32 YOUNGS ET AL

A standard for
architecture description

A STANDARD FOR ARCHITECTUI
DESCRIPTION

A profitable information technology (IT) services
organization is dependent on widespread asset
harvesting (from previous engagements) and
scalable asset deployment (into current and
future engagements). This activity demands
consistency of terminology and notation in the
creation and use of engagement artifacts,
including work products. This paper presents a
standard for architecture description in which a
set of conventions for terminology and notation
is used to describe and to express the
organization of the architecture for an IT system.
This standard, the Architecture Description
Standard (ADS), is intended to be used by the
IBM architecture community. The emphasis is on
a minimal set of shared concepts that can be
effectively taught to a broad range of IT
architects with different skills and that is usable
in practice.

0018-8670/99/$5.00 © 1999 IBM

by R. Youngs
D. Redmond-Pyle
P. Spaas
E. Kahan

his paper focuses on the conventions, terminol-

ogy, and notation that are needed to support the
harvesting and reuse of reference architectures.
(Within the context of papers in this issue, it would
be helpful to readers if this paper is read before the
papers on reference architectures and engagement
experiences that are included in this issue.)

The business background

In projects that are developing computing systems
for business solutions, it is generally recognized that
the use of predefined, reusable assets in the form of
architectural, analysis, and design patterns can en-
able large reductions in project cost, time scale, and
risk. However, effective large-scale deployment of
architectural patterns is dependent on key concepts,
terms, and notations being used consistently, and be-
ing understood and accepted across a broad com-
munity of information technology (IT) architects and
systems integrators. Without a common language,
deployment is likely to be patchy, inefficient, and er-
ror-prone and to require huge support resources.
Lack of consistency seriously inhibits scalability.

In 1996 and 1997, iBM’s Global Industries business
unit, which has the mission of developing and sup-
porting packaged industry solutions, recognized the
need to adopt an improved, asset-based approach

©Copyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

to its product development. At the same time, IBM’s
Global Services business unit had independently con-
cluded that IBM and its customers, and IBM’s services
professionals worldwide, would benefit greatly from
an asset-based approach to solutions development
in which architectural and design assets would be
gathered from completed projects and redeployed
on many other, similar projects. Both business units
agreed that the increased emphasis on assets and
work products for development and for services en-
gagements necessitated a comprehensive metamodel
that would underpin the description of those assets
and work products more precisely and eftectively.

Independently of the Architecture Description Stan-
dard (ADS) project, the Enterprise Solutions Struc-
ture (ESS) project had already developed a specific
metamodel used to document the (mostly technical)
frameworks that it was developing. This metamodel,
in a simplified form, was implemented in a Lotus
Notes**-based tool, which was used to distribute
these assets to users of ESS.

The Architecture Description Standard project was
created to develop a more wide-ranging version of
this metamodel and the semantic descriptions to sup-
port it. The output from this project, ADS, provides
a common language through the definition of a for-
mal metamodel, a glossary (see the Appendix), and
a detailed semantic specification.

The primary audience for the standard consists of
IT architects working on solution development and
deployment projects. Such work might be either in
the context of a client engagement or a development
project within an 1BM solution development orga-
nization. In the former context, assets in the form
of work products conforming to the standard may
be selected, customized, and used to build IT systems
for the customer. In the latter context, developers
will create work products conforming to the stan-
dard which can then be widely deployed.

Such work products will typically contain descriptions
of groups of entitics from the metamodel, docu-
mented in the form prescribed by ADS. Thus, both
providers and consumers of work products will ben-
efit from a common, unambiguous definition. Within
a single project, ADS will enable more precise, un-
ambiguous, and semantically rich communication
among project personnel.

The standard is intended to be used for solution de-
velopment and deployment across the IBM Corpo-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

ration worldwide. It is the foundation for the Sys-
tems Integration/Application Development (SI/AD)
method and its associated work products. It will be
initially deployed to all SYAD architects via SVAD ed-
ucation classes. It will also be deployed to a wider
range of architects via classes that are currently un-
der development. It is also the foundation for the
structure and terminology of asset libraries (for ex-
ample, ESS).

This paper summarizes the main concepts in ADS.
A full description is available in IBM’s formal ADS
documentation.

influences on ADS technical strategy

Several themes contributed to the technical strategy
adopted for the Architecture Description Standard.

Requirements for an ADL. As discussed previously,
there is a business requirement to be able to express
architectural work products and assets in a consis-
tent, unambiguous form. ADS is a lunguage for de-
scribing and communicating architectural concepts.
The phrase architecture description language (ADL)
is commonly used for this type of standard, and there
are an increasing number of ADLs available that
broadly address the same concerns as ADS—they are
all formal languages that can be used to describe the
architecture of an IT system. ' They differ from mod-
eling or programming languages in that their focus
is mainly on architectural concepts—abstractions of
components, connections, protocols, and the behav-
ior of the complete system.

Because of some of IBM’s unique requirements (spe-
cifically, those relating to developing asset-based ser-
vices with a multiskilled work force), no existing ADL
was identified that met all requirements and was de-
ployable to 1BM’s architecture community.

Integration of application development with infra-
structure design. One of the conclusions from ear-
lier work was that the success of major solution de-
velopment projects in 1BM often depended critically
on the integration of application and infrastructure.?
Therefore, one of the principles that guided the de-
velopment of ADS was the recognition that infrastruc-
ture design is a specialized skill and that its expo-
nents habitually deal with concepts, entities, and
methods that are different from those in “tradition-
al” application development. This recognition led the
ADS project to divide the architectural model into

YOUNGS ET AL. 33

two parts: a functional aspect and an operational as-
pect.

The operational model, described below, is focused
specifically on aspects of architecture necessary for
the infrastructure designer to perform his or her job.
Although ADS defines these two models, in actual
fact they share many entities and can be considered
as dealing with the same material, but from differ-
ent perspectives. Hence, we use the terms “function-
al aspect” and “operational aspect,” and it is through
the formal definition of the way entities are shared
and used across these aspects that ADS contributes
to the integration.

Precision and consistency. Although it might seem
desirable to strive to achieve the highest levels of pre-
cision and consistency for a technical standard such
as this one, we do not believe that it is necessarily
the case. To assist the rapid development of asset-
based services in IBM, the emphasis in the ADS proj-
ect was to provide a practical standard that can be
readily adopted by a wide range of people in devel-
opment projects.

One objective, therefore, was to define an architec-
ture description standard sufficient to enable con-
sistent definition and use of architectural templates
by practitioners and to underpin the architectural
aspects of IBM methods (for example, the SVAD and
IPD, or Integrated Product Development, methods).
Another, related, objective was to provide a consis-
tent base of concepts, terms, and notations for the
education and training of architects in templates and
methods.

Such a standard does not have to be comprehensive
to be effective. It only needs to cover the core areas
of architecture, which must be defined and under-
stood in a standard way to enable effective deploy-
ment of architecture templates. This set, therefore,
consists of those concepts that are regularly used in
project work products or assets and that need to be
standardized for practitioners to do their work.

Although underlying precision and consistency are
important (and will be achieved through the meta-
model), practicality, trainability, and usability as they
apply to practitioners are paramount. The critical
factor for success is whether the resulting set of con-
cepts, terms, and notations is small, simple, and ac-
cessible enough to be taught to large numbers of
practitioners in a broad spectrum of courses.

34 YOUNGS ET AL.

Exploitation of IBM’s existing best practices. In our
work developing the Architecture Description Stan-
dard, we have attempted to reconcile and synthe-
size various IBM best practices and combine them
with wider industry initiatives. The main IBM sources
we have integrated are:

* WSDDM-OT (worldwide solution design and deliv-
ery method-object technology)

« WSDDM-ISD (infrastructure design), which itself in-
corporates the earlier IBM End-to-End Infrastruc-
ture Design Method

& ESS, a major asset base of IBM reference architec-
tures and associated architectural assets

Use of industry standards. During the 1990s, the
largest and most influential industry initiative on the
representation of software systems has been the work
undertaken by the Object Management Group®
(OMG) to produce a Unified Modeling Language
(UML). ADS decided to adopt UML (v1.1) as the ba-
sis for ADS concepts, terms, and notations because
UML is being widely adopted as a de jure and de facto
software modeling standard.* It represents a major
investment of intellectual effort and conceptual con-
vergence by the world’s leading software method-
ologists. Consequently, most of the major modeling
tool vendors will provide CASE (computer-assisted
software engineering) tool support for UML.

In addition, many IBM IT architects are already fa-
miliar with UML concepts and notations (indeed IBM
was closely involved in the development of UML), and
most of the key concepts in WSDDM-OT, WSDDM-ISD,
and EsS, with which they are familiar, can be mapped
to UML concepts.

During the development of ADS, we have identified
some limitations in UML for architecture description
and areas in which IBM best practice would be lost
or diluted if we conformed slavishly to UML. In these
areas we have extended UML so that valuable con-
cepts or notations are not lost. This extension has
proved to be most necessary in the area of infrastruc-
ture design, where the UML coverage of important
concepts such as connections between nodes, and
service-level requirements, is limited.

The technical strategy has therefore been to adopt
a pragmatic approach: integrating concepts from
IBM’s WSDDM-OT, WSDDM-ISD, and ESS; expressing
these concepts in UML terms and notation wherever
possible; extending UML where required while en-
suring that the concepts are usable by practitioners.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

The authors believe that this strategy has achieved
a coherent and usable architecture description stan-
dard that carries forward the strengths of the meth-
ods and standards from which it is derived.

The architecture definition standard

This section begins with a definition of architecture
and then describes its various characteristics.

What is an architecture? The IT industry has pro-
posed numerous definitions for the concept of ar-
chitecture, widely varying in scope and emphasis. The
main focus of ADS is on describing the structure of
“components,” the relationships between them, and
the way in which they interact dynamically. Hence,
ADS has adopted the following definition:

The architecture of an IT system is the structure
or structures of the system, which comprise soft-
ware and hardware components, the externally vis-
ible properties of those components, and the
relationships among them. (Adapted from Bass
et al.l)

Note that this definition incorporates hardware com-
ponents in the scope of a systems architecture. In
practice, most project activity is concerned with soft-
ware architecture, design, and implementation.
Therefore, it might be argued that a purely software
scope is sufficient—ADS would then describe a soft-
ware architecture. Qccasionally, however, it is nec-
essary to include hardware components in an archi-
tectural definition (usually where specialized or
unfamiliar hardware devices are needed). Also,
through its operational aspect, ADS brings a closer
focus on describing computer platforms and their
physical connections and on delivering service lev-
els. Therefore, it is appropriate that ADS should in-
clude hardware.

Functional and operational aspects. In the context
of a development project, a complete IT system ar-
chitecture serves multiple purposes, among them:

* Breaking down the complexity of the IT system so
that developers can analyze and design compo-
nents that are relatively isolated from one another

* Analyzing the functionality so that required tech-
nical components (or infrastructure) can be iden-
tified

* Assisting in the analysis of service-level require-
ments so that the means of delivering them can be
designed

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

* Providing a basis for the specification of the phys-
ical computer systems on which the IT system will
execute and the mapping of components onto these
computer systems

In large projects, a division of responsibilities be-
comes necessary for the simple reason that a single
person cannot possibly be skilled in all the technol-
ogies, methods, tools, and techniques needed for all
these purposes. Also, the activities of any large proj-
ect need to be partitioned so that small groups (sub-
projects or work groups) can manage their own cre-
ative work, with the integration of the whole project
being performed at a higher level. In practice, large
projects include work groups concerned primarily
with application design and development. Their fo-
cusis on the first of the above purposes. Other groups
are concerned with infrastructure design and devel-
opment, and they focus on the last three purposes.
Each group has specialized techniques to address its
particular concerns.

The Architecture Description Standard reflects this
separation of concerns by identifying two main as-
pects of architecture: the functional and the oper-
ational aspect.

The focus of the functional aspect is on describing
the function of the IT system and is primarily con-
cerned with the structure and modularity of the soft-
ware components (both application and technical),
the interactions between them, their interfaces, and
their dynamic behavior (expressed as collaborations
between components).

The focus of the operational aspect is on describing
the operation of the 1T system and is primarily con-
cerned with representing network organization
(hardware platforms, connections, locations, topol-
ogy, etc.), where software and data components are
“placed” on this network, how service-level require-
ments (performance, availability, security, etc.) can
be satisfied, and the management and operation of
the whole system (capacity planning, software dis-
tribution, backup, and recovery).

The aspects are summarized in Table 1.

Functional aspect concepts. The concepts and mod-
eling notations used to describe the functional as-
pect of an IT system are discussed in the following
subsections.

YOUNGS ET AL. 35

Table 1 Aspects of architecture

Components and relationship diagrams. The func-
tional aspect is represented in terms of components
and the relationships between components.

A component is a modular unit of software’ func-
tionality, accessed through one or more interfaces.
The functionality and state of the component are
only externally accessible by using these interfaces
(that is, they are encapsulated). Component is the
primary concept used for modular design, with the
well-established design principles of information hid-
ing and of seeking high cohesion and low coupling.

The primary notation used for components in ADS
follows the UML class diagram notation. (We rep-
resent a component by the UML class symbol—a rect-
angle, optionally with a section for operations.) Re-
lationships between components are shown in a
component relationship diagram in which we show
a usage relationship between two components if one
component uses the interface(s) of another compo-
nent. This usage can be thought of as being based
on a contract between the components; that is, there
is an agreement between the two components about
the services they can request from each other. We
use the UML association notation to show this. Show-
ing such a usage relationship implies that the com-
ponents can communicate with one another. The de-
sign of the infrastructure must ensure that the
necessary physical connectivity can occur.

Figure 1 shows an example of a component relation-
ship diagram for a workflow system.

The component relationship diagram notation has
a line with an arrowhead pointing from the “using”
component to the “used” component. For example,
in Figure 1 the workflow client application uses op-
erations provided by the workflow engine compo-
nent. Where each component uses (and therefore
depends on) the other, the line can have arrows at
each end. For example, the workflow engine uses the

36 YOUNGS ET AL

external workflow engine, and vice versa. (This in-
terpretation slightly extends the standard UML ar-
rowhead notation meaning direction of association
navigation.)

Although the line could be read as a data flow or a
message, this interpretation is not correct. A usage
relationship between two components typically re-
lies on one or more interfaces with many operations
(and corresponding message types). Some of these
messages may be passed in the opposite direction
from the arrow (for example, callback), and data
commonly flow in both directions.

The component relationship diagram can optionally
show the multiplicities of relationships. For exam-
ple, Figure 1 shows that each workflow client appli-
cation interacts with a single workflow engine and
that the workflow engine interacts with multiple cli-
ents (as shown by the 1 and * at the ends of the con-
necting arrow).

A component relationship diagram is essentially a
static specification of the usage between components.
It shows how components can use one another,
rather than actual message flow or dynamic behav-
ior (for these latter items, see the component inter-
action diagram shown later in Figure 3).

Composition of components. Complex components
are frequently composed from simpler components.
This arrangement can be visualized by showing one
component inside another.

Figure 2 shows the component relationship diagram
with the audit log encapsulated within the applica-
tion agent. When one component is composed of an-
other, the services of the contained component are
not accessible from outside the composite compo-
nent; that is, they are encapsulated. For example, in
Figure 2, the application agent uses the audit log,
but no other users or components can use the audit

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 1 Component relationship diagram

WORKFLOW
ENGINE

WORKFLOW
CLIENT
APPLICATION

EXTERNAL
WORKFLOW
ENGINE

APPLICATION
AGENT

cics
APPLICATION

log. Encapsulation does not imply that the audit log
is physically contained in the application agent, but
that the application agent has a private relationship
with it.

It would not be appropriate to show the Customer
Information Control System (CICS*) application en-
capsulated in Figure 2, as its external interfaces may
be used by multiple components.

(This is a standard UML class diagram notation for
composition. If available tools do not support it, an
alternative UML notation is the diamond symbol for
aggregation.)

Describing component behaviors. We describe the re-
quired externally observable behavior of an IT sys-
tem in terms of the widely used concepts of use cases
and use case scenarios. For example, the statement
“Withdraw Funds from ATM” is a use case, and “Suc-
cessfully withdraw $100 from account 12345 at mid-
night” is a scenario of this use case (that is, one par-
ticular path through the use case).

In creating the architecture of a system, we need to
allocate the responsibilities of the system as a whole
to the components of the system. For each scenario,
we divide up the system responsibilities among a
number of components (e.g., one component might

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

AUDIT LOG

Figure2 Component relationship diagram showing
component composition

WORKFLOW
ENGINE

APPLICATION
AGENT

y AUDIT LOG

CIC8
APPLIGATION

run the user interface, a second might manage work-
flow, a third might store data). To model how the
components work together to process a scenario at
run time, we have the concept of a collaboration.

YOUNGS ET AL. 37

Figure 3 Component interaction diagram

WORKFLOW CLIENT WORKFLOW ENGINE g

APPLICATION AGENT CICS APPLICATION

A collaboration (among components) is a sequence
of operations, identifying which components perform
operations and which request operations, reflecting
the time sequence. Collaborations are the primary
way of modeling the dynamic behavior of compo-
nents.

Collaborations are visually represented using com-
ponent interaction diagrams (using standard UML no-
tation). An interaction diagram shows the messages
exchanged between components during a single col-
laboration; that is, it is an execution trace.

Figure 3 shows a component interaction diagram for
the workflow system above. Each vertical line (col-
umn) represents a component that participates in
the collaboration (e.g., workflow client, workflow en-
gine). Each horizontal line represents a request, in
the direction of the arrow, from one component to
another. The name of the request (= invoked op-
eration) is shown on the line (e.g., get_work_list).
The names, types, and values of parameters can also
be shown if required (but are omitted in Figure 3).

38 vYounGs ET AL

AUDIT LOG

We use the standard UML sequence diagram nota-
tion to model component collaboration. UML also
defines a semantically equivalent notation, the col-
laboration diagram, which can be used if required.
(The collaboration diagram format shows the com-
ponent topology more clearly but tends to make the
time sequence of messages harder to see.)

Structuring of components. One of the most impor-
tant architectural design processes consists of struc-
turing the system as a whole into a suitable struc-
ture of components and relationships between
components. This structuring addresses a number
of concerns, including:

* Allocation of responsibilities to components, in
such a way that each component has a cohesive
set of responsibilities and redundancy is avoided

¢ Partitioning of components to take into account
distribution requirements (For example, an initial
component may have to be split into a client and
a server component.)

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 4

Component diagram showing subsystems as collections of components

S -
ey amamnam e ap s on

* Optimizing the component structure to satisfy ser-
vice-level requirements such as performance

* Incorporation of reusable components in the de-
sign, accommodation of legacy systems, or other
constraints

The notations illustrated in Figures 1 to 3 are used
to represent possible component structures and col-
laborations during this structuring process. It is com-
mon for the structuring to evolve through several
elaboration points.

Subsystems. When describing an IT system, we often
need to talk about some part of the system. Sub-
systems may be defined and used for several pur-
poses, for example, to organize a large IT system into
smaller “chunks” and to make it more comprehen-
sible or manageable (e.g., accounts subsystem, in-
ventory subsystem, system management subsystem)
so that it can be more easily described to other peo-
ple. It is also necessary to divide the system so that
work can be allocated to development teams (e.g.,
one subsystem per team).

A subsystem is a subset of the components in an IT
system. It can be defined by drawing an irregular line
around some of the components (see Figure 4). For
example, in Figure 4, the accounts subsystem con-
sists of components C4, C5, C6, and C7.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Subsystems may overlap, e.g., component C6 is part
of the accounts subsystem and also part of the im-
age subsystem.

A subsystem may span platforms, i.e., the compo-
nents in a single subsystem can be placed on several
platforms. For example, a data access subsystem may
have a database server component, a data access
gateway, and a client data access port, each running
on a separate platform (similarly for an Object Re-
quest Broker [ORB], a workflow subsystem, an ac-
counts subsystem, or a systems management sub-
system).

Domains and architectural templates. In addition to
describing actual architectural components, it is im-
portant to be able to describe the way in which they
interact and collaborate. The Architecture Descrip-
tion Standard Semantic Specification defines the
concept of a domain, which is a set of structural and
behavioral patterns that describe some part of the
architecture of an IT system (e.g., workflow, trans-
actionality, user interface, network communications).
The description of a domain is expressed as a set of
collaborations between components and the inter-
faces (defining component roles) used by these col-
laborations.

One of the prime motivations for domains is reuse—
domains can represent architectural patterns (or

YOUNGS ET AL. 39

templates)® that occur across many components and
may be observed (and therefore reused) in many IT
systems. Since better reuse of assets is an expected
benefit of ADS, the alternative terminology of “ar-
chitectural template” is used in this paper and else-
where. This emphasizes the reuse aspect and is con-
sistent with the definition of the architectural
template work product type, described in the 1BM
S/AD method.

There are several well-known examples of architec-
tural templates, often described by related terms such
as reference model, reference architecture, domain
description, or even industry standard.

Widely known examples of architectural templates
include:

* The Smalltalk Model-View-Controller pattern: A
standard set of component roles (model, view, and
controller) for user interface management, the in-
terfaces each role must support, and the collab-
orations which ensure that the user interface (view)
is coordinated with the model.

» The Web architecture: A template in which the
browser and server collaborate in well-understood
ways (defined by HTTP—HyperText Transfer Pro-
tocol) to present information across the Internet.

» The Workflow Reference Model from the Work-
flow Management Coalition:” A set of patterns of
collaboration between standard component roles
(invoking application, workflow enactment service,
invoked application, monitoring application) and
a detailed workflow application programming in-
terface supported by each role for a component
to be “workflow-aware.”

* The OMG Object Transaction Services (OTS) spec-
ification: A standard set of component roles (trans-
action manager, resource manager, resource) and
required interfaces for transaction management in
a distributed object environment.

¢ The International Organization for Standardiza-
tion-Open Systems Interconnection (ISO-OST) sev-
en-layer model: An architectural template for net-
work communications with well-defined layer
responsibilities and interfaces.

The same diagrams used for describing component
structure and component interactions are also used
in architectural templates.

Operational aspect concepts. This section introduces
the concepts and notations used in the operational

40 YOUNGS ET AL.

model, which describes the operational aspect of IT
system architecture.

Network diagram. The network diagram represents
network topology and shows where software com-
ponents are placed on the nodes in the network (Fig-
ure 5).

The central concept is node. A node is a platform
on which software executes. During early stages of
the design process, a node represents a potential plat-
form before decisions have been made about how
to map it to actual platforms.

The network diagram in Figure 5 shows nodes as
rectangles (ideally, where diagramming tools permit,
as UML cuboids). Each node has a name and (op-
tionally) the number of instances (in parentheses).
Connections represent physical data paths between
nodes (e.g., by local area network—LAN, wide area
network—WwAN, dial-up, wireless) and show the
shape of the network.

Deployment units are placed on the nodes. A de-
ployment unit is the smallest unit of software or data
about which an architect makes a placement deci-
sion. Deployment units are shown as named items
on each node. In practice, only the most significant
units are shown in this diagram; otherwise it becomes
too cluttered.

A deployment unit consists of one or more compo-
nents. In practice, we often need to regard the data
aspect (or state) of a component as being in one de-
ployment unit and the execution of a component as
being in another deployment unit. Sometimes we also
need to distinguish the installation aspect of a com-
ponent as being in a third deployment unit. Deploy-
ment units may be named to reflect this need (e.g.,
in Figure 5, E1-E14 are execution deployment units,
D8 is a data deployment unit) or they may be an-
notated (e.g., component name [E], CName [D, I]).

Nodes are grouped together in locations. A location
is a geographical entity (e.g., a zone or building type)
and is shown by a dashed line around one or more
nodes. Several network diagrams may be used to rep-
resent different aspects of a single IT system (e.g.,
operational system, systems management, develop-
mental environment).

The network diagram is based on the UML deploy-

ment diagram notation with some extensions. Nodes
correspond to the UML concept of node.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 5 Network diagram

g s i Ml e e e e et L e o . et g e

o

CUSTOMER DATA SERVER (1}
{| WORKSTATION (12)
1 1BM NETFINITY 3500,
1] I1BM PC 300, DISPLAY, QUALITY
1| TOUCH DISPLAY, PRINTER,
1| 4717 MAG READER PROPRINTER
i
1| 0OS/2 WARP, 0S/2 WARP,
1| DB2/2 CLIENT, ! PCOMM, NTS/2,
{| ICONAUTHOR RY | LAN SERVER,
! DB2/2 SERVER,
Y E-E10 DDCS/2,

RXR/2

E13, E14
CLERK 3, E14,
WORKSTATION (5) gf‘; s?g;comesx

1BM PC 300,
DISPLAY, 4717-3
MAG READER/WRITER

NETWORK, PRINTER,
5 & LAN MANAGEMENT
SERVER (1)

08/22.1, CICY/2,
PCOMM, NTS/2,
DB2/2 CLIENT,
ICONAUTHOR

IBM NETFINITY 3500,
1 DISPLAY, QUALITY
PRINTER, PROPRINTER |

Et-E12

05/2 WARF,
PCOMM, NTS/2,
LAN SERVER,
DB2/2 SERVER,
bDCs/2,

RXR/2

E156-E17,
D8, 112

e s . i e S . 4 i 95, .

E SERVERS PROVIDE MUTUAL TAKE-QVER

\PPROPRIATE PROCESS AND DATA GRO

Walkthrough. One of the main ways of confirming
that the operational aspect of a system is feasible and
acceptable is to perform end-to-end walkthroughs
of collaborations. A walkthrough is a narrative de-
scription of how the IT system processes a use case
scenario, tracing the collaboration around the sys-
tem. It is used to assess the operational behavior of
the system, specifically whether the system will be
able to satisfy service-level requirements such as se-
curity and availability.

Walkthroughs are usually documented in text (as a
sequence of paragraphs) and cross-referenced to sce-
narios or collaborations. They can be documented
using component sequence diagrams if required.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

L}
i
B

o ot i ki o i e o g

| REGIONAL

1BM 6611

HEREFORE ARE RESPONSIBLE FOR BACKUP -

e e, k. i e ks

Ha (1)

HQ CONTROLLER (1) AU;rH 6R12A710N

;" SWITCH (1)

IBM 6611

BASIC IBM PC 300

FRONT-END PROCESSOR

IBM 3745

CORPORATE SERVER &
SYSTEM MANAGEMENT (1)

DEVELOPMENT PARTITIONED

ENVIRONMENT (1) | IBM $/390 (1) 1
MVS/ESA,
DB/2,CICS/ESA,

VTAM

E15-E17,18,19, |1
D1-D5 (MASTERS),;
D9-Dt1, H5-t19 |

CONTROLLER (1)

. NOTE: MODELS AND DASD SIZES
TO BE CONFIRMED LATER

Placement. A key concern in the design of the op-
erational model is placement—deciding how to
group components into deployment units and on
which nodes to place them. Placement is influenced
mainly by what data the users are operating on, to-
gether with where the system users are and what ac-
tivities the users perform. It is also influenced by non-
functional requirements (see next subsection).

When implementing a commercial software package,
the deployment units to be placed are predefined. In
contrast, when a solution is being designed and devel-
oped, the placement process determines the grouping
of components into deployment units and influences
the partitioning of components.

YOUNGS ET AL. 41

Nonfunctional requirements. The other key influences
on placement are the nonfunctional requirements,
for example:

¢ Performance (end-to-end response time for spec-
ified services)

* Availability (e.g., 8.00-20.00 weekdays, 24 X 7,
etc.)

* Security policies, etc.

A nonfunctional requirement is a quality require-
ment or constraint that an IT system must satisfy.

Service-level requirements (such as those listed
above) are an important type of nonfunctional re-
quirement. Nonfunctional requirements also include
system qualities such as maintainability, even though
these relate to attributes of the development pro-
cess, rather than to attributes of the operational sys-
tem (like service levels).

All kinds of constraints on an IT system are also rep-
resented using this construct, including business con-
straints (c.g., geography of locations), IT standards
(e.g., CORBA**—Common Object Request Broker
Architecture— compliance), and current infrastruc-
ture constraints (must run on specified existing
middleware).

In ADS, nonfunctional requirements may be attached
to any component or node, and the operational
model is developed by placing components onto
nodes according to their nonfunctional requirements
and then successively refining placement decisions.
Although nodes themselves should strictly be mod-
cled as sets of (hardware) components, it is normally
sufficient to regard the node hardware and operat-
ing system as a simple container for software com-
ponents, with the interfaces to the hardware com-
ponents being provided by the operating system.

Integration of functional and operational aspects. As
noted earlier, one of the major challenges in devel-
oping systems is achieving more effective integration
between what has traditionally been application de-
velopment and infrastructure design areas of work.
ADS separates the concerns of the functional aspect
(collaborating components) and the operational as-
pect (satisfying service requirements). At times it is
important to be able to work on one aspect without
considering the other.

ADS facilitates the integration of functional and op-
erational aspects in five main ways:

42 YOUNGS ET AL

A. Component placement—Components (function-
al) are placed on nodes (operational) in order
to meet the service-level requirements and other
quality requirements of the IT system such as
manageability. Co-located components are
grouped into deployment units to ease place-
ment. Where required, the stored data of the
component can be placed on a separate node
from where the data execute. Interactions (func-
tional) are mapped to connections (operational).

B. Component structuring—Operational concerns
influence component structuring. Operational is-
sues are frequently neglected during application
development. ADS shows the concepts and issues
in the operational model that have a direct ef-
fect on the component model. Components are
(re)structured to take into account distribution
requirements, operational constraints, and the
need to achieve service-level requirements. For
example, a component may be split into a client
component and a server-based component, with
a usage relationship between them, to achieve a
response time objective on the client.

C. Scenarios—ADS provides use case scenarios as a
unifying theme that runs through both functional
and operational models. A use case scenario is
realized in the functional model as a collabora-
tion between components, with a sequence of op-
erations executed. This collaboration (based on
the same scenario) can be represented as a walk-
through in the operational model to validate that
the placed components can achieve required ser-
vice levels.

D. Use case service-level requirements—ADS en-
ables effective integration of service-level re-
quirements (SLRs) between functional and
operational aspects. ADS recommends the spec-
ification of SLRs for use cases, which are then car-
ried over to their associated collaborations as
component collaborations. SLRs in this form are
a valuable input to validate that the operational
model will satisfy requirements. However, SLRs
are also attached to many other entities, includ-
ing the IT system itself.

E. Technical components—Last but not least, ADS
facilitates integration by treating the technical
components as part of the functional aspect.
Technical components are components repre-
sented in a component model with component
sequence diagrams in exactly the same way as ap-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 6

Integration of functional and operational aspects

FUNCTIONAL ASPECT

TECHNICAL
COMPONENTS

APPLICATION
| DEVELOPMENT

INFRASTRUCTURE
DESIGN

plication components. This treatment enables
standard component modeling techniques to be
used to represent application or technical inte-
gration.

These five forms of integration are illustrated in Fig-
ure 6.

Elaboration points. As the development of an IT sys-

tem proceeds, the nature of the material that devel-
opers deal with changes. At the start of a project,

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

abstract concepts such as requirements, use cases,
and principles are the primary concern of project per-
sonnel. Toward the end of a project, different, more
concrete concepts dominate; executable code, hard-
ware specifications, and test cases are some of the
major concerns.

However, during the development of an architecture,
some entities retain the same basic concept but be-
come progressively more refined and detailed. This
progressive refinement takes two forms:

YOUNGS ET AL.

43

* Asmore information becomes available, and as the
project gains a better understanding of the nature
of the problem, more detail is added so that, fi-
nally, enough detail is available for a designer or
implementor to take over. There is a sense of con-
tinuous progression in this refinement.

¢ Atcertain points in the process, structural changes
have to be made, again reflecting better under-
standing of the problem, the environment, and the
technology available. For example, it may be nec-
essary to divide and merge components to handle
nonfunctional requirements such as availability or
performance. At this point there is a discontinuity
in the development of the structure of the archi-
tecture.

Furthermore, in any complex project, the division
of responsibilities means that each subproject will
need to make its own structural changes, and those
changes will need to be synchronized among sub-
projects. These points, therefore, are obvious places
to produce major work products. Where predefined
work products are used in a project, it is imperative
that both the creator and the user of each work prod-
uct agree on these key points in the development
process.

Elaboration points are places at which major struc-
tural changes are made in all relevant parts of the
project. (Entities may be split, merged, or regrouped;
some may be deemed to be no longer needed, and
some new ones may be introduced.) Often, unusu-
ally large quantities of information are exchanged
between subprojects so that a uniform and coordi-
nated design can be achieved. At the same time, ma-
jor work products may be exploited or created, and
formal reviews of work products may be held.
Elaboration points are sometimes equivalent to
checkpoints or to the transition between “stages” or
“phases” in development methods.

In the current version of ADS, exact elaboration
points are not defined.® However, the initial and fi-
nal elaboration points in any project will generally
be the same, even though the number and nature of
intermediate ones may differ. For example, ADS rec-
ommends the following:

¢ Initial elaboration point: unconstrained by the lim-
itations of technology, geographical distribution,
and the customer’s environment. At this stage, rel-
atively coarse-grained and undetailed models and
specifications are produced.

+ Intermediate elaboration point: one, for example,

44 YOUNGS ET AL.

in which the distribution of users and locations is
taken into account so that components are geo-
graphically distributed, or when new technologi-
cal components may be identified to support the
component distribution.

¢ Physical elaboration point: fully constrained by the
limitations of the technology available, geography,
and the environment. Fine-grained and detailed
models and specifications are produced. The work
products at this point are a complete architectural
specification of the IT system, including specifica-
tions of hardware and software products so that
they may be ordered. This work may include up-
grades to installed products or connections. A spec-
ification of the operational aspect is produced so
that nodes and connections can be configured and
components deployed and brought into operation.
If any new functionality needs to be created, mod-
ule specifications are created that can be taken by
a developer or programmer to be developed and
unit-tested.

Not every aspect need have the same elaboration
points. The functional aspect may have an initial
elaboration point (usually the first elaboration point
encountered in a project), but the operational as-
pect will usually not. Each aspect may have differing
intermediate elaboration points, reflecting the dif-
ferent concerns of each aspect. However, all aspects
should have a physical elaboration point.

Readers familiar with the WSDDM infrastructure de-
sign (1SD) method will recognize that the end stages
of 1D closely correspond to elaboration points.

The concepts are summarized in Figure 7. This fig-
ure shows the IT system with its two aspects, func-
tional and operational. Within each aspect, the ma-
jor concepts are shown, separated by a dashed line.

Notation. ADS defines several standard notations.
Wherever possible, these use the OMG UML nota-
tions. Table 2 summarizes the notations used in ADS.

Relationship with existing terminology and roles.
This section positions some commonly used termi-
nology and roles with ADS concepts. None of the
terms in the following subsections is defined in ADS.

Application architecture. An application architecture
view emphasizes those components and their inter-
relationships that provide the application-dependent
behavior of the IT system. As such it is a view of a
part of the functional aspect of the IT system.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 7 Summary of basic ADS concepts

INITIAL
ELABORATION

ELABORATION
POINT(S)

| PHYSICAL
ELABORATION
¥ | POINT

FUNCTIONAL ASPECT

oo |
[oousaorons |

OPERATIONAL ASPECT

CONNECTIONS

DEPLOYMENT UNITS

WALKTHROUGHS

Table 2 Notations in ADS

. Notation Name

Where Defined/Comments

21 tifbﬁéhip diagram

ion diagram

ation diagram

"UML class diagram, with components in p}ace of classes

~'Any extensions/interpretations defined in a component model ;

‘Static representation of component usage relationships and composition
Ce UML sequence'diagram, with components in place of objects

" UML collaboration -diagram, with components in place of objects

Defined in the operational model
Based on UML deployment diagram, with extensions

Technical architecture. A technical architecture view
emphasizes those components and their interrela-
tionships that provide the application-independent
behavior of the 1T system. As such it is also a view
of a part of the functional aspect of the IT system.

It is important to understand that ADS does not dis-
tinguish between a technical architecture and an ap-
plication architecture. Any such division is somewhat
arbitrary, so that no formal distinction is possible.
For example, a workflow manager run-time server
(a component in ADS terminology) can be thought
of as a technical component (part of a workflow
manager product), yet it contains business process
definitions and information about the business
organization—clearly application concepts. This
component, therefore, has both application and tech-
nical responsibilities.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

For this reason, the ADS functional aspect encom-
passes components present in both application and
technical architectures, and uses the same concepts
and notations for them.

The application development and infrastructure devel-
opment roles. Application development methods and
practitioners concentrate on the functional aspects
of an IT system. Their main concern is, on the one
hand, to partition the work in such a way that it can
be allocated to development groups and, on the other
hand, to build new components in such a way that
they support the functional requirements. Service-
level requirements (such as availability and perfor-
mance, etc.) are not the primary concern of the ap-
plication developer, although they may greatly
influence the design of their components (though

YOUNGS ET AL. 45

other nonfunctional requirements such as maintain-
ability may be a major concern).

The infrastructure designer forms clusters of bus-
iness and technical components to populate nodes
in locations. The formation of these clusters is based
on analysis of service-level requirements. This ac-
tivity results in specifications being drawn up both
for nodes and new components. Some of the latter
are then passed to the application developers for de-
velopment, others are acquired from vendors.

This simple approach may ignore the essential feed-
back that the placement process generates and that
should be used to further influence the design of the
components. Furthermore, technical components
(for example, messaging) may end up in a gray area
between the application developers and infrastruc-
ture designers, depending on whether they are to be
acquired or custom-built. The more rigorous ap-
proach and the emphasis on formal, complete com-
ponent models in ADS will help to eliminate such ten-
dencies.

Enterprise architect role. Enterprise architects (for-
merly IT architects) build architectural models to de-
scribe the functional requirements of the infrastruc-
ture based on business objectives, the IT vision, and
principles. The enterprise architecture method is a
guide for IT architects and consultants involved in
defining enterprise-wide architectures for clients. It
provides specific guidance on the steps required to
develop an enterprise architecture and general
guidelines for sizing and estimating, report writing,
and quality assurance.

The concepts present in these models reflect the key
building blocks of the architecture and the interfaces
between them. These building blocks are further re-
fined to represent a reusable set of specifications for
which evaluation criteria and standards can be de-
veloped, and eventually product selection can be
done.

Work is in progress to map enterprise architecture
concepts to ADS concepts.

Concluding remarks

The Architecture Description Standard is a key part
of the foundation for an asset-based business in IBM.
It contains a metamodel of an IT system, a semantic
description, and a glossary that are designed to be
sufficiently comprehensive for the target user com-

46 YOUNGS ET AL.

munity. It is also designed to be simple enough to
be deployed to a user with a wide range of skills.

In this paper we have described how ADS was based
on the use of industry standards, particularly UML.
We have shown how these standards have been ex-
tended in particular areas, such as the operational
aspect of architecture, in order to highlight areas that
IBM has learned in practice are crucial in the design
of large-scale enterprise systems.

We anticipate that through facilitating asset creation
and reuse, widespread use of ADS in IBM will deliver
considerable benefits, measured in financial terms,
as reductions in cost, risk, and time in development
projects. Less tangible benefits will be a more con-
cise and precise means of communication between
different parts of development teams and between
1BM and its clients. In other papers in this issue (on
reference architectures and engagement experi-
ences) it can be seen how early versions of ADS have
already been successful in helping IBM to structure
assets and then reuse them in architecture projects
to the benefit of both 1BM and its clients.

Acknowledgments

In addition to the authors of this paper, the Archi-
tecture Description Standard project team consisted
of: John Cameron, Ian Charters, Martin Cooke, and
Dave Vanberg (with Ed Kahan as project leader).
The following also contributed to the development
of ADS, either directly or through its predecessors:
John Black, Steve Cook, Paul Fertig, George Ga-
lambos, Ralph Hodgson, Deborah Leishman, Tim
Lloyd, and John Rothwell.

Appendix: Glossary of ADS terms

The main terms in the Architectural Description
Standard are defined below. Entries that are con-
sidered to be “core” to ADS are represented in a
large-size boldface type. General industry terms, or
minor ADS terms, are regarded as “noncore” terms
and are shown in regular-size boldface type.

Actor An actor is a human user or external system that interacts
with the system being built, by executing use cases. An actor rep-
resents a coherent set of roles. Several users can play the same
role, and one user can perform several roles.

Examples of actor could include customer service representative
or credit authorization service (an external system).

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Architecture “The architecture of an IT system is the struc-
ture or structures of the system, which comprise software and hard-
ware components, the externally visible properties of those com-
ponents, and the relationships among them.” (Adapted from Bass
et al.!)

Architectural template An architectural template is a set of
structural and behavioral patterns that describe some part of the
architecture of an IT system (e.g., workflow, transactionality, user
interface, or network communications). It describes component
roles, the interfaces that components playing these roles must pro-
vide, and a set of standard collaborations.

Familiar examples of architectural templates are:

& The Web architecture, in which the browser and server roles
collaborate in well-understood ways (defined by HTTP) to
present information across the Internet

& The Workflow Refercnce Model, which defines the standard
collaborations and interfaces by which a workflow system can
interoperate with both client applications and invoked appli-
cations

® The ISO-OSI seven-layer model, which constitutes an archi-
tectural template for network communications with well-de-
fined layer responsibilities and interfaces

Architectural templates are useful for promoting standardization
and reuse of architectural assets. They can also be used on a proj-
ect by architects to communicate standard mechanisms to design-
ers.

Collaboration A collaboration is an occurrence of a sequence
of operations that realizes a use case scenario. It typically involves
collaboration between two or more components.

Collaborations are visualized in collaboration diagrams or se-
quence diagrams (as defined in UML). As an example, consider
the scenario of updating customer details in a client/server sys-
tem. There is a sequence of operations in which the graphical
user interface (GUI) component displays a window, calls a data
server component with a request for data, displays the customer
details (and amends them), calls the data server to perform an
update, etc. This whole pattern of component operations and ex-
changes between components is a collaboration that “realizes”
the scenario. Once components have been placed on nodes, the
end-to-end behavior of a collaboration may be assessed and doc-
umented using a walkthrough.

Component A component is a modular unit of functionality,
accessed through one or more interfaces. A component offers a
set of interfaces to the outside world, while encapsulating its own
state and behavior. A component should implement a cohesive
set of functionality. A component may be composed of other com-
ponents, which are encapsulated within it.

Components normally represent software (including operating
systems) but can also represent firmware (e.g., PC BIOS) or hard-
ware (e.g., encryption device, interactive voice response units).

The functional aspect of an IT system is described by groups of
interacting components, ranging from the very large to the very
small.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Examples of components include a customer business object, do-
main name server, an Open Database Connectivity driver (small),
database management system (large component), a spreadsheet
dynamic link library to be used imbedded in other applications,
and a JavaBean**.

Many definitions of component are currently in use. Some of these
restrict use of the term component to software implemented in
specific technologies such as CORBA, JavaBeans, or ActiveX**
that enable self-descriptive interfaces. Our use of component in-
cludes these technologies but is not restricted to them.

Connection A connection joins two or more nodes in order
to support interactions between components that have been placed
on those nodes. A connection may consist of a simple cable be-
tween nodes, but it is typically used to represent various kinds
of network connections (e.g., LAN, WAN) or communications
types (e.g., dial-up, infrared, wireless, satellite).

Connections are used to model network topology, where they show
which nodes can communicate. Connection characteristics (e.g.,
bandwidth, latency, availability, security) are important in assess-
ing whether a network can satisfy service-level requirements of
the various interactions carried.

Data group An old term, interpreted as a deployment unit that
contains the state of one or more components.

Deployment unit A deployment unit describes one or more
components grouped together for deployment purposes. It is in-
tended to simplify the activity of placement since a deployment
unit represents grouped components being considered for place-
ment. A deployment unit has no effect on the structure, behav-
ior, or performance of the software. During placement, deploy-
ment units are placed on nodes.

In practice it is often necessary to regard the execution aspect
of a component (the place where the component executes) as be-
ing in a different deployment unit from the data storage aspect.
In some environments (e.g., Java** applets), it is also important
to distinguish between the deployment unit where the code of a
component is installed and the deployment unit (on a different
node) where the component executes.

Design pattern A design pattern systematically names, motivates,
and explains a general design that addresses a recurring design
problem in object-oriented systems. It describes the problem, the
solution, when to apply the solution, and its consequences. It also
gives implementation hints and examples. The solution is a gen-
eral arrangement of objects and classes that solve the problem.
The solution is customized and implemented to solve the prob-
lem in a particular context.®

Domain A domain is a subject area that defines a context for
analysis and description of some aspect of an IT system. Domains
are described by architectural templates, consisting of a set of
collaborations (and their associated component roles or inter-
faces). See also architectural template.

Elaboration point An elaboration point is a milestone in the
development of an artifact at which significant decisions are doc-
umented. Elaboration points are often used:

YOUNGS ET AL.

47

& As formal review points for an artifact
& As points at which different artifacts are synchronized

Many elaboration points are possible depending on the artifact
and the problem at hand, for example:

1. Aninitial elaboration point is the initial and most abstract elab-
oration point, not reflecting technology and other constraints.

2. Intermediate elaboration points are where selection criteria
for products have been defined, and fully specified operations
have been defined for interfaces.

3. A physical elaboration point is where actual products and fi-
nal hardware topology have been selected and placed, and to
which compilers, languages, and libraries have been commit-
ted.

The elaboration points for different artifacts do not necessarily
correspond.

Framework A set of cooperating classes that makes up a reus-
able design for a specific class of software. A framework provides
architectural guidance by partitioning the design into abstract
classes and defining their responsibilities and collaborations. A
developer customizes the framework to a particular application
by subclassing and composing instances of framework classes.®

Functional aspect The functional aspect of an IT system is
concerned with the functionality of collaborating software com-
ponents. The functional aspect is expressed as one or more com-
ponent models, which represent the static structure and dynamic
behavior of the components in the system.

Components are defined in terms of interfaces and operation sig-
natures. Structure is defined in terms of component composition
and component usage relationships. Behavior is defined in terms
of component collaborations, expressed as sequence diagrams.

The component models reflect the need to satisfy service-level
characteristics.

Interaction An interaction specifies the details of the commu-
nications that should take place between two components in ac-
complishing a particular scenario. An interaction is defined in
the context of a collaboration and describes which requests should
be sent and their sequence. An interaction can be thought of in
terms of a contract between two components and is often spec-
ified in terms of a protocol.

Interactions may have service-level requirements (e.g., data flow
rates, availability) various types of the interaction mode (e.g.,
synchronous/asynchronous/ batch, client-server/peer-to-peer), and
order of requests defined in protocols like the Transmission Con-
trol Protocol/Internet Protocol (TCP/IP).

Examples of interactions include: a client/server interaction be-
tween a GUI on a client workstation and a relational database
on a server through a TCP/IP socket, the communication between
a shallow proxy and the underlying (remote) object.

Interface An interface specifies a set of operation signatures
that are made externally available by a component to other com-
ponents. The state and functionality of a component is hidden,
and is only made externally accessible through the interfaces of

48 YOUNGS ET AL.

the components. The interfaces are the only “public” or “visible”
part of the component.

An interface may be provided by several components and used
by several components. Interfaces are sometimes referred to by
the related term API (application programming interface).

IT system An IT system is a combination of hardware, software,
and documentation that implements and describes a business so-
lution.

Location A location is a type of geographical area or position.
Strictly speaking, it would be more accurate to call it “location
type,” as each location in the operational model (e.g., regional
office) is not a specific grid reference, but a type of location, of
which there may be several instances. Locations can be broad ar-
eas and contain more specific (sub) locations. For example, a lo-
cation may represent a zone (e.g., central), a building (e.g., store,
regional office), or a room within a building (e.g., server room).

Locations are used to represent the positioning of nodes and guide
component and data placement decisions, as well as overall de-
ployment considerations.

Network See connection.

Node A node represents a hardware platform (at some level of
abstraction) onto which deployment units can be placed. Nodes
are used to define required processing capabilities at locations,
and (eventually) become detailed specifications for processors,
memory, etc. A node may have characteristics such as memory,
clock speed, and secondary storage capacity.

Nodes are commonly visualized in terms of diagrams showing net-
work topology. Each node is at a location.

Operation signature An operation signature is a specifica-
tion of a service offered by a component, i.e., a specific kind of
request that can be made to a component.

An operation signature typically includes a description of the in-
formation that is passed along with the operation request and
the information returned, together with any possible error sit-
uations that occurred while executing the request. For example,
a TCP/IP connection operation can be represented by the fol-
lowing operation specification:

integer tcpip_accept_connection(s, &ns, wait_flag, timeout_value)

An interface consists of a set of operation signatures that are likely
to be used in the same context.

Operational aspect The operational aspect of an IT system
is concerned with the distribution of components across the geog-
raphy of the organization in order to achieve the required service-
level characteristics (performance, availability, etc.). Itis also con-
cerned with the necessary systems management functions and
activities needed to maintain components (software distribution,
responding to alerts, etc.).

The operational aspect is represented by one or more operational
models, which show the type and location of hardware nodes, con-

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

nections, network topology, and placement of components or de-
ployment units.

In order to emphasize spatial organization, the operational model
does not show details of functional issues such as how software
components collaborate.

Organizational unit An organizational unit is a group of people
and resources with a specific business goal, which is related to
other such groups via the organizational structure of a company.

Placement Placement refers to the activity of placing deploy-
ment units (and components) onto the network topology of nodes
and connections in order to make functionality available at re-
quired locations and to satisfy service-level requirements. Where
nodes are not predefined, the placement exercise leads to the iden-
tification and design of nodes and connections.

For example, a “clerk GUI” deployment unit may be placed on
the clerk workstation, and an account data deployment unit may
be placed with the DB2* (DATABASE 2*) deployment unit on
the regional office data server RS/6000*.

The operational model is used to support and document the place-
ment process.

Process group An old term interpreted as the execution role
of one or more components mapped into a deployment unit.

Protocol A protocol extends the concept of an interface to in-
clude the allowable sequences of requests, possibly across many
interfaces. It is defined in terms of interactions.

Reference architecture A reference architecture is one that
has already been created for a particular domain of interest. It
typically includes many different architecture styles, applied in
different areas of its structure. See also architectural template.

Scenario A scenario is an instance of a use case. That is, a sce-
nario is an execution of a use case under well-specified assump-
tions. A scenario is realized in the IT system by a collaboration.
An example of a scenario is: “Use ATM 1234 to draw $100 from
checking account 987654, where the account has no overdraft fa-
cility and has a previous balance of $105, and the transaction is
successful.”

Scenarios are used for:

® Validating and enriching the use case model

® Designing collaborations

* Prototyping (Scenarios can drive prototyping and are a useful
way of defining prototype scope.)

® Test cases (Scenarios make good system and integration test
cases.)

® User acceptance testing

Structuring In this context, structuring refers to the architec-
tural activity of organizing the IT system into a set of interacting
software components. Structuring addresses several consider-
ations, including:

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

*® Allocation of responsibilities to components in such a way that
each component has a cohesive set of responsibilities and re-
dundancy is avoided

® The partitioning of components to take into account distribu-
tion requirements

® Optimizing the component structure to satisfy service-level re-
quirements such as performance

® The incorporation of reusable components or legacy systems
into the design

Structuring plays a role in most of the design activities concerned
with the functional aspect of an IT system. The component model
supports and documents the structuring process.

Subsystem A subsystem is a grouping of components in an IT
system.

A subsystem can be thought of as defined by an irregular line
(e.g., astring) drawn around a subset of the components in a sys-
tem. There are no restrictions on the subset.

Subsystems may overlap, i.e., a single component may be in two
or more subsystems. A subsystem may contain other subsystems.
A subsystem may span across nodes. A subsystem allows us to
group a number of components for various reasons:

® Allocation of work to a development group: a development
group is assigned one subsystem comprised of one or more com-
ponents.

® Labeling major parts of an IT system on the grounds of the
functionality offered by all of them: e.g., the imaging subsystem,
the document-handling subsystem

This concept allows us to consider groupings of components with-
out implying that these components are part of a larger compo-
nent that offers services based on the services offered by the in-
dividual components contained in the set. A subsystem does not
have any notion of encapsulation.

Technical reference architecture A technical reference archi-
tecture is a type of reference architecture that does not directly
include structures of application (business) behavior. In other
words, it can be used as a base architecture for several different
application types. It nevertheless still applies only to a specific
technical domain. For example, technical reference architectures
or fragments of technical reference architectures exist today in
the domains of distributed object systems (CORBA), compiler
development, and the Internet (Web browser or server).

Use case A use case is an identifiable and externally observ-
able behavior of the IT system. It is a pattern of usage that is
initiated by an actor and that performs or aims to perform some
useful work. A use case represents a dialog between an actor and
the system. For example, “Draw funds from checking account”
is a use case.

A template with standard sections (e.g., actors, preconditions,
steps) is used to structure the description of a use case. During
the definition of components, use cases are also used to describe
behaviors that are internal to the IT system but are externally
observable behaviors of the component.

YOUNGS ET AL. 49

Walkthrough A walkthrough is a description of the flow of a sce-
nario starting from a user all the way through the system and back
to the user. It corresponds to a cotlaboration between placed com-
ponents. These textual descriptions may be augmented by se-
quence diagrams, which show the flow of messages between de-
ployment units. An example of a walkthrough is the handling of
a phone call in a call center application.

Walkthroughs are used to validate the operational model and to
ensure that service-level requirements are satisfied.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Lotus Development Cor-
poration, Object Management Group, Sun Microsystems, Inc.,
or Microsoft Corporation.

Cited references and notes

1. L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, Addison-Wesley Publishing Co., Reading, MA
(1998).

2. In this context, infrastructure consists of those components
(usually, but not exclusively, application-independent services)
that may be used by many applications.

3. The Object Management Group, http://www.omg.org/. The
UML notation and semantics guides are available from this
site.)

4. M. Fowler, K. Scott, and G. Booch, UML Distilled: Applying
the Standard Object Modeling Language, Addison-Wesley Pub-
lishing Co., Reading, MA (1997).

5. Although the majority of components will be software, it is
sometimes necessary to model hardware as components. This
will generally be the case if software components use special-
ized hardware interfaces directly (for example, an encryption
device, a pager, or an interactive voice response unit).

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

7. The Workflow Management Coalition is a nonprofit, inter-
national organization of workflow vendors, users, analysts, and
university or research groups. Its mission is to promote and
develop the use of workflow through the establishment of stan-
dards for software terminology, interoperability, and connec-
tivity among workflow products. See http://www.aiim.org/wfmc/
for more information.

8. It is expected that these elaboration points will be identified
in a later version.

Accepted for publication October 4, 1998.

Robert Youngs IBM United Kingdom Ltd., 1 New Square, Bed-
font Lakes, Feltham, TWI14 S8HB England (electronic mail:
robert@uk.ibm.com). Mr. Youngs is a Consulting IT Architect in
the IBM United Kingdom Object Technology Practice. He has
been a member of the ESS Technical Architecture team since
1996, and now works on the ESS Operations team. He was a mem-
ber of the SI/AD Architecture Description Standard project and
is the architect of the ESS tool. He has worked as an enterprise
systems engineer and a technical consultant for large IBM en-
terprise clients in the banking, government, and utilities indus-
tries, as a specialist in enterprise systems software and hardware,

50 YOUNGS ET AL.

and as a project manager. Mr. Youngs was a member of the proj-
ect that created IBM’s first infrastructure design method (End-
to-End Design). He holds an M.A. in mathematics from Cam-
bridge University.

David Redmond-Pyle PostModern Solutions Ltd., Sunny Croft,
Tarvin Road, Manley, Cheshire, WA6 9EW England (electronic mail:
david@postmod.com). Mr. Redmond-Pyle is Technical Director
of PostModern Solutions, and is currently working with the IBM
United Kingdom Object Technology Practice as a consultant on
method development. He was a core member of the SI/AD Ar-
chitecture Description Standard project and contributed to the
development of architecture work product descriptions for the
new SI/AD method and to methods related to ESS. He previ-
ously worked as Chief Methodologist at CASE and as method-
ology specialist at LBMS, Inc., where he was responsible for de-
veloping LBMS’s client/server development method. At LBMS
he worked on a wide variety of methods and tools, including
DSDM/Internet, software reuse methods, formal specification in
Z, designing parts of the Systems Engineer CASE tool, and work-
ing with the OMG and the Workflow Management Coalition. He
has also collaborated with Hewlett-Packard Company on their
Fusion2 OO method. Mr. Redmond-Pyle has published numer-
ous articles and an influential book on the design of graphical
user interfaces (the GUIDE method).

Philippe Spaas [BM United Kingdom Ltd., 1 New Square, Bed-
font Lakes, Feltham, TWI4 SHB England (electronic mail:
philippe_spaas@uk.ibm.com). Mr. Spaas is an IT Architect in the
IBM United Kingdom Object Technology Practice. He has
worked as an application architect on various projects in the fi-
nancial sector. He was a member of the ESS Application Archi-
tecture team in 1997 and participated in the Architecture De-
scription Standard project in 1998. He also made contributions
to the SI/AD methods initiative. Mr. Spaas holds a degree in ap-
plied economics from the Katholieke Universiteit Leuven (Bel-
gium) and an M.B.A. from Cornell University.

Ed Kahan IBM Global Services SIIAD National Practice, 315
East Robinson Street, Orlando, Florida 32801 (electronic mail:
Ekahan@us.itbm.com). Mr. Kahan is a certified Executive Consultant
and a member of the national Systems Integration/Application
Development (SI/AD) practice. Mr. Kahan is the team leader
for the Architecture Description Standard development and the
infrastructure architecture and design methods used by IBM. He
is also working on ESS and architectures for asset harvesting and
reuse. Prior to his current assignment in the national practice,
he consulted with IBM clients in the telecommunications, trans-
portation, banking, utilities, and petrochemical industries in ap-
plication and IT architectures development. Mr. Kahan was a
founding member of the consulting group in Florida. Prior to join-
ing IBM, Mr. Kahan worked in signal analysis, acoustics, and vi-
bration instrumentation research at Bruel & Kjaer Instruments,
Denmark.

Reprint Order No. G321-5696.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

