The effective use of
automated application
development tools

In this paper we report on the results of a four-
year study of how automated tools are used in
application development (AD). Drawing on data
collected from over 100 projects at 22 sites
in 15 Fortune 500 companies, we focus on
understanding the relationship between using
such automated AD tools and various measures
of AD performance—including user satisfaction,
labor cost per function point, schedule slippage,
and stakeholder-rated effectiveness. Using
exlensive data from numerous surveys, on-site
observations, and field interviews, we found that
the direct effects of automated tool use on AD
performance were mixed, and that the use of
such tools by themselves makes little difference
in the results. Further analysis of key intervening
factors finds that training, structured methods
use, project size, design quality, and focusing on
 the combined use of AD tools adds a great deal
of insight into what contributes to the successful
use of automated tools in AD. Despite the many
grand predictions of the trade press over the
past decade, computer-assisted software
engineering (CASE) tools failed to emerge as the
promised “silver bullet.” The mixed effects of
CASE tools use on AD performance that we
found, coupled with the complex impact of other
key factors such as training, methods, and group
interaction, suggest that a cautious approach
is appropriate for predicting the impact of
similar AD tools (e.g., object-oriented, visual
environments, etc.) in the future, and highlight
the importance of carefully managing the
introduction and use of such tools if they are to
be used successfully in the modern enterprise.

he software industry has searched for the “sil-
ver bullet” in application development (AD) pro-
ductivity for over four decades,' yet the field con-
tinues to have many highly visible examples of
software development failures. The opening of the

P. J. Guinan
J. G. Cooprider
S. Sawyer

by

new Denver, Colorado, international airport was de-
layed for more than a year—at a cost of more than
$1 million per day—due to a software problem in
the automated baggage-handling system. In devel-
oping a new air traffic control system, the U.S. Fed-
eral Aviation Administration is currently five years
behind schedule and more than $1 billion over bud-
get.? One study found that almost 75 percent of all
AD projects are never completed,® while other stud-
ies have estimated that between one-third and one-
half of all systems projects never reach the imple-
mentation stage.® This vexing problem has led
practitioners and researchers alike to look for an an-
swer—a silver bullet—in many areas. Despite the
huge amounts of attention and effort focused on im-
proving AD tools and methods, however, few clear-
cut solutions to improving the results of using AD
tools have emerged. Over the past 40 years, the pro-
cession of new AD tools and methods has led to only
incremental improvements in overall performance.
When new tools or methods are introduced, many
in the field seem to rush to embrace them, only to
realize later that unrealistic expectations cannot be
met.

In our study we find this to have been particularly
true for computer-assisted software engineering
(CASE) technologies. Moreover, and perhaps more
importantly, this may also be the case for other new

©Copyright 1997 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

124 GUINAN, COOPRIDER, AND SAWYER 0018-8670/97/$5.00 © 1997 IBM IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

approaches to software development such as object-
oriented (00) approaches’ and other proposed AD
solutions. Drawing on data collected in our four years
of studying AD projects in 15 of the most highly re-
garded companies in the United States and Canada,
we feel that we can appropriately point to the ben-
efits and drawbacks of using automated tools in or-
ganizations today in the hope that what we have
learned from the past will contribute to the success-
ful use of the next generation of tools and methods.

In this paper we begin our discussion by looking back
at a major development in software practices—the
development and delivery of automated design and
development tools that were positioned to revolu-
tionize the way in which systems were developed. The
results of our four-year longitudinal study show that
tools are helpful only under the proper set of con-
ditions—and in some situations the tools may actu-
ally hinder AD performance. We have also included
a general reference section that contains other rel-
evant related work.

One finding from our study indicates that the use of
automated development tools may have a very pos-
itive impact from one point of view (e.g., the tools
may enable developers to create systems with which
users are more satisfied), while having little or even
a negative impact on other AD performance mea-
sures (such as adherence to schedule). The relation-
ship between tool use and performance is complex
and affected by several key mitigating factors that
we found, including: training both in specific tool op-
erations and general AD processes, use of structured
methods, project size, team interactions, and the
quality of the initial application design. At the same
time, however, some of our findings were counter-
intuitive and illustrate the need to better examine
and understand how tools and methods actually af-
fect AD performance.

As an example, we found that application develop-
ment teams with more operational training in spe-
cific tool use receive higher satisfaction ratings from
their end users— but the development teams are also
more likely to miss their planned schedules. By con-
ducting additional analysis, however, we developed
a much more complete picture of the role of train-
ing in tool use. When teams receive both tool-spe-
cific operational training and more general AD train-
ing, there is less schedule slippage and greater user
satisfaction. If organizations do not provide both
types of training for their developers, they may be
unhappy with the tool impacts that they see but not

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

know what they could have done differently to make
the tools more effective in their organizations.

Another important finding of our study is the need
to better understand what can be characterized as
the “backlash” against CASE—and what it may mean
to the future of our industry. For example, we ex-
pected tool use to be higher and related to increased
AD performance when it is accompanied with a de-
sign document of high quality. Surprisingly, higher
quality design documents were related to lower lev-
els of tool use. In post hoc interviews with the de-
velopment teams, we learned that many developers
felt that there was too much excitement and expec-
tation with using CASE, and they were therefore less
willing to use the tools—even if they expected an
increase in the quality of their work. Finally, perhaps
the most important and encouraging result of our
study is the 50 percent performance improvement
achieved by teams that extensively used both CASE
tools and formal structured methods. Conversely, for
teams characterized by low use of both structured
development processes and CASE tools, their systems
cost more and were less acceptable to the project
stakeholders. We found that automated develop-
ment tools may be a magnifier. That is, for teams
with well-structured processes, use of such tools en-
hanced the process and improved performance. For
teams with more informal or ad hoc processes, tool
use abetted chaos.

1t is clearly important for information systems man-
agers and developers to have realistic expectations
for the use of automated application development
tools. The potential benefits from these tools are not
universal, and they can lead to important perfor-
mance trade-offs. As an industry, the information sys-
tems groups continue to experience serious failures
and limited success in using these tools. “Those who
cannot remember the past are condemned to repeat
it.”

To elaborate on these findings, we begin with a brief
review of CASE research to set the stage for the study
we discuss. We then describe our research approach,
a longitudinal study in which we collected data at
specific points over the life cycle of 57 development
projects. Data collection is organized using the IBM
AD/Cycle* model.® Analysis focuses on analysis and
design activities, and findings do not pertain to the
maintenance aspects of the model, since we looked
at new development. This section is followed by a
presentation of the major results of the study. We
discuss the use of application development tools and

GUINAN, COOPRIDER, AND SAWYER 125

examine the effect of this use to AD performance.
We conclude the paper by focusing on implications
for managers and system development teams.

CASE history

The rise in interest in CASE tools is best understood
by using the growth of the software industry as a
backdrop. Recent figures put the present value of
software at $2.7 trillion.” Estimates of the software
industry calculated it to be a $1 trillion business in
1995, growing by nearly 8 percent annually.® This is

Drawing on data collected,
we can appropriately point to
the benefits and drawbacks
of using automated tools.

particularly notable since the investment has all oc-
curred within the past 40 years, with most of it in the
last 20 years. Software systems and their develop-
ment are central to the modern enterprise.

With this unparalleled growth come a number of pro-
ductivity challenges. Software development is both
complex and problematic."*~* The need to better
support developers has led to several evolutions in
the tools and methods for software development. For
example, structured methods and structured pro-
gramming are techniques to assist developers to de-
sign and build software more systematically.%>!* Im-
provements in programming languages and their
compilers and debuggers increase developers’ pro-
ductivity. *'¢

In the 1980s this attention to tools rapidly expanded
as CASE began to appear.'* As the interest in CASE
tools rose, research reporting on the use and pro-
ductivity of CASE tools remained scarce and mixed.
While the empirically based research on CASE tool
use was equivocal at best, trade journals presented
powerful claims of CASE tool use success.

For example, drawing on empirical data, Lempp and
Lauber" found the quality of CASE-abetted systems
is higher, although costs are higher. This study also
reported that the use of CASE tools encourages de-

126 GUINAN, COOPRIDER, AND SAWYER

velopers to spend more time and effort document-
ing their work. More recent research indicates that
tool use has no impact on the final quality of a sys-
tem. ® These contradictory results also occur in other
research efforts. Surveys and observations across
multiple organizations find more questions than an-
swers about the impacts of CASE tool use on pro-
ductivity, quality, and cost.®* Scientific research also
highlights limitations within the CASE tool suites and
reveals significant social dilemmas that organization
members experience after purchasing and using the
tools.?!

Concurrently, the trade literature frequently touted
the benefits of using CASE tools. While the research
literature reported mixed findings, Burkhard* re-
ported “ . . . there were strong indications that CASE
actually improves productivity.” Other articles re-
ported tremendous success stories of CASE use, 2
but these claims were based on anecdotal informa-
tion. For instance, a report circulated by one con-
sulting group indicated that CASE use was creeping
into most major companies, barriers to CASE use
were falling, and pilot CASE projects had been very
successful.

Given the mixed views of CASE tool use, we recog-
nized the need to approach the problem from a solid
theoretical and empirical perspective. To understand
how CASE tools are used, we felt it was imperative
to study development teams across the systems de-
velopment life cycle, across multiple development
efforts, and across many organizations, with both ob-
jective and subjective performance measures. To our
knowledge, no other study has attempted to collect
data about CASE use and impacts in such a compre-
hensive way.

Study approach

Our interest in automated application development
tools—their use and their effects on AD perfor-
mance— derives from our ongoing research on how
groups of people work together, how they use infor-
mation technology (such as CASE tools), and how this
impacts team performance. Application develop-
ment is a particularly interesting domain to exam-
ine because the work demands a team orientation.
CASE tools are an excellent example of cooperative
work methods and tools, and improving AD perfor-
mance is a critical issue for our industry. In order
to accomplish the research objectives, the study had
to be rigorous and based on theory-driven research
models. Specifically, the theoretical and conceptual

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

support for this study includes related work from in-
formation systems research, organizational theory,
small group theory, and communications re-
search.?* In addition, to make the results of this
research useful to application development organi-
zations and personnel, the study had to focus on rel-
evant issues and concepts. Hence, we based our mea-
sures and present our results in ways that reflect
current industry standards.

In order to compare results across organizations, we
focused on large companies that had extensive in-
house information system departments. To control
the project size, projects had to be 12 to 18 months
in planned duration. The selected projects were bus-
iness applications with some strategic relevance to
the company. To accommodate the changing nature
of AD projects across the life of the project, we chose
to follow each project from inception through de-
livery and system use. We developed several data col-
lection instruments for use in gathering data from
developers, managers (information systems and line-
of-business managers), and users. Software metrics
on each project (e.g., function points, labor costs,
schedule adherence) were also collected.

Table 1 summarizes our sample population. Data
were collected on more than 100 projects (not all
completed) at 22 sites of 15 organizations in the
United States and Canada. Contributing organiza-
tions represent financial services, manufacturing, and
high-technology industries from the Forfune maga-
zine Fortune 500 list. For each project, we surveyed
the development team at three stages of project de-
velopment: at the end of requirements, at the end
of design, and at project implementation. At the end
of requirements and implementation we also sur-
veyed the key managers who were invested in the
outcomes of the projects. These “stakeholders” pro-
vided a critical perspective on AD team performance,
because they were heavily invested in the outcomes
of the projects. After the systems were in operation
for approximately six months, we surveyed the end
users and user managers on their satisfaction with
the system. Finally, we gathered data on the tech-
nical environment of each organization, including de-
scriptions of the platforms and hardware and soft-
ware configurations for each project. Of the more
than 100 projects we began tracking, 57 were com-
pleted, implemented, and placed in production.
From these 57 projects come the data for this pa-
per.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Table 1 Description of the four-year study
i Ermmnment S HowMany
Contnbutmg 'éféaﬁizaﬁcns ’ 15

Different CASE tools used 200

 Projects completed ST

Partlclpants S . More than 2006

. OﬁséwatibnS' perteam Appmxi'mately 4000

Data’ pmnts L Nearly 500000

Through the course of the four-year study, we vis-
ited the project sites on a quarterly basis. During
these visits we interviewed project team leaders, key
technical people, key managers in the information
systems department, as well as senior managers in
many of the companies. We gathered project doc-
uments, observed daily work, and spent time with
individual members of many of the teams. We main-
tained phone and mail contact with all projects on
aregularly scheduled basis. Each project contact was
arranged directly with the project team and the site
sponsor. At the compietion of the data collection,
we had collected data from more than 2000 people.
These data include more than 4000 observations per
team, for a total of nearly 500000 data points.

This data set provides an exceptionally rich picture
of automated development tool use in organizations.
The study is contextual, drawing from data about the
organizational environment and the department
environment as well as the individual project. The
data include a variety of computing infrastructures,
including mainframe, local networks, uncoupled
workstations, mixed vendor shops, and rudimentary
client/server systems. CASE tool use varies widely
across the projects in our sample: both by project
and by phase. Studied projects made use of more
than 20 different CASE tools.

In the following sections we highlight our findings
on CASE tool usage and application development
team performance. To present this analysis, we be-
gin by describing how we analyzed the CASE usage
data. We also describe the key performance mea-
sures used. Finally, we explain how various charac-
teristics of the software teams, the development
projects, and the training and use of the tool relate
to technology usage and, ultimately, to AD team per-

GUINAN, COOPRIDER, AND SAWYER 127

Figure 1 Alife-cycle model of CASE tool use

\ UPPER CASE 0 LOWER CASE |

INCLUDED NOT INCLUDED
IN THIS STUDY

IN THIS STUDY

Table 2 CASE tool use at different project stages

formance. The following research questions were ad-
dressed by this study:

e How are automated tools used in AD projects?

* What are the impacts of automated tool use on
AD performance?

* Which key factors influence the relationship be-
tween tool use and AD performance?

A framework to view CASE tool use

To better understand how CASE tools are used in or-
ganizations today, we use a life-cycle-based model
of tool usage as a basis for data collection.* Figure
1 presents the life-cycle model used. This model rep-
resents a vision of CASE embodied as a set of solu-
tions packaged in a common environment working
from a central repository and is similar to the IBM
AD/Cycle model.*** This comprehensive view serves

128 GUINAN, COOPRIDER, AND SAWYER

as away to characterize the use of CASE tools by their
applicability to a specific task in the AD life cycle.
For instance, tools developed to assist in the early
stages of AD span planning and analysis. One exam-
ple of this are the automated data flow modeling
tools found in most major tool vendor product suites.
These have come to be known as upper CASE tools.
Lower CASE tools support the production and main-
tenance aspects of the AD life cycle. Additional tools
such as process management and project manage-
ment support the entire range of AD tasks and have
come to be known as cross-life-cycle tools.

Other available frameworks depict CASE tool use
from a more behaviorally oriented functional per-
spective.?6%3% A functional perspective focuses on
the behavior of the developer rather than the features
and functions of the fool. For this analysis we used
alife-cycle model because of its easy mapping to ven-
dor products and the familiarity of its components
(e.g., enterprise modeling, analysis, testing) to infor-
mation system practitioners.

To measure CASE use, we use six aggregates collected
at two stages in the development of each project. The
six CASE tool measures for which data have been col-
lected are grouped into the three categories: upper
CASE tools, lower CASE tools, and cross-life-cycle
tools. Drawing on our life-cycle model, the enter-
prise modeling tools and the analysis and design tools
are the key components of upper CASE tools. The
build and test tools and the maintenance tools are
the key components of lower CASE tools. However,
maintenance tool use in this context refers to those
functions used to support the current system as it is
being developed. The process management and the
project management tools each represent cross-life-
cycle tools.

CASE tool usage

We collected data on CASE tool use at the end of
analysis and design, and again at the completion of
the project—at implementation. In addition, we also
gathered data on the level of adherence to structured
methods. Aggregated values across all projects for
the CASE variables, at the two stages, are presented
in Table 2. These data encompass the 57 teams and
more than 500 respondents who completed and in-
stalled their systems. These data were collected us-
ing a 7-point scale. For these CASE tool usage scales,
7 represents daily use and 1 represents no use. Thus,
a response of 4 represents a general average of
weekly use. We asked the respondents to provide

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

their average level of use at the particular project
stage and did not focus on total usage as a function
of time. Questions were asked about the team’s use
of CASE tools, and the data were aggregated to team
levels for this analysis.

From Table 2 it can be seen that overall usage, and
usage in each category, drops from analysis and de-
sign through build and test. Second, process man-
agement and project management (cross-life-cycle
activities) are relatively low at both points. Finally,
the largest change between the two phases is in the
use of upper CASE tools.

CASE tool usage is much lower than would be ex-
pected based on the popular literature. For instance,
there occurred a relatively large use of upper CASE
tools during analysis and design that dropped dur-
ing build and test. The a priori expectation would be
to see a rise in lower CASE tool use during the build
and test phases of the projects.”” This expectation
is driven by the belief that CASE tools provide a way
to move from automated design to automated de-
velopment.* The low use of CASE tools and drop in
use between upper and lower CASE tools may have
been because the tools are perceived as inadequate
for their intended purpose. *** That is, CASE tool use
may have been low because the teams did not feel
that using the tools really helped their efforts as much
as they had hoped.

CASE tool use and AD performance

As we stated above, one of the goals of the study
was to determine the relationship between CASE too]
use and AD performance. As others have noted, how-
ever, the relationship between AD performance mea-
sures varies considerably and is not well under-
stood.*~* We do know that AD performance is a
multidimensional concept with many facets, any of
which may or may not be in concert with any other.
In order to get a reasonably broad assessment of AD
performance, we collected a variety of measures. This
suite of measures provides a gauge of the effects of
CASE tool use on both subjective and objective AD
performance measures.

We measured AD performance both objectively and
subjectively. The subjective measures include impres-
sions of system effectiveness from project stakehold-
ers (e.g., user managers and information system man-
agers) and satisfaction ratings from the actual users
of the systems. The two objective measures of per-
formance are labor cost per function point delivered

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

and schedule slippage (in percent of slip from the
scheduled development time).

We collected the evaluations of key stakeholders at
the time the project was implemented. Stakehold-
ers were interviewed by the researchers about the
effectiveness of the project in regard to quality, pro-
ductivity, and time-to-market. Four to six months af-
ter each system became operational, system users
were asked about their satisfaction with the imple-
mented system. Schedule adherence was collected
as the percent slip from the baseline schedule es-
timate (for example, a project that took six months
to complete but was originally scheduled for four
months has a 50 percent slippage). Function points
were counted by the members of the research team
using a common standard* that ensured a common
basis for comparison. A function point means any
collection of code that stands as a functional imple-
mentation of a requirement.* The total labor cost
for each project was divided by the total function
points sum of the project to get labor cost per func-
tion point delivered.

The first stage of our analysis explores the direct re-
lationships between CASE tool use and AD perfor-
mance. Specifically, we ask if more use of CASE tools
leads to higher AD performance as measured by:
stakeholders’ rated effectiveness, user satisfaction
ratings, labor cost per function points, and schedule
slippage. In the following set of analyses we make
use of various forms of ordinary least squares (OLS)
regression.** We present these results in terms of
which factors best predict variations in the perfor-
mance measures. Table 3 summarizes our analysis
of the direct relationship between using CASE tools
and how much of the variance in AD performance
is explained.

Table 3 shows that, of the four performance mea-
sures, CASE tool usage explained a significant amount
for only two. Approximately one-fifth of the variance
in schedule slippage is attributed to using lower CASE
tools. This implies that using lower CASE tools in-
creases the likelihood that the team would exceed
their scheduled timetables. Further, more than half
of the variance between the best and worst stake-
holder-rated projects was accounted for by using both
lower CASE and process management tools. No di-
rect effects of CASE tool use to AD performance were
observed for user satisfaction or labor cost per func-
tion point delivered. Thus, CASE tool use did not di-
rectly impact user satisfaction or production effi-
ciency. However, it is reasonable to expect that the

GUINAN, COOPRIDER, AND SAWYER 129

Table 3 CASE tool use and application development performance

Table 4 Expected performance effects using CASE tools

overall impact of CASE tool use on AD performance
may be influenced by other factors such as the use
of structured methods, training, and group or proj-
ect characteristics. We explore the effect of these fac-
tors in the next section.

Key factors affecting the relationship
between CASE tool use and performance

We believe, as do others, that there are certain fac-
tors that may affect the impact of CASE tool use on
AD performance.'*172635447 Based on our research
models, these include factors about the project (such
as project size and design quality), the software team
(such as amount of training and level of coordina-
tion), and the management of the project (such as
the use of structured methods). We investigated the
impacts of five of these factors. Table 4 describes and
defines these factors and the rationale for their in-
clusion in the analysis.

130 GUINAN, COOPRIDER, AND SAWYER

In this stage of analysis, for each of these potentially
mitigating factors, we divided the sample by the mean
value of that factor. We then compared the relation-
ship between CASE tool use and performance for both
high-value and low-value groups. The results are pre-
sented with respect to these key factors in Table 5,
and we discuss them in the following subsections.

Tool training. CASE tool training refers to the amount
and type of specific training the team members re-
ceived. The expectation is that more tool training
leads to higher levels of CASE tool use and improved
AD performance.* The data from our sample indi-
cate that most training is tool-specific. The general
trend of tool-based CASE training is to have tool ven-
dors or contractors perform the work. Vendor classes
focus on the features of the product; thus, typically,
no formal integration of the product into existing
methods, for a site or an overview of how the tools
are to be used at the site, are part of this training.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Table 5 Effects of key factors

Key | ~CaseTool = | Stak

| Satistaction

or Gost Per Schedule |

‘Function Peint

Factor =~ oo Use.
Highlevels |’ Higher.
of tool and S R
general training - |

Slippage

: Lessj,‘slip' o ,

High levels
of structured
methods use

- ‘Lowercost

High levels
of group

Loweér - -
coordination i

. Highr

High levels of
design document

: Lower
quality b

Larger project size

(measured in
function points)

- Higher

: ngher cost

_ Means no observed effect

Further, the average amount of tool-specific train-
ing is less than two days. CASE tool training is often
done months before actual tool use begins. Still, team
members reported an average satisfaction level with
CASE tool-specific training. This suggests that CASE
training is relatively similar to most of the other
methodology or tool training that developers have
received in the past.®

The results indicated that teams with higher levels
of CASE tool training use the CASE tools significantly
more than the less-trained teams. Furthermore,
teams with more CASE-tool training receive higher
ratings from the user population. However, for these
highly trained teams stakeholder-rated effectiveness
is significantly lower and schedule slippage is signif-
icantly greater. This confusing mixture of effects can
be made more understandable if overall AD training
(for methods and for project management) is in-
cluded as well. Table 5 shows that for high levels of
training that include both CASE tool-specific train-
ing and general AD training, higher levels of CASE
tool use are related to less schedule slippage and im-
proved user satisfaction. There is no negative effect
on stakeholder-rated effectiveness. This is a strong
message to support general AD training in conjunc-
tion with CASE tool-specific training.

Structured methods use. Structured methods use is
defined as the amount of use of key structured meth-

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

ods for each team. On the average, structured meth-
ods use is considered moderately important. Using
structured methods has been advocated as a key fac-
tor in improving AD performance,*” and CASE tools
are one way of implementing structured methods.*
By splitting the sample into a set of two groups (one
of teams with high levels of structured methods use,
the other of teams with low levels of structured meth-
ods use) a more detailed picture of the impact of
structured methods use is possible. From this anal-
ysis, for teams with higher than the average use of
structured methods, use of CASE accounts for 16 per-
cent of the variance in the labor cost per function
point. In this same sample CASE use accounts for 55
percent of the variance in stakeholder ratings of proj-
ect effectiveness. There are no significant relation-
ships between CASE tool use and user satisfaction or
schedule slippage for high levels of structured meth-
ods use. However, lower levels of structured meth-
ods use result in lower levels of user satisfaction and
a higher labor cost per function point. What is clear
from the data is that using structured methods in-
fluences the amount of CASE use and enhances as-
pects of AD performance.

Group coordination. Group coordination is the ex-
tent to which team members share information and
make efforts to work together. Research indicates
that higher levels of group coordination should be

GUINAN, COOPRIDER, AND SAWYER 131

related to higher levels of performance. ! Overall,
teams in this sample exhibit high levels of group co-
ordination. These groups were also relatively sim-
ilar in this behavior, as the variance in the level of
group coordination across these teams was small.

However, splitting the sample on the mean level of
coordination shows sizable differences in both CASE
use and the relationship between CASE tool use and
some of the AD performance measures. Teams with
higher levels of group coordination use CASE tools
less and the labor cost per function point is higher.
However, user satisfaction is higher for groups with
higher levels of coordination. Teams with less group
coordination use CASE more, have lower labor cost
per function point and lower user satisfaction. For
teams with low levels of group coordination, using
project management tools helps to explain the vari-
ance in the labor cost per function point. Higher lev-
els of project management tool use, especially early
in the project, help to explain nearly 25 percent of
the variance in labor costs per function point. Finally,
CASE tool use is related to schedule slippage for both
levels of group coordination. This finding suggests
that CASE tool use does not provide the time savings
that the trade press reported.™

Design document quality. Design document quality
is defined as the level of design quality as reflected
in the design document. We focused on the design
document because it is the primary artifact of the
requirements and design stage. This document typ-
ically represents both the requirements as agreed
upon and the design developed to meet those re-
quirements. Thus, the quality of the design document
reflects both the user needs and the developer’s plan
to meet those needs. We expected that for higher
levels of design document quality, CASE tool use
would be up and related to AD performance.!?

Splitting the sample into two groups— high and low
levels of design document quality—indicates that
higher levels of design document quality are related
to lower levels of CASE tool use. This may be an in-
stance where the backlash against CASE is apparent.
It may be that the teams themselves are not con-
vinced of the necessity to use the tools.”! Yet, stake-
holders are happier with the projects that used the
tools—even though they have no knowledge of CASE
tools or CASE tool usage.

Project size. Project size is calculated as the total
number of adjusted function points. Function points
for each project were counted by a trained group of

132 GUINAN, COOPRIDER, AND SAWYER

researchers using the International Function Point
Users Group (IFPUG) 3.2 standard. This was done
to provide a common basis for comparison across
projects. Projects ranged in size, with the mean proj-
ect having approximately 2600 function points. How-
ever, two distinct groups of projects existed, those
smaller than 675 function points, and all others.

Using the 675 function point level as a way to split
the sample, a number of interesting differences
emerge. Smaller projects use less CASE, have a lower
labor cost per function point, and have lower levels
of user satisfaction. This result may indicate that us-
ing CASE tools for small projects is not warranted.
For larger projects, increased use of CASE, specif-
ically lower CASE and project management tools, are
related to higher levels of user satisfaction. However,
larger projects have higher labor costs per function
point. Larger projects demand more coordination
and management, which increases costs. Large soft-
ware development projects are still very difficult to
manage and to successfully complete. However, CASE
tool use in larger projects relates to improved user
satisfaction.

Performance, CASE tool use, and structured
methods

Finally, just as certainly as the silver bullet does not
exist, we find that the adage “ . . . a fool with a tool
is still a fool” is meaningful in the AD context. What
this means to us is that most CASE tools automate
the techniques that are already in existence in these
companies. Further, many CASE tools enforce stan-
dards and conventions that are not in place at these
same organizations. It is these issues (enforcing un-
used structure and using automation to force a pro-
cess that is otherwise done in a different way) that
may be problematic. For instance, a data flow dia-
gram done by hand at one site may use different con-
ventions and make different assumptions than its
CASE-based and automated replacement. These is-
sues are often not well documented in the existing
AD method, or explicitly mentioned in the CASE tools
being used to enhance the present AD method.™
Thus, CASE tools may not be the change agent they
were slated to be.

The next set of analyses focuses on AD teams that
had high levels of structured methods use and high
levels of CASE use. Our observations, and existing
research, suggest that a combination of following
structured methods and using CASE tools should lead
to improved AD performance. In the overall set of

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Table 6 Application development performance

' 7]
ercent of Variance in -
; Fm@rmanc:e Explained

Labor cost per £

Schedule slippage

ctured methods 51

L Not signifi
s
structured methods 58

AD teams, structured methods use overall averaged
moderately high. Measurement of structured meth-
ods use is based on measuring the number of AD
techniques used in developing the present project.
For the respondents in our sample, structured meth-
ods use seemed to be both valuable and important.
The level of CASE use also tended to reflect the split
of structured methods use. Higher usage of struc-
tured methods is related to higher levels of CASE tool
use.

To conduct this analysis we related the variation in
performance (for the four performance measures)
to the CASE usage variables for the teams that were
both high CASE users and high structured methods
adherents. Table 6 summarizes these results. For
each model, eight measures (the four CASE use mea-
sures at the two times that we collected these data
for each project) are used to predict performance.
Three measures (upper CASE tool use, project man-
agement tool use, and structured methods use) ac-
count for 51 percent of the variance between high
and low levels for stakeholder-rated effectiveness.
However, these same three elements account for 58
percent of the variance in schedule slippage. In other
words, higher levels of CASE tool usage in combina-
tion with increased use of structured methods in-
creases the likelihood that the project stakeholder
will be pleased with the system. However, it will take
longer to finish the project than originally estimated.
This supports the common wisdom that initially proj-
ect teams with CASE tools might run over schedule,
but the end result will better meet the needs of the
customer. It also points to the difficulty in the de-
velopers’ ability to judge project time-to-market
when CASE tools are involved. Perhaps due to the
unrealistic expectation that the tools would drasti-
cally improve productivity, developers underesti-
mated schedule completion time in projects using
CASE extensively.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

The other two models are not significant. This sug-
gests that the combination of CASE tools and struc-
tured methods use do not drive the labor cost per
function point or user satisfaction. However, the use
of CASE tools later (during build and test) seems
more important as a predictor of these outcomes:
significant but accounting for less than 5 percent of
variance. The relative lack of power of existing lower
CASE tools to support the latter stages of the AD pro-
cess may be one contributing reason to this lack of
CASE effect. It may also be that other intervening fac-
tors have not been accounted for.

The analyses indicate that for the teams who em-
ployed structured methods and used CASE to the
greatest levels, these measures predicted more than
50 percent of the variance in two key measures of
performance. That is, for those teams that were tak-
ing advantage of structured methods for develop-
ment, CASE tools enhanced their productivity. Con-
versely, in analyzing the teams that used few
structured methods and made use of CASE, the data
are not statistically significant. However, several
trends emerge. First, CASE use in these teams falls
dramatically between the analysis and design phase
and the build and test phase. Second, stakeholder
ratings of effectiveness are much different, as are la-
bor costs per function point. Teams using fewer struc-
tured methods are rated lower and cost more. This
suggests that CASE tool use may be a magnifier: for
teams with well-structured processes, CASE use en-
hances the process and improves performance. For
those teams with ad hoc processes, CASE tool use ap-
parently abets chaos.

In comparing the findings presented in Table 4 to
those presented in Table 2, additional insights can
be mentioned. For example, the direct relationship
between CASE tool use and AD performance may be
misleading. More detailed analysis of the interven-

GUINAN, COOPRIDER, AND SAWYER 133

Upper CASE @T1
Lower CASE @T1
Process Mgt. @T1
Project Mgt. @T1
Upper CASE @T2
Lower CASE @T2
Process Mgt. @T2
Project Mgt. @T2
Group Coordination
| Quality Req. Doc.
Str. Method Use

’ Size {in FP)

Tool Training
Stakeholder Eff.
Labor Cost/FP
Sched. Slippage

User Satisfaction

0000,

UPPERCASE -
N

58

e

Bar

85

47

B5

.09

.08

27"

A2

rakld

27

.00

10

.06

PROCESS

MaT, a1t

‘PROJECT

MGT. @T1 -

PROJECT

* p<.05
w pg.01
we p<.001

134 GUINAN, COOPRIDER, AND SAWYER

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

o ; i A A pro y. p

causahty That is, if A and Bare corretated it-does not mean that A causes B or B causes A. In
situations where the factors may have many common causes, this is poignant. For example, the
large, positive, and significant relationship between the use of lower CASE tools at T2 and
increased schedule slippage implies no causality. The implication that tool use leads to schedule
slip is based solely on our expectations of the two variables.

SUPPAGE (-

SAMPLE SIZE n = 57 T1 = TIME AFTER PHYSICAL DESIGN AND CODING COMPLETED

(FOR SCHEDULE SLIPPAGE, n = 29. T2 = TIME AFTER IMPLEMENTATION COMPLETED
FOR LABOR COST/FP AND SIZE, n = 49.)

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997 GUINAN, COOPRIDER, AND SAWYER 135

ing factors, as presented in the past two sections, in-
dicates that a better way to examine CASE is to ac-
count for the impact of certain key factors that
influence the relationship between CASE use and AD
performance. Hence, Table 2 can be misleading. For
instance, the key relationships between schedule slip-
page and CASE tool use may not be early use of lower
CASE tools (as predicated by the direct relationship).
A more detailed analysis indicates that both struc-
tured methods use and CASE tool use (upper CASE
and project management) are better predictors of
performance.

Conclusion

We began this paper by wondering aloud about our
industry’s search for the “silver bullet that would slay
the hideous AD productivity monster.” We focused
our attention on the most recent pretender to the
throne, CASE tools— contrasting the promises of ven-
dors with the reality, both positive and negative, from
current AD research. Drawing on a four-year study
on CASE use and impact on AD productivity, we com-
plete this paper by sharing a number of insights re-
garding CASE tool use and its impact on software de-
velopment. We use these as a basis for presenting
our recommendations to managers and to software
development teams.

To begin, there are two general findings from the
study that are noteworthy to reiterate: first, there are
anumber of different ways to view the impact of CASE
tools on AD performance. Other studies have not typ-
ically taken this notion into account. For example,
we found that although the overall impact of CASE
was positive from one point of view (for example,
from the tool’s ability to create systems that users
are satisfied with), at the same time it had a neg-
ative impact on other performance indicators (such
as schedule slippage). If the positive impacts of an
AD tool are felt in areas that are less visible to ap-
plication developers (who are, after all, the primary
decision makers about whether a tool is successful
in its use), then the developers may form negative
views on the impact of the tools, even when there
are other more important positive impacts that may
not be immediately apparent. Unless information
technology organizations find a way to address this
issue in the future, it will continue to hamper the
adoption of new technologies.

Second, we must have realistic expectations for the
impact of AD tools. Management cannot assume that
employing a tool or sets of tools will automatically

136 GUINAN, COOPRIDER, AND SAWYER

decrease software time-to-market. In our study we
found just the opposite to be true—systems devel-
oped with CASE tools were more likely to be deliv-
ered behind schedule. Although this may be due to
the learning curve for developers or to overly high
developer expectations, it is clear that expectation
management is critical to finding better ways to man-
age and execute software development projects.

The more detailed results of the study point out that
mitigating factors influence the relationship between
CASE use and AD performance. For example, CASE
tools and methods go hand-in-hand. While we are
clearly not the first to make this claim, our study re-
iterates that developers using both CASE tools and
a well-defined structured methodology were signif-
icantly more efficient in generating systems than de-
velopers using either CASE tools or a structured
methodology independently. Similarly, future AD in-
novations need both parts—tools and methods—
working in concert in order to see improvements in
AD performance.

It may not be as necessary to use CASE tools for small
projects. Larger, more complex projects may better
warrant the investment in these types of technolo-
gies. Although earlier work in CASE suggested that
small projects were an appropriate place to begin
when using the tools (for example, pilot projects) it
may now be time to make the investment in larger
projects that can better support the infrastructure
that is necessary when purchasing these tools.

Interestingly, teams that were highly coordinated did
not feel the need to use the tools as much as did the
less coordinated teams. This may be because highly
coordinated teams feel that the tools are inadequate
or do not support them as much as they would like.
Alternatively, it might be a manifestation of the im-
plicit design model inherent in many CASE tools: a
productivity aid for the solitary developer. Most CASE
tools have great limitations in their aid to teamwork
and cooperation. 2

We, like others, found that training is a major factor
for effective tool use. The steep learning curve of new
tools and methods like CASE has been conjectured
to be important. The results of this study support
this conjecture with an interesting caveat. When proj-
ect teams were trained specifically in the use of CASE
tools by the product vendors, the resulting systems
were perceived of as higher quality by both project
stakeholders and by the user population. However,
using CASE tools actually increased the likelihood

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

that these well-trained project teams would exceed
their projected schedules. Upon further analysis,
however, if the teams received both tool-specific and
more general AD training (e.g., methods and proj-
ect management), then users were more satisfied and
there was less slippage. Managers must make it a pri-
ority to ensure that development teams receive ad-
equate training that encompasses both domains.

In regard to design quality (which is reflected in the
design document in our study), we found that, sur-
prisingly, higher levels of design quality are related
to lower levels of CASE tool use, yet the stakehold-
ers are happier with the systems. As was stated pre-
viously, the backlash against CASE may be affecting
developers’ perceptions of the tools. Management
needs to make it clear to development teams, and
teams need to make it clear to management, that
the tools can have positive impacts if they are given
the appropriate support (training, structured meth-
ods) to do their jobs.

Finally, a question can be raised about the future of
AD tools. It is not clear whether any of the current
AD tools on the horizon will become the silver bullet
that we have waited for. It is unlikely, but only the
passage of time will tell. The factors that we have
found to be important will, however, continue to be
important. AD management needs to take the ap-
propriate steps now if they want to see new advances
in tools and methods successfully adopted in their
AD organizations. The good news is that with the ap-
propriate steps being taken, they can greatly increase
their chances of success.

Appendix: Measure definitions

CASE tool use. To measure CASE use we used four
aggregates collected at two stages in the development
of each project. The four CASE tool measures for
which data have been collected are grouped into the
three categories: (1) upper CASE, any enterprise
modeling and analysis/design tools, (2) lower CASE,
any build/test and maintenance tools, and (3) cross-
life cycle, process and project management tools.

Data were collected at two different stages using the
same 7-point scale. For these CASE tool usage scales,
7 represents daily use and 1 represents no use. Thus,
aresponse of 4 represents an average of weekly use.
We asked the respondents to provide us with their
average level of use and did not focus on total usage
as a function of time per day. These questions were

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

asked about the team’s use of CASE tools. Data were
aggregated to team levels for analysis.

CASE tool training. CASE tool training refers to the
amount and type of specific training the team mem-
bers received. This is based on the mean number of
days of training ecach team reported having.

Structured methods use. Structured methods use was
defined as the amount of and importance of using
structured methods for each team. We asked whether
the team used (and how important this use was) 20
key techniques embodied in structured methods.

Group coordination. Group coordination is the ex-
tent to which the team shares information and makes
efforts to work together.

Design document quality. Design document quality
is defined as the level of design quality as captured
in the design document. This is asked of the devel-
opers after they complete design.

Project size. Project size is calculated as the total
number of adjusted function points. Function points
for each project were counted by a trained group of
the research team using a common counting stan-
dard.

Stakeholder-rated effectiveness. We collected the
evaluations of key stakeholders at the time the proj-
ect was implemented. Stakeholders were interviewed
by the researchers about the effectiveness of the proj-
ect in regard to: quality, productivity, and time-to-
market.

User satisfaction. Four to six months after each sys-
tem became operational, system users were asked
about their satisfaction with the system.

Schedule adherence. Data were collected as the per-
cent slippage from the baseline estimated duration.

Labor cost/function point. Cost was the total labor
cost of the project and gathered from the project
team leader. Functionality was determined using
function points. Function points were counted by the
members of the research team using IFPUG 3.2 as a
common standard, which ensured a common basis
for comparison. The total function points sum was
divided by labor cost for each project to get a labor
cost per function point delivered.

GUINAN, COOPRIDER, AND SAWYER 137

Acknowledgments

The authors would like to thank J. Nami Kaur of
the 1BM Corporation and David W. Stetson and Dr.
Mehdi Ghods of the Boeing Company for their con-
tinued support and guidance of the research effort.
This research was supported by a grant from the IBM
and Boeing Corporations (92-465).

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18

. F. Brooks, The Mythical Man-Month, Addison-Wesley Pub-

lishing Co., Reading, MA (1975).

W. W. Gibbs, “Software’s Chronic Crisis,” Scientific Amer-

ican 271, No. 3, 72-81 (September 1994).

G. Gladden, “Stop the Lifecycle I Want to Get Off,” Sofi-

ware Engineering Notes 7, No. 2, 35-39 (April 1982).

. J. Turner, “Observations on the Use of Behavioral Models
in Information Systems Research and Practice,” Information
and Management 5 (1982).

. R. Fichman and C. Kemerer, “Adoption of Software Engi-
neering Process Innovation: The Case of Object Orientation,”
Sloan Management Review 35, No. 2, 7-22 (Winter 1993).

. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
“AD/Cycle Strategy and Architecture,” IBM Systems Journal
29, No. 2, 170-188 (1990).

. V.Merlyn and J. Parkinson, Development Effectiveness, John
Wiley & Sons, Inc., New York (1994).

. National Research Council, “The National Research Coun-
cil of Canada: Research, Programs, and Industrial Partner-
ship,” The CASE Center Spring Conference, Syracuse Univer-
sity, NY (April, 1995).

. W. S. Humphrey, Managing the Software Process, Addison-

Wesley Publishing Co., Reading, MA (1988).

R. Kraut and L. Streeter, “Coordination in Software Devel-

opment,” Communications of the ACM 38, No. 3, 69-81

(March 1995).

D. Reifer, Software Management, IEEE Press, Los Alamitos,

CA (1994).

D. Halloran, S. Manchester, and J. Moriarity, “System De-

velopment Quality Control,” MIS Quarterly 22, No. 4, 1-13

(December 1987).

L. Constantine, “Control of Sequence and Parallelism in Mod-

ular Programs,” AFIPS Conference Proceedings, Spring Joint

Computer Conference 32, Silver Spring, MD (1968), pp. 409—

430.

L. Beck and T. Perkins, “A Survey of Software Engineering

Practice: Tools, Methods, and Results,” IEEE Transactions

on Software Engineering SE-9, No. 5, 541-561 (September

1983).

S. Hanson and R. Rosinsti, “Programmer Perceptions of Pro-

ductivity and Programming Tools,” Communications of the

ACM 28, No. 2, 180-189 (February 1985).

A. Wasserman, Software Development Environments, IEEE

Press, New York (1982).

P. Lempp and R. Lauber, “What Productivity Increases to

Expect from a CASE Environment: Results of a User Sur-

vey,” Proceedings of the 27th Annual Technical Symposium on

Productivity: Progress, Prospects and Payoffs, Gaithersburg, MD

(June 9, 1988), pp. 13-19.

. K. Hayley, H. Lyman, and M. Thaine, “The Realities of

138 GUINAN, COOPRIDER, AND SAWYER

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.

CASE,” Journal of Information Systems Management 7, No.
3, 18-23 (Summer 1990).

C. Bird, “CASE Crop a Flop,” Software Magazine 11, No. 14,
8 (November 1991).

J. Carey and J. Currey, “The Prototyping Conundrum,” Data-
mation 35, No. 11, 29-33 (June 1, 1989).

W. Orlikowski, “Division Among the Ranks: The Social Im-
plications of CASE Tools for Systems Developers,” Proceed-
ings of the Tenth International Conference on Information Sys-
tems, Boston, MA (1990), pp. 199-210.

D. Burkhard, “The Role of Structured Methodology in the
Implementation of Computer-Aided Software Engineering
Technology,” unpublished manuscript, Mclntire School of
Commerce, University of Virginia, 1988.

J. Ambrosio, “DuPont Brings CASE Solutions Inside—And
Out,” Digital Review 6, No. 14, 40-43 (June 26, 1989).

S. Ball, “Successful Implementation of CASE,” E. Chikof-
sky, Editor, Advanced Papers for the First Engineering Work-
shop on CASE 1, IEEE-CS, Cambridge, MA (1987), pp. 128—
138.

Schubert Associates, “Comprehensive Data Summary: Com-
puter-Assisted Software Engineering: Vendor and User Is-
sues in an Emerging Market,” Schubert Associates Publica-
tion, Boston, MA (1987).

J. Henderson and J. Cooprider, “Dimensions of I/S Planning
and Design Aids: A Functional Model of CASE Technolo-
gy,” Information Systems Research 1, No. 3, 227-254 (Janu-
ary 1990).

M. Withey, R. Daft, and W. Cooper, “Measures of Perrow’s
Work Unit Technology: An Empirical Assessment and a New
Scate,” Academy of Management Journal 26, No. 1, 45-63
(1983).

J. Hackman, “A Set of Methods for the Research on Work
Teams,” Research Program on Group Effectiveness, Yale
School of Organization and Management, Technical Report
#1 (December 1982).

J. Hackman and J. Oldham, Work Redesign, Addison-Wes-
ley Publishing Co., Reading, MA (1976).

J. Henderson and S. Lee, “Managing I/S Design Teams: A
Control Theories Perspective,” Management Science 38, No.
6, 757-777 (June 1992).

D. Gladstein, “A Normative Model of Task Group Effective-
ness,” Administrative Science Quarterly 29, No. 10, 499-517
(1984).

P. Guinan, J. Cooprider, and N. Hopkins, “CASE and the
Applications Development Cycle: Measuring the Value Add-
ed,” Proceedings of the International Conference on Informa-
tion Systems, Dallas, TX (December 1992).

R. Radice, N. Roth, A. O’Hara, Jr., and W. Ciarfella, “A Pro-
gramming Process Architecture,” IBM Systems Journal 24, No.
2, 79-90 (1985).

AD(Cycle Overview, G320-9842, IBM Corporation {Novem-
ber, 1989), available through IBM branch offices.

I. Vessey, S. Jarvanpaa, and N. Tractinsky, “Evaluation of
Vendor Products: CASE Tools as Methodology Compan-
ions,” Communications of the ACM 35, No. 4, 90-105 (April
1992).

I. Vessey and P. Sravanapudi, “CASE Tools as Collabora-
tive Support Technologies,” Communications of the ACM 38,
No. 1, 83-95 (January 1995).

J. Norman and G. Forte, “Automating the Software Devel-
opment Process: CASE in the 90s,” Communications of the
ACM 35, No. 4, 27-32 (April 1992).

K. Frankel, “Toward Automating the Software-Development

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Cycle,” Communications of the ACM 28, No. 6, 578589 (June
1985).

39. 1. Bryant, “The Problems with CASE,” Systems International
18, No. 4, 75-76 (April 1990).

40. P. Keen, “MIS Research: Reference Disciplines and Cumu-
lative Traditions,” Proceedings of the International Conference
on Information Systems, Vol. 1, Philadelphia, PA, ACM Press
(December 1980), pp. 8-18.

41. B. Boehm, “Improving Software Productivity,” IEEE Com-
puter 18, No. 9, 43-57 (September 1987).

42. W. Delone and E. McLean, “Information Systems Success:
The Quest for the Dependent Variable,” Information Systems
Research 3, No. 1, 60-95 (March 1992).

43. D.Garmus, “IFPUG Function Point Counting Practices Man-
ual Release 3.2,” Interim Revision, International Function
Point Users Group, Westerville, OH (August 1991).

44. J. Cohen and P. Cohen, Applied Multiple Regression/Correlation
forthe Behavioral Sciences, Lawrence Earlbaum Associates, Inc.,
365 Broadway, Hillsdale, NJ 07642 (1983).

45, E. Pedhauzer and L. Schmelkin, Measurement, Design and
Analysis, Lawrence Earlbaum Associates, Inc., 365 Broadway,
Hillsdale, NJ 07642 (1991).

46. B. Boehm, Software Engineering Economics, Prentice-Hall,
Inc., Englewood Ciiffs, NJ (1981).

47. D.Card, F. McGarry, and G. Page, “Evaluating Software En-
gineering Technologies,” IEEE Transactions on Software En-
gineering SE-13, No. 7, 845-851 (July 1987).

48. R.Norman and J. Nunamaker, “CASE Productivity Percep-
tions of Software Engineering Professionals,” Communica-
tions of the ACM 32, No. 9, 1102-1108 (September 1989).

49. J. Dutton and A. Thomas, “Relating Technological Change
and Learning by Doing,” Research on Technological Innova-
tion, Management and Policy 2, 187-224 (1985).

50. A. F. Case, Jr., “Computer-Aided Software Engineering:
Technology for Improving Software Development Produc-
tivity,” Data Base 17, No. 1, 35-43 (Fall 1985).

51. T. Percy, “What CASE Can’t Do Yet,” Computer Worid 22,
No. 25, 59-60 (June 20, 1988).

General references

W. Chung and P. J. Guinan, “Effects of Participative Manage-
ment on the Performance of Software Development Teams,” Pro-
ceedings of the ACM Special Interest Group on Computer Person-
nel Research Conference, Alexandria, VA (March 1994).

P.J. Guinan, “Systems Development Surprise,” Computer World
(February 12, 1996).

P.J. Guinan, J. Cooprider, and S. Faraj, “Enabling Software De-
velopment Team Performance: A Behavioral Versus Technical
Approach,” Information Systems Research (to be published).
P.J. Guinan, G. N. Hopkins, and J. G. Cooprider, “Automation
of the Applications Development Life Cycle: Measuring the Value
Added,” Proceedings of the International Conference on Informa-
tion Systems, Dallas, TX (1992).

S. Watts and P. J. Guinan, “Software Development Under Con-
ditions of High Task Complexity and Ambiguity,” Proceedings of
the 315t Hawaii International Conference on Systems Sciences, Ha-
waii (January, 1997).

Accepted for publication December 11, 1995.

IBM SYSTEMS JOURNAL, VOL 36, NO 1, 1997

Patricia J. Guinan Babson College, Babson Park, Massachuseits
02157 (electronic mail: guinan@hcc0l.babson.edu). Dr. Guinan
is associate professor of information systems in the mathematics and
science department at Babson College. She is the McDermont Term
Chair recipient at Babson and conducts both applied and the-
oretical research in the areas of technology transfer and commu-
nication-related issues in information system design. She received
her Ph.D. from Indiana University. Her research has been pub-
lished in a number of journals, including Human Communica-
tion Research, Business and Communication Journal, and Group
and Organizations. An upcoming article is planned in Informa-
tion Systems Research. Dr. Guinan has also published an award-
winning book entitled Patterns of Excellence for IS Professionals.

Jay G. Cooprider Beniley College, CIS Department, 175 Forest
Street, Waltham, Massachusetts 02154-4705 (electronic mail:
jeooprider@bentley.edu). Dr. Cooprider is associate professor of
computer information systems at Bentley College in Waltham,
Massachusetts. He received his S.B. in computer science from
the Massachusetts Institute of Technology and his Ph.D. in man-
agement with an information technology specialization from the
Sloan School of Management at M.I.T. He was formerly a fac-
ulty member and associate director of the information systems
management program at the Graduate School of Business, Uni-
versity of Texas at Austin. Dr. Cooprider is the author of numer-
ous articles dealing with management and information technol-
ogy issues in such journals as Information Systems Research, MIS
Quarterly, and the Journal of Information Systems Management.
He consults widely with firms on application development tech-
nology and strategic technology applications.

Steve Sawyer Syracuse University School of Information Studies,
4-206 Center for Science and Technology, Syracuse, New York 13244-
4100 (electronic mail: ssawyer@cat.syr.edu). Dr. Sawyer is an as-
sistant professor at the Syracuse University school of informa-
tion studies. His research focuses on how people work together
and how they use information technology. Present research in-
cludes investigating how software development can be improved
through attending to the social aspects of working together, and
studying how people adapt to working with distributed comput-
ing applications (e.g., organizational effects of client/server com-
puting). Dr. Sawyer received his doctorate at Boston University.
He is a member of INFORMS, IEEE, ACM, and US Rowing.

Reprint Order No. G321-5638.

GUINAN, COOPRIDER, AND SAWYER 139

