
Using advanced compiler
technology to exploit the
performance of the Cell
Broadband Enginee

architecture

&

A. E. Eichenberger

J. K. O’Brien

K. M. O’Brien

P. Wu

T. Chen

P. H. Oden

D. A. Prener

J. C. Shepherd

B. So

Z. Sura

A. Wang

T. Zhang

P. Zhao

M. K. Gschwind

R. Archambault

Y. Gao

R. Koo

The continuing importance of game applications and other numerically intensive

workloads has generated an upsurge in novel computer architectures tailored for such

functionality. Game applications feature highly parallel code for functions such as

game physics, which have high computation and memory requirements, and scalar

code for functions such as game artificial intelligence, for which fast response times

and a full-featured programming environment are critical. The Cell Broadband

Enginee architecture targets such applications, providing both flexibility and high

performance by utilizing a 64-bit multithreaded PowerPCt processor element (PPE)

with two levels of globally coherent cache and eight synergistic processor elements

(SPEs), each consisting of a processor designed for streaming workloads, a local

memory, and a globally coherent DMA (direct memory access) engine. Growth in

processor complexity is driving a parallel need for sophisticated compiler technology.

In this paper, we present a variety of compiler techniques designed to exploit the

performance potential of the SPEs and to enable the multilevel heterogeneous

parallelism found in the Cell Broadband Engine architecture. Our goal in developing

this compiler has been to enhance programmability while continuing to provide high

performance. We review the Cell Broadband Engine architecture and present the

results of our compiler techniques, including SPE optimization, automatic code

generation, single source parallelization, and partitioning.

INTRODUCTION
The Cell Broadband Engine** (BE) processor pro-

vides both flexibility and high performance. The first

generation Cell BE processor includes a 64-bit multi-

threaded PowerPC* processor element (PPE) with

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 59

two levels of globally coherent cache. For additional

performance, the Cell BE processor includes eight

synergistic processor elements (SPEs), each contain-

ing a synergistic processing unit (SPU). Each SPE

consists of a processor designed for streaming work-

loads, a local memory, and a globally coherent DMA
engine. Computations are performed by 128-bit-wide

single instruction multiple data (SIMD) functional

units. An integrated high-bandwidth bus connects the

nine processors and their ports to external memory
and I/O.

The intricacy of the Cell BE processor spans multiple

dimensions, each presenting its own set of chal-

lenges for both the highly skilled application

developer and a highly optimizing compiler. At the

elementary level, the Cell BE system has two distinct

processor types, each with its own application-level

instruction-set architecture (ISA). One ISA (for the

PPE) is the familiar 64-bit PowerPC with a vector

multimedia extension unit (VMX); the other (for the

SPEs) is a new 128-bit SIMD instruction set for

multimedia and general floating-point processing.

The first Cell BE releases consist of one PPE and 8

SPEs, each with its own 256-KB local memory to

accommodate both program instructions and data.

Typical applications on the Cell BE processor consist

of a variety of code to exploit both of these

processors.

The most basic level of programming support for the

Cell BE platforms consists of two separate com-

pilers, one targeting the PPE and the other targeting

the SPEs, along with a set of utilities and runtime

support for loading and running code on the SPEs

and transferring data between the system memory

and the local stores of the SPEs. It has been

demonstrated that very competitive performance

can be achieved with the deployment of a low-level

programming model, but to make the architecture

interesting and accessible to a more general user

community, it is useful to abstract the details and

present a higher-level view of the system. This issue

is addressed by providing a highly optimized

compiler for the Cell BE architecture.

IBM has long provided state-of-the-art compiler

support for the PowerPC platform, including auto-

matic and user-directed exploitation of shared-

memory parallelism. We use this same compiler

technology to exploit the performance potential of

the Cell BE architecture. The prototype compiler that

we have developed for the Cell BE platform

generates code, within a single compilation and

under option control, for either the PPE or the SPEs,

or both. The PPE path of the prototype is essentially

the existing PowerPC compiler, complete with VMX

support and tuned for the PPE pipeline. For the

SPEs, a new path has been developed to target the

specific architectural features of this attached

processor, including automatic exploitation of the

four-way SIMD units. The prototype compiler

innovatively takes advantage of and extends exist-

ing parallelization technology to enable partitioning

and parallelization across multiple heterogeneous

processing elements from within a single compila-

tion process. We also draw on the large body of

existing research on programming restructuring

techniques to automate and optimize data transfer

between the multiple processing elements of the

system. Our work extends previous research in

taking into account not only the heterogeneity of the

multiple processing elements but also the nature of

the small attached local memories, which are

designed to handle both code and data.

When compiling for the most elementary level of the

Cell BE architecture, the pipelines of both processors

must be taken into account. The SPEs present

several challenges not seen in the PPE, chief among

them instruction prefetch capabilities and the

significant branch miss penalties resulting from the

lack of hardware branch prediction. To achieve high

rates of computation at moderate costs in power and

area, functions that are traditionally handled in

hardware, such as memory realignment, branch

prediction, and instruction fetches, have been

partially offloaded to the compiler. Our techniques

address these new demands on the compiler. In the

section ‘‘Optimized SPE code generation,’’ we

discuss in detail the following optimizations: gen-

erating scalar code on SIMD units, optimizing

language-dictated conversions (i.e., those required

by a particular programming language) to increase

computations on subwords (i.e., data that is smaller

than a word), reducing the performance impact of

branches through branch hinting and branch elim-

ination, and scheduling instructions in the presence

of limited hardware support for dual issuing and

instruction fetching.

At the next level of complexity, the SPE is a short

SIMD or multimedia processor, which was not

designed for high performance with scalar code.

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200660

Although the compiler does support explicit pro-

gramming of the SIMD engine by means of intrinsics

(i.e., functions that are built into the compiler as

opposed to those contained in libraries), it also

provides the novel auto-SIMDization functionality,

which generates vector instructions from scalar

source code for the SPEs and the VMX units of the

PPE. Auto-SIMDization is the process of extracting

SIMD parallelism from scalar loops. In the section

‘‘Generation of SIMD code,’’ we describe auto-

SIMDization in some detail, including how it

minimizes overhead due to misaligned data streams

and how it is tailored to handle many of the code

structures found in multimedia and gaming

applications.

Using the parallelism of the Cell BE processor when

deploying applications across all its processing

elements, our compiler enhances its programmabil-

ity by parallelizing and partitioning a single source

program across the PPE and the eight SPEs, guided

by user directives. The compiler also efficiently uses

the complex memory system that ties all these

processors together on the chip and interfaces with

the external storage. While the PPE makes use of a

conventional two-level cache, each SPE draws data

and instructions from its own small memory,

internal to the chip. Data transfers to and from the

local stores must be explicitly managed by using a

DMA engine. Within the compiler, we have devel-

oped techniques to generate and optimize the code

that accomplishes data transfer, allowing a single

SPE to process data that far exceeds the local store’s

capacity, using code that also exceeds the size of its

local store, and scheduling the necessary transfers

so that they overlap ongoing computation to the

extent that this is achievable. In the section

‘‘Optimized SPE code generation,’’ we discuss the

compiler’s generation of parallel code and describe

our code-partitioning techniques.

Our goal in developing this compiler has been to

enhance the programmability of the architecture, at

the same time continuing to provide respectable

performance. Currently average speedup factors of

1.3, 9.9, and 6.8 for our SPE, SIMD, and paralleli-

zation compilation techniques are demonstrated on

suitable benchmarks, indicating some initial success

with our approach. In the section ‘‘Measurements,’’

we briefly review our current performance mea-

surements, and we conclude in the following

section.

CELL BE ARCHITECTURE

The implementation of the first-generation Cell BE

processor
1

includes a Power Architecture processor

and eight attached processor elements connected by

an internal, high-bandwidth Element Interconnect

Bus (EIB). Figure 1 shows the organization of the

Cell BE elements.

The PPE consists of a 64-bit, multithreaded Power

Architecture processor with two levels of on-chip

cache. The cache preserves global coherence across

the system. The processor also supports IBM’s

VMX
2

to accelerate multimedia applications by

using VMX SIMD units.

A major source of computing power is provided by

the eight on-chip SPEs.
3

An SPE consists of a new

processor designed to accelerate media and stream-

ing workloads, its local noncoherent memory, and

its globally coherent DMA engine. The units of an

SPE and key bandwidths are shown in Figure 1.

Most instructions operate in a SIMD fashion on 128

bits of data representing either two 64-bit double-

precision floating-point numbers or longer integers,

four 32-bit single-precision floating-point numbers or

integers, eight 16-bit subwords, or sixteen 8-bit

characters. The 128-bit operands are stored in a 128-

entry unified register file. Instructions may take up to

three operands and produce one result. The register

file has a total of six read and two write ports.

The memory instructions also access 128 bits of

data, with the additional constraint that the accessed

data must reside at addresses that are multiples of

16 bytes. Thus, when addressing memory with

vector load or store instructions, the lower four bits

of the byte addresses are simply ignored. To

facilitate the loading and storing of individual

values, such as a character or an integer, there is

additional support to extract or merge an individual

value from or into a 128-bit register.

An SPE can dispatch up to two instructions per cycle

to seven execution units that are organized into

even and odd instruction pipes. Instructions are

issued in order and routed to their corresponding

even or odd pipe by the issue logic, that is, a

component which examines the instructions and

determines how they are to be executed, based on a

number of constraints. Independent instructions are

detected by the issue logic and are dual-issued (i.e.,

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 61

dispatched two per cycle) provided they satisfy the

following condition: the first instruction must come

from an even word address and use the even pipe,

and the second instruction must come from an odd

word address and use the odd pipe. When this

condition is not satisfied, the two instructions are

executed sequentially. The instruction latencies and

their pipe assignments are shown in Table 1.

The SPE’s 256-KB local memory supports fully

pipelined 16-byte accesses (for memory instruc-

tions) and 128-byte accesses (for instruction fetches

and DMA transfers). Because the memory has a

single port, instruction fetches, DMA, and memory

instructions compete for the same port. Instruction

fetches occur during idle memory cycles, and up to

3.5 fetches may be buffered in the instruction fetch

buffer to better tolerate bursty peak memory usage.

The maximum capacity of the buffer is thus 112 32-

bit instructions. An explicit instruction can be used

to initiate an inline instruction fetch.

The SPE hardware assumes that branches are not

taken, but the architecture allows for a ‘‘branch

hint’’ instruction to override the default branch

prediction policy. In addition, the branch hint

instruction causes a prefetch of up to 32 instruc-

tions, starting from the branch target, so that a

branch taken according to the correct branch hint

incurs no penalty. One of the instruction fetch

buffers is reserved for the branch-hint mechanism.

In addition, there is extended support for eliminat-

ing short branches by using select instructions.

Data is transferred between the local memory and

the DMA engine in units of 128 bytes. The DMA

engine can support up to 16 concurrent requests of

up to 16 KB originating either locally or remotely.

The DMA engine is part of the globally coherent

memory address space; addresses of local DMA

requests are translated by an MMU (memory

management unit) before being sent on the bus.

Bandwidth between the DMA and the EIB bus is 8

Table 1. Latencies and pipe assignment for SPE

Instruction Pipe
Latency
(cycles)

arithmetic, logical, compare, select even 2

byte sum/diff/average even 4

shift/rotate even 4

float even 6

integer multiply-accumulate even 7

shift/rotate, shuffle, estimate odd 4

load, store odd 6

channel odd 6

branch odd 1–18

Element Interconnect Bus (96 bytes/cycle)

16 bytes
(one dir)

128 bytes
(one dir)

8 bytes
(per dir)

Cell BE Processor

SPE SPE SPE SPE SPE SPE SPE

PPE

To
External
Memory

To
External
I/O

L1 L2

Figure 1
Organization of Cell BE elements

DMA
(Globally Coherent)

Branch: 1,2
Branch hint: 1,2
Instruction fetch: 2
DMA request: 3

Register File
(128 x 16-byte register)

Even Pipe
Floating/
Fixed
Point

Odd Pipe
Branch
Memory
Permutation

Dual-Issue
Instruction
Logic

Instruction
Buffer
(3.5 x 32
instruction)

Local Store
(256 KB, Single Ported)

2

1

3

SPE

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200662

bytes per cycle in each direction. Programs interface

with the DMA unit through a channel interface and

may initiate blocking as well as nonblocking

requests.

OPTIMIZED SPE CODE GENERATION
In this section, we describe the current compiler

optimization techniques that address key architec-

tural features of the SPE. A user interested in SPE

code generation may observe that our SPE compiler

produces the high quality code normally associated

with the XL compiler suite.

Scalar code on SIMD units
As mentioned in the section ‘‘Cell BE architecture,’’

most SPE instructions are SIMD instructions oper-

ating on 128 bits of data at a time, including all

memory instructions. One notable exception is the

conditional branch instruction, which branches on

nonzero values from the primary slot (i.e., the

highest order or leftmost 32 bits) of a 128-bit

register. The address fields are also expected by

memory instructions to reside in primary slots.

When scalar code is generated on an SPE, it is

critical that the SIMD nature of the processor does

not get in the way of program correctness. For

example, an a¼bþc integer computation on a scalar

processor simply requires two scalar loads, one add,

and one store instruction. When executing on the

SPE, a load of b yields a 128-bit register value, which

contains the 32-bit value of b (this is technically true

only when the data elements are naturally aligned,

as we assume them to be in this paper). Its actual

location within the 128-bit register is determined by

the 16-byte alignment of b in local memory. This is

true because the memory subsystem performs only

16-byte-aligned memory requests.

After values are loaded in registers, the compiler

must track the alignment of the data because it may

operate only on values that have the same relative

alignment. In our a ¼ b þ c example, the 128-bit

registers may be added only if the location of the b

and c values in their respective registers is identical.

When this is not the case, the compiler must

permute the contents of one of the registers to match

the alignment of the other. Because scalar compu-

tations in highly optimized multimedia codes mostly

involve address and branch-condition computations

(which must reside in the primary slot when used by

the memory and branch instructions), the default

policy is to move any misaligned scalar data into the

primary slot.

The storing of a scalar value is also not as

straightforward as on a scalar processor. The

compiler must first load the original 128-bit data in

which the result resides, variable a in our example,

then splice the new value in the original data, and

finally store the resulting 128-bit data to the local

memory.

Without special care, a worst case scenario for our

a ¼ b þ c example could result in two load and

permute instructions to get and align the input data,

one add instruction to compute the result, and one

load, permute, and store instruction to store the

result in memory. We take several steps to avoid

such overhead. First, we allocate all local and global

scalars to their own private 128-bit local memory

lines and align the scalars into their primary slots.

Although this results in some memory overhead, it

is insignificant compared to the increase in code size

generated by the extra permutation instructions that

would otherwise be needed to realign the data.

Second, we perform aggressive register allocation of

all local computations, such as address and loop

index variables, to make good use of the 128-entry

register file. As a result, such variables often reside

exclusively in the primary slot of registers and thus

need no memory storage and associated load and

store instructions. Finally, auto-SIMDization is

applied to the code so as to minimize the remaining

scalar code in an application.

Subword optimization

The SPE instruction set natively supports operations

on a wide range of data widths, from 8-bit bytes to

64-bit doublewords, unlike most RISC (Reduced

Instruction Set Computer) processors, which typi-

cally support operations on words or doublewords

only. Because programming languages were de-

signed with traditional processors in mind, lan-

guages typically promote all the computations of the

short data type (e.g., 8-bit characters [‘‘chars’’] and

16-bit short variables [‘‘shorts’’], referred to as

‘‘subwords’’ here) to integers. As discussed next,

such promotions have a negative performance

impact on the SPE. Subword optimization attempts

to alleviate this performance impact.

To illustrate this, we examine an example of a¼b � c,

where all variables are declared as 16-bit shorts. The

integral promotion rule in the C programming

language requires any subword types be automati-

cally promoted to the integer type before performing

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 63

any computations thereon. Effectively, C allows

programmers to specify subword data types in terms

of alignment, size, and layout in memory, but does

not allow specifying subword arithmetic. In essence,

shorts and chars in C are simply a compressed

representation of integers in memory, which are

decompressed when loaded from memory.

Such compression and decompression have little

performance impact on traditional RISC processors,

because their scalar memory operations typically

perform such size and sign extensions ‘‘on the fly.’’

This is not the case with SIMD units such as those in

the SPE because they are specifically designed to

operate on subword data types in a compressed

format within their registers. This is precisely the

feature that allows them, for example, to simulta-

neously operate on eight shorts packed in a 128-bit

register. Because sign extensions are not part of the

load instructions, they have to be handled explicitly

by additional instructions on the SPE. When applied

to the a¼ b � c example, the integral promotion rule

thus requires two additional sign extension instruc-

tions to promote the b and c input variables.

Another cost factor is that the SPE, like many other

SIMD units, does not support each data type equally.

For example, it provides hardware support only for

16-bit integer multiply-add instructions. Hence, a

32-bit multiply instruction is supported in software

by using a series of 16-bit multiply-add instructions,

three in our example. This is an inherently wasteful

computation because ultimately only the lower 16

bits of the result are stored in memory.

Subword arithmetic optimization bridges the gap

between C’s inability to specify subword arithmetic

operations and the SPEs’ underlying strength in

supporting subword operations. In our work, we

implemented subword optimization in two steps.

The first step eliminates the redundant partial-copy

operations. Instead of solely focusing on redundant

sign extensions, we propose a more general frame-

work based on the concept of partial-copy prop-

agation. We exploit the fact that some instructions

(such as subword instructions) use only a subset of

their register values, whereas other instructions

(such as sign extension instructions) copy only a

subset of their register values. This framework

eliminates redundant sign extension operations,

performs folding (the process of collapsing multiple

instructions into one), and is easily extendable.

The second step generates the subword arithmetic

operations. This optimization aims at converting

integer arithmetic operations to equivalent arith-

metic operations of narrower data width. This

optimization can produce more efficient code when

a word instruction can be replaced with a more

efficient subword instruction. When subword and

word instructions are equally supported, narrowing

down the operating data width reveals more

opportunity for folding, for example by eliminating

redundant sign extensions.

Branch optimizations

The SPEs are heavily pipelined, making the penalty

for incorrect branch prediction high, namely 18

cycles. In addition, the hardware’s branch predic-

tion policy is simply to assume that all branches

(including unconditional branches) are not taken. In

other words, branches are only detected late in the

pipeline at a time where there are already multiple

fall-through instructions (i.e., those in the sequential

path) in progress. This design achieves reduced

hardware complexity, faster clock cycles, and

increased predictability, which is important for

multimedia applications.

Because branches that are taken are so much more

expensive than the fall-through path, the compiler

first attempts to eliminate taken branches. One

effective approach for short ‘‘if-then-else’’ constructs

is ‘‘if-conversions,’’ which use compare-and-select

instructions provided by the SPE to avoid branching

code. Another approach is to determine the likely

outcome of branches in a program, either by means

of compiler analysis or through user directives, and

perform code reorganization techniques to move

‘‘cold’’ paths (i.e. those unlikely to be taken) out of

the fall-through path.

However, many taken branches cannot practically

be eliminated, in cases such as function calls,

function returns, loop-closing branches, and some

unconditional branches. To boost the performance

of such predictably taken branches, the SPE

provides for a branch hint instruction, referred to as

‘‘hint for branch’’ or hbr. This instruction specifies

the location of a branch and its likely target address.

When the hbr instruction is scheduled sufficiently

early (at least 11 cycles before the branch),

instructions from the hinted branch target are

prefetched from memory and inserted in the

instruction stream immediately after the hinted

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200664

branch. When the hint is correct, the branch latency

is essentially one cycle; otherwise, the normal

branch penalty applies. Presently, the SPE supports

only one active hint at a time.

Likely branch outcomes can either be measured

through branch profiling, estimated statistically by

means of sets of heuristics, or be provided by the

user (we currently use the latter technique). We

then insert a branch hint for branches with a

probability of being taken which is higher than a

given threshold.

For loop-closing branches, we attempt to move the

hbrs outside the loop to avoid the repetitive

execution of the hint instruction. This optimization

is possible because a hint remains in effect until

replaced by another one. Because an hbr instruction

indicates the address of its hinted branch by a

relative, 8-bit signed immediate field, an hbr and its

branch instruction must be within 256 instructions

of each other. Thus, hbr instructions can only be

removed from small- to medium-sized loops. Fur-

thermore, we can move the hint outside of a loop

only when there are no hinted branches inside the

loop body because at most one hint can be

outstanding at a time.

Unconditional branches are also excellent candi-

dates for branch hint instructions. The indirect form

of the hbr instruction is used before function

returns, function calls using pointers, and all other

situations that give rise to indirect branches.

Instruction scheduling

The scheduling process consists of two closely

interacting subtasks: scheduling and bundling. The

scheduling subtask reorders instructions to reduce

the length of critical paths. The bundling subtask

ensures that the issue constraints are satisfied to

enable dual issuing and prevent instruction fetch

starvation, i.e., the situation when the instruction

buffer is empty and awaiting refill from an explicit

instruction fetch (said to be ifetch but, technically

speaking, hbr.p) instruction. We first describe these

two subtasks and investigate their interaction in

more detail.

The scheduler’s main objective is to schedule

operations that are on a critical path with the highest

priority and schedule the other less critical oper-

ations in the remaining slack (i.e., idle) time. It

ensures that instructions that are expected to be

dual-issued have no dependence and resource

conflict. Typical schedulers deal only with con-

straints concerning resources and latencies. On the

SPEs, however, there are some constraints involving

numbers of instructions; for example, the constraint

that an hbr branch hint instruction cannot be more

than 256 instructions nor less than eight instructions

from its target branch. Constraints expressed in

terms of instruction counts are further complicated

by the fact that the precise number of instructions in

a scheduling unit is known only after the second,

bundling subtask has been completed.

The bundler’s main role is to ensure that each pair of

instructions that is expected to be dual-issued

satisfies the SPEs’ instruction issue constraints. As

mentioned in the section ‘‘Cell BE architecture,’’ the

hardware dual-issue constraint states that the first

instruction must use the even pipe and reside at an

even word address, whereas the second instruction

must use the odd pipe and reside at an odd word

address. After the instruction ordering is set by the

scheduling subtask, the bundler can impact the

evenness of the word address of a given instruction

only by judiciously inserting nop (null operation)

instructions into the instruction stream.

Another important task of the bundler is to prevent

instruction fetch starvation. Because the single local

memory port is shared between the instruction fetch

mechanism and the processor’s memory instruc-

tions, a large number of consecutive memory

instructions can stall instruction fetching. With 2.5

instruction fetch buffers reserved for the fall-through

path, the SPEs can starve for instructions in 40 dual-

issued cycles. After a fetch buffer is empty (this

takes 16 dual-issued cycles or more), there may be a

window as small as nine dual-issued cycles in length

in which the empty buffer can be refilled in order to

hide the full 15-cycle instruction fetch latency. Thus,

the bundling process must keep precise information

at compile time about the status of the instruction

fetch buffers, mainly by keeping a precise count of

the numbers of instructions already bundled in the

function (for simplicity, the first instruction of a

function is laid out in memory to reside at an

instruction fetch boundary, that is, a multiple of 16-

word addresses). Using this instruction count, the

compiler can determine when an instruction fetch

buffer is becoming empty and whether an explicit

instruction fetch will be needed to prevent starva-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 65

tion because of a burst in memory traffic. The ifetch

instruction explicitly fills an instruction fetch buffer

along the fall-through path.

This buffer-refilling window is even smaller after a

correctly hinted branch because then there is only a

single valid instruction fetch buffer (the one that

was prefetched by the hbr instruction), as opposed

to 2.5 buffers for the fall-through path. In such

cases, the instruction window is so small that we

must further ensure that all instructions in the

prefetched instruction buffer are part of the execu-

tion path associated with the taken branch. In other

words, the branch target must point to code starting

at an address that is a multiple of 16 instructions,

which is the unit of realignment of the instruction

fetch mechanism. To enforce this alignment con-

straint, we may need to introduce nop instructions.

Our heuristics are fairly successful at utilizing any

idle time slots so that nop instructions may be

inserted without a performance penalty.

A final concern of the bundling process is to make

sure that there are a sufficient number of instruc-

tions between a branch hint and its branch

instruction. This constraint is due to the fact that a

hint is only fully successful if its target branch

address is computed before that branch enters the

instruction decode pipeline. The bundler adds extra

nop instructions when the scheduler does not

succeed in interleaving a sufficient number of

independent instructions between a hint and its

branch.

Our initial approach was to keep the scheduling and

bundling separate and perform them in that order;

however, this had a negative performance impact

for tight loops with critical computational require-

ments and bursty memory behavior. In such cases,

the bundler frequently added an ifetch instruction to

break a critically long series of memory accesses,

thus inserting an extra cycle with an instruction that

uses the memory unit on the odd pipe. Because

bundling was performed after scheduling, the idle

even pipe unit (on which a critical computation

could have be scheduled) could not be put to good

use, as the schedule was already fixed.

For this and similar occurrences, our current scheme

uses a unified scheduling and bundling phase. When

preparing to schedule the next, empty cycle in the

scheduling unit, we first investigate if an ifetch

instruction is required. When this is the case, we

force an ifetch instruction in that cycle and update

the scheduling resource model accordingly. We then

proceed with the normal scheduling process for that

cycle. When no additional instruction can be placed

in the current cycle, we investigate if nop instruc-

tions must be inserted in prior cycles to enable dual

issuing. After this task is completed, we proceed to

the next cycle. We generally preserve the cyclic

scheduling approach, except that we may retro-

actively insert nop or ifetch instructions, as required

by the bundling process.

PROGRAMMING FOR THE CELL BE
ARCHITECTURE

In this section, we focus on how the compiler may

be used as one of the tools in developing applica-

tions for the Cell BE architecture. In the existing

programming model for the Cell BE architecture, the

heterogenous processor cores, the SPEs and the PPE,

and the non-uniform memory accesses of the

architecture are visible to application programmers.

Efficient manual programming of the Cell BE

architecture can be a complex task. To make use of

the best features of the PPE and SPE cores for an

application, programmers must manually partition

the application into separate code segments and use

the compiler that targets the appropriate ISA.

As previously described, both the VMX unit of the

PPE and the SPE are SIMD processors. Efficient

programming therefore requires exploiting parallel-

ism within the SPE and the VMX unit by using the

rich set of vector intrinsics that are provided for

each. To further exploit the coarse-grained inter-

processor parallelism throughout the Cell BE sys-

tem, the programmer may choose to partition his

application into tasks or parallel work units that

may be executed on the SPEs by using a pipeline or

parallel-execution model.

The resulting PPE and SPE code segments must

work together cooperatively and must explicitly

manage the transfer of code and data between

system memory and the limited SPE local stores.

Optimizing data transfer to overlap communication

and computation may involve manually program-

ming multibuffering schemes that take into account

the optimal size and numbers of local data buffers

and that select the best placement of data transfer

requests. The extent to which parallelism is

deployed in the application also influences the data

transfer decisions.

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200666

The final step to effect the seamless execution of a

Cell BE program requires using the SPE linker and

an embedding tool to generate a PPE executable that

contains the SPE binary embedded within the data

section. This object is then linked, using a PPE

linker, with the runtime libraries which are required

for thread creation and management, to create a

bound executable for the Cell BE program. Figure 2

demonstrates a manual process for creating such an

executable.

Although manually partitioning code and data into

PPE and SPE portions and explicitly managing the

transfers of code and data between system memory

and local stores may be a common approach to

programming the Cell BE architecture (and indeed

may well be the preferred approach of the expert

programmer for extracting the maximum perfor-

mance), we believe that in many instances this

imposes too great a burden on the programmer. An

important focus of our work is the deployment of

sophisticated compiler technology to simplify pro-

gramming for the Cell BE architecture, thereby

enabling its use in a more general-purpose envi-

ronment, while still providing the expert program-

mer with full control and access to the high

performance code generated by our compiler. To

accomplish this, we have provided an incremental

approach, which delivers increasing levels of com-

piler support for a broad range of programming

styles and expertise levels.

An expert programmer may choose to program

directly in assembly language. This approach may

yield the highest performance when used appropri-

ately, but incurs a significant cost in terms of

application development. To extract high perfor-

mance from their application with significantly

higher ease of use and development productivity,

programmers can use our PPE and SPE C compilers

with VMX and SPE intrinsics to precisely control

SIMD instruction selection and how data is laid out

in memory, while letting the compiler schedule the

chosen SIMD instructions and allocate them to

registers. In the intrinsic support provided for the

Cell BE architecture, new data types are introduced

to express vectors, using (essentially) a vector type

for each of the types supported by the SIMD units,

such as vector char, short, int, long long, float,

and double. The programmer can then select the

appropriate intrinsic with which to operate on the

data. Intrinsics appear to the programming language

as functions that mimic the behavior of each SIMD

instruction in the target architecture. During com-

pilation, these functions are replaced by the actual

native SIMD instruction.

The major advantage of programming with intrin-

sics is that the programmer has full control over the

handling of the data alignment and the choice of

SIMD instructions, yet continues to have the benefit

of high-level transformations such as loop unrolling

and function inlining (i.e, copying subroutine code

into the calling routine) as well as low-level

optimizations such as scheduling, register alloca-

tion, and other optimizations discussed in the

section ‘‘Optimized SPE code generation.’’ In addi-

tion, the programmer can rely on the compiler to

generate all the scalar code, such as address,

SPE
Compiler

PPE
Compiler

Figure 2
Manually compiling and binding a Cell BE program

Data

SPE
Source

SPE
Source

PPE
Source

PPE
Source

SPE
Linker

SPE
Embedder

SPE
Executable

SPE
Object

SPE
Object

PPE
Object

PPE
Object

SPE
Libraries

PPE
Libraries

PPE Linker

PPE
Object

SPE
Executable

Code

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 67

branch, and loop code generation; code that is often

error-prone when hand-coded in assembly lan-

guage. In addition, it is much easier to modify code

programmed with intrinsics over the course of an

application’s development than to modify assembly

language. For example, adding a few computations

in a program written in assembly language might

require retuning the register allocation of an entire

function. There are no such issues with intrinsics, as

the compiler assigns local temporary variables to

registers during the compilation process.

Programmers wishing to achieve good application

performance without dealing with the specific SIMD

instructions of the target SIMD units (either for

portability or application-development cost reasons)

may use auto-SIMDization, which extracts SIMD

parallelism from scalar loops by first analyzing the

data layout in the application and performing

optimizations that increase the amount of available

SIMD parallelism, and then generating the appro-

priate SIMD code. Although the compiler can

generate SIMD code automatically (regardless of the

alignment of the data, for example), the user is

encouraged to supply feedback using directives to

provide higher-level information to the compiler.

The reverse is also true; namely, the compiler can

provide high-level feedback on each of the loops on

which it has succeeded or failed to perform

SIMDIZation. This can be used in turn by the

programmer to better tune an application for higher

levels of SIMD performance.

For those programmers seeking the highest degree

of productivity and ease of use, we provide a level of

support which allows a programmer to write an

application for the Cell BE architecture without

consideration of the intricacies of the heterogeneous

ISA and the necessary data transfer. In particular, it

is usual for a programmer to view a computer

system as possessing a single addressable memory

and for all the program data to reside in this space.

The compiler provides user-guided parallelization

and compiler management of the underlying mem-

ories for code and data. When the user directives are

applied in a thoughtful manner by a competent user,

the compiler provides significant ease of use without

significantly compromising performance.

GENERATION OF SIMD CODE

Prior work in automatic SIMD code generation

includes unroll-and-pack approaches
4,5

and loop-

based approaches.
6–12

Our current approach com-

bines aspects of both of these approaches. It also

attempts to systematically minimize the impact of

data reorganization due to compile-time or runtime

data misalignment, and it can perform auto-SIMD-

ization in the presence of data conversion (i.e.,

conversion from one data type to another). Auto-

SIMDization can generate such minimum data-

reorganization code for both the VMX and SPE SIMD

units.

Example of a loop with misaligned accesses
The following code example of a loop with

misaligned accesses illustrates the impact of align-

ment constraints in this context:

for (i¼0, i,100; iþþ) f
a[iþ2] ¼ b[iþ1] þ c[iþ3];
g

Assuming for conciseness that each array is 16-byte-

aligned, the data involved in a loop iteration,

namely a[iþ2], b[iþ1], c[iþ3], are relatively

misaligned. The data touched by the first i¼0 loop

iteration is highlighted by white circles inside grey

boxes in Figure 3.The three memory references

b[1], c[3], and a[2] reside at different locations

within their respective 16-byte units of memory.

Specifically, they are in the second, fourth, and third

integer slots of their respective 4-integer/16-byte

unit of memory.

To produce a correct result, this data must be

reorganized in registers so that all the data involved

in a computation resides in the same integer slot. In

Figure 3, we first shift right by one the stream of

data generated by b[iþ1] for i¼0 to 99. We shift left

by one integer slot the stream of data generated by

c[iþ3] for i¼0 to 99. At this stage, both the b and c

register streams start in the third integer slot. The

vector add is then applied to the shifted streams and

produces the expected results, b[1] þ c[3], . . . ,

b[100] þ c[102]. To understand the applicability of

this scheme, it is critical to realize that ‘‘shifting left’’

and ‘‘shifting right’’ are data reorganizations that

operate on a stream of consecutive registers, not the

traditional logical or arithmetical shift operation.

Definitions and valid SIMDizations
The alignment-handling framework used here is

based on the concept of streams.
11

A stream

represents a sequence of contiguous memory

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200668

locations that are accessed by a memory reference

throughout the lifetime of a loop (shown in Figure 3

as a sequence of grey boxes). By analogy, a stream is

also a sequence of contiguous registers that are used

by an instruction over the lifetime of a loop.

Instructions in a loop can be viewed as operations

on streams. For example, a load operation consumes

a stream of memory and produces a stream of

registers. An important property of a stream is its

stream offset, which is defined as the byte offset of

the first desired value in the first register of a stream.

The offset of a register stream produced by a load

operation is the alignment of the first desired value

of the input memory stream (namely, the memory

address of the first desired value, modulo the vector

length of the SIMD unit).

The alignment-handling framework specifies the

alignment constraints of a valid SIMDization as

follows. In the SIMDization of a store operation, the

byte offset of the register stream must match the

memory alignment of the memory stream. For a

non-unary operation, all the data involved in the

computation must reside at the same byte offset in

their respective register streams. In the presence of

misalignments, a valid SIMDization can only be

achieved by judiciously using data reorganization

operations to enforce the desired stream offsets. The

stream shift operation vshiftstream(S, cin, cout) is

introduced for this purpose. It shifts all values of a

register stream S across consecutive registers of the

stream from offset cin to offset cout. Figure 3 gives

examples of shifting streams left and right.

Overview of alignment-handling framework

The first phase of the SIMDization framework
13

extracts SIMD parallelism at different program

scopes and generates generic vector operations. The

next phase transforms the code to satisfy the precise

architectural constraints. The final phase converts

the generic vector operations to platform-specific

instructions.

Phase 1: Extraction of SIMD parallelism. This phase

first extracts SIMD parallelism within a basic block

by placing isomorphic (i.e., identical or similar)

computations at adjacent memory locations by

using an approach similar to that used in Reference

4. This phase catches manually unrolled loops,

16-byte boundaries

b0 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c5 c6 c7 c8 c10c2

a0 a1 a4 a5 a6 a7 a8 a9 a10a3

b1

c3

a2

Memory Stream

Register Stream

+ + +

c0 c4 c9

for (i=0; i<100; i++) a[i+2] = b[i+1] + c[i+3];

b-1 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

b-1
+c1

b0+
c2

b1+
c3

b2+
c4

b3+
c5

b4+
c6

b5+
c7

b6+
c8

b7+
c9

b8+
c10

b9+
c11

b10+
c12

c2 c3 c4 c6 c7 c8 c10 c11 c12c1 c5 c9

Figure 3
Alignment of misaligned accesses

Stream Shift Left

Stream Shift Right

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 69

which are frequently found in multimedia code, and

extracts SIMD code among isomorphic or semi-

isomorphic computations that involve references

such as a.x, a.y, a.z, which are often found in

graphic applications, to express three-dimensional

coordinates.

SIMD parallelism across loop iterations is then

extracted. Iterative computations on stride-one

accesses (i.e., those which sequentially access an

array element by element) are aggregated into SIMD

operations by ‘‘blocking the loop.’’ Blocking the loop

is a process by which arrays are accessed in

sections, rather than by element. The blocking factor

(i.e., the size of the sections) is determined such that

the byte length of each vector is a multiple of 16

bytes.

The combined extraction of SIMD parallelism within

a basic block and among consecutive loop iterations

is illustrated in Figure 4. Although the actual

algorithm takes all memory references into account,

Figure 4
Extraction of SIMD parallelism

Original loop

Original loop

Value streams

for (i=0; i<256; i++) {
 a[i].x =
 a[i].y =
 a[i].z =
 b[i] =

}

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y ...

Value streams

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y ...

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y ...

pack

First
iteration

Second
iteration

Fourth
iteration

Third
iteration

A

B

for (i=0; i<256; i++) {
 a[i].x =
 a[i].y =
 a[i].z =
 b[i] =

}

Original loop Value streams

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y ...

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y ...

pack with self

a0.x

b0

a0.y a0.z a1.x

b1

a1.y a1.z a2.x

b2

a2.y a2.z a3.x

b3

a3.y a3.z

C

for (i=0; i<256; i++) {
 (a[i].x,y,z) =

 b[i] =

}

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200670

we focus here only on the store operations generated

by each of the loop’s four statements. Each

individual 4-byte store is represented by a box in

Figure 4; the colors of the boxes distinguish

consecutive iterations of the original loop.

The compiler recognizes that the first three stores in

Figure 4A, a[i].x, a[i].y, and a[i].z, are adjacent

in memory. Assuming here that the right-hand sides

of the three statements are isomorphic, it aggregates

the three statements into a vector of three integers

stored as a[i].x,y,z, as shown in Figure 4B. The

b[i] statement remains unchanged. Recognizing the

vector store a[i].x,y,z and the element store b[i]

as stride-one accesses, the compiler further aggre-

gates these accesses across loop iterations. In doing

so, it treats the new vector a[i].x,y,z statement no

differently than any other statements in the loop.

The only difference between the a[i].x,y,z and

b[i] statements is that the former generates a 12-

byte value, whereas the latter generates a 4-byte

value.

During this phase, we extract SIMD parallelism

among the smallest number of consecutive itera-

tions while ensuring that each vector in the loop has

a length that is a multiple of the physical vector

length, 16 bytes in this example. We would

determine that the optimal blocking factor is 4 here

because it aggregates four of the 12-byte a[i].x,y,z

vectors into a new compound vector of 48 bytes and

four of the 4-byte b[i] values into a new vector of

16 bytes. The resulting loop is shown in Figure 4C.

Phase 2: Alignment handling. This phase takes

SIMDized computations as input and inserts shift

operations to satisfy the alignment constraints of

SIMD operations. The output is a computation

augmented with stream-shift operations. During this

process, different shift-placement policies can be

applied to minimize the number of generated shifts,

three of which are described next.

1. Zero-shift policy—This policy
8

shifts each mis-

aligned load stream to offset zero and shifts the

storage stream from offset zero to the alignment

of the store address. (See Figure 5A.) This is the

least optimized policy.

2. Eager-shift policy (ESP)—This policy
11

shifts each

load stream directly to the alignment of the

storage stream. (See Figure 5B.) This policy is

followed in the example shown in Figure 3.

Eagerly shifts to store offset
• Offset 12 is the store alignment

B

Figure 5
Impact of stream-shift policies: (A) zero policy;
(B) eager policy; and (C) lazy policy

vshiftstream(4,8)

vload b[i+1] vload c[i+3]

offset 4 offset 12

vstore a[i+2]

vadd

vshiftstream(12,8)

offset 8 offset 8

offset 8

offset 8

Lazily shifts to store offset
• b[i+1] and c[i+1] have same alignment => delay shifting
 past add

C

vload b[i+1] vload c[i+1]

offset 4 offset 4

vstore a[i+3]

vadd

vshiftstream(4,12)

offset 4

offset 12

offset 12

Shifts all misaligned streams to/from offset zero
• Least optimized, used for runtime alignment

A

vshiftstream(4,0)

vshiftstream(0,8)

vload b[i+1] vload c[i+3]

offset 4 offset 12

vstore a[i+2]

vadd

vshiftstream(12,0)

offset 0 offset 0

offset 0

offset 8

offset 8

3 1, compared to zero shift

3 2, compared to zero shift

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 71

3. Lazy-shift policy—This policy
11

pushes the shift

toward the root of the expression tree (i.e., a

graphical representation of the expression) as

closely as possible. (See Figure 5C.)

In general, ESP inserts fewer stream shifts than the

zero-shift policy, for example, two versus three

shifts for the loop in the section ‘‘Example of a loop

with misaligned accesses.’’ ESP initially was only

applicable to compile-time alignment
11

but later was

extended to runtime alignment as well.
12

Phase 3: SIMD code generation. This phase takes the

augmented SIMDized computations as input and

maps generic stream-shift operations to native SIMD

permutation instructions. For each stream shift in

the tree, the algorithm generates a vperm instruction

in the generated steady-state loop. Specifically,

vperm(v1, v2, L) selects bytes L, Lþ1, ... , LþV�1
from a double-length vector constructed by concat-

enating v1 and v2, where V is the vector length. For

VMX, vperm is then mapped to a vec_perm VMX

instruction.

GENERATION OF PARALLEL CODE
The SIMDization we have described thus far affords

up to peak performance within a single SPE, but the

Cell BE architecture enables parallelism in multiple

dimensions: the heterogenous PPE and SPE cores,

multithreaded PPE, multiple SPEs, and SIMD sup-

port in both the PPE and SPEs. Extracting the

greatest performance from this architecture neces-

sitates exploiting parallelism across multiple pro-

cessing elements. We now describe our compiler

support for parallel programming across the PPE

and multiple SPEs.

Our current approach uses the OpenMP
14

program-

ming model. This provides programmers with the

abstraction of a single shared-memory address space.

With our prototype compiler, programmers may use

OpenMP directives to specify regions of code that can

execute in parallel. In this way, they need only write

and compile a single body of code, and the compiler

takes on the responsibility of duplicating code

sections for heterogenous cores (i.e., the PPE and SPE

cores) and of coordinating their execution.

Single source code compilation
We use the existing parallelization infrastructure of

the IBM XL compiler for our OpenMP implementa-

tion. The XL compiler includes a high-level opti-

mizer called the Toronto Portable Optimizer (TPO).

TPO works in two passes: the first pass applies

intraprocedural optimizations, and the second pass,

also called the ‘‘link phase,’’ performs interproce-

dural optimizations as well.

In the first pass, the compiler outlines each parallel

code section; that is, it creates a new function

containing a copy of the code in that parallel section

and then replaces the original code section with a

call to the corresponding function. Figure 6 shows

the call graph for an example program and the flow

graph for a function in this program that contains an

OpenMP parallel loop. After outlining, the loop is

moved into a newly created function, and the call

graph has an extra node. We apply machine-

independent optimizations to these outlined func-

tions and then later, during interprocedural analysis

in the link step, we clone them. We now have two

copies of parallel outlined functions, one for the PPE

and one for the SPE, and we can optimize them

independently. When cloning outlined parallel

functions, we ensure that we also clone any other

functions called from the outlined parallel function.

Thus, in Figure 6, all functions in the subgraph

rooted at the outlined function are cloned. The call

sites within SPE functions are modified to invoke the

SPE version of the receiver of the call instead of the

PPE version. Also, a cloned function may be nested

within another cloned function and may refer to

data that belongs to the enclosing function. In such

cases data references in nested SPE functions must

be modified to refer to data that belongs to the

enclosing SPE function. Because cloning of parallel

code sections occurs in the link step, the compiler

can generate versions of all library code as

appropriate for both the SPE and PPE.

A runtime library enables parallel execution. This

library includes functions for initialization, work

distribution, and synchronization of data as well as

control flow. The compiler inserts calls to runtime

library functions appropriate to the OpenMP direc-

tives contained in the code. The OpenMP master

thread runs on the PPE processor and uses the

runtime library to distribute work to SPE processors.

The master thread itself partakes in all work-sharing

constructs. Because there is no operating system

support on the SPE, this thread also handles all

operating-system service requests. The PPE runtime

library includes the facility to create new SPE

threads and terminate them. When a new SPE

thread is created, it continuously loops, waiting for

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200672

the PPE to assign work items to it for execution. A

work item specifies a handle that determines the

function to execute, any input parameters for the

function, and if need be, the current address of the

stack in system memory.

The runtime library requires communication be-

tween the PPE and the SPEs for the coordination of

execution. SPEs use explicit DMA to read work

items assigned to them from a circular queue that is

shared with the PPE. The Cell BE architecture also

includes efficient communication channels in the

form of signal registers and mailbox queues. The

PPE uses asynchronous signals to inform an SPE

that work is available or that it should terminate.

The SPEs use the mailbox to update the PPE on the

status of their execution.

When an SPE executes a work item, it must use

DMA to access any reference to shared memory. For

this purpose, the compiler identifies all shared-

memory references in the code to be executed on an

SPE. In the following subsection, we describe how

our system automatically handles DMA transfers to

and from shared memory, thus providing a single

shared-memory abstraction.

Single shared-memory abstraction

It is usual for a programmer to view a computer

system as possessing a single addressable memory

and for all the program data to reside in this space.

In the Cell BE processor, the local stores, which

alone are directly addressable by their respective

SPEs, are memories separate from the vastly larger

system memory. Each SPE can transfer data, by

means of the DMA engine, between its local store

and system memory. In our approach we attempt to

abstract the concept of separate memories by

allocating SPE program data in system memory and

having the compiler automatically manage the

movement of this data between its home location

and a temporary location in the local store. A naı̈ve

compiler inserts an explicit DMA transfer for each

access to shared memory, which is likely to

debilitate performance. Our compiler employs a

software cache mechanism that permits reuse of the

temporary buffers in the local store, so that a DMA

transfer is not needed for each access to shared

memory. Moreover, there are many ways that the

compiler can optimize these data transfers, espe-

cially when memory references are regular.

Compiler-controlled software cache

When compiling SPE code, the compiler identifies

data references in system memory that have not

been optimized by using explicit DMA transfers and

inserts code to invoke the software-cache mecha-

nism before each such reference. Our current

implementation provides a 4-way associative cache,

and all four ways are probed inline (i.e., each set in

the cache is searched simultaneously without calling

a subroutine), exploiting the SIMD parallelism of the

instruction set.

Figure 6
Parallelization process

Outlining Cloning

Flow graph node Call graph node Flow graph edge Call graph edge

Compile
for PPE

Compile
for SPE

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 73

Figure 7 illustrates the cache lookup. Starting with

the address of the desired variable in the primary

slot of an SPE register, instructions are executed to

produce the offset address of the appropriate

directory entry in the tag array (a tag is a label,

which in this case is part of the address and is used

as a comparand to determine if the data is already in

the cache). This task consists of masking all bits in

the address except for those that are used to index

into the tag array. To this offset we add the base

address of the tag array, and using this address, we

load two consecutive quadwords from the array. If

any of the ways contains the tag we are seeking,

then the 128-bit result of the comparison is nonzero,

and we can use this to test for a cache hit. If the

result is zero, this indicates a miss, and the miss

handler is invoked.

Because the call to the miss handler is not expanded

by the compiler until very late in the compilation, it

does not appear to the optimization as a call. This

allows a hit (which we assume to be the common

case) to incur no penalty due to the call setup. We

add the line offset to the line address and load the

desired data. Store processing proceeds in much the

same way, but additional instructions are required

to set the ‘‘dirty bits,’’ that is, bits which indicate

that data in the cache has been modified. It takes

roughly 12 instructions to process a cache hit, and a

similar number to set dirty bits for a store, but

because some of these instructions are dual-issued

and there is often other independent work that can

be scheduled, the cost in cycles is not so high;

nevertheless, it is clearly very important to attempt

Figure 7
Hit logic in the software cache

Tag Array

Data Array

4-Way
Tag
Entry

Cache
Line

Equal ?

Load (,16)

Load (,0)

Rotate hit slot to preferred slot

Load (,0)

Desired Data Quadword

Register Containing Data Address

& 0x3f80 Splat

& 0xffffff80 & 0x07f

High tag bits for hit
 High tag bits
 of other lines
 for this tag

Address of hit cache line
 Addresses
 of other lines
 for this tag

Tag index
Offset in line
Don’t care
Address of tag array (high bits)

Dirty bits in tag entry
Unused space in tag entry
 Register operation result
 Memory location for load

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200674

to reduce the number of cache lookups inserted

when compiling a program.

Our cache implementation can be used for either a

serial or a parallel program. There is some addi-

tional cost involved in supporting parallel execution,

because we must keep track of which bytes in a

cache line have been modified in order to support

multiple writers of the same cache line. If the

compiler knows that no data will be shared between

SPEs (for example, in the case of a serial SPE

application), the additional cost of maintaining

these dirty bits can be avoided.

Because the compiler must deal with the potential

for aliases between cached data and data obtained

by other means (e.g., explicit prefetch), the miss

handler must take more care in choosing a cache

entry to be evicted than is normally the case with a

hardware implementation.

Data transfer optimizations

Replacing each load and store operation with the

longer instruction sequence required for cache

lookup may significantly increase program execu-

tion time. As a result, our memory abstraction

scheme is most effective when we can minimize

cache usage. To increase performance, we strive to

avoid cache misses, minimize cache lookups, and

optimize cache-lookup code sequences.

In general, scalar data and small structured varia-

bles do not represent a large fraction of the space

requirements of a program. If we can determine that

they are not used to communicate between parallel

tasks, we can directly allocate them to the SPE local

stores. The local, stack-allocated variables of a

function often belong to this class. The analysis that

determines whether these variables are not shared

by multiple threads is complicated by the fact that

pointer usage may cause aliasing between local and

global variables. Also, large local arrays cannot be

optimized in this manner, as there may be insuffi-

cient space to allocate them in the SPE local store.

Another possible optimization (which we have not

yet implemented) is to explicitly allocate space for

small shared variables in each local store as well as

in system memory. The system memory space is the

home location that contains the latest values

available to all processors. The compiler can then

insert explicit DMA operations to prefetch these

variables into the local stores and write them back to

the home location in accordance with the memory

consistency model.

For large arrays, in some cases it is possible to use

well-known program-restructuring techniques
15,16

such as loop blocking to allow multiple elements to

be explicitly fetched in a single operation. Further

restructuring can effectively ‘‘software pipeline’’ the

blocking loop, so that data movement and compu-

tation are overlapped, essentially prefetching the

data. As is the case when compiling for more

traditional memory hierarchies, the compiler can

perform tiling to increase locality.
17,18

Tiling uses

loop-restructuring transformations such as blocking

and interchange, but these transformations may not

always be possible. Our compiler uses prefetching

and tiling in conjunction with explicit DMA trans-

fers. As a result, the original variables are replaced

by references to much smaller temporary arrays,

and this implies the rewriting of the indexing

expressions as well. Although tiling and prefetching

techniques have been previously used to improve

locality for cache memories, their use in the context

of the SPE software cache is somewhat different. In

our compiler, the software-cache mechanism needs

to be aware of the explicit DMA transfers for tiled

data and exercise certain constraints when caching

related storage locations.

For many of the cases mentioned here, a further

optimization involves combining data transfers by

using DMA list commands, or (in the case of

multiple contiguous requests) by simply fusing

several DMA operations into one. This has the effect

of reducing the setup cost for DMA operations. To

increase the opportunities for combining DMA

operations, the compiler can reorder variables with

respect to each other, including breaking up or

combining structures, at link time. Our compiler

already performs such transformations for other

reasons, but we have not yet explored this addi-

tional use of that optimization.

For all of the foregoing techniques, when they can be

used, the need for cache lookup is eliminated in effect.

Ultimately, it should be necessary to use the cache

only to ensure correctness for references that are

irregular or that are unknown at compile time.

Clearly, to the extent that this can be accomplished,

substantial compile-time analysis is required. Our

work in this area is still in progress, but we see very

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 75

encouraging results from our implementation thus

far.

Code partitioning

Because the limited-size local memory of the SPE

must accommodate both code and data, there is

always the possibility that a single SPE object will be

too large to fit. We propose a code partitioning

technique to reduce the impact of the local store

limitations of the SPE on the program code segment.

This technique can be used in a stand-alone manner

with the SPE compiler or to manually partition

applications. For OpenMP single-source compila-

tion, our code partitioning is integrated with the data

software cache to allow large outlined functions with

large data to run seamlessly across multiple SPEs.

In our code partitioning approach, the SPE program

is divided into multiple partitions by the compiler.

Currently, the basic unit of partitioning is a function.

The home locations of code partitions are in system

memory. These SPE code partitions are overlaid

during linking, so that they are all assigned the same

starting virtual address, and the SPE code then fits

into a virtual address space equal to the size of the

largest code partition. Thus, we can use the partition

size to control the space used in the local store for

code.

Overlaid partitions cannot run at the same time.

This implies that if code in one partition calls a

function in another partition, the two partitions

need to be swapped in and out of the local store at

the point of the function call and return. To run a

partitioned program, such partition transitions must

be handled properly, and this is done collaboratively

by the compiler and the runtime partition manager.

Runtime partition manager

When the compiler partitions SPE code, it also

reserves a small portion of the SPE local store for the

partition manager. The reserved memory is divided

into two segments: one to hold the continuously

resident partition manager and the other to hold the

current active code partition. The code partitions

need to be relocatable, which implies that function

calls should not use absolute addressing. The

partition manager is responsible for loading parti-

tions from their home location in system memory

into the local store during an interpartition function

call or an interpartition return. The compiler

modifies the original SPE program to replace each

interpartition call with a call to the partition

manager. Thus, the partition manager is able to gain

control and handle the transition from the current

partition to the target partition. It also modifies the

return address on the stack before branching to the

called function to ensure that control returns to the

partition manager first.

When an interpartition call is directed through the

partition manager, a function pointer and arguments

to the function are passed to the partition manager.

The partition manager must determine which

partition contains the called function. For this

purpose, the compiler assigns an index to all

partitions that it creates, and encodes the corre-

sponding index in the function pointer that is passed

to the partition manager. An SPU pointer is 32 bits,

but because the local storage is 256 KB, only 18 bits

are used. Of the 14 unused bits, 13 bits are used for

the partition index (the most significant bit indicates

special handling for calls to certain library func-

tions). For example, an interpartition call to function

foo in partition 3 is transformed from foo (arg1,

arg2, . . .) to call_partition_manager (3 ,, 18 j foo,

arg1, arg2, . . .). The partition manager uses the

partition index to fetch the correct partition and

transfers control to the proper location within this

partition by using the lower 18 bits of the function

pointer.

Figure 8 shows the processing steps in the execution

of an automatically partitioned program. The pro-

gram begins execution on the PPE and invokes code

to create SPE threads. Each SPE thread is created by

use of a generic SPE driver, which is an SPE binary

embedded as data in the PPE object. During

initialization, the partition index table, the data

section for SPE data, and the first SPE code partition

are copied from system memory to appropriate

locations in the local store. The first SPE code

partition contains the entry point function for the

user SPE code, and the partition manager passes

control to this function. Thereafter, the partition

manager is invoked on each interpartition call, and

it transfers the correct partition from system

memory to local store, passes control to the correct

function within that partition, and ensures that on

return, control is passed back to the point after the

call site in the original partition.

Compiler transformations for code partitioning

In our implementation, we modify the interface for

functions that are invoked by interpartition calls to

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200676

include an extra dummy parameter. When the

compiler transforms interpartition calls, it need only

change the name of the function being invoked and

set the value of the dummy parameter to be the

function pointer. This also enables the runtime

partition manager to efficiently invoke the target

function, as the arguments for the call are already in

the correct locations based on linkage conventions.

The partitioning algorithm is based on a call graph.

Because individual functions are normally small

enough to fit into the SPE local store, this approach

enables correct partitioning in most cases. Occa-

sionally we encounter large single functions, mostly

due to aggressive optimizations such as function

inlining and loop unrolling. For SPE code, these

optimizations constrain the space available for data

in the local store and may result in additional DMA

operations that adversely impact performance.

Because of this, we avoid excessive inlining and

loop unrolling for SPE code. There are rare instances

in which functions are too large even before

optimizations. In such cases, outlining can be

applied to a portion of the original function,

reducing the size of any single function.

Figure 9 illustrates how the partitioning algorithm

works on an example call graph where the size of

each function (shown inside the circle) is assumed

to be 300, and the limit on the size of a partition

(shown as an oval) is assumed to be 1000. The

result is two partitions with three functions in each

partition, and the estimated number of interpartition

calls is minimized to 150 (calls are shown as labels

on the graph edges).

The schema in Figure 10 shows the process of

compiling and linking an executable that uses SPE

code partitioning. The SPE XL compiler, called

‘‘spuxlc,’’ first compiles SPE source code to object

files. The interprocedural link phase then performs

partitioning and generates multiple object files, one

for each overlaid code partition. It also generates an

object file containing a data section that defines all

global data. The SPE linker is then used to produce

two different SPE binaries: the generic SPE driver

Embedded
SPE Driver Embedded

SPE Driver

Figure 8
Execution of an automatically partitioned program

Embedded
SPE Driver

Embedded
User
Program

PPE
Driver

Data
Skeleton

Partition
Manager

Partition
Table

Code
Buffers

Executing
PPE Binary

SPE Execution

Control flow
DMA transfer

Partition
Data

Create SPE
driver thread

Data

Partition
Manager

Partition
Table

Code
Buffers

overlay1

Executing
PPE Binary

SPE Execution

Initialize: Copy
partition data and
root overlay from
system memoryPPE

Driver

Partition
Data

Data

Partition
Manager

overlay1

overlay2

overlay3

overlayN

Data

Partition
Manager

Partition
Table

Code
Buffers

overlay-n

overlay-m

Executing
PPE Binary

SPE Execution

Interpartition call
i) Transfer new
overlay
from system
memory

PPE
Driver

Partition
Data

Data

Partition
Manager

overlay1

overlay2

overlay-m

overlayN

ii) Pass control
to appropriate
address in new
overlay

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 77

and the user program. The SPE driver represents the

SPE binary layout during program execution. It

includes space for a data section, a code section that

contains the runtime partition manager code, the

partition table that identifies partitions based on

their index, and a code buffer that will hold one or

more user SPE code partitions. The user program

binary corresponds with the SPE driver binary in

that the data section and the runtime partition

manager code (including the partition table) are the

same size and are bound to the same starting virtual

addresses. This script also determines how much

space to allocate for the data section and the

partition table when generating the SPE driver

binary. An embedder is used to wrap the SPE

binaries as data sections within PPE-format object

files. These object files are then linked in with the

PPE code, and they exist as data sections in the final

PPE user executable.

Optimizations for code partitioning

With code partitioning enabled in stand-alone mode,

performance is fair when executing partitioned

functions on a single SPE relative to execution on

the PPE. Given the preliminary nature of this work,

these results are encouraging.

There are several opportunities that we are currently

exploring to improve the overall performance of our

code partitioning algorithm. To achieve the best

results, profiling can be used instead of static

estimation. Also, using the actual partition size

rather than the size conservatively estimated in the

compiler can improve the utilization of the local

code buffer significantly. The accurate size of

partitions can be determined if the size of each

function is known. During a first pass, minute

partitioning is performed, and each function is

placed in a separate partition. The user binary is

generated, and the size of each partition (each

function) is extracted and saved for later use. In the

second pass, code partitioning under the actual

buffer size limit is performed, using accurate size

information for each function.

The most promising optimization is to anticipate the

next interpartition call and prefetch the corre-

sponding code partition. This has the potential to

hide the latency incurred when fetching partitions

from system memory. However, this optimization

requires multiple buffers, implying a much smaller

partition size limit. The net effect on performance

will depend on the prefetching algorithm and the

accuracy of the cost model applied.

MEASUREMENTS

We first evaluate the optimized SPE code generation

techniques presented in the section ‘‘Optimized SPE

code generation.’’ Figure 11 presents the reduction

in program-execution time for each optimization

relative to the performance of the original compiler.

We achieved a reduction which ranged from 11 to

51 percent, averaging at 22 percent.

The benchmark programs used here are highly

optimized, SIMDized kernels representative of typical

workloads running on the SPEs. Kernels include a

variable length decoding (VLD) from MPEG (Motion

Picture Experts Group) decoding, a Huffman com-

pression and decompression, an IDEA (International

Data Encryption Algorithm) encryption, an ‘‘LU’’

(lower/upper triangular matrix decomposition), and

a ray tracing (OnerayXY). Also included are numer-

ical kernels such as an FFT (fast Fourier transform), a

Figure 9
Partitioning the call graph

300300

5050
2001000

300 300300

5050
200

300

50

50 50

300

10100

900 300

300

10100

900 600 900
150

900

300

10100

300

10100

300 300 600 300

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200678

Figure 10
Compiling and binding an automatically partitioned program

foo.o

bar.o

SPE
Libraries

Embedded
User
program

Embedded
SPE Driver

PPE
Driver

PPE
Libraries

Code
Section

Data
Section

Linker
Script

ovly1.o

ovly2.o

ovly3.o

ovlyN.o

data.o

Linker
Script

Embedded
SPE Driver

Embedded
User
Program

PPE
Driver

PPE User
Executable

Source

SPE object

SPE executable

PPE object

PPE executable

Tool chain component

foo.c

bar.f

partition
manager.o

ovly1

ovly2

ovly3

ovlyN

Data
Skeleton
Partition
Manager

Partition
Manager

Partition
Table
Code
Buffers

SPE
Driver

User
Program

Data

sp
ux

lc
C

om
pi

le
 P

ha
se

SP
E

Li
nk

er

sp
ux

lc
Li

nk
 P

ha
se

SP
E

Li
nk

er

Em
be

dd
er

PP
E

Li
nk

er

Em
be

dd
er

Figure 11
Reduction in program execution time with optimizations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Huff
m

an FF
T

ID
EA LU VL

D

Lin
pa

ck

Con
vo

lut
ion

One
ray

XY

Mat
Mult

Sa
xp

y

Re
la

tiv
e

Re
du

ct
io

ns
 in

 E
xe

cu
tio

n
Ti

m
e

Original +Bundle +Branch Hint + Ifetch

Av
era

ge

(a
ve

rag
e

1.0

0

0.7
8)

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 79

7 3 7 short integer convolution, and a 64 3 64 float

matrix multiplication.

Bundling for dual issue results in an execution-time

reduction of from 2 to 22 percent, averaging at 11

percent. Large reduction percentages indicate

benchmarks with large amounts of instruction-level

parallelism and no ‘‘lucky’’ instruction alignment

(where random instruction layout does not satisfy

the dual-issue constraint).

Hinting predictable branches results in a further

execution-time reduction of from 0 to 26 percent,

averaging at 9 percent. Large reduction percentages

indicate predictable branches with a sufficient

amount of work to hide the hint latency. Some of the

small reduction percentages (such as 0 percent for

matrix multiplication) indicate such tight loops that

hinting is not beneficial without jointly addressing

instruction starvation.

Generating explicit instruction fetches results in a

further 2 percent average execution-time reduction,

with peak impact for very tight loops such as the 20

percent reduction for matrix multiplication. Sub-

word optimization results in a further 1 percent

average reduction, with peak impact of 3 percent for

kernels including short type computations.

For the auto-SIMDization techniques presented in

the section ‘‘Programming for the Cell BE architec-

ture,’’ Figure 12 presents the speedup factors

achieved when automatically SIMDizing sequential

code kernels. Comparisons are performed at the

same level of optimization, including high-level,

interprocedural optimizations in addition to all of

the SPE optimizations presented in the section

‘‘Optimized SPE code generation.’’ We report an

average speedup factor ranging from 2.4 to 26.2,

averaging at 9.9. The benchmark programs include

video, numerical, and telecommunication applica-

tions. Kernels include a short integer finite impulse

response (FIR), an auto-correlation kernel, an

integer dot product, a TCP/IP checksum, a ‘‘Saxpy’’

(i.e., a short-precision computation of ax þ y), a

matrix multiplication, and a solver kernel for

Linpack, a collection of Fortran subroutines that

analyze and solve linear equations and linear least-

squares problems.

There are two tiers of benchmarks. The four leftmost

kernels in Figure 12 achieve speedups which are fair

(2.4 to 2.9) but below average. The rightmost five

kernels get significant speedup (7.5 to 26.2). Both

the dot product and checksum kernels performed a

reduction which is not natively supported by the

SPE’s instruction set. This introduced some over-

head which, in these two cases, can be efficiently

hidden by using partial-sum reductions.

Figure 13 shows the effects of the parallelization

discussed in the section ‘‘Generation of parallel

code,’’ presenting the results for parallel execution

using only the software cache. We show results

from the Spec OMP2001 suite of benchmarks

(shown in the figure as apsi, ammp, applu, art,

equake, Mgrid, Swim, and wupwise). We find that

we achieve a speedup factor of greater than 2.5 on

three of the eight benchmarks. Considering that the

software cache is essentially a ‘‘fallback’’ strategy for

code with irregular data accesses and that we have

not yet fully tuned it for performance, we consider

this to be a very encouraging result.

Some comparisons of our software cache and

optimized data transfer results can be seen in

Figure 14. In this figure, calc1, calc2, and calc3 are

kernels from the program Swim, whereas resid,

psinv, and rprj3 are kernels from the program

Mgrid. On average, a speedup factor of approx-

imately 3 is obtained with the software cache. When

data transfer optimizations are applied, the average

speedup factor improves to approximately 8. The

baseline execution in this case is running on a single

Figure 12
Speedup factors for auto-SIMDization

2.4 2.5 2.9 2.9

7.5 8.1

11.4

25.3 26.2

9.9

Lin
pa

ck

Sw
im

-l2 FIR
Au

tco
r

Dot
Pro

du
ct

Ch
ec

ks
um

Sa
xp

y

Mat
Mult

Av
era

ge
0

5

10

15

20

25

30

Sp
ee

du
p

Fa
ct

or
s

Alp
ha

 B
len

din
g

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200680

PPE, and the speedups are obtained when running

on eight SPUs. We observe that optimization

improves the performance by eliminating the cache

lookup overhead, using more precise information

about the data accesses to fetch larger chunks of

data per DMA access and overlapping computation

with the DMA access. The data transfer optimization

work is ongoing. Because this work will allow us to

eliminate or minimize cache accesses, we expect to

see increased performance improvements as we

make progress in this area.

CONCLUSIONS AND FUTURE WORK

The key to unleashing the performance potential of

the powerful new Cell BE architecture is the

exploitation of parallelism at various levels of the

system. Highly skilled programmers can achieve this

with manual techniques, but sophisticated compiler

technology enables significant performance poten-

tial for a broader community, resulting in a much

higher rate of productivity. In this paper, we have

presented, in the context of a research prototype,

several compiler techniques that aim at automati-

cally generating high-quality code by using the wide

range of heterogeneous parallelism available on the

Cell BE processor.

Our Cell BE compiler implements SPE-specific

optimizations, including support for compiler-assis-

ted memory realignment, branch prediction, and

instruction fetching. It addresses fine-grained SIMD

parallelization as well as more general OpenMP

task-level parallelization, presenting the user with a

single shared-memory image through compiler-

mediated partitioning of code and data and the

automatic orchestration of the data movement

implied by this partitioning. Using benchmarks

suitable to this platform, we demonstrate average

speedup factors of 1.3 for SPE-specific optimiza-

tions, 9.9 for SIMDization, and 6.8 for task-level

parallelization.

We are working on integrating and refining current

techniques and further exploiting opportunities

available on the Cell BE architecture for our target

workloads. Ultimately, producing optimal code for

the Cell BE processor depends on fine tuning a

number of heuristics and developing an economic

model that takes account of the various complexities

Figure 13
Speedup resulting from parallelization

0

1

2

3

4

5

spu=1 spu=2 spu=4 spu=6 spu=8

Sp
ee

du
p

ov
er

 o
ne

 S
PU

apsi

ammp

applu

art

equake

Mgrid

wupwise

Swim

Figure 14
Impact of optimization on Swim, Mgrid,
and their kernels

0

2

4

6

8

10

12

Sw
im

ca
lc1

ca
lc2

ca
lc3

Mgri
d

res
id

ps
inv rpr

j3

Sp
ee

du
p

w
ith

 8
 S

PU
s

With software cache With data-transfer optimization

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 81

of the architecture. Well-known cost models for

optimizing the overlap of data communication and

computation are being incorporated into our ap-

proach. Other parameters for optimization can be

incorporated into our model, given the heteroge-

neous nature of the architecture
19,20

and the

particular characteristics of the SPE.

Other factors to be addressed by the model include

the partitioning of memory between user code and

data, resident helper code, and the cache directories.

Unlike a hardware cache, our compiler-managed

approach affords a degree of flexibility in modeling

the size and type of the cache at compile time based

on the nature of the user code. We plan to conduct

extensive analysis of the usage and occupancy of

our compiler-controlled cache as input to this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment, Inc. in the United States, other
countries, or both.

CITED REFERENCES
1. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee,

C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,
M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J.
Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K.
Yazawa, ‘‘The Design and Implementation of a First-
Generation CELL Processor,’’ Digest of Technical Papers,
IEEE International Solid-State Circuits Conference (ISSCC
2005) IEEE International, Piscataway, NJ (February
2005), pp. 184–185, http://www-03.ibm.com/industries/
telecom/doc/content/bin/tc_isscc_10.2_cell_design.pdf.

2. PowerPC Microprocessor Family: AltiVec Technology Pro-
gramming Environments Manual, IBM Corporation (July
2004).

3. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, ‘‘Introduction to the Cell
Multiprocessor,’’ IBM Journal of Research and Develop-
ment 49, No. 4/5, 589–604 (July/September 2005).

4. S. Larsen and S. Amarasinghe, ‘‘Exploiting Superword-
Level Parallelism with Multimedia Instruction Sets,’’
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, ACM Press, New
York (June 2000), pp. 145–156, http://portal.acm.org/
citation.cfm?id¼349320.

5. J. Shin, M. Hall, and J. Chame, ‘‘Superword-Level
Parallelism in the Presence of Control Flow,’’ Proceedings
of the International Symposium on Code Generation and
Optimization (March 2005), pp. 165–175, http://doi.
ieeecomputersociety.org/10.1109/CGO.2005.33.

6. Aart Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian,
‘‘Automatic Intra-Register Vectorization for the Intel
Architecture,’’ International Journal of Parallel Program-
ming 30, No. 2, pp. 65–98 (April 2002).

7. D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks,
‘‘Vectorizing for a SIMDD DSP Architecture,’’ Proceedings
of the International Conference on Compilers, Architec-
tures, and Synthesis for Embedded Systems (October
2003), pp. 2–11.

8. Crescent Bay Software - VAST/AltiVec, http://www.
crescentbaysoftware.com/vast_altivec.html.

9. N. Sreraman and R. Govindarajan, ‘‘A Vectorizing
Compiler for Multimedia Extensions,’’ International
Journal of Parallel Programming 28, No. 4, 363–400
(August 2000).

10. C. G. Lee and M. G. Stoodley, ‘‘Simple Vector Micro-
processors for Multimedia Applications,’’ Proceedings of
the 31st International Symposium on Microarchitecture,
IEEE Computer Society Press, Los Alamitos, CA (1998),
pp. 25–36, http://portal.acm.org/citation.
cfm?coll¼GUIDE&dl¼GUIDE&id¼290951.

11. A. E. Eichenberger, P. Wu, and K. O’Brien, ‘‘Vectorization
for SIMD Architectures with Alignment Constraints,’’
Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ACM
Press, New York (June 2004), pp. 82–93.

12. P. Wu, A. E. Eichenberger, and A. Wang, ‘‘Efficient SIMD
Code Generation for Runtime Alignment and Length
Conversion,’’ Proceedings of the International Symposium
on Code Generation and Optimization, IEEE Computer
Society Press, Los Alamitos, CA (March 2005), pp. 153–164.

13. P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao, ‘‘An
Integrated SIMDization Framework Using Virtual Vec-
tors,’’ Proceedings of the 19th Annual International
Conference on Supercomputing, ACM Press, New York
(June 2005), pp. 169–178.

14. Official OpenMP Specifications, OpenMP Architecture
Review Board (2002), http://www.openmp.org/specs/.

15. T. C. Mowry, ‘‘Tolerating Latency through Software-
Controlled Data Prefetching,’’ Doctoral dissertation,
Stanford University (March 1994).

16. M. E. Wolf and M. S. Lam, ‘‘A Data Locality Optimizing
Algorithm,’’ Proceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and
Implementation, ACM Press, New York (May 1991), pp.
30–44, http://portal.acm.org/citation.
cfm?id¼113449&coll¼Portal&dl¼GUIDE&CFID¼
54819031&CFTOKEN¼14228294.

17. G. Rivera and C.-W. Tseng, ‘‘Tiling Optimizations for 3D
Scientific Computation,’’ Proceedings of the 2000 ACM/
IEEE Conference on Supercomputing, IEEE Computer
Society, Washington, DC, Online proceedings (November
2000) http://portal.acm.org/citation.
cfm?id¼370403&coll¼Portal&dl¼GUIDE&CFID¼
54819031&CFTOKEN¼14228294.

18. A. Badaway, A. Aggarwal, D. Yeung, and C.-W. Tseng,
‘‘Evaluating the Impact of Memory System Performance
on Software Prefetching and Locality Optimizations,’’
Proceedings of the 15th International Conference on
Supercomputing, ACM Press, New York (June 2001), pp.
486–500, http://portal.acm.org/citation.
cfm?id¼377906&coll¼Portal&dl¼GUIDE&CFID¼
54819031&CFTOKEN¼14228294.

19. J. Andrews and C. Polychronopoulos, ‘‘An Analytical
Approach to Performance/Cost Modeling of Parallel
Computers,’’ Journal of Parallel and Distributed Com-
puting 12, No. 4, 343–356 (August 1991).

20. D. J. Lilja, ‘‘A Multiprocessor Architecture Combining Fine-
Grained and Coarse-Grained Parallelism Strategies,’’ Jour-
nal of Parallel Computing 20, No. 5, 729–751 (May 1994).

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200682

Accepted for publication September 21, 2005.

Alexandre E. Eichenberger
IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, New York 10598 (alexe@us.ibm.com).
Dr. Eichenberger is a research staff member in the Exploratory
System Architecture department at the Watson Research Center.
He received a diploma in computer science from Eidgenössische
Technische Hochschule in Zurich, Switzerland in 1991, and M.S.
and Ph.D. degrees in computer and electrical engineering from
the University of Michigan at Ann Arbor in 1993 and 1996,
respectively. He was a faculty member of the Department of
Electrical and Computer Engineering at North Carolina State
University before joining IBM. In addition to his current work in
auto-SIMDization,his research interests include instruction-level
parallelism, predicated execution, profiling techniques, and
software pipelining.

John Kevin O’Brien
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(caomhin@us.ibm.com). Mr. O’Brien has spent the last 24
years at IBM working in the field of compilation and
architecture. Initially, at the IBM Toronto Lab, he was the
architect of the TOBEY optimizing back end (used in IBM’s
xlc, xlf, and xlC compiler products). Since then, he has spent
17 years at IBM Research, where his research interests have
included multithreaded architecture, Smalltalk, Javae,
continuous optimization, binary translation and optimization,
parallelization, and vectorization (including SIMDization) for
several processors, most recently the Cell Broadband Enginee

processor. Mr. O’Brien received a B.Sc. degree in theoretical
physics and an M.Sc. degree in astrophysics from the
University of London in 1974 and 1976 respectively.
Currently, he is investigating memory-related optimizations
for the Cell Broadband Enginee processor.

Kathryn M. O’Brien
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(kmob@us.ibm.com). Ms. O’Brien has worked at IBM for 23
years, 17 of them as a researcher at the Watson Research
Center, where she has been involved in several static and
dynamic compilation projects. She received a B.A. degree
from Queen’s University of Belfast in 1973, and an M.A.
degree from the University of London in 1976. Ms. O’Brien
was involved in the initial IBM XL Fortran compiler, and the
early vectorization and parallelization efforts in the XL
compilers. Currently, she is investigating automatic
parallelization for the Cell Broadband Enginee and other
architectures.

Peng Wu
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(pengwu@us.ibm.com). Dr. Wu is a research staff member in
the High-Performance Software Environment department at
the Watson Research Center. She received M.S. and Ph.D.
degrees in computer science from the University of Illinois at
Urbana-Champaign in 1999 and 2001, respectively. She
subsequently joined IBM at the Watson Research Center,
where she has worked on compiler optimization, auto-
SIMDization, and high-performance computing.

Tong Chen
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(chentong@us.ibm.com). Mr. Chen is a compiler research team
member in the Exploratory System Architecture department at
the Thomas J. Watson Research Center. He received B.S. and

M.S. degrees in computer science from Fudan University, and is a
Ph.D. student incomputer scienceat theUniversityofMinnesota.
He joined IBM at the Thomas J. Watson Research Center, and his
work there has focused on compilers.

Peter H. Oden
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(oden@us.ibm.com). Dr. Oden is a research staff member in
the Systems department at the Watson Research Center. He
received an A.B. degree from Columbia College in 1955, and
M.S. and Ph.D. degrees in electrical engineering from
Columbia University in 1958 and 1966, respectively. He joined
IBM at the Watson Research Center in 1963, where he has
worked on design automation, programming languages and
compilers, and computer micro-architecture. He received an
IBM Outstanding Contribution Award for his work on design
automation in 1968 and an IBM Research Outstanding
Technical Achievement Award for his work on compilers in
1981. He is an author or coauthor of several patents and
technical papers.

Daniel A. Prener
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(prener@us.ibm.com). Dr. Prener is manager of the
Exploratory System Architecture group in the Systems
department at the Watson Research Center. He received a B.A.
degree in mathematics from Swarthmore College in 1965, and
M.A. and Ph.D. degrees in mathematics from the University of
Pennsylvania in 1967 and 1972, respectively. Before joining
IBM, he taught mathematics at the State University of New
York at Stony Brook, and mathematics and computer science
at Lehman College of the City University of New York. Since
joining IBM in 1981, he has worked on computer architecture
and compiler optimization in a variety of contexts.

Janice C. Shepherd
c/o Daniel Prener, IBM Research Division, Thomas J Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (janshep@us.ibm.com). Ms. Shepherd is a senior
software engineer and works out of her home in Grand
Junction, Colorado. She received her B.S. degree from Queen’s
University in 1980 and her master’s degree from the
University of Toronto in 1983. Her current interests are in
productization and multilanguage support.

Byoungro So
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(bso@us.ibm.com). Dr. So is a post-doctoral researcher in the
Computer Architecture department at the Watson Research
Center. He received a B.S. degree in computer science from
Dongguk University in Seoul, Korea in 1996, and M.S. and
Ph.D. degrees in computer science from the University of
Southern California in 1998 and 2003, respectively. He
subsequently joined IBM at the Watson Research Center,
where he has worked on high-performance computing and
parallelizing compilers. In 2003, he received an Outstanding
Academic Achievement Award from the University of
Southern California. Dr. So is a member of the Korean-
American Scientists and Engineering Association.

Zehra Sura
IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, New York 10598 (zsura@us.ibm.com). Dr.
Sura is a research staff member in the Systems department at
the Watson Research Center. She received a B.E. degree in
computer science from VRCE, in Nagpur, India in 1998, and
M.S. and Ph.D. degrees in computer science from the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 EICHENBERGER ET AL. 83

Published online January 19, 2006.

University of Illinois at Urbana-Champaign in 2001 and 2004,
respectively. She subsequently joined IBM at the Watson
Research Center. Her research interests include analysis and
transformation of programs for parallel processing and the use
of runtime techniques to improve compiler optimizations.

Amy Wang
IBM Toronto Lab, 8200 Warden Ave., Markham, Ontario
L6G 1C7, Canada (aktwang@ca.ibm.com).
Ms. Wang is a member of the XL compiler back-end team. She
obtained a Bachelor of Applied Science degree in 1999 and a
Master of Applied Science degree in computer engineering in
2001, both from the University of Toronto. In 2002, she joined
the IBM Toronto Software Lab, contributing her skills to the
development of various compiler back-end optimizations,
such as register allocation and most recently, auto-
SIMDization for VMX hardware.

Tao Zhang
College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, Georgia 30332
(zhangtao@cc.gatech.edu). Mr. Zhang is a Ph.D. candidate in
computer science at Georgia Institute of Technology. He
received a B.S. degree in computer science from Peking
University in 2001, and an M.S. degree in computer science
from Georgia Institute of Technology in 2003. During his
graduate study, he has done work with Dr. Santosh Pande on
compiler and architecture optimizations for embedded
systems in terms of memory cost, performance, and power.
He has also been working on compiler and architecture
support for system security.

Peng Zhao
IBM Toronto Lab, 8200 Warden Ave., Markham, Ontario L6G
1C7, Canada (pengz@ca.ibm.com). Mr. Zhao received a B.S.
degree in computer science from Beijing University of
Aeronautics and Astronautics in 1995, and an M.S. degree in
computer science from McMaster University in 2000. He
subsequently joined the IBM Toronto lab, where he has
worked on the Toronto Portable Optimizer (TPO) team.

Michael K. Gschwind
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(mkg@us.ibm.com). Dr. Gschwind is a research staff member
at the Watson Research Center. He was one of the originators
of the Cell Broadband Enginee architecture and the architect
of the SIMD-based SPU architecture. During the definition of
the SPU architecture, Dr. Gschwind developed the first
compiler targeting the Cell Broadband Engine architecture. He
is currently leading work on future high-performance and low-
power architectures focused on media, high-performance, and
general-purpose computing applications. Before embarking on
the Cell Broadband Engine project, Dr. Gschwind contributed
to several generations of binary translation architectures
exploiting instruction-level parallelism. He also contributed to
the modeling and evaluation of future micro-architectures for
IBM’s pSeriest and zSeriest architectures. Before joining IBM
in 1997, he was an Assistant Professor at the Department of
Computer Engineering, Technische Universität Wien in
Vienna, Austria. Dr. Gschwind received M.S. and Ph.D.
degrees in computer science from Technische Universität
Wien in 1991 and 1996, respectively. His research interests
include compiler and computer architecture and micro-
architecture, He is the author of more than 60 papers and
holds numerous patents on high-performance computer
architecture. Dr. Gschwind has been named an IBM Master
Inventor in recognition of his technical contributions and is a
Senior Member of the IEEE.?

Roch Archambault
IBM Toronto Lab, 8200 Warden Avenue, Markham, Ontario
L6G 1C7, Canada (archie@ca.ibm.com). Mr. Archambault is a
Senior Technical Staff Member at the IBM Toronto Lab in the
compiler development area. His most significant contributions
have been as an architect and technical lead in compiler-back-
end and optimization technologies for IBM C, Cþþ and
FORTRAN compiler products. He has actively participated in
high-performance-computing (HPC) customer-bid situations
and played an important role supporting IBM HPC marketing
teams. Mr. Archambault has extensive experience in inventing
and producing code in the form of prototypes or fully
implemented features and is well known for his in-depth
knowledge of compiler and optimization technologies.

Yaoqing Gao
IBM Toronto Lab, 8200 Warden Avenue, Markham, Ontario
L6G 1C7, Canada (ygao@ca.ibm.com). Dr. Gao is a senior
software engineer and is working primarily on compiler
optimization. His major interests are computer architecture
and compiler optimization. He received an IBM Outstanding
Technical Achievement Award in 2002 and IBM Invention
Achievement Awards in 2003 and 2004. Before joining IBM,
he conducted research on parallel and distributed processing
and programming languages at Tsinghua University, the
National University of Singapore, the University of Tokyo, and
the University of Alberta.

Roland Koo
IBM Software Solutions Toronto Lab, 8200 Warden Avenue,
Markham, Ontario L6G 1C7, Canada (rkoo@ca.ibm.com). Mr.
Koo is a Senior Manager in the compiler development area.
His primary responsibilities involve managing the technical
content and delivery of the Toronto Portable Optimizer (TPO),
a machine-independent high-level optimizer for IBM XL
C/Cþþ and XL Fortran compiler products. He also supports
performance initiatives for delivery of new architectures for
the pSeriest and zSeriest processors and research initiatives
in the area of compiler optimization for future processor
architectures. He joined IBM in 1989. His experience includes
compiler development, product planning, and project
management. He has a bachelor’s degree in computer science
from the University of Toronto. &

EICHENBERGER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200684

