Java and the IBM
San Francisco project

The San Francisco™ project establishes a new
paradigm for building business applications. The
product, targeted for independent software
vendors (ISVs), provides a distributed object
infrastructure (foundation), common business
objects (CBOs), and business process
components (BPCs). Together, they provide a
platform-independent business application
foundation, ready for extension by ISVs to
produce end-customer, business-critical
applications. The San Francisco project is written
almost entirely in Java™ and to our knowledge is
currently the largest Java development effort in
the world. This paper provides an overview of
the San Francisco project, with emphasis on

the Java considerations of the product’s
development, the lessons learned, and our
recommendations for future Java language
maturity.

group of independent software vendors (ISVs)

came to [BM a few years ago with several prob-
lems, seeking solutions. An increasingly large per-
centage of their development budget was being spent
on multiple platform support, technology infrastruc-
ture, and business logic that was not unique to their
industries. This left insufficient resources to react to
changing customer requirements and to implement
the key features that differentiate each ISV from
its competitors. Many existing business solutions
needed major updates, for issues like the Year 2000
problem and the change to a common European cur-
rency. Many ISvs also wanted to update their pro-
gramming methodologies and skills from procedural
to object-oriented development, in order to increase
flexibility for quickly adapting to new requirements
and to reduce maintenance costs. Many ISVs real-
ized they could not afford the risk involved in pro-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

0018-8670/98/$5.00 © 1998 IBM

B. S. Rubin
A. R. Christ
K. A. Bohrer

by

ceeding on their own, and needed to work with other
companies to deliver competitive solutions.

These requirements led to the San Francisco™ proj-
ect. The first customer shipments of the product, with
five major pieces (see Figure 1), were made avail-
able in August 1997. The first layer, the foundation,
provides a distributed object-oriented infrastructure
that implements the San Francisco programming
model, simplifying the interfaces with business ob-
jects. It also provides a degree of technology insu-
lation from specific object services as well as hard-
ware and operating system platforms. The second
layer of San Francisco provides many “common bus-
iness objects” (CBOs) that are common to multiple
business domains and that implement common de-
sign patterns for business applications. The first of
several planned business process components, gen-
eral ledger, provides a set (a framework) of inter-
connected objects that implement the essence of this
business domain and are designed for extension and
customization by 1Svs. I18Vs can develop at any of the
three layers (the foundation and CBO layers are pack-
aged together and sold as the “base”). A set of de-
velopment tools, a GUI (graphical user interface)
framework, and several utilities, such as print, ob-
ject save and restore, and configuration, round out
the product. The product provides much of the func-
tionality needed by a completed application, so ISVs
can focus their resources on competitive differen-

©Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

RUBIN, CHRIST, AND BOHRER 365

Figure 1 San Francisco structure

| CORE BUSINESS PROCESSES

COMMON BUSINESS OBJECTS

| ENTITY: BUSINESS PARTNER, ADDRESS, G
 HELPER: KEYS, CACHED BALANCES, RESULT
. ENTERPRISE STRUCTURE: COMPANY.

tiators. The product is primarily aimed at applica-
tions for small- and medium-sized business markets.

The Version 1, Release 1 product released in Au-
gust 1997 consisted of about 270 000 lines of Java
code (3200 classes, 24 600 methods) and 15 000 lines
of C+ + code. It contains 51 San Francisco program-
ming model objects, 143 common business objects,
111 general ledger business objects, and 3600 HTML
(HyperText Markup Language) pages of documen-
tation along with 156 static and over 300 dynamic
object model diagrams represented in the Rational
ROSE** tool.

Both Microsoft Windows NT** and IBM AIX* (Ad-
vanced Interactive Executive) servers are supported,
along with any Java** client compliant with JDK**
(Java Development Kit) 1.1.x. San Francisco has
been developed with input from more than 200 soft-
ware vendors who provided requirements and feed-
back. Some of these vendors also joined the devel-

366 RUBIN, CHRIST, AND BOHRER

opment team, providing an impressive breadth and
depth of industry domain knowledge.

As this paper goes to press, the Version 1, Release
2 product is being shipped. This release includes the
additional domains of order management, ware-
house management, accounts payable, accounts re-
ceivable, and AS/400* (Application System/400*) sup-
port, along with performance enhancements and
improved legacy data support. Release 2 also sup-
ports the run-time environment for six national lan-
guages. Additional information on San Francisco can
be found in two previous issues of the IBM Systems
Journal,™? including a special issue with a theme
devoted to the project, and on our Web site at http:
//www.ibm.com/java/SanFrancisco.

The foundation layer
Many of the Java-specific aspects of San Francisco

pertain to the foundation layer. A key architectural

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

decision in San Francisco was to develop a program-
ming model, implemented by the foundation, that
provided an easy way to create and manipulate bus-
iness objects. Since most business objects require per-
sistence, security, transactional capability, external-
ization ability, etc., we decided to simplify the
decisions that a business object developer must make
when building a distributed-object application. By
providing an aggregation of all of these essential ob-
ject services under high-level abstract interfaces, we
provided simplification as well as insulation from spe-
cific object service technologies. The services pro-
vided by the foundation layer include: object request
broker (ORB), factory, transactions, concurrency con-
trol, persistence, legacy data treated as business ob-
jects, containers for separating object location from
application code, object query, collection classes, ex-
ternalization, naming, notification, local/remote ex-
ception transparency, serviceability, server manage-
ment, national language support (NLS) enabling, and
security (authorization and authentication).

The selection of Java for San Francisco

There were many technical and business reasons why
Java was selected for the programming language and
environment for San Francisco. Java is a platform-
neutral, easy-to-use object-oriented language envi-
ronment allowing higher productivity than C+ + and
providing a sufficient level of security and robustness.
This section explores these advantages in more de-
tail.

A key requirement for San Francisco was that it run
on avariety of hardware and software platforms, both
servers and clients, and allow an intermixing of serv-
ers with different architectures. While we could have
built multiple foundation layers to mask these plat-
form differences while presenting a single program-
ming model to the layers above, our development
expense was significantly reduced by Java’s platform-
neutralizing features, allowing for almost the same
foundation code for all server platforms.

San Francisco supports both thick and thin clients.
For thick-client support, traditional approaches
would require a different dynamic link library (DLL)
for each supported client. Java allowed us to use one
set of code for all Java clients, which greatly simpli-
fies the support and administration tasks.

Many of our 1Svs were just beginning to use object-

oriented development techniques. The learning
curve for C+ + was too great, yet they wanted some

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

of the features of C++. Therefore, we needed a
“business C++” language. Java fit the requirements
nicely. Programmers are still faced with significant
effort in learning object-oriented concepts, but can
then easily tackle the programming syntax issues and
become productive quickly. The number of available
books on Java and the growing number of univer-
sities that have adopted Java as an instructional lan-
guage, along with the rapid industry acceptance of
Javain general, were also key factors in the decision
to adopt Java.

Most of our foundation-layer San Francisco devel-
opers had previous experience in C++ program-
ming. Many of our CBO and BPC developers had
previous experience only in non-object-oriented lan-

Our development expense was
significantly reduced by
Java’s platform-neutralizing
features.

guages like RPG and COBOL. Their initial attempt to
learn C+ +, then use it with a CORBA*** IDL (in-
terface definition language) environment resulted in
extremely low productivity. The transition to Java
was not only very fast (a matter of weeks), but we
estimate that Java provided a productivity boost of
300 percent over C+ +. Factors for this gain included
having fewer language-construct decisions to make,
no explicit memory management, no null-pointer
problems, no pointer-to-pointer arguments, no de-
referencing, no IDL to produce or compile, and clear
exception stacks for debugging code. The class library
support and language support for threading were also
key productivity enhancers. Note that most of our
foundation layer development was done with the raw
JDK; since it was very important for us to stay abreast
of the latest level of Java, we chose not to wait for
the integrated development environments (IDEs) to
appear. Productivity would have further improved
with an IDE, however.

The security benefits of Java have been widely dis-
cussed, * but the aspect of robustness is especially im-
portant in a business-server environment. In a point-
er-based language like C++, two business objects

RUBIN, CHRIST, AND BOHRER 367

in the same server process could accidentally or in-
tentionally access each other’s state. The resulting
problems range from unauthorized access of sensi-
tive data to corruption of object structures, leading
to robustness problems. Other systems solve this
problem by forcing objects into separate processes
or introducing tag bits into the memory address ar-
chitecture. Since a Java user cannot manipulate
pointers, these problems are avoided. We have ex-
perienced excellent server process robustness using
Java.

Careful technology selection

While Java addresses some of the necessary object
service technologies today, it currently does not ad-
dress them all. When we started development, we
used what was available, and built what was not. Over
time, some of the functions we have built have been
addressed in Java. In some cases, we have migrated
to the standard solution. Because the San Francisco
programming model is at a higher level than many
of these technologies, it provides both the upper lay-
ers of the product and the 1SV applications insula-
tion from these technology choices, allowing us to
react to quickly changing technology without impact-
ing the applications and business objects.

To provide a better understanding of how the foun-
dation layer shields the business objects from tech-
nology change, here are two specific examples. First,
distributed-object computing requires an object re-
quest broker (ORB) for handling requests from one
object to invoke methods on another in a different
process, whether that process is on the same or on
a different machine. We wanted a pure Java solu-
tion and started with a third-party solution. Sun Mi-
crosystem’s JavaSoft unit then released RMI (remote
method invocation). We switched to RMI without im-
pacting the program model. In response to increas-
ing demand for CORBA IIOP (Internet Inter-Orb Pro-
tocol) support, JavaSoft announced that Rmi will use
the 110P protocol at a future date. San Francisco in-
tends to use this version of RMI, gaining CORBA 110P
capability. A second example is the code we wrote
to parse class files to discover method and attribute
names for object queries and persistence. Later,
JavaSoft released a low-level refiection capability®
that we were able to “snap in” without impact to the
programming model and with a gain in performance.

We did not adopt every advance in Java for a variety
of reasons, including functional immaturity, prod-
uct schedules, and performance. One example is se-

368 RUBIN, CHRIST, AND BOHRER

rialization, which is a Java function that produces a
flattened, or “dehydrated,” representation of an ob-
ject for movement or storage. Before the appearance
of serialization in Java, we wrote our own external-
ization and internalization routines in the business
object class for this capability. When serialization be-
came available in Java, it appeared to be a way to
automatically accomplish the same result. Perfor-
mance tests showed, however, that our explicit ex-
ternalization performed much better. Also, Java se-
rialization does not support reading serialized state
into an existing object in memory. Lack of this sup-
port affects overall application performance, forc-
ing unnecessary instantiations and garbage collec-
tion when refreshing an object’s state from its
persistent store, or when moving local copy state back
into the server-side objects. The next two sections
expand on other technology selection issues.

Local-remote transparency

To obtain programming-model simplicity, we needed
to provide the same interface to local and remote
objects. In addition, there are cases where it is more
efficient to copy a server object to a client for method
execution. We accomplished this by extending the
rich functions already provided by RMI. These were
implemented by changes to the RMI compiler (this
special version is shipped only with San Francisco)
and by subclassing RMI function, so that we use RMI
run-time code as provided by JavaSoft. Our program-
ming model allows objects to be accessed in one of
two ways. Home mode means the object is resident
on a server and accessed via proxy from the client.
Local mode means the object is copied into the cli-
ent and returned to the server at the end of a trans-
action. A factory call (see Gamma et al.,® Factory
pattern) that requests an object has an “access mode”
parameter that specifies both object location and lock
type. This can be specified at either compile or run
time. This factory call returns either the proxy or the
actual object, and both inherit from a common in-
terface. Applications program to this interface, so
whether the object is local or remote is transparent
to the application.

We also wanted this transparency to extend to ex-
ceptions, so exceptions “thrown” by a server object
would appear as if they were thrown by a client ob-
ject. Remote objects introduce the potential for com-
munication failures, and RMI introduced an excep-
tion that must be “caught” by a method, called
RemoteException, to cover these cases. We changed
the RemoteException method to a run-time excep-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

tion so the method calls look the same. A function
in the outer transaction scope catches the exception,
recovers, and can roll back the transaction. We also
needed to be able to associate multiple requests from
the same client transaction with the same server
thread, so we added thread-switching support. Fi-
nally, we added some support to allow implicit flow
of control between transaction and security contexts
without these appearing in method signatures.

Object persistence

Object persistence was one of the biggest technical
challenges, and successes, of San Francisco. We
wanted a business object that was architected to be
not only independent of specific client or server ar-
chitecture, but also independent of the specific per-
sistence technology. San Francisco supports plain
files and relational databases, and our intention is
to use other object storage technologies in the fu-
ture. Externalization is used to flatten objects to plain
files, and the Java Native Interface (JNI) features are
used to move data between object attributes and re-
lational database columns via ODBC (Open Database
Connectivity, a standard protocol).

Two types of relational database persistence are sup-
ported. The first technology is designed for those who
are creating new data and do not want to deal with
the specific mapping between Java business objects
and relational database tables. We provide a func-
tion that automatically creates tables with optimal
layout for the objects. The second technology is used
for existing data. We provide a schema-mapping tool
that allows 1SVs to map a San Francisco Java bus-
iness object to a specific existing relational database-
table layout. The programming model includes a col-
lection (a grouping of business objects) that maps
efficiently to a database table. We can thus treat ex-
isting relational database tables as a large collection
of business object instances. Access to these objects
(rows) leverages the existing database index and
query capability, yet appears to the programming
model as an object collection and supports object
queries.

The ODBC interface and the installation utility are
the only components of San Francisco not written
in Java. The rest of the foundation layer, the CBO
layer, and the BPC layer are written in Java. When
JDBC** (Java Database Connectivity) becomes more
pervasive and tuned for performance, supports a two-
phase commiit protocol for robust transactions across
servers, and when we have the ability to access pri-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

vate instance data in a Java object via reflection, we
will be able to provide a pure Java foundation. Plat-
form-specific code is also needed for the installation
utility.

Java object references are limited to only a single
Java Virtual Machine (JvM). Since San Francisco
needs business objects that can reside on any client
or server, and these objects might not be resident in
memory, a San Francisco business object references
another object via a handle. A handle object con-
tains a network-wide unique identity that includes

We provide a tool that
maps a business object
to an existing relational
database table layout.

a container identification, allowing a level of indi-
rection for specifying object location and persistence
form during administration time, instead of program
development time. It also contains a class identifi-
cation, supporting class replacement of objects to
which the handle refers. The handle can optionally
contain a database-table primary key for cases when
legacy databases cannot be changed to add an iden-
tity column.

In San Francisco, business object creation is not done
using a “new” method, but with a create call to a fac-
tory. The actual object returned might be either a
proxy to a remote object or the object itself, as al-
ready discussed. The factory might also return a sub-
class of the requested class. This class replacement
technique allows ISVs to replace San Francisco-pro-
vided classes with their own subclasses, without
change to business process component code. The fac-
tory can also override configured default container
information to control more specifically where an
object is created. An ISV can replace the factory to
establish a partitioning of objects across multiple
servers and data stores.

Java lessons learned

San Francisco has pushed Java technology as per-
haps no other development project has. While we

RUBIN, CHRIST, AND BOHRER 369

are very pleased with the results, there are some
problems that need continued focus to enhance the
role of Java on servers running large business ap-
plications.

Performance has been the biggest technical challenge
for the development of San Francisco. While we cur-
rently support subsecond transaction rates, and con-
tinue to make significant advances, we have not yet
reached our high goal of matching the performance
of traditional procedural applications.

Some of the tuning of San Francisco involved
changes to the architecture and programming model,
but many of the gains came from changing coding
styles, using compilation technology, and changes to
the Java Virtual Machine.

In Java, almost everything is an object. This provides
usability for programmers, but results in many ob-
ject instantiations and garbage collections. These are
time-consuming operations that are generally not op-
timized by compilation technologies. A prime exam-
ple is the Java String class. Manipulation of strings
looks simple in source code, but can result in sev-
eral temporary objects, compounding the creation
and destruction times. We made special efforts to
reduce the string manipulations in the product and
used the Flyweight pattern,® which allows a single
instance to be used in multiple situations, to reduce
object instantiations in general.

The Java class libraries added productivity in our de-
velopment of the foundation layer and the Gui
framework, but were generally not applicable to im-
plementing the persistent business objects. The Java
libraries are written for general-purpose needs. We
gained performance by rewriting some of these for
our needs. For example, the Java HashTable class
assumes multithreaded access and uses the synchro-
nization capability of Java. This is a useful, but time-
intensive, operation. For cases in the foundation
where we knew access was done only by single
threading, our own unsynchronized hash table
yielded significant savings.

Many benchmarks are available for small or numer-
ically intensive Java applications, and these show
great results when just-in-time (JIT) technologies are
used. San Francisco has a workload that does not
match these benchmarks. We wrote a Java bench-
mark, inspired by the Transaction Processing Per-
formance Council’s benchmark TPC-C,” that used the
foundation layer. Using this benchmark, we found

370 RUBIN, CHRIST, AND BOHRER

only a 30 to 40 percent gain from JIT technology,
which is far short of the results obtained with other
benchmarks. We are exploring the benefits of static
compilation technology at this time.

Performance tools are critical for serious applica-
tions, and ours have not been adequate up to this
point. However, existing tools did allow us to find
bottlenecks in San Francisco code and to track mem-
ory allocation. The current ;vMs have a performance-
trace feature that shows an aggregation of method
calls, which does not provide sufficient detail for all
of our needs. We are working with the University of
Minnesota on tools to show call-graph information,
traces that show a merger of client and server pro-
files, and some interesting performance visualization
techniques.

Garbage collection is an area in Java that can ben-
efit from more sophisticated algorithms. We see the
performance impact of threads being stopped while
garbage collection is performed, and we could also
benefit from decreased collection times. Also, gar-
bage collection is not a guarantee against memory
leaks. We had many cases where we no longer
needed objects, but their references were still held
by another object so the garbage collector did not
free them. Tools that track object creation and de-
struction would be useful for Java.

Until recently, Java has been used for small applets
and programs. The JVMs have not been optimized
for server applications with large numbers of threads
and classes, high object creation and destruction
rates, etc. For example, the Java 1.1 release shows
a good deal of heap contention as the number of
threads increases, so when a thread tries to perform
memory allocation or the garbage collector needs
access to the heap, other heap-requesting threads
are held off. We are working with others in IBM and
in the industry to ensure that the next generation of
Java works well for this emerging class of applica-
tions.

Conclusion

The San Francisco project promises to establish a
new paradigm for developing business applications,
providing the platform-independent infrastructure
and business components that enable 1SVs to build
business applications more efficiently than in the past.
This paper has focused on the Java aspects of the
project, including why Java was an excellent match
for the project requirements and some of the Java

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

technical issues encountered and their solutions,
along with areas for future Java maturity. As well as
demonstrating that large-scale development of Java
business applications can be achieved, the project
has influenced Java function, quality, and perfor-
mance.

Acknowledgments

San Francisco was developed by a team of almost
150 persons: from 1BM in Rochester, Minnesota,
Boblingen, Germany, and Hannover, Germany, from
International Business Systems (1BS) in Solna, Swe-
den, from JBA International, Warwickshire, United
Kingdom, and from several other software vendors.
We would like to thank this team for making the San
Francisco project a reality and for pushing the lim-
its on new technology in the process.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corporation,
Sun Microsystems, Inc., Rational Software Corporation, the Ob-
ject Management Group, or the Transaction Processing Perfor-
mance Council.

JBuilder is a trademark of Borland International, Inc.

Cited references and notes

1. V. D. Arnold, R. J. Bosch, E. F. Dumstorff, P. J. Helfrich,
T. C. Hung, V. M. Johnson, R. F. Persik, and P. D. Whidden,
“IBM Business Frameworks: San Francisco Project Techni-
cal Overview,” IBM Systems Journal 36, No. 3,437-445 (1997).

. San Francisco theme in IBM Systems Journal 37, No. 2 (1998).

3. Standards have been published by the Object Management
Group (OMG) for the Common Object Request Broker Ar-
chitecture (CORBA). More information about the OMG can
be found at http://www.omg.org.

4. JavaSoft Java Security white paper at http:/www javasoft.com/
docs/white/index.html.

5. The reflection capability allows Java code to discover infor-
mation about the fields, methods, and constructors of Java
classes.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Co., Reading, MA (1995).

7. Although our Java benchmark does not rigorously conform
to TPC-C, it had inspiration from it. More information on
TPC-C can be found at http://www.tpc.org/home.page.html.

NS

Accepted for publication March 3, 1998.

Bradley S. Rubin /BM AS/400 Division, 3605 Highway 52 North,
Rochester, Minnesota 55901 (electronic mail: bsr@us.ibm.com). Dr.
Rubin joined IBM in 1985 and has held a variety of positions in
hardware and software development, in both technical and man-
agement roles, on the AS$/400 product. He received his B.S. de-
gree in computer engineering and an M.S. degree in electrical
engineering from the University of Illinois, Urbana, and his Ph.D.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

degree in 1996 from the University of Wisconsin, Madison, spe-
cializing in object-oriented databases and information retrieval
systems. He was the team leader for the foundation layer in San
Francisco and responsible for the proposal and prototyping for
moving the San Francisco implementation to Java. He is a senior
software engineer and currently the lead architect for the San
Francisco project.

A. Ralph Christ IBM AS/400 Division, 3605 Highway 52 North,
Rochester, Minnesota 55901 (electronic mail: christ@us.ibm.com).
Mr. Christ joined IBM in 1980. He has held a variety of positions
in System/38™ and AS/400 operating system development, as well
as object-oriented application development. He received a B.S.
degree in computer science at the University of Wisconsin. Mr.
Christ was the initial development manager on the San Francisco
project, and recommended the move to Java. He is currently a
senior development manager responsible for San Francisco ar-
chitecture and performance.

Kathy A. Bohrer IBM AS/400 Division, 11400 Burnet Road, Aus-
tin, Texas 78758 (electronic mail: bohrer@us.ibm.com). Ms. Bohrer
joined IBM in 1974 and is an IBM Distinguished Engineer. She
has held lead architectural positions in AIX (Advanced Interac-
tive Executive) operating system development and object-oriented
development related to OMG (Object Management Group) ser-
vices and Taligent frameworks. She received a B.S. degree in elec-
trical engineering from Rice University. Ms. Bohrer was chief ar-
chitect for Version 1, Release 1 of the San Francisco project. She
first encountered Java in early 1995 and recommended its use for
business object and application programming. She currently di-
vides her time between San Francisco technical strategy and pro-
viding consulting to ISVs.

Reprint Order No. G321-5682.

RUBIN, CHRIST, AND BOHRER 371

