
Preface

The creation of new technology for software
development and rapid technology transfer from
research into product development remain nota-
ble challenges for software researchers and prac-
titioners. One model for cooperation between
universities, governments, and companies is the
applied research center. This model was refor-
mulated for software and implemented in 1990 at
the IBM Toronto Software Solutions Laboratory
in Ontario, Canada. Called the Centre for Ad-
vanced Studies (CAS), it brings together the efforts
of researchers and developers under a funding pro-
gram supported by a number of North American
universities, the Canadian government, and IBM.

This issue presents some of the work sponsored
by CAS. An introductory essay describes the con-
cepts and operation of CAS, and six papers are
drawn from current projects. We are indebted to
J. Slonim, Head of Research for CAS, IBM Canada
Ltd., in North York, Ontario, Canada, for his so-
licitation of these papers and his coordination and
development of the issue.

The model for a Centre for Advanced Studies as
envisioned by IBM is an extrapolation of earlier
models for applied research involving researchers
and practitioners. In the case of CAS, it has been
reformulated for the needs of software and the
software community. CAS required a rethinking of
such factors as time from idea to product, utilization
of researchers for solving problems found in ex-
ploiting new technology, use of prototypes, coop-
eration and communication between universities
and IBM, and the policies of funding sources. In an
introductory essay, Slonim et al. discuss why this
model was developed; what resulted from that
rethinking of factors; what principles, processes,
and initiatives are identified with CAS; and what
the impact has been so far.

In the first paper on results from CAS projects,
Bauer et al. present an architecture for software

380 PREFACE

application development in the context of heter-
ogeneous systems and distributed execution. The
architecture deals with concerns such as applica-
tion environment, legacy applications, new ap-
plications, data access, software management, vi-
sualization, testing, and transparency. The
authors argue for a peer-to-peer view of such sys-
tems and describe their prototyping efforts to
date. This work is known by the acronym CORDS,
which stands for COnsortium for Research on
Distributed Systems.

Continuing the story of CORDS from the previous
paper, Bauer and a different group of coauthors
focus on a reference architecture for management
of complex distributed computing systems. They
decompose the management problem into three
areas of system behavior-network, operating
system, and application-and demonstrate how
these areas are interdependent. A detailed exam-
ple of a hospital network is used to present five
prototype implementations examined during the
course of the project.

Another project has examined the use of predi-
cate-based software testing strategies, with BOR
(Boolean operatoR) testing as the strategy under
comparative study and compound predicates as
the focus. Tai et al. give the results of empirical
tests of BOR and other strategies. They conclude
that BOR is practical and effective for specifica-
tion- and program-based test generation. Their
test results are preceded by a description of BOR
and the other strategies in the study.

Consens et al. describe their approach to visual
display and manipulation of complex databases
through their Hy+ generic visualization system
and its support of the visual query language
GraphLog. Examples are presented for software
engineering and network management. In addi-
tion, the architecture and design of Hy+ and its

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

query processing and graph layout components
are shown. They conclude that Hy + provides an
ease of application to a wide variety of fields
where visualization might apply.

1 Program understanding is an area of software en-
gineering that is currently under extensive study
as a means to recreate the design of existing soft-
ware when that knowledge has not been main-
tained or is lost. Buss et al. formed a multi-uni-
versity team to examine a large legacy system
using various reverse engineering methods and to
compare the results. The methods studied were
defect filtering, structural redocumentation, and
pattern matching. In order to facilitate their own
work and to make all these tools available in an
integrated environment, they developed a tool in-

I tegration scheme, which they also describe.

Heineman et al. show the results of their work on
technologies for development of quality software
as seen from the perspective of the software de-
velopment and maintenance processes. They
view these processes as having a life cycle that
encompasses design, instantiation, use, and im-
provement. The paper contains their goal-by-goal
analysis of the range of process techniques under
study, utilizing the goal structure in the refer-
enced work by Curtis, Kellner, and Over. They
draw conclusions about the span of research into
goals for processes and construct a hierarchy of
objectives that includes process management, im-
provement, automation, and understanding.

We are pleased to announce that information
about the ZBM Systems Journal is now available
electronically to IBM customers through IBM-
Link. By entering INEWS SYSJRNAL on the com-
mand line of the IBMLink main menu, customers
have direct access to information about recent
issues of the Journal, ordering of subscriptions
and single issues, and such matters as letters to
the Editor. (IBM employees view this same infor-
mation by entering INEWS SYSJRNAL, if the SYS-

1

1 JRNAL category is installed on their system.)

The next issue of the Journal will be an index
covering 1962 through 1994, consisting of three
parts: an author index, a subject index, and com-
plete abstracts by issue. It will also contain up-
dated author guidelines and a review of suggested
references for writing technical papers.

Gene F. Hoffnagle
Editor

1 IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 PREFACE 381

