
The impact of object-
oriented technology on
software quality: Three
case histories

by N. P. Capper
R. J. Colgate
J. C. Hunter
M. F. James

Techniques to obtain software quality are
examined from the experiences of three very
different object-oriented projects carried out by
1BM Information Solutions Limited in 1991 and
1992, Object-oriented programming systems are
sold on the promise of improved productivity
from object reuse and a high level of code
modularity. Yet it is precisely these aspects that
also lead to their greatest benefit, namely
improved software quality. In this paper, lessons
learned from the three projects are described and
compared, indicating approaches to consider in
using object-oriented technology.

T hree very different object-oriented projects
were carried out by IBM Information Solu-

tions Limited (ISL)’ in 1991 and 1992. They are (1)
a huge new business application that included the
development of an object-oriented user interface
within a “traditional” host-based development
shop, (2) a commercial data processing develop-
ment project to provide an advanced graphical
user interface to an existing national marketing
database, and (3) a technical systems software
project to “port” an object-oriented program-
ming system from a Multiple Virtual Storage
Time Sharing Option (MVS TSO) platform to a Cus-
tomer Information Control System/Enterprise
Systems Architecture (CICS/ESA*) platform and to
provide additional base business objects.

When development started in January 1991,
plenty of theoretical advice was available on top-
ics such as object-oriented design, graphical user
interface design, iterative development patterns,
end-to-end design, and so on. However, there
was very little practical experience to draw on.
This paper presents some of the quality lessons
learned as theory met reality head-on.

Broad aspects of quality are contrasted. In addi-
tion to code quality, the direct and indirect effects
of object orientation on conformance to user re-
quirements, usability, maintainability, and per-
formance are illustrated with the use of statistical
and anecdotal evidence. The issue of code met-
rics in a reuse environment is briefly discussed, as
are unexpected, general conclusions related to
the effect of team experience levels on quality
results.

Finally, conclusions are presented which show
that our experiences in the three very different
object-oriented projects confirm that this technol-
ogy produces immediate benefits in many aspects

Wopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

of software quality and productivity. The paper
outlines the ways in which ISL intends to maxi-
mize these benefits in future projects and gives
some practical recommendations on planning and
running an object-oriented development project.

Although object-oriented programming has been
in existence for over 20 years, 1990 was the year
in which it first really came into prominence in

~~~ 

The  objective of object-oriented 
design is to mirror real-world 

objects. 

ISL‘S predominantly commercial data  processing 
development arena. It occurred in two  contexts. 

First,  an ISL task  force investigating the  relevance 
of the  “new of graphical user  interfaces 
(GUIS) for business applications of IBM United 
Kingdom concluded that  these GUIS would pro- 
vide  enormous benefits to end-user  productivity 
but  that  they would come at a price-one large 
component being the  increased  development ef- 
fort needed to  produce  these applications using 
current design techniques and procedural lang- 
uages. The  task  force  recommended  that  object- 
oriented technology be investigated to  see if the 
productivity  improvements claimed by the  tech- 
nical programming world would also be sufficient 
to give the  increase in productivity  necessary for 
commercial GUI applications. 

The  second  context  was in ISL‘S computer-inte- 
grated manufacturing (CIM) mission where  direc- 
tion was given to use an  object-oriented program- 
ming system:  the ProductManager*-Application 
Services Manager (ASM). Part of the mission was 
to  port ASM run-time components from a TSO to  a 
CICSIESA platform. 

Aspects of object-oriented  technology 

Object-oriented technology encompasses not only 
object-oriented programming systems (OOPS) but 
also  other  object-oriented  aspects  such as user 
interfaces  (advanced  workplace GUIS), analysis, 

132 CAPPER ET AL. 

design, and database management systems. Lastly, 
using OOPS facilitates an  iterative  style of devel- 
opment  rather  than  the traditional “waterfall” 
approach. Our experience so far  includes  the 
object-oriented  user  interfaces, design, and pro- 
gramming systems  and  iterative development. 

In this section,  a brief description of the  concepts 
of object-oriented technology is presented.  Then 
each of these  aspects is described, including a 
tabular overview of the  object-oriented  technol- 
ogy used by  the  three  projects. 

Conceptually,  the object-oriented world view is 
that of a collection of interacting  objects, each 
with a time-varying status  expressed in terms of 
data  attributes and each with behavior  expressed 
as responses  to  interactions  with  other  objects. 
Each  object  is  an  instance of a  particular class (for 
example, bank  account)  whose behavior is  ex- 
pressed in terms of methods (that is, function), 
each triggered by  a message (for example, debit 
account).  Classes  can inherit data  attributes and 
methods from other,  more general, classes (for 
example, savings account  inherits from bank  ac- 
count).  The  data of an object  cannot  be normally 
accessed  except  via messaging, which is known 
as data  encapsulation. 

Object-oriented  user  interfaces  are  a form of 
graphical user  interface in which icons  represent 
real-world business  objects.  The  user instigates 
system  actions  by direct manipulation of the 
icons. For example, a  product item can  be added 
to  a  customer  order by selecting the icon repre- 
senting the item and “dragging and dropping” it 
onto the icon representing  the  order. It is claimed 
by  some  people in the  industry  that  such  inter- 
faces  have  a  closer  correspondence  to  the end 
user’s mental model of the application than  con- 
ventional GuIs (where icons represent application 
functions) and are  hence  easier to learn and are 
more efficient and accurate in use. 

The  object-oriented  user  interface used was IBM’S 
Systems Application Architecture* (SAA*) Com- 
mon User  Access* Workplace Model, known as 
CUA’91. 

The  objective of object-oriented design is to mir- 
ror real-world objects. Similar attributes  or be- 
havior are  factored  out  into higher abstract 
classes of objects. 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 



In  the  industry,  there  are  many  object-oriented 
analysis  and design methods  described in books 
and taught in seminars. The existing (prior to ob- 
ject-oriented technology) analysiddesign method 
in ISL was  the  Business  Systems Development 
M e t h ~ d . ~  It is a  data-driven  structured method 
featuring  the decomposition of business  pro- 
cesses and their mapping against a  data model in 
a modified entity-relationship-attribute format. 
At  the beginning of 1991, there  were  two  debates: 
First, should the  Business  Systems Development 
Method (BSDM) be  replaced by a “pure” object- 
oriented  method  that starts off by analyzing the 
business in terms of “objects”  rather  than  “data 
entities”?  Second, if it is assumed  that BSDM is 
retained, how far would it be possible to algorith- 
mically derive  an OOPS design from a BSDM bus- 
iness model? 

It  was  decided  to  test  the  second  approach,  and 
a draft method of linking BSDM to  object-oriented 
design was devised.  This  approach was intended 
to  be piloted by the  relevant  projects along with 
a  “user  centered design’’ method  (starting  with 
“user  task  analysis”)  for GUIs described in IBM’s 
CUA* manual on  user  interface design.’ 

Object-oriented programming systems implement 
the object-oriented concepts  described earlier by 
structuring  an application into: 

1. Objects  that  each  encapsulate  data with the 
methods  that  operate on it. 

2. Messages sent  from  one  object  to  another in 
order  to trigger methods of the receiving ob- 
ject.  The  same message type  can  apply to more 
than  one  class and is known aspolymolphism. 

3. Object class  hierarchies  that specify the inher- 
itance of methods and data definitions from 
classes higher up in the hierarchy. 

B 

D 

D 

D 
There  are  three  aspects to OOPS: 

1. The  object-oriented language itself. Features 
that differentiate languages include: 

Dynamic  versus  static binding, that  is, 
whether  references  to  other  objects  are  re- 
solved at run time or earlier. . Single versus multiple inheritance,  that is, 
whether  a  class  can inherit from one,  or from 
more than  one,  other class. 

2. Common class  libraries for the language. They 
consist of common classes  for  reuse by devel- 
opers. In theory,  there  are  two types: technical 
(for example, classes for implementing GUI 
components) and business  (that  is,  classes rep- 
resenting  business  entities).  However,  at 
present,  only technical class  libraries  are gen- 
erally available. 

3. Tools. They include: 

Compilers-varying  in type from those  that 
are automatically invoked or  instantaneous 
(incremental) to those  that  are explicitly in- 
voked  or batch 
Class browsers-for displaying the  structure 
of an application and for searching through 
class libraries (for example, for  reuse) 
Graphical user  interface builders-for  defin- 
ing windows  by  direct manipulation using a 
palette of visual control  objects 
Debuggers-for error diagnosis and correc- 
tion 
Library managers-for integrating the  work 
of teams of programmers 

Table 1 lists  these  tools for the languages used by 
the  three ISL projects.  Note  that  C  is not an ob- 
ject-oriented language; however, Operating Sys- 
tem/2* (os/2*) Presentation Manager* (OW2 PM) 
embodies  some  object-oriented facilities (mes- 
saging and function  inheritance  between graphi- 
cal windows). ENFIN is a commercially-available, 
Smalltalk-like object-oriented development envi- 
ronment. SEDL++ is an IBM internal language 
used for developing CIM business application 
packages. 

The  iterative  development  approach differs from 
the  conventional ‘‘waterfall’’ development ap- 
proach as follows. The  latter  splits development 
into  a number of phases, for example: 

1. Detailed business modeling-data and  process 
2. Requirements definition 
3. External design, including identification of 

human tasks and the definition of “human- 
computer” flows such  as  screen  layouts 

4. Internal design 
5. Build 
6. System  test 
7. Pilot/user acceptance  test 

B 
IEM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 CAPPER ET AL. 133 



Table 1 Languages  used  by the  three  projects 

C and OS12 
Presentatlon  Manager 

(PM) APls 

ENFIN SEDL+ + 

Development 
environment 

Features: - Binding 

* Inheritance 

Class library 

Tools: 
Compilation 

- Browser 
* GUI builder 
- Debugger 
- Library  manager 

No ENFIN/2** ProductManager- 
Application Services 
Manager 

Inheritance?:  Static 
Messaging?:  Dynamic 

Single? 

Presentation  Manager 

IBM C/2: Explicit,  batch 

No 
No 
No 
Conventional-LAN 

Dynamic 

Single 

Built-in 

Built-in:  Automatic, 
incremental 

Built-in 
Built-in 
Built-in 

No 

Inheritance:  Static 
Messaging:  Dynamic 

Multiple 

Built-in 

IBM (3370 (via generated C): 

No 
No 

No 
Conventional-mainframe 

Explicit 

?Applies to Presentation Manager only 

Each  phase  must  be  complete  and  quality-assured 
before  the  next  phase is started  since  there is an 
underlying assumption  that  changes to  the appli- 
cation  become progressively more  expensive in 
succeeding  phases. 

However, application enablers  (such as OOPS) 
that facilitate the rapid building of prototypes ne- 
gate  this assumption. Their  speed and flexibility 
enable  users  to  experience  the application (in 
particular, the user  interface)  early and allow 
changes  to be made  based on their feedback. 
OOPS, specifically, because of their high modu- 
larity  (and  hence, minimum coupling) offer the 
promise of maximum change  with minimum side 
effects. These  characteristics allow the  iterative 
revisiting of earlier phases  and also delivery of the 
application in small increments. 

Overview of the development projects 

The  three ISL object-oriented  projects examined 
in this  paper are: 

1. EOSE (EuropeMiddle East/Africa  Order and 
Supply  Execution)  is  a  centrally  run hub ap- 
plication for scheduling and ensuring the ful- 

134 CAPPER ET AL. 

fillment of IBM’s European  customer  orders  for 
the  entire Europe/Middle East/Africa (EMEA) 
organization of IBM’S World Trade  subsidiary. 
It  has  been  operational  since  October 1993. 
Although consisting mostly of automatic  back- 
ground transaction processing, a highly usable 
interface  is required for handling conditions 
where  user  intervention is needed. 

2. SRFE (Sales Representative  Front  End) is an 
IBM United Kingdom application aimed at  en- 
hancing sales  representatives’ effectiveness 
by providing an  easy-to-use  interface to a 
previously underutilized National Marketing 
Data  Base and associated  functions (for ex- 
ample, performing bulk mailing to  customers). 

3. CICS Base  is  a  project  that  ported  Product- 
Manager-Application Services Manager from 
an MVS TSO to  a CICS/ESA platform and pro- 
vided additional base technical and  business 
objects. 

Table 2 shows  the  projects mapped against the 
various  aspects of object-oriented technology 
that  they  used.  The  next  three  sections  provide  a 
detailed description of the  business, technical, or- 
ganizational, and  development  approach  aspects 
of each project. 

IBM SYSTEMS JOURNAL, VOL 33, NO 1,  1994 



Table 2 Astmcts of oblect-oriented  technology  used 

EOSE 
~~~ 

SRFE ClCs 688e

Graphical user interface CUA workplace CUA workplace CUA graphical model
(CUA’91) (CUA’91) Text subset (CUA’89, not 00)

Business model BSDM (not 00) Informal (not 00) Not applicable

Design method Informal OOD Informal OOD Informal OOD

Prototyping language ENFIN/2 ENFIN/;! Not applicable

Production language C/2 and PM
(semi-00)

ENFIN/2 SEDL+ +
CY370

Development approach Waterfall -+ iterative Iterative Waterfall for each object,
plus some iterative

EOSE

Project description. EOSE is a component of the
IBM Fulfillment Systems. Although small in com-
parison to some system software developments,
it is one of the largest single business application
developments ever undertaken by IBM-reqUiring
some 2.5 person-centuries for the work on the
first release alone. EOSE is mostly nonconversa-
tional transaction-driven processing. However, it
does include a 22 person-year clientlserver ob-
ject-oriented user interface component. This com-
ponent enables the occasional manual adjustment
to be made to some of the automated processes.

At first sight, describing EOSE as an object-ori-
ented development may seem a little strange to
the purist; it is written in non-object-oriented lan-
guages-C and PUI, and it uses a non-object-ori-
ented database management system (DBMS),

strates apructicul solution to what is becoming a
more and more common problem: how to intro-
duce and integrate object-oriented development
into an existing “traditional” development shop,
and how to build production-strength line-of-bus-
iness applications with an object-oriented user in-
terface while no proven object-oriented DBMS is
yet available. (The choice of C, rather than, say,
C++ or Smalltalk as the production language
for EOSE was made simply because of availability
and time. The code is structured according to ob-
ject-oriented principles, using “home-grown” in-
heritance techniques. This object-oriented struc-
turing was successfully tested by a small pilot
development that recoded a part of EOSE in C+ +

DATABASE 2* (DB2). However, EOSE demon-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

to check the feasibility of a migration.) The host
server components of EosE, although having a
strictly procedural structure, have a very strong
degree of data encapsulation, so a future migra-
tion to an object-oriented DBMS is not precluded
when it becomes practicable. This marriage of the
old (procedural/relational) and the new (object
oriented) is sometimes referred to as “object cen-
tered” rather than object oriented, and represents
a practical way to make the transition.

Technical environment. The host (server) com-
ponents of EOSE run under MVSESA, with
IMSESA TM as the transaction manager and DB2 as
the database manager. The code is written in PLD.
The programmable workstation (PWS) or “client”
components of EOSE run under OS/2 Presentation
Manager. (There is no client database.) ENFIN/2
was used in the early stages of development as a
prototyping tool, but the code was subsequently
recoded in C for the production version.

People and organization. The EOSE project con-
sists of five development teams, four working on
mainframe-only components and one on the PWS
user interface. All these run under the same man-
agement hierarchy and comprise over 90 people
in all. A separate organization of management and
professionals is responsible for the independent
testing, delivery, and implementation of the com-
ponents (including EOSE) developed by IBM in the
United Kingdom (UK) and for the installation and
execution of all the Fulfillment Systems compo-
nents that run at the UK central site. They also
include an independent business support team
that represents the users.

CAPPER ET AL. 135

Development approach. Many lessons were
learned from the development of EOSE. From
these lessons a practical approach has evolved for
planning and running an object-oriented develop-
ment project within a “traditional” programming
shop and for ensuring the quality of the delivered
product. This approach is presented later in this
paper.

The design phase for EOSE started with a series of
modeling workshops to establish the database de-
signs and the process boundaries. The method-
ology followed was the Business System Devel-
opment Method (BSDM). Unfortunately, at that
time the decision to develop an object-oriented
user interface had not been made, so the resulting
database design took no account of user interface
requirements. It was six months before this de-
cision was made, and EOSE then needed a design
method that would bridge the gap between the
now-established BSDM data model and an object-
oriented graphical user interface design. Many
people were willing to offer advice, but the par-
ticular step from BSDM to an object-oriented de-
sign was always dismissed as “intuitive,” “obvi-
ous,” or “trivial.’’

As part of the decision process for “going object-
oriented,” a short pilot project was run for EOSE
to try to build a graphical user interface on top of
an existing database. The design method that
seemed to be the most promising was Clive
Gee’s Methodology for Object Oriented Design
 MOOD).^ An attempt was made to use this
method to capture the requirements for the user
interface objects, but there was soon an over-
whelming mountain of paper with which to con-
tend. Although it did help a little in deciding what
the fundamental user interface objects might be,
it proved almost impossible to relate all the MOOD
design information to the database designs. As a
result, when the design phase for the user inter-
face started, no formal method had been identi-
fied that was felt to meet the needs of EOSE. In-
stead, the EOSE project set about producing its
own.

By far the largest part of producing EOSE was a
traditional mainframe development project. The
user interface development team, therefore, had
another requirement for the development method
that was followed. It was recognized that a suc-
cessful object-oriented development needs to be
organized as an iterative process, but it also had

136 CAPPER ET AL.

to fit with the well-established waterfall approach
to which the EOSE project management was com-
mitted. Many important lessons were learned

The design phase for EOSE
started with a series of
modeling workshops.

during the evolution of the EOSE development
method. The result has proved to be a successful
marriage of the old and the new, which enables
high-quality object-oriented code to be developed
in an iterative manner, while interlocking with the
waterfall approach required by the rest of the
project.

The transition from the data and process business
model to the object-oriented user interface design
was made by analyzing the tasks the users wished
to perform, in the context of sample business sce-
narios. From this analysis a prototype user inter-
face was designed and iteratively refined. The
design information (prototype and supporting
documentation) was then formally agreed upon
with the users, and funds were committed for de-
veloping the application code. In parallel with this
activity a small subset of the development team
started designing the technical infrastructure that
would be needed to support the application. This
infrastructure was to provide common services
such as communication, security, user-profiling,
messages, and error-handling, as well as to define
the standards and protocols to be used.

Like the design phase, the build phase went
through a number of iterations. First, the class
hierarchies were developed to provide a consis-
tent base for the rest of the development and to
maximize opportunities for reuse of common
code. Then the business objects themselves were
constructed from these classes, with each object
typically being the responsibility of a single pro-
grammedanalyst. To ensure high quality, the
code was developed incrementally, with each ad-
dition being thoroughly tested. Quality checks

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

and code inspections were held, but only to check
for consistency across objects and for confor-
mance to standards. The continual testing dem-
onstrated that the code functioned correctly.
Completed client business objects were subjected
to a full end-to-end test with the corresponding
servers.

Finally, the complete application (client and
server code) was handed over to an independent
testing organization for verification against the
business requirements. Two levels of indepen-
dent testing were carried out. The first was by
information system staff only, using automated
tools to verify conformance to the documented
system requirements. The second was by repre-
sentatives of the user community, in a simulated
“real-world” environment. This last testing step
served both to validate that the application was
acceptable to the users and to educate them in
using the new business processes it provided.

SRFE

Project description. SRFE is an ISL New World
Project that started in January 1991, with the first
release becoming available in September 1991 as
a pilot release supplied to five IBM locations and
some 16 users. Since then, SRFE has been distrib-
uted to 12 IBM locations and some 300 users, and
a further three releases have been made available.

Two major objectives drove the SRFE project.
There was a business need to supply an easy-to-
use front end to a large internal marketing data-
base, the National Marketing Database (NMDB).
This database holds comprehensive information
on 1BM’s current and prospective customer set in
the United Kingdom and is perceived as supply-
ing a competitive advantage to the IBM sales
force, providing they can use the data available.
There was also a desire to provide a pilot appli-
cation with a technical solution that encompassed
object-oriented technology, clientherver (PWS to
host), and GUI concepts.

Technical environment. The target environment
for the application was a Personal System/2*
(PS/~*) running 0~12. The application was to run
either on a single workstation or as a public ap-
plication from a single local area network (LAN)
server in order to support a shared disk and PWS
policy. The database resides on a remote Appli-

IBM SYSTEMS JOURNAL, VOL 33, NO 1 , 1994

cation System/400* (AS/400*) in an IBM location
near London. Communications between the PWS
and the ~s/400 are LU 6.2 Advanced Program-to-
Program Communications (APPC) via local LAN,
backbone LAN, and the IBM network.

There were two development environments,
AS/400 and PWS. The database access programs on
the AS/400 were written in Report Program Gen-

AS/400 and PWS were the two
development environments

for SRFE.

erator (RPG), using the application development
tool set (ADT). The PWS developers worked in a
LAN environment, using PSDS running O W .

The application was developed using ENFIN/2, a
4th-generation language (4GL) object-oriented
development environment. ENFINR is based on a
Smalltalk kernel, but comes with its own class
library, and in the version used in the SRFE de-
velopment, its own language, which is like Small-
talk with some syntactical differences. The latest
versions of ENFIN produce Smalltalk code and
use the Smalltalk base classes with extra classes
for graphical elements, communications proto-
cols (APPC, high-level language application
programming interface, or HLLAPI) and other
functionality. ENFIN provides a complete devel-
opment environment, including a GUI builder,
APPC support, database support, class browser,
debugger, class definition facilities, and much
more.

The communications were LU 6.2 protocol-imple-
mented with native APPC. The link with the ENFIN
environment was via C dynamic link libraries
(DLLS), and with the AS/400 programs via the AS/400
Intersystem Communications Facility (ICF) file.
Networking was via a LAN with the development
ASMOO attached directly for development pur-
poses, or as in the target environment for test
purposes.

CAPPER ET AL. 137

Figure 1 SRFE project integration-pilot release

START 5 MONTHS 9 MONTHS

PROTOTYPE FE
+ w

INVESTIGATION INTO
DATA PROCUREMENT

PRODUCTION FE
4 b

CODING AND INTEGRATING
COMMUNICATIONS

CODING BACK END
4 w

TEST
DELIVER -

People and organization. The SRFE development
team consisted of eight people, although not all of
them were on the project for the full duration.
There were a number of clearly defined roles in
the team, generally shared between two or more
team members. In certain roles the team had con-
siderable previous experience, in particular with
the AS/400 environment, including RPG coding, the
NMDB database, and the existing application that
provided services for this database. The business
was also well understood, and there was consid-
erable project management experience in terms of
traditional project disciplines among team mem-
bers.

However, none of the developers had previous
object-oriented development experience, and a
major inhibiting factor for the team was the lack
of this knowledge and the difficulty of obtaining
the right education at the right time. Also, none
had experience with developing GUIS, with the
IBM CUA standards, or with developing a cooper-
ative processing solution using LU 6.2 and APPC.
These considerations turned out to be less impor-
tant when compared to the lack of previous ob-

ject-oriented knowledge and the nonavailability
of a skilled mentor.

The project was divided into three discrete pieces
of work. The object-oriented application itself on
the PWS (the “front end”), the code to support it
on the host (the “back end”), and the communi-
cations piece that linked the two. For the pilot
release of SRFE these three pieces ran essentially
in parallel, as shown in Figure 1.

Coordination between these subprojects relied on
good interpersonal communication between team
members. A small dedicated team working in
close proximity was one of the (not specifically
object-oriented) keys to success with SRFE.

Development approach. The host and communi-
cations pieces of this project were run along tra-
ditional development lines, and so will not be dis-
cussed in further detail.

For the pilot release of sRFE a phased iterative
technique was used. The release followed a re-
quirements gathering stage, an iterative analysis

138 CAPPER ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 2 Phased iterative development method for SRFE pilot release

ITERATIVE LOOP

and prototype phase, then an iterative design,
code, and test phase, succeeded by the final pro-
duce phase. This technique is illustrated in Figure
2.

Requirements were gathered by the business an-
alyst and project manager and given to the team
as a set of functions for prototyping. A CUA’89
graphical interface was developed for the proto-
type, with all of the function contained in theview
controller classes. (These classes control the op-
eration of the windows.) This prototype then
went through several iterations, with heavy end-
user involvement, thus improving its utility and
acceptability to the sales representative. A final-
ized prototype, running from os12 Database Man-
ager* (DBM) tables, was delivered within five
months. This prototype was given to a number of
selected users for a trial period, and it also un-
derwent a CUA review. After the review it was
decided that a CUA’91 Workplace implementation
was desirable for the production code, being po-
tentially more intuitive and productive for the
user.

An object-oriented analysis and design process
initiated the design and code phase of the project
one month later. No standard method was used
for the analysis and design, but rather a synthesis
of several existing methods.

From the prototype and with existing business
knowledge, a full appreciation of the process and
entities necessary for the business model was
available. This fulfilled the part of the analysis
usually taken up by data and process modeling or
task analysis, or both. The business object model
was derived from this basis using a CRC card
method after Wirfs-Brock et al. CRC cards (class,
responsibility, collaboration) allow the designer
to define the objects of their responsibilities in
terms of state and behavior and the kinds of ob-
jects that will be collaborators. This process has
several passes, the inheritance hierarchy starting
flat and gradually deepening as “kind of” rela-
tionships are identified. With this method the
onus is on defining the behavior of an object
rather than in placing the data.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 CAPPER ET AL. 139

After the business object model was defined, a
similar process was followed to identify the kinds
of objects that would be needed to support the
necessary business processes in addition to the
business object model. For example, two basic
business objects identified were contacts and es-
tablishments, but an important process was han-
dling lists of these objects. Thus, additional list
objects with appropriate behavior had to be de-
fined.

Finally a high-level design was done, where im-
plementation and language considerations were
taken into account.

Along with the CRC card method, sender-receiver
matrices were defined to provide more informa-
tion on how objects were to interact. The user
interface design was an extension of the proto-
type work already done.

Future experience confirmed this stage as critical
for the application in terms of maintainability,
both perfective and adaptive.

For coding purposes each business object or
group of business objects (module) was assigned
to a developer, who was then also responsible for
developing the appropriate infrastructure and
view classes.

As the function of the object groups was built up,
it was tested by the developer-a significant fea-
ture of the incremental compiler found with
Smalltalk-type languages. Consequently much of
a particular object group had been “in use” for at
least two weeks and tested several times before
being handed over for the integration test. During
the integration testing the business analyst was
responsible for ensuring that each object group
performed its responsibilities accurately.

All of this testing had a cumulative effect on the
final user acceptance testing because by this point
many of the base modules of the application had
been “in use” for some months.

ClCS Base

Project description. The CICS Base and Exten-
sions project was really two projects in one. The
first part was to “port” a large Tso-based object-
oriented system (which was due to be released as

a program product, i.e., the ProductManager Ap-
plication Services Manager) onto a CICSiESA plat-
form. The stated objective was to change as few
lines of code as possible, but also to take advan-
tage of CICS facilities and provide some additional
function specific to the CICS platform. The overall
objective was to enable applications written using
the “base” in TSO to be run on CICSlESA with as
little change to the applications as possible. The
second part was to develop new extensions to the
existing base that would also function on the new
CICS base. The “base” or Application Services
Manager (ASM) is an object-oriented system that
provides applications with common functions
such as screen-handling, security, file-handling,
data-manipulation, etc., as well as an object-ori-
ented framework in which to execute the appli-
cation. Most of the ASM is written in an IBM
internal object-oriented language known as
SEDL+ + . The existing base was being developed
in Atlanta, Georgia, along with all of the tools to
support SEDL+ t-. The project(s) described here
were based in Portsmouth in the United King-
dom.

Technical environment. The target platform for
the new system was CICS/ESA using DB2 and VSAM
(virtual storage access method) files for data stor-
age. (VSAM was used in the CICS version to im-
plement a file system similar to MVS partitioned
data sets and sequential data sets, which were
used in the TSO version.) CICS/ESA facilities were
used to implement asynchronous communica-
tions, and SAA Common Programming Interface
for Communications (CPI-c) was utilized to im-
plement functions to enable applications to com-
municate synchronously over LU 6.2 links.

The library management system (an IBM internal-
use-only system designed for multisite develop-
ment) ran on the virtual machine (VM) operating
system as did all of the development tools. Each
developer had a VM Conversational Monitor Sys-
tem (CMS) for editing code, accessing the library
management system, and running the tools to
generate C code. The C code was compiled on
VM, and the object deck was stored in the library
management system and “shadowed” onto the
MVSIESA system. The link-edits were then initi-
ated on the VM system but executed on the MVS
system. The resulting load modules remained on
MVS only. As a result of this complex develop-
ment environment, the time from discovering a

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

program error to being able to test the corrected
program (in unit test) was quite long (1 to 4 hours).

People and organization. The developers were
split into small teams working on almost self-con-
tained parts of the overall project. One team was
given the tasks of converting the existing TSO base
to operate on CICSESA and adding some new
function specific to CICSIESA. The other teams
were given one extension each: namely calendar,
currency conversion, work queue, or organiza-
tional unit. The teams varied between one and
seven people plus a team leader or project leader,
or both.

The teams consisted of a typical mixture of ex-
perienced and junior professionals, with the team
or project leaders usually being the most experi-
enced within a team. However, none of the team
members or leaders (or managers) had experience
with object-oriented design or programming.
Also, the language and the tools to support the
language were all new to everyone in the project.
Because the original developers were based in
Atlanta, it proved difficult to obtain the required
levels of education. Most of the education was
gained through videos, teleconferences, reading
manuals, and just “having a go at it.” Personnel
from Atlanta attended most of the inspections and
thus were able to give direction.

Development approach. The development teams
were directed to use a waterfall approach to de-
velopment, with inspections after each stage. The
stages were product functional specification
(PFS)-a definition of requirements, high-level de-
sign (HLD)-a detailed external design, and low-
level design (LLD)-really the coding stage in the
language used. With the (multisite) inspections
taking place at each stage it discouraged iterative
development (which is the way in which nearly
everyone is told to approach object-oriented de-
velopment). In fact, in some cases the team
“broke the rules” and did some iterative devel-
opment before producing an HLD or LLD docu-
ment for inspection. It was risky because a lot of
rework may have been required, but it also meant
that the developer was confident that the solution
worked and could answer any doubts in the minds
of the inspectors.

The users (who in this case were application de-
velopers) were usually involved in the PFS inspec-
tions as this was the point at which their require-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ments were clarified and spelled out in detail.
However, this approach did not apply to the con-
version of the base to CICSESA. Here the require-
ment statement was to “make it work on CICS.”

Often a complete system rebuild
would be required for changes

to the object database in
the ClCS Base project.

Consequently the real detail only came out during
HLD, at which point the users were not interested
as most of the detail did not affect their applica-
tion code. The main focus of the inspections was
therefore on implementation details.

Because the development tools were not stable at
the time this product was being developed, the
developers found the whole development process
complex and frustrating. The process of debug-
ging code was complicated because the debugging
tools used were products that had been designed
for debugging traditional applications. For exam-
ple, it was often difficult to locate the offending
object instance, let alone the line of code that was
causing the problem. Debugging this system un-
der CICSiESA was challenging since only standard
crcs-supplied tools were being used, which again
were not designed with object orientation in
mind.

Often a complete system rebuild would be re-
quired for changes to the object database, for ex-
ample. Rebuilding was done less often over time,
but true incremental compilation would have
proved much faster and reduced development
time a great deal. In some ways the need for fre-
quent complete system rebuilds helped to im-
prove quality by highlighting potential cross-
system errors and conflicts early.

Non-object-oriented subsystem approach. One
part of the CICS work, to build a file system to
simulate the MvS file system, was written in C and
not an object-oriented language. As this did not fit
neatly into the object-oriented stages, a technical

CAPPER ET AL. 141

design instead of an HLD or LLD was produced.
The technical design was a combination of HLD
and LLD that went down to the detail of pseudo-
code. This technical design was inspected, but
there were no formal inspections of the C code.
At least two team members were involved in each
C program in order to encourage readability and
to spot performance problems, and so on. How-
ever, in hindsight, this code should have been
subject to formal inspection, as some of it was
badly commented. Nonetheless, the C code pro-
duced was the highest quality in terms of errors
per KCSI (thousand changed source instructions)
of all the CICS base code. It is believed that this
quality was due to the skill and experience of the
programmers involved rather than being tech-
nology-related, although the C developers did
have the advantage of a stable language and com-
piler. It may also be a reflection on the number of
source instructions that had to be written in C to
produce the required function. So even though
there were less errors per KCSI, the errors per
function point, for example, may have been
higher (function points were not calculated for
this project).

Quality results comparison

Application quality is a multidimensional metric;
its individual components are defined in the fol-
lowing subsection. Next comes the overall results
matrix showing the effect of each object-oriented
technology on each of these components. The
overall results are then substantiated by the re-
sults for each of the three projects and a consol-
idation of the quality lessons learned. Finally, a
practical development approach is presented,
which evolved independently for SRFE and EOSE,
based on their experiences. This approach com-
bines traditional business modeling with object-
oriented design and programming and is aimed
at maximizing the quality benefits for future
projects.

Quality metric definitions. The component met-
rics to be discussed are:

1. Code quality
2. Correctness
3. Usability
4. Adaptive maintainability
5 . Perfective maintainability
6. Performance

142 CAPPER ET AL.

Code quality. Code quality is the density of func-
tional defects found in the application code. A
defect is defined as nonconformance with the out-
line design agreed on with the application owner.

The units used in this paper are defects per thou-
sand changed source instructions (KCSI), which is
the total number of new and modified source in-
structions. Only defects that prove to be valid are
counted. (Defect density can also be measured in
terms of function points, an implementation-
independent measure of the amount of applica-
tion function.*) For a discussion of code metrics
in a reuse environment and the rationale for the
choice of units in this paper, please see the Ap-
pendix.

Code quality is measured at three points in de-
velopment as well as after delivery. Because of
differences in terminology in the industry, these
points will be defined as follows within this paper:

1. Development test-Functional testing carried
out by the developers themselves. It may con-
sist of two phases known as “unit test” and
“integration test”; however, the latter may be
done in the next test stage.

2. Independent (IS) test-Rigorous, third-party
testing by information services personnel. It
may consist of two phases known as “integra-
tion test” and “system test.”

3. User test-Testing carried out by representa-
tive potential users of the application. It is
sometimes known as “user acceptance test.”

4. Production-Post-delivery, real-life applica-
tion use.

Correctness. Correctness is the degree of fit with
the business objective of the application. It is
measured by the number of project change re-
quests (during development) and improvement
requests (after delivery) that are not the result of
unforeseeable business changes.

Usability. Usability is that aspect of application
design that enables a user to understand and use
an application easily. It is in itself a multidimen-
sional metric with components of self-sufficiency,
ease of learning, ease of use, consistency, user
accuracy, and user attitude.

Adaptive maintainability. This metric is also
known as flexibility or enhanceability. It is the
relative effort needed to extend the functionality

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Table 3 Impact of object-oriented technology on software quallty

Code Correctness Usablllty Adaptive Perfective Performance
Quallty Malntalnablllty Malntalnablllty

00 user interface
00 design ++
00 programming system + +
Iterative development ++ ++
Net benefit ++ +t

Quality metric units Defect Project change/
density improvement

requests

+ +/-

++
+ +/-

Self-sufficiency,
ease of learning,
ease of use,
consistency,
user accuracy,
user attitude

-
++ ++
++ ++

-
-
+

++ ++ -/+

Relative Relative 6x Conformance
enhancement effort to target
effort

Key: + Positive impact Compared with:
++ Major positive impact * Action-oriented user interface - Negative impact * Structured design
“ Major negative impact * Procedural programming

Waterfall development

~~

Table 4 EOSE quality metflcs

Component Thousand cost Defects In Defects in Defects In Defects In
Changed (gross person- Developer Independent User Test Productlon
Source months) Test Test

lnstructlons

PWS development 109 236 129 122 31 0

of the application. This metric is only discussed
qualitatively in this paper.

Pegective maintainability. This metric is the rel-
ative effort needed to diagnose and fk defects in
the application. It is only discussed qualitatively
in this paper.

Perjbmance. Performance is conformance to the
agreed-on application performance targets (for
example, response time to the end user).

Cost ofquality. In order to establish that the qual-
ity results were not achieved at the expense of
productivity, this latter metric is also presented in
the following sections. The unit of effort used is
“person month” and consists of the direct gross
developer effort, excluding project leadership and
management costs.

Overall results. Table 3 summarizes the overall
results regarding the impact of object-oriented

technology on software quality as an impact ma-
trix. The ratings were determined by consensus in
a group discussion with a representative from
each of the three projects.

Project results. The following subsections present
in detail the experiences of the individual projects
and the quality metrics they obtained.

EOSEproject. Table 4 shows the sizes and costs
of the object-oriented development in EOSE and
the total defects recorded in the different testing
phases. Table 5 shows the productivity (source
instructions per month) and defect densities (de-
fects per thousand changed source instructions)
derived from these data. It also shows the equiv-
alent data for the mainframe component of EOSE,
which was a traditional non-object-oriented de-
velopment. These data allow some interesting
comparisons to be made. The data illustrate one
of the major benefits of object-oriented develop-
ment and of an iterative development process-a

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 CAPPER ET AL. 143

Table 5 EOSE comparatlve quality results

Component Productivity Defects per Defects per Defects per Defects per

per month) Developer Test Independent Test User Test Productlon
(source instructions KCSl In KCSI In KCSl In KCSl in

PWS development (00) 462 1.2 1.1 0.3 0

The figures below can be compared with the equivalent data for the mainframe component of EOSE, which is a traditional
non-00 development:

Rest of EOSE (non-00) 95 Data not available 3.7 1.8 0.03

dramatic difference in errors detected at all stages
of testing. Even though the PWS development
team faced new technology, new hardware, new
software, new programming languages, and a new
design and development approach, the defect
rates measured in independent testing were only
one-third of those encountered in the mainframe
(non-object-oriented) components of EOSE, built
by skilled teams using familiar technology. The
defect rates measured in user test were only one-
sixth of those in the non-object-oriented compo-
nents, and there have been no defects reported at
all in the first two months of production running
of the object-oriented code. Although the devel-
opment of the class hierarchy and the technical
infrastructure took considerably longer than orig-
inally planned, once they were complete and
tested, new functions could be added quickly and
easily and to very high standards of quality,
through the exploitation of inheritance.

The data also illustrate the greater overall pro-
ductivity of the object-oriented development. De-
spite the apparently slow progress in the early
stages of the project (several of the early tasks
took up to five times the planned effort because
of inexperience with object-oriented methods),
overall the project was completed within 10 per-
cent of the original estimate.

As summarized in Table 3, there are also tangible
benefits for correctness and usability from fol-
lowing an iterative development approach. The
use of early user interface prototyping, along with
the close and frequent involvement of the users
from the very earliest design stages, has resulted
in a very low level of late design changes. The
project team had a high level of confidence that
the code being developed would meet the user
requirements for functionality and usability. Just
seven (minor) requests for design changes to the

144 CAPPER ET AL.

user interface were recorded during independent
testing.

The benefits of increased productivity through
the use of inheritance are becoming even more
apparent in the follow-on project to EOSE Release
1.0. It is now possible to use C as the prototyping
language. New EOSE objects and methods are
quickly modeled using largely inherited function
from the EOSE class library; only a few lines of
new code are needed to provide, for example, a
different field edit rule or a new server request for
data.

In general, changes to the existing code, both en-
hancements and fixes, are also much easier to
apply. The encapsulation of data and function al-
lows the scope of the changes to be identified
quickly, and there is thus a very low risk of
accidentally introducing errors in other parts
of the application. (Just occasionally the object-
oriented structure can be a hindrance to analyzing
a problem, rather than a benefit. If the problem is
caused by incorrect messages passing between
objects, and there are many objects involved in
the processing of an event, it can be quite difficult
identifying which particular object is the real cul-
prit. Overall, however, an object-oriented struc-
ture is seen as a major benefit to maintainability,
as reflected in Table 3.)

No problems have been reported against the per-
formance of the EOSE user interface (though, it
should be said, there were no particularly critical
performance requirements since it is only in-
tended for use infrequently).

SRF'E project. The metrics in Table 6 and Table
7 are for two releases of SRFE, the pilot release
and the last release that was known as the cor-
porate release. The difference in the data indi-

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

Table 6 SRFE quality metrics

Component Thousand cost Defects in Change Defects in Change
Changed (gross person- Independent Requests in User Test Requests In
Source months) Test Independent User Test

Instructions Test

SRFE pilot 19.4 72 41 6 9 4

SRFE corporate 4.5 6 7 0 5 4
release

release

Table 7 SRFE comparative quality results

Component Productivity Defects per Defects per Defects per Defects per

per month) Developer Test Independent Test User Test Productlon
(lines of code KCSl in KCSl In KCSl in KCSl in

SRFE pilot release 269 Not available 2.1 0.46 0
SRFE corporate release 367 Not available 1.6 1.1 0

cates the improved competence of the SRFE team
in object-oriented development.

Data given are for the object-oriented front end
only, and do not include the data for source in-
structions and errors occurring in the host or com-
munications part of the code. The errors counted
are those that were coding errors or errors in the
business process. Cosmetic errors, such as hav-
ing names on “buttons” that the user did not like,
are excluded.

Code quality was enhanced by two aspects of the
object-oriented development approach. The first
was the use of inheritance: often new function
was developed using existing classes, thus inher-
iting the quality of these super classes. Second,
the iterative nature of the development had a sig-
nificant effect on the quality of the code. A sub-
stantial part of a particular object group had been
“in use” for at least two weeks and tested several
times before being handed over for integration
test. Hence, very few code errors were found in
the integration test. These benefits are reflected in
Table 3 .

Also, before going to the users for the user ac-
ceptance test many of the base modules of the
application had been “in use” for some months,
thus giving high-quality code to the users for ac-
ceptance testing. It will be noted that defects
found in the user test increased between the pilot
release and the corporate release. For the corpo-

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

rate release there was a policy decision to reduce
the amount of independent testing to a nominal
level to reduce the expense of the project. This
decision was made in the light of previous code
quality results. The result of this decision mani-
fested in the user test and was a salutary lesson
that early independent testing is still necessary for
object-oriented projects.

To go further, no errors relating to the base code
have been raised on SRFE in production.

The iterative nature of the development also con-
tributed significantly to the fact that SRFE was fit
for its purpose when delivered. Although not spe-
cifically related to object orientation, facts such
as heavy user involvement at the prototype stage
and an ongoing user involvement through the
code and test stage meant that at the user accep-
tance test few problems arose with the process
being followed.

The analysis-prototyping iterative loop supplied
several benefits. It ensured that the application
adequately modeled the business and also that the
process flow was both correct and fitted the user’s
intuitive mental model. The result was an appli-
cation that was not only useful but also well ac-
cepted by the sales personnel at which it was
aimed. The benefits obtained from following an
iterative development life cycle are summarized
in Table 3.

CAPPER ET AL. 145

Table 8 CICS Base quality metrics
~~

Component Thousand cost Defects in Defects in Defects in Defects in
Changed (gross person- Developer Independent User Test Production
Source months) Test Test

Instructions

Calendar 3.3 41 128 20 NIA 0
Currency 1.4 9 50 3 NIA 0
Work queue 6.8 70 141 12 NIA 0

60 Organizational unit 5.0 66 17 NIA 0
CICS port 17.0 96 357 13 NIA 1

Table 9 CICS Base comparative quality results

Component Productivity Defects per Defects per Dkfects per Defects per

per month) Developer Test Independent Test User Test Productlon
(lines of code KCSl in KCSl in KCSl ln KCSl in

Calendar 79 39.3 6.1 NIA 0
150 Currency 37.0 2.4 NIA 0
97 Work queue 20.7 1.8 NIA 0
83 Organizational unit 13.2 3.4 NIA 0

CICS port 178 21.0 0.8 NIA 0.1

The later releases of SRFE confirmed that the anal-
ysis and design phases are critical stages for the
application in terms of maintainability, both per-
fective and adaptive. A well-modularized, stable
class structure means that any errors that do oc-
cur in the code are localized and easily traceable
and that extending the base code is facilitated be-
cause potential impacts on existing code are easy
to identify. These improvements are identified in
Table 3.

CICS Baseproject. Throughout the writing of this
paper, and indeed throughout the latter stages of
the project, attempts have been made to pinpoint
why such good quality results (compared with
earlier projects of this nature) were achieved. The
truth is that, in reality, just one factor cannot be
identified. It would be ideal to point out one thing
that was done and tell the world that this is how
to achieve good quality, but instead it appears to
be a combination of factors that at times conflict.
It will become apparent that, unlike some theo-
ries, practical experiences rarely fit into neat little
labeled packages that behave consistently.

Table 8 and Table 9 show the results for this proj-
ect. Calendar, currency, work queue, and orga-
nizational unit are new reusable business classes

146 CAPPER ET AL.

that were developed. CICS port is the porting of
ProductManager Application Services Manager
from TSO to CICSESA.

Note that the column labeled Defects in Devel-
oper Test in Table 8 shows all defects recorded by
the developer testing against a test plan. The De-
fects in Independent Test column shows all
programming defects found by an independent
tester. The Defects in Production column shows
defects found to date by the first CIM application
developers using the classes and ported code in
their development. The applications they have
produced have yet to go into production with bus-
iness end users.

Because this development was a new type for the
organization, there are no data for comparison.
However, the perception is that the “independent
test” data represent an order of magnitude im-
provement versus large business systems pro-
duced in the past in the same group. The “pro-
duction” data are from the products used by
application developers over a three-to-six-month
period. Other large systems produced by the
same group in the past have had hundreds of
(minor) errors raised during the first three-to-six
months.

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

The only other problems raised have come from
the realization that the users would have liked to
have specified additional requirements, which
have only come about from their use of the sys-
tem. A prototype may have highlighted some of
these requirements, but they effectively had a
fully working system on a different platform, and
the new requirements relate to the new platform.
Producing a sensible prototype on the new plat-
form would result in almost the same project as
producing the final system, so it could not be jus-
tified.

As shown in Table 3, the usability of the user
interface varies between “major positive impact”
and “negative impact.” Because the user inter-
face of the CICS Base was presented via host-
based “dumb” terminals, the “object-action” in-
teractions became tiresome at times. Later, some
improvements were made to the user interface to
make it more usable on dumb terminals; however,
it was still slower to use than a traditional menu-
based system. When the product is ported to
workstation platforms, the benefits of the user
interface design will become apparent.

Object orientation proved to be a major positive
impact on adaptive maintainability as shown in
Table 3. All of the extensions (calendar, currency
conversion, organizational unit, and work queue)
were written to be platform-independent by using
the facilities of the base. Being independent
meant that they were written and tested once,
with just regression testing for other platforms.
Adapting the behavior of the entire system is pos-
sible by changing a single object, and similarly,
objects may be changed for different platforms to
ensure that they behave consistently for their
users.

Lessons learned

Many lessons were learned during the develop-
ment of the three projects. The lessons described
in the following subsections are probably the
most important ones and include those that were
most instrumental in the evolution of the devel-
opment approach to which EOSE and SRFE, quite
independently, converged (described in the next
section). (Although not a part of this paper, in-
ternational dual-site development was a big influ-
ence on the quality produced, both positive and
negative, in the CICS Base project. It also had a
negative impact on productivity.)

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Prototyping. Prototype the design with real end
users, or their empowered representatives, as
early as possible in the development cycle to en-
sure that full requirements are gathered and are

Object orientation proved
to be a major positive impact
on adaptive maintainability.

understood by both parties. Ideally the prototyp-
ing should be done during the modeling phase.
Prototyping does not just mean building a fully
functional user interface. In the very early stages,
a prototype design may just be on pieces of paper
to test out the results of a task analysis workshop.
Later prototypes may evolve through static win-
dow designs, made with a screen painter or a
graphical design tool, through working window
flows written in a prototyping language, to com-
plete business objects.

An iterative development life cycle can contrib-
ute significantly to increased code quality, code
correctness and application usability and, in
SRFE, to performance problems being spotted and
fixed earlier. (There can be negative aspects to an
iterative development life cycle: it can be difficult
to manage; keeping track of progress is not easy;
and regular status meetings and checkpoints are
necessary.)

Business models and object-oriented design. DO
not assume that there is a one-to-one correspon-
dence between data entities identified during bus-
iness data modeling and the objects that will be
presented on the user interface. Although there
will be a relationship between the two, there may
well be a different level of granularity. For ex-
ample, if most of the function being modeled is to
be run as background processing (as is the case
for EOSE), the resulting primary data entities
needed to satisfy the business requirements may
be finer-grained than the view objects presented
to the on-line users. In contrast, if the application
is mainly a real-time user interface, such as a

game or a process simulation, much more detail
may be presented to the on-line user than is
needed for permanent storage in a database.

Infrastructure and tools. Identify all technical in-
frastructure requirements and finalize their de-
sign before designing the business functions.
Include services such as clientherver communi-

If at all possible, use
a mature tool set for

development.

cations, error-handling, message-handling, secur-
ity functions, and directory functions. Similarly,
design all cross-object and common processing
before starting individual object design. If a
change is identified after business object devel-
opment has started, the rework costs can be very
high.

The SRFE project used an integrated object-
oriented development environment with built-in
debugging tools. By contrast, the tools (and lang-
uage) used in the CICS Base project were being
developed at the same time. This tool develop-
ment caused a lot of wasted developer time and
was the cause of much frustration. The key lesson
here is to either use tried and trusted tools or
spend a lot of time making sure that the tools are
of excellent quality and as intelligent as possible,
and that they perform well. Every week spent on
ensuring good tools will save months of developer
time later.

Feasibility verification. If at all possible, use a ma-
ture tool set for the development, and have peer
support (either inside or external to the team) for
the analysis and design methods and the language
that is being used. This type of support and tools
gives confidence in the structure of the applica-
tion being developed and in the environment in
which it is being developed. Developing your own
tools should be considered only as a last resort.

If it is necessary to use new languages or tools, it
is essential to try them on a small development

148 CAPPER ET AL.

first, before tackling a major development proj-
ect. For example, select one of the business ob-
jects of the product and develop it completely as
a “fast path” project.

Learning curve. Allow adequate time for train-
ing and the “learning curve” when working in
new or unfamiliar environments. With SRFE it was
found that language considerations were not a
problem-the real challenge was the change in
paradigm from a procedural approach to an ob-
ject-oriented approach. A mentor experienced in
object orientation would have been invaluable in
pointing the way forward at certain stages of the
project. The improved quality figures between the
pilot release and the corporate release of SRFE are
partly attributable to the familiarity of the devel-
opment team with both the development tool,
ENFIN, and the object-oriented paradigm.

Also allow for a high percentage of project time
being absorbed by “technical overheads,” in ad-
dition to the normal project overheads of project
control, reporting, and meetings. This time in-
cludes activities such as general technical sup-
port and mentoring, investigations into new tech-
niques and technologies, problem and change re-
quest investigation, maintaining the technical
environment, and developing common infrastruc-
ture code. Experience in the EOSE project indi-
cates the total overheads can be up to 25 percent
of the project cost.

Reuse. Code reuse results in excellent benefits in
terms of productivity and code quality. However,
developing the initial objects with reuse in mind
takes time and effort and has to be scheduled for
where it is appropriate. Later releases of SRFE
benefited from reusing code developed earlier,
with an attendant increase in both quality and pro-
ductivity. In terms of productivity, with the pilot
release the team produced 269 source instructions
per person-month. With the corporate release this
production had risen to 367 source instructions
per person-month, a 36 percent increase. Al-
though this increase was largely due to the ab-
sence of a learning curve, the reuse of objects
from the first release was also a significant con-
tributing factor. The CICS Base project reused ap-
proximately 85 percent of the original code.

Team size and work allocation. Object-oriented
developments usually mean small teams, or at
least encourage (and facilitate) small teams. Even

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

so, it has been found that a small team can feel and
behave just like a big team. Ensure that the team
is able to make decisions for itself and that com-
munications are adequate between team mem-

For coding purposes
each business object or group

of business objects was
assigned to a developer.

bers. (Just because they all sit in the same area
does not mean that they talk to each other!) How-
ever, these small teams must not work in isola-
tion. The application design must be “end to
end.” It must contain full details of the graphical
user interface, the client (PWS) to server (main-
frame) interface, and the mainframe servers. Do
not try to develop the client and server parts in
isolation and bring them together for the first time
at system test.

Initially the EOSE PWS development team was es-
tablished as a completely independent project.
However, an early lesson learned was that there
had to be close and continuous contact between
this team and the four mainframe projects to
which it provided services. As a result, the ana-
lyst/designers were made responsible for the end-
to-end design of the user interface objects (that
is, both client and server part). They, and the
programmers of the mainframe servers, remain
within the relevant mainframe development
teams, but are responsible to the PWS develop-
ment project leader for planning, task assign-
ments, and status reporting. The composition of
the EOSE PWS development team, as it finally
evolved, is:

One project manager
One full-time project leader
One chief programmer
One technical analyst (host and test environ-

Two technical infrastructure designeddevel-
ments)

opers

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

One overall team leader, design coordinator,

Six PWS analyst/programmers

Working closely with this team are:

Four end-to-end analyst/designers (client and

Sixteen mainframe server analyst/programmers

One technical architect
Business/user analysts from the business sup-
port group as required

and test coordinator

server designs)

(four for each host component)

In all three projects, for coding purposes each
business object or group of business objects
(module) was assigned to a developer, who was
then also responsible for developing the appro-
priate infrastructure and view classes. This ver-
tical integration (rather than horizontal integra-
tion in which different teams develop the
interfaces and application objects) worked very
well.

Object-oriented development certainly benefited
the CICS Base project. It was possible to identify
objects and assign teams (or individuals) to ob-
jects, which clearly gave them the boundaries of
their task, and helped by labeling “meaningful”
sections of the system, rather than just a set of
programs. The fact that for the conversion to CICS
only 10-15 percent of the original code was
changed is a tribute to the object-oriented design.
The team was able to port over 150 thousand
source instructions (KSI) with a team of six in well
under two years, including adding new function
and accounting for the learning curve involved.
Quick completion of this work, despite the im-
mature development tools, is due partly to the
fact that objects could be easily identified that
would not even require desk-checking.

Metrics and status reporting. Decide at the outset
what measurements are desired at the end of the
project and ensure that everyone knows and that
the measurements are collected regularly. One of
the problems with small teams working on indi-
vidual objects is that it is easy to lose control of
the metrics. Status reporting is another area that
must be watched as the teams tend to see status
reporting as dead time and would rather continue
with their work. Such reporting has been tried in
some areas, and major problems are apt to be
encountered because teams tend to only disclose

CAPPER ET AL. 149

Figure 3 A practical development approach

MODELING

1
PROTOTYPE - - 1

I
I
I
I
I
4 1
I CHECKPOINT

I
7

INFRASTRUCTURE
BUILD

I

1
SHIP

the information that they are going to fail to meet
a target when they have actually failed! A regular
status report is a must; do not abandon all past
project experiences just because object-oriented
techniques are now being used.

Development approaches

Iterative, waterfall, or both? Having settled on
some adaptation of standard tools and language,
consider the development approach that best

150 CAPPER ET AL.

suits the language and your requirements. “Object-
oriented development” is normally assumed to be
synonymous with “iterative development” (or
CABTAB-Code A Bit, Test A Bit). However, this
need not be so. In the case of CICS Base, for ex-
ample, the language and development environ-
ment did not encourage iterative development be-
cause of the length of time it took to compile and
link code. So do not just assume that because it
is object-oriented you must have iterative devel-
opment.

An almost identical development approach
evolved quite independently for both the SRFE
and EOSE project teams, based on their experi-
ences. It is similar to the approach discussed by
Booch’ in that it embodies distinct steps (like the
waterfall approach) but takes advantage of the
iterative nature of object-oriented development,
allowing all the previous steps to be revisited if
necessary. The required application objects are
extracted from the requirements in the initial
analysis phase, and the prototype uses these ob-
jects as a base for its function, thus making the
transition to the design and coding phases signif-
icantly easier.

The result is an 11-step development process for
building object-oriented business applications,
contained within two distinct phases. This pro-
cess includes the prototyping and usability testing
steps needed to ensure the quality of the user
interface. Although it is essentially an iterative
process, it still includes a formal checkpoint, or
continuation point, to allow the project costs, es-
timates, and schedules to be monitored. This
checkpoint also allows the iterative development
pattern, which is so well-suited to an object-
oriented development, to be integrated with more
traditional waterfall work patterns and managed
with the same set of project controls.

A practical development approach. Figure 3 shows
an overview of the phases of the development
pattern and how it combines iterative develop-
ment with formal checkpoints. This development
pattern can be applied to a single object, an in-
frastructure component, a group of related ob-
jects or even a complete development project. It
can be used for a formally planned development
project or for a fast path feasibility study.

The first phase, analysis and design, starts with
formal data and process modeling in order to un-
derstand the business process for which a solu-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tion is to be provided. EOSE, for example, has
used BSDM as the modeling method, but any for-
mal method which produces equivalent informa-
tion is just as good. (Some other formal methods
the reader may have come across include IDEF-
Integrated Computer-Aided Manufacturing Defi-
nition Method-and SSADM-Structured Systems
and Design Method.) The information gathered
during this phase is used to create the database
designs, agree on the process boundaries, and
agree on the areas of the problem domain for
which a computer solution is to be provided. This
phase is followed by iterative analysis and design
steps to collect all the user requirements, design
the user interface, and identify any common in-
frastructure code that will be needed. For a fea-
sibility study, or the first object(s) of a new proj-
ect, four or more iterations may be needed to
arrive at a design that meets the user require-
ments. For subsequent objects in the same proj-
ect two iterations should be sufficient.

Following this phase is a formal checkpoint,
where the design material (documents, proto-
types, data models, and so on) are reviewed by all
interested parties and the appropriate commit-
ment is secured to continue the project, or pos-
sibly change the scope. Given this commitment,
the development team can then build the com-
plete product with the knowledge that all of the
requirements are understood both by themselves
and by the users.

The second phase, the build phase, is again an
iterative one of at least two cycles, building first
the class hierarchy needed and then the complete
business objects.

Even though this work pattern is iterative, normal
quality assurance processes still apply. All doc-
uments and code are subject to a planned quality
check (review or inspection, as appropriate). All
defects are recorded for feedback into the quality
improvement process. One difference from a wa-
terfall process is in the scope of code inspections.
The code inspections are now primarily to check
for completeness in relation to the design, for
maintainability, and for adherence to standards.
The frequent and incremental testing is the prin-
cipal means of ensuring that the code functions
correctly.

Within these two phases (plus the checkpoint) are
the following 11 development steps:

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Phase 1: Analysis and design

Step 1: Model the data-The modeling is done
in formal data modeling workshops, using a
method such as BSDM. The result of this activity
is a complete list of entity and attribute defini-
tions for the business process, from which the
table or database definitions can be created.

Step 2: Model the processes-This modeling is
done in formal process modeling workshops,
again using a method such as BSDM, and with
the same workshop participants as attended the
data modeling sessions. The result of this ac-
tivity is a set of scope definitions within which
the rest of these development steps can take
place.

Step 3: Analyze user tasks within each pro-
cess-This analysis may either be in (small)
workshops or in individual interviews with
users. By talking through the tasks a user needs
to follow to achieve the business process, this
step identifies candidates for the objects and
methods in the user’s world. The result is a “pa-
per prototype” of the solution, which can be
used to verify that the business processes can
be achieved.

Step 4: Create sample business scenarios-The
project design team now takes the results of the
modeling and task analysis and creates a set of
sample scripts, or scenarios, that describe typ-
ical business processes. There should be a suf-
ficient number of scenarios to cover the scope
of the project. These scripts describe, step by
step, the tasks a user has to perform to achieve
the process. When complete, the design team
should verify the scripts with the users. From
these scripts a preliminary class hierarchy can
be established and any infrastructure objects
can be identified.

Step 5: Combinelgroup objects for commonal-
ity acrossprocess boundaries-The project de-
sign team rationalizes the lists of candidate ob-
jects named in Step 3 to identify common
business objects and objects that will be pre-
sented in the user interface. Again, the results
must be verified with the users. As an example,
the task analysis may have identified three ob-
jects in the user’s world: (1) a “delivery instruc-
tion” within the business process “deliver
product,” (2) a “scrap instruction” within the

business process “scrap product,” and (3) a
“transfer instruction” within the business pro-
cess “transfer product.”

However, by looking at the tasks that involve
these three objects, we can see that they are
very similar. All three objects represent a doc-
ument that contains the instructions to move a
piece of equipment from one place to another;
the first is from the warehouse to the customer,
the second is from the customer back to the
warehouse, and the third is from one customer
to another. Rather than present all three objects
on the user interface, it may be much simpler to
present a single object “movement instruc-
tion,” for which much of the processing is com-
mon to all three types of documents. Only when
the document details are complete does the user
have to say what type of movement instruction
is required.

Step 6: Prototype the user inte~ace-Prototyp-
ing is done by the development team in working
sessions with the users. The result is a set of
draft window designs. Depending on the pro-
totyping tool used, it may also be possible to
include prototype window flows as well as the
static designs. Another result of this activity
will be changes and refinements to the business
processes and scenarios as the users start to see
the solution “come alive.” As this happens, the
development process will cycle back to Steps 3,
4, or 5 and will iterate until the users are happy
with the designs.

Step 7: Test prototype for usability-By this
step the prototype should be stable enough and
robust enough that the users can subject it to a
formal test of usability in a controlled environ-
ment (possibly even using a purposely-built us-
ability laboratory). As a result of the testing,
further changes may well be requested, and the
development process will cycle back to Steps 3,
4,5, or 6. The result of this step must be the final
window designs, and the analysis and design
phase iterates until this result is achieved.

Checkpoint

Step 8: Publish the design documentation-The
design documentation can take many forms. It
can include hard-copy documents? “hypertext”
(on-line) documents, working prototypes, and
anything else that makes the proposed design

1 152 CAPPER ET AL.

understandable. The users are asked to for-
mally commit to the designs before the next
phase, the build phase, can continue.

Phase 2: Build

Step 9: Build common finetion and infi-astruc-
ture code-The development team designs,
writes, and tests the common code. As much
existing code should be reused as possible to
reduce the chance of introducing coding errors.
The common code will produce the base class
hierarchy on which the business objects can be
built. (Note that some infrastructure develop-
ment can be started after Step 4.)

Step 10: Build the complete business objects-
The development team designs, produces, and
tests the complete business objects, again re-
using as much existing code as possible.

Step 11: Test the product against usability re-
quirements-The users subject the completed
product to a formal test of usability by means of
a usability laboratory or equivalent controlled
environment. If this is the first cycle within the
build phase, this step will almost certainly result
in some requests for design changes, and the
project plans must allow sufficient time for at
least one more iteration after the first usability
test. If the changes are relatively minor, the
build phase cycles back to Step 10. For major
changes it may be necessary to go back as far as
Step 6 and rework the original prototype de-
signs. Such design changes should be controlled
in the same way as the original project and
should be subject to a similar checkpoint and
commitment to proceed.

The final cycle through the build phase should end
with a usability test verifying that the product
meets all requirements and is ready for release.

Conclusions

General conclusions. This section consolidates the
individual project results described earlier and at-
tempts to draw general conclusions on how they
were obtained.

Code quality. Table 10 summarizes the code qual-
ity improvement factors where a measured base
for comparison exists. In absolute terms also,

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Table 10 Code quality improvement factors compared with non-object-oriented development

Component Independent Test User Test Production

EOSE 3x 6x lOOx estimated
CICS Base 1Ox estimated No comparison base numbers lOOx estimated

production code quality was excellent, for exam-
ple, the zero defects of SRFE in over 12 months of
production.

The quality was felt to be primarily due to reuse
from inheritance and from data encapsulation; it
applied to both object-oriented design and to
OOPS. However, using an OOPS (particularly with
automatic, instantaneous, incremental compile)
led to further improvements from enforcing ob-
ject-oriented design and enabling a CABTAB ap-
proach.

Further benefits were felt to be due to the in-
creased code exercise from earlier in the devel-
opment as a result of using an iterative approach.
However, this approach did not obviate the need
for traditional quality assurance activities (in-
spections, for example).

It should be noted that people’s skill and experi-
ence will have a greater influence on code quality
than any technology (including an object-oriented
one). This observation was highlighted by the
non-object-oriented subsystem in CICS Base.

(It is perhaps interesting to note that a completely
independent and parallel study into work patterns
for developing object-oriented business solutions
has arrived at the same conclusions as those from
the EOSE and SRFE projects. Working from the
theoretical considerations, Ghica van Emde Boas
has developed a method called “Framework
for Object-Oriented Development” lo which, like
EOSE, has a development process consisting of 11
steps, encompassing essentially the same tasks.)

Correctness. There was a perceived overall re-
duction in both project change requests at inde-
pendent test time (for example, just seven minor
user interface changes for EOSE), acceptance test
time, and post-delivery improvement requests,
thus indicating an improvement in correctness
(fitness for purpose).

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

This reduction was felt to be an indirect benefit of
object-oriented technology, namely the increased
user involvement resulting from prototyping as
part of iterative development (and, in the techni-
cal software development arena, from “explor-
atory programming” aimed at understanding an
unfamiliar platform).

Usability. Although formal usability laboratory
testing was not carried out, feedback from users
suggested that most aspects of usability were im-
proved: users were more self-sufficient and ap-
plications were, overall, easier to use and were
more consistent. All this improvement led to a
more positive user attitude. With regard to neg-
ative aspects, some users did experience diffi-
culty in learning, and there was some “ease of
use” frustration where highly repetitive, fixed se-
quences of actions were involved. No impact was
noticed with respect to user accuracy.

The main influencing factor was thought to be the
object-oriented user interface. The claim that this
interface more accurately reflects the user’s men-
tal model of the application was felt to be true.
Ease of learning difficulties were believed to be
caused by the “culture shock” of this different
user interface style for long-time users of action-
oriented interfaces. Consequently, this factor will
disappear with subsequent object-oriented user
interface applications and can thus be viewed as
a justified migration cost. Highly repetitive, fixed
sequences of actions were a relatively small pro-
portion of the two relevant applications in this
paper but could suggest that, where such se-
quences form the bulk of the application, an
object-oriented user interface may not be appro-
priate.

The ability of OOPS to enforce standard window
behavior via inheritance and, in an iterative de-
velopment context, to facilitate GUI prototyping
was also felt to have improved many aspects of
usability.

CAPPER ET AL. 153

Adaptive maintainability flexibility, enhanceabil-
ity). The relative cost of making functional
changes to the two business applications, EOSE
and SRFE, is lower than for traditional, procedural
applications. Even more dramatic has been the

Object-oriented design led
to higher modularity.

low cost of porting the already object-oriented
code of ASM from one environment (TSO) to an-
other (CICS).

Object-oriented user interfaces were felt to encour-
age a looser coupling between objects implement-
ing various screen representations (“views”) and
those holding the data of the represented business
object. Consequently, new alternate views of the
same business object could be developed quickly,
as could changes to existing views.

Object-oriented design led to higher modularity,
that is, objects having well-defined boundaries. In
turn, this led to easier impact analysis of proposed
functional changes and tended to isolate changes
to a minimal number of object classes (for exam-
ple, just adding a new method to a class). In par-
ticular, the ability of the EOSE developers to do
prototyping using a non-object-oriented language
“class library” is felt to be proof of the power of
object-oriented design to produce flexibility.

The inheritance capability of OOPS enabled some
global changes (for example, to the behavior of a
specific type of view) to be made by just modi-
fying a single class high in the inheritance hier-
archy. The class browser helped SRFE developers
to understand objects in terms of their associated
messages and resultant processing without hav-
ing to look at the code. Again, it helped reduce
adaptive maintenance costs.

In CICs Base, higher modularity enabled isolation
of platform-dependent code in specific classes
and methods, thus leading to the low cost of
adapting ASM to a new platform.

154 CAPPER ET AL.

Pegective maintainability. Overall the relative
effort to analyze defects and fix them was im-
proved, though for EOSE and CICS Base a degra-
dation was seen in analyzing defects where inter-
actions between many objects were involved
(caused, for example, by rogue messages).

The higher modularity engendered by object-
oriented design and OOPS was again felt to be the
main reason for the improvement. With regard to
the exception above, analyzing multiobject error
situations was no problem for SRFE using the
built-in source level debugger of ENFIN/2 with its
messaging history analysis facility. No such de-
bugger was available for the software used by the
other two projects.

Peqormance. Although all performance targets
were met by the projects, there was a perception
on EOSE and CICS Base that accomplishing the
target was somewhat more difficult than with a
conventional approach (the experience of SRFE
on this was neutral). On the positive side, poten-
tial performance problems tended to be identified
earlier in the development cycle.

The performance overhead was strongly sus-
pected by the EOSE and CICS Base projects to be
caused by the higher modularity (and hence in-
creased messaging traffic) from object-oriented
design and OOPS; for example, the performance of
ASM dramatically improved when the object gran-
ularity was coarsened. However, the overhead
was small relative to the overall time for GUI
window painting itself. Performance problems
tended to be identified and fixed earlier because of
the early prototyping inherent in the iterative de-
velopment approach.

Cross-project comparison. Very different projects
were deliberately chosen for discussion in this
paper. It was done in order to illustrate the scope
of applicability of object-oriented benefits. How-
ever, it does make detailed numerical quality
comparisons between the projects difficult. In
particular, the coding rates differed significantly:
EOSE was 462 source instructions per person-
month, SRFE was 269 and 367 for the two releases,
and CICS Base averaged 121.

The difference in coding rates was due to factors
such as language power (source instructions per
function point, for example) and development
tools. ENFIN was the most powerful language, fol-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1094

lowed by SEDL+ +, then C . The most compre-
hensive and stable development tools were pro-
vided with ENFIN, followed by C (and PM), and
finally SEDL+ + in 1991 and 1992.

D However, the latter factor does seem to correlate
with “defect propensity” (the total number of de-
fects introduced into the project for each person-
month effort) given in Table 11.

Thus, it can be concluded that, in quality terms,
the choice of an object-oriented language should
be driven by how comprehensive and stable the
associated development environment is, rather
than by the power of the language.

Follow-on directions. As a result of our experi-
ences in these and other projects, ISL now has a
policy of using object-oriented technology to de-
velop graphical user interfaces, specifically con-
forming to the CUA Workplace Model (CUA’91).
The following actions should lead to even higher
quality results from this technology:

1. Establishment of a preferred OOPS and asso-
ciated, centrally administered business and
technical class library, thus maximizing reuse
of quality-assured code.

2. Establishment of an object-oriented mentoring
group. It will help ensure good object-oriented
quality practices on new projects (for exam-
ple, in object-oriented performance manage-
ment). Although the inexperience in the
projects was felt to lead to a cautious and com-
municative approach to development and
hence higher quality, it is not a sensible long-
term strategy.

3. Object-oriented quality metrics improvements,
in particular, in user-perceived quality concen-
trating on “new plus reused function points”
as a base for calculation.

4. Introduction of a specialized library manager.
A specialized library manager is necessary for
version control in large team development us-
ing an OOPS with an incremental compile tech-
nique.

Summary

The results from three projects of differing types,
sizes, languages, and platforms have a remark-
ably close correspondence when it comes to
analyzing the quality impacts of their common
factor, namely object-oriented technology. A

B

D

B

Table 11 Defect propensity v i Projects Defect Propensity

CICS Base

number of important lessons were learned. From
these evolved a practical approach to developing
object-oriented software, which combines the
benefits of an iterative working pattern with the
quality checkpoints of a waterfall approach.

There is a common consensus that object orien-
tation leads to all-around quality benefits. The im-
portance of using an object-oriented language
with a browser and a debugger was also demon-
strated. Although a performance overhead was
suspected by two of the projects, targets were
met in all cases. One of the key benefits demon-
strated by the projects was that defect rates mea-
sured in independent testing were significantly
lower than those in the equivalent non-object-
oriented components. Also, early user interface
prototyping, and the close and frequent involve-
ment of the users, resulted in a very low level of
late design changes.

Other key benefits included the fact that new
functions could be added quickly and easily, and
to very high standards of quality, through the ex-
ploitation of inheritance, and that object-oriented
development resulted in a measurably greater
overall development productivity.

Encapsulation techniques meant that any errors
that did occur in the code were localized and eas-
ily traceable and potential performance problems
could be identified early in the development
cycle.

Overall, object-oriented technology was per-
ceived and demonstrated as a major “tool” to
assist in improving software quality.

Appendix: Code metrics and reuse

A general metrics issue is the comparison of qual-
ity between two radically different technologies.
For object orientation specifically, a current issue
is whether the amount of reused code should be
included when calculating developer productivity
or, as relevant here, code quality.

B
IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 CAPPER ET AL. 155

Here are some examples that illustrate this point:

If an existing program is 10 KSI in size and 1 KSI
is changed to make it work on a different plat-
form in one month, is the developer productiv-
ity:

a. 1 KSI per month? (new code written)
b. 10 KSI per month? (resulting program)
c. 11 KSI per month? (old program size plus

new code written)

The issue gets more complicated when defect
densities are considered; for example, if two
defects are reported against the new program, is
the defect density:

a. 2 defects per KSI? (divided by new code)
b. 2/10 defect per KSI? (divided by resulting

c. 2/11 defect per KSI? (divided by old program

d. 0 defects per KSI? (if none of the errors were

program size)

size plus new code written)

in the new code!)

What about the situation where 10 source in-
structions are changed in a complex suite of
programs of unknown size? Should the size of
the suite be counted just to determine what the
productivity or defect rate is? Should the code
in just the methods invoked or, alternatively, in
the complete classes inherited from, or, in-
voked via messaging, be counted? Does it mat-
ter how many source instructions there were?
(For example, in the base code that was ported
to CICs, it is believed there were 150 KSI. But
this is not certain, and it was not considered a
good use of resource to count them, particularly
since they were split across hundreds of mod-
ules in different languages.) This consideration
is aside from the general issue of the different
productivity rates of programming languages.

So, should KCSI be used as a measurement at all?
Maybe function points should be used, but, for
example, how many function points do you count
when changing one source instruction (or even no
instructions) to make something work on another
platform?

Another question is, how many errors should be
counted if a user raises one error when at fix time
it transpires that there were in fact two errors?
And what about errors in logic that would never

materialize in the end user’s function? (The CICS
Base project had such a case where an internal
function would have crashed if it was passed a
zero value. The function was supposed to handle
a zero parameter. However, none of the calls
made to it would ever have passed zero because
of other factors. Was this a defect? It was meant
to handle zero because it was intended to dupli-
cate the same function as on another system.)

It is thus evident that both approaches are valid,
but for different purposes: metrics based on “new
plus reused code or function point” reflecting an
external, customer-perceived view of application
“size” and metrics based on “new code only or
KCSI” being most suited for internal, comparative
analysis of the development tools and techniques
used. Hence, this paper has used the latter base
for metric calculation, admittedly at the cost of a
tendency to underestimate the value of object ori-
entation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of ENFIN Software
Corporation.

Cited references and note

1. IBM Information Solutions Ltd. is a wholly owned sub-
sidiary of IBM United Kingdom Holdings Ltd. It was set
up in April 1992 to provide outsourcing capability to cus-
tomers as well as to IBM itself. The Software House is the
part of ISL that develops applications for both external
customers and IBM using advanced tools and techniques
such as those that are object oriented.

2. 0. Sims, The New World, IBM U K System Design,
Basingstoke, United Kingdom (1989).

3. R. E. Berry and C. J. Reeves, “The Evolution of the
Common User Access Workplace Model,” ZBM Systems
Journal 31, No. 3, 414428 (1992).

4. Business Systems Development Method (5 volumes),
IBM AD Solution Centre, IBM U K Ltd., Chiswick, Lon-
don (1993).

5. Systems Application Architecture Common User Access
Guide to User Inte$ace Design, SC34-4289, IBM Cor-
poration (October 1991); available through IBM branch
offices.

6. C. S. Gee, A Methodology for Object Oriented Design,
IBM International Technical Support Center, Roanoke,
TX (1989).

7. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1990).

8. Function Points Counting Practices Manual, The Inter-
national Function Points Group, IFPUG, Blendenview
Office Park, Westerville, OH (1990).

9. G. Booch, Object-Oriented Design with Applications,
The Benjamin/Cummings Publishing Company, Reading,
MA (1990).

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

10. G. van Emde Boas, Framework for Object-Oriented De-
velopment, IBM European Systems Architecture and
Technologies, Uithoorn, The Netherlands (1992).

Accepted for publication September 13, 1993.

Nigei P. Capper IBM Information Solutions Limited, P.O.
Box 41, North Harbour, Portsmouth, Hampshire PO6 3AU,
United Kingdom (electronic mail: IBM Mail Exchange:
GBIBMWTZ at IBMMAIL; Internet: GBZBMW"Z@IBM-
MAIL. COM). Mr. Capper is a Senior AD Specialist in the ISL
Software House. After completing full-time education he en-
tered the IT business in 1980 as a trainee programmer with
local government. After five years of programming and anal-
ysis of application systems he joined a software house as a
senior programmer/analyst. Here he progressed through proj-
ect leader, project manager, and deputy business manager in
the IBM marketplace. He joined IBM in 1990 and led "CICS
Base," a major international object-oriented software devel-
opment project. His current focus areas are transaction pro-
cessing, particularly CICS, client/server applications, and re-
use.

Roger J. Coigate IBM Information Solutions Limited, P. 0.
Box 41, North Harbour, Portsmouth, Hampshire PO6 3AU,
United Kingdom (electronic mail: IBM Mail Exchange:
GBIBM4MX at IBMMAIL; Internet: GBIBM4MX@IBM-
MAIL.COM). Mr. Colgate is an advisory analyst in the ISL
Software House Technology Group where he is responsible
for application development technical strategy. He studied at
Cambridge University, gaining a degree in mathematics in
1971 followed by a postgraduate diploma in computer science.
He joined IBM internal information systems in 1973 as an
application programmer and, following work on IMS on-line
applications, became a database design specialist at a Euro-
pean level on an assignment from 1981-84. Since then he has
driven the introduction of new technology and techniques into
ISL, specifically: technical assurance reviews, application
performance management, DB2, and CSP. His current focus
areas are AD/Cycle and object-oriented technology.

Jim C. Hunter ZBMInformation Solutions Limited, P. 0. Box
41, North Harbour, Portsmouth, Hampshire PO6 3AU,
United Kingdom (electronic mail: IBM Mail Exchange:
GBIBM5ZXatIBMMAZL; Internet: GBZBM5ZX@IBMMAIL.
COM). Dr. Hunter is a programmer/analyst in the ISL Soft-
ware House Technology Group currently working on the
SRFE project. He studied at City University, London, gaining
a degree in mechanical engineering in 1984, and a Ph.D. in
1987. He joined IBM International Information Systems in
1990, and almost immediately moved into the object-oriented
arena with the SRFE project, which he has been working on
ever since.

Martin F. James ZBM Information Solutions Limited, P.O.
Box 41, North Harbour, Portsmouth, Hampshire PO6 3AU,
United Kingdom (electronic mail: IBM Mail Exchange:
GBIBM9XX at IBMMAIL; Internet: MJAMESQWET.
ZBM. COM). Dr. James is a technical architect for the EOSE
development projects in the ISL Software House, with par-
ticular responsibility for PWS development. He studied at the
University of Birmingham, gaining a degree in physics fol-
lowed by a doctorate in high energy physics for research done
at Birmingham and at the Centre Europtenne pour la Re-

cherche Nucleaire (CERN) in Geneva. He joined IBM in 1976

After 11 years designing and developing MVS technical in-
as an application programmer on IMS business applications.

frastructure software in the United Kingdom and the Neth-
erlands, in 1989 he joined the EOSE development group as
one of a small team of technical architects to advise on the use
of new tools, techniques, and technologies.

Reprint Order No. G321-5536.

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

