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A persistent problem with personal digital
assistants (PDAs) is the difficulty of entering
data into the devices. The best current
solutions to the problem are small soft
keyboards and constrained handwriting
recognizers. Another solution is use of
speech. PDAs do not yet have the power to
support full speech dictation, but they do
have sufficient power to support voice
spelling. Voice-spelling problems include the
high acoustic confusability between certain
letters of the alphabet and the difficulty of
memorizing code words for the letters of the
alphabet. This paper describes several User-
Centered Design studies conducted to
develop a voice-spelling alphabet for PDAs
that overcomes these problems, including: (1)
the development of a model of user
performance to assess the potential of voice
spelling as an alternate input method for
PDAs, (2) Web-based surveys for determining
the words that people tend to associate with
the letters of the alphabet, (3) accuracy
experiments used to tune the final voice-
spelling alphabet, and (4) the development of
a graphical user interface for displaying code
words as a prompt when voice spelling is
used. The results of these studies suggest
that it would be worthwhile to develop a
working voice-spelling system for PDAs in the
future.

The primary goal of this research was to investigate
the feasibility of voice spelling as an input method

for personal digital assistants (PDAs). Voice spelling
is far from the leading edge of current speech re-
search and development at IBM, but we did not want
to dismiss its potential usefulness out of hand. These
studies are illustrative of some of the types of low-
cost User-Centered Design studies that practition-
ers can conduct before committing the resources to
build a working version of complex software. We
have not yet had an opportunity to evaluate a work-
ing version of a PDA-based voice-spelling system, so
it is possible to question the value of these prelim-
inary studies. In response to such a question, we hold
that conducting these types of studies acts as a filter
to stop development of systems that have no chance
to be competitive. Passing these filters does not as-
sure success, but not passing them is a strong indi-
cator of likely failure.

Note that even if research in the potential useful-
ness of voice spelling indicated likely competitive-
ness with the current input methods of stylized hand-
writing and soft-keyboard tapping, voice spelling
would not be able to replace existing methods. Those
persons who have achieved a high level of expertise
in current methods would be unlikely to switch meth-
ods. Also, there are many social situations in which
handwriting or soft-keyboard tapping would be ac-
ceptable but audible voice spelling would not.
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In contrast, a common complaint about current in-
put methods for PDAs is that they are quite slow. It
is this complaint that motivated our explorations into
the feasibility of voice spelling as an alternative (but
not replacement) input method.

Current PDA input rates are slow. In the last dec-
ade both the functionality and popularity of PDAs
have risen dramatically. These devices have many
advantages, including small size, low weight, and ex-
treme mobility. There are two primary methods of
data input for PDAs—tapping a small virtual (soft)
keyboard and using highly constrained handwriting
recognizers such as Grafitti** or Unistrokes**. The
current input speeds for these methods, however, are
substantially slower than the typical standard key-
board input rates achieved with a personal computer.

Most PDA users have experience with personal com-
puters and are familiar with the standard QWERTY
keyboard, with which experts can type data at rates
of approximately 55 words per minute (WPM)1,2 with
nearly perfect accuracy. As described below, research
has shown that the input rates for various handwrit-
ing recognition systems and virtual keyboards are
substantially slower.

Handwriting recognition. Paper-and-pencil hand-
printing speeds range from approximately 12 to 23
WPM, and cursive handwriting speeds are typically
in the 16 to 30 WPM3 range, so these, necessarily, pro-
vide estimates of the upper limits for this sort of text
entry. One experiment4 using two discrete printing
recognizers and a 9.5-inch tablet found a mean text
entry speed of 17.1 WPM. Participants in that study
received instructions to aim for both accuracy and
speed but to ignore mistakes as they entered short
phrases with no punctuation. The mean recognition
accuracy was 92 percent when constraining the rec-
ognizer to lowercase letters and 90 percent for up-
percase and lowercase letters.

MacKenzie and Zhang5 found high (95.8 percent)
recognition accuracy for experienced users of the
Graffiti handwriting recognition system when writ-
ing the letters of the alphabet but did not report the
entry speeds. MacKenzie et al.6 found that users aim-
ing for both speed and accuracy while ignoring mis-
takes could print 16.3 WPM (short phrases with no
punctuation) onto a tablet using the Microsoft char-
acter recognizer and a tablet interface, but with an
8.1 percent error rate.

For participants using a PDA rather than a tablet to
input addresses, simple URLs, and short notes (with
and without punctuation), Sears and Arora7 reported
a much slower text entry rate for the Graffiti recog-
nizer (WPM equal to 4.95 with 5 percent residual er-
rors). They found that participants using the Jot**
recognizer were able to produce 7.74 WPM with an
8 percent residual error rate. Participants in the ex-
periment received instruction to balance speed and
accuracy and consequently corrected some, but not
all, errors.

Fleetwood et al., 8 found that experts (at least three
months ownership of PDAs running Palm OS**) us-
ing Grafitti were able to enter uncorrected text (a
phone number and two short phrases without cap-
italization or punctuation) into a PDA at a rate of
20.69 WPM and that novices could enter the text at
a rate of 6.82 WPM. They, however, found a high er-
ror rate (9 percent), with no significant differences
in errors between the groups.

Each of the previously mentioned studies reported
entry rates for uncorrected text or text in which par-
ticipants made some but not all corrections. Kleid
and Bonto9 asked users to enter a rather complex
set of letters, numbers, and special characters (a per-
son’s contact information) using Graffiti on a 6-inch
(diagonal) screen. Participants were to attempt 100
percent accuracy and to use any editing tools that
they felt would be helpful. Under these conditions,
participants only entered 1.98 corrected words per
minute (CWPM).

Typing with soft keyboards. Research has shown sty-
lus tapping on a virtual QWERTY keyboard to be
slightly faster than handwriting recognition, but these
rates are still slow in comparison to standard typing
speeds. Kleid and Bonto9 had participants use a soft
keyboard to enter the previously described set of
complex text with 100 percent accuracy and observed
mean throughput rates of only 5.17 CWPM.

Zha and Sears10 reported that participants could in-
put text typical of an e-mail note on a PDA at a rate
of 12.62 WPM with an average residual accuracy of
96 percent using a soft keyboard. Participants in the
study were to balance speed and accuracy and typ-
ically corrected some, but not all, errors.

Fleetwood et al.8 measured the entry rate of uncor-
rected text into a PDA as 17.91 WPM for experts and
15.38 for novices, with a 2 percent error rate across
groups. The faster input speed observed in this study
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was most likely a result of the input stimuli. These
participants entered a set of three short phrases with
no punctuation or capitalization and no requirement
to switch between letters and digits.

Using a tablet, MacKenzie et al. 6 found that users
could type text (short phrases with no capitalization
or punctuation) at a rate of 22.9 WPM with 99 per-
cent accuracy. Participants tapping on a full-sized

paper QWERTY layout had text entry rates of 20.2
WPM.11 Participants received instructions to ignore
mistakes.

What is the target throughput? The aforementioned
research suggests faster rates of PDA throughput for
virtual keyboards than for handwriting recognizers.
The study conducted by Zha and Sears in 2001 pro-
vides the most realistic estimate of PDA throughput
with a soft keyboard. These researchers asked par-
ticipants to use a PDA to input a 45-word passage
characteristic of a short business e-mail message.
They found a mean input rate for this task of 12.62
WPM, with a 4 percent error rate. By accounting for
errors and assuming a fairly rapid correction speed,
it seems reasonable to set the benchmark for the true
throughput rate for soft keyboard input at 12 CWPM.

The value of 12 CWPM seems appropriate for novice
users of soft keyboards, but might not be correct for
experts. There is no existing study of expert use of
soft PDA keyboards with error correction during the
performance of realistic tasks, but MacKenzie and
Zhang12 found a 40 percent improvement in the
throughput of a soft tablet keyboard over an ex-
tended period of use. If this improvement is applied
to the novice rate of 12 CWPM, it seems reasonable
to set the estimated value for expert usage at 16.8
CWPM. Further, the input rate reported by Fleetwood
et al.8 (17.9 WPM) would probably be attenuated to
some degree had participants entered more repre-
sentative text and corrected all errors, thus provid-
ing additional support for 16.8 CWPM as a reason-
able estimate of expert performance.

The potential of voice input. In recent years, a new
method of entering data into a personal computer
has become available—speech dictation. Voice
throughput is not generally as fast as typing with a
full-sized QWERTY keyboard; however, it may offer
a faster throughput rate for handheld devices than
the currently available options. Lewis13 defined true
throughput as the number of correct words produced
per minute. In a study of two commercially available
speech dictation products, he found that participants
could achieve rates of 31.0 CWPM with multimodal
(manual and vocal) correction and 19.0 CWPM with
voice-only correction.

In the Lewis study,13 the average speaking rates dur-
ing dictation of prepared materials were just over
100 WPM, with multimodal correction speeds of 13.2
seconds per correction. Note, however, that the cor-
rection speeds Lewis measured were full-word cor-
rections, resulting from system misrecognitions of
user dictation. Correcting the misrecognition of a sin-
gle character would presumably be much quicker,
requiring a minimum of two acts (tapping the Back-
space key, followed by tapping the appropriate key
or saying the appropriate code; saying “backspace,”
then tapping or saying the appropriate key or code).
If a user made a correction inside of existing text,
an additional stylus tap would be required to place
the insertion point. At 12 WPM, participants have
demonstrated the ability to tap one key per second
on a soft keyboard. Multimodal (stylus plus voice)
correction could conceivably be even faster. There-
fore, corrections could be as fast as two seconds per
correction (a probably unachievable best case) and,
in the worst case, would probably be no slower than
20 seconds per correction. Because it would take
some time for other processes (detecting the error,
insertion point placement if necessary, etc.), five sec-
onds per correction seems to be a reasonable esti-
mate of the multimodal correction rate for voice
spelling with a PDA.

Users would benefit greatly if system designers could
embed voice recognition technology into the PDA
environment in a way that allowed throughput rates
similar to those observed by Lewis.13 Resource lim-
itations of these handheld devices, however, will
probably prevent the high levels of recognition ac-
curacy reached by desktop software; in fact, these
limitations will probably prevent the introduction of
speech dictation for the immediate future. In addi-
tion, multimodal correction on a PDA will include
the use of less efficient methods of input (soft key-

Voice throughput may offer
a faster throughput rate for

handheld devices than currently
available options.
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board or handwriting recognizer) than those used
with desktop systems.

It is reasonable to consider the efficiency of another
method of entering data by voice in a PDA environ-
ment: voice spelling. Because recognition of spoken
letters is notoriously poor, users would say codes for
each letter of the alphabet. For example, rather than
saying “d,” the user would say “dog.” It would be
possible to present a reminder display in voice-spell-
ing mode for users who have not memorized the
codes. Further, this display could accept user entries
by tapping the codes, thus allowing multimodal in-
put and correction.

Users would certainly be able to produce more un-
corrected words per minute via dictation than by
voice spelling. However, because of the limited gram-
mar set, voice spelling would probably achieve higher
levels of system recognition accuracy than dictation,
reducing the need for correction. The prior model-
ing in the Lewis study suggests that system recog-
nition accuracy is a more important determinant of
true throughput than speaking rate. By modeling true
throughput (CWPM) for voice spelling based on sys-
tem accuracy, time per correction, and speaking rate,
we can compare voice spelling to reported through-
put rates for other PDA input methods.

Phase 1: A model of voice spelling
performance

Before committing significant resources to the de-
velopment of a voice-spelling method for PDAs, we
decided to model the expected true throughput for
voice spelling based on the available data. This sec-
tion of the paper describes performance modeling
conducted to:

● Compare expert spelling throughput for 100- and
150-WPM speakers

● Compare novice spelling throughput for 100- and
150-WPM speakers

● Determine the points on these performance curves
that first match or beat the soft keyboard bench-
mark of 12 CWPM (for novices) and 16.8 CWPM (for
experts)

The results of this first investigation were critical be-
cause they would determine whether it would be rea-
sonable to continue development of a voice-spell-
ing method.

Method. We created four models of true through-
put for voice spelling by crossing the independent
variables of user (novice and expert) and speaking
rate (100 and 150 WPM). Each model contained a
range of system recognition accuracies from 90 per-
cent to 100 percent and a range of correction times
from 2 to 20 seconds. The levels of speaking rate,
correction speed, and recognition accuracy were con-
sistent with the range of values expected from ear-
lier studies of desktop dictation and the known dif-
ferences between voice spelling and dictation. The
models assumed that the recognized letters would
appear instantaneously on the PDA screen as the user
spoke. Although current technology would not al-
low this real-time processing for the large vocabu-
lary necessary for PDA dictation, a grammar for a
voice-spelling alphabet would be sufficiently small
for the system to display results with no detectable
latency.

The expert voice-spelling model assumed complete
automaticity in the assignment of the letters to their
respective codes (in other words, expert users would
need no processing time to match letters to their
codes or to retrieve them from short-term memory).
The novice models assumed a 230-ms eye movement
time to locate each letter in the passage on a spell-
ing vocabulary reminder display. The 230-ms eye
movement time is consistent with that given as the
typical or “middleman” time by Card et al.14

Expert speller model. The expert speller model al-
lowed estimation of the voice-spelling throughput
rates for a speaker for whom the spelling letter codes
have become automatic. Table 1 shows the expected
voice-spelling throughput for expert spellers, speak-
ing 150 WPM and 100 WPM at varying levels of rec-
ognition accuracy and varying correction speeds. The
bold numbers in the table indicate the point at which
voice spelling becomes competitive with novice soft
keyboard input (in other words, exceeds 12 CWPM).
The bold italic numbers indicate the point at which
voice spelling becomes competitive with the esti-
mated expert input speed of 16.8 CWPM.

Table 1 shows that at five seconds per correction,
system recognition accuracy would need to be about
90 percent for voice spelling to be a competitive al-
ternative to soft keyboard input (novice speed) for
fast-speaking expert spellers, and would need to be
about 96 percent to beat the expert stylus-tapping
speed. With 97 percent system accuracy, five seconds
per correction, and fairly fast speech, voice spelling
could be more than 1.5 times as productive as using
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a soft keyboard at the novice level of speed, and
about 1.2 times as productive as the estimated ex-
pert use of a soft keyboard.

For slower speakers, recognition accuracy would
have to be at least 94 percent to compete with nov-
ice stylus tapping and would have to be about 99 per-
cent to compete with expert stylus tapping. At 20 sec-
onds per correction, recognition accuracy would have
to be nearly perfect for voice spelling to be a com-
petitive alternative.

Novice speller model. The novice speller model al-
lows the estimation of throughput rates for speak-
ers who are just learning to voice spell and have not
yet memorized the letter codes. Table 2 shows the
expected throughputs for novice spellers at 150 WPM
and at 100 WPM with varying levels of system rec-
ognition accuracy and varying correction speeds. This
model assumes that the user will need to visually scan
a small display for each letter code before speaking
the code. We further assume that the user does not

need a visual reminder for period or space. The bold
numbers in the table indicate the point at which voice
spelling becomes competitive with soft keyboard in-
put.

The expected novice speller data show that if rec-
ognition accuracy is 94 percent or greater and cor-
rections take five seconds, voice spelling would im-
mediately be as efficient as tapping on a virtual
keyboard for fast speakers. Recognition accuracy
would need to be very high (98 percent or greater)
for this new method to instantly benefit slower speak-
ers. With 98 percent system accuracy, fast-speaking
novice spellers would see a benefit of nearly 33 per-
cent with voice spelling (15.79 CWPM for voice spell-
ing vs. 12 CWPM for soft keyboard entry).

Voice-spelling modeling conclusions. The results
of this modeling effort show that as long as the rec-
ognition accuracy of a voice-spelling system was 96
percent or greater, voice spelling could be as effi-
cient as any other input method currently available

Table 2 Model of expected throughput (CWPM) rates for novice spellers

Speaking
Rate

Correction
Speed

Recognition Accuracy in Percent

100 99 98 97 96 95 94 93 92 91 90

150 WPM 2 sec 18.47 17.87 17.30 16.76 16.26 15.79 15.34 14.92 14.52 14.14 13.79
5 sec 18.47 17.03 15.79 14.72 13.79 12.96 12.23 11.58 11.00 10.47 9.98

10 sec 18.47 15.79 13.79 12.23 11.00 9.98 9.14 8.43 7.83 7.30 6.84
15 sec 18.47 14.72 12.23 10.47 9.14 8.12 7.30 6.63 6.08 5.61 5.20
20 sec 18.47 13.79 11.00 9.14 7.83 6.84 6.08 5.46 4.96 4.55 4.20

100 WPM 2 sec 13.79 13.44 13.12 12.81 12.52 12.23 11.96 11.71 11.46 11.22 11.00
5 sec 13.79 12.96 12.23 11.58 11.00 10.47 9.98 9.55 9.14 8.77 8.43

10 sec 13.79 12.23 11.00 9.98 9.14 8.43 7.83 7.30 6.84 6.44 6.08
15 sec 13.79 11.58 9.98 8.77 7.83 7.06 6.44 5.91 5.46 5.08 4.75
20 sec 13.79 11.00 9.14 7.83 6.84 6.08 5.46 4.96 4.55 4.20 3.90

Table 1 Model of expected throughput (CWPM) rates for expert spellers

Speaking
Rate

Correction
Speed

Recognition Accuracy in Percent

100 99 98 97 96 95 94 93 92 91 90

150 WPM 2 sec 27.16 25.86 24.69 23.62 22.63 21.73 20.89 20.12 19.40 18.73 18.10
5 sec 27.16 24.14 21.73 19.75 18.10 16.71 15.52 14.48 13.58 12.78 12.07

10 sec 27.16 21.73 18.10 15.52 13.58 12.07 10.86 9.88 9.05 8.36 7.76
15 sec 27.16 19.75 15.52 12.78 10.86 9.45 8.36 7.49 6.79 6.21 5.72
20 sec 27.16 18.10 13.58 10.86 9.05 7.76 6.79 6.03 5.43 4.94 4.53

100 WPM 2 sec 18.10 17.52 16.97 16.46 15.97 15.52 15.09 14.68 14.29 13.93 13.58
5 sec 18.10 16.71 15.52 14.48 13.58 12.78 12.07 11.43 10.86 10.35 9.88

10 sec 18.10 15.52 13.58 12.07 10.86 9.88 9.05 8.36 7.76 7.24 6.79
15 sec 18.10 14.48 12.07 10.35 9.05 8.05 7.24 6.58 6.03 5.57 5.17
20 sec 18.10 13.58 10.86 9.05 7.76 6.79 6.03 5.43 4.94 4.53 4.18
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for modern PDAs. The model also suggests the im-
portance of minimizing learning time and process-
ing effort, thus allowing users to obtain expert status
after minimal exposure to the codes. In addition, con-
sideration of the components of the models indicates
that allowing novice users to scan a visual display
for quick access to letter codes is a critical aspect of
any voice-spelling input method. Without a display
for reference, it is clear that novice throughput
speeds would be unacceptably slow.

Phase 2: Web-based survey to collect
potential code words

Having determined the feasibility of voice spelling
as an input method for PDAs in Phase 1, we had to
cope with the constraints of presenting code words
on a small display. Where possible, we wanted the
displayed code word to be from the military alpha-
bet (more officially known as the International Civil
Aviation Organization code—the code that starts
with alpha and bravo and ends with Yankee and Zulu).
This design decision was based on the following con-
siderations:

● These codes have a development history that in-
cludes acoustic distinctiveness.

● Although few people in the general population
have memorized these code words, there is no
other set of reasonably well-known code words with
similar properties.

● There are some special populations (military, pi-
lots, police, emergency workers, ham radio oper-
ators, etc.) whose members have memorized the
code words.

● These code words have no disadvantage compared
to others because users who do not know them will
read them from a display.

Unfortunately, over 25 percent of the code words in
the military alphabet have a length that makes them
unsuitable for presentation in a matrix of code words
displayed on a PDA screen. If a proportional font is
used, words with five or fewer letters are generally
acceptable, as are words with six letters when one
of the letters is i (the narrowest letter). Specifically,
the words of questionable length were Charlie, fox-
trot, November, Quebec, uniform, whiskey, and Yankee.

The purpose of the research in this phase was to find
out what words come first to a person’s mind when
asked to produce a word for each letter of the al-
phabet. The goal was to find alternatives for the long
words listed above which would be short enough to

display on a PDA screen. In one experiment partic-
ipants provided words without constraint. In a sep-
arate experiment, participants provided first names
for each letter. The reason for constraining partic-
ipants in this way was to see if constraining responses
to names led to more consistent responses than un-
constrained production. If so, then the constrained
set would be more useful as a source for alternative
code words. If not, then the unconstrained set would
be more useful.

Method. This subsection describes the participants,
materials, and procedure used in this study.

Participants. The source for participants in each ex-
periment was a set of 400 IBM employees (800 em-
ployees in all, 400 for each experiment), selected at
random from an internal e-mail directory of all of
the IBM employees in the United States and sent an
e-mail invitation to participate. Of the employees in-
vited to participate, 103 (26 percent) responded to
the invitation for the first experiment (no con-
straints), and 120 (30 percent) responded to the in-
vitation for the second experiment (names for let-
ters).

Materials. We used the version of WebSurveyor**
from the IBM User-Centered Design toolset to con-
struct a Web-based form for the evaluation. The form
simply provided a space by each letter of the alpha-
bet (arranged vertically on the page in alphabetical
order), with instructions appropriate for the specific
experiment (either to provide any word for each let-
ter or to provide only first names).

Procedure. After receiving the e-mailed invitation,
participants clicked a link in the message that brought
up the WebSurveyor page containing the survey that
the participant was to take. The participants read
an introduction explaining the purpose of the sur-
vey, then completed and submitted the form.

Results. We conducted a number of comparisons to
assess the distributions of potential code words for
the unconstrained and constrained-to-names condi-
tions.15 The data suggested that the unconstrained
word distribution was preferable to the names dis-
tribution because, contrary to our expectation, the
overall consistency of unconstrained responses was
not poorer than the responses in the constrained-
to-names distribution. Furthermore, the occurrence
of cases in which participants were not able to pro-
vide a response for the names distribution was sig-
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nificantly greater than for the unconstrained distri-
bution (in which the problem never occurred).

Table 3 shows the top three code-word candidates
for each letter of the alphabet from the uncon-
strained distribution. Also included in the table are

the percentage of production for each word and the
cumulative percentage for the top three candidates
for each letter. Words marked with an asterisk are
members of the military alphabet. In 18 cases (69
percent), the code word from the military alphabet
was one of the top three candidates.

Table 3 Top three word code candidates for each letter of the alphabet (members of the military alphabet marked with an
asterisk)

Word Percent Cumulative
Percentage

Word Percent Cumulative
Percentage

Apple 67.0 67.0 Nancy 49.5 49.5
Alpha* 11.7 78.6 no 5.8 55.3
Able 4.9 83.5 nice 5.8 61.2

Boy 40.4 40.4 open 21.4 21.4
Baker 9.6 50.0 Oscar* 18.4 39.8
Bravo* 9.6 59.6 orange 12.6 52.4

Cat 38.5 38.5 Paul 23.5 23.5
Charlie* 37.5 76.0 peter 13.7 37.3
Charles 2.9 78.8 Papa* 5.9 43.1

Dog 66.0 66.0 queen 31.1 31.1
David 13.6 79.6 quick 11.7 42.7
Delta* 8.7 88.3 Quebec* 8.7 51.5

Elephant 21.7 21.7 Robert 17.5 17.5
Edward 14.2 35.8 rabbit 7.8 25.2
Echo* 12.3 48.1 Romeo* 6.8 32.0

Frank 34.0 34.0 Sam 37.5 37.5
Fox 21.4 55.3 snake 3.8 41.3
Foxtrot* 4.9 60.2 star 3.8 45.2

George 25.0 25.0 Tom 35.3 35.3
Girl 16.3 41.3 tango* 6.9 42.2
Good 9.6 51.0 Thomas 4.9 47.1

Help 13.6 13.6 under 20.0 20.0
Henry 13.6 27.2 uncle 14.7 34.7
Harry 11.7 38.8 ugly 8.0 42.7

Igloo 13.5 13.5 vertical 49.0 49.0
India* 12.5 26.0 victory 16.7 65.7
Indian 7.7 33.7 violin 4.9 70.6

Jack 16.5 16.5 water 9.0 9.0
Jump 11.7 28.2 William 9.0 18.0
John 9.7 37.9 whiskey* 8.0 26.0

King 19.6 19.6 x-ray* 64.6 64.6
Kite 16.7 36.3 xylophone 16.7 81.3
Kilo* 10.8 47.1 Xerox 11.5 92.7

Larry 22.3 22.3 yellow 45.5 45.5
Love 10.7 33.0 yes 13.1 58.6
Lima* 6.8 39.8 Yankee* 10.1 68.7

Mary 42.7 42.7 zebra 75.2 75.2
Mike* 8.7 51.5 zoo 5.9 81.2
Man 6.8 58.3 zero 5.0 86.1
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Using the data from Table 3, we selected the fol-
lowing replacements for the longer code words from
the military alphabet (with the selection percentage
for the new word appearing in parentheses): cat (38.5
percent) for Charlie; frank (34.0 percent) for foxtrot;
north (1.9 percent) for November; queen (33.0 per-
cent) for Quebec; under (20.0 percent) for uniform;
water (9.0 percent) for whiskey; yoyo (5.1 percent)
for Yankee.

For two letters (N and Y), none of the top three al-
ternatives from Table 3 were suitable because of a
combination of length and/or acoustic distinctive-
ness. Our goal for acoustic distinctiveness was to at-
tempt to create a set of words that differed in their
usage of the major vowel sounds. The top choice for
Y (yellow) was too long to fit in the planned matrix.
The top choice for N (Nancy) used an initial vowel
sound that already had representation in the set
(tango). The second choices (no and yes) were un-
suitable because of the likelihood of their being ac-
tive as commands during voice spelling. The vowel
for the third choice for N (nice) was already present
in the set (Mike). Therefore, we selected alternative
words of high acoustic distinctiveness—north and
yoyo.

Although Juliet was not too long, we had a concern
that its acoustic similarity to period might cause rec-
ognition problems, prompting us to seek an alter-
native to include in the initial test set (along with
Juliet). The vowels for the J words in Table 3 all had
prior representation in the code set, so we selected
Jane to represent J because it was the only word in
the set of letter codes with a long a vowel.

We made the trade-off to use code words that were
not one of the top three candidates as long as they
were acoustically distinct because users of the tar-
get system would have access to a display of the code
words, making it a better design decision to maxi-
mize accuracy rather than immediate recall. The
words selected for acoustic distinctiveness that were
not in the top three choices were all in the top ten
(yoyo was fifth, north was seventh, Jane was eighth).

Phase 3: Accuracy experiments

In this phase we conducted four experiments to de-
velop and tune speech recognition grammars for
voice spelling on devices with small displays. There
were two compelling reasons to conduct these ac-

curacy experiments, even though we had based the
majority of our spelling code words on the military
alphabet.

First, there were enough new words in the modified
voice-spelling alphabet to justify studies of its rec-
ognition accuracy. Second, a comprehensive voice-
spelling system requires the recognition of digits,
punctuation commands, and commands that control
the location of the insertion point. It is possible that
words selected for the modified voice-spelling alpha-
bet might be acoustically confusable with these com-
mands.

General method. The participants were four males
and four females (all adult native speakers of Amer-
ican English) who provided recordings of the test
items (8-kHz sampling rate, 16-bit dynamic range).
We used the IBM WebSphere* Voice Server SDK
Version 2.0 to decode the recorded scripts. The
Voice Server does not run on a PDA, but because it
is designed for recognition of telephony audio, it uses
audio recorded with a sampling rate of 8-kHz—the
same as standard PDA audio. This is considerably
lower than the 22-kHz sampling rate used for speech
recognition in standard desktop systems.

The recorded test script included the letters of the
alphabet, the custom voice-spelling alphabet, digits,
punctuation, and commands for controlling the lo-
cation of the insertion point. The test grammar (the
set of all items available to be recognized by the sys-
tem) included entries for all of these items, and also
included the long items from the standard military
alphabet so that users who had memorized the mil-
itary alphabet could use it (see Appendix A for this
initial grammar). The primary dependent measure
in these experiments was the simple command ac-
curacy for each item in the test script, organized by
item type.

Users provided recordings of all test phrases (let-
ters, code words, and other phrases) one phrase at
a time, recorded with a close-field noise-canceling
headset microphone (Andrea Electronics NC-61) in
a quiet office environment at a sampling rate of 8
kHz. The recordings were stored in a standard desk-
top computer as audio files.

Experiment 1. The full grammar in this experiment
involved all the letters of the alphabet.

Motivation. The purpose of the first experiment was
to investigate the accuracy of a voice-spelling gram-
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mar that included the letters of the alphabet, the first
version of a customized voice-spelling alphabet, dig-
its, punctuation, and commands for controlling the
location of the insertion point.

Results and discussion. The accuracy of the voice-
spelling alphabet was significantly (10.1 points)
higher than that of the letters of the alphabet (t(7) �
3.86, p � 0.01). The accuracy of the other items
(digits and punctuation/commands) was compara-
ble to the accuracy of the military-style alphabet. (For
a summary of the accuracy results of all four accu-
racy experiments, see Figure 1.)

The recognition accuracy for an item is the likeli-
hood of the system correctly recognizing the item
when a user speaks it. The conditional probability
is the likelihood that the item produced by the rec-
ognizer is the one that the user actually spoke. Some-
times the accuracy and conditional probability for
an item can be very different. For example, in Ex-
periment 1 the accuracy for the letter F was only 25
percent because the system frequently misrecognized
it as S. Its conditional probability, however, was 100
percent because whenever the system returned an
F, the spoken letter was F.

The conditional probabilities for items that the sys-
tem did not recognize correctly can be especially use-
ful for designing intelligent correction schemes for
voice-spelling systems.16 In all cases but one, the con-
ditional probability for the items in the new military-
style voice-spelling alphabet was 100 percent. The

exception was the word Jane, which the system pro-
duced in error once for A and once for G.

There were 17 problem test items, 10 of which were
letters. For most of the seven remaining problem
items, the majority of misrecognitions involved let-
ters. This indicated that overall recognition accuracy
might improve as a result of removing letters from
the grammar (see Experiment 2). The problem items
never misrecognized as letters were papa, period, and
dot. Papa and dot had fairly high rates of having noth-
ing returned from the recognizer. Period had fairly
high rates of low confidence responses.17

Experiment 2. The effect of removing the letters of
the alphabet was the focus of this experiment.

Motivation. The results of the first experiment pro-
vided a baseline for evaluating the relative accuracy
of a grammar that did not include the letters of the
alphabet. The purpose of Experiment 2 was to in-
vestigate the accuracy of a grammar that was the
same as that used in Experiment 1 except for the ab-
sence of the letters of the alphabet. Recognition ac-
curacy of the letters of the alphabet is notoriously
poor (as seen in Experiment 1), but unless remov-
ing these letters from the grammar resulted in im-
proved recognition for other items, then the best
strategy would be to leave them available for use. In
contrast, if removing them led to improved recog-
nition for other items, then the best strategy would
be their removal.

Results and discussion. The overall accuracy in Ex-
periment 2 was somewhat better than the compa-
rable accuracy in Experiment 1 (t(7) � 2.22, p �
0.06). The improvement in the accuracy of the items
in the military-style alphabet achieved marginal sta-
tistical significance (t(7) � 2.02, p � 0.08). The
most frequently occurring recognition problems in
Experiment 2 were for the items period (37.5 per-
cent accuracy), dot (62.5 percent), papa (75 percent),
five (75 percent), and plus (75 percent). The accu-
racy of all other test phrases was 87.5 percent or
higher.

It appeared that acoustic similarity between period
and Juliet lowered the recognition accuracy for pe-
riod because of substitutions of Juliet. The words dot
and papa continued to have a tendency to fail to ap-
pear. There was some slight confusion between five
and seven and plus and slash.

Experiment 3. This experiment is Phase 1 of tuning
the grammar.

Figure 1 Summary of results of recognition accuracy  
 experiments
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Motivation. Removing the letters of the alphabet from
the grammar appeared to improve recognition ac-
curacy, but some items continued to have relatively
low accuracy. The purpose of Experiment 3 was to
retest the grammar after tuning it (attempting to cor-
rect the remaining problems). There were no viable
alternatives for five or plus, so the grammar remained
the same for these items. The specific interventions
for Juliet, dot, and papa were:

● Removed Juliet from grammar because of its acous-
tic likelihood to be confused with period.

● Provided additional support for recognition of dot
in the context of Web URL and e-mail addresses.
Specifically, the phrases added to the grammar for
this purpose were dot com, dot org, dot net, dot cat,
dot Oscar, and dot north.

● Replaced papa with Paul (the top alternative for
the letter P from Phase 2) as the code word to dis-
play for P and added Paul to the grammar as a syn-
onym for papa, which was still in the grammar.

Results and discussion. The overall accuracy for Ex-
periment 3 improved by one point relative to Exper-
iment 2, but this change was not statistically signif-
icant (t(7) � 1.71, p � 0.13). Compared to the
results of Experiment 1, the difference was statisti-
cally significant (t(7) � 2.94, p � 0.02). The change
to the grammar fixed the papa problem, but period
and, to a lesser extent, dot continued to have prob-
lems. Delta produced the always active command help
in two instances, indicating that the voice-spelling
alphabet should include an alternate word for D (but
there was no need to remove delta from the overall
grammar).

The removal of Juliet from the grammar created
some potential for confusion by expert spellers who
had prior experience with the military alphabet. A
user who said Juliet for J might be surprised at the
result, but would have the display of code words avail-
able to discover the alternate code word. Leaving
Juliet in the grammar would have had the more ad-
verse consequence of interfering with the recogni-
tion of a frequently used punctuation mark (period),
with no recourse for the user because there is no al-
ternative code word available for period. Thus, the
decision to remove Juliet from the grammar seemed
to be the best way to address the design trade-off.

Experiment 4. This experiment is Phase 2 of tuning
the grammar.

Motivation. In the final tuning step, we added cus-
tom pronunciations for the words that had continu-
ing recognition problems (period and dot). We also
replaced delta with dog in the custom voice-spelling
alphabet and added dog to the grammar set to ad-
dress the acoustic potential for confusion of delta and
help.

Results and discussion. The overall accuracy for Ex-
periment 4 improved by 0.7 percent relative to Ex-
periment 3, but this change was not statistically sig-
nificant (t(7) � 1.0, p � 0.35). Compared to the
results of Experiment 1, the difference in overall ac-
curacy was statistically significant (t(7) � 2.97, p �
0.02). Compared to Experiment 1, the increase in
accuracy for the custom voice-spelling alphabet was
statistically significant (t(7) � 2.35, p � 0.05). The
changes to the grammar fixed the period and delta
problems, and reduced, to some extent, the dot prob-
lem. See Appendix B for the final version of the
grammar.

Summary of recognition results. Figure 1 shows the
pattern of recognition accuracy results across the four
experiments. For the final grammar, the overall rec-
ognition accuracy was 97.5 percent, with 97.6 per-
cent for the custom voice-spelling alphabet, 97.5 per-
cent for digits, and 97.4 percent for punctuation and
insertion-point location commands.

Phase 4: Final code word matrix for a PDA
voice-spelling interface

On the basis of the experiments conducted in Phase
3, the final grammar did not include the names of
the letters of the alphabet, but included all code
words from the custom voice-spelling and military
alphabets (except for Juliet), punctuation, and cur-
sor movement commands. The code words used in
the final voice-spelling alphabet were short enough
to fit on a small display; therefore, users would not
have to memorize them. These words had very high
recognition accuracies and high conditional proba-
bilities, giving them the potential for a very effective
voice-spelling system. Figure 2 illustrates one way
to arrange the new custom voice-spelling alphabet
for presentation on a small-screen device.

Conclusions

The studies described in this paper illustrate several
types of User-Centered Design activities. The focus
of Phase 1 was a set of user models for voice spell-
ing, based on published human performance data.
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Phase 2 employed an IBM User-Centered Design
tool, WebSurveyor, to gather data on users’ associ-
ations of words with the letters of the alphabet. Phase
3 was a series of designed experiments conducted to
tune and finalize both the words to present to users
in the graphical user interface of a PDA and the un-
derlying recognition grammar for a comprehensive
voice-spelling system. Phase 4 was the development
of a specific user interface to display in such a voice-
spelling system.

The modeling conducted in Phase 1 indicated that
the accuracy of a voice-spelling system had to exceed
96 percent for fast-talking expert voice spellers to
be competitive with expert key tapping (16.8 CWPM)
on a soft keyboard (assuming five seconds per cor-
rection). For slower-speaking experts, the accuracy
criterion was 99 percent. The minimum criterion was
94 percent accuracy for faster-speaking novices to
surpass the expected novice tapping rate of 12 CWPM
(assuming five seconds per correction). For slower-
speaking novices, the criterion was 98 percent.

The overall accuracy from the final experiment in
Phase 3 was 97.5 percent—exceeding the above cri-
teria for fast speakers, but not for slow speakers. In
practice the voice-spelling accuracy could be some-
what lower. During Phase 3, users provided the
acoustic data through discrete speaking methods, re-
corded with a close-field noise-canceling headset mi-
crophone in a quiet office environment. In actual use,
however, it is likely that users will speak continuously,
running one letter into the next, increasing the like-
lihood of misrecognition errors. It is possible to use
close-field noise-canceling microphones with most
PDAs, but most built-in microphones are of lower
quality, intended for use as far-field microphones
with little or no ability to cancel noise. This situa-
tion suggests that successfully entering data into a
PDA by voice spelling is likely to require the use of

an auxiliary headset microphone, at least for the near
future. Fortunately, the cost of these microphones
has fallen considerably over the past few years. The
potential for increased PDA data entry speeds (about
19.75 CWPM, assuming a fast-speaking expert with
five seconds per correction compared to 16.8 CWPM
for expert entry with a soft keyboard) could justify
the purchase of such a microphone for some users,
or provide an incentive for PDA manufacturers to in-
clude this type of microphone with their products.

The information gained from this series of studies
suggests that voice spelling could, in some cases, be
a viable alternative to current PDA input methods.
As with current PDA input methods, certain circum-
stances would make voice spelling unacceptable. For
example, high-noise environments (an airport), in-
appropriate social settings (a library), and certain in-
dividual differences (a foreign-language accent or
speech dysfluencies) would prevent the success of
such an input method. However, there are other cir-
cumstances in which voice spelling would be a de-
sirable alterative. This is especially true for users who
are comfortable speaking at a fairly rapid rate and
for users with motor disabilities that make tapping
or handwriting recognition difficult or impossible.
Further, voice spelling would be possible when walk-
ing or when one hand is being used for another ac-
tivity, whereas using other input methods would be
difficult or impossible in these situations.

Appendix A: The initial voice-spelling
grammar

#JSGF V1.0;
grammar voicespell;
//Copyright (c) 2002 IBM Corp. All Rights Reserved.
�a� � a�alpha;
�b� � b�bravo;
�c� � c�charlie�cat;
�d� � d�delta;
�e� � e�echo;
�f� � f�foxtrot�frank;
�g� � g�golf;
�h� � h�hotel;
�i� � i�india;
�j� � j�juliet�jane;
�k� � k�kilo;
�l� � l�lima;
�m� � m�mike;
�n� � n�november�north;
�o� � o�oscar;
�p� � p�papa;
�q� � q�quebec�queen;
�r� � r�romeo;
�s� � s�sierra;
�t� � t�tango;
�u� � u�uniform�under;

Figure 2 Final code word matrix

Alpha Bravo Cat Dog Echo Frank

Golf Hotel India Jane Kilo Lima

Mike North Oscar Paul Queen Romeo

Sierra Tango Under Victor Water X-ray

Yoyo Zulu          Space       “End Spell”
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�v� � v�victor;
�w� � w�water�whiskey;
�x� � x�x ray;
�y� � y�yankee�yoyo;
�z� � z�zulu;
�upper� � capital�uppercase;
�capslock� � caps lock�capital�uppercase�lowercase;
�lower� � lowercase;
�capping� � �upper�

��lower�
��capslock�
;

�lowerletter� � [�lower�]�a�
�[�lower�]�b�
�[�lower�]�c�
�[�lower�]�d�
�[�lower�]�e�
�[�lower�]�f�
�[�lower�]�g�
�[�lower�]�h�
�[�lower�]�i�
�[�lower�]�j�
�[�lower�]�k�
�[�lower�]�l�
�[�lower�]�m�
�[�lower�]�n�
�[�lower�]�o�
�[�lower�]�p�
�[�lower�]�q�
�[�lower�]�r�
�[�lower�]�s�
�[�lower�]�t�
�[�lower�]�u�
�[�lower�]�v�
�[�lower�]�w�
�[�lower�]�x�
�[�lower�]�y�
�[�lower�]�z�
;

�upperletter� � �upper��a�
��upper��b�
��upper��c�
��upper��d�
��upper��e�
��upper��f�
��upper��g�
��upper��h�
��upper��i�
��upper��j�
��upper��k�
��upper��l�
��upper��m�
��upper��n�
��upper��o�
��upper��p�
��upper��q�
��upper��r�
��upper��s�
��upper��t�
��upper��u�
��upper��v�
��upper��w�
��upper��x�
��upper��y�
��upper��z�

;
�digit� � zero

�one
�two
�three
�four
�five
�six
�seven
�eight
�nine
;

�num2-10� � two
�three
�four
�five
�six
�seven
�eight
�nine
�ten
;

�punctuation� � tab
�back tab
�enter
�space
�back space
�period
�dot
�comma
�question mark
�exclamation point
�at [sign]
�dash�hyphen
�slash
�back slash
�colon
�semicolon
�apostrophe
�quote
�pound
�percent
�ampersand
�asterisk
�open paren
�close paren
�greater than
�less than
�plus
�minus
�equals
�delete
;

�word� � (�lowerletter���upperletter���punctuation���digit��
�capping�)*;
�move� � move(right�left)�num2-10�(characters�words)

�move(right�left)(one�a)(character�word)
�move(up�down)�num2-10�lines
�move(up�down)(one�a)line
�(next�previous)field
;

public�spell� � �word�
��move�
;
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Appendix B: The final voice-spelling
grammar

#JSGF V1.0;
grammar voicespell4;
//Copyright (c) 2002 IBM Corp. All Rights Reserved.
�a� � alpha;
�b� � bravo;
�c� � charlie�cat;
�d� � delta�dog;
�e� � echo;
�f� � foxtrot�frank;
�g� � golf;
�h� � hotel;
�i� � india;
�j� � jane;
�k� � kilo;
�l� � lima;
�m� � mike;
�n� � november�north;
�o� � oscar;
�p� � paul�papa;
�q� � quebec�queen;
�r� � romeo;
�s� � sierra;
�t� � tango;
�u� � uniform�under;
�v� � victor;
�w� � water�whiskey;
�x� � x ray;
�y� � yankee�yoyo;
�z� � zulu;
�upper� � capital�uppercase;
�capslock� � caps lock;
�lower� � lowercase;
�capping� � �upper�

��lower�
��capslock�
;

�lowerletter� � [�lower�]�a�
�[�lower�]�b�
�[�lower�]�c�
�[�lower�]�d�
�[�lower�]�e�
�[�lower�]�f�
�[�lower�]�g�
�[�lower�]�h�
�[�lower�]�i�
�[�lower�]�j�
�[�lower�]�k�
�[�lower�]�l�
�[�lower�]�m�
�[�lower�]�n�
�[�lower�]�o�
�[�lower�]�p�
�[�lower�]�q�
�[�lower�]�r�
�[�lower�]�s�
�[�lower�]�t�
�[�lower�]�u�
�[�lower�]�v�
�[�lower�]�w�
�[�lower�]�x�
�[�lower�]�y�
�[�lower�]�z�

;
�upperletter� � �upper��a�

��upper��b�
��upper��c�
��upper��d�
��upper��e�
��upper��f�
��upper��g�
��upper��h�
��upper��i�
��upper��j�
��upper��k�
��upper��l�
��upper��m�
��upper��n�
��upper��o�
��upper��p�
��upper��q�
��upper��r�
��upper��s�
��upper��t�
��upper��u�
��upper��v�
��upper��w�
��upper��x�
��upper��y�
��upper��z�
;

�digit� � zero
�one
�two
�three
�four
�five
�six
�seven
�eight
�nine
;

�num2-10� � two
�three
�four
�five
�six
�seven
�eight
�nine
�ten
;

�punctuation� � tab
�back tab
�enter
�space
�back space
�period
�dot
��specialdot�
�comma
�question mark
�exclamation point
�at [sign]
�dash�hyphen
�slash
�back slash
�colon
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�semicolon
�apostrophe
�quote
�pound
�percent
�ampersand
�asterisk
�open paren
�close paren
�greater than
�less than
�plus
�minus
�equals
�delete
;

�specialdot� � dot
�(water dot)
�(dot(com�edu�net�org�cat�charlie�oscar�echo�north))
;

�word� � (�lowerletter���upperletter���punctuation���digit��
�capping�)*;
�move� � move(right�left)�num2-10�(characters�words)

�move(right�left)(one�a)(character�word)
�move(up�down)�num2-10�lines
�move(up�down)(one�a)line
�(next�previous)field
;

public�spell� � �word�
��move�
;

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Palm Inc., Xerox Cor-
poration, Communication Intelligence Corporation, or WebSur-
veyor Corporation.
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