386 CHAMBERLAND, LYMER, AND RYMAN

IBM VisualAge for Java

This paper introduces the IBM VisualAge®

for Java™ product, a robust, visual suite of tools
designed for rapid prototyping and enterprise
application development. The paper outlines the
development-time benefits of using VisualAge for
Java.

Ithough the race to develop end-to-end Java de-

velopment environments has just begun, the
pace is accelerating. When tools first appeared,
Java** developers were reluctant to move to them
and away from coding directly with the Java Devel-
opment Kit (JDK**). The criticisms of the early tools
were predictable: for example, support for project
management was clumsy, architectures were con-
strained, tools were not integrated, had limited code-
generation facilities, and were “buggy” and slow.
Tools or third-party beans started appearing for such
niche markets as multimedia applets, database ac-
cess, and remote connectivity. However, a hefty in-
vestment in Java architecture and code was still re-
quired to piece together these disparate parts.

In the summer of 1997, 1BM released Version 1.0 of
VisualAge* for Java, a robust, visual suite of tools
intended to address these criticisms. The designers
of VisualAge for Java had these goals in mind:

» Rapid prototyping. The programmer needs to ex-
periment with fragments of code, developing ap-
plications more iteratively.

* Visual programming. Consistent with the indus-
try’s move toward visual design, programmers need
to be able to visually create and manipulate all
components.

* Open architecture. Generated code should fully
support the JavaBeans** component model, allow-

0018-8670/98/$5.00 © 1998 IBM

L. A. Chamberland
S. F. Lymer
A. G. Ryman

by

ing the programmer to create components that can
be reused in other tool environments.

» Tool integration. Tools that coexist in an environ-
ment should be aware of each other and be able
to leverage each other’s strengths. Better integra-
tion of tools helps to shorten the development cy-
cle.

» Robust code generation. Where possible, the de-
velopment environment should help the program-
mer with code generation. Common types of code
should be automatically generated.

This paper outlines how VisualAge for Java meets
these goals, primarily through the following features:

1. Dynamic and iterative development, with simpli-
fied source control, interactive execution, incre-
mental compilation and linking, and debugging
support

2. Construction-from-parts paradigm using visual
programming with JavaBeans support

3. Code generation by wizards, called “Smart-
Guides.” The generated code can provide access
to data and resources on enterprise systems as well
as on Application System/400* (AS/400%) systems.

4. Enhanced context for development, with power-
ful browsing features and API (application pro-
gramming interface) documentation framesets

VisualAge for Java was designed for complete, end-
to-end Java development. Using its tools, program-
mers can achieve productivity gains that rival those

@Copyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

of other tool suites. Programmers can purchase Vi-
sualAge for Java Professional, which includes the
core integrated development environment (IDE) and
Visual Composition Editor, or VisualAge for Java
Enterprise, which in addition includes the enterprise
access builders.

Dynamic and iterative development

The traditional edit-compile-debug development cy-
cle can take too long in today’s competitive environ-
ment. By breaking down the sequential nature of this
cycle, IBM’s VisualAge paradigm makes the entire
development cycle more iterative.

Simplified source control. With VisualAge for Java,
the programmer no longer needs to be concerned
about file management and frequent back-ups. As
program elements are created they are automatically
stored in the repository. When first created, the pro-
gram element is also made available in the IDE work-
space. Previously created program elements may be
added to the workspace as needed. While the work-
space contains only a single edition of a program el-
ement (called the current edition), the repository
contains all editions. In fact, all the user source code
is contained in the repository, including the current
edition. When a program element is added to the
workspace, the source is compiled by the IDE into
Java bytecodes. Similarly, when a program element
is created, the first “save” places the source in the
repository and compilation is automatically initiated.

As well as the automatic creation of editions, it is
possible to explicitly create versions of a class, pack-
age, or project. Open editions, denoted by time
stamps, can be changed. Versioned editions, which
may be given specific names or be automatically
numbered, are fixed baselines of code that cannot
be edited. Typically, the programmer works with an
open edition until satisfied with a particular portion
of code, then preserves it as a version. The version
can then be used to create another open edition. This
makes it possible to identify the completion of each
stage of a project and ultimately to identify the con-
tents of a particular release.

VisualAge for Java provides a simple way to revert
to previous editions. If the user decides that the last
code change is unnecessary or incorrect, selecting
the “Revert to Saved” edit action causes the previ-
ous edition of the program element to be reloaded
into the workspace. This maintains code integrity
during development of the next release.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

The IDE also provides a powerful comparison tool
for objects in the repository. This tool is especially
useful for comparing different editions of the same
object. For example, when editions of the same class
are compared, any differences in the class definition
are shown, as well as a list of differing methods and
the type of difference: source changed, added, or de-
leted. When a list element is selected, the source for
each edition is displayed. Changes can be merged
by simply copying and pasting from one source view
into another.

In VisualAge for Java Version 1.0, it is not easy for
developers to share code. The user must either ex-
plicitly export the source or create and export an in-
terchange file that also contains project and visual
programming information. In this first release, it is
also impossible to remove or purge program ele-
ments from the repository. (The user has to create
and export an interchange file of the desired projects,
then import this information into a clean reposito-
ry.) These shortcomings are addressed with the team
development capabilities available in a beta version
of the next release of VisualAge for Java Enterprise.
Programmers can share code repositories that re-
side on a server, and team server administrators can
create new repositories based on existing reposito-
ries.

Interactive execution. A development environment
that allows programmers to enter and immediately
run code snippets, without the need for batch com-
pilation and linking, is said to support interactive ex-
ecution. Users of interpretative languages, such as
BASIC, Smalltalk, Prolog, and APL, often claim
greater development productivity than users of com-
piled languages, such as C and C+ +, because they
use development environments that support inter-
active execution.

Interactive execution allows a program to be devel-
oped and tested incrementally, from the bottom up.
The programmer creates new code and tests it in-
teractively without having to develop special test pro-
grams. The productivity of users of compiled lan-
guages is constrained by the edit-compile-debug
cycle, which can often take several minutes. In con-
trast, users of interpreted languages simply enter and
execute statements with no perceivable delay.

In general, a program written in any language can
be cither interpreted or compiled. For example,
BASIC can be compiled and C++ can be interpreted.
The way a program is executed is determined by the

CHAMBERLAND, LYMER, AND RYMAN 387

Figure 1 Scrapbook window

development environment. However, certain lan-
guages lend themselves to interpretation and others
to compilation. In general, languages that allow very
dynamic run-time behavior, such as self-modifying
programs and automatic memory management, are
easier to interpret, while those that have strong type
systems are easier to compile. Java was designed to
be interpreted, but its strong type system allows it
to be effectively compiled.

Java programs are compiled into bytecodes, which
are instructions to a virtual machine. A Java program
can be executed by interpreting its bytecodes, one
instruction at a time, in a software or hardware im-
plementation of the virtual machine. Java can there-
fore be an interpreted language. Alternatively, a Java
program can be executed by translating its bytecodes
into machine code and running them directly on the
target processor. Java can therefore also be a com-
piled language.

Bytecodes are typically much more compact than ma-
chine code, but execute 15 to 20 times slower. The
translation to machine code can occur in batch mode,
as is usual for languages like C++, or on demand
as each method is invoked, as with languages like
Smalltalk. On-demand compilation is referred to as

388 CHAMBERLAND, LYMER, AND RYMAN

dynamic compilation in Smalltalk and just-in-time
(11T) compilation in Java. Batch compilation is po-
tentially more effective than per-method compila-
tion because intermethod optimizations become pos-
sible. JIT compilation is used in Web browsers for
executing applets, while batch compilation is useful
for stand-alone applications or server programs
(servlets, for example) where high performance is
important.

The Scrapbook window. In VisualAge for Java, in-
teractive execution is supported in the Scrapbook
window. The Scrapbook consists of one or more
pages, which can each contain code snippets. Pages
can be saved as text files and reloaded, allowing the
programmer to build up a library of useful snippets
that can be shared and reused.

To work with a code snippet, the programmer high-
lights its text and then “pops up” a menu that con-
tains commands to run, display, or inspect the snip-
pet. Figure 1 shows the Scrapbook window after a
user has entered an expression, highlighted it, and
selected “Display” from the pop-up menu. The
expression Math.sin(Math.P1/4) was evaluated and the
result value (double) 0.7071067811865476 was dis-
played.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

The run command simply executes a code snippet,
which may include variable declarations, loops, and
method invocations. The display and inspect com-
mands are used for snippets that evaluate to a Java
object. The display command evaluates the snippet
and prints the result value as a text string in the page,
after the snippet. The inspect command also eval-
vates the snippet, but rather than print the result
value in the page, it opens an Inspector window for
the object. The Inspector window allows the object
to be explored in detail. Figure 2 shows the result
of a user selecting a string (“hello, world!”) in the
Scrapbook window, then selecting “Inspect” from the
pop-up menu. An Inspector window appears, display-
ing the String object and its characteristics.

Each page runs in the context of a Java class. The
default class is java.lang.Object, but the page can be
set to any class. Code snippets are evaluated in the
context of this class. For example, in the context of
the default class, the snippet Math.PI refers to a static
variable defined in the Math class, but if the page
is set to run in the context of the Math class, then
the variable can simply be referred to as p1.

VisualAge for Java emulates multiple virtual ma-
chine instances. Whenever an instance of a class is
run, ecither via its main method or as an applet, a
new virtual machine instance is created for it. Each
virtual machine instance behaves as a separate vir-
tual machine. For example, each instance has its own
set of static variables. The same considerations ap-
ply to code snippets that are executed from the Scrap-
book window. Each snippet executes in its own vir-
tual machine instance, providing a powerful and
flexible development environment.

Consider a complex client/server application in which
several clients can interact with each other via a
server. This architecture is not limited to multiper-
son game applications; it is also useful in business
applications, such as providing customer assistance
over the Internet using a chat-like mechanism. For
example, consider a team of customer service spe-
cialists that log on to a customer assistance server
and work with customer requests. Web pages in the
business application could contain links to the as-
sistance server. When a customer needs help, select-
ing a link connects the customer with an available
specialist. The customer and specialist hold a con-
versation using text, audio, or even video to resolve
the problem.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 2 Inspector window

vava'.vlar;g,S(firrlgrVlrnrsﬁecior- (h;:ﬁi >Pra~g'ev 1])

How would a programmer develop such an appli-
cation? Using VisualAge for Java, the programmer
simply runs an instance of the server class, then cre-
ates separate Scrapbook pages for each customer and
specialist. A test scenario could have any combina-
tion of pages running concurrently in separate
threads. Each customer and specialist, and the server,
has a virtual machine instance. Using the debugger,
the programmer can trace through the execution and
resolve any interaction problems. Without this ca-
pability, the programmer would have to start mul-
tiple physical virtual machines and debug them re-
motely-—a much more difficult task.

Incremental compilation and linking. Compiled lan-
guages like C++ require that the physical layout of
objects be known at compile time. This allows ef-
ficient code to be generated, but whenever a class
definition is changed, any class that uses it must be
recompiled. If a low-level class is changed, virtually
the entire application may need to be recompiled.
In addition, linkers typically link an entire applica-
tion as a batch operation; even though only a single
object file may have changed, the entire application
gets relinked. The compile and link time for a com-
plex application can span several minutes or even
hours. This time delay can seriously hamper devel-
opment productivity because the effect of a small
change to the source code cannot be quickly assessed.

Java was designed to avoid unnecessary recompila-
tion. Java bytecodes do not contain information

CHAMBERLAND, LYMER, AND RYMAN 389

Figure 3 The Unresolved Problems page of the Workbench

about the physical layout of the other Java classes
they use. Instead, a Java bytecode file contains sym-
bolic references to the methods and fields of other
classes. These symbolic references are resolved at
run time, when the class is loaded and executed.
However, a change to a class may still affect classes
that use it. For example, if a method is deleted, any
class that uses it becomes invalid. Therefore most
Java development environments recompile a class
whenever any class used by it has changed. In ad-
dition, most Java Virtual Machines cannot incremen-
tally load a changed class.

VisualAge for Java takes the inherent incremental
capability of Java to its logical conclusion: rather than
use a file-based compilation model, VisualAge for

390 CHAMBERLAND, LYMER, AND RYMAN

Java compiles source code incrementally whenever
a field or a method of a class is edited and saved.
The compiler checks the syntax of the source code
and builds a list of methods and fields that it depends
on. When these program elements are changed in
the future, the compiler determines the impact and
marks any invalidated methods. The Unresolved
Problems page of the IDE (see Figure 3) lists all of
the current problems in the code. The developer can
navigate to the problem area and correct it. It would
be very inconvenient if a developer had to ensure
that any change to a method or field did not cause
problems elsewhere. VisualAge for Java allows the
developer to introduce inconsistencies in the code
but still save the class and execute its instances. How-
ever, if an invalid method is invoked, the executing

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

thread is suspended and the Debugger window ap-
pears.

Permitting inconsistencies in Java code allows greater
flexibility in development and is in sharp contrast
with typical C++ environments, where a compila-
tion error prevents object code from even being gen-
erated. VisualAge for Java allows inconsistencies to
be introduced in other ways. When a class is im-
ported, it may cause problems by referring to miss-
ing classes or by referring to methods or fields that
have type mismatches with, or are missing from,
loaded classes. Similarly, when a class is deleted, it
will cause problems with program elements that use
it.

Recall that Visual Age for Java emulates multiple vir-
tual machine instances. This means that code may
be changed during execution. If a method on the call
stack of any thread is changed, the stack is popped
back to that method and the new version is executed.
If the fields of a class are changed and any live in-
stances of the class exist, they are modified appro-
priately. In many cases, execution can proceed in a
reasonable way. Of course, some changes will be so
drastic that execution must be halted and restarted
to obtain meaningful behavior. However, many typ-
ical changes to methods and fields can be incorpo-
rated into executing code in a satisfactory manner.
This makes VisualAge for Java a powerful environ-
ment for developing long-running programs, such as
servers. For example, suppose an error condition
arises only after the server has serviced many re-
quests. The program state may be very complex at
this point. However, with VisualAge for Java, the
code can be modified without restarting the server.
This saves the developer from having to recreate the
complex program state that caused the error con-
dition each time the code is changed, resulting in
greater development productivity. The next section
discusses a particularly relevant example of this ca-
pability.

Debugging. Debugging support is a critical function
for any development environment. A good debug-
ger not only helps developers eliminate defects from
a program; it can also help them understand the be-
havior of the program. There are three categories
of debugging technologies, each having its use in
practice:

« Invasive debugging—inserting print statements in

the code and directing the output to the console
or log files

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

» Remote debugging—attaching a debugger to an-
other, possibly remote, Java Virtual Machine pro-
cess and stepping through the code

s Local debugging— debugging multiple virtual ma-
chine instances running within the IDE, and mod-
ifying the code during execution

In the absence of a good debugger, developers re-
sort to invasive techniques such as inserting print
statements into their code. In addition, because Java
code is often executed in target environments that
do not enable remote debugging, developers are
forced to use such invasive techniques to fix obscure
problems that occur only in the target environment.

The Java programming system supports remote de-
bugging. A Java Virtual Machine can be started in
debug mode and allow an external process, such as
another Java Virtual Machine, to control its execu-
tion. Unfortunately, the remote debugging support
in /DK 1.0 had many problems that prevented the
development of stable and robust remote debuggers.
These limitations are being fixed in future releases.
JDK 1.1.6 provides a much more usable remote de-
bug API, with major changes coming in JDK 1.2.

Version 1.0 of VisualAge for Java does not support
remote debugging, although this is currently under
investigation for an upcoming release. Still, the Vi-
sualAge for Java support for local debugging goes
well beyond the capabilities of the remote debug-
ging specification, because it is fully integrated into
the incremental compilation and linking capabilities
of the environment. Java application systems that use
several virtual machines and that would normally re-
quire remote debugging support (for example,
client/server applications) can be executed within Vi-
sualAge for Java using its ability to emulate multi-
ple virtual machine instances. Thus local debugging
can emulate remote debugging.

The VisualAge for Java debugger can be activated
in several ways:

» The developer can insert breakpoints in the code,
which cause the debugger to be activated when they
are reached.

s The debugger can be invoked programmatically
using a support library.

» The debugger is activated when an invalid method
is invoked, or when an uncaught exception is
thrown.

s The developer can interactively open the debug-
ger window and add any available thread.

CHAMBERLAND, LYMER, AND RYMAN 301

Figure 4 The Debugger window

e hatn Hoar

Individual threads can be selected for examination.
When a thread is selected, its call stack is displayed.
The developer can then select any stack frame and
view the source code for its method and its list of
local variables. While the source code for the method
is displayed, the developer can edit it and save it,
which causes the method to be automatically com-
piled and linked into the running program. Any lo-
cal variable can be selected and its value displayed,
or an Inspector window can be opened to work with
it. The developer can step through the code as usual,
resume execution, or kill the thread. The developer
can also prune the call stack back to any method on
the stack, and restart execution from that point.

Figure 4 shows the Debugger window. A breakpoint
was set in the paint() method of the HanoiApplet
class. While stepping through the code, the program-
mer can monitor variables. Here, the variable width
is currently set to “8.”

We now consider how these features come together
in the important case of debugging servlets.

392 CHAMBERLAND, LYMER, AND RYMAN

Debugging serviets. Just as applets are Web browser
extensions, servlets are Web server extensions. Java
servlets are analogous to Common Gateway Inter-
face (CGI) programs, with the added advantages of
improved performance and state management. Un-
like CGI programs, servlets run in the same process
as the Web server, eliminating process creation over-
head. Each servlet is initialized once and remains
active in the virtual machine, where it can respond
to many HTTP (HyperText Transfer Protocol) re-
quests. Each request is handled in a separate thread,
which requires the programmer to write serviet code
that synchronizes access to resources.

Suppose that a servlet is being developed in a Web
server that uses a standard Java Virtual Machine,
and that after many requests, a problem occurs. Be-
cause standard virtual machines cannot incremen-
tally load a modified class, the Web server must be
stopped, restarted, and retested to recreate the con-
ditions under which the error occurred, every time
a code change is made. Moreover, the developer

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

must work with the limited capability of a remote
debugger or use invasive print statements.

Contrast the above scenario with development us-
ing VisualAge for Java. The developer:

1. Turns the development environment into a Web
server by simply running the HTTPServer class
that comes with the Java Servlet Development Kit
(JSDK) from JavaSoft

2. Uses a Web browser to create the conditions un-
der which the error will occur, and places a break-
point in the servlet code that handles the HTTP
request

3. Generates another request, which activates the
Debugger window when the breakpoint is reached

4. Steps through the source code, inspecting vari-
ables as required, until the problem is found

5. Corrects the code, saves it (causing the running
program to be incrementally compiled and
linked), and resumes exccution

A complex scenario can be simulated and debugged
within the IDE, without the need for remote debug-

ging.

Construction-from-parts paradigm

Component modeling and visual programming com-
plement one another. Parts created based on a com-
ponent model are manipulated in a visual environ-
ment.

Visual programming. VisualAge for Java offers a vi-
sual programming environment that is significantly
different from others. Most visual building tools al-
low the user to define the visual layout of the applet
or application by selecting “widgets” and control
mechanisms from a palette. Some tools assist in gen-
erating code to handle particular events and rela-
tionships between these controls. This assistance typ-
ically takes the form of a wizard that generates code
that is intended for a single use and is unable to han-
dle arbitrarily complex behavior. Once the user cus-
tomizes the code, it is difficult to modify or extend
it using the wizard. There is also a complete sepa-
ration of the visual composition or layout of the user
interface and the logic that drives its behavior; that
is, support for integrating nonvisual parts on a vi-
sual surface is missing.

However, the Visual Composition Editor in Visu-

alAge for Java renders not only the visual elements
of the user interface; it also gives the user the ability

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

to visually program the applet or application behav-
ior. Using visible connections between both visual
and nonvisual elements, it is possible to define and
integrate the logic for the user interface. Not only
are visual elements displayed and manipulated; the
user may add beans (components) with no visual el-
ements to the canvas. These beans have a visual rep-
resentation and may be manipulated like visual com-
ponents.

The Visual Composition Editor (VCE) uses the Java-
Beans component model’ as the basis for compos-
ing and assembling beans. The VCE displays the fea-
tures of each component the user adds to the canvas.
Visual programming is accomplished by making con-
nections between components to define behavior. All
connections are made between features of beans:
properties, events, and methods. The JDK 1.1 event
model is fundamental to the operation of connec-
tions and the code that is generated by the VCE to
provide the behavior represented in the visual de-
sign. This makes the Visual Composition Editor an
ideal builder for creating beans and assembling ap-
plications.

Difterent types of connections provide different kinds
of behavior. For example, an event-to-action con-
nection may be used to invoke the method of an-
other bean when a button is selected from the user
interface. A property-to-property connection enables
data to flow easily between visual elements and the
underlying beans that drive the interface.

Another advantage of the connection paradigm is
the ability to modify and manipulate connections. It
is possible to have several connections originating
from the same source component. These connections
may be reordered to provide the proper sequence
of events and actions. Connections are easily moved
or even deleted. Connections can also be used to pass
parameters and exceptions to other connections, or
to return results.

Beans or applets can be composed in the VCE by add-
ing AWT (Abstract Window Toolkit) components or
the user’s own beans or classes. A composite bean
may even be created with no visual components.
Components are added as either variables or in-
stances. This allows the user to have complete con-
trol over the construction and instantiation of ob-
jects. On any event or action, VisualAge for Java can
dynamically create any type of object with a factory
bean, or let the VCE create the code to construct an
object.

CHAMBERLAND, LYMER, AND RYMAN 3093

Once the object has the desired visual composition
and behavior, the developer saves it to generate the
source. The VCE provides a test facility, which ex-
ecutes the composed object from the Applet Viewer
window of the IDE. As the behavior is being tested,
it is possible to alter the underlying logic, change a
connection, regenerate code, and save changes, and
immediately test the result—all without closing the
running applet.

Itis apparent that the visual programming paradigm
has many advantages, but it also poses some prob-
lems. Due to its visual nature, beans created using
the Visual Composition Editor can be more difficult
to maintain. Visual connections are not labeled, so
a user may need to browse a list of connections or
open individual connections to reveal source, target,
and connection type information. Also, the sequence
of connections is not obvious in the visual represen-
tation. Another weakness is the difficulty in creating
conditional flow using the connection paradigm. The
VisualAge for Java development team is aware of
these problems and is considering enhancements to
the Visual Composition Editor to address them.

To effectively use the visual programming paradigm,
a good foundation in object-oriented design and the
JavaBeans event model is essential. This may make
it more difficult for users with a procedural back-
ground to get started with the Visual Composition
Editor. However, users who take the time to under-
stand these concepts and design specifically for this
environment are rewarded. A good design that de-
couples the visual aspects of the application from the
business logic and minimizes the number of connec-
tions can overcome many of the weaknesses of vi-
sual programming described here.

JavaBeans support. Java is widely known as a pro-
gramming language for the Internet—“write once,
run anywhere.” However, Java is also a full-fledged
object-oriented programming language. In keeping
with the principles of sound object-oriented design,
Java supports a component model that encourages
code reuse. With the JavaBeans component model,
a programmer can construct whole applications from
reusable parts, with potentially large savings on the
development cycle. What separates JavaBeans from
other component models is its platform indepen-
dence. Like the Java language itself, JavaBeans can
be reused on any platform that supports a Java Vir-
tual Machine.

394 CHAMBERLAND, LYMER, AND RYMAN

One of the key design goals for the JavaBeans com-
ponent model was to allow beans to be manipulated
by visual application builder tools at design time. By
using such tools, beans can be reused with minimal
programming effort, which can quickly accelerate the
development cycle. For example, consider a graph-
ical user interface. Novice Java programmers avoid
the complexities of coding and combining frames,
panels, buttons, text fields, and layout managers by
hand. Advanced programmers avoid the time in-
vested in mundane widget manipulation, focusing in-
stead on designing and coding the nonvisual, bus-
iness logic.

To help programmers prototype applications and
beans quickly, VisualAge for Java provides visual
support for several key JavaBeans features:

* Property editing
* Property sheets
* Introspection and customization

Preassembled beans. Any robust Java tool suite will
include a set of preassembled beans, and VisualAge
for Java is no exception. The Visual Composition
Editor includes the beans palette, which provides
beans that can be used to construct an application,
an applet, or a more complex bean. The beans on
the palette are organized in categories. The Data En-
try category, for example, contains a TextField bean,
a Label bean, and a TextArea bean. Beans selected
from a category on the palette can be dropped on
the free-form surface. As shown in Figure 5, the Vi-
sual Composition Editor provides a set of prepack-
aged beans that the programmer can work with. The
left column of folder icons displays the bean cate-
gories. When a category is selected, the right col-
umn displays the icons of all beans contained in the
category. (In Figure 5, the Containers category was
selected and we see icons for Applet, Frame, Can-
vas, etc.)

In addition to the beans supplied by VisualAge for
Java, programmers can add their own beans to the
palette, as well as beans supplied by a vendor. Mod-
ifying the palette with additional beans can help in-
crease productivity if these beans are used often. It
also eliminates the need to know the exact class name
of the bean. Once on the palette, these beans can
be used in the same way that the built-in VisualAge
for Java beans are used. For example, a program-
mer can import a third-party bean library into Vi-
sualAge for Java, and then add these beans to the

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 5 The Visual Composition Editor window. The beans palette is on the left.

¢ COM.ibm. i.e)iamples.vé.todolisl.ToDﬁList 1.01

palette. Customized bean palettes can be modified
or reorganized as required.

Property editing. As instances are created from ge-
neric beans (by dropping them on the free-form sur-
face, for example), the programmer will probably
want to customize them. The simplest form of bean
instance manipulation is property editing. VisualAge
for Java provides visual property editing in the Vi-
sual Composition Editor. As illustrated in Figure 6,
the string property of a button label can be changed
without touching the code. Here, “Remove” replaces
the previous value. When the bean is saved, the gen-
erated code is modified to reflect the new values.
Note in Figure 7 the line of source code that reflects
the change made from the free-form surface:
iviButton2.setLabel(“Remove”).

VisualAge for Java implements more detailed prop-
erty editors in the form of dialogs. For example, the
color editor shown in Figure 8 illustrates how pow-
erful features can be simplified for the programmer

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 6 Editing the string property of a button label

through visual manipulation. The programmer can
specify a color by selecting one of the preset basic
colors, by matching a predefined system color (for
example, the system desktop color), or by defining
another RGB (red-green-blue) combination.

CHAMBERLAND, LYMER, AND RYMAN 395

Figure 7 Generated source code for the button
initialization

The Visual Composition Editor can also be used to
specify and modify the properties of connection pa-
rameters. Many of the built-in property editors in
VisualAge for Java are accessible from bean prop-
erty sheets.

Property sheets. Every bean instance includes a prop-
erty sheet, which is an editable list of all public prop-
erties within the bean. A programmer uses a prop-
erty sheet to set initial values. A property sheet can
be thought of as a collection of all the property ed-
itors on a single bean instance. The property sheet
of any bean instance that has been added to the free-
form surface is available through the Visual Com-
position Editor.

Figure 9 shows a property sheet on a TextField bean
instance. The value of any property can be edited by
simply selecting the value field of the property. String
properties can be changed on the sheet; for nonstring
properties, a property editor can be invoked.

When developing beans in VisualAge for Java, the
programmer may want to hide some of the bean’s
advanced properties from most users. By designat-
ing that these properties are to be used by an ex-
pert, the bean programmer protects the novice user

396 CHAMBERLAND, LYMER, AND RYMAN

from being overwhelmed by complexity. When the
property sheet is brought up for an instance of a bean,
the user can view and modify the basic properties,
or select the “Show Expert Features” checkbox to
see all of the public properties of the bean.

Especially for multiple instances of a bean, using
property sheets can generate modifications much
more quickly than working directly with the source
code. In VisualAge for Java, the programmer can
simply add the generic beans to the free-form sur-
face and edit the property sheet for each bean in-
stance. For example, the programmer adds several
checkbox bean instances to a frame, and then edits
the label of each checkbox in turn.

By default, the properties of the embedded beans
are not visible in the property sheet of a composite
bean. The bean designer can control which proper-
ties of the composite bean are visible (that is, pub-
lic) by using the VisualAge for Java promotion fea-
ture. The bean designer can also promote methods
and events of the embedded bean.

For very complex beans, then, the VisualAge for Java
bean designer has strong control over a bean’s pub-
lic interface, through designating features as public
or private and basic or expert, and through promo-
tion.

Introspection and bean customization. For develop-
ers, the JavaBeans API includes facilities for seeing
the internal structure of beans, generally called in-
trospection. Low-level introspection services provide
a wide variety of information that is useful to visual
tools such as VisualAge for Java. High-level intro-
spection services use the low-level services, but limit
the information provided to the bean’s public inter-
face. The Beanlnfo page in the class browser uses
high-level introspection services to present views of
the bean’s public properties, events, and methods,
as shown in Figure 10. Properties, methods, and
event sets can be easily added or modified.

VisualAge for Java supports a variety of ways to gen-
erate and add code to an application or bean.
Through the Beanlnfo page, the programmer works
with code from a bean perspective. Properties, meth-
ods, and event sets can be added in the context of
the bean. The JDK 1.1 event model is directly sup-
ported: listener support can be added, and proper-
ties can be designated as indexed, bound, or con-
strained.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 8 Color editor

The JavaBeans API defines specific design patterns
that support the JavaBeans reflection services. Low-
level introspection facilities gather information about
the bean’s features by default if the standard design
patterns are used. The programmer is free to follow
a different convention, in which case a supporting
BeanlInfo class is highly recommended. While all
beans generated by VisualAge for Java conform to
the standard design patterns, the BeanInfo page pro-
vides a SmartGuide to help the programmer create
a BeanlInfo class.

Distributing JavaBeans. The standard for distribut-
ing JavaBeans is to package all related classes and
resource files in a JAR (Java archive) file. As with
zip files and other compressed file formats, the JAR
format allows the programmer to package many files
into one file and to significantly compress the size.
Both of these features make download time from
an HTTP connection much quicker. As well, the JAR
file format allows the programmer to add a digital
signature, specifically designed to make applet down-
loads safer through authentication. VisualAge for
Java supports the importing and exporting of JAR
files from the IDE. (See Figure 11.)

As discussed earlier, testing of beans is integrated
in VisualAge for Java, thus a separate testing tool
(for example, the Bean Development Kit [BDK]
BeanBox) is not required. Beans can be edited, ex-
ecuted, and debugged, all within the IDE.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 9 Property sheet of a bean

Code generation

The use of SmartGuides increases the pace of the
development cycle and can simplify difficult tasks.
Coding middleware access via SmartGuides makes
access of legacy resources a less daunting task.

SmartGuides. The VisualAge for Java IDE includes
several SmartGuides, or wizards, that provide guid-

CHAMBERLAND, LYMER, AND RYMAN 397

Figure 10 The Beaninfo page of a class browser

ance and assist the user in executing particular tasks.
They replace conventional dialogs that provide lit-
tle explanation and limited information as to how to
complete the task, especially if there are different
options possible. A SmartGuide is designed to lead
the user through the completion of each supported
task.

A SmartGuide consists of a series of panels. Users
move forward through the panels to perform a task.
Each panel presents information about choices and
options, and guides the user through the necessary
sequence of steps to get the task done. The user also
has the opportunity to move back to previous pan-
els to change or reference information already en-
tered. Often default selections are provided, and
choosing these defaults leads the user through the
most typical usage scenario. It may not be necessary
tovisit all the panels in the SmartGuide. The Smart-
Guide automatically enables the “Finish” button as
soon as the user has provided enough information
to successfully complete the task.

SmartGuides are designed especially for the novice
user, but with consideration for the expert user as

398 CHAMBERLAND, LYMER, AND RYMAN

well. The information about the task and the expla-
nation of choices provided in each of these wizards
teach the novice user about the task, so that the user
quickly becomes more productive. For example, the
Create Class, Create Method, and Create Field
SmartGuides in the IDE allow the user to describe
the characteristics of objects without needing to know
the exact Java syntax. The SmartGuides also take
care of dependencies between language features, so
that the user is only able to select syntactically cor-
rect combinations. Appropriate Java code is gener-
ated by each SmartGuide.

SmartGuides assist the more experienced user by au-
tomatically creating or generating objects and code
to meet particular requirements. It is then easy for
the user to further customize the source to obtain
the desired behavior. For example, the Create Ap-
plet SmartGuide allows the user to design an applet
either by using the Visual Composition Editor or by
hand-coding the source. If the applet is to be de-
signed visually, the SmartGuide automatically cre-
ates the specified applet and opens a class browser
directly to the Visual Composition Editor, with the

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 11 “Export to JAR file” SmartGuide helps package files for distribution

 SmartGuide - Export to JAR file

applet bean already instantiated on the free-form
surface. The user can immediately begin to add vi-
sual elements to the applet as well as to create con-
nections between both visual and nonvisual compo-
nents.

If the user chooses to hand-code the applet, the
SmartGuide may still provide assistance. The Smart-
Guide provides the developer with choices to cus-
tomize the wizard-generated applet skeleton. For ex-
ample, the user may specify the kinds of events the
applet will handle, the specific methods to be im-
plemented, such as start, stop, or destroy, or the ap-
plet parameters to be generated. After the selected
method skeletons are generated, the programmer
adds business logic to this template to create the ap-
plication.

Code generation for enterprise access. As Java en-
terprise access scenarios become more complex, pro-
grammers are under increased pressure to generate
code that runs on a variety of middleware. Tools that
help generate code for client/server access can greatly
help productivity. The Enterprise Access Builders
that are included with VisualAge for Java Enterprise
generate access code, allowing the developer to
quickly and easily access legacy applications, trans-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

actions, and data. Not only is the need to write
middleware code eliminated; it is no longer neces-
sary to rigorously test this highly error-prone code.
The developer needs only to test that the generated
code provides the desired behavior. In this way, the
developer can focus on the application’s business
logic, rather than on generic access code.

Access to enterprise data and services is provided
by a series of builders. Three key builders are: Cus-
tomer Information Control System (CICS*) Access
Builder, Remote Method Invocation (RMI) Access
Builder, and Data Access Builder.

Each builder provides a SmartGuide, which leads
the developer through the task of creating that par-
ticular type of enterprise access. The Data Access
Builder also provides the user with editing capabil-
ities for modifying the access code generated with
the SmartGuide. All code generated by the builders
supports the JavaBeans component model. These
beans can be added to the client user interface dur-
ing construction in the Visual Composition Editor.
The following sections outline the capabilities of
these three builders, and describe how the gener-
ated Java code may be easily utilized to provide ac-
cess to enterprise data and services.

CHAMBERLAND, LYMER, AND RYMAN 399

Figure 12 CICS access model

NT/OS2/AIX HOST
 clcs
WEB : : cIcs cics
| GATEWAY iy
SERVER FOR JAVA CLIENT PROGRAM
\
GATEWAY \
REQUEST APPC :

DOWNLOA

APPLET

MVS HOST /

cics 02res PIC 5(5).
REGION :

Linkage section.
01 DFHCOXXXXAREA
02 opt PIC 5(5).
02 op2 PIC 5(5).

Procedure division.

CICS Access Builder. The most difficult aspect of ac-
cessing most CICS transactions from Java is under-
standing and creating the code to convert between
Java and COBOL types, and their representation at
the system level. The programmer must write the
code to marshal? and unmarshal the communications
area (the data for the transaction) on and off the
“wire.” It is also necessary to understand and use
the API available in the IBM CICS Gateway for Java
libraries to write the access code.

Figure 12 illustrates the interactions between a Java
client and the CICS server. The flow of requests is:

1. The end user downloads the CICS access applet
from an HTTP Web server.

2. The Java client sends Java ECI (external call in-
terface) requests and transfers data for the COBOL
communications area to the CICS Gateway for
Java.

3. The cics Gateway for Java forwards the Java ECI
requests to the CICS client. Due to applet secur-
ity restrictions, both the cics Gateway for Java

400 CHAMBERLAND, LYMER, AND RYMAN

and the CICS client reside on the same host as the
Web server.

4. The cCICS client forwards information to the MvVS*
(Multiple Virtual Storage) CICS server, where the
CICS transactions reside.

The cICSs Access Builder makes it unnecessary to un-
derstand these interactions or to be skilled in writ-
ing this kind of code. The programmer only needs
a copy of the COBOL program for the transaction to
be accessed and the COBOL record that best describes
the format of the communication area (COMMAREA)
to be transmitted to the transaction. This may sim-
ply be the DFHCOMMAREA or another record in
working storage.

The builder parses the COBOL data types in the
COMMAREA and converts them to the appropriate
Java types. The code to marshal and unmarshal the
data is generated, and a bean is created with at-
tributes for accessing each part of the COBOL record.
This bean is used in conjunction with the CICS Unit
of Work bean to fill the COMMAREA with the cor-

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 13 RMI access model

CLIENT SERVER
JAVA PROGRAM A REMOTE OBJECT
INSTANCE MANAGER
CLIENT-SIDE SERVERBEAN

SERVER PROXY

JAVA PROGRAM B

CLIENT-SIDE
SERVER PROXY ®—— | o

R
REGISTRY

SERVER-SIDE
SERVER PROXY

rect data, invoke the CICS transaction, and retrieve
the results. The data elements of the COBOL record
are represented as bean attributes, which allows easy
connection to user interface elements.

The cics Unit of Work bean is actually a class pro-
vided in the IDE called IVICicsUOWInterface, used
to access the CICS Gateway for Java from any CICS
access program. This “wrapper” class manages all
requests between the Java client and the CICS Gate-
way for Java. The Unit of Work bean allows the cli-
ent program to:

* Start and end a Unit of Work with the cIcS Gate-
way for Java

* Commit or roll back changes introduced during
this unit of work

* Pass the communications area bean to the host-
based CICS program, to run the transaction both
synchronously and asynchronously

The programmer adds the Unit of Work bean in-
stance and the COMMAREA bean in the VCE. Then
the properties on the Unit of Work bean need to be
set for accessing the CICS gateway and MVS host. The
COMMAREA can then be specified as a parameter to

1BM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

the Unit of Work bean. To facilitate testing, the
IBM CICS Gateway for Java libraries are already
loaded into the IDE workspace. These classes pro-
vide access through the CICS client to the transac-
tion installed in the CICS environment on the MVS
host. Thus, the full scenario implementation can be
debugged in the IDE.

RMI Access Builder. The RMI Access Builder gen-
erates code for remote Java-to-Java access. Thus, un-
derstanding the RMI libraries provided with the JDK
is no longer required. The programmer selects the
class to be distributed and invokes the RMI Access
Builder to create an instance of this class as a dis-
tributed object. The RMI Access Builder generates
the server interface and a class representing an in-
stance of the server. It also generates a client-side
server proxy for the remote object in the form of a
bean. The IDE generates the skeletons and stubs that
provide access to the server. To connect this distrib-
uted code to the user interface, the programmer adds
the client-side server proxy to the free-form surface
and connects it to the visual beans.

Figure 13 illustrates the RMI access model provided
by the generated code. The server bean is the bean

CHAMBERLAND, LYMER, AND RYMAN 401

Figure 14 Thin-client view of three-tiered data access model

CLIENT

INTERMEDIATE SERVER

pB2
CLIENT

to be distributed and accessed remotely. Server bean
methods can be invoked by a Java client program,
and the server bean can generate events that are re-
ceived by the client.

The client-side server proxy is a local representative
of the remote server bean. The remote method ac-
cess and event generation capabilities of the client-
side server proxy allow the proxy to be treated as if
itwere the server bean itself. Because this proxy per-
forms RMI initialization and the actual remote
method invocation, the other code in a program does
not need to deal with RMI code.

The server-side server proxy is a companion class to
the client-side server proxy, and facilitates the com-
munication of the client-side server proxy over RMI.
The server-side server proxy is deployed on the server
to access the server bean, and to relay events and
exceptions from the server bean back to the client-
side server proxy. In effect, server events are recre-
ated on the client.

VisualAge for Java includes tools to test RMI code.
The Remote Object Instance Manager is a general-

402 CHAMBERLAND, LYMER, AND RYMAN

purpose server that not only instantiates the RMI
server objects, but also provides useful logs and sta-
tistics regarding access to the servers. When gener-
ating the code, the programmer can indicate that the
Remote Object Instance Manager be started imme-
diately after code generation and that the bean be
instantiated. In conjunction with the RMI registry pro-
vided by the IDE, the Remote Object Instance
Manager allows the user to completely test the
client/server application within the IDE. Incremen-
tal development, testing, and debugging are thus pos-
sible.

Data Access Builder. In addition to a SmartGuide,
the Data Access Builder provides integrated tools
to manage both simple and sophisticated access to
relational databases. The generated data access
beans include code with the appropriate JDBC**
(Java Database Connectivity) method calls, and also
include a generated class that can be optionally used
as a GUI (graphical user interface) prototype.

There are various ways to deploy a data access pro-

gram. Figure 14 illustrates a three-tiered thin-client
model. The following scenario describes its use:

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

1. The end user downloads a thin Java client from
an HTTP server to a Web browser. The applet in-
cludes only distributed front-end code, not the
data access business logic.

2. The Web browser communicates with an inter-
mediate server through remote method invoca-
tion calls, using a TCP/IP (Transmission Control
Protocol/Internet Protocol) protocol. The gener-
ated data access classes reside on this server. Be-
cause of applet security restrictions, the applet and
data access methods must reside on the same ma-
chine.

3. The data access methods access the DB2*
(DATABASE 2*) client through calls to JDBC, which
also resides on the intermediate server.

4. The DB2 client connects to the JDBC-compliant
database.

To assist the programmer in creating a schema rep-
resentation of the database, the SmartGuide pro-
vides direction in selecting a database and mapping
the database tables. SOL (Structured Query Lan-
guage) statements can be used to query the database
or perform table joins. Further refinement can take
place by accessing user-defined methods for rows or
collections of rows, either through SOL statements
or database stored procedures. Unused methods and
attributes can be deleted from the initial schema

mapping.

When the schema mapping is complete, the pro-
grammer invokes the Data Access Builder to gen-
erate the data access beans. By default, the gener-
ated classes are named using the mapping name. For
example, consider a schema called Department. The
main Java classes generated for this schema would
be:

* DepartmentDatastore, which represents and man-
ages connections to the database

¢ Department, which represents a row from the map-
ping. This class contains database access methods,
including user-defined methods, if defined.

* DepartmentDatald, which represents the set of col-
umns that uniquely identify a row. This class is gen-
erated only if the mapping specifies at least one
data identifier column.

* DepartmentManager, which allows a collection of
rows to be selected and worked with. This class
contains any user-defined manager methods.

* DepartmentDataldManager, which allows a collec-
tion of data identifiers to be selected from the ta-
ble and worked with. This class is generated only

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

if the mapping specifies at least one data identi-
fier column.

DepartmentAccessApp, an executable GUI that in-
tegrates the basic features of the mapping
Beanlnfo classes that enable the Visual Compo-
sition Editor to use the generated data access
classes by providing notification of changes to ob-
ject properties

Form support classes. These are prefabricated GUI
components that reflect the basic features of the
generated classes. These beans can be added in
the Visual Composition Editor to help create the
user interface that will access the data.

The graphical user interface class generated by the
Data Access Builder, called an AccessApp (in the
example, DepartmentAccessApp), includes a stan-
dardized layout that reflects the publicly accessible
data and methods, as specified by the schema map-
ping. This simple GUI makes use of the generated
classes to connect to data stores and manipulate data.

As shown in Figure 15, an AccessApp class is useful
for demonstrating and prototyping database access
or testing the generated classes before formal work
on a user interface begins. An AccessApp class in-
stance can be invoked as an applet or as an appli-
cation. This class enables the developer to more rap-
idly develop a database access application. Its
methods connect and disconnect from the database,
and retrieve, update, and delete rows.

All of the generated beans are designed for use in
the Visual Composition Editor. The developer can
use the generated visual beans or create a more so-
phisticated graphical user interface using the data
store, mapping, and manager beans.

Accessing the AS/400. One of the key additions to
the VisualAge for Java 1.01 release is the support
for accessing AS/400 data and resources. With this
AS/400 support, Java clients can access AS/400 pro-
grams written in other languages, or Java programs
can be created that run directly on the ASM400. A
sound design approach for writing AS/400 Java pro-
grams is to do most programming using the work-
station IDE, and then export the file out to the AS/400
for native compilation and debugging.

With this support, a programmer can:
* Convert AS/400 display file records to AWT classes.

The Convert SmartGuide uses the Data Descrip-
tion Specifications (DDS) display files of existing

CHAMBERLAND, LYMER, AND RYMAN 403

Figure 15 Generated AccessApp

Department

co1 |

1 INFORMATION CENTER :

‘

language files (for example, COBOL or RPG files)
to quickly generate AWT components.

Generate Java code to access remote program calls
to code written in other languages, such as RPG,
COBOL, and C. From the AS/400 system name, pro-
gram name, and parameters, the Create AS/400 Pro-
gram Call SmartGuide generates the Java stub for
the programmer, including handling of data con-
versions.

Use the 1BM Toolbox for Java API to access AS/400
resources and services. This set of 100 percent pure
Java classes lets the programmer access such re-
sources and services as AS/400 data, data queues,
printers, and file systems. The API can be used for
both client-side and server-side code. In addition,
because this API is pure Java, no communications
program (such as the AS/400 Client Access client)
is required.

Export Java source or bytecodes to the AS/400 in-
tegrated file system. Using the Export Java File
SmartGuide, copies of Java source or class files can
be exported from the workstation file system to
the Asm400 IFS (Integrated File System). The
AS/400-based Java Virtual Machine can then be
used to execute the code.

Compile Java bytecodes to AS/400 machine instruc-
tions. Through the Compile AS/400 Java Class File
SmartGuide, exported class files can be recompiled
into AS/400 native code. The optimization level can
be set to alter the size and performance of the com-

404 CHAMBERLAND, LYMER, AND RYMAN

piled Java program. The compilation can also pro-
vide performance data. While native code optimi-
zation makes the resulting code nonportable, it is
ideally suited for server programs that require high
performance. This SmartGuide provides a work-
station client interface for the CRTIVAPGM com-
mand provided by AS/400 Version 4, Release 2.

* Remotely debug Java code that resides on the
AS/400. This client/server debugger helps detect and
diagnose problems in Java bytecodes or AS/400 na-
tive code. The debugger includes common features
such as run, step, set breakpoints, and examine var-
iables and call stacks. To use the debugger, both
the compiled code and the Java source code need
to be exported to the AS/400.

Enhanced context

At all times, the programmer needs a clear sense of
where code is located in the environment. The pow-
erful browsing features of VisualAge for Java pro-
vide this context.

Powerful browsing. As previously noted, the inter-
pretive nature of the VisualAge for Java develop-
ment environment helps the programmer transcend
the limitations of the edit-compile-debug process that
is so common among compilation environments.
Still, a fundamental task of the Java developer is to
search for or reference other code. For example, it

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

is necessary to review source code to resolve errors
during compilation or to help isolate problems dur-
ing debugging. It may even be necessary to review
large amounts of code to learn about the program
as a whole and how it behaves. This code may have
been written by other programmers, and so may not
be familiar to the programmer who reads it. To en-
sure that browsing does not become a bottleneck in
the programmer’s workflow, robust browsing facil-
ities are critical.

The VisualAge for Java IDE includes a collection of
browsers for viewing and manipulating projects,
packages, and classes. The browsers are made up of
panes of information. The contents of the panes may
be lists, trees, properties, or source statements. The
panes are linked together to allow information to
flow from one pane to the next. This means that a
selection in one pane populates the contents of other
panes, using the context of that selection. This in-
tegrated flow of information facilitates browsing.

The IDE is an object-oriented environment, and each
kind of object in the user interface has a dedicated
browser (for example, projects, packages, classes, and
methods). The main browser, the Workbench, pro-
vides a view of all the objects loaded in the work-
space, while the Repository Explorer provides ac-
cess to the complete contents of the repository. Each
browser displays multiple tabs for different views of
program elements.

For example, the class browser contains tabs labeled
Methods, Hierarchy, Editions in Repository, Visual
Composition, and BeanInfo. Each tab is devoted to
a particular task associated with a class. The Meth-
ods tab provides a list of the methods for the class
and a source pane cnabled for editing. When a
method is selected from the list, the method source
code is automatically displayed and ready for updat-
ing. Similarly, the Hierarchy tab provides an extra
pane that allows the user to browse the class hier-
archy for this class. A selection from the hierarchy
pane causes the methods for that class to be displayed
in the next pane and the class definition to appear
in the source pane. The Visual Composition tab pro-
vides access to the Visual Composition Editor so that
the class can be defined using visual representations
of beans. The BeanlInfo tab allows the user to define
and modify bean features of the class (properties,
events, and methods). Finally, it is possible to browse
other editions of the class by using the Editions in
Repository tab.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

With the ability to browse multiple objects concur-
rently, it is easy to reference other parts of the work-
space and copy and paste information from one pane
to another. The search facilities built into the IDE
complement the browsers by enabling the program-
mer to search for any program element in the work-
space. Searches can be based on definitions or ref-
erences, and can be limited in scope to specific
projects or packages.

API documentation framesets. The Java language
supports different ways to add comments to code.
One form is known as a “javadoc comment,” which
is used to fold APl reference information directly into
the source code itself. These comments are placed
in blocks at the tops of methods and classes, rather
than being scattered throughout program elements.
Javadoc comments are most commonly used to pro-
vide overview information and parameter descrip-
tions for classes and methods. Other information
about a method (for example, the class and package
it belongs to) is not required because this informa-
tion is already reflected in the structure of the source
code. The comment writer does not need to docu-
ment method signatures or inheritance hierarchies.

The JDK includes a command-line tool that extracts
javadoc comments from the source code and gen-
erates a set of HTML (HyperText Markup Language)
files that serve as support documentation. Hierar-
chy and index files are constructed, based on the
structure of the code. Even if the programmer does
not add javadoc comments, the javadoc tool gener-
ates a skeleton of the API or application that is spec-
ified as input. If the code is restructured or if new
methods are added, a regenerated javadoc-based
web reflects the changes. The JDK includes an HTML
web that documents the JDK API.

While this web provides useful information, acces-
sibility to the information can be improved. The sin-
gle-page model produced by the javadoc tool directs
the user to search for information in a linear man-
ner; the user navigates up and down the API hier-
archy with no contextual expression of sibling rela-
tionships. (See Figure 16.)

VisualAge for Java enhances the javadoc-based web
by adding contextual information through a frame-
set. Using a javadoc-based web as input, an HTML
postprocessor generates API framesets. As shown in
Figure 17, when a package is selected, three panes
are displayed:

CHAMBERLAND, LYMER, AND RYMAN 405

Figure 16 Javadoc output from JDK

conskruckor Index

« Choice()
Creates a new choice menu.

Metkod lndex

» add(String)

Adds an item to this Choice menu.
» addItem(String)

Adds an item to this Choice.
» addItemListener(ltemListener)

Adds the specified item bistener to receive tem events from this Choice menu.

» addNotify()
Creates the Choice's peer.

» countItems()
Deprecated.
» getltem{int)

Gets the string at the specified index i this Choice menu.

» getltemCount()

Returns the number of tems in this Choice menu.

1. The Class Index frame (upper left) lists all classes
and interfaces in the selected package. The con-
tents of this frame do not change until a different
package is selected.

2. The Method Index frame (lower left) lists all con-
structors, methods, and variables in the selected
class.

3. The Class Details frame (right) presents detailed
information on the constructors, methods, and
variables listed in the Method Index frame. This
information is identical to that produced by the
javadoc tool.

The Method Index frame presents a more concise
list of the class constructs than is presented in the
Class Details frame, letting the user scan it more
quickly. If this is too little detail, the user can quickly
select method names in the Method Index frame to
bring up details in the corresponding Class Details
frame. Context is never lost, and the user is not re-
peatedly moving up and down the hierarchy to find
the desired method.

Selecting a class in the Packages frame refreshes the
entire frameset. If the user explores other classes in
the Class Details frame, selecting the “Where am

406 CHAMBERLAND, LYMER, AND RYMAN

177 link refreshes the other two frames so that all
three frames are synchronized.

Although the javadoc tool provides some context
with its Class Hierarchy page, the VisualAge for Java
framesets provide a more localized context that lets
the programmer get to the required information
more quickly without getting lost. For the user, re-
ducing the number of mouse clicks directly trans-
lates into less context to remember. As the JDK grows
and additional APIs are included with VisualAge for
Java, these usability enhancements for browsing ref-
erence information will minimize the complexity for
the programmer.

Conclusion

A customer had this positive remark about Visual-
Age for Java: “First, VisualAge for Java offered
strong support for the environments we were deal-
ing with, including NT**, AS/400, DB2, Lotus Dom-
ino**, and other technologies. Second, VisualAge
for Java offered strong functionality for team devel-
opment. When you have as many as four people
working on the same software, it is important that
you have a repository and strong versioning control.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Figure 17 API documentation frameset

CONCEPTS TASKS

GLOSSARY SEARCH

O I R T
HOME PAGE % 17]ng

package java.awt

Class Hierarchy
Index

Interface Index t

Adjustable

Class java.awt.Choice
Jjava.lang.Object
+--—-java.awt.Component

+-——-java.awt.Choice

ItemSelectable

LayoutManager
LayoutManager2
MenuContainer

PrintGraphics

Constructor Index

Choice()

public class Choice
extends Component
impletments ItemSelectable

The Choice class is a pop-up menu of choices. The current choice is displayed as
the title of the menu.

Method Index

Where am I?

Class Hierarchy Index

add(String)

addItem(String)
addltemListener(ItemListener]
addNotify()

countitems()

getltem(int) Choice()

VisualAge offers this over and above any other tool
in the industry.”

Another customer reported that he and his organi-
zation see “VisualAge for Java as an expedited route
to transforming our core business applications into
highly effective e-business-based services.”

From both a technical and business perspective,
strong market demand exists for powerful Java de-
velopment tools. Software developers expect new
tools to match existing tool suites in power and flex-
ibility. Information technology managers require
tools that exploit new information domains such as
the Web, while at the same time leverage legacy en-
terprise data. IBM VisualAge for Java addresses these
requirements, placing a premium on programmer
productivity, ease of use, and robust code genera-
tion for middleware access.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

Constructor Index

Constructs a new Choice.

For more information, see our Web site at http:
/www .software.ibm.com/ad/vajava. The “Getting
Started” documentation for VisualAge for Java, Ver-
sion 1.0, can be downloaded from http://www.
software.ibm.com/ad/vajava/entry.htm. Also see Po-
lan® for a discussion on using VisualAge for Java
when working with the 1BM San Francisco* frame-
works.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, or Lotus Development Corporation.

Cited references and note

1. See http://java.sun.com/beans/docs/javaBeansTutorial-Nov97/
javabeans/.

2. The marshaling process changes the language representation
of abstract data into the corresponding bits and bytes, which
are then “streamed” onto the network.

CHAMBERLAND, LYMER, AND RYMAN 407

3. M. G. Polan, “Using the San Francisco Frameworks with Vi-
sualAge for Java,” IBM Systems Journal 37, No. 2, 215-225
(1998).

Accepted for publication April 15, 1998.

Luc A. Chamberland IBM Software Solutions Division, Toronto
Laboratory, 1150 Eglinton Avenue East, North York, Ontario, Can-
ada M3C 1H7 (electronic mail: ichamber@ca.ibm.com). Mr. Cham-
berland leads the technical writing teams for the VisualAge for
Java and VisualAge e-business products at the IBM Toronto Lab-
oratory. He has written several articles on Java and is the author
of FORTRAN 90: A Reference Guide, Prentice Hall (1995).

Sharon F. Lymer IBM Software Solutions Division, Toronto Lab-
oratory, 1150 Eglinton Avenue East, North York, Ontario, Canada
M3C 1H7 (electronic mail: lymer@ca.ibm.com). Ms. Lymer is a
professional engineer with over 13 years experience in software
development. Currently, she is a solution designer on the user-
centered design team at the IBM Toronto Laboratory. This team
works with development organizations to optimize the usability
of VisualAge for Java and other application development prod-
ucts,

Arthur G. Ryman IBM Software Solutions Division, Toronto Lab-
oratory, 1150 Eglinton Avenue East, North York, Ontario, Canada
M3C 1H7 (electronic mail: ryman@ca.ibm.com). Dr. Ryman is the
solution architect for VisualAge for Java and e-business at the
IBM Toronto Laboratory, where he has worked since 1982. Prior
to working on Web application development tools, he worked on
software engineering, image processing, and office systems prod-
ucts. He received a Ph.D. degree in mathematics from Oxford
University in 1975. Dr. Ryman was a cofounder of the IBM
Toronto Centre for Advanced Studies (CAS) and was its asso-
ciate head from 1990-1994. His research interests are in software
specification and design tools, and he is currently leading a col-
laborative university research project with Queen’s University and
York University in this area. He is a member of the IBM Acad-
emy of Technology, an adjunct professor of computer science at
York University, and a Sun-certified Java programmer.

Reprint Order No. G321-5684.

408 CHAMBERLAND, LYMER, AND RYMAN IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998

