Support

• Configuration
• Change
• Release

• Incident
• Problem

• Availability
• Storage
• Capacity
• Service
 Continuity

Tooling

Integration Modules

Operational
Management Products

Configuration
Management Database

Discovery
Federation

Reconciliation

• Business Application
 Management
• Server, Device and
 Network Management
• Storage Management
• Security Management
• Financial Management
• Enterprise Asset
 Management

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007424

Figure 1 also shows Tooling, a collection of tools to

create and modify processes, UIs, and data. The ISM

architecture consolidates current IT components and

management functions along several dimensions.

All user interactions are consolidated at the portal;

the roles and responsibilities of the users are

integrated with the defined processes; and activities

(subprocesses) are integrated with configuration

data from the information layer. The architecture

takes advantages of software middleware and

industry standards for portal, workflow, and data

federation.

The ISM architecture enables client IT process

transformation based on business process workflow

tools, information integration technology, and op-

erational management technology. Through many

engagements with clients and our service teams, we

recognized that to address the increasing complexity

of IT, we needed to focus on both the IT processes

used by clients and the automation of manual tasks.

The architecture provides a way for clients to

transform their existing processes to incorporate

best practices and gradually automate processes

such as provisioning, orchestration, and problem

determination. We also realized that the effective-

ness of these IT processes depended upon access to

accurate information that described the authorized

and discovered states of the IT resources, commonly

known as configuration management data. The

service management solutions we developed are

based on IBM and industry best practices, such as

the Information Technology Infrastructure Library**

(ITIL**),
1,2

Control Objectives for Information and

related Technology (COBIT**),
3

and Enhanced

Telecom Operations Map** (eTOM**).
4

The process layer hosts solutions based on the

concept of service management processes (also

referred to as Process Managers or PMs). The

service management processes are integrated with

operational management technologies and the

CMDB. The service management processes and

related tooling incorporate a set of best practices

that may be modeled and customized to support

existing processes. Selected tasks within these

processes may be progressively automated through

operational management tools, directly reducing IT

management costs in a manner consistent with

organizational responsibilities. The integration of

these tasks with the systems management technol-

ogy (implemented through OMPs) is accomplished

through the use of an SOA.
5

The information layer, which includes the federated

CMDB, provides automated application discovery

and detailed views of system, software, and service

topologies. Open interfaces provide ease of integra-

tion with process, data sources, and automation

technology. Information about IT resources, topol-

ogy, and relationships is often dispersed throughout

operational registries used by management tools;

without including this information in a federated

database, a logical view of all the IT resources and

their respective relationships and dependencies is

not available. This logical view is critical to

improving the efficiency and effectiveness of pro-

cesses. For example, to understand the impact of a

change request and to implement a successful

change management process, information about the

current state of resources, the relationships to

business applications, the service level objectives,

the compliance policies, and the dependency on

other resources are all critical information aspects.

The integration of the service management pro-

cesses and the CMDB with operational management

technologies forms the core of our ISM architecture.

The rest of the paper is organized as follows. In the

next section we describe the processes involved in a

typical scenario, in this case the deployment of a

software upgrade, and we derive a set of require-

ments for our architecture. In the following section

we describe the ISM architecture and the way it

addresses the requirements. In the next four sections

we focus on four major aspects of the ISM

architecture: (1) the CMDB, (2) the OMPs and their

integration with service management processes, (3)

service management processes, including the use of

a service catalog for requesting services, and (4) the

role of service management processes and imple-

mentation considerations for creating processes.

The next-to-last section describes our experiences

implementing ISM. The last section contains a

summary and ideas for future work.

HIGH-LEVEL REQUIREMENTS FOR THE ISM

ARCHITECTURE

In this section, we describe the high-level require-

ments for the ISM architecture, beginning with an

end-to-end scenario involving a request for a

software upgrade. We then identify requirements

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 425

associated with the architectural components and

their interfaces.

Let us consider the case of a centralized IT

department within a large enterprise whose end

users are grouped within organizations (the various

lines of business within the enterprise). The IT

department provides various services to the end

users which are accessed through a service catalog.

The services in the service catalog are triggered by a

service request process that may include approvals

from the organization (line of business), procure-

ment of resources, and other necessary activities.

One of the services offered by the IT department is

an application software upgrade for a production

environment. Production environments involve

servers running mission-critical applications and are

typically governed by a rigorous change process

intended to minimize the risk of disruption and to

ensure that the appropriate authorizations have

been obtained, the stakeholders notified, and the

configuration information correctly updated.

Figure 2 shows the steps in the service request,

change, and release-management processes for

deploying a software upgrade in a production

environment. The end user submits a service

request through a service catalog. The service

request process defines how the service request is

handled. The service request process starts with

approval by the line of business, followed by

verification that the user is entitled to the service,

verification that the IT department can provide the

service with the required parameters (such as the

date by which the upgrade should be completed),

and finally, the implementation of the infrastructure

changes specified by the service request; that is, the

Figure 2
Change-management and release-management activities for deploying a software upgrade

Release Management Process

Verify
Entitlement

Obtain Line
of Business
Approval

Open
Service
Request

Close
Service
Request

Implement
Service
Request

Service Request Process

Obtain
IT
Approval

Assess
Impacts

Categorize
RFC

Open
RFC

Close
RFC

Deploy
Change

Change Management Process

Review and
Approve
Change

Package the
Change

Test the
Change

Verify
Patch

Apply
Patch

Open other
RFCs

Document
Impacts

Select
Servers

Select
Subset

Schedule
Change

Select Change
Window

Rollback (if
unsuccessful)

Deploy
Patch

Verify
Change

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007426

application upgrade requested by the end user.

Additionally there may be other related changes that

are necessary to implement the upgrade (such as a

new version of a monitoring agent that should be

deployed).

The infrastructure changes specified by the service

request are typically managed through IT service

management (ITSM) processes, specifically, the

ITSM change-management and release-management

processes. Best practices for these processes are

defined at a high level by ITIL. A request for change

(RFC) is first opened that specifies the software

upgrade. The RFC information is stored as a process

artifact in the CMDB. For example, the RFC specifies

the application to be upgraded, the software release

levels, and so on. The categorize-RFC step can be

performed either by a program or by a person. The

categorization may depend on the importance of the

upgrade based on business value as well as the level

of service guaranteed to the end user. Once the

change is accepted, the impact of the change is

assessed. Software upgrades require testing to

ensure stability and performance. Impact assess-

ment involves steps in the release management

process: package the upgrade, test the upgrade, and

open RFCs to address other impacted systems (for

example the application monitoring system). There

may be additional considerations involved in impact

assessment, such as maximizing the availability of

the application. The result of impact assessment

may require that the RFC also be handled by other

service management processes, such as availability

management and service continuity management.

Following impact assessment the change is reviewed

(Review and Approve Change). If approved, the

application upgrade request is scheduled for de-

ployment. The deployment of the upgrade also

involves steps in the release management process

for identifying and staging the target systems as well

as performing the actual upgrade of the application.

The deployment of software upgrades can be

accomplished through the use of OMPs such as

Tivoli* Provisioning Manager,
6

which automates

the distribution and installation of the software

upgrade and ensures that the upgrades are per-

formed consistently across multiple systems. The

last step in the deployment involves verification of

the change, following which the RFC is closed.

This scenario illustrates the need to integrate (data

as well as interfaces) the change management

process, the release management process, and the

OMPs. The CMDB plays a crucial role by (1)

providing a repository of resource and process

information to tasks, (2) providing a consistent data

representation across processes, and (3) enabling

the integration of OMPs with processes. For exam-

ple, the relationship between resources maintained

by the CMDB can be used to assess the business

services impacted by a software upgrade to a

specific application component of a business ser-

vice.

The ITSM process described in Figure 2 defines the

high-level activities in the change-management and

release management processes. Within each of these

activities the IT staff (users) perform tasks that

implement the specified activities. Users perform

these tasks in the context of a role and authority

associated with the role. For example, testing the

software upgrade may first involve the task of

checking out a build from a development repository,

followed by tasks to define the test case, approvals

to ensure test coverage, provisioning a test envi-

ronment, and so forth.

As organizations evolve to adopt best practice

processes, standardization typically occurs at the

level of process activities. However, the specific

tasks underlying each activity are often specific to

the organization. Additionally, these tasks change at

a much higher rate based on implementation

considerations, such as types of changes managed

by the process (e.g., software upgrades vs storage

changes), geographical considerations, and evolu-

tion of technology. For example, tasks performed for

impact analysis in virtualized infrastructures can be

significantly different from environments with ded-

icated servers. The ISM architecture allows the

definition and extensibility of tasks (and associated

UIs and data) through tools that reflect the skills of

IT staff configuring the processes for use in their

organizations. The relationship between process

activities and tasks is shown in Figure 3.

In Figure 3, the change process is represented by the

standard activities of open RFC, categorize, assess,

approve, deploy, and close RFC. Some of the key

tasks in the deploy activity are also shown. For

example, deployment of a change requires the

assignment of personnel and creation of the change

package (tasks 1 and 2, which are often manual

activities) and the actual deployment of the change

(task 3, which is often implemented through

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 427

automation tools such as the Tivoli Provisioning

Manager for Software). For applications likely to

incur deployment errors, a task that does a

predeployment test should be added. The ability to

easily add such a task (task 30 in Figure 3) is a

critical requirement for the IBM Service Manage-

ment architecture.

From the analysis of the preceding scenario, we can

define the following high-level requirements for the

ISM architecture:

1. Provide best-practice processes, including activ-

ities and tasks and definitions of the associated

roles.

2. Provide a consistent and integrated operational

environment (runtime) in which to define and

execute processes as well as integrate different

processes.

3. Provide capabilities for collaboration and coor-

dination of activities and tasks across multiple

roles with secure access control (authentication

and authorization).

4. Provide a CMDB to store resource data, process

artifacts, and relationships between them. The

CMDB should be closely integrated with the

process runtime in order to enable both end users

and automated tasks to represent and use data

consistently.

5. Integrate service management processes with

OMPs to support automation of management

operations.

6. Provide UIs that enable the aggregation of

information and views from the CMDB and

OMPs.

7. Support ease of use in creating and configuring

process tasks (including extensible UIs, logic, and

data) to address the intrinsic variability of tasks

associated with customized implementations.

Additionally, the architecture must support inte-

gration of processes with IBM and third-party

OMPs as well as other business and IT processes.

ISM architecture

In this section we elaborate on the high-level

requirements identified in the prior section, focusing

Figure 3
Selected activities and tasks in change management

Assess
Impacts

Categorize
RFC

Open
RFC

Close
RFC

Deploy
Change

Change Managerment Process

Activities

Tasks

Review and
Approve
Change

Task 1: Allocate Personnel Resources

Task 2: Create Change Package

Task 3: Deploy (Implement) Change
Package

Task 4: Verify Change Installation

Task 3’: Predeployment Test

User-Performed Task (user interface)

Automated Task
(performed by an OMP through Web services interface)

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007428

on the primary capabilities needed to realize an

implementation of the architecture.

Best practices for service management processes

The ISM architecture allows the implementation of

best practice processes (e.g., ITIL, COBIT, and

eTOM) for various domains of service management,

such as change management, release management,

incident management, and problem management.

These best practices are captured in IBM Tivoli

Unified Process (ITUP),
7

which in addition to

documenting these best practices also provides a

tool for planning and implementing them. ITUP can

be used by process designers to adopt and imple-

ment service-management best practices by using

the ISM architecture.

Consistent and integrated operational runtime for

process execution

The ISM architecture supports the coordination and

automation of tasks and collaboration between

users in multiple roles. For example, the creation of

an RFC is initiated by a user in the role of change

requestor while the acceptance and classification of

the RFC is performed by a user in the role of change

reviewer or change manager. In addition, processes

addressing a particular service management domain

may need to interact with processes (and roles) in

other domains.

Processes, activities, and tasks may be completely

manual (i.e., for a given process activity, the user

interacts with the process through a UI and performs

required tasks manually), completely automated

(i.e., after initiation, the tasks defined by each

process activity are carried out without human

intervention), or partially automated (i.e., certain

process activities or tasks are performed manually,

and others may be automated).

The ISM runtime architecture provides the capabil-

ity to define consistent and repeatable high-level

processes while accommodating the variability and

ease of configuration of tasks underlying process

activities. This is achieved by leveraging the

standard middleware runtime capabilities of IBM

WebSphere* Business Integration and the Web

Services Business Process Execution Language (WS-

BPEL) for formal process definition, runtime, and

monitoring and integrating these with task and

work-management capabilities and associated tool-

ing.

Coordination across multiple roles with secure

access control

A key feature of the ISM implementation is the

support for users (IT staff) to view, claim, reassign,

delegate, and perform tasks. Additionally the im-

plementation provides integrated notification

through standardized and parameterized communi-

cation templates. UIs, applications, and an integrat-

ed security model allow a user to view and claim

tasks that are assigned to the specific user or to the

role the user performs in the process. In addition,

the security model also provides authorized access

to objects referenced by the task. Escalations can be

defined on the state of a process task, which allows

for actions (e.g., notification) to be taken when, for

example, a task is not completed within a prescribed

amount of time. Future enhancements include

deeper integration with collaboration capabilities

such as instant messaging.

Configuration management database

ISM processes and tasks primarily deal with

managing resources across various inter-related

resource and management domains. The ability to

discover resources, their configuration, and their

relationships with other resources are core capabil-

ities for implementing service management pro-

cesses. Modeling and storing resource-configuration

and relationship information allows the establish-

ment of processes to control configuration changes

to resources. This is critical to all other service-

support and delivery processes. The CMDB is the

repository that maintains configuration and rela-

tionship information about resources.

In the ISM architecture, the CMDB has the following

key capabilities:

1. Discovery, application mapping, and visualiza-

tion—This capability discovers resources and

relates the resources to the business applications

and services that depend on them. Discovery can

be targeted directly against resources in the IT

infrastructure, against information about the

resources gathered by other management systems

or against data manually maintained by end users

(e.g., spreadsheets). In addition, capabilities are

provided to relate resources to the business

applications that they support. This ranges from

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 429

automated mapping based on resource configu-

ration information to manually specified rela-

tionships.

2. Federation—Maintaining all possible resource-

configuration and relationship information in the

CMDB can result in scalability issues as well as

the overhead in maintaining consistency of

changes. A federated approach allows the ability

to access information about the resource config-

uration by accessing other management systems

that have more detailed information about the

resource. Federation must support various data

formats and repositories, including relational

databases, XML (Extensible Markup Language)

documents, spreadsheets, and document reposi-

tories.

3. Reconciliation—A resource may be managed by

multiple management systems, each of which

might be responsible for a particular aspect of

management (e.g., IBM Tivoli Monitoring may

monitor the resource, whereas IBM Tivoli Provi-

sioning Manager for Software may be responsible

for software distribution to the resource). It is

necessary to reconcile the various methods by

which a resource is identified by individual

management systems so that a single instance of

the resource exists in the CMDB. This is

accomplished by allowing one or more naming

rules to be defined. A prioritized set of naming

rules allows the reconciliation of multiple inter-

nal naming schemes to be recognized, given that

one or more attributes which are required by the

naming rules are made accessible by the indi-

vidual management systems. Naming rules are

described in detail in a companion paper on the

IBM Tivoli Change and Configuration Manage-

ment Database (CCMDB) in this issue.
8

4. Authoritative source for a configuration attri-

bute—With the presence of multiple management

systems providing facets of configuration and

relationship attributes of a resource, it is neces-

sary to allow the authoritative provider to be

designated for any particular attribute.

5. Access—The CMDB provides open interfaces to

access data in the CMDB and to import data into

the CMDB. Data access is enabled through

several interfaces based on Java** and EJB** that

allow processes and other OMPs to both access

and populate the CMDB data. In addition, built-in

capabilities to load data from a standard XML

format (Identity Markup Language—IDML) of the

CMDB data model is also provided.

Integration of service management processes with

OMPs

Tasks performed as part of ISM processes leverage

IBM OMPs and third-party products for task

automation, thereby improving the overall efficien-

cy of service management. Monitoring, event

infrastructures, provisioning, distribution, avail-

ability, workload management, replication, backup,

and security are among the pervasively deployed

OMPs. For example, the deployment of a large-scale

software update may utilize IBM Tivoli Provisioning

Manager for Software to automatically distribute

this software update to large numbers of desktops

based on a schedule. The ISM architecture allows

the definition of logical management operations

(LMOs) that provide an interface between the

service management process and the OMPs that

carry out the operation. A Web-services-based SOA

is used to implement these interfaces. This allows a

loose coupling between the process and the OMP

that provides the function, thus allowing an

implementation to exploit best-of-breed OMP tech-

nology while maintaining process consistency.

To enable this loose coupling, the LMO interface is

implemented by using an integration module. The

integration module performs two key functions:

1. It implements one or more calls to one or more

OMPs by using the native interfaces of the OMPs,

which could include command-line interfaces or

application-programming interfaces (APIs).

2. It maps the call arguments (provided by the

process and based on the CMDB resource model)

to arguments that are understood by the OMP.

For example, a globally unique identifier (GUID)

used by the process and CMDB to identify a

server may need to be mapped to an object

identifier that is used by the IBM Tivoli Provi-

sioning Manager for Software to internally

identify the same server.

The evolution and automation of processes will

require additional LMOs and implementations. The

ISM architecture supports the installation and

configuration of these integration modules to

interact with specific processes and tasks.

User interfaces

To improve the effectiveness and efficiency of

processes, it is important to provide UIs that allow

effective collaboration between users and enable

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007430

them to perform their tasks effectively. The ISM

architecture uses a portal to consolidate the UIs

where users can view and claim tasks assigned to

them and from which they can launch applications

and view the topology of resources and their

relationships. For example, to assess the impact of

an RFC, the user may need to visualize the topology

of the relationship of a resource to a business

application as well as other changes scheduled on

the resource by other RFCs. A portal allows the user

to generate these two distinct views in the same

workspace, which improves the user’s effectiveness

in carrying out the change impact assessment

activity. The standards-based portal (JSR-168)
9

allows the user to customize the UIs.

The UIs also enable user efficiency by enabling

activities such as the invocation of OMPs to

automate tasks performed by the user, send

notifications to other users, and refer to attachments

and documents created as part of the process.

Design tooling to promote ease of use for process

configuration

As described earlier, it is necessary to provide tools

for creating and modifying processes, activities, and

tasks. The ISM architecture leverages WebSphere

tooling support (WebSphere Business Modeler and

WebSphere Integration Developer) in addition to

extensive tooling support for handling database

configurations, conditional routing between activi-

ties and tasks, and UIs.

In addition to simplifying the configuration of data,

processes, and UI components, it is necessary to

preserve configuration changes in a manner that

supports movement from one environment to

another (e.g., from test to production). The ISM

architecture enables these configuration changes to

be stored as metadata (XML). Migration to a new

environment will import this metadata to incorpo-

rate the configuration changes without the need to

manually reconfigure the product.

CONFIGURATION MANAGEMENT DATABASE
The CMDB is the repository that maintains config-

uration and relationship information about IT

infrastructure resources. Resources stored in the

CMDB are called configuration items (CIs). The

CMDB provides automated application discovery,

detailed views of system, software, and service

topologies, and the ability to maintain authorized

states of these resources and their relationships. The

CMDB enables federated access to detailed resource

configuration data maintained in other management

systems and data sources. Open interfaces to the

CMDB provide ease of integration with process, data

sources, and automation technology.

A CMDB provides authoritative and reliable infor-

mation on the state of the IT configuration. To be

authoritative, the quality and accuracy of data in the

CMDB needs to be maintained by controlling

changes through change- and configuration-man-

agement processes. The CMDB supports service

management tasks such as the following:

� Assess the impact of a requested change (change

management)
� Assess business services impacted by an incident

(incident management)
� Audit to compare authorized and actual state of

CIs and their relationships (configuration man-

agement)

As shown in Figure 4, the goals of the CMDB are

achieved by (1) discovering resources and relation-

ships (actual state), (2) comparing the actual state

against the authorized state, and (3) invoking well-

defined change and configuration processes to

address any discrepancies between the actual and

authorized states. In addition, the CMDB maintains

links to process artifacts (such as RFCs) to help

determine which process changes one or more CIs

and to access related documents and artifacts (for

example, a change assessment document).

The CMDB is central to the ISM architecture because

it provides key interfaces to the other components of

the architecture to realize service management, as

follows:

� Interfaces to the IT infrastructure and existing

management tools for discovery, reconciliation,

and federation of existing data sources
� Interfaces to the process layer to enable process

tasks
� Interfaces to the UI layer to visualize CMDB data

and relationships
� Interfaces to configuration tools to manage the

CMDB schema and extensibility

Several of these aspects are described in the

following sections.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 431

Data acquisition (discovery), reconciliation, and

access

The CMDB supports the following mechanisms to

populate and maintain the data in these repositories:

� Data discovery—Information about CIs can be

discovered directly from the IT infrastructure

through sensors. In addition, the data import

mechanisms bring in data from other sources

(e.g., management tools, spreadsheets), which

may already have discovered information about

the CIs.

� Data federation—Enables logical access to CI data

from another repository.

� Data reconciliation—Ensures that discovery of

data originating in multiple sources of data (such

as distinct monitoring and provisioning manage-

ment tools) about the same CI results in a single

system of record in the CMDB.

� User input and application programming interfac-

es—These interfaces create, read, update, and

delete data in the CMDB.

An important capability of the CMDB is the rule-

based reconciliation of data discovered from differ-

ent sources. Multiple reconciliation rules can be

specified for a resource. For example, a server may

be identified by the make, model, and serial number

of the server, or equivalently the MAC (media access

control) address or host name. The CMDB creates

aliases when multiple naming rules are applicable.

This enables the CMDB to reconcile additional

information sources for the same resource in the

same CI.

To avoid maintaining all possible resource-config-

uration and relationship data in the CMDB and the

resulting scalability and consistency issues, the

CMDB implements data federation. Data that

Figure 4
Configuration management database (CMDB)

• RFC
• Release Records
• Incidents

Actual StateAuthorized
State

Templates
and Filters

Process Data

Asset Data

CMDB

IT Infrastructure
(Server, Storage, Network, Security, Software, Applications, Transactions, Services)

Discovery

• Agent-less Resource Discovery
 Sensors and Discovery Library Adapters
• Application Mapping
• Federation
• Reconciliation
• Definitive source of attribute value
• Scalable (multiple domains)

Federated Data

<XML>
text

</XML>
Relational

Data

OMP

RFC: request for change
OMP: operational management product

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007432

changes rapidly (e.g., resource status maintained by

a monitoring system) is left under the control of

existing management systems; however, this data is

logically made part of the CMDB (i.e., linked to the

information in the CMDB). Access to this data is

enabled transparently by using the federation

capabilities of middleware products such as the

Websphere Information Integrator.
10–14

The CMDB also provides capabilities to maintain the

authorized state (attributes and relationships) of the

CI. The authorized state is always modified by

change- and configuration-management processes

with appropriate impact analysis and approvals.

Having both authorized and actual (discovered)

data about CIs and relationships enables functions

such as audit and compliance checks.

Data in the CMDB is accessed by consumers,

including UIs, process tasks, and OMPs, by using an

object layer abstraction on the underlying database

structure. The abstraction seen by the consumers is

a set of Java objects and operations on these objects,

including search, create, read, update, and delete.

The object layer abstraction allows the consumer to

be insulated from the layout of database tables and

the optimizations that can be exploited at that level.

The CMDB is described in additional detail in a

separate paper in this issue.
8

Visualization

Figure 5 illustrates the use of the CMDB to visualize

the dependencies of a business application (an

order-management application is shown in Figure 5)

on the constituent IT infrastructure components

(such as software applications, servers, storage, and

networks). This visualization enables the user (IT

staff) to iteratively drill down (i.e., view data at a

greater level of detail) to specific components. For

example, the user can drill down from the business

service to the underlying software components and

to the servers on which the software is installed. The

Figure 5
Visualization of application dependencies using the CMDB

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 433

user can obtain details on the software and server

configuration (for example the EJBs installed on a

WebSphere application server).

The CMDB architecture provides unique capabili-

ties, including the following:

� A comprehensive data model (CDM) that supports

open standards and operational extensions based

on field experience. This significantly accelerates a

customer’s implementation of a CMDB.
� Closely integrated change and configuration pro-

cesses and OMPs to enable consistency of the

CMDB. Additionally, the ability to support auto-

mated change and configuration processes enables

the delegation of functions to management prod-

ucts and provides the architecture to integrate

service management and autonomic behavior of

resources and management systems.
� Open interfaces and standard data interchange

formats.

INTEGRATION OF SERVICE MANAGEMENT
PROCESSES WITH OMPS

The integration of ITIL or COBIT-like best practice

processes with OMPs is a critical enabler for

improving the efficiency of process activities and

tasks. OMPs, such as monitoring, event manage-

ment, provisioning, and license management prod-

ucts, allow service management processes to be

applied to large-scale resource domains while

minimizing repetitive labor cost and resulting errors.

The ISM platform supports three kinds of integration

between OMPs and service management processes:

UI integration, data integration, and functional

integration.

Data integration is enabled by the CMDB. Data can

be transferred from the OMP to reside in the CMDB

(discovery) or can remain in the OMP but logically

mapped to the CMDB (federation). This integration

is described in the subsection ‘‘Data acquisition

(discovery), reconciliation, and access‘‘ in the

section ‘‘Configuration management database.’’

UI integration

Manual tasks are often performed by launching

OMPs and interacting with their UIs. Examples of

these include:

� While deploying a change that is requested on a

server (as part of a change management process),

a change deployer may want to see detailed

information about this server maintained in the

data center model of Tivoli Provisioning Manager.
� To identify the failing component (as part of an

incident management process), a service desk

analyst may need to launch into Tivoli Business

Services Management.

The user interaction with the OMP UI can be

optimized (i.e., redundant input and the number of

panels navigated can be minimized) by launching

the OMP UI in the context of one or more CIs for

which the task is being performed. Launching into

the OMP UI should not only display the appropriate

contextual view but also pass contextual informa-

tion about the CIs for which the OMP is being

launched.

Launch in context is provided as a general mecha-

nism in the ISM architecture. Launch in context can

be used between service management processes and

OMPs, directly between OMPs, between different

processes, and between processes and the CMDB.

Figure 6 illustrates the failure analysis task in an

incident management process to determine the

business impact. The failure analysis task identifies

the failing components, services impacted, and the

service level agreements (SLAs) impacted. The

failure analysis task UI also enables the user to

launch into the OMPs (Tivoli Enterprise Portal,

Tivoli Business Systems Manager, and Tivoli Service

Level Advisor) to obtain additional detail about

resources, their status, and the SLAs in place.

Functional integration
Functional integration enables process tasks to

programmatically invoke OMPs to execute specific

tasks. In conformance with an SOA approach, the

invocations of OMPs are implemented by using an

LMO, an abstract logical interface that is loosely

coupled with the specific APIs provided by an OMP.

As mentioned earlier, LMOs provide a service

abstraction of the OMPs and a degree of transpar-

ency from versions, instance, and location. The

architecture enables the integration module that

implements an LMO (i.e., binds the LMO to a

specific OMP) to be separately developed, installed,

and configured within the platform. This provides

the opportunity to create an ecosystem of OMP

vendors to be integrated with the ISM platform. The

integration module architecture includes the fol-

lowing key aspects:

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007434

� An integration module is defined as a Web service,

using standard Web Services Description Lan-

guage (WSDL) interface definitions.
� An integration module implements one or more

LMOs by providing the binding and functional

mapping between the syntax and semantics of the

LMOs to the interfaces provided by the target

OMP.
� To accomplish the binding and functional map-

ping, the integration module translates the process

reference to a CI into corresponding identifiers for

one or more resources as understood by the OMP.

This is accomplished by interacting with the

CMDB, which maintains the mapping between the

CMDB CI identifier and the resource identifier for

each OMP that can manage the resource.
� Each integration module is registered with the

CMDB with appropriate information on the

location of the OMP, the LMOs it supports, and the

set or collection of CIs for which it supports the

LMOs.

Use of an SOA to implement OMP integration is a

key differentiating aspect of the ISM architecture.

We expect that the increasing maturity and auto-

mation of service management will drive the

definition of standardized LMOs for the various

service management process domains.

SERVICE CATALOG AND SERVICE REQUEST

MANAGEMENT

For most end users, their view of ISM begins with

the service catalog, which lists the services offered

by service providers. For an IT organization, the

service catalog represents the interface with its end

users. When such a user selects a service from the

catalog, a service request is created and handled by

the appropriate IT processes as depicted in Figure 2.

Figure 6
Launch-in-context integration with operational management products

Tivoli
Business
Systems
Manager

Tivoli
Enterprise
Portal

Tivoli
Service
Level
Advisor

Discovery Books

Tivoli
Enterprise
Console

IBM Tivoli
Monitoring

Tivoli
Business
Systems
Manager

Tivoli
Monitoring for
Transaction
Performance

Tivoli
Service
Level Advisor

Change and
Configuration
Management
Database

Resources
Relationships
Products

Status
Schedule
State

Event
Severities

StatusStatusStatus

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 435

Service definition and catalog views

The ISM architecture enables services to be defined

in XML with a service definition tool and stored in a

service database. When services are provided by a

service provider, entitlement to these services

(including access to specified views of the data) can

be based on criteria such as membership in an

organization and customer account information.

The list of services can range from simple, fully

automated end-user services such as password

reset, to more complex services such as provisioning

or upgrade of an application environment. Service

definition also includes setting up the terms of any

associated SLAs, rating and billing terms, and

contractual agreement templates. Note that the

service definition by itself is not sufficient to bring a

new service into existence. All the appropriate

service fulfillment workflows and integration with

internal processes and systems, as well as external

service providers, have to be established before the

service can be delivered.

The defined services are accessible through the

service portal—where the views can be customized

for the user. Users can browse the service catalog for

services that they are entitled to request, view

groups of services, and select a service. For

example, the user could browse the catalog for user

ID services, and select the password reset service.

On selection, the user is asked to provide values for

the attributes associated with that service. In

addition to UIs, programmatic interfaces, such as

add/modify/query the list of the services, are also

provided.

Service catalogs can also display the cost informa-

tion associated with a service. This is appropriate,

for example, when the IT organization charges for

the specific services rendered. In such cases, the end

user can factor in the cost of the services when

requesting the service.

The service catalog also provides interfaces for

business users, those users who define services and

create and modify the business rules associated with

the service. For example, a business user can

provide price information, levels of discounts

available, and the kinds of resources used to satisfy

a particular service request. Business users also

have access to service performance data and

analytics in the form of reports and dashboard

views. This provides business users with metrics on

how a service is performing (e.g., which services are

ordered often).

Service request management

Once the user selects a service from the catalog, the

service has to be fulfilled by the IT organization

either through internal capabilities or by aggregating

internal capabilities with externally provided (out-

sourced) capabilities. Whereas simple services such

as password resets can be easily automated, more

complex services such as server provisioning may

involve requisitions, reviews, assessments, and

approvals, which involve human intervention. The

sequence of work involved in fulfilling the service is

called the service request flow.

In addition to managing the fulfillment of a service

request, service request management also provides

the service requestor with periodic status reports on

the progress of service fulfillment. This information

may also be used to monitor the service for

performance measures such as availability and

utilization.

PROCESS MANAGERS

Process Managers (PMs) are applications that

deliver service-management process implementa-

tions through executable workflows integrated with

OMPs and the CMDB. In addition, PMs provide

capabilities to track execution metrics and provide

dashboards and reports that allow IT organizations

to identify bottlenecks and improve organizational

productivity.

A service management process is initiated by an

incoming work request, An RFC is a common

example of such a work request. Because IT

organizations deal with a large variety of work

requests, the ISM architecture provides a flexible

and extensible mechanism to classify the work

requests. For example, an RFC may involve hard-

ware changes, software changes, network changes,

or storage changes. Software changes can be further

classified into new application deployments and

application upgrades. Each type of work request

requires its own set of extended attribute values,

which capture all the information needed to perform

the work request.

The actual fulfillment of this work request is

handled by a process consisting of activities (sub-

processes) and tasks. A process flow is a graph of

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007436

activities and tasks. For our purposes, a task is

defined as a unit of work that can be scheduled and

assigned. PMs provide mechanisms to allow process

owners to define flow templates associated with

each type of request. This gives each user organi-

zation the ability to exercise control on the way

work is performed, using the organization’s policies

and guidelines, while still supporting the execution

of end-to-end service flows. The end-to-end service

request and fulfillment flow is realized by the

initiating service request flow and the collection of

flow templates in each of the PMs that are exercised

as the particular request makes its way through each

process domain.

The breadth and complexity of services along with

domain-specific requirements makes it difficult to

predefine end-to-end process workflows. Often, the

activities are well-known, but the tasks vary

depending upon the specific request and organiza-

tion policies. The specific tasks and the sequencing

and scheduling of tasks may depend on a number of

dynamic considerations, including domain-specific

requirements as well as personnel availability and

organization responsibilities. The PM architecture

provides several ways to represent the tasks

performed by various people in the organization as

part of the process flow. The most basic represen-

tation is in the form of work breakdown structures,

which may just identify the list of tasks to be

performed in an activity and the dependencies

between tasks. Additional representations can de-

fine explicit workflows to support more advanced

task-sequencing needs (including conditional

branching).

Tasks can be assigned to either an individual or a

team, typically identified by role and implemented

as a Lightweight Directory Access Protocol (LDAP)

security group. When the task is assigned to a team,

the task appears in the in-box of all the members of

that LDAP group. Users (IT staff) who participate in

the process flow log into a portal UI to view the tasks

in their in-boxes. The user can choose to accept or

claim a task, at which point the task is removed

from the work queue of other team members. When

the task is claimed by the user, a UI for performing

the task is launched.

Process owners and business managers can view the

current status of a particular work request on the PM

console and can view the tasks that have been

completed and the tasks that are yet to be

completed. Process execution can be monitored

through the definition of key performance indicators

(KPIs). They enable the identification of bottlenecks

and inefficiencies and may lead to process im-

provements.

The CMDB provides a common repository of

information that is used by all PMs. For example,

the Change Management PM and the IBM Tivoli

Release Management PM use information from the

CMDB to determine software packages and targets

that would be involved in a particular change.

Additionally, the configuration management process

is responsible for updating the authorized configu-

ration data in the CMDB. This ensures the consis-

tency of data and facilitates integration across

processes. For example, when new software is

deployed to a server, the CMDB is updated with the

new CIs and relationships by the IBM Tivoli

Configuration PM—and this information is then

available to the Incident Management PM should

incident tickets be opened against services or

applications running on that server.

PMs support Web services interfaces for ease of

integration with other processes. For example, the

Change Management PM supports a Web services

interface to create an RFC, to query the status of an

RFC, to cancel an RFC, and so on. Similarly, the IBM

Tivoli Release Management PM supports an inter-

face to create a release, query details of a release,

suspend a release, and cancel a release.

ISM IMPLEMENTATION EXPERIENCE

Our implementation of the ISM architecture en-

compasses almost all major components described

in this paper. The implementation is built on

WebSphere middleware and uses industry open

standards for interfaces, the portal, data models, and

process workflows. The core IBM operational

management capabilities integrated include: Tivoli

Monitoring, Event Management, Business Systems

Management, Provisioning and Software Distribu-

tion, Storage Management, Security Management,

and Network Management. The IBM Tivoli Change

and Configuration Management Database (CCMDB)

is an integrated offering that includes the CMDB and

the change-management and configuration-man-

agement processes necessary to maintain the integ-

rity of the CMDB. The CCMDB supports the

federation or discovery of information on resources

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 437

and their relationships, the visualization of depen-

dencies among data, and processes for managing

configuration changes. PMs have been implemented

for a variety of domains including release manage-

ment, storage provisioning management, availabil-

ity management, and capacity management.

Because the ISM implementation is loosely coupled,

this allows for progressive adoption and incremental

deployment. This is a common adoption pattern in

various implementations. Deployments of IBM

Tivoli OMPs and integration between these products

has gained significant customer acceptance. The

ISM implementation provides an evolutionary path

for adoption of service management by integrating

OMPs with the CMDB and PMs.

There has been significant adoption and realization

of value from the discovery and topology visuali-

zation capabilities provided by CCMDB. This has

been a critical step in the adoption of the ISM vision

and architecture. The deployment of discovery and

application dependency mapping provides users

with the critical information required to improve the

effectiveness of their IT processes. The deployment

of CCMDB discovery has generated requests to

expand the breadth and depth of discovery beyond

the already extensive list of supported resources and

management systems. Additional requirements from

field implementations include the ability to control

the scope of discovery and to filter the discovered

data to limit the amount of information gathered as

part of discovery. This has primarily been driven by

scalability and the amount of time to discover large

numbers of resources. Other requirements include

the ability to extend the data model, to add

attributes to existing resource models, and to add

new types of resources. There is also significant

interest in the federation and configuration man-

agement capabilities of CCMDB. Federating data

sources is critical for the inclusion of customer and

third-party databases in CCMDB. These deploy-

ments are pushing the need for increasingly

sophisticated and automated reconciliation technol-

ogy.

From a process management perspective, many

customers have been looking for the flexibility to

configure the tasks of a process to more closely align

with their practices and policies. This has driven

advanced tooling requirements to configure pro-

cesses and integrate the processes with data model

extensions in the CCMDB and UIs for visualization.

Understanding the existing processes and interac-

tions across organizations is an important aspect to

successful process management deployment. The

transformation toward best practices typically be-

gins with implementation and incremental change

to existing processes. Typically process implemen-

tations require substantial time and implementation

effort because they often include organizational

transformation as well as alignment with existing

processes and tools and their limitations.

Our implementation and deployment experiences

have confirmed the key design decisions of the ISM

architecture. In particular, the use of an SOA to

integrate our extensive collection of OMPs with a

federation-based CMDB and process management

technologies was validated. Each of the deployment

requirements we have encountered is being ad-

dressed in a manner consistent with our architec-

ture.

SUMMARY AND FUTURE WORK

We have presented an SOA-based architecture that

provides a platform for aligning operations teams

with industry best practices and integrates process

with information and operational-management

technologies. Built upon business process transfor-

mation tools, information management technolo-

gies, and operational management technologies, the

IBM Service Management architecture establishes a

foundation to support more advanced levels of

autonomic computing. The knowledge contained in

the CMDB is a critical component for autonomic

management of systems. The service topology

information supported by the CMDB provides a

business context to establish policies to govern

autonomic behavior. These policies can reflect a

range of domains from quality-of-service objectives

for performance and availability to security and

compliance requirements. Even policies guiding the

automation of IT processes can be established.

Through these policies, autonomic computing ex-

tensions can be added to the CMDB, the PMs, and

the operational management tools.

These policies can then be supported through

closed-loop processing. The design point is to use

the OMPs to enforce the policies based on the

context of the business applications as defined in the

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007438

CMDB. An important aspect of this work is the

integration of the autonomic capabilities with the

PMs. Ideally autonomic implementations of activi-

ties and tasks provide governance and KPIs in a

manner consistent with manual tasks. This ap-

proach enables the operations team to more easily

monitor the actions and results of autonomic

technology, thus easing the transition from a labor-

intensive model toward a more automated model

where IT supports the needs and priorities of

business services.

Another important aspect of this work is the design

of PMs with conditional branches to switch between

different levels of implementations (manual, semi-

automated and automated) of the same task. This

also allows customers to gradually change, as

organizational maturity grows, from a manual

process to a more automated and even to a fully

closed-loop controlled process.

In summary, IBM Service Management is leading an

industry shift, causing the discipline of management

systems to evolve from a technology-centric ap-

proach toward a service focus that encompasses

people, processes, information, and technology. The

IBM Service Management architecture focuses on

simplifying the development, deployment, and

management of services, reducing operational costs,

and improving service levels. Technological ad-

vances in autonomic computing are an integral part

of service management. The architecture and

implementation will continue to evolve toward

process, tools, and integration to enable self-

managing goal-oriented systems.

*Trademark, service mark, or registered trademark of
International Business Machine Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of United
Kingdom Office of Government Commerce, Systems Audit and
Control Association, Telemanagement Forum Corporation, or
Sun Microsystems, Inc., in the United States, other countries,
or both.

CITED REFERENCES
1. Foundations of IT Service Management Based on ITIL,

ITSM Library, J. Van Bon, M. Pieper, and A. van der
Verrn, Editors, Van Haren Publishing B.V., Zaltbommel,
The Netherlands, November 2006.

2. Introduction to ITIL, The Stationery Office, Office of
Government Commerce, United Kingdom (2005).

3. COBIT, Information Systems Audit and Control Associa-
tion (ISACA), http://www.isaca.org/Template.
cfm?Section¼COBIT6&Template¼/TaggedPage/
TaggedPageDisplay.cfm&TPLID¼55&ContentID¼7981.

4. Recommendation M.3050: Enhanced Telecommunica-
tions Operations Map (eTOM)—Introduction, Interna-
tional Telecommunication Union, http://www.itu.int/
rec/T-REC-M.3050.0/en.

5. Service-Oriented Architecture, IBM Systems Journal 44,
No. 4 (2005).

6. IBM Tivoli Provisioning Manager: Product Overview,
IBM Corporation, http://www-306.ibm.com/software/
tivoli/products/prov-mgr/.

7. IBM Tivoli Unified Process, IBM Corporation, http://
www.ibm.com/software/tivoli/governance/
servicemanagement/itup/tool.html.

8. H. Madduri, S. S. B. Shi, R. Baker, N. Ayachitula, L.
Shwartz, M. Surendra, C. Corley, M. Benantar, and S.
Patel, ‘‘A Configuration Management Database Architec-
ture in Support of IBM Service Management,’’ IBM
Systems Journal 46, No. 3, 441–457 (this issue, 2007).

9. JSRs: Java Specification Requests—JSR# 168, The Java
Community Process, http://www.jcp.org/en/jsr/
detail?id-168.

10. A. Betawadkar-Norwood, E. Lin, and I. Ursu, ‘‘Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Usage Examples and Perfor-
mance Tuning,’’ developerWorks, IBM Corporation,
http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0507lin/.

11. A. Betawadkar-Norwood, E. Lin, and I. Ursu, ‘‘Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Design and Configuration,’’
developerWorks, IBM Corporation, http://www-128.ibm.
com/developerworks/db2/library/techarticle/
dm-0506lin/.

12. L. Haas and E. Lin, ‘‘IBM Federated Database Technol-
ogy,’’ developerWorks, IBM Corporation, http://
www-128.ibm.com/developerworks/db2/library/
techarticle/0203haas/0203haas.html.

13. L. M. Haas, E. T. Lin, and M. A. Roth, ‘‘Data Integration
through Database Federation’’ IBM Systems Journal 41,
No. 4, 578–596, 2002.

14. ‘‘Data Federation with IBM DB2 Information Integrator,’’
IBM Redbook SG24-7052, IBM Corporation, http://www.
redbooks.ibm.com/abstracts/sg247052.html.

Accepted for publication March 25, 2007.

David Lindquist
IBM Software Group, Tivoli, 3901 S Miami Blvd, Durham NC
27703-9135 (lindqui@us.ibm.com). Mr. Lindquist, an IBM
Fellow, is IBM Tivoli’s Chief Architect, responsible for the
architecture of IT management and service management
solutions and technology. Prior to joining IBM Tivoli in 2002,
he led the WebSphere Edge of Network strategy and
architecture in the Application and Integration Middleware
division. Dave began his career with IBM in the Server Group,
specializing in large-systems architecture, performance, and
database systems. In 1990 he joined the IBM Software Group,
where he focused on Web infrastructure, content delivery
networks, mobile and wireless technology, and Internet
products. His research has led to 48 patents, recognition as an
IBM Master Inventor, and election into the IBM Academy of
Technology.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LINDQUIST ET AL. 439

Published online July 11, 2007.

Hari Madduri
IBM Software Group, Tivoli, 11501 Burnet Rd, Austin TX
78758-3400 (madduri@us.ibm.com). Dr. Madduri started his
career as a S/370e assembler programmer/analyst, and
obtained a Ph.D. degree in 1985 from the University of
Wisconsin-Madison. Since joining IBM in 1990, he played
various lead technical and management roles in object-
oriented systems (DSOM), data mining (chief architect of data
mining products), e-commerce hubs, electronic data
interchange, and IBM Global Services service development
(e.g., UMI). In IBM Tivoli, he contributed to early ITIL process
prototypes, which led to the current ITSM strategy. He is
currently lead architect for the CCMDB product. Dr. Madduri
taught undergraduate and graduate classes in programming
languages, compilers, and operating systems at University of
Wisconsin-Madison, St. Thomas University (Minneapolis),
and University of Hyderabad (India). He has published over
20 papers and authored 20 United States patents.

Chakalamattam Jos (C. J.) Paul
IBM Software Group, Tivoli, 11501 Burnet Road, Austin TX
78758-3400 (cjpaul@us.ibm.com). Dr. Paul is lead architect
for Process Managers in IBM Tivoli and guides the
architecture and design of the family of Process Managers that
are a part of the IBM Service Management portfolio. His focus
areas include process automation, systems management,
service management, compliance, and governance. Prior to
this assignment, he worked on the IBM on demand
automation strategy and architecture, the autonomic
computing initiative, Tivoli core technologies, and the
WorkSpace on Demand product line. He is a member of the
IBM Autonomic and Tivoli Architecture Board, the IEEE, and
the ACM and holds more than a dozen patents. Dr. Paul joined
IBM in 1993, initially working on microkernel operating
systems. He has a Ph.D. degree in computer engineering from
Carnegie Mellon University in Pittsburgh, Pennsylvania and a
B.Tech degree from the Indian Institute of Technology in
Chennai.

Bala Rajaraman
IBM Software Group, Tivoli, 3901 S Miami Blvd, Durham NC
27703-9135 (balar@us.ibm.com). Dr. Rajaraman has been
with IBM since 1992 and is currently a Distinguished Engineer
responsible for the architecture and design of Enterprise
Systems Management solutions. His focus areas include IT
service management and provisioning and automation
solutions. In the past he was involved in the performance
aspects of the System ze and WebSphere. His areas of interest
include communications technologies, systems performance,
autonomic computing, systems management, and on demand
computing. He has a Ph.D. in computer engineering from
Clemson University. &

LINDQUIST ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007440

