D. Lindquist
H. Madduri
C.J. Paul

B. Rajaraman

IBM Service Management
architecture

In this paper we describe the IBM Service Management (ISM) architecture, a service-
oriented architecture designed to automate and simplify the management of business
services. We describe the four major components of ISM: portal-based user interfaces,
a process layer that includes the process runtime and service management solutions,
an information layer that includes a configuration management database, and
operational management products and their integration with service management
processes. We describe the way in which the service management solutions are based
on industry best practices, and in particular ITIL® (Information Technology Infrastruc-
ture Library®). We discuss our experiences implementing ISM and conclude with ideas

for future work, including how ISM lays out the groundwork for the future
implementation of autonomic functions.

INTRODUCTION

Many information technology (IT) organizations are
asked to reduce costs and improve the quality of
service at the same time that the complexity and the
change and compliance requirements are accelerat-
ing. The traditional approach to systems manage-
ment, which tends to create organizational “silos” of
expertise for specific management domains, no
longer meets these demands.

A number of studies indicate that nearly 70 percent
of chief-information-officer (CIO) budgets cover
labor costs, and of these, more than half are
expended on operations. The efficiency of tradi-
tional IT operations appears to be waning. The root
cause of this inefficiency is most likely complexity.
Enterprise application configurations frequently
evolve into haphazard interconnections of accumu-
lated software and hardware that look like complex

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

wiring diagrams. It is not uncommon for an
enterprise to have dozens of applications based on
different application architectures. As these complex
topologies grow, operations teams are addressing
complexity with the help of advanced resource-
oriented tools, which leads to islands of expertise:
server experts, application experts, storage experts,
network experts, security experts, and so on.
Although effective within each domain, this ap-
proach is not effective in managing complex
application environments.

©Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

LINDQUIST ET AL

423

424

Portal- Service Management Solutions Tooling
Based
User Service Service Desk Service Delivery and Support IT Enterprise
Interfaces Catalog : - Configuration » Availability Asset Asset
+ Incident « Change - Storage Mgmt Mgmt
« Problem « Release « Capacity
» Service
Continuity
Process Runtime and Services
Integration Modules
Configuration Operational
Management Database Management Products
« Business Application
Management
- Server, Device and
Network Management
Federation | * Storage Management
Discovery * Security Management
Recondiliation | « Financial Management
* Enterprise Asset
Management
IT Infrastructure
(Server, Storage, Network, Security, Software, Applications, Transactions, Services)
Figure 1

IBM Service Management architecture

In summary:

¢ Traditional systems management processes are
fragmented by resource domain (networks, stor-
age, servers, applications, databases, etc.), and
there are few tools that integrate these processes.
The effectiveness of IT processes depends upon
authoritative configuration data, but these data
rarely exist. Consequently, it is difficult to
generate a comprehensive and accurate picture of
the state and configuration of the IT environment.
® The various systems management products are
not integrated, which leads to inefficient manual
tasks. Because user interfaces (Uls) and data
models are not integrated, the opportunities for
automation are limited and the use of best
practices in IT governance is impeded.

IBM Service Management (ISM) is an approach
designed to automate and simplify the management
of business services. In this paper we describe the

LINDQUIST ET AL

ISM architecture, a service-oriented architecture
(SOA) that builds upon tools, techniques, and
architectures for business-process implementation
and transformation, information management tech-
nologies, and the breadth of the industry opera-
tional-management technologies.

The ISM architecture illustrated in Figure 1 is
comprised of four major components: (1) a user
interface that represents a portal-based integration
of Uls for user interactions and collaboration
(Iabeled Portal-Based User Interfaces), (2) a process
layer that includes the entity labeled Process
Runtime and Services and the entity labeled Service
Management Solutions, (3) an information layer
represented by the configuration management da-
tabase (CMDB), and (4) an operational-manage-
ment-technologies component represented by the
entities labeled operational management products
(OMPs) and the adjacent integration modules.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Figure 1 also shows Tooling, a collection of tools to
create and modify processes, Uls, and data. The ISM
architecture consolidates current IT components and
management functions along several dimensions.
All user interactions are consolidated at the portal;
the roles and responsibilities of the users are
integrated with the defined processes; and activities
(subprocesses) are integrated with configuration
data from the information layer. The architecture
takes advantages of software middleware and
industry standards for portal, workflow, and data
federation.

The ISM architecture enables client IT process
transformation based on business process workflow
tools, information integration technology, and op-
erational management technology. Through many
engagements with clients and our service teams, we
recognized that to address the increasing complexity
of IT, we needed to focus on both the IT processes
used by clients and the automation of manual tasks.
The architecture provides a way for clients to
transform their existing processes to incorporate
best practices and gradually automate processes
such as provisioning, orchestration, and problem
determination. We also realized that the effective-
ness of these IT processes depended upon access to
accurate information that described the authorized
and discovered states of the IT resources, commonly
known as configuration management data. The
service management solutions we developed are
based on IBM and industry best practices, such as
the Information Technology Infrastructure Library**
(ITIL*"‘),I’2 Control Objectives for Information and
related Technology (COBIT**),3 and Enhanced
Telecom Operations Map** (eTOM**).4

The process layer hosts solutions based on the
concept of service management processes (also
referred to as Process Managers or PMs). The
service management processes are integrated with
operational management technologies and the
CMDB. The service management processes and
related tooling incorporate a set of best practices
that may be modeled and customized to support
existing processes. Selected tasks within these
processes may be progressively automated through
operational management tools, directly reducing IT
management costs in a manner consistent with
organizational responsibilities. The integration of
these tasks with the systems management technol-

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

ogy (implemented through OMPs) is accomplished
through the use of an SOA.

The information layer, which includes the federated
CMDB, provides automated application discovery
and detailed views of system, software, and service
topologies. Open interfaces provide ease of integra-
tion with process, data sources, and automation
technology. Information about IT resources, topol-
ogy, and relationships is often dispersed throughout
operational registries used by management tools;
without including this information in a federated
database, a logical view of all the IT resources and
their respective relationships and dependencies is
not available. This logical view is critical to
improving the efficiency and effectiveness of pro-
cesses. For example, to understand the impact of a
change request and to implement a successful
change management process, information about the
current state of resources, the relationships to
business applications, the service level objectives,
the compliance policies, and the dependency on
other resources are all critical information aspects.
The integration of the service management pro-
cesses and the CMDB with operational management
technologies forms the core of our ISM architecture.

The rest of the paper is organized as follows. In the
next section we describe the processes involved in a
typical scenario, in this case the deployment of a
software upgrade, and we derive a set of require-
ments for our architecture. In the following section
we describe the ISM architecture and the way it
addresses the requirements. In the next four sections
we focus on four major aspects of the ISM
architecture: (1) the CMDB, (2) the OMPs and their
integration with service management processes, (3)
service management processes, including the use of
a service catalog for requesting services, and (4) the
role of service management processes and imple-
mentation considerations for creating processes.
The next-to-last section describes our experiences
implementing ISM. The last section contains a
summary and ideas for future work.

HIGH-LEVEL REQUIREMENTS FOR THE ISM
ARCHITECTURE

In this section, we describe the high-level require-
ments for the ISM architecture, beginning with an
end-to-end scenario involving a request for a
software upgrade. We then identify requirements

LINDQUIST ET AL

425

426

Service Request Process

Open Obtain Line Verify Obtain Implement Close
Service of Business Entitlement IT Service Service
Request Approval Approval Request Request
N
Change Management Process
L Open Categorize Assess Review and Deploy Close
RFC RFC Impacts Approve Change RFC
Change
A
Release Management Process
L Package the Test the Document Open other
Change Change Impacts RFCs

1

L Apply
Patch

Verify
Patch

Window

L Select Select
Servers Subset

Select Change

Deploy Verify
Patch Change

Schedule

Change
Rollback (if
unsuccessful)

Figure 2

Change-management and release-management activities for deploying a software upgrade

associated with the architectural components and
their interfaces.

Let us consider the case of a centralized IT
department within a large enterprise whose end
users are grouped within organizations (the various
lines of business within the enterprise). The IT
department provides various services to the end
users which are accessed through a service catalog.
The services in the service catalog are triggered by a
service request process that may include approvals
from the organization (line of business), procure-
ment of resources, and other necessary activities.

One of the services offered by the IT department is
an application software upgrade for a production
environment. Production environments involve
servers running mission-critical applications and are
typically governed by a rigorous change process

LINDQUIST ET AL

intended to minimize the risk of disruption and to
ensure that the appropriate authorizations have
been obtained, the stakeholders notified, and the
configuration information correctly updated.

Figure 2 shows the steps in the service request,
change, and release-management processes for
deploying a software upgrade in a production
environment. The end user submits a service
request through a service catalog. The service
request process defines how the service request is
handled. The service request process starts with
approval by the line of business, followed by
verification that the user is entitled to the service,
verification that the IT department can provide the
service with the required parameters (such as the
date by which the upgrade should be completed),
and finally, the implementation of the infrastructure
changes specified by the service request; that is, the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

application upgrade requested by the end user.
Additionally there may be other related changes that
are necessary to implement the upgrade (such as a
new version of a monitoring agent that should be
deployed).

The infrastructure changes specified by the service
request are typically managed through IT service
management (ITSM) processes, specifically, the
ITSM change-management and release-management
processes. Best practices for these processes are
defined at a high level by ITIL. A request for change
(RFC) is first opened that specifies the software
upgrade. The RFC information is stored as a process
artifact in the CMDB. For example, the RFC specifies
the application to be upgraded, the software release
levels, and so on. The categorize-RFC step can be
performed either by a program or by a person. The
categorization may depend on the importance of the
upgrade based on business value as well as the level
of service guaranteed to the end user. Once the
change is accepted, the impact of the change is
assessed. Software upgrades require testing to
ensure stability and performance. Impact assess-
ment involves steps in the release management
process: package the upgrade, test the upgrade, and
open RFCs to address other impacted systems (for
example the application monitoring system). There
may be additional considerations involved in impact
assessment, such as maximizing the availability of
the application. The result of impact assessment
may require that the RFC also be handled by other
service management processes, such as availability
management and service continuity management.

Following impact assessment the change is reviewed
(Review and Approve Change). If approved, the
application upgrade request is scheduled for de-
ployment. The deployment of the upgrade also
involves steps in the release management process
for identifying and staging the target systems as well
as performing the actual upgrade of the application.
The deployment of software upgrades can be
accomplished through the use of OMPs such as
Tivoli* Provisioning Manager,6 which automates
the distribution and installation of the software
upgrade and ensures that the upgrades are per-
formed consistently across multiple systems. The
last step in the deployment involves verification of
the change, following which the RFC is closed.

This scenario illustrates the need to integrate (data
as well as interfaces) the change management

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

process, the release management process, and the
OMPs. The CMDB plays a crucial role by (1)
providing a repository of resource and process
information to tasks, (2) providing a consistent data
representation across processes, and (3) enabling
the integration of OMPs with processes. For exam-
ple, the relationship between resources maintained
by the CMDB can be used to assess the business
services impacted by a software upgrade to a
specific application component of a business ser-
vice.

The ITSM process described in Figure 2 defines the
high-level activities in the change-management and
release management processes. Within each of these
activities the IT staff (users) perform tasks that
implement the specified activities. Users perform
these tasks in the context of a role and authority
associated with the role. For example, testing the
software upgrade may first involve the task of
checking out a build from a development repository,
followed by tasks to define the test case, approvals
to ensure test coverage, provisioning a test envi-
ronment, and so forth.

As organizations evolve to adopt best practice
processes, standardization typically occurs at the
level of process activities. However, the specific
tasks underlying each activity are often specific to
the organization. Additionally, these tasks change at
a much higher rate based on implementation
considerations, such as types of changes managed
by the process (e.g., software upgrades vs storage
changes), geographical considerations, and evolu-
tion of technology. For example, tasks performed for
impact analysis in virtualized infrastructures can be
significantly different from environments with ded-
icated servers. The ISM architecture allows the
definition and extensibility of tasks (and associated
Uls and data) through tools that reflect the skills of
IT staff configuring the processes for use in their
organizations. The relationship between process
activities and tasks is shown in Figure 3.

In Figure 3, the change process is represented by the
standard activities of open RFC, categorize, assess,
approve, deploy, and close RFC. Some of the key
tasks in the deploy activity are also shown. For
example, deployment of a change requires the
assignment of personnel and creation of the change
package (tasks 1 and 2, which are often manual
activities) and the actual deployment of the change
(task 3, which is often implemented through

LINDQUIST ET AL

427

Change Managerment Process

Activities

Open Categorize
RFC RFC

Assess
Impacts

Review and Deploy
Approve Change RFC
Change

Close

A

Tasks
!

Task 1: Allocate Personnel Resources

v

Task 2: Create Change Package

Task 3": Predeployment Test

|
v
Task 3: Deploy (Implement) Change

Package
v

Task 4: Verify Change Installation

User-Performed Task (user interface)

Automated Task
(performed by an OMP through Web services interface)

Figure 3
Selected activities and tasks in change management

428

automation tools such as the Tivoli Provisioning
Manager for Software). For applications likely to
incur deployment errors, a task that does a
predeployment test should be added. The ability to
easily add such a task (task 3’ in Figure 3) is a
critical requirement for the IBM Service Manage-
ment architecture.

From the analysis of the preceding scenario, we can
define the following high-level requirements for the
ISM architecture:

1. Provide best-practice processes, including activ-
ities and tasks and definitions of the associated
roles.

2. Provide a consistent and integrated operational
environment (runtime) in which to define and
execute processes as well as integrate different
processes.

3. Provide capabilities for collaboration and coor-
dination of activities and tasks across multiple
roles with secure access control (authentication
and authorization).

LINDQUIST ET AL

4. Provide a CMDB to store resource data, process

artifacts, and relationships between them. The
CMDB should be closely integrated with the
process runtime in order to enable both end users
and automated tasks to represent and use data
consistently.

5. Integrate service management processes with
OMPs to support automation of management
operations.

6. Provide Uls that enable the aggregation of
information and views from the CMDB and
OMPs.

7. Support ease of use in creating and configuring
process tasks (including extensible Uls, logic, and
data) to address the intrinsic variability of tasks
associated with customized implementations.
Additionally, the architecture must support inte-
gration of processes with IBM and third-party
OMPs as well as other business and IT processes.

ISM architecture

In this section we elaborate on the high-level
requirements identified in the prior section, focusing

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

on the primary capabilities needed to realize an
implementation of the architecture.

Best practices for service management processes
The ISM architecture allows the implementation of
best practice processes (e.g., ITIL, COBIT, and
eTOM) for various domains of service management,
such as change management, release management,
incident management, and problem management.
These best practices are captured in IBM Tivoli
Unified Process (ITUP),7 which in addition to
documenting these best practices also provides a
tool for planning and implementing them. ITUP can
be used by process designers to adopt and imple-
ment service-management best practices by using
the ISM architecture.

Consistent and integrated operational runtime for
process execution

The ISM architecture supports the coordination and
automation of tasks and collaboration between
users in multiple roles. For example, the creation of
an RFC is initiated by a user in the role of change
requestor while the acceptance and classification of
the RFC is performed by a user in the role of change
reviewer or change manager. In addition, processes
addressing a particular service management domain
may need to interact with processes (and roles) in
other domains.

Processes, activities, and tasks may be completely
manual (i.e., for a given process activity, the user
interacts with the process through a UI and performs
required tasks manually), completely automated
(i.e., after initiation, the tasks defined by each
process activity are carried out without human
intervention), or partially automated (i.e., certain
process activities or tasks are performed manually,
and others may be automated).

The ISM runtime architecture provides the capabil-
ity to define consistent and repeatable high-level
processes while accommodating the variability and
ease of configuration of tasks underlying process
activities. This is achieved by leveraging the
standard middleware runtime capabilities of IBM
WebSphere* Business Integration and the Web
Services Business Process Execution Language (WS-
BPEL) for formal process definition, runtime, and
monitoring and integrating these with task and

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

work-management capabilities and associated tool-
ing.

Coordination across multiple roles with secure
access control

A key feature of the ISM implementation is the
support for users (IT staff) to view, claim, reassign,
delegate, and perform tasks. Additionally the im-
plementation provides integrated notification
through standardized and parameterized communi-
cation templates. Uls, applications, and an integrat-
ed security model allow a user to view and claim
tasks that are assigned to the specific user or to the
role the user performs in the process. In addition,
the security model also provides authorized access
to objects referenced by the task. Escalations can be
defined on the state of a process task, which allows
for actions (e.g., notification) to be taken when, for
example, a task is not completed within a prescribed
amount of time. Future enhancements include
deeper integration with collaboration capabilities
such as instant messaging.

Configuration management database

ISM processes and tasks primarily deal with
managing resources across various inter-related
resource and management domains. The ability to
discover resources, their configuration, and their
relationships with other resources are core capabil-
ities for implementing service management pro-
cesses. Modeling and storing resource-configuration
and relationship information allows the establish-
ment of processes to control configuration changes
to resources. This is critical to all other service-
support and delivery processes. The CMDB is the
repository that maintains configuration and rela-
tionship information about resources.

In the ISM architecture, the CMDB has the following
key capabilities:

1. Discovery, application mapping, and visualiza-
tion—This capability discovers resources and
relates the resources to the business applications
and services that depend on them. Discovery can
be targeted directly against resources in the IT
infrastructure, against information about the
resources gathered by other management systems
or against data manually maintained by end users
(e.g., spreadsheets). In addition, capabilities are
provided to relate resources to the business
applications that they support. This ranges from

LINDQUIST ET AL

429

430

automated mapping based on resource configu-
ration information to manually specified rela-
tionships.

2. Federation—Maintaining all possible resource-
configuration and relationship information in the
CMDB can result in scalability issues as well as
the overhead in maintaining consistency of
changes. A federated approach allows the ability
to access information about the resource config-
uration by accessing other management systems
that have more detailed information about the
resource. Federation must support various data
formats and repositories, including relational
databases, XML (Extensible Markup Language)
documents, spreadsheets, and document reposi-
tories.

3. Reconciliation—A resource may be managed by
multiple management systems, each of which
might be responsible for a particular aspect of
management (e.g., IBM Tivoli Monitoring may
monitor the resource, whereas IBM Tivoli Provi-
sioning Manager for Software may be responsible
for software distribution to the resource). It is
necessary to reconcile the various methods by
which a resource is identified by individual
management systems so that a single instance of
the resource exists in the CMDB. This is
accomplished by allowing one or more naming
rules to be defined. A prioritized set of naming
rules allows the reconciliation of multiple inter-
nal naming schemes to be recognized, given that
one or more attributes which are required by the
naming rules are made accessible by the indi-
vidual management systems. Naming rules are
described in detail in a companion paper on the
IBM Tivoli Change and Configuration Manage-
ment Database (CCMDB) in this issue.®

4. Authoritative source for a configuration attri-

bute—With the presence of multiple management
systems providing facets of configuration and
relationship attributes of a resource, it is neces-
sary to allow the authoritative provider to be
designated for any particular attribute.

5. Access—The CMDB provides open interfaces to
access data in the CMDB and to import data into
the CMDB. Data access is enabled through
several interfaces based on Java** and EJB** that
allow processes and other OMPs to both access
and populate the CMDB data. In addition, built-in
capabilities to load data from a standard XML
format (Identity Markup Language—IDML) of the
CMDB data model is also provided.

LINDQUIST ET AL

Integration of service management processes with
OMPs

Tasks performed as part of ISM processes leverage
IBM OMPs and third-party products for task
automation, thereby improving the overall efficien-
cy of service management. Monitoring, event
infrastructures, provisioning, distribution, avail-
ability, workload management, replication, backup,
and security are among the pervasively deployed
OMPs. For example, the deployment of a large-scale
software update may utilize IBM Tivoli Provisioning
Manager for Software to automatically distribute
this software update to large numbers of desktops
based on a schedule. The ISM architecture allows
the definition of logical management operations
(LMOs) that provide an interface between the
service management process and the OMPs that
carry out the operation. A Web-services-based SOA
is used to implement these interfaces. This allows a
loose coupling between the process and the OMP
that provides the function, thus allowing an
implementation to exploit best-of-breed OMP tech-
nology while maintaining process consistency.

To enable this loose coupling, the LMO interface is
implemented by using an integration module. The
integration module performs two key functions:

1. It implements one or more calls to one or more
OMPs by using the native interfaces of the OMPs,
which could include command-line interfaces or
application-programming interfaces (APIs).

2. It maps the call arguments (provided by the
process and based on the CMDB resource model)
to arguments that are understood by the OMP.
For example, a globally unique identifier (GUID)
used by the process and CMDB to identify a
server may need to be mapped to an object
identifier that is used by the IBM Tivoli Provi-
sioning Manager for Software to internally
identify the same server.

The evolution and automation of processes will
require additional LMOs and implementations. The
ISM architecture supports the installation and
configuration of these integration modules to
interact with specific processes and tasks.

User interfaces

To improve the effectiveness and efficiency of
processes, it is important to provide Uls that allow
effective collaboration between users and enable

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

them to perform their tasks effectively. The ISM
architecture uses a portal to consolidate the Uls
where users can view and claim tasks assigned to
them and from which they can launch applications
and view the topology of resources and their
relationships. For example, to assess the impact of
an RFC, the user may need to visualize the topology
of the relationship of a resource to a business
application as well as other changes scheduled on
the resource by other RFCs. A portal allows the user
to generate these two distinct views in the same
workspace, which improves the user’s effectiveness
in carrying out the change impact assessment
activity. The standards-based portal (JSR—168)9
allows the user to customize the Uls.

The Uls also enable user efficiency by enabling
activities such as the invocation of OMPs to
automate tasks performed by the user, send
notifications to other users, and refer to attachments
and documents created as part of the process.

Design tooling to promote ease of use for process
configuration

As described earlier, it is necessary to provide tools
for creating and modifying processes, activities, and
tasks. The ISM architecture leverages WebSphere
tooling support (WebSphere Business Modeler and
WebSphere Integration Developer) in addition to
extensive tooling support for handling database
configurations, conditional routing between activi-
ties and tasks, and Uls.

In addition to simplifying the configuration of data,
processes, and Ul components, it is necessary to
preserve configuration changes in a manner that
supports movement from one environment to
another (e.g., from test to production). The ISM
architecture enables these configuration changes to
be stored as metadata (XML). Migration to a new
environment will import this metadata to incorpo-
rate the configuration changes without the need to
manually reconfigure the product.

CONFIGURATION MANAGEMENT DATABASE
The CMDB is the repository that maintains config-
uration and relationship information about IT
infrastructure resources. Resources stored in the
CMDB are called configuration items (CIs). The
CMDB provides automated application discovery,
detailed views of system, software, and service
topologies, and the ability to maintain authorized

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

states of these resources and their relationships. The
CMDB enables federated access to detailed resource
configuration data maintained in other management
systems and data sources. Open interfaces to the
CMDB provide ease of integration with process, data
sources, and automation technology.

A CMDB provides authoritative and reliable infor-
mation on the state of the IT configuration. To be
authoritative, the quality and accuracy of data in the
CMDB needs to be maintained by controlling
changes through change- and configuration-man-
agement processes. The CMDB supports service
management tasks such as the following:

* Assess the impact of a requested change (change
management)

* Assess business services impacted by an incident
(incident management)

* Audit to compare authorized and actual state of
CIs and their relationships (configuration man-
agement)

As shown in Figure 4, the goals of the CMDB are
achieved by (1) discovering resources and relation-
ships (actual state), (2) comparing the actual state
against the authorized state, and (3) invoking well-
defined change and configuration processes to
address any discrepancies between the actual and
authorized states. In addition, the CMDB maintains
links to process artifacts (such as RFCs) to help
determine which process changes one or more Cls
and to access related documents and artifacts (for
example, a change assessment document).

The CMDB is central to the ISM architecture because
it provides key interfaces to the other components of
the architecture to realize service management, as
follows:

e Interfaces to the IT infrastructure and existing
management tools for discovery, reconciliation,
and federation of existing data sources

¢ Interfaces to the process layer to enable process
tasks

e Interfaces to the UI layer to visualize CMDB data
and relationships

e Interfaces to configuration tools to manage the
CMDB schema and extensibility

Several of these aspects are described in the
following sections.

LINDQUIST ET AL

431

432

RFC: request for change
OMP: operational management product

|
i CMDB
|
|
| * RFC
| « Release Records |
| « Incidents Templates
Asset Data ! and Filters
|
| g -
|
|
Process Data 4 Authorized Actual State
State
Discovery

» Agent-less Resource Discovery
v'Sensors and Discovery Library Adapters

» Application Mapping

« Federation

+ Reconciliation

« Definitive source of attribute value

» Scalable (multiple domains)

Federated Data

(Server, Storage, Network, Security, Software, Applications, Transactions, Services) ‘

: XML> IT Infrastructure
Relational text
Data </XML>
Figure 4

Configuration management database (CMDB)

Data acquisition (discovery), reconciliation, and
access

The CMDB supports the following mechanisms to
populate and maintain the data in these repositories:

® Data discovery—Information about CIs can be
discovered directly from the IT infrastructure
through sensors. In addition, the data import
mechanisms bring in data from other sources
(e.g., management tools, spreadsheets), which
may already have discovered information about
the Cls.

® Data federation—Enables logical access to CI data
from another repository.

e Data reconciliation—Ensures that discovery of
data originating in multiple sources of data (such
as distinct monitoring and provisioning manage-
ment tools) about the same CI results in a single
system of record in the CMDB.

LINDQUIST ET AL

* User input and application programming interfac-
es—These interfaces create, read, update, and
delete data in the CMDB.

An important capability of the CMDB is the rule-
based reconciliation of data discovered from differ-
ent sources. Multiple reconciliation rules can be
specified for a resource. For example, a server may
be identified by the make, model, and serial number
of the server, or equivalently the MAC (media access
control) address or host name. The CMDB creates
aliases when multiple naming rules are applicable.
This enables the CMDB to reconcile additional
information sources for the same resource in the
same CI.

To avoid maintaining all possible resource-config-
uration and relationship data in the CMDB and the
resulting scalability and consistency issues, the
CMDB implements data federation. Data that

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

[Application Dependency Discovery Manager - Version: Current

fie En Dospiay Discovery Iopoogy Anaiics Wndows Hep

‘ o D[Em | K el ke

Discovered Componens "] Business Applications - Order Management

Business: Apglontions | (k] f ad EEo8| g =

B csxemnt17y

B o amsnitd

- J—

85 rwertory Mansgement
8o reE sampie Bz pp

B s mapes

£ order Management.

8y ordes Mommgranerd - Stagng
B it s
BB Sttamaneizt -

=g

Tegology

GETament173

@O

£....... HS

GSEamsatibe

rrvertury Management

JZEE Seeple BE ApD

|| v R ventcn [y (% 0 [

Components Appication Descriptors | Depenaencies

Creat Verification
Business Appication
TORI08 1738 EDT

Admin infa

Figure 5
Visualization of application dependencies using the CMDB

Server.

changes rapidly (e.g., resource status maintained by
a monitoring system) is left under the control of
existing management systems; however, this data is
logically made part of the CMDB (i.e., linked to the
information in the CMDB). Access to this data is
enabled transparently by using the federation
capabilities of middleware products such as the
Websphere Information Integrator.mf14

The CMDB also provides capabilities to maintain the
authorized state (attributes and relationships) of the
CI. The authorized state is always modified by
change- and configuration-management processes
with appropriate impact analysis and approvals.
Having both authorized and actual (discovered)
data about CIs and relationships enables functions
such as audit and compliance checks.

Data in the CMDB is accessed by consumers,

including Uls, process tasks, and OMPs, by using an
object layer abstraction on the underlying database

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

structure. The abstraction seen by the consumers is
a set of Java objects and operations on these objects,
including search, create, read, update, and delete.
The object layer abstraction allows the consumer to
be insulated from the layout of database tables and
the optimizations that can be exploited at that level.
The CMDB is described in additional detail in a
separate paper in this issue.’

Visualization

Figure 5 illustrates the use of the CMDB to visualize
the dependencies of a business application (an
order-management application is shown in Figure 5)
on the constituent IT infrastructure components
(such as software applications, servers, storage, and
networks). This visualization enables the user (IT
staff) to iteratively drill down (i.e., view data at a
greater level of detail) to specific components. For
example, the user can drill down from the business
service to the underlying software components and
to the servers on which the software is installed. The

LINDQUIST ET AL

433

434

user can obtain details on the software and server
configuration (for example the EJBs installed on a
WebSphere application server).

The CMDB architecture provides unique capabili-
ties, including the following:

* A comprehensive data model (CDM) that supports
open standards and operational extensions based
on field experience. This significantly accelerates a
customer’s implementation of a CMDB.

¢ Closely integrated change and configuration pro-
cesses and OMPs to enable consistency of the
CMDB. Additionally, the ability to support auto-
mated change and configuration processes enables
the delegation of functions to management prod-
ucts and provides the architecture to integrate
service management and autonomic behavior of
resources and management systems.

® Open interfaces and standard data interchange
formats.

INTEGRATION OF SERVICE MANAGEMENT
PROCESSES WITH OMPS

The integration of ITIL or COBIT-like best practice
processes with OMPs is a critical enabler for
improving the efficiency of process activities and
tasks. OMPs, such as monitoring, event manage-
ment, provisioning, and license management prod-
ucts, allow service management processes to be
applied to large-scale resource domains while
minimizing repetitive labor cost and resulting errors.

The ISM platform supports three kinds of integration
between OMPs and service management processes:
Ul integration, data integration, and functional
integration.

Data integration is enabled by the CMDB. Data can
be transferred from the OMP to reside in the CMDB
(discovery) or can remain in the OMP but logically
mapped to the CMDB (federation). This integration
is described in the subsection “Data acquisition
(discovery), reconciliation, and access“ in the
section “Configuration management database.”

Ul integration

Manual tasks are often performed by launching
OMPs and interacting with their Uls. Examples of
these include:

* While deploying a change that is requested on a
server (as part of a change management process),

LINDQUIST ET AL

a change deployer may want to see detailed
information about this server maintained in the
data center model of Tivoli Provisioning Manager.

¢ To identify the failing component (as part of an
incident management process), a service desk
analyst may need to launch into Tivoli Business
Services Management.

The user interaction with the OMP UI can be
optimized (i.e., redundant input and the number of
panels navigated can be minimized) by launching
the OMP Ul in the context of one or more CIs for
which the task is being performed. Launching into
the OMP UI should not only display the appropriate
contextual view but also pass contextual informa-
tion about the CIs for which the OMP is being
launched.

Launch in context is provided as a general mecha-
nism in the ISM architecture. Launch in context can
be used between service management processes and
OMPs, directly between OMPs, between different
processes, and between processes and the CMDB.
Figure 6 illustrates the failure analysis task in an
incident management process to determine the
business impact. The failure analysis task identifies
the failing components, services impacted, and the
service level agreements (SLAs) impacted. The
failure analysis task Ul also enables the user to
launch into the OMPs (Tivoli Enterprise Portal,
Tivoli Business Systems Manager, and Tivoli Service
Level Advisor) to obtain additional detail about
resources, their status, and the SLAs in place.

Functional integration

Functional integration enables process tasks to
programmatically invoke OMPs to execute specific
tasks. In conformance with an SOA approach, the
invocations of OMPs are implemented by using an
LMO, an abstract logical interface that is loosely
coupled with the specific APIs provided by an OMP.
As mentioned earlier, LMOs provide a service
abstraction of the OMPs and a degree of transpar-
ency from versions, instance, and location. The
architecture enables the integration module that
implements an LMO (i.e., binds the LMO to a
specific OMP) to be separately developed, installed,
and configured within the platform. This provides
the opportunity to create an ecosystem of OMP
vendors to be integrated with the ISM platform. The
integration module architecture includes the fol-
lowing key aspects:

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

DEIWizard portlet

Failing Components

£ (2] | = o --- Select Action —-- ~ | Ge|
i S e i oo =
Account Balance®l N warnin g Service Saruice Account # Bellome
e Ye———— © crwiesl Somuare Instalation Tivoli pme——
188 WabSphere Application Seruer Hetwork Deploymant, v 18] A% warming Softwars Installation .
= e ohnee Enterprise
Portal
Services Impacted
L 2| | = o --- Select Action --- | Gao|
e Sl e i e = _—
Py e e e e B e P Tivol
Account Batance] D oz |91 Bl oy R | commnt Bl fo @ =) | S Asmmm Bk BUSINESS ey
Online Banking/ATHM/ATH Inquire®l € critical Unsble to perform account inqu = Provide account inguiry for we = Service: ATM Inquire Systems " T
Pags 1 afa Totali 3 Displayed: 3 Manager ——
SLAs and OLAs
7] (2] (3] [#) [setect action — 8] [cs] Tivoli
Mame ~ ;atu; ~ | Schadule stata_ ~ | SLA Typa ~ | Custornar ~ | Dascription ~ Service
online Banking Sarvice =l Trand and Wiclstion Peak oLa TAMCO Online Banking
S R Level
Save to File FPrinter Friendly Wiew AdVISOr
B i
Status Event Resources Status Status Status
Severities Relationships Schedule
Products State
IBM Tivoli Tivoli Tivoli Tivoli Tivoli
Monitoring Enterprise Change and Service Monitoring for Business
Console Configuration Level Advisor| Transaction Systems
Management Performance Manager
Database
\, Discovery Books M

Figure 6

Launch-in-context integration with operational management products

* An integration module is defined as a Web service,
using standard Web Services Description Lan-
guage (WSDL) interface definitions.

* An integration module implements one or more
LMOs by providing the binding and functional
mapping between the syntax and semantics of the
LMOs to the interfaces provided by the target
OMP.

* To accomplish the binding and functional map-
ping, the integration module translates the process
reference to a CI into corresponding identifiers for
one or more resources as understood by the OMP.
This is accomplished by interacting with the
CMDB, which maintains the mapping between the
CMBDB CI identifier and the resource identifier for
each OMP that can manage the resource.

¢ Each integration module is registered with the
CMDB with appropriate information on the
location of the OMP, the LMOs it supports, and the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

set or collection of CIs for which it supports the
LMOs.

Use of an SOA to implement OMP integration is a
key differentiating aspect of the ISM architecture.
We expect that the increasing maturity and auto-
mation of service management will drive the
definition of standardized LMOs for the various
service management process domains.

SERVICE CATALOG AND SERVICE REQUEST
MANAGEMENT

For most end users, their view of ISM begins with
the service catalog, which lists the services offered
by service providers. For an IT organization, the
service catalog represents the interface with its end
users. When such a user selects a service from the
catalog, a service request is created and handled by

the appropriate IT processes as depicted in Figure 2.

LINDQUIST ET AL

435

436

Service definition and catalog views

The ISM architecture enables services to be defined
in XML with a service definition tool and stored in a
service database. When services are provided by a
service provider, entitlement to these services
(including access to specified views of the data) can
be based on criteria such as membership in an
organization and customer account information.
The list of services can range from simple, fully
automated end-user services such as password
reset, to more complex services such as provisioning
or upgrade of an application environment. Service
definition also includes setting up the terms of any
associated SLAs, rating and billing terms, and
contractual agreement templates. Note that the
service definition by itself is not sufficient to bring a
new service into existence. All the appropriate
service fulfillment workflows and integration with
internal processes and systems, as well as external
service providers, have to be established before the
service can be delivered.

The defined services are accessible through the
service portal—where the views can be customized
for the user. Users can browse the service catalog for
services that they are entitled to request, view
groups of services, and select a service. For
example, the user could browse the catalog for user
ID services, and select the password reset service.
On selection, the user is asked to provide values for
the attributes associated with that service. In
addition to Uls, programmatic interfaces, such as
add/modify/query the list of the services, are also
provided.

Service catalogs can also display the cost informa-
tion associated with a service. This is appropriate,
for example, when the IT organization charges for
the specific services rendered. In such cases, the end
user can factor in the cost of the services when
requesting the service.

The service catalog also provides interfaces for
business users, those users who define services and
create and modify the business rules associated with
the service. For example, a business user can
provide price information, levels of discounts
available, and the kinds of resources used to satisfy
a particular service request. Business users also
have access to service performance data and
analytics in the form of reports and dashboard
views. This provides business users with metrics on

LINDQUIST ET AL

how a service is performing (e.g., which services are
ordered often).

Service request management

Once the user selects a service from the catalog, the
service has to be fulfilled by the IT organization
either through internal capabilities or by aggregating
internal capabilities with externally provided (out-
sourced) capabilities. Whereas simple services such
as password resets can be easily automated, more
complex services such as server provisioning may
involve requisitions, reviews, assessments, and
approvals, which involve human intervention. The
sequence of work involved in fulfilling the service is
called the service request flow.

In addition to managing the fulfillment of a service
request, service request management also provides
the service requestor with periodic status reports on
the progress of service fulfillment. This information
may also be used to monitor the service for
performance measures such as availability and
utilization.

PROCESS MANAGERS

Process Managers (PMs) are applications that
deliver service-management process implementa-
tions through executable workflows integrated with
OMPs and the CMDB. In addition, PMs provide
capabilities to track execution metrics and provide
dashboards and reports that allow IT organizations
to identify bottlenecks and improve organizational
productivity.

A service management process is initiated by an
incoming work request, An RFC is a common
example of such a work request. Because IT
organizations deal with a large variety of work
requests, the ISM architecture provides a flexible
and extensible mechanism to classify the work
requests. For example, an RFC may involve hard-
ware changes, software changes, network changes,
or storage changes. Software changes can be further
classified into new application deployments and
application upgrades. Each type of work request
requires its own set of extended attribute values,
which capture all the information needed to perform
the work request.

The actual fulfillment of this work request is

handled by a process consisting of activities (sub-
processes) and tasks. A process flow is a graph of

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

activities and tasks. For our purposes, a task is
defined as a unit of work that can be scheduled and
assigned. PMs provide mechanisms to allow process
owners to define flow templates associated with
each type of request. This gives each user organi-
zation the ability to exercise control on the way
work is performed, using the organization’s policies
and guidelines, while still supporting the execution
of end-to-end service flows. The end-to-end service
request and fulfillment flow is realized by the
initiating service request flow and the collection of
flow templates in each of the PMs that are exercised
as the particular request makes its way through each
process domain.

The breadth and complexity of services along with
domain-specific requirements makes it difficult to
predefine end-to-end process workflows. Often, the
activities are well-known, but the tasks vary
depending upon the specific request and organiza-
tion policies. The specific tasks and the sequencing
and scheduling of tasks may depend on a number of
dynamic considerations, including domain-specific
requirements as well as personnel availability and
organization responsibilities. The PM architecture
provides several ways to represent the tasks
performed by various people in the organization as
part of the process flow. The most basic represen-
tation is in the form of work breakdown structures,
which may just identify the list of tasks to be
performed in an activity and the dependencies
between tasks. Additional representations can de-
fine explicit workflows to support more advanced
task-sequencing needs (including conditional
branching).

Tasks can be assigned to either an individual or a
team, typically identified by role and implemented
as a Lightweight Directory Access Protocol (LDAP)
security group. When the task is assigned to a team,
the task appears in the in-box of all the members of
that LDAP group. Users (IT staff) who participate in
the process flow log into a portal Ul to view the tasks
in their in-boxes. The user can choose to accept or
claim a task, at which point the task is removed
from the work queue of other team members. When
the task is claimed by the user, a Ul for performing
the task is launched.

Process owners and business managers can view the

current status of a particular work request on the PM
console and can view the tasks that have been

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

completed and the tasks that are yet to be
completed. Process execution can be monitored
through the definition of key performance indicators
(KPIs). They enable the identification of bottlenecks
and inefficiencies and may lead to process im-
provements.

The CMDB provides a common repository of
information that is used by all PMs. For example,
the Change Management PM and the IBM Tivoli
Release Management PM use information from the
CMDB to determine software packages and targets
that would be involved in a particular change.
Additionally, the configuration management process
is responsible for updating the authorized configu-
ration data in the CMDB. This ensures the consis-
tency of data and facilitates integration across
processes. For example, when new software is
deployed to a server, the CMDB is updated with the
new CIs and relationships by the IBM Tivoli
Configuration PM—and this information is then
available to the Incident Management PM should
incident tickets be opened against services or
applications running on that server.

PMs support Web services interfaces for ease of
integration with other processes. For example, the
Change Management PM supports a Web services
interface to create an RFC, to query the status of an
RFC, to cancel an RFC, and so on. Similarly, the IBM
Tivoli Release Management PM supports an inter-
face to create a release, query details of a release,
suspend a release, and cancel a release.

ISM IMPLEMENTATION EXPERIENCE

Our implementation of the ISM architecture en-
compasses almost all major components described
in this paper. The implementation is built on
WebSphere middleware and uses industry open
standards for interfaces, the portal, data models, and
process workflows. The core IBM operational
management capabilities integrated include: Tivoli
Monitoring, Event Management, Business Systems
Management, Provisioning and Software Distribu-
tion, Storage Management, Security Management,
and Network Management. The IBM Tivoli Change
and Configuration Management Database (CCMDB)
is an integrated offering that includes the CMDB and
the change-management and configuration-man-
agement processes necessary to maintain the integ-
rity of the CMDB. The CCMDB supports the
federation or discovery of information on resources

LINDQUIST ET AL

437

438

and their relationships, the visualization of depen-
dencies among data, and processes for managing
configuration changes. PMs have been implemented
for a variety of domains including release manage-
ment, storage provisioning management, availabil-
ity management, and capacity management.

Because the ISM implementation is loosely coupled,
this allows for progressive adoption and incremental
deployment. This is a common adoption pattern in
various implementations. Deployments of IBM
Tivoli OMPs and integration between these products
has gained significant customer acceptance. The
ISM implementation provides an evolutionary path
for adoption of service management by integrating
OMPs with the CMDB and PMs.

There has been significant adoption and realization
of value from the discovery and topology visuali-
zation capabilities provided by CCMDB. This has
been a critical step in the adoption of the ISM vision
and architecture. The deployment of discovery and
application dependency mapping provides users
with the critical information required to improve the
effectiveness of their IT processes. The deployment
of CCMDB discovery has generated requests to
expand the breadth and depth of discovery beyond
the already extensive list of supported resources and
management systems. Additional requirements from
field implementations include the ability to control
the scope of discovery and to filter the discovered
data to limit the amount of information gathered as
part of discovery. This has primarily been driven by
scalability and the amount of time to discover large
numbers of resources. Other requirements include
the ability to extend the data model, to add
attributes to existing resource models, and to add
new types of resources. There is also significant
interest in the federation and configuration man-
agement capabilities of CCMDB. Federating data
sources is critical for the inclusion of customer and
third-party databases in CCMDB. These deploy-
ments are pushing the need for increasingly
sophisticated and automated reconciliation technol-

ogy.

From a process management perspective, many
customers have been looking for the flexibility to
configure the tasks of a process to more closely align
with their practices and policies. This has driven
advanced tooling requirements to configure pro-

LINDQUIST ET AL

cesses and integrate the processes with data model
extensions in the CCMDB and Uls for visualization.
Understanding the existing processes and interac-
tions across organizations is an important aspect to
successful process management deployment. The
transformation toward best practices typically be-
gins with implementation and incremental change
to existing processes. Typically process implemen-
tations require substantial time and implementation
effort because they often include organizational
transformation as well as alignment with existing
processes and tools and their limitations.

Our implementation and deployment experiences
have confirmed the key design decisions of the ISM
architecture. In particular, the use of an SOA to
integrate our extensive collection of OMPs with a
federation-based CMDB and process management
technologies was validated. Each of the deployment
requirements we have encountered is being ad-
dressed in a manner consistent with our architec-
ture.

SUMMARY AND FUTURE WORK

We have presented an SOA-based architecture that
provides a platform for aligning operations teams
with industry best practices and integrates process
with information and operational-management
technologies. Built upon business process transfor-
mation tools, information management technolo-
gies, and operational management technologies, the
IBM Service Management architecture establishes a
foundation to support more advanced levels of
autonomic computing. The knowledge contained in
the CMDB is a critical component for autonomic
management of systems. The service topology
information supported by the CMDB provides a
business context to establish policies to govern
autonomic behavior. These policies can reflect a
range of domains from quality-of-service objectives
for performance and availability to security and
compliance requirements. Even policies guiding the
automation of IT processes can be established.
Through these policies, autonomic computing ex-
tensions can be added to the CMDB, the PMs, and
the operational management tools.

These policies can then be supported through
closed-loop processing. The design point is to use
the OMPs to enforce the policies based on the
context of the business applications as defined in the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

CMDB. An important aspect of this work is the
integration of the autonomic capabilities with the
PMs. Ideally autonomic implementations of activi-
ties and tasks provide governance and KPIs in a
manner consistent with manual tasks. This ap-
proach enables the operations team to more easily
monitor the actions and results of autonomic
technology, thus easing the transition from a labor-
intensive model toward a more automated model
where IT supports the needs and priorities of
business services.

Another important aspect of this work is the design
of PMs with conditional branches to switch between
different levels of implementations (manual, semi-
automated and automated) of the same task. This
also allows customers to gradually change, as
organizational maturity grows, from a manual
process to a more automated and even to a fully
closed-loop controlled process.

In summary, IBM Service Management is leading an
industry shift, causing the discipline of management
systems to evolve from a technology-centric ap-
proach toward a service focus that encompasses
people, processes, information, and technology. The
IBM Service Management architecture focuses on
simplifying the development, deployment, and
management of services, reducing operational costs,
and improving service levels. Technological ad-
vances in autonomic computing are an integral part
of service management. The architecture and
implementation will continue to evolve toward
process, tools, and integration to enable self-
managing goal-oriented systems.

*Trademark, service mark, or registered trademark of
International Business Machine Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of United
Kingdom Office of Government Commerce, Systems Audit and
Control Association, Telemanagement Forum Corporation, or
Sun Microsystems, Inc., in the United States, other countries,
or both.

CITED REFERENCES

1. Foundations of IT Service Management Based on ITIL,
ITSM Library, J. Van Bon, M. Pieper, and A. van der
Verrn, Editors, Van Haren Publishing B.V., Zaltbommel,
The Netherlands, November 2006.

2. Introduction to ITIL, The Stationery Office, Office of
Government Commerce, United Kingdom (2005).

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

3. COBIT, Information Systems Audit and Control Associa-
tion (ISACA), http://www.isaca.org/Template.
cfm?Section=COBIT6&Template=/TaggedPage/
TaggedPageDisplay.cfm&TPLID=55&ContentID=7981.

4. Recommendation M.3050: Enhanced Telecommunica-
tions Operations Map (eTOM)—Introduction, Interna-
tional Telecommunication Union, http://www.itu.int/
rec/T-REC-M.3050.0/en.

S. Service-Oriented Architecture, IBM Systems Journal 44,
No. 4 (2005).

6. IBM Tivoli Provisioning Manager: Product Overview,
IBM Corporation, http://www-306.ibm.com/software/
tivoli/products/prov-mgr/.

7. IBM Tivoli Unified Process, IBM Corporation, http://
www.ibm.com/software/tivoli/governance/
servicemanagement/itup/tool.html.

8. H. Madduri, S. S. B. Shi, R. Baker, N. Ayachitula, L.
Shwartz, M. Surendra, C. Corley, M. Benantar, and S.
Patel, “A Configuration Management Database Architec-
ture in Support of IBM Service Management,” IBM
Systems Journal 46, No. 3, 441-457 (this issue, 2007).

9. JSRs: Java Specification Requests—JSR# 168, The Java
Community Process, http://www.jcp.org/en/jsr/
detail?id-168.

10. A. Betawadkar-Norwood, E. Lin, and I. Ursu, “Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Usage Examples and Perfor-
mance Tuning,” developerWorks, IBM Corporation,
http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0507lin/.

11. A. Betawadkar-Norwood, E. Lin, and I. Ursu, “Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Design and Configuration,”
developerWorks, IBM Corporation, http://www-128.ibm.
com/developerworks/db2/library/techarticle/
dm-0506lin/.

12. L. Haas and E. Lin, “IBM Federated Database Technol-
ogy,” developerWorks, IBM Corporation, http://
www-128.ibm.com/developerworks/db2/library/
techarticle/0203haas/0203haas.html.

13. L. M. Haas, E. T. Lin, and M. A. Roth, “Data Integration
through Database Federation” IBM Systems Journal 41,
No. 4, 578-596, 2002.

14. “Data Federation with IBM DB2 Information Integrator,”
IBM Redbook SG24-7052, IBM Corporation, http://www.
redbooks.ibm.com/abstracts/sg247052.html.

Accepted for publication March 25, 2007.
Published online July 11, 2007.

David Lindquist

IBM Software Group, Tivoli, 3901 S Miami Blvd, Durham NC
27703-9135 (lindqui@us.ibm.com). Mr. Lindquist, an IBM
Fellow, is IBM Tivoli’s Chief Architect, responsible for the
architecture of IT management and service management
solutions and technology. Prior to joining IBM Tivoli in 2002,
he led the WebSphere Edge of Network strategy and
architecture in the Application and Integration Middleware
division. Dave began his career with IBM in the Server Group,
specializing in large-systems architecture, performance, and
database systems. In 1990 he joined the IBM Software Group,
where he focused on Web infrastructure, content delivery
networks, mobile and wireless technology, and Internet
products. His research has led to 48 patents, recognition as an
IBM Master Inventor, and election into the IBM Academy of
Technology.

LINDQUIST ET AL

439

440

Hari Madduri

IBM Software Group, Tivoli, 11501 Burnet Rd, Austin TX
78758-3400 (madduri@us.ibm.com). Dr. Madduri started his
career as a S/370™ assembler programmer/analyst, and
obtained a Ph.D. degree in 1985 from the University of
Wisconsin-Madison. Since joining IBM in 1990, he played
various lead technical and management roles in object-
oriented systems (DSOM), data mining (chief architect of data
mining products), e-commerce hubs, electronic data
interchange, and IBM Global Services service development
(e.g., UMI). In IBM Tivoli, he contributed to early ITIL process
prototypes, which led to the current ITSM strategy. He is
currently lead architect for the CCMDB product. Dr. Madduri
taught undergraduate and graduate classes in programming
languages, compilers, and operating systems at University of
Wisconsin-Madison, St. Thomas University (Minneapolis),
and University of Hyderabad (India). He has published over
20 papers and authored 20 United States patents.

Chakalamattam Jos (C. J.) Paul

IBM Software Group, Tivoli, 11501 Burnet Road, Austin TX
78758-3400 (cjpaul@us.ibm.com). Dr. Paul is lead architect
for Process Managers in IBM Tivoli and guides the
architecture and design of the family of Process Managers that
are a part of the IBM Service Management portfolio. His focus
areas include process automation, systems management,
service management, compliance, and governance. Prior to
this assignment, he worked on the IBM on demand
automation strategy and architecture, the autonomic
computing initiative, Tivoli core technologies, and the
WorkSpace on Demand product line. He is a member of the
IBM Autonomic and Tivoli Architecture Board, the IEEE, and
the ACM and holds more than a dozen patents. Dr. Paul joined
IBM in 1993, initially working on microkernel operating
systems. He has a Ph.D. degree in computer engineering from
Carnegie Mellon University in Pittsburgh, Pennsylvania and a
B.Tech degree from the Indian Institute of Technology in
Chennai.

Bala Rajaraman

IBM Software Group, Tivoli, 3901 S Miami Blvd, Durham NC
27703-9135 (balar@us.ibm.com). Dr. Rajaraman has been
with IBM since 1992 and is currently a Distinguished Engineer
responsible for the architecture and design of Enterprise
Systems Management solutions. His focus areas include IT
service management and provisioning and automation
solutions. In the past he was involved in the performance
aspects of the System z™ and WebSphere. His areas of interest
include communications technologies, systems performance,
autonomic computing, systems management, and on demand
computing. He has a Ph.D. in computer engineering from
Clemson University. ll

LINDQUIST ET AL

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

