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INTRODUCTION

Using advanced compiler
technology to exploit the
performance of the Cell
Broadband Engine™
architecture

The continuing importance of game applications and other numerically intensive
workloads has generated an upsurge in novel computer architectures tailored for such
functionality. Game applications feature highly parallel code for functions such as
game physics, which have high computation and memory requirements, and scalar
code for functions such as game artificial intelligence, for which fast response times
and a full-featured programming environment are critical. The Cell Broadband
Engine™ architecture targets such applications, providing both flexibility and high
performance by utilizing a 64-bit multithreaded PowerPC® processor element (PPE)
with two levels of globally coherent cache and eight synergistic processor elements
(SPEs), each consisting of a processor designed for streaming workloads, a local
memory, and a globally coherent DMA (direct memory access) engine. Growth in
processor complexity is driving a parallel need for sophisticated compiler technology.
In this paper, we present a variety of compiler techniques designed to exploit the
performance potential of the SPEs and to enable the multilevel heterogeneous
parallelism found in the Cell Broadband Engine architecture. Our goal in developing
this compiler has been to enhance programmability while continuing to provide high
performance. We review the Cell Broadband Engine architecture and present the
results of our compiler techniques, including SPE optimization, automatic code
generation, single source parallelization, and partitioning.
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The Cell Broadband Engine** (BE) processor pro-
vides both flexibility and high performance. The first
generation Cell BE processor includes a 64-bit multi-
threaded PowerPC* processor element (PPE) with
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two levels of globally coherent cache. For additional
performance, the Cell BE processor includes eight
synergistic processor elements (SPEs), each contain-
ing a synergistic processing unit (SPU). Each SPE
consists of a processor designed for streaming work-
loads, a local memory, and a globally coherent DMA
engine. Computations are performed by 128-bit-wide
single instruction multiple data (SIMD) functional
units. Anintegrated high-bandwidth bus connects the
nine processors and their ports to external memory
and I/0.

The intricacy of the Cell BE processor spans multiple
dimensions, each presenting its own set of chal-
lenges for both the highly skilled application
developer and a highly optimizing compiler. At the
elementary level, the Cell BE system has two distinct
processor types, each with its own application-level
instruction-set architecture (ISA). One ISA (for the
PPE) is the familiar 64-bit PowerPC with a vector
multimedia extension unit (VMX); the other (for the
SPEs) is a new 128-bit SIMD instruction set for
multimedia and general floating-point processing.
The first Cell BE releases consist of one PPE and 8
SPEs, each with its own 256-KB local memory to
accommodate both program instructions and data.
Typical applications on the Cell BE processor consist
of a variety of code to exploit both of these
processors.

The most basic level of programming support for the
Cell BE platforms consists of two separate com-
pilers, one targeting the PPE and the other targeting
the SPEs, along with a set of utilities and runtime
support for loading and running code on the SPEs
and transferring data between the system memory
and the local stores of the SPEs. It has been
demonstrated that very competitive performance
can be achieved with the deployment of a low-level
programming model, but to make the architecture
interesting and accessible to a more general user
community, it is useful to abstract the details and
present a higher-level view of the system. This issue
is addressed by providing a highly optimized
compiler for the Cell BE architecture.

IBM has long provided state-of-the-art compiler
support for the PowerPC platform, including auto-
matic and user-directed exploitation of shared-
memory parallelism. We use this same compiler
technology to exploit the performance potential of
the Cell BE architecture. The prototype compiler that
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we have developed for the Cell BE platform
generates code, within a single compilation and
under option control, for either the PPE or the SPEs,
or both. The PPE path of the prototype is essentially
the existing PowerPC compiler, complete with VMX
support and tuned for the PPE pipeline. For the
SPEs, a new path has been developed to target the
specific architectural features of this attached
processor, including automatic exploitation of the
four-way SIMD units. The prototype compiler
innovatively takes advantage of and extends exist-
ing parallelization technology to enable partitioning
and parallelization across multiple heterogeneous
processing elements from within a single compila-
tion process. We also draw on the large body of
existing research on programming restructuring
techniques to automate and optimize data transfer
between the multiple processing elements of the
system. Our work extends previous research in
taking into account not only the heterogeneity of the
multiple processing elements but also the nature of
the small attached local memories, which are
designed to handle both code and data.

When compiling for the most elementary level of the
Cell BE architecture, the pipelines of both processors
must be taken into account. The SPEs present
several challenges not seen in the PPE, chief among
them instruction prefetch capabilities and the
significant branch miss penalties resulting from the
lack of hardware branch prediction. To achieve high
rates of computation at moderate costs in power and
area, functions that are traditionally handled in
hardware, such as memory realignment, branch
prediction, and instruction fetches, have been
partially offloaded to the compiler. Our techniques
address these new demands on the compiler. In the
section “Optimized SPE code generation,” we
discuss in detail the following optimizations: gen-
erating scalar code on SIMD units, optimizing
language-dictated conversions (i.e., those required
by a particular programming language) to increase
computations on subwords (i.e., data that is smaller
than a word), reducing the performance impact of
branches through branch hinting and branch elim-
ination, and scheduling instructions in the presence
of limited hardware support for dual issuing and
instruction fetching.

At the next level of complexity, the SPE is a short

SIMD or multimedia processor, which was not
designed for high performance with scalar code.
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Although the compiler does support explicit pro-
gramming of the SIMD engine by means of intrinsics
(i.e., functions that are built into the compiler as
opposed to those contained in libraries), it also
provides the novel auto-SIMDization functionality,
which generates vector instructions from scalar
source code for the SPEs and the VMX units of the
PPE. Auto-SIMDization is the process of extracting
SIMD parallelism from scalar loops. In the section
“Generation of SIMD code,” we describe auto-
SIMDization in some detail, including how it
minimizes overhead due to misaligned data streams
and how it is tailored to handle many of the code
structures found in multimedia and gaming
applications.

Using the parallelism of the Cell BE processor when
deploying applications across all its processing
elements, our compiler enhances its programmabil-
ity by parallelizing and partitioning a single source
program across the PPE and the eight SPEs, guided
by user directives. The compiler also efficiently uses
the complex memory system that ties all these
processors together on the chip and interfaces with
the external storage. While the PPE makes use of a
conventional two-level cache, each SPE draws data
and instructions from its own small memory,
internal to the chip. Data transfers to and from the
local stores must be explicitly managed by using a
DMA engine. Within the compiler, we have devel-
oped techniques to generate and optimize the code
that accomplishes data transfer, allowing a single
SPE to process data that far exceeds the local store’s
capacity, using code that also exceeds the size of its
local store, and scheduling the necessary transfers
so that they overlap ongoing computation to the
extent that this is achievable. In the section
“Optimized SPE code generation,” we discuss the
compiler’s generation of parallel code and describe
our code-partitioning techniques.

Our goal in developing this compiler has been to
enhance the programmability of the architecture, at
the same time continuing to provide respectable
performance. Currently average speedup factors of
1.3, 9.9, and 6.8 for our SPE, SIMD, and paralleli-
zation compilation techniques are demonstrated on
suitable benchmarks, indicating some initial success
with our approach. In the section “Measurements,”
we briefly review our current performance mea-
surements, and we conclude in the following
section.
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CELL BE ARCHITECTURE

The implementation of the first-generation Cell BE
processor1 includes a Power Architecture processor
and eight attached processor elements connected by
an internal, high-bandwidth Element Interconnect
Bus (EIB). Figure 1 shows the organization of the
Cell BE elements.

The PPE consists of a 64-bit, multithreaded Power
Architecture processor with two levels of on-chip
cache. The cache preserves global coherence across
the system. The processor also supports IBM’s
VMX” to accelerate multimedia applications by
using VMX SIMD units.

A major source of computing power is provided by
the eight on-chip SPEs.” An SPE consists of a new
processor designed to accelerate media and stream-
ing workloads, its local noncoherent memory, and
its globally coherent DMA engine. The units of an
SPE and key bandwidths are shown in Figure 1.

Most instructions operate in a SIMD fashion on 128
bits of data representing either two 64-bit double-
precision floating-point numbers or longer integers,
four 32-bit single-precision floating-point numbers or
integers, eight 16-bit subwords, or sixteen 8-bit
characters. The 128-bit operands are stored in a 128-
entry unified register file. Instructions may take up to
three operands and produce one result. The register
file has a total of six read and two write ports.

The memory instructions also access 128 bits of
data, with the additional constraint that the accessed
data must reside at addresses that are multiples of
16 bytes. Thus, when addressing memory with
vector load or store instructions, the lower four bits
of the byte addresses are simply ignored. To
facilitate the loading and storing of individual
values, such as a character or an integer, there is
additional support to extract or merge an individual
value from or into a 128-bit register.

An SPE can dispatch up to two instructions per cycle
to seven execution units that are organized into
even and odd instruction pipes. Instructions are
issued in order and routed to their corresponding
even or odd pipe by the issue logic, that is, a
component which examines the instructions and
determines how they are to be executed, based on a
number of constraints. Independent instructions are
detected by the issue logic and are dual-issued (i.e.,
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dispatched two per cycle) provided they satisfy the
following condition: the first instruction must come
from an even word address and use the even pipe,
and the second instruction must come from an odd
word address and use the odd pipe. When this
condition is not satisfied, the two instructions are
executed sequentially. The instruction latencies and
their pipe assignments are shown in Table 1.

The SPE’s 256-KB local memory supports fully
pipelined 16-byte accesses (for memory instruc-
tions) and 128-byte accesses (for instruction fetches
and DMA transfers). Because the memory has a
single port, instruction fetches, DMA, and memory

Table 1. Latencies and pipe assignment for SPE

Latency
Instruction Pipe (cycles)
arithmetic, logical, compare, select even 2
byte sum/diff/average even 4
shift/rotate even 4
float even 6
integer multiply-accumulate even 7
shift/rotate, shuffle, estimate odd 4
load, store odd 6
channel odd 6
branch odd 1-18
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instructions compete for the same port. Instruction
fetches occur during idle memory cycles, and up to
3.5 fetches may be buffered in the instruction fetch
buffer to better tolerate bursty peak memory usage.
The maximum capacity of the buffer is thus 112 32-
bit instructions. An explicit instruction can be used
to initiate an inline instruction fetch.

The SPE hardware assumes that branches are not
taken, but the architecture allows for a “branch
hint” instruction to override the default branch
prediction policy. In addition, the branch hint
instruction causes a prefetch of up to 32 instruc-
tions, starting from the branch target, so that a
branch taken according to the correct branch hint
incurs no penalty. One of the instruction fetch
buffers is reserved for the branch-hint mechanism.
In addition, there is extended support for eliminat-
ing short branches by using select instructions.

Data is transferred between the local memory and
the DMA engine in units of 128 bytes. The DMA
engine can support up to 16 concurrent requests of
up to 16 KB originating either locally or remotely.
The DMA engine is part of the globally coherent
memory address space; addresses of local DMA
requests are translated by an MMU (memory
management unit) before being sent on the bus.
Bandwidth between the DMA and the EIB bus is 8
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bytes per cycle in each direction. Programs interface
with the DMA unit through a channel interface and
may initiate blocking as well as nonblocking
requests.

OPTIMIZED SPE CODE GENERATION

In this section, we describe the current compiler
optimization techniques that address key architec-
tural features of the SPE. A user interested in SPE
code generation may observe that our SPE compiler
produces the high quality code normally associated
with the XL compiler suite.

Scalar code on SIMD units

As mentioned in the section “Cell BE architecture,”
most SPE instructions are SIMD instructions oper-
ating on 128 bits of data at a time, including all
memory instructions. One notable exception is the
conditional branch instruction, which branches on
nonzero values from the primary slot (i.e., the
highest order or leftmost 32 bits) of a 128-bit
register. The address fields are also expected by
memory instructions to reside in primary slots.

When scalar code is generated on an SPE, it is
critical that the SIMD nature of the processor does
not get in the way of program correctness. For
example, an a=b+ c integer computation on a scalar
processor simply requires two scalar loads, one add,
and one store instruction. When executing on the
SPE, a load of b yields a 128-bit register value, which
contains the 32-bit value of b (this is technically true
only when the data elements are naturally aligned,
as we assume them to be in this paper). Its actual
location within the 128-bit register is determined by
the 16-byte alignment of b in local memory. This is
true because the memory subsystem performs only
16-byte-aligned memory requests.

After values are loaded in registers, the compiler
must track the alignment of the data because it may
operate only on values that have the same relative
alignment. In our a =b + ¢ example, the 128-bit
registers may be added only if the location of the b
and c values in their respective registers is identical.
When this is not the case, the compiler must
permute the contents of one of the registers to match
the alignment of the other. Because scalar compu-
tations in highly optimized multimedia codes mostly
involve address and branch-condition computations
(which must reside in the primary slot when used by
the memory and branch instructions), the default
policy is to move any misaligned scalar data into the
primary slot.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

The storing of a scalar value is also not as
straightforward as on a scalar processor. The
compiler must first load the original 128-bit data in
which the result resides, variable a in our example,
then splice the new value in the original data, and
finally store the resulting 128-bit data to the local
memory.

Without special care, a worst case scenario for our
a =b + c example could result in two load and
permute instructions to get and align the input data,
one add instruction to compute the result, and one
load, permute, and store instruction to store the
result in memory. We take several steps to avoid
such overhead. First, we allocate all local and global
scalars to their own private 128-bit local memory
lines and align the scalars into their primary slots.
Although this results in some memory overhead, it
is insignificant compared to the increase in code size
generated by the extra permutation instructions that
would otherwise be needed to realign the data.
Second, we perform aggressive register allocation of
all local computations, such as address and loop
index variables, to make good use of the 128-entry
register file. As a result, such variables often reside
exclusively in the primary slot of registers and thus
need no memory storage and associated load and
store instructions. Finally, auto-SIMDization is
applied to the code so as to minimize the remaining
scalar code in an application.

Subword optimization

The SPE instruction set natively supports operations
on a wide range of data widths, from 8-bit bytes to
64-bit doublewords, unlike most RISC (Reduced
Instruction Set Computer) processors, which typi-
cally support operations on words or doublewords
only. Because programming languages were de-
signed with traditional processors in mind, lan-
guages typically promote all the computations of the
short data type (e.g., 8-bit characters [“chars”] and
16-bit short variables [“shorts™], referred to as
“subwords” here) to integers. As discussed next,
such promotions have a negative performance
impact on the SPE. Subword optimization attempts
to alleviate this performance impact.

To illustrate this, we examine an example of a=b - c,
where all variables are declared as 16-bit shorts. The
integral promotion rule in the C programming
language requires any subword types be automati-
cally promoted to the integer type before performing
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any computations thereon. Effectively, C allows
programmers to specify subword data types in terms
of alignment, size, and layout in memory, but does
not allow specifying subword arithmetic. In essence,
shorts and chars in C are simply a compressed
representation of integers in memory, which are
decompressed when loaded from memory.

Such compression and decompression have little
performance impact on traditional RISC processors,
because their scalar memory operations typically
perform such size and sign extensions “on the fly.”
This is not the case with SIMD units such as those in
the SPE because they are specifically designed to
operate on subword data types in a compressed
format within their registers. This is precisely the
feature that allows them, for example, to simulta-
neously operate on eight shorts packed in a 128-bit
register. Because sign extensions are not part of the
load instructions, they have to be handled explicitly
by additional instructions on the SPE. When applied
to the a =b - ¢ example, the integral promotion rule
thus requires two additional sign extension instruc-
tions to promote the b and c input variables.

Another cost factor is that the SPE, like many other
SIMD units, does not support each data type equally.
For example, it provides hardware support only for
16-bit integer multiply-add instructions. Hence, a
32-bit multiply instruction is supported in software
by using a series of 16-bit multiply-add instructions,
three in our example. This is an inherently wasteful
computation because ultimately only the lower 16
bits of the result are stored in memory.

Subword arithmetic optimization bridges the gap
between C’s inability to specify subword arithmetic
operations and the SPEs’ underlying strength in
supporting subword operations. In our work, we
implemented subword optimization in two steps.
The first step eliminates the redundant partial-copy
operations. Instead of solely focusing on redundant
sign extensions, we propose a more general frame-
work based on the concept of partial-copy prop-
agation. We exploit the fact that some instructions
(such as subword instructions) use only a subset of
their register values, whereas other instructions
(such as sign extension instructions) copy only a
subset of their register values. This framework
eliminates redundant sign extension operations,
performs folding (the process of collapsing multiple
instructions into one), and is easily extendable.
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The second step generates the subword arithmetic
operations. This optimization aims at converting
integer arithmetic operations to equivalent arith-
metic operations of narrower data width. This
optimization can produce more efficient code when
a word instruction can be replaced with a more
efficient subword instruction. When subword and
word instructions are equally supported, narrowing
down the operating data width reveals more
opportunity for folding, for example by eliminating
redundant sign extensions.

Branch optimizations

The SPEs are heavily pipelined, making the penalty
for incorrect branch prediction high, namely 18
cycles. In addition, the hardware’s branch predic-
tion policy is simply to assume that all branches
(including unconditional branches) are not taken. In
other words, branches are only detected late in the
pipeline at a time where there are already multiple
fall-through instructions (i.e., those in the sequential
path) in progress. This design achieves reduced
hardware complexity, faster clock cycles, and
increased predictability, which is important for
multimedia applications.

Because branches that are taken are so much more
expensive than the fall-through path, the compiler
first attempts to eliminate taken branches. One
effective approach for short “if-then-else” constructs
is “if-conversions,” which use compare-and-select
instructions provided by the SPE to avoid branching
code. Another approach is to determine the likely
outcome of branches in a program, either by means
of compiler analysis or through user directives, and
perform code reorganization techniques to move
“cold” paths (i.e. those unlikely to be taken) out of
the fall-through path.

However, many taken branches cannot practically
be eliminated, in cases such as function calls,
function returns, loop-closing branches, and some
unconditional branches. To boost the performance
of such predictably taken branches, the SPE
provides for a branch hint instruction, referred to as
“hint for branch” or hbr. This instruction specifies
the location of a branch and its likely target address.
When the hbr instruction is scheduled sufficiently
early (at least 11 cycles before the branch),
instructions from the hinted branch target are
prefetched from memory and inserted in the
instruction stream immediately after the hinted

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006



branch. When the hint is correct, the branch latency
is essentially one cycle; otherwise, the normal
branch penalty applies. Presently, the SPE supports
only one active hint at a time.

Likely branch outcomes can either be measured
through branch profiling, estimated statistically by
means of sets of heuristics, or be provided by the
user (we currently use the latter technique). We
then insert a branch hint for branches with a
probability of being taken which is higher than a
given threshold.

For loop-closing branches, we attempt to move the
hbrs outside the loop to avoid the repetitive
execution of the hint instruction. This optimization
is possible because a hint remains in effect until
replaced by another one. Because an hbr instruction
indicates the address of its hinted branch by a
relative, 8-bit signed immediate field, an hbr and its
branch instruction must be within 256 instructions
of each other. Thus, hbr instructions can only be
removed from small- to medium-sized loops. Fur-
thermore, we can move the hint outside of a loop
only when there are no hinted branches inside the
loop body because at most one hint can be
outstanding at a time.

Unconditional branches are also excellent candi-
dates for branch hint instructions. The indirect form
of the hbr instruction is used before function
returns, function calls using pointers, and all other
situations that give rise to indirect branches.

Instruction scheduling

The scheduling process consists of two closely
interacting subtasks: scheduling and bundling. The
scheduling subtask reorders instructions to reduce
the length of critical paths. The bundling subtask
ensures that the issue constraints are satisfied to
enable dual issuing and prevent instruction fetch
starvation, i.e., the situation when the instruction
buffer is empty and awaiting refill from an explicit
instruction fetch (said to be ifetch but, technically
speaking, hbr.p) instruction. We first describe these
two subtasks and investigate their interaction in
more detail.

The scheduler’s main objective is to schedule
operations that are on a critical path with the highest
priority and schedule the other less critical oper-
ations in the remaining slack (i.e., idle) time. It
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ensures that instructions that are expected to be
dual-issued have no dependence and resource
conflict. Typical schedulers deal only with con-
straints concerning resources and latencies. On the
SPEs, however, there are some constraints involving
numbers of instructions; for example, the constraint
that an hbr branch hint instruction cannot be more
than 256 instructions nor less than eight instructions
from its target branch. Constraints expressed in
terms of instruction counts are further complicated
by the fact that the precise number of instructions in
a scheduling unit is known only after the second,
bundling subtask has been completed.

The bundler’s main role is to ensure that each pair of
instructions that is expected to be dual-issued
satisfies the SPEs’ instruction issue constraints. As
mentioned in the section “Cell BE architecture,” the
hardware dual-issue constraint states that the first
instruction must use the even pipe and reside at an
even word address, whereas the second instruction
must use the odd pipe and reside at an odd word
address. After the instruction ordering is set by the
scheduling subtask, the bundler can impact the
evenness of the word address of a given instruction
only by judiciously inserting nop (null operation)
instructions into the instruction stream.

Another important task of the bundler is to prevent
instruction fetch starvation. Because the single local
memory port is shared between the instruction fetch
mechanism and the processor’s memory instruc-
tions, a large number of consecutive memory
instructions can stall instruction fetching. With 2.5
instruction fetch buffers reserved for the fall-through
path, the SPEs can starve for instructions in 40 dual-
issued cycles. After a fetch buffer is empty (this
takes 16 dual-issued cycles or more), there may be a
window as small as nine dual-issued cycles in length
in which the empty buffer can be refilled in order to
hide the full 15-cycle instruction fetch latency. Thus,
the bundling process must keep precise information
at compile time about the status of the instruction
fetch buffers, mainly by keeping a precise count of
the numbers of instructions already bundled in the
function (for simplicity, the first instruction of a
function is laid out in memory to reside at an
instruction fetch boundary, that is, a multiple of 16-
word addresses). Using this instruction count, the
compiler can determine when an instruction fetch
buffer is becoming empty and whether an explicit
instruction fetch will be needed to prevent starva-
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tion because of a burst in memory traffic. The ifetch
instruction explicitly fills an instruction fetch buffer
along the fall-through path.

This buffer-refilling window is even smaller after a
correctly hinted branch because then there is only a
single valid instruction fetch buffer (the one that
was prefetched by the hbr instruction), as opposed
to 2.5 buffers for the fall-through path. In such
cases, the instruction window is so small that we
must further ensure that all instructions in the
prefetched instruction buffer are part of the execu-
tion path associated with the taken branch. In other
words, the branch target must point to code starting
at an address that is a multiple of 16 instructions,
which is the unit of realignment of the instruction
fetch mechanism. To enforce this alignment con-
straint, we may need to introduce nop instructions.
Our heuristics are fairly successful at utilizing any
idle time slots so that nop instructions may be
inserted without a performance penalty.

A final concern of the bundling process is to make
sure that there are a sufficient number of instruc-
tions between a branch hint and its branch
instruction. This constraint is due to the fact that a
hint is only fully successful if its target branch
address is computed before that branch enters the
instruction decode pipeline. The bundler adds extra
nop instructions when the scheduler does not
succeed in interleaving a sufficient number of
independent instructions between a hint and its
branch.

Our initial approach was to keep the scheduling and
bundling separate and perform them in that order;
however, this had a negative performance impact
for tight loops with critical computational require-
ments and bursty memory behavior. In such cases,
the bundler frequently added an ifetch instruction to
break a critically long series of memory accesses,
thus inserting an extra cycle with an instruction that
uses the memory unit on the odd pipe. Because
bundling was performed after scheduling, the idle
even pipe unit (on which a critical computation
could have be scheduled) could not be put to good
use, as the schedule was already fixed.

For this and similar occurrences, our current scheme
uses a unified scheduling and bundling phase. When
preparing to schedule the next, empty cycle in the
scheduling unit, we first investigate if an ifetch
instruction is required. When this is the case, we
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force an ifetch instruction in that cycle and update
the scheduling resource model accordingly. We then
proceed with the normal scheduling process for that
cycle. When no additional instruction can be placed
in the current cycle, we investigate if nop instruc-
tions must be inserted in prior cycles to enable dual
issuing. After this task is completed, we proceed to
the next cycle. We generally preserve the cyclic
scheduling approach, except that we may retro-
actively insert nop or ifetch instructions, as required
by the bundling process.

PROGRAMMING FOR THE CELL BE
ARCHITECTURE

In this section, we focus on how the compiler may
be used as one of the tools in developing applica-
tions for the Cell BE architecture. In the existing
programming model for the Cell BE architecture, the
heterogenous processor cores, the SPEs and the PPE,
and the non-uniform memory accesses of the
architecture are visible to application programmers.
Efficient manual programming of the Cell BE
architecture can be a complex task. To make use of
the best features of the PPE and SPE cores for an
application, programmers must manually partition
the application into separate code segments and use
the compiler that targets the appropriate ISA.

As previously described, both the VMX unit of the
PPE and the SPE are SIMD processors. Efficient
programming therefore requires exploiting parallel-
ism within the SPE and the VMX unit by using the
rich set of vector intrinsics that are provided for
each. To further exploit the coarse-grained inter-
processor parallelism throughout the Cell BE sys-
tem, the programmer may choose to partition his
application into tasks or parallel work units that
may be executed on the SPEs by using a pipeline or
parallel-execution model.

The resulting PPE and SPE code segments must
work together cooperatively and must explicitly
manage the transfer of code and data between
system memory and the limited SPE local stores.
Optimizing data transfer to overlap communication
and computation may involve manually program-
ming multibuffering schemes that take into account
the optimal size and numbers of local data buffers
and that select the best placement of data transfer
requests. The extent to which parallelism is
deployed in the application also influences the data
transfer decisions.
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Manually compiling and binding a Cell BE program

The final step to effect the seamless execution of a
Cell BE program requires using the SPE linker and
an embedding tool to generate a PPE executable that
contains the SPE binary embedded within the data
section. This object is then linked, using a PPE
linker, with the runtime libraries which are required
for thread creation and management, to create a
bound executable for the Cell BE program. Figure 2
demonstrates a manual process for creating such an
executable.

Although manually partitioning code and data into
PPE and SPE portions and explicitly managing the
transfers of code and data between system memory
and local stores may be a common approach to
programming the Cell BE architecture (and indeed
may well be the preferred approach of the expert
programmer for extracting the maximum perfor-
mance), we believe that in many instances this
imposes too great a burden on the programmer. An
important focus of our work is the deployment of
sophisticated compiler technology to simplify pro-
gramming for the Cell BE architecture, thereby
enabling its use in a more general-purpose envi-
ronment, while still providing the expert program-
mer with full control and access to the high
performance code generated by our compiler. To
accomplish this, we have provided an incremental
approach, which delivers increasing levels of com-
piler support for a broad range of programming
styles and expertise levels.

An expert programmer may choose to program
directly in assembly language. This approach may
yield the highest performance when used appropri-
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ately, but incurs a significant cost in terms of
application development. To extract high perfor-
mance from their application with significantly
higher ease of use and development productivity,
programmers can use our PPE and SPE C compilers
with VMX and SPE intrinsics to precisely control
SIMD instruction selection and how data is laid out
in memory, while letting the compiler schedule the
chosen SIMD instructions and allocate them to
registers. In the intrinsic support provided for the
Cell BE architecture, new data types are introduced
to express vectors, using (essentially) a vector type
for each of the types supported by the SIMD units,
such as vector char, short, int, Tong long, float,
and double. The programmer can then select the
appropriate intrinsic with which to operate on the
data. Intrinsics appear to the programming language
as functions that mimic the behavior of each SIMD
instruction in the target architecture. During com-
pilation, these functions are replaced by the actual
native SIMD instruction.

The major advantage of programming with intrin-
sics is that the programmer has full control over the
handling of the data alignment and the choice of
SIMD instructions, yet continues to have the benefit
of high-level transformations such as loop unrolling
and function inlining (i.e, copying subroutine code
into the calling routine) as well as low-level
optimizations such as scheduling, register alloca-
tion, and other optimizations discussed in the
section “Optimized SPE code generation.” In addi-
tion, the programmer can rely on the compiler to
generate all the scalar code, such as address,
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branch, and loop code generation; code that is often
error-prone when hand-coded in assembly lan-
guage. In addition, it is much easier to modify code
programmed with intrinsics over the course of an
application’s development than to modify assembly
language. For example, adding a few computations
in a program written in assembly language might
require retuning the register allocation of an entire
function. There are no such issues with intrinsics, as
the compiler assigns local temporary variables to
registers during the compilation process.

Programmers wishing to achieve good application
performance without dealing with the specific SIMD
instructions of the target SIMD units (either for
portability or application-development cost reasons)
may use auto-SIMDization, which extracts SIMD
parallelism from scalar loops by first analyzing the
data layout in the application and performing
optimizations that increase the amount of available
SIMD parallelism, and then generating the appro-
priate SIMD code. Although the compiler can
generate SIMD code automatically (regardless of the
alignment of the data, for example), the user is
encouraged to supply feedback using directives to
provide higher-level information to the compiler.
The reverse is also true; namely, the compiler can
provide high-level feedback on each of the loops on
which it has succeeded or failed to perform
SIMDIZation. This can be used in turn by the
programmer to better tune an application for higher
levels of SIMD performance.

For those programmers seeking the highest degree
of productivity and ease of use, we provide a level of
support which allows a programmer to write an
application for the Cell BE architecture without
consideration of the intricacies of the heterogeneous
ISA and the necessary data transfer. In particular, it
is usual for a programmer to view a computer
system as possessing a single addressable memory
and for all the program data to reside in this space.
The compiler provides user-guided parallelization
and compiler management of the underlying mem-
ories for code and data. When the user directives are
applied in a thoughtful manner by a competent user,
the compiler provides significant ease of use without
significantly compromising performance.

GENERATION OF SIMD CODE
Prior work in automatic SIMD code generation
includes unroll-and-pack approacheslt’5 and loop-
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based approaches.6_12 Our current approach com-
bines aspects of both of these approaches. It also
attempts to systematically minimize the impact of
data reorganization due to compile-time or runtime
data misalignment, and it can perform auto-SIMD-
ization in the presence of data conversion (i.e.,
conversion from one data type to another). Auto-
SIMDization can generate such minimum data-
reorganization code for both the VMX and SPE SIMD
units.

Example of a loop with misaligned accesses
The following code example of a loop with
misaligned accesses illustrates the impact of align-
ment constraints in this context:

for (i=0, i<100; i++) {
ali+2]1=bli+1]1+ c[i+3];
}

Assuming for conciseness that each array is 16-byte-
aligned, the data involved in a loop iteration,
namely al[i+2], b[i+1], c[i+3], are relatively
misaligned. The data touched by the first i=0 loop
iteration is highlighted by white circles inside grey
boxes in Figure 3.The three memory references
b[1], c[3], and a[?2] reside at different locations
within their respective 16-byte units of memory.
Specifically, they are in the second, fourth, and third
integer slots of their respective 4-integer/16-byte
unit of memory.

To produce a correct result, this data must be
reorganized in registers so that all the data involved
in a computation resides in the same integer slot. In
Figure 3, we first shift right by one the stream of
data generated by b[i+1] for i=0 to 99. We shift left
by one integer slot the stream of data generated by
c[i+37] for i=0 to 99. At this stage, both the b and ¢
register streams start in the third integer slot. The
vector add is then applied to the shifted streams and
produces the expected results, b[1] +c[3], ...,
b[100] +c[102]. To understand the applicability of
this scheme, it is critical to realize that “shifting left”
and “shifting right” are data reorganizations that
operate on a stream of consecutive registers, not the
traditional logical or arithmetical shift operation.

Definitions and valid SIMDizations

The alignment-handling framework used here is
based on the concept of streams.'' A stream
represents a sequence of contiguous memory
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for (i=0; i<100; i++) a[i+2] =b[i+1] + c[i+3];
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locations that are accessed by a memory reference
throughout the lifetime of a loop (shown in Figure 3
as a sequence of grey boxes). By analogy, a stream is
also a sequence of contiguous registers that are used
by an instruction over the lifetime of a loop.

Instructions in a loop can be viewed as operations
on streams. For example, a load operation consumes
a stream of memory and produces a stream of
registers. An important property of a stream is its
stream offset, which is defined as the byte offset of
the first desired value in the first register of a stream.
The offset of a register stream produced by a load
operation is the alignment of the first desired value
of the input memory stream (namely, the memory
address of the first desired value, modulo the vector
length of the SIMD unit).

The alignment-handling framework specifies the
alignment constraints of a valid SIMDization as
follows. In the SIMDization of a store operation, the
byte offset of the register stream must match the
memory alignment of the memory stream. For a
non-unary operation, all the data involved in the
computation must reside at the same byte offset in
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their respective register streams. In the presence of
misalignments, a valid SIMDization can only be
achieved by judiciously using data reorganization
operations to enforce the desired stream offsets. The
stream shift operation vshiftstream(S, c, ,c ) is
introduced for this purpose. It shifts all values of a
register stream S across consecutive registers of the
stream from offset ¢, to offset ¢ . Figure 3 gives
examples of shifting streams left and right.

Overview of alignment-handling framework

The first phase of the SIMDization framework ">
extracts SIMD parallelism at different program
scopes and generates generic vector operations. The
next phase transforms the code to satisfy the precise
architectural constraints. The final phase converts
the generic vector operations to platform-specific
instructions.

Phase 1: Extraction of SIMD parallelism. This phase
first extracts SIMD parallelism within a basic block
by placing isomorphic (i.e., identical or similar)
computations at adjacent memory locations by
using an approach similar to that used in Reference
4. This phase catches manually unrolled loops,
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A Original loop

for (i=0; i<256; i++) {
afilx=
alily =

afilz =
b[i] =

B Original loop

for (i=0; i<256; i++) {
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€ Original loop

for (i=0; i<256; i++) {
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}
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Figure 4
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which are frequently found in multimedia code, and
extracts SIMD code among isomorphic or semi-
isomorphic computations that involve references
such as a.x, a.y, a.z, which are often found in
graphic applications, to express three-dimensional

coordinates.

SIMD parallelism across loop iterations is then
extracted. Iterative computations on stride-one
accesses (i.e., those which sequentially access an

array element by element) are aggregated into SIMD
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operations by “blocking the loop.” Blocking the loop
is a process by which arrays are accessed in
sections, rather than by element. The blocking factor
(i.e., the size of the sections) is determined such that
the byte length of each vector is a multiple of 16

bytes.

The combined extraction of SIMD parallelism within
a basic block and among consecutive loop iterations
is illustrated in Figure 4. Although the actual

algorithm takes all memory references into account,
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we focus here only on the store operations generated
by each of the loop’s four statements. Each
individual 4-byte store is represented by a box in
Figure 4; the colors of the boxes distinguish
consecutive iterations of the original loop.

The compiler recognizes that the first three stores in
Figure 4A, al[i].x,ali].y,and a[i].z, are adjacent
in memory. Assuming here that the right-hand sides
of the three statements are isomorphic, it aggregates
the three statements into a vector of three integers
stored as a[i].x,y,z, as shown in Figure 4B. The
b[i] statement remains unchanged. Recognizing the
vector store a[i].x,y,z and the element store b[i]
as stride-one accesses, the compiler further aggre-
gates these accesses across loop iterations. In doing
so, it treats the new vector ali].x,y,z statement no
differently than any other statements in the loop.
The only difference between the ali].x,y,z and
b[i] statements is that the former generates a 12-
byte value, whereas the latter generates a 4-byte
value.

During this phase, we extract SIMD parallelism
among the smallest number of consecutive itera-
tions while ensuring that each vector in the loop has
a length that is a multiple of the physical vector
length, 16 bytes in this example. We would
determine that the optimal blocking factor is 4 here
because it aggregates four of the 12-byte a[i].x,y,z
vectors into a new compound vector of 48 bytes and
four of the 4-byte b[i] values into a new vector of
16 bytes. The resulting loop is shown in Figure 4C.

Phase 2: Alignment handling. This phase takes
SIMDized computations as input and inserts shift
operations to satisfy the alignment constraints of
SIMD operations. The output is a computation
augmented with stream-shift operations. During this
process, different shift-placement policies can be
applied to minimize the number of generated shifts,
three of which are described next.

1. Zero-shift policy—This policy8 shifts each mis-
aligned load stream to offset zero and shifts the
storage stream from offset zero to the alignment
of the store address. (See Figure 5A.) This is the
least optimized policy.

2. Eager-shift policy (ESP)—This policy11 shifts each
load stream directly to the alignment of the
storage stream. (See Figure 5B.) This policy is
followed in the example shown in Figure 3.
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Figure 5

Impact of stream-shift policies: (A) zero policy;
(B) eager policy; and (C) lazy policy
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3. Lazy-shift policy—This policy11 pushes the shift
toward the root of the expression tree (i.e., a
graphical representation of the expression) as
closely as possible. (See Figure 5C.)

In general, ESP inserts fewer stream shifts than the
zero-shift policy, for example, two versus three
shifts for the loop in the section “Example of a loop
with misaligned accesses.” ESP initially was only
applicable to compile-time alignment11 but later was
extended to runtime alignment as well. "

Phase 3: SIMD code generation. This phase takes the
augmented SIMDized computations as input and
maps generic stream-shift operations to native SIMD
permutation instructions. For each stream shift in
the tree, the algorithm generates a vperm instruction
in the generated steady-state loop. Specifically,
vperm(vl, v2, L) selectsbytes L, L+1, ..., L+V-1
from a double-length vector constructed by concat-
enating v1 and v2, where V is the vector length. For
VMX, vperm is then mapped to a vec_perm VMX
instruction.

GENERATION OF PARALLEL CODE

The SIMDization we have described thus far affords
up to peak performance within a single SPE, but the
Cell BE architecture enables parallelism in multiple
dimensions: the heterogenous PPE and SPE cores,
multithreaded PPE, multiple SPEs, and SIMD sup-
port in both the PPE and SPEs. Extracting the
greatest performance from this architecture neces-
sitates exploiting parallelism across multiple pro-
cessing elements. We now describe our compiler
support for parallel programming across the PPE
and multiple SPEs.

Our current approach uses the OpenMP14 program-
ming model. This provides programmers with the
abstraction of a single shared-memory address space.
With our prototype compiler, programmers may use
OpenMP directives to specify regions of code that can
execute in parallel. In this way, they need only write
and compile a single body of code, and the compiler
takes on the responsibility of duplicating code
sections for heterogenous cores (i.e., the PPE and SPE
cores) and of coordinating their execution.

Single source code compilation

We use the existing parallelization infrastructure of
the IBM XL compiler for our OpenMP implementa-
tion. The XL compiler includes a high-level opti-
mizer called the Toronto Portable Optimizer (TPO).
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TPO works in two passes: the first pass applies
intraprocedural optimizations, and the second pass,
also called the “link phase,” performs interproce-
dural optimizations as well.

In the first pass, the compiler outlines each parallel
code section; that is, it creates a new function
containing a copy of the code in that parallel section
and then replaces the original code section with a
call to the corresponding function. Figure 6 shows
the call graph for an example program and the flow
graph for a function in this program that contains an
OpenMP parallel loop. After outlining, the loop is
moved into a newly created function, and the call
graph has an extra node. We apply machine-
independent optimizations to these outlined func-
tions and then later, during interprocedural analysis
in the link step, we clone them. We now have two
copies of parallel outlined functions, one for the PPE
and one for the SPE, and we can optimize them
independently. When cloning outlined parallel
functions, we ensure that we also clone any other
functions called from the outlined parallel function.
Thus, in Figure 6, all functions in the subgraph
rooted at the outlined function are cloned. The call
sites within SPE functions are modified to invoke the
SPE version of the receiver of the call instead of the
PPE version. Also, a cloned function may be nested
within another cloned function and may refer to
data that belongs to the enclosing function. In such
cases data references in nested SPE functions must
be modified to refer to data that belongs to the
enclosing SPE function. Because cloning of parallel
code sections occurs in the link step, the compiler
can generate versions of all library code as
appropriate for both the SPE and PPE.

A runtime library enables parallel execution. This
library includes functions for initialization, work
distribution, and synchronization of data as well as
control flow. The compiler inserts calls to runtime
library functions appropriate to the OpenMP direc-
tives contained in the code. The OpenMP master
thread runs on the PPE processor and uses the
runtime library to distribute work to SPE processors.
The master thread itself partakes in all work-sharing
constructs. Because there is no operating system
support on the SPE, this thread also handles all
operating-system service requests. The PPE runtime
library includes the facility to create new SPE
threads and terminate them. When a new SPE
thread is created, it continuously loops, waiting for
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the PPE to assign work items to it for execution. A
work item specifies a handle that determines the
function to execute, any input parameters for the
function, and if need be, the current address of the
stack in system memory.

The runtime library requires communication be-
tween the PPE and the SPEs for the coordination of
execution. SPEs use explicit DMA to read work
items assigned to them from a circular queue that is
shared with the PPE. The Cell BE architecture also
includes efficient communication channels in the
form of signal registers and mailbox queues. The
PPE uses asynchronous signals to inform an SPE
that work is available or that it should terminate.
The SPEs use the mailbox to update the PPE on the
status of their execution.

When an SPE executes a work item, it must use
DMA to access any reference to shared memory. For
this purpose, the compiler identifies all shared-
memory references in the code to be executed on an
SPE. In the following subsection, we describe how
our system automatically handles DMA transfers to
and from shared memory, thus providing a single
shared-memory abstraction.

Single shared-memory abstraction

It is usual for a programmer to view a computer
system as possessing a single addressable memory
and for all the program data to reside in this space.
In the Cell BE processor, the local stores, which
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alone are directly addressable by their respective
SPEs, are memories separate from the vastly larger
system memory. Each SPE can transfer data, by
means of the DMA engine, between its local store
and system memory. In our approach we attempt to
abstract the concept of separate memories by
allocating SPE program data in system memory and
having the compiler automatically manage the
movement of this data between its home location
and a temporary location in the local store. A naive
compiler inserts an explicit DMA transfer for each
access to shared memory, which is likely to
debilitate performance. Our compiler employs a
software cache mechanism that permits reuse of the
temporary buffers in the local store, so that a DMA
transfer is not needed for each access to shared
memory. Moreover, there are many ways that the
compiler can optimize these data transfers, espe-
cially when memory references are regular.

Compiler-controlled software cache

When compiling SPE code, the compiler identifies
data references in system memory that have not
been optimized by using explicit DMA transfers and
inserts code to invoke the software-cache mecha-
nism before each such reference. Our current
implementation provides a 4-way associative cache,
and all four ways are probed inline (i.e., each set in
the cache is searched simultaneously without calling
a subroutine), exploiting the SIMD parallelism of the
instruction set.
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Figure 7 illustrates the cache lookup. Starting with
the address of the desired variable in the primary
slot of an SPE register, instructions are executed to
produce the offset address of the appropriate
directory entry in the tag array (a tag is a label,
which in this case is part of the address and is used
as a comparand to determine if the data is already in
the cache). This task consists of masking all bits in
the address except for those that are used to index
into the tag array. To this offset we add the base
address of the tag array, and using this address, we
load two consecutive quadwords from the array. If
any of the ways contains the tag we are seeking,
then the 128-bit result of the comparison is nonzero,
and we can use this to test for a cache hit. If the
result is zero, this indicates a miss, and the miss
handler is invoked.
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Because the call to the miss handler is not expanded
by the compiler until very late in the compilation, it
does not appear to the optimization as a call. This
allows a hit (which we assume to be the common
case) to incur no penalty due to the call setup. We
add the line offset to the line address and load the
desired data. Store processing proceeds in much the
same way, but additional instructions are required
to set the “dirty bits,” that is, bits which indicate
that data in the cache has been modified. It takes
roughly 12 instructions to process a cache hit, and a
similar number to set dirty bits for a store, but
because some of these instructions are dual-issued
and there is often other independent work that can
be scheduled, the cost in cycles is not so high;
nevertheless, it is clearly very important to attempt
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to reduce the number of cache lookups inserted
when compiling a program.

Our cache implementation can be used for either a
serial or a parallel program. There is some addi-
tional cost involved in supporting parallel execution,
because we must keep track of which bytes in a
cache line have been modified in order to support
multiple writers of the same cache line. If the
compiler knows that no data will be shared between
SPEs (for example, in the case of a serial SPE
application), the additional cost of maintaining
these dirty bits can be avoided.

Because the compiler must deal with the potential
for aliases between cached data and data obtained
by other means (e.g., explicit prefetch), the miss
handler must take more care in choosing a cache
entry to be evicted than is normally the case with a
hardware implementation.

Data transfer optimizations

Replacing each load and store operation with the
longer instruction sequence required for cache
lookup may significantly increase program execu-
tion time. As a result, our memory abstraction
scheme is most effective when we can minimize
cache usage. To increase performance, we strive to
avoid cache misses, minimize cache lookups, and
optimize cache-lookup code sequences.

In general, scalar data and small structured varia-
bles do not represent a large fraction of the space
requirements of a program. If we can determine that
they are not used to communicate between parallel
tasks, we can directly allocate them to the SPE local
stores. The local, stack-allocated variables of a
function often belong to this class. The analysis that
determines whether these variables are not shared
by multiple threads is complicated by the fact that
pointer usage may cause aliasing between local and
global variables. Also, large local arrays cannot be
optimized in this manner, as there may be insuffi-
cient space to allocate them in the SPE local store.

Another possible optimization (which we have not
yet implemented) is to explicitly allocate space for
small shared variables in each local store as well as
in system memory. The system memory space is the
home location that contains the latest values
available to all processors. The compiler can then
insert explicit DMA operations to prefetch these
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variables into the local stores and write them back to
the home location in accordance with the memory
consistency model.

For large arrays, in some cases it is possible to use
well-known program-restructuring techniquesls’16
such as loop blocking to allow multiple elements to
be explicitly fetched in a single operation. Further
restructuring can effectively “software pipeline” the
blocking loop, so that data movement and compu-
tation are overlapped, essentially prefetching the
data. As is the case when compiling for more
traditional memory hierarchies, the compiler can
perform tiling to increase locality.”’18 Tiling uses
loop-restructuring transformations such as blocking
and interchange, but these transformations may not
always be possible. Our compiler uses prefetching
and tiling in conjunction with explicit DMA trans-
fers. As a result, the original variables are replaced
by references to much smaller temporary arrays,
and this implies the rewriting of the indexing
expressions as well. Although tiling and prefetching
techniques have been previously used to improve
locality for cache memories, their use in the context
of the SPE software cache is somewhat different. In
our compiler, the software-cache mechanism needs
to be aware of the explicit DMA transfers for tiled
data and exercise certain constraints when caching
related storage locations.

For many of the cases mentioned here, a further
optimization involves combining data transfers by
using DMA list commands, or (in the case of
multiple contiguous requests) by simply fusing
several DMA operations into one. This has the effect
of reducing the setup cost for DMA operations. To
increase the opportunities for combining DMA
operations, the compiler can reorder variables with
respect to each other, including breaking up or
combining structures, at link time. Our compiler
already performs such transformations for other
reasons, but we have not yet explored this addi-
tional use of that optimization.

For all of the foregoing techniques, when they can be
used, the need for cache lookup is eliminated in effect.
Ultimately, it should be necessary to use the cache
only to ensure correctness for references that are
irregular or that are unknown at compile time.
Clearly, to the extent that this can be accomplished,
substantial compile-time analysis is required. Our
work in this area is still in progress, but we see very
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encouraging results from our implementation thus
far.

Code partitioning

Because the limited-size local memory of the SPE
must accommodate both code and data, there is
always the possibility that a single SPE object will be
too large to fit. We propose a code partitioning
technique to reduce the impact of the local store
limitations of the SPE on the program code segment.
This technique can be used in a stand-alone manner
with the SPE compiler or to manually partition
applications. For OpenMP single-source compila-
tion, our code partitioning is integrated with the data
software cache to allow large outlined functions with
large data to run seamlessly across multiple SPEs.

In our code partitioning approach, the SPE program
is divided into multiple partitions by the compiler.
Currently, the basic unit of partitioning is a function.
The home locations of code partitions are in system
memory. These SPE code partitions are overlaid
during linking, so that they are all assigned the same
starting virtual address, and the SPE code then fits
into a virtual address space equal to the size of the
largest code partition. Thus, we can use the partition
size to control the space used in the local store for
code.

Overlaid partitions cannot run at the same time.
This implies that if code in one partition calls a
function in another partition, the two partitions
need to be swapped in and out of the local store at
the point of the function call and return. To run a
partitioned program, such partition transitions must
be handled properly, and this is done collaboratively
by the compiler and the runtime partition manager.

Runtime partition manager

When the compiler partitions SPE code, it also
reserves a small portion of the SPE local store for the
partition manager. The reserved memory is divided
into two segments: one to hold the continuously
resident partition manager and the other to hold the
current active code partition. The code partitions
need to be relocatable, which implies that function
calls should not use absolute addressing. The
partition manager is responsible for loading parti-
tions from their home location in system memory
into the local store during an interpartition function
call or an interpartition return. The compiler
modifies the original SPE program to replace each
interpartition call with a call to the partition
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manager. Thus, the partition manager is able to gain
control and handle the transition from the current
partition to the target partition. It also modifies the
return address on the stack before branching to the
called function to ensure that control returns to the
partition manager first.

When an interpartition call is directed through the
partition manager, a function pointer and arguments
to the function are passed to the partition manager.
The partition manager must determine which
partition contains the called function. For this
purpose, the compiler assigns an index to all
partitions that it creates, and encodes the corre-
sponding index in the function pointer that is passed
to the partition manager. An SPU pointer is 32 bits,
but because the local storage is 256 KB, only 18 bits
are used. Of the 14 unused bits, 13 bits are used for
the partition index (the most significant bit indicates
special handling for calls to certain library func-
tions). For example, an interpartition call to function
foo in partition 3 is transformed from foo (argl,
arg2, ...) to call_partition_manager (3 << 18 | foo,
argl, arg2, ...). The partition manager uses the
partition index to fetch the correct partition and
transfers control to the proper location within this
partition by using the lower 18 bits of the function
pointer.

Figure 8 shows the processing steps in the execution
of an automatically partitioned program. The pro-
gram begins execution on the PPE and invokes code
to create SPE threads. Each SPE thread is created by
use of a generic SPE driver, which is an SPE binary
embedded as data in the PPE object. During
initialization, the partition index table, the data
section for SPE data, and the first SPE code partition
are copied from system memory to appropriate
locations in the local store. The first SPE code
partition contains the entry point function for the
user SPE code, and the partition manager passes
control to this function. Thereafter, the partition
manager is invoked on each interpartition call, and
it transfers the correct partition from system
memory to local store, passes control to the correct
function within that partition, and ensures that on
return, control is passed back to the point after the
call site in the original partition.

Compiler transformations for code partitioning

In our implementation, we modify the interface for
functions that are invoked by interpartition calls to
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include an extra dummy parameter. When the
compiler transforms interpartition calls, it need only
change the name of the function being invoked and
set the value of the dummy parameter to be the
function pointer. This also enables the runtime
partition manager to efficiently invoke the target
function, as the arguments for the call are already in
the correct locations based on linkage conventions.

The partitioning algorithm is based on a call graph.
Because individual functions are normally small
enough to fit into the SPE local store, this approach
enables correct partitioning in most cases. Occa-
sionally we encounter large single functions, mostly
due to aggressive optimizations such as function
inlining and loop unrolling. For SPE code, these
optimizations constrain the space available for data
in the local store and may result in additional DMA
operations that adversely impact performance.
Because of this, we avoid excessive inlining and
loop unrolling for SPE code. There are rare instances
in which functions are too large even before
optimizations. In such cases, outlining can be
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applied to a portion of the original function,
reducing the size of any single function.

Figure 9 illustrates how the partitioning algorithm
works on an example call graph where the size of
each function (shown inside the circle) is assumed
to be 300, and the limit on the size of a partition
(shown as an oval) is assumed to be 1000. The
result is two partitions with three functions in each
partition, and the estimated number of interpartition
calls is minimized to 150 (calls are shown as labels
on the graph edges).

The schema in Figure 10 shows the process of
compiling and linking an executable that uses SPE
code partitioning. The SPE XL compiler, called
“spuxlc,” first compiles SPE source code to object
files. The interprocedural link phase then performs
partitioning and generates multiple object files, one
for each overlaid code partition. It also generates an
object file containing a data section that defines all
global data. The SPE linker is then used to produce
two different SPE binaries: the generic SPE driver
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Figure 9
Partitioning the call graph

and the user program. The SPE driver represents the
SPE binary layout during program execution. It
includes space for a data section, a code section that
contains the runtime partition manager code, the
partition table that identifies partitions based on
their index, and a code buffer that will hold one or
more user SPE code partitions. The user program
binary corresponds with the SPE driver binary in
that the data section and the runtime partition
manager code (including the partition table) are the
same size and are bound to the same starting virtual
addresses. This script also determines how much
space to allocate for the data section and the
partition table when generating the SPE driver
binary. An embedder is used to wrap the SPE
binaries as data sections within PPE-format object
files. These object files are then linked in with the
PPE code, and they exist as data sections in the final
PPE user executable.

Optimizations for code partitioning

With code partitioning enabled in stand-alone mode,
performance is fair when executing partitioned
functions on a single SPE relative to execution on
the PPE. Given the preliminary nature of this work,
these results are encouraging.

There are several opportunities that we are currently
exploring to improve the overall performance of our
code partitioning algorithm. To achieve the best
results, profiling can be used instead of static
estimation. Also, using the actual partition size
rather than the size conservatively estimated in the
compiler can improve the utilization of the local
code buffer significantly. The accurate size of
partitions can be determined if the size of each
function is known. During a first pass, minute

EICHENBERGER ET AL.

partitioning is performed, and each function is
placed in a separate partition. The user binary is
generated, and the size of each partition (each
function) is extracted and saved for later use. In the
second pass, code partitioning under the actual
buffer size limit is performed, using accurate size
information for each function.

The most promising optimization is to anticipate the
next interpartition call and prefetch the corre-
sponding code partition. This has the potential to
hide the latency incurred when fetching partitions
from system memory. However, this optimization
requires multiple buffers, implying a much smaller
partition size limit. The net effect on performance
will depend on the prefetching algorithm and the
accuracy of the cost model applied.

MEASUREMENTS

We first evaluate the optimized SPE code generation
techniques presented in the section “Optimized SPE
code generation.” Figure 11 presents the reduction
in program-execution time for each optimization
relative to the performance of the original compiler.
We achieved a reduction which ranged from 11 to
51 percent, averaging at 22 percent.

The benchmark programs used here are highly
optimized, SIMDized kernels representative of typical
workloads running on the SPEs. Kernels include a
variable length decoding (VLD) from MPEG (Motion
Picture Experts Group) decoding, a Huffman com-
pression and decompression, an IDEA (International
Data Encryption Algorithm) encryption, an “LU”
(lower/upper triangular matrix decomposition), and
aray tracing (OnerayXY). Also included are numer-
ical kernels such as an FFT (fast Fourier transform), a
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Speedup factors for auto-SIMDization

7 X 7 short integer convolution, and a 64 X 64 float
matrix multiplication.

Bundling for dual issue results in an execution-time
reduction of from 2 to 22 percent, averaging at 11
percent. Large reduction percentages indicate
benchmarks with large amounts of instruction-level
parallelism and no “lucky” instruction alignment
(where random instruction layout does not satisfy
the dual-issue constraint).

Hinting predictable branches results in a further
execution-time reduction of from 0 to 26 percent,
averaging at 9 percent. Large reduction percentages
indicate predictable branches with a sufficient
amount of work to hide the hint latency. Some of the
small reduction percentages (such as 0 percent for
matrix multiplication) indicate such tight loops that
hinting is not beneficial without jointly addressing
instruction starvation.

Generating explicit instruction fetches results in a
further 2 percent average execution-time reduction,
with peak impact for very tight loops such as the 20
percent reduction for matrix multiplication. Sub-
word optimization results in a further 1 percent
average reduction, with peak impact of 3 percent for
kernels including short type computations.

For the auto-SIMDization techniques presented in
the section “Programming for the Cell BE architec-
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ture,” Figure 12 presents the speedup factors
achieved when automatically SIMDizing sequential
code kernels. Comparisons are performed at the
same level of optimization, including high-level,
interprocedural optimizations in addition to all of
the SPE optimizations presented in the section
“Optimized SPE code generation.” We report an
average speedup factor ranging from 2.4 to 26.2,
averaging at 9.9. The benchmark programs include
video, numerical, and telecommunication applica-
tions. Kernels include a short integer finite impulse
response (FIR), an auto-correlation kernel, an
integer dot product, a TCP/IP checksum, a “Saxpy”
(i.e., a short-precision computation of ax +y), a
matrix multiplication, and a solver kernel for
Linpack, a collection of Fortran subroutines that
analyze and solve linear equations and linear least-
squares problems.

There are two tiers of benchmarks. The four leftmost
kernels in Figure 12 achieve speedups which are fair
(2.4 to 2.9) but below average. The rightmost five
kernels get significant speedup (7.5 to 26.2). Both
the dot product and checksum kernels performed a
reduction which is not natively supported by the
SPE’s instruction set. This introduced some over-
head which, in these two cases, can be efficiently
hidden by using partial-sum reductions.

Figure 13 shows the effects of the parallelization
discussed in the section “Generation of parallel
code,” presenting the results for parallel execution
using only the software cache. We show results
from the Spec OMP2001 suite of benchmarks
(shown in the figure as apsi, ammp, applu, art,
equake, Mgrid, Swim, and wupwise). We find that
we achieve a speedup factor of greater than 2.5 on
three of the eight benchmarks. Considering that the
software cache is essentially a “fallback” strategy for
code with irregular data accesses and that we have
not yet fully tuned it for performance, we consider
this to be a very encouraging result.

Some comparisons of our software cache and
optimized data transfer results can be seen in
Figure 14. In this figure, calcl, calc2, and calc3 are
kernels from the program Swim, whereas resid,
psinv, and rprj3 are kernels from the program
Mgrid. On average, a speedup factor of approx-
imately 3 is obtained with the software cache. When
data transfer optimizations are applied, the average
speedup factor improves to approximately 8. The
baseline execution in this case is running on a single
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PPE, and the speedups are obtained when running
on eight SPUs. We observe that optimization
improves the performance by eliminating the cache
lookup overhead, using more precise information
about the data accesses to fetch larger chunks of
data per DMA access and overlapping computation
with the DMA access. The data transfer optimization
work is ongoing. Because this work will allow us to
eliminate or minimize cache accesses, we expect to
see increased performance improvements as we
make progress in this area.

CONCLUSIONS AND FUTURE WORK
The key to unleashing the performance potential of
the powerful new Cell BE architecture is the
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exploitation of parallelism at various levels of the
system. Highly skilled programmers can achieve this
with manual techniques, but sophisticated compiler
technology enables significant performance poten-
tial for a broader community, resulting in a much
higher rate of productivity. In this paper, we have
presented, in the context of a research prototype,
several compiler techniques that aim at automati-
cally generating high-quality code by using the wide
range of heterogeneous parallelism available on the
Cell BE processor.

Our Cell BE compiler implements SPE-specific
optimizations, including support for compiler-assis-
ted memory realignment, branch prediction, and
instruction fetching. It addresses fine-grained SIMD
parallelization as well as more general OpenMP
task-level parallelization, presenting the user with a
single shared-memory image through compiler-
mediated partitioning of code and data and the
automatic orchestration of the data movement
implied by this partitioning. Using benchmarks
suitable to this platform, we demonstrate average
speedup factors of 1.3 for SPE-specific optimiza-
tions, 9.9 for SIMDization, and 6.8 for task-level
parallelization.

We are working on integrating and refining current
techniques and further exploiting opportunities
available on the Cell BE architecture for our target
workloads. Ultimately, producing optimal code for
the Cell BE processor depends on fine tuning a
number of heuristics and developing an economic
model that takes account of the various complexities
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of the architecture. Well-known cost models for
optimizing the overlap of data communication and
computation are being incorporated into our ap-
proach. Other parameters for optimization can be
incorporated into our model, given the heteroge-
neous nature of the architecture' >’ and the
particular characteristics of the SPE.

Other factors to be addressed by the model include
the partitioning of memory between user code and
data, resident helper code, and the cache directories.
Unlike a hardware cache, our compiler-managed

approach affords a degree of flexibility in modeling
the size and type of the cache at compile time based
on the nature of the user code. We plan to conduct
extensive analysis of the usage and occupancy of

our compiler-controlled cache as input to this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment, Inc. in the United States, other
countries, or both.
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