
CICS and Enterprise
JavaBeans

by A. Bainbridge
J. Colgrave
A. Colyer
G. Normington

IBM is supporting Enterprise JavaBeansTM (EJB)
across its application server products. Together
with related JavaTM technologies, EJB provides a
standard programming model and set of services
across major server platforms. This paper
presents an overview of the EJB architecture and
describes the technical strategy and design
approach for the EJB capability that is being
delivered in the latest release of the Customer
Information Control System (CICS®). It explores
why CICS customers want to use enterprise Java
technology, identifies some critical success
factors for the CICS support of EJB, and explains
its architecture in terms of a portable EJB
container executing within the existing CICS run-
time infrastructure, focusing on aspects such as
transaction management, Java virtual machine
reuse, and workload management. Application
development tooling is then discussed, together
with the strategy for exploiting tools such as
VisualAge® for Java. Finally, the paper considers
future work and challenges for CICS in this area.

Over the last few years, the IBM Customer In-
formation Control System (CICS*) product1 has

been transformed. Significant investments have been
made to develop it as a high-end server for e-busi-
ness applications, while maintaining and developing
its capabilities as the world’s leading transaction pro-
cessing monitor for customers’ mission-critical ap-
plications. It has been estimated that, worldwide,
over 30 billion transactions are executed each day
on CICS. Some CICS installations support peak work-
loads well in excess of a thousand transactions per
second; some customers execute over 20 million
transactions per day.

Java** technology is now a key element of the CICS
strategy, and two of the principal new features in the

last release of the product (CICS Transaction Server
for OS/390* [Operating System/390] Version 1.3) are
support for writing CICS transactions in the Java lan-
guage and for using Common Object Request Bro-
ker Architecture (CORBA**) Internet Inter-Orb Pro-
tocol (IIOP)2 to communicate with client applications.
These two capabilities provide the foundation for the
next major step in the evolution of the product: the
addition of support for Enterprise JavaBeans**.3

Application servers and Enterprise
JavaBeans

Application servers have existed for a long time. For
example, CICS is an application server that has been
in the marketplace for over 30 years. The term “ap-
plication server” can be loosely defined as an exe-
cution environment together with a set of run-time ser-
vices that are made available to applications written
to take advantage of those facilities. Application serv-
ers are distinct from, and usually run “on top of,”
operating systems. They offer a specialized environ-
ment with desirable characteristics for the applica-
tion types that they support. One of the principal
reasons for the existence of separate middleware ap-
plication servers is that they provide levels of per-
formance, scalability, and robustness that are beyond
those achievable with a simple operating system envi-
ronment, enabling many hundreds of thousands of
concurrent users to be supported with acceptable

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BAINBRIDGE ET AL. 0018-8670/01/$5.00 © 2001 IBM IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200146

performance and cost. Application servers typically
provide a managed environment in which resources
such as files, databases, and queues are readied be-
fore any application requests are received, thus min-
imizing response time, and they support specialized
programming models, such as the pseudoconversa-
tional transaction model, which minimize contention
for resources. With CICS, the execution environment
may span multiple operating system address spaces
and even multiple operating system images.

Recently, we have seen the emergence of the “Web
application server” category. Web application serv-
ers typically provide HTTP (HyperText Transfer Pro-
tocol) handling, connection management, request
dispatching, support for servlets4 and JavaServer
Pages** (JSP**),5 and other facilities related to Web
application serving. Another type of application
server is a “component transaction server.” A com-
ponent transaction server, in common with transac-
tional servers such as CICS, provides ACID6 (atomic,
consistent, isolated, durable) transaction properties for
the applications that run within it. Those applications
are typically composed of components. A component
can be thought of as an application building block
that adheres to the conventions of a given compo-
nent model. By following a component model, com-
ponents can interoperate, take advantage of services
defined as part of the component model (for exam-
ple, life-cycle management and transaction manage-
ment) and be deployed on any server that complies
with the component model. The piece of the appli-
cation server that implements the component model
is often referred to as a container.

Component-based application servers provide en-
hanced application development capabilities and
greater reuse of the resulting applications (and ap-
plication parts) than noncomponent-based servers.
The Enterprise JavaBeans (EJB) component model
is a cross-industry collaboration coordinated by Sun
Microsystems, Inc. under a joint development model
known as the Java Community Process. It is sup-
ported by a wide range of products, including mem-
bers of IBM’s WebSphere* product family. The
COM1 component model was developed by Mi-
crosoft Corporation and is supported by the “Mi-
crosoft Transaction Server.”7 A third component
model, the CORBA Component Model8 is under de-
velopment by the Object Management Group (OMG).
Other component models may emerge in the future.

The EJB component model provides a vendor and
platform-neutral standard for server-side compo-

nents written in the Java programming language. A
piece of business logic or function can be written in
the Java language and encapsulated to become a re-
usable object. These components are known as “en-
terprise beans.” The model allows a developer to
focus solely on writing the business logic of an en-
terprise bean. The way in which the bean interacts
with its environment—for transaction services, se-
curity services, persistence management, and so
on—is separated from the business logic and instead
specified via a “deployment descriptor.” For instance,
a deployment descriptor can specify the transaction
management style to be applied to a given method
of a bean. Deployment data are typically captured
by tooling provided by an EJB vendor in conjunction
with its server run time. For example, IBM allows pro-
duction of enterprise beans and specification of de-
ployment attributes from within the VisualAge* for
Java9 development environment. Deployment data
can be changed independently of the business logic,
and it is the responsibility of the EJB container to
honor the contract specified by the deployment de-
scriptor.

The key elements of deployment data to be spec-
ified for an enterprise bean include:

● The type of the bean (entity or session)
● The transaction management to be applied when

the methods of the bean are invoked (run under
existing transaction, start a new transaction, never
run under a transaction, and so on)

● Whether the container is responsible for the per-
sistence of the state data of the bean or whether
the bean will undertake that responsibility itself

● Access control for the methods of the bean

The way in which an EJB container honors the con-
tract specified in the deployment descriptor is via in-
terposition. That is to say, the container “interpos-
es” (comes between) a client and the enterprise bean
logic to ensure that the specified run-time proper-
ties (such as the form of transaction management to
be used) are maintained. A developer writing an en-
terprise bean defines its remote interface—the set
of business methods that the bean will service, and
its home interface—the means to create, find, and
remove instances of the bean. He or she then writes
the business logic in an enterprise bean that imple-
ments the remote interface, following the require-
ments of the EJB component model.

When an enterprise bean is deployed into an EJB con-
tainer, the deployment tools provided by the con-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 47

tainer vendor generate additional classes (a “home”
class and a remote or “EJBObject” class) that im-
plement the home and remote interfaces defined by
the bean developer. A client of an enterprise bean
does not have direct access to that bean but is forced
to access it through the generated classes. The gen-
erated classes work in conjunction with the container
to perform processing before and after delegating
to the business method provided by the enterprise
bean itself. This pre- and post-invoke processing is
used to bracket the bean call with the necessary trans-
action, security, and persistence management.

This is a big step forward from the precomponent
world where a developer had to learn and master
the various application programming interfaces
(APIs) needed to interact with run-time services (such
as the CORBA services APIs) and explicitly call those
services from their application.

Figure 1 depicts the relationship between an EJB
server (an application server supporting the EJB com-
ponent model—for instance, CICS), its EJB container,
and client access to enterprise beans deployed within
those containers.

Clients typically access enterprise beans using Re-
mote Method Invocation/Internet Inter-Orb Proto-
col (RMI/IIOP). Java RMI is the programming model;
IIOP is the communications protocol. IIOP is an im-

plementation of the General Inter-Orb Protocol
(GIOP) based on Transmission Control Protocol/
Internet Protocol (TCP/IP). Both IIOP and GIOP are
standard CORBA protocols. Clients may also access
enterprise beans using the CORBA IDL (interface def-
inition language) programming model and IIOP.

To create, find, or remove an enterprise bean, the
client looks up a remote reference to the home ob-
ject for that bean in the naming service (using JNDI,10

the Java Naming and Directory Interface**). The
client can then invoke the create, find, and remove
methods on the EJB home, and these are delegated
to corresponding ejbCreate, ejbFind, and ejbRemove
methods on the enterprise bean, which contain the
supporting business logic.

If an enterprise bean is created or found, a remote
reference to the EJBObject is returned to the cli-
ent. The client invokes methods on the EJBObject,
which are in turn delegated to the business imple-
mentations provided by the enterprise bean.

Types of enterprise beans. There are two types of
enterprise beans: session beans and entity beans.

Session beans are for use by a single client and en-
able a pseudoconversational interaction style (ap-
plication data are not locked while control is in the
client or is passing between the client and the serv-

Figure 1 Container interposition on client requests

JAVA CLIENT RMI/IIOP

CREATE
FIND
REMOVE

BUSINESS
METHODS

ejbCreate
ejbFind
ejbRemove

BUSINESS METHODS

EJB
HOME

EJB CONTAINER

EJB SERVER

EJB
INSTANCE

EJBOBJECT

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200148

er). A stateful session bean contains state particular
to a given client, whereas a stateless session bean has
no client-specific state. Session beans are not recov-
erable.

Entity beans are shared by multiple clients and pro-
vide an object rendering of application data. Entity
beans are indexed by a primary key and are anal-
ogous to records in a database. Entity bean instances
are recoverable. A bean-managed persistence entity
bean manages its own state, whereas a container-
managed persistence entity bean has its state man-
aged by the EJB container.

An enterprise Java programming model. Enterprise
beans are a key component of an enterprise Java pro-
gramming model. Sun Microsystems, Inc. defines a
platform called J2EE** (Java 2 Platform, Enterprise
Edition)11 that combines several technologies for de-
veloping enterprise applications in Java. The J2EE
platform encompasses technologies such as Enter-
prise JavaBeans, Java Transaction Service,12 Java
Message Service,13 servlets, and JSP. IBM is a key sup-
porter and provider of many of these technologies
and continues to support them in its products.

Of special interest is the construction of solutions
providing Web access to enterprise applications. This
gives rise to a multitier architecture as depicted in
Figure 2.

In this model, thin clients, such as Web browsers or
pervasive computing devices, interact via HTTP with
the Web application server. The Web application

server provides a container for servlets and JSP pages.
Servlets and JSP pages call out to enterprise beans
within a component transaction server to execute
business logic. The aim of this architecture is to sep-
arate model, view, and controller (MVC) into indi-
vidual components providing better maintainability
and serviceability. The MVC approach to building ap-
plications splits responsibility into three areas: a
model encapsulates the data and business logic, while
one or more views provide renderings of those data
(for example, a graphical user interface view, a tex-
tual user interface view, or a Web-based view). Con-
trollers coordinate between users and the model:
user actions are translated by the controller into re-
quests against the model, and any subsequent change
in the model state is reflected by the views.

In our case, the servlet is the controller. It parses an
incoming HTTP request and extracts the request data.
The servlet processes the request by invoking meth-
ods on one or more enterprise beans. The enterprise
beans are the model; they contain the business logic
and reside within the component transaction server
so that they run in a secure transactional environ-
ment. Enterprise beans within the component trans-
action server interact with back-end data servers to
fulfill the request. Results returned by the enterprise
bean(s) may be encapsulated as JavaBeans**.14 The
servlet then passes control to a JSP (the view). The
JSP constructs a response (e.g., formats an HTML [Hy-
perText Markup Language] page, or XML [Exten-
sible Markup Language]15 document) for sending
back to the client, extracting any dynamic param-
eters from JavaBeans passed to it by the servlet.

Figure 2 Enterprise Java multitier Web application serving configuration

ENTERPRISE BEANSSERVLETS, JSP PAGESBROWSER

COMPONENT
TRANSACTION
SERVER

THIN CLIENT WEB
APPLICATION
SERVER

DATA

DATA
JDBC

JDBC

HTTP IIOP

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 49

Graphic designers and Web editors can work on pre-
sentation (JSP pages) independent of code to man-
age business logic (enterprise beans) or protocol
(servlets). Likewise, programmers do not have to lit-
ter servlet code with presentation logic. Those who
understand the business can focus on business logic
without being concerned as to how it is accessed or
presented.

A complete enterprise Java solution often involves
multiple products combining to offer the full range
of Java services. For example, the Web application
server could be WebSphere Standard Edition run-
ning on the Windows NT**, AIX* (Advanced Inter-
active Executive), or z/OS (the operating system for
the IBM z Series servers) platforms; the component
transaction server could be CICS or WebSphere En-
terprise Edition running on z/OS.

CICS strategy for Enterprise JavaBeans

In developing the technical strategy and design ap-
proach for EJB support in CICS, we have worked with
a number of customers and have made extensive use
of the “user-centered design” methodology. We have
often asked customers who are keen to use enter-
prise beans in CICS what makes this an attractive
proposition. Existing CICS customers see two prin-
cipal motivations, both involving the operational re-
use of existing CICS applications and data: (1) Web
access to existing applications, and (2) representa-
tion of applications and data as components to en-
able rapid and easy assembly of new business func-
tions.

In both cases, the most pressing requirement is to
provide access to existing applications or data, or
both, from enterprise beans (a process sometimes
known as “wrappering”).

Of course, there are other motivations regarded by
our customers as important for using enterprise Java
technology, including:

1. Cross-platform exploitation of new technology.
Many of our customers are already starting to
take advantage of enterprise Java technologies.
Among the reasons most frequently cited are: pro-
ductivity gains, openness of the technology, and
anticipated availability of third-party components.
Such customers typically have a range of software
platforms, indicating a strong requirement for EJB
server implementations that are consistent and
that have common tooling. Particularly when used

as part of Web-based solutions, the workload of
such applications may be unpredictable, signif-
icant, and growing rapidly. Key requirements here
include scalability and manageability.

2. Evolutionary development of existing systems.
The vast majority of customers who will use the
CICS support for EJB will do so in conjunction with
existing applications, data, and information tech-
nology infrastructure. New EJB-based applications
will have to coexist and interoperate with those ap-
plications. In many cases, enterprise beans that
are deployed in CICS will need to make use of
CICS-specific services. And, of course, the require-
ment for good performance will be no different
than for any other CICS transaction.

3. Availability of skills. Another factor that is increas-
ingly important to many customers is the ability
to attract and retain highly skilled application de-
velopers. Being able to use a leading-edge tech-
nology such as EJB should make it much easier
to maintain and grow an application development
community that is keen to work on a platform such
as CICS. A key requirement is to make the pro-
cess of developing applications for CICS more at-
tractive through the use of workstation-based
common tooling.

4. High-end growth. Customers who have developed
applications on Windows NT, AIX, or other
UNIX** platforms are increasingly deciding to
move the application to z/OS. This movement may
be to improve scalability and performance, to re-
duce the number of systems being managed, or
simply to roll out across an enterprise an appli-
cation that was piloted on the other platform.
Such migration to the mainframe computer may
increase with EJB-based applications. Given the
EJB aim of “write once, run anywhere”**, an
EJB-based application could be prototyped, and
perhaps piloted, on one platform, but deployed,
for enterprise-wide use, on a high-end server such
as CICS or WebSphere Enterprise Edition. The
critical requirement in such cases is for portabil-
ity of enterprise beans.

In considering how best to address these diverse re-
quirements, we have identified five critical success
factors for CICS EJB support:

1. Maintaining the CICS value proposition. That is
to say, the qualities of service traditionally asso-
ciated with CICS and associated products (robust-
ness, data integrity, reliability, etc.) must continue
to apply to the CICS EJB server capabilities. The

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200150

EJB support must capitalize, and build, upon the
existing strengths of the product.

2. Exploitation of existing CICS resources. Given that
the most immediate requirement appears to be
for the “wrappering” of existing applications and
data, we need to provide effective and efficient
mechanisms for achieving this result.

3. Fully compliant support for “any” session bean.
It should be possible to deploy standard session
beans developed by using any application devel-
opment tool within CICS. (Although it will cer-
tainly be possible for enterprise beans to make
direct use of CICS services via the Java CICS
[JCICS]16 classes, they are not required to do so.)

4. Performance and scalability consistent with CICS
customer expectations. The key to achieving sat-
isfactory performance will be to minimize the
overhead (particularly in initialization) associated
with Java transactions. Although the cost of ex-
ecuting Java transactions will inevitably remain
somewhat greater than for languages such as
COBOL, our aim is to reduce the overhead to a
small proportion of the total cost of the transac-
tion. In any event, the additional overhead will
be more than offset by the improved development
efficiency of building new applications in the Java
language. In addition to the performance of in-
dividual transactions, we must also ensure that
the scalability of the CICS EJB environment is not
constrained in any way.

5. Integration within existing operational infrastruc-
tures. The deployment and management of en-
terprise beans within the CICS environment should
not require a separate systems management in-
frastructure; in other words, it must be possible
to achieve this using current CICS System Man-
ager tools.

These success factors present some interesting tech-
nical challenges, including:

● Effective integration of the transaction and recov-
ery management styles of EJB and CICS

● Isolation of distinct transaction invocations, with-
out incurring significant Java initialization costs

● Management of enterprise bean workload within
the CICS and MVS* (multiple virtual storage) sys-
tem structure

● Enabling the use of application development tools
that are not specific to CICS and that typically run
on a different platform

If, as we believe will be the case, we are successful
in addressing these challenges, CICS and other mem-

bers of the WebSphere product family will offer the
most robust and scalable platform in existence for
the deployment of enterprise beans.

Enterprise JavaBeans in CICS. In the first release
of its implementation of the EJB architecture, CICS
transaction services for z/OS will provide first-class,
fully integrated support for session beans. Recall that
session beans are for use by a single client and sup-
port a pseudoconversational programming style;
pseudoconversational transactions are the core of
the CICS business and, hence, session beans are an
excellent and natural fit in the CICS environment. A
session bean deployed within CICS may be completely
new and use Java Database Connectivity (JDBC**)17

to access data from a relational database. Alterna-
tively, the session bean may access data via entity
beans deployed in other members of the WebSphere
family such as WebSphere Enterprise Edition.

As noted, we expect that one of the most common
uses of session beans within CICS, at least to begin
with, will be to provide client access to existing CICS
transactions, programs, and resources via IIOP. These
session beans may use the JCICS API already provided
within CICS to execute CICS transactions, link to ex-
isting CICS programs, and access resources managed
by CICS such as transient data queues and VSAM (vir-
tual storage access method) files. It is expected that
access to CICS resources will be modeled by depen-
dent objects behind session beans. A dependent ob-
ject is one whose life cycle is fully managed by its
enclosing bean and which cannot be accessed except
through that bean.

The next section describes how the EJB architecture
relates to the CICS programming model. We then out-
line the elements of the CICS EJB design that will en-
able our goals to be achieved.

Architecture for EJB support on CICS

In describing the approach that has been taken for
the design and implementation of support for the
EJB architecture in CICS, it is worth restating two of
the key technical challenges, namely,

● Effective integration of the EJB infrastructure with
existing facilities of CICS

● Achieving satisfactory levels of performance and
scalability

The first of these points requires that the integra-
tion of an EJB container into the CICS run-time in-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 51

frastructure be done in such a way as to exploit the
functions of the existing CICS domains (such as re-
covery management); the CICS qualities of service
would not be maintained simply by running a “stand-
alone” EJB implementation within a CICS region. Sim-
ilarly, in order to achieve the desired level of scal-
ability (and transaction throughput), it is necessary
to be able to distribute and replicate the elements
of the CICS EJB server support across multiple re-
gions, taking advantage of CICS and MVS workload

management techniques, in a way that does not re-
strict the ability to balance a client’s requests across
a whole system image or sysplex. And the perfor-
mance of individual transactions (as opposed to the
overall transaction rate and throughput that will be
achievable) will depend, among other factors, upon
reducing the initialization costs typically associated
with Java programs.

About two years ago, we made the decision to reuse
the WebSphere Advanced Edition (WSAE) EJB con-
tainer as a basis for the EJB server support in CICS.
But, for the reasons outlined above, the approach
we have taken is to provide the services required by
mapping onto and integrating the container with CICS
facilities. So, although the effort to implement sup-
port for enterprise beans in CICS has obviously re-
quired significant additions to the CICS run-time in-
frastructure, we have also achieved significant reuse
of pre-existing CICS function (as well as reusing the
WSAE container itself). By doing so, we hope to
achieve a level of robustness that would have been
almost impossible to attain as quickly had we cho-
sen to implement a brand new set of services to un-
derpin the container.

The architecture for supporting EJB within CICS is
based on the notion of an “IIOP server.” It is the
CICS IIOP server that provides the run-time environ-
ment in which the container and, in turn, deployed
enterprise beans execute and from which they may
interact with other CICS services and resources. A
key element of the IIOP server design is the provi-

sion of a transaction service, based on the OMG Ob-
ject Transaction Service (OTS) specification.18 When
an enterprise bean that is deployed within CICS is
operating as part of an OTS transaction, it will ex-
ecute within a CICS unit of work that is coordinated
by the OTS transaction. The transaction service com-
ponent of the CICS IIOP server implements the OTS
protocols that provide transactional interoperabil-
ity with other OTS-based enterprise Java servers, and
interfaces within the CICS recovery manager. It is via
the CICS recovery manager that transactional coor-
dination of local resource managers (such as DB2*,
DATABASE 2*) and other systems that do not sup-
port OTS interoperability (but which do implement
another distributed two-phase commit protocol, such
as that of LU 6.2) is achieved.

Although some components of the CICS IIOP server
are written in a language called PL/X, the bulk of the
run-time environment, including the container itself,
is written in the Java language. And, of course, so
are enterprise beans themselves. So the performance
of Java code executing in CICS is of paramount im-
portance in meeting the aim of achieving “satisfac-
tory” performance for enterprise beans executing in
CICS. Moreover, since Java virtual machine (Jvm) in-
stances may accumulate side-effects from applica-
tions, we are providing mechanisms that allow Jvm
instances to be reused across multiple CICS transac-
tions, with the option of “resetting” (without fully
reinitializing) the Jvm after each use.

One of the principal mechanisms that will enable the
combined aims of performance and integrity to be
met is what we refer to as the “persistent reusable”
Java virtual machine. This version of the Jvm has
been optimized for the execution of high-volume,
short-running transactions on the S/390* platform; it
enables the bulk of Java initialization costs to be
avoided (or, to be more precise, amortized across
multiple transactions) by reusing Jvm instances for
multiple transaction invocations. From the perspec-
tive of an application, a persistent reusable Jvm will
appear no different from any other short-lived Jvm
instance, but system objects and classes will be main-
tained (and reset, when necessary) across multiple
invocations. The lifetime of application objects, how-
ever, will correspond to that of the relevant trans-
action, and the application heap will be reset after
each invocation, thereby maintaining isolation be-
tween transactions.

The design of the CICS IIOP server, together with the
transaction service that operates (in conjunction with

We made the decision
to reuse the WebSphere

Advanced Edition EJB
container as a basis for the

EJB server support in CICS.

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200152

the container) within the IIOP server infrastructure,
the persistent reusable Jvm, and the approach that has
been taken to managing the workload associated with
the execution of enterprise beans within CICS, are de-
scribed in greater detail in the following subsections.

CICS IIOP server design. CICS supports enterprise
beans using an IIOP server constructed from trans-
action instances known as request receivers and re-
quest processors that communicate with each other
via request streams, as shown in Figure 3. When a
client uses an enterprise bean in CICS, the client ob-
ject request broker (ORB) forms a TCP/IP connection
to a port in CICS. The TCP/IP connection may be work-
load-balanced across a set of cloned listener regions
(prior to any workload balancing that is performed
within the CICS environment), but ultimately the con-
nection is made to a particular listener region, and
a request receiver is assigned to the connection. The
client’s method requests are converted into IIOP mes-
sages by the client ORB and flow across the connec-
tion to CICS.

The request receiver forwards each message to a re-
quest processor via a request stream. The processor
instantiates the object identified by the request in
memory as a servant, calls the servant to process the
method, and sends a reply to the client via the re-
quest stream, the receiver, and the TCP/IP connec-
tion. The client ORB converts the IIOP reply message
into a return from the method request. The receiver
and processor are active and communicate via the
request stream, which is essentially passive. Note that
the receiver may detach when it is not waiting for

a reply from a request processor. It issues an asyn-
chronous socket receive before detaching that results
in a notification and an equivalent receiver being at-
tached when data arrive at the socket. The IIOP server
also supports stateless CORBA objects introduced
in CICS Transaction Server Version 1.3. Stateless
CORBA objects are similar to stateless session beans,
but lack standardization.

Internally, CICS is composed of encapsulated com-
ponents known as “domains.” Enterprise JavaBeans
support is provided principally by six domains: En-
terprise Java, Object Transaction Service, Jvm Man-
agement, IIOP, Request Streams, and Sockets. Al-
though domains are not implemented in Java, some
of them have related Java components: EJB con-
tainer, transaction service, and ORB. There are also
Java components to support JNDI, JDBC, and SQLJ
(Structured Query Language for Java).19

Request streams. The request streams domain is re-
sponsible for transmission of opaque requests and
replies between transaction instances running in pos-
sibly distinct regions. The request streams domain
provides workload balancing and attach processing
of a transaction instance that receives requests from
a particular request stream. Workload balancing oc-
curs when a request stream is created and is typi-
cally based on workload and availability data relat-
ing to a cloned set of application owning regions
(AORs). Once a request stream has been created,
multiple requests may be sent to the corresponding
request processor without further workload balanc-
ing. The request stream and its processor terminate

Figure 3 CICS IIOP server

REQUEST STREAM

LOGICAL IIOP SERVER

IIOP CONNECTION

OTS TRANSACTION BALANCINGCONNECTION BALANCING

LISTENER REGION AOR

REQUEST
PROCESSOR

REQUEST
RECEIVER

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 53

as soon as possible (i.e., at the end of a method re-
quest or of an OTS transaction; see below) so that
there is the maximum opportunity for workload bal-
ancing.

An existing request stream may be used from the
creating receiver or from another receiver or pro-
cessor possibly on another region. “Inbound” request
streams support intra-region and inter-region trans-
port mechanisms, the latter being based on CICS mul-
tiregion operation (MRO) protocols. “Outbound” re-
quest streams forward requests unmodified to a
remote TCP/IP socket and receive replies to such out-
bound requests. Both inbound and outbound request
streams support an asynchronous form of receive.
The caller listens for receipt of data and is notified
when data arrive. The caller may wait until it is no-
tified and then receive data, or it may cancel listen-
ing. The Request Streams domain was separated
from the IIOP domain because it is IIOP-neutral and
is intended to be suitable for use by components that
support other protocols. So far the request proces-
sor (shown in Figure 4) has been treated as a black
box. Now we look inside.

The request processor is concerned with creating
“servant” objects and processing method requests

on them. A servant object is an in-memory repre-
sentation of a remote object. The request processor
has three components that manage servants: the con-
tainer, which manages enterprise bean servants, the
transaction service, which manages its own servants,
and the ORB, which, apart from its other responsi-
bilities, manages stateless CORBA object servants.
The request processor sends and receives requests
via the ORB, which understands the IIOP protocol.
The ORB converts request messages into method in-
vocations on a servant and converts method results
into reply messages. The ORB also converts method
requests on stubs into request messages to a remote
server and converts reply messages into results from
method requests.

The ORB processes a request by constructing a ser-
vant, if necessary, and invoking the servant to pro-
cess the method specified in the request. Servant
managers isolate the ORB from the complexities of
managing servants; they are created using the ORB
during initialization of the request processor and are
called by the ORB to construct servants correspond-
ing to object keys. Various types of servant are sup-
ported: enterprise beans and their homes, stateless
CORBA objects, and transaction service objects
(which have state but are nontransactional).

Figure 4 Request processor

• • •TRANSACTION SERVICE SECURITY JDBC

REQUEST STREAM

CICS TRANSPORT

EJB CONTAINER

CICS RUN TIME

REQUEST PROCESSOR

ORB

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200154

EJB container. The EJB container provides the run-
time environment for servants of enterprise beans
and their homes. The container is initialized by the
ORB during request processor initialization and cre-
ates a servant manager using the ORB. When the ORB
calls the servant manager of the container to con-
struct a servant for a given object key, the container
constructs the appropriate environment around the
servant. The servant manager of the container re-
turns the servant to the ORB. When the ORB invokes
the servant to process a method request, the servant
can use the environment that was established ear-
lier.

The EJB container used within the CICS solution is
shared with other members of the WebSphere fam-
ily. This sharing provides a consistent interpretation
of the EJB specification across the WebSphere prod-
ucts and facilitates common application development
tooling and systems management for enterprise Java
technologies. Figure 5 shows how the IBM Web-
Sphere family EJB common container fits into the
CICS environment.

At the left side of the figure is the (systems) man-
agement interface exported by the container. This in-

terface is used by CICS Resource Definition On-line
commands to install and discard deployed Java ar-
chive (JAR) files from the container, and to publish
and retract the homes of enterprise beans installed
in the container. It is also used to initialize and ter-
minate an EJB container instance within the request
processor.

The deployed-code interface is the interface provided
to the WebSphere EJB deployment utilities. These
utilities are tools such as VisualAge for Java and the
WebSphere Application Assembly Tool. The home
and remote (EJBObject) classes generated by these
tools use the deployed-code interface to perform the
required container interposition on enterprise bean
method invocations.

The container-server interface is the means by which
the container obtains the run-time services it needs.
For each service that the container requires, a Java
interface is defined, and the server hosting the con-
tainer (in this case CICS) provides a collaborator that
implements the interface. The collaborators map
from the Java service definition to the underlying
CICS facilities. The core collaborators are:

Figure 5 EJB container integration in CICS

• INSTALL
• DISCARD
• PUBLISH
• RETRACT
• INITIATE
• TERMINATE

COLLABORATORS

SESSION
BEAN

STORE

BEAN META-
DATA
STORE

SECURITY

RACF

TRANSACTION
CONTROL

JTS

OBJECT
ADAPTER

ORB

RAS

CICS
RAS

DEBUG

OLT

KEY

JCICS

CICS
FACILITIES

IBM WEBSPHERE FAMILY COMMON
EJB CONTAINER

DEPLOYED CODE INTERFACEMGMT
I/F

CONTAINER-SERVER INTERFACE

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 55

● The Bean Meta-data Store, which provides a per-
sistent store for bean meta-data (deployment at-
tributes) for beans installed within the container.
The Bean Meta-data Store is maintained in shared
storage inside the Enterprise Java domain.

● The security collaborator, which provides security
role checking and access to user principal infor-
mation. The security collaborator will, in a later
release, be backed by definitions stored in the Re-
source Access Control Facility (RACF*).

● The transaction control collaborator, which per-
forms transaction management interposition for
bean- and container-managed transactions. The
transaction control collaborator uses the transac-
tion service to achieve its end.

● The object adapter/servant manager collaborator,
which provides the interface to the ORB.

● The RAS (reliability, availability, serviceability) col-
laborator, which maps tracing, logging, and dump
information issued by the container into the ex-
isting CICS RAS facilities.

● The debug collaborator, which provides object-
level trace (OLT) capabilities for remote debugging.

● The stateful session bean key generating collab-
orator, which creates server-unique primary keys
for stateful session beans.

● The session bean store, which holds passivated
stateful session beans in a shared CICS file.

Outbound IIOP. A method running in a request pro-
cessor may call remote objects such as enterprise
beans, OTS transaction coordinators, or other types
of CORBA objects. The processor passes such requests
via an “outbound” request stream to a TCP/IP con-
nection to a remote server.

The ORB (in collaboration with the IIOP domain) de-
termines whether the method request can be pro-
cessed locally and, if not, whether it could be pro-
cessed by the current IIOP server. If the method
request is to be processed locally, the object is in-
voked locally similarly to the way in which its calling
object was invoked. If the method request is to be
processed by the current IIOP server, the same mech-
anisms employed in the receiver are used to deter-
mine the target request stream and, in the case of
a new request stream, the target AOR. If the target
AOR is not the calling AOR and is not connected by
MRO to the calling AOR, the method request must
use an outbound TCP/IP connection.

There is a separation of concerns. The processor
deals with inbound and outbound request streams
that in turn deal with transport mechanisms such as

MRO and TCP/IP. In particular circumstances, an out-
bound method request may be processed in the call-
ing request processor. This is possible when the called
object belongs to the same CICS IIOP server as the
calling object and when the caller’s unit of work does
not need to be “suspended” and “resumed” during
the call since this is not supported within a single
CICS transaction instance.

Support for OTS transactions. As we mentioned pre-
viously, an important part of the IIOP server is the
transaction service, which is based on the protocols
of the OTS specification. Combining the transaction
service with the underlying transaction and recov-
ery management facilities of CICS has been one of
the key challenges in achieving an effective integra-
tion of the EJB infrastructure with CICS itself. The
basic approach we have taken is that when a method
of an enterprise bean executes in CICS as part of an
OTS transaction, it executes with a CICS unit of work
that is coordinated by the OTS transaction. Whether
a method of an enterprise bean should be run under
control of an OTS transaction is determined by the
“transaction attribute” in the deployment descrip-
tor; depending upon the setting of this attribute, the
method may run under the caller’s OTS transaction
(if there is one), under a new OTS transaction that
is created specifically for the duration of the method,
or under no OTS transaction at all.

When a method is run under control of an OTS trans-
action, the transaction service has to interact with
a number of other components. As is the case in any
interoperable EJB server, the transaction service uses
the OTS protocols to communicate with any other
OTS-based systems that may be involved in the trans-
action. To control the two-phase commitment pro-
cessing of any non-OTS resources that may be in-
volved in the transaction, the transaction service
makes use of the CICS recovery manager to drive the
necessary two-phase commit flows. (For example, if
the enterprise bean were to invoke a CICS transac-
tion that communicated with a remote system using
the LU 6.2 protocol, resources on that remote system
would be committed or rolled back in this way, via
the CICS recovery manager.) A further consideration
is the possibility that enterprise beans may make use
of JDBC services to access a local DB2 system. The
implementation of JDBC services within the CICS IIOP
server makes use of the CICS resource manager in-
terface to provide access to DB2 via what is known
as the CICS DB2 task-related user exit; the resource
manager interface also handles registration with the
CICS recovery manager, so that when the transaction

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200156

service commits or rolls back a transaction, the re-
covery manager will drive the appropriate action
through to the local DB2 system (as well as to any
remote non-OTS systems).

One advantage of reusing the CICS infrastructure in
this way is that the fundamental two-phase commit-
ment and resynchronization mechanisms are not de-
pendent upon the Jvm. The use of a Jvm may be ter-
minated when it is not required (for example, during
an extended wait for the resolution of a transaction,
such as may occur after a communications failure to
a superior coordinator system). This allows resources
such as Jvms and open task control blocks to be used
by other transactions, thereby improving the overall
throughput of the system.

The “persistent reusable” Java virtual machine. An-
other important aspect of the design of the CICS IIOP
server is the way in which the efficiency of Jvm op-
eration is improved. As we have already outlined,
a significant improvement in performance has been
realized by exploiting the “persistent reusable” Jvm
technology. (This enhancement of the Jvm is, in fact,
not specific to CICS. It is being developed as a stan-
dard part of the Java Development Kit [JDK**] that
is shipped with the z/OS platform, although we have
worked closely with the IBM Centre for Java Tech-
nology on its design and implementation.)

Typically, one of the most significant execution-time
costs of running Java programs is the initialization
of Jvm instances. To avoid this cost being incurred
each time a request processor is started, Jvms are
serially reused across multiple request processors.
So, when a request processor is initialized, a pre-ex-
isting Jvm is acquired from a pool; the Jvm then re-
mains allocated to the request processor until the
request processor terminates. To prevent interfer-
ence between application instances and ensure the
integrity of the data, a distinction is made between the
system and middleware heaps (the main areas of stor-
age allocated to system and middleware components,
which contain the system objects and classes that
need to be long-lived) and the application heap (the
main area of storage allocated for objects relating
to a particular application instance). It is this Jvm
technology that enables request processors to seri-
ally reuse the long-lived contents of the system and
middleware heaps by resetting them after use and
reinitializing them before subsequent reuse; this
avoids the significantly greater cost of initializing a
Jvm instance from scratch each time it is used. By
contrast, the application heap may be discarded on

termination of a request processor. A further reduc-
tion in initialization cost has been achieved by mak-
ing part of the ORB, EJB container, and transaction
service state reusable across multiple request pro-
cessor instances. Reuse is achieved by allowing these
parts to be held in the middleware heap. Addition-
ally, we hope to optimize the garbage collection
mechanisms of the persistent reusable Jvm by vir-
tue of the fact that there is a clean separation of short-
lived application objects from long-lived system ob-
jects.

Workload management. Workload may be balanced
across listeners and AORs to achieve performance ob-
jectives such as response time. This is achieved in
cooperation with the MVS workload manager (WLM),
as shown in Figure 6. The MVS WLM gathers work-
load and availability data for each of the CICS regions
comprising a logical EJB server, which may be used
to balance workload across the regions of the log-
ical server.

Incoming TCP/IP connections to the logical server may
be balanced using either a “dynamic” domain name
server, an IP router, or a combination of the two.
Each connection may be directed to an appropriate
request receiver, based on the workload and avail-
ability of the listener regions.

Once a connection has been made, requests from
listeners to AORs can be workload-balanced using the
CICS distributed routing exit. The routing exit
implementation supplied with CICS, as part of the
CICSPlex System Manager (CPSM) component, uses
the workload and availability data, collected by CPSM
from the MVS WLM, to select an AOR.

Tooling for CICS EJB servers

A significant benefit of the introduction of support
for Enterprise JavaBeans into CICS is that it enables
a whole new set of software development tools and
practices to be used to write software for the CICS
environment. This is not to say that the bulk of the
work to support Enterprise JavaBeans in CICS has
been in the area of tools. With respect to applica-
tion development, our primary goal has been to min-
imize the CICS-specific tooling that was required, and
where CICS-specific tooling was required, to integrate
it as seamlessly as possible with the relevant IBM ap-
plication development tools product.

There are a number of areas (for example, the ca-
pabilities for debugging enterprise beans deployed

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 57

in CICS) in which we will deliver improved function-
ality in subsequent releases, so this section describes
both the longer-term strategy for EJB-based appli-
cation development for CICS and also elements of
the tooling that will be shipped for use with the first
release of the CICS EJB support.

One of the main reasons for basing the support for
EJB in CICS on the WebSphere common container
was to allow the IBM WebSphere tooling to be used
to develop enterprise beans that can be deployed,
without change, into CICS. Session beans that use
JDBC to access data in DB2 can be developed and
tested in the WebSphere Test Environment before
being deployed into a CICS region for final testing
on z/OS. Nevertheless, it is not necessary to use Web-
Sphere tools to develop enterprise beans for CICS;
CICS supports the stand-alone tools that can be used
with WebSphere Advanced Edition, and these tools
can be integrated with third-party development en-
vironments.

In addition to supporting “generic” session beans
without the developer having to be aware that CICS
may be the ultimate deployment platform, CICS-
specific session beans can be developed using the
JCICS API, either directly or via tools, and the spe-
cific support for CICS will be integrated into the IBM
tools. An extra challenge is to minimize the impact
of the fact that, typically, enterprise beans and ap-
plications will be developed on a workstation plat-
form, not z/OS, and therefore support for remote ap-
plication development is a necessary part of the CICS
application development strategy.

We can divide the tooling support into three pieces,
targeted at different aspects of the overall applica-
tion development process: development, deploy-
ment, and debugging. The following subsections de-
scribe the support in each of these areas.

Development. As mentioned above, the main focus
for development tools is the set of tools products that

Figure 6 Workload management

WORKLOAD DATA
REQUESTS
ROUTING EXIT CALLS

SYSPLEX

LOGICAL EJB SERVER

CLIENT
TCP/IP
CONNECTION
WLM

SHARED
DATA

MVS WORKLOAD MANAGER

DISTRIBUTED ROUTING EXIT

LISTENER AOR

AOR

AOR

LISTENER

LISTENER

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200158

support WebSphere Advanced Edition, but stand-
alone tools are also supported for those developers
who prefer to work with a text editor and the JDK
or software developer kit, and for those independent
software vendors (ISVs) who intend to produce
CICS EJB server-based application development so-
lutions. WebSphere extensions to the standard En-
terprise JavaBeans programming model, such as ac-
cess beans and associations, are fully supported. The
same deployed Java archive (JAR) file that is sup-
ported by WebSphere Advanced Edition is sup-
ported and, indeed, required by CICS. The same
WebSphere-specific generated code (stubs, ties, im-
plementation classes for the home and remote in-
terfaces, etc.) is used in the CICS environment.

The following subsections describe the programming
models that we expect developers to use, and de-
scribe in more detail the tool or API support avail-
able. The programming model that we envisage be-
ing used with the support for EJB in CICS is that
session beans will be developed that access resources,
either data or CICS programs. The most common
types of data we expect to be accessed are held in
DB2 and in VSAM. The most common types of pro-
grams we expect to be accessed are CICS COBOL pro-
grams. The support for accessing each of these re-
source types is described in the subsections.

Accessing data in DB2. CICS will support the new Type
2 JDBC driver provided by DB2 for z/OS, including SQLJ
support. It is possible to write code that uses the
JDBC API explicitly that runs both on z/OS and on
workstation platforms. In addition, we will support
the core (nonvisual) beans provided as part of the
data access beans feature with VisualAge for Java.
These data access beans can be used programmat-
ically in any environment, but there are SmartGuides
supplied with VisualAge for Java that make them
even easier to use. There are three such beans:

1. Select Bean—The Select Bean executes SQL que-
ries and returns a modifiable result set, similar to
the JDBC 2.0 RowSet. This result set can be used
to insert, update, or delete a row in the database
without further explicit SQL calls.

2. Modify Bean—The Modify Bean executes SQL
INSERT, UPDATE, or DELETE statements without
first running a query.

3. ProcedureCall Bean—The ProcedureCall Bean
executes a stored procedure and returns one or
more modifiable result sets.

The data access beans use a common SQL syntax so
that they work both on z/OS and on the workstation
platforms. An SQL Assist SmartGuide is provided
that allows for the visual composition of an SQL state-
ment.

Accessing data in VSAM. The last release of CICS
(CICS Transaction Server Version 1.3) includes the
JCICS API, which provides a Java version of a subset
of the CICS server API, including File Control. This
support will, in a future release, be extended by pro-
viding full support for the Java Record Framework
in the File Control part of the JCICS API. In the cur-
rent release, the application developer is responsi-
ble for invoking the conversion to and from byte ar-
rays provided by the code generated by the Java
Record Framework tools that are supplied with Vi-
sualAge for Java Enterprise Edition. The JCICS File
Control API will be enhanced so that the beans or
classes generated by the Java Record Framework
tools can be passed directly to the JCICS API, and CICS
will manage the conversion to or from byte arrays.

Accessing CICS programs. We expect that many of
the initial enterprise beans that are deployed into
CICS will wrap existing programs, typically COBOL
programs. There is support in the JCICS API to in-
voke a CICS program, which could be in any program-
ming language supported by CICS, including support
for the Java Record Framework to automate the con-
version of data from Java programs to, typically,
COBOL.

The relevant IBM tools are the Common Connector
Framework (CCF) and the Enterprise Access Builder
(EAB) for Transactions, both of which are delivered
as part of VisualAge for Java Enterprise Edition. The
CCF provides a common programming model for
users of connectors and common infrastructure for
connector providers. Over time, it is anticipated that
the IBM CICS connectors will be migrated to the J2EE
Connector Architecture.20

The EAB provides tooling that simplifies the use of
connectors and provides support for higher-level
functions such as composition of commands and au-
tomatic generation of session beans. The fundamen-
tal EAB concept is that of a command. A command
encapsulates a single interaction with a system. A
command consists of a connector, the input of the
interaction and the output of the interaction. The
definition of the connector consists of the Connec-
tionSpec, which defines the system to be connected
to and the means of communication, and the Inter-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 59

actionSpec, which defines the operation to be per-
formed in the host system. The input and output can
be records generated by the Java Record Framework
and tools or other connector-specific objects. Each
input/output bean or object can have an associated
mapper that maps properties of the generated bean
or object to properties of the application object. Typ-
ically, records are used, and these have an interface
very similar to the COBOL copybook from which they
were generated, for example. A mapper might be
used when the new domain object model being de-
fined is significantly different from the existing COBOL
data definition.

Once a command has been defined, other EAB tools
can be used to aggregate a set of commands into a
navigator, which represents a more complex inter-
action with a host system, including sequences of in-
teractions, branches, loops, etc. These navigators
appear as commands and so can themselves be com-
posed into other navigators, etc. Another option is
to generate a session bean from a set of commands
or navigators. Each method of the session bean in-
vokes a command or navigator. For maximum port-
ability of code that uses the External Call Interface

(ECI) connector, CICS will support code running in-
side CICS that uses the ECI connector, although a
small number of changes to the ConnectionSpec or
the InteractionSpec, or both, may be necessary. This
support uses the CICS Transaction Gateway Java
classes and reimplements the native code layer to
issue an EXEC CICS LINK call instead of an ECI call.
Figure 7 shows the run-time architecture of a ses-
sion bean using this “local” connector to wrap a CICS
program.

The use of a command to encapsulate the invoca-
tion of a CICS program from a session bean makes
it easy to begin to develop session beans using Web-
Sphere Advanced Edition by initially using the
CICS ECI connector in conjunction with the CICS
Transaction Gateway and then migrating the com-
mands to the new CICS connector that can be used
in the CICS server environment. The session beans
should not need to change to run in CICS itself. The
record produced from the COBOL copybook, for ex-
ample, will need to be regenerated for MVS as part
of the migration of the command, but the COBOL
code itself would not need to be parsed again.

Figure 7 Use of a connector by a session bean

EJB
CONTEXTEJB

CONTAINER

EJB
REMOTE
INTERFACE

 CCF
 INFRASTRUCTURE
 INTERFACES

- CONNECTION MANAGEMENT
- SESSION SENSITIVITY
- COORDINATION
- SECURITY
- RAS SERVICES

CCF/EAB
CLIENT
INTERFACES

CICS LINK

NEW
CONNECTOR

SESSION
BEAN

CICS
PROGRAM

CCF
RUN TIME

CLIENT
OF EJB
SESSION
BEAN

EJB
CONTAINER

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200160

Deployment. There are many different interpreta-
tions of the word deployment. For the purposes de-
scribed here, deployment means taking a deployed
JAR file produced by the tools and producing the nec-
essary CICS resource definitions to make the beans
in the JAR file available. For session beans, this de-
ployed JAR file will contain:

1. The classes or interfaces defined by the developer
for each enterprise bean, and any associated
classes

2. The WebSphere-specific generated classes
3. The information defined by the EJB 1.1 XML De-

ployment Descriptor
4. WebSphere-specific meta-data, if appropriate
5. CICS-specific meta-data, if appropriate

There are two different styles of deployment into
CICS: unit test deployment, that is, deployment by
an application developer into a unit test region, ide-
ally directly from the application development envi-
ronment; and production deployment, by which we
mean deployment by (for example) a system pro-
grammer into a system test or production region.

The goals for unit test deployment are to minimize
the CICS-specific information that needs to be sup-
plied and to make it as easy to deploy enterprise
beans into CICS as it is to deploy them into the Web-
Sphere Test Environment. Whenever possible, de-
faults will be supplied by the server components of
the unit test deployment tools. The only CICS-specific
information that can be supplied by the application
developer is the CICS transaction identifier to be used
when a method request is dispatched. This might be
important where an existing CICS program is being
called, or even replaced, by an enterprise bean
method.

The basic approach for unit test deployment is to
provide a client/server system, with the client run-
ning in the application development environment
and the server running partly on a Web server and
partly inside CICS on z/OS. The client will take a de-
ployed JAR file, as described above, and then ship
this JAR file to the server using HTTP. The server will
allow a CICS system programmer to influence the de-
ployment of the JAR file by the user and will allow
defaults to be supplied when the application pro-
grammer has chosen not to supply the information,
which could be the default case when generic beans
are being deployed into CICS. The necessary CICS re-
source definitions are produced automatically by a
set of enterprise beans running in the target CICS sys-

tem. The JAR file is transferred to the target CICS
system using File Transfer Protocol (FTP).

Figure 8 shows the approach that we anticipate us-
ing with the first release of the CICS support for En-
terprise JavaBeans.

In the medium term, our approach for remote de-
ployment is to use WebDAV.21 WebDAV (Web-
based Distributed Authoring and Versioning) is an
open standard, defined by the Internet Engineering
Task Force (IETF) Request for Comment (RFC) 2518.
WebDAV defines extensions to the HTTP 1.1 pro-
tocol to support a kind of distributed repository sys-
tem using Web technology.

Figure 9 shows the WebDAV-based solution that we
aim to support in future releases. With support for
WebDAV, any client that supports WebDAV will
be able to “publish” a deployed JAR file to CICS trans-
parently.

Regardless of the technology used to transport the
JAR file to the CICS server, the process is similar:

1. Develop the enterprise beans and the standard
deployment descriptor. Any EJB 1.1 tool can be
used for this development.

2. Supply any necessary WebSphere-specific meta-
data. Any WebSphere-aware tool can be used for
this operation.

3. Supply any necessary CICS-specific meta-data. Any
CICS-aware tool can be used for this operation.

4. Invoke the appropriate client, either a WebDAV
client or the CICS unit test deployment client, iden-
tifying the JAR file and the CICS system to which
the JAR file should be deployed.

The goals for production deployment are to provide
a style of interaction that is appropriate to a CICS
system programmer, rather than an application de-
veloper, and to provide full control of how the en-
terprise beans are deployed into CICS. During pro-
duction deployment, all of the necessary resource
definitions are produced under the control of the sys-
tem programmer using the production deployment
tool. If an application developer has supplied any
WebSphere-specific or CICS-specific information,
that information is available to the system program-
mer, but it can be changed by the system program-
mer if desired. The JAR file and the generated re-
sources are transported manually to the target CICS
system(s).

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 61

Figure 9 Future application development infrastructure

DEVELOPER
WORKSTATION

WebDAV
PUT/DELETE
OF "DEPLOYED"
JAR FILE

WebDAV
SERVER

MAPPING FROM APPLID TO JNDI
NAME OF HOME DEFAULTS AND POLICIES

EJB INTERFACE TO
MANAGE DEPLOYED
JAR FILE AND
REQUESTMODELS

CICS SERVER

Figure 8 CICS transaction server application development infrastructure for EJB

CLIENT WORKSTATION

TEST DEPLOYMENT TOOL
BROWSER WINDOW

EJB 1.1 JAR FILE

WINDOWS NT SERVER

WEBSPHERE APPLICATION
SERVER

JNDI

TEST DEPLOYMENT
SERVLET

DEPLOYMENT
CONFIGURATION
FILE

OS/390

CICS EJB SERVER

TEST DEPLOYMENT
SESSION BEAN

DFHAD
APPLICATIONS

EXEC CICS CREATE

CICS IN-CORE
DEFINITIONS

DEPLOYED
JAR FILE (HFS)

HTTP

HTTP
RMI

FTP

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200162

Debugging. The strategic IBM debugging tools for the
CICS EJB server are object-level trace and the IBM
Distributed Debugger. In addition to support for
these IBM tools, CICS will provide appropriate
“hooks” to allow for equivalent third-party products
to be integrated.

The initial release of EJB support in CICS will offer
basic support for debugging using the standard Java
debug architecture, Java Platform Debugger Archi-
tecture,22 with the full support for debugging de-
scribed here being delivered subsequently.

Object-level trace. The object-level trace (OLT) tool
allows a developer to follow the flow of an applica-
tion from the client to a server and from one server
to another server. The client and the servers send
information about the inbound and outbound

method calls to an OLT server, and a graphical tool
presents a view of the distributed thread of control
made up of all of the (remote) method calls. In ad-
dition to visualizing the flow of a distributed appli-
cation, the OLT tool can be used to control the points
in the distributed application at which the IBM Dis-
tributed Debugger should be invoked to remotely
debug a particular method invocation. This provides
much better control of the debugger than the typical
server-oriented configuration schemes such as DTCN,
a CICS transaction that configures the z/OS debug tool.
Figure 10 shows a sample of the OLT user interface.

The information controlling the debugger flows to-
gether with an object invocation over IIOP as an ex-
tra service context. This information is read and writ-
ten by request interceptors running in the ORB. The
interfaces to allow such request interceptors to be

Figure 10 Sample OLT user interface

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 63

registered with the ORB are documented so ISVs can
register their own request interceptors to flow their
own additional information on method calls and sup-
port tools similar to OLT.

IBM Distributed Debugger. The IBM Distributed De-
bugger consists of a graphical user interface that
communicates with a (remote) debug engine that in-
teracts with the application being debugged. The user
interface can display multiple windows, each of which
corresponds to a particular debug session with a par-
ticular system. This facility can be used to debug, say,
a servlet or JSP file in addition to an enterprise bean
invoked by the servlet or JSP. The debugger is not
limited to debugging Java, it supports debugging code
written in C, C11, and COBOL. Figure 11 shows the
debugger debugging a session bean.

Figure 12 shows the debugger (running on Windows
NT) debugging a CICS COBOL program. Note that the

COBOL program is shown in a second window, and
the first window showing the session bean is still avail-
able so that the developer can switch between the
Java code and the COBOL code.

Future work and challenges

One key to the success of the EJB architecture will
be the extent to which business logic and the under-
lying system functions can be separated. By integrat-
ing support for enterprise beans into CICS in the man-
ner described, a developer can depend upon the
capabilities of a world-class, proven application
server platform, without needing detailed knowledge
of the facilities of CICS per se. The flexibility of the
product is such that both “standard” enterprise beans
and those that make use of CICS services will be
equally well supported. These capabilities are avail-
able to customers now and, from day one, will un-

Figure 11 Debugging a session bean

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200164

doubtedly help make z/OS one of the best platforms
for the deployment of enterprise beans.

Nevertheless, there is ample opportunity to further
develop the function that will be delivered in the first
release so that it evolves: to expand the range of en-
terprise Java technologies that can be used from en-
terprise beans deployed in CICS; to add support for
broader container-based services that will enrich and
complement the “basic” EJB capabilities (such as
messaging); and to continually improve the perfor-
mance and scalability that can be achieved when de-
ploying enterprise beans in CICS. Much of this will
be achieved by enabling CICS applications to capi-
talize on the full range of J2EE services that will be

provided by the WebSphere Enterprise Edition
product; in a number of cases, it will be possible for
CICS to exploit a function that will already have been
implemented by WebSphere for the z/OS platform
as a whole, instead of having to implement the func-
tion in a manner that is specific to CICS itself. By
adopting this approach, we will be able to focus fu-
ture work in CICS on those aspects of J2EE (as we
have done with the support for session beans imple-
mented in the current release) that fit most natu-
rally within the architecture of the CICS product, and
for which there are clear customer requirements.

A good example of function being implemented by
WebSphere, that can be used from CICS, is entity

Figure 12 Debugging a CICS COBOL program

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 65

beans. In future releases, our intention is to integrate
the products in such a way as to make the entity bean
capability of WebSphere and DB2 available seam-
lessly to applications running in CICS. Doing so will
present a number of challenges, not the least of which
is the implementation of a suitably efficient connec-
tion between the two environments. Another con-
sideration that will be particularly important when
implementing support for entity beans that will, in
effect, be distributed across a number of products,
will be the loading and managing of persistent state
information (including, for example, issues of lazy
loading of data, aimed at minimizing the initial cost
of accessing an entity bean). And, as with any im-
plementation of entity beans, care must be taken to
acquire appropriate locks (which, in turn, depends
upon understanding when it is safe to use a read lock
as opposed to one that permits data updating).

Another area for continued focus is, of course, per-
formance and scalability. There is no doubt that
achieving a level of performance that meets the ex-
pectations of today’s high-end application server cus-
tomers will be one of the most important factors in
determining the ultimate success of the Java lan-
guage as an enterprise-class technology for use in
high-volume, mission-critical applications. The per-
sistent reusable Jvm technology that is being used
by CICS is just one of the results of the significant
investments that IBM is making to help ensure that
these expectations are met. There are a number of
further enhancements that we are already planning
to make to this Jvm, subsequent to the first release
of the technology that will be used with the first re-
lease of the CICS EJB support. For example, one aim
is to significantly reduce Jvm initialization time by
maintaining a cache of pre-prepared and just-in-
time-compiled classes that are referenced when a
Jvm is started (instead of being loaded from a file
system). Another planned improvement will signif-
icantly reduce the amount of “below the 16-mega-
byte line” virtual storage required by individual Jvms,
which will greatly increase the number of concur-
rent EJB transactions that can be supported concur-
rently within a single CICS region.

In conclusion, we believe that the combination of
what we plan to deliver in CICS, complemented by
the full range of J2EE function that will be provided
by WebSphere Enterprise Edition and the outstand-
ing application development capabilities of the Vi-
sualAge for Java product, will make z/OS the premier
platform for enterprise Java technologies.

Acknowledgments

The project to implement support for the EJB archi-
tecture in CICS has been a major undertaking and
would not have been possible without the efforts of
many of our colleagues (too numerous to list here)
in the CICS organization in Hursley. Two key collab-
orations have been with the IBM Centre for Java
Technology on the persistent reusable Jvm, and with
the WebSphere and VisualAge development orga-
nizations on the common container and related tool-
ing. Finally, we would acknowledge the work done
by our colleagues Ian Brackenbury, Don Ferguson,
and Tony Storey on the development of the EJB spec-
ification itself, and in establishing the strategy for its
exploitation in IBM products.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, Microsoft Corporation, or the Open
Group.

Cited references

1. IBM CICS Transaction Server, IBM Corporation, http://
www.ibm.com/software/ts/cics.

2. CORBA/IIOP 2.3.1 Specification, Object Management
Group, http://www.omg.org/technology/documents/formal/
corba_2.htm.

3. Enterprise JavaBeans Specification, Sun Microsystems, Inc.,
http://java.sun.com/products/ejb/docs.html.

4. Java Servlets Specification, Sun Microsystems, Inc., http://
java.sun.com/products/servlet.

5. JavaServer Pages (JSP) Specification, Sun Microsystems, Inc.,
http://www.javasoft.com/products/jsp.

6. J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann Publishers, San Francisco, CA
(1992).

7. Microsoft Transaction Server, Overview, Microsoft Corpo-
ration, http://www.microsoft.com/NTServer/appservice/exec/
overview/Trans_Overview.asp.

8. CORBA Component Model RFP, Object Management
Group, http://www.omg.org/techprocess/meetings/schedule/
CORBA_Component_Model_RFP.html.

9. IBM VisualAge for Java, IBM Corporation, http://www.
ibm.com/software/ad/vajava.

10. Java Naming and Directory Interface (JNDI), Sun Micro-
systems, Inc., http://java.sun.com/products/jndi.

11. Java 2 Platform, Enterprise Edition, Sun Microsystems, Inc.,
http://java.sun.com/j2ee/.

12. Java Transaction Service, Sun Microsystems, Inc., http://
java.sun.com/j2ee/transactions.html.

13. Java Message Service, Sun Microsystems, Inc., http://
java.sun.com/products/jms/.

14. JavaBeans Specification, Sun Microsystems, Inc., http://
java.sun.com/beans/docs/spec.html.

15. Extensible Markup Language (XML), World Wide Web Con-
sortium, http://www.w3.org/XML/.

16. JCICS Programing Interface, IBM Corporation, http://
www.4.ibm.com/software/ts/cics/library/manuals/jcics/.

BAINBRIDGE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 200166

17. Java Database Connectivity (JDBC) API, Sun Microsystems,
Inc., http://java.sun.com/products/jdbc.

18. CORBA Transaction Service Specification, Object Manage-
ment Group, http://www.omg.org/technology/documents/
formal/transaction_service.htm.

19. SQLJ, SQLJ standards information site, http://www.sqlj.org.
20. J2EE Connector Architecture 1.0 Specification, Sun Micro-

systems, Inc., http://java.sun.com/j2ee/connector/.
21. Web-based Distributed Authoring and Versioning, WebDAV

community site, http://www.webdav.org/.
22. Java Platform Debugger Architecture, Sun Microsystems,

Inc., http://java.sun.com/products/jpda/.

Accepted for publication September 22, 2000.

Andrew Bainbridge IBM UK Laboratories, Hursley Park, Win-
chester, Hampshire, SO21 2JN, United Kingdom (electronic mail:
Andrew_Bainbridge@uk.ibm.com). Mr. Bainbridge is a Senior
Technical Staff Member in the IBM Software Group at the Hurs-
ley Development Laboratory in the United Kingdom. He is cur-
rently manager for design and new technology development in
the Transaction Processing Products organization. He joined IBM
as a systems engineer in 1984 and has worked on a wide range
of software development projects and standards initiatives in the
areas of transaction processing and open systems networking; over
the last few years, he has focused on the integration of transac-
tion processing and object technologies, working on the CICS and
WebSphere products. He studied mathematics and computer sci-
ence at Cambridge University, graduating in 1984.

John Colgrave IBM UK Laboratories, Hursley Park, Winches-
ter, Hampshire, SO21 2JN, United Kingdom (electronic mail:
colgrave@uk.ibm.com). Mr. Colgrave is a senior software engi-
neer in the Transaction Processing Products Design and New
Technology department at the IBM Hursley Development Lab-
oratory. For over ten years, he has worked as an architect and
designer on CICS on various platforms; for several years he has
focused on the use of Java in CICS and, most recently, the as-
sociated requirements for application development tooling. He
holds a B.S. degree in electronic and electrical engineering and
an M.S. degree in computer science, both from Manchester Uni-
versity.

Adrian Colyer IBM UK Laboratories, Hursley Park, Winches-
ter, Hampshire, SO21 2JN, United Kingdom (electronic mail:
adrian_colyer@uk.ibm.com). Mr. Colyer received his degree in
computer science from the University of Southampton, England,
in 1992. He is a Chartered Engineer and Corporate Member of
the Institution of Electrical Engineers (IEE) and Honorary Mem-
bership Secretary of the UK Research and Development Soci-
ety. Since joining IBM in 1992 he has worked on a number of
middleware-related development projects involving CICS and
MQSeries, and also on emerging technology projects in e-busi-
ness and pervasive computing. In his current position Mr. Colyer
is a senior software engineer working on enterprise Java support
for CICS.

Glyn Normington IBM UK Laboratories, Hursley Park, Winches-
ter, Hampshire, SO21 2JN, United Kingdom (electronic mail:
norm@uk.ibm.com). Mr. Normington is a senior software engi-
neer working on CICS. He received a B.A. degree in mathemat-

ics from Oxford University in 1981 and, after joining IBM, worked
initially on graphics software and print spooling. Later he joined
the CICS area and worked on the restructuring of some of the
central components of CICS. He then led the Component Bro-
ker workload management design and implementation before he
returned to CICS to lead the design of the support for EJB.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BAINBRIDGE ET AL. 67

