
The facilities and evolution
of MVS/ESA

by C. E. Clark

As new processors were developed with new capabili-
ties, the Multiple Virtual Storage (MVS) operating sys-
tem was modified and enhanced to utilize the latest
advances. The most recentry available processors are
structured on Enterprise Systems Architecture, and
MVS has evolved to be a part of this architecture as
MVSIESA". This paper describes the changes that oc-
curred in MVS and the facilities that are currently avail-
able to support users of the latest processors.

I n February 1988, IBM announced the Enterprise
Systems Architecture/370" (E S A I ~ ~ O ~ ~) and Mul-

tiple Virtual Storage/Enterprise Systems Architec-
ture (MVSIESA"). This new architecture and the sup-
porting hardware and software offer an evolutionary
step toward meeting the data processing require-
ments of the 1990s. E S A I ~ ~ O is implemented and avail-
able on the IBM 3090 Model E and the 3090 Model
S series processors and on the IBM 4381 Model
Groups 91E and 92E. These processors are capable
of executing software developed for both the pre-
vious architecture level"System/370 Extended Ar-
chitecture (370-XA), and the new architecture, pro-
viding for a nondisruptive migration path for users
of these computers. The new architecture on these
processors is initially supported and utilized by the
MVS operating system, MVSIESA, which consists of
two IBM licensed programs, Multiple Virtual Stor-
age/System Product (MVS/SP") Version 3 and Mul-
tiple Virtual Storage/Data Facility Product
(MVSIDFP") Version 3.

This paper describes how MVS/SP Version 3 supports
~ ~ ~ 1 3 7 0 and, in particular, how that support provides
the user with additional virtual storage capacity, data
sharing, data isolation, and increased cross-memory
addressing capabilities. Basic changes were made to
Version 2 of the MVS/SP operating system environ-
ment in order to introduce a new system construct,
the data space, in Version 3 and to provide extended
addressing capabilities to multiple address spaces and
data spaces. New services were added to create ad-
dress and data spaces as well as facilities to grant or
limit access capabilities to these spaces.

Two new components of MVS/SP Version 3, the Vir-
tual Lookaside Facility (VLF) and the Library Look-
aside Facility (LLA), take advantage of the new hard-
ware and software capabilities in order to reduce
physical 110 operations by caching data and pro-
grams. VLF and LLA also use the additional virtual
storage capabilities to provide increases in perform-
ance and throughput. Other IBM products, such as
Time Sharing Option/Extended (EWE) and Infor-
mation Management System (IMS), utilize the VLF
and LLA facilities to provide performance improve-

%, Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference. and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service. systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL VOL 28. NO 1. 1989

ments for their users without requiring the users to
modify any existing code.

The new hiperspaces and data window services give
programs an opportunity to use expanded storage to
reduce physical I/O operations in order to increase
throughput. The data window services are available
to higher-level language (HLL) programs and to pro-
grams coded in Basic Assembler Language (BAL).
Use of data window services by the virtual storage
access method (VSAM) has allowed IMS to reduce the
necessary number of physical I/O operations and
amount of virtual storage below 16 megabytes for its
VSAM database I/O activity.

In addition to the facilities for extended addressing,
program linkage mechanisms were extended by the
new linkage stack facility. This facility includes the
linkage stack, the new stacking program call and
program return, the new branch and stack instruc-
tion, and associated recovery on the stack. The ex-
tended addressing, improved linkage facilities, and
ability to use the full MVS/ESA instruction set to
address multiple address or data spaces provide
many of the necessary primitives to meet the large
operating system requirements of the 1990s. This
has been done without sacrificing users’ investments
in programs that execute on previous levels of MVS.

The evolution of MVS/ESA

The facilities provided in MVS/ESA were designed to
be extendable and to provide the required addressing
capabilities before the addressing requirements be-
came constraints in the user’s environment. The
facilities were also designed to remove certain limi-
tations that existed in the previous versions of MVS.
A brief look at the product history of MVS will
demonstrate how MVS has changed to meet the
growth in data processing capacity requirements,
how the previous MVS facilities have been improved
by ESA facilities, and how MVS has maintained com-
patibility with previous versions of users’ programs.

The System/360, System/370, and ESA/370 archi-
tectures and operating systems. During the last
quarter century, IBM has introduced the System/360
architecture, System/370 architecture, System/370
Extended Architecture, and most recently, the En-
terprise Systems Architecture/370. In 1964 IBM an-
nounced the System/360 which had a minimum
configuration of 16K characters (bytes) of main stor-
age. The next year the Basic Operating System was

IBM SYSTEMS JOURNAL VOL 28. No 1 , 1 9 6 9

announced. In the following year, the primary con-
trol program (PCP), multiprocessing with a fixed
number of tasks (MFT), and multiprocessing with a
variable number of tasks (MVT) were introduced, and
by 1970 IBM had announced the Asymmetric Mul-
tiprocessing System (ASP), Houston Automatic
Spooling Program (HASP), Remote Job Entry (RJE),
M V T / M ~ ~ multiprocessor (MP), telecommunications
access method (TCAM), and Time Sharing Option
(TSO). IBM introduced System/370 in 1970 and Op-
erating System/Virtual Storage 1 (o s p s l) and Oper-
ating System/Virtual Storage 2 (os/vsz) in 1972,
extending virtual addressing capability to users of its
two earlier operating systems, os and the Disk Op-
erating System (DOS). The MVS operating system,
based on the System/370 architecture, was an-
nounced in 1973 and shipped in 1974. At the time,
the first version of MVS seemed to provide a tremen-
dous amount of virtual addressing capacity- 16 mil-
lion bytes for each user or job.

The 16 million bytes of virtual addressing of the MVS
address space consisted of 256 segments of 64K bytes
per segment. Each segment consisted of sixteen
4096-byte pages. On segment boundaries, the ad-
dress range was divided into a system area, the user’s
private area, and the common area as shown in
Figure 1. The system and common areas were ad-
dressable by all users unless the area was unallocated
or protected by a storage key different from that of
the user. The user’s private area was unique to each
user or job and only addressable by the user or job
allocated to that address space. Beginning at the low
address zero, some number of segments would be
allocated for the system area. These segments had
real storage frames permanently backing the virtual
pages. Into this area, system-control program code
was loaded, particularly performance-sensitive code
located in the nucleus load module. Other system-
control program code was loaded into the PLPA, the
pageable link pack area. This area also contained
subsystem, installation, and certain application code
that needed to be used by more than one address
space. The system queue area (SQA) and common
service area (CSA) generally contained control blocks
and data that had significance to more than one
address space.

Since first being announced, MVS has continuously
been enhanced together with the underlying hard-
ware architecture to meet the demand for increased
data processing capability. However, the user’s in-
vestment in programming has been protected even
with the introduction of new architecture. Programs

Figure 1 Initial address space structure of MVS

SYSTEM
AREA

LSQA

PRIVATE
USER’S
REGION

7 1
16 MEGABYTES SQA = SYSTEM

QUEUE AREA

PLPA - PAGEABLE LINK
PACK AREA

MLPA

CSA

LSQA

PRIVATE
USERS
REGION

FLPA

NUCLEUS

PSA
4K BYTES

1 0

MLPA = MODIFIED LINK
PACK AREA

CSA COMMON
SERVICE AREA

LSQA * LOCAL SYSTEM
QUEUE AREA

FLPA = FIXED LINK
PACK AREA

PSA = PREFIXED
STORAGE AREA

...

ADDRESS SPACE 1 ADDRESS SPACE 2 ADDRESS SPACE n

that were written for the previous levels of Sys-
tem/370 architecture, and indeed for System/360,
are still capable of executing on today’s MVSIESA.

MVS history. The first version of MVS, os/vsz Release
2, supported two new System/370 processors, the
Model 158 and 168 MP systems. The main storage
supported by MVS was a minimum of 768K. MVS
supported the maximum size of 8 192K of main
storage offered by the System/370 Model 168. MVS
supported both a uniprocessor (UP) and MP version
of the Model 158 and 168 processors, with the high-

end 168 MP being approximately 2.6 times more
powerful than the low-end 158 UP. As data process-
ing requirements grew in the late 1970s and the early
1980s, MVS supported an increasingly powerful series
of IBM processors: the 303Xs, 308Xs, 43XXs, and
3090s. Then in early 1988, ~ ~ ~ 1 3 7 0 became available
on the 3090E models and the 4381 Model Groups
91E and 92E. Within six months of its initial an-
nouncement, E S A / ~ ~ O was available on models of the
3090s series. In addition to supporting processors
with more processing power, MVS made the necessary
changes to support larger numbers of tightly coupled

processors, supporting the six processors of the 3090-
600E and 3090-6008. This meant that under MVSIESA
the number of available processors could vary from
one to six, and the range of processing power is
approximately five to more than 100 times that of
the first processor supported by MVS. In addition, the
range of storage that MVSIESA supports extends from
a maximum of 5 12 megabytes of main and expanded

As the capabilities of the processors
increased, MVS was continuously

modified and enhanced.

storage for the 438 1 processors, to 256 megabytes of
real and 2 gigabytes of expanded storage for the
3090-600E. This growth in processing capacities and
in the range of the processors that MVS has supported
over the last 15 years is indicative of the potential
growth and capacities that MVS must plan for in the
future. This growth cannot be limited by the basic
addressing capabilities of the architecture or the op-
erating system. M v s p s A and E S A ~ ~ O provide the
primitives to allow this continued growth.

As the processing, storage, and 110 capabilities of the
processors increased, MVS was continuously modified
and enhanced to meet the needs of users and the
additional capabilities of the processors. As these
changes emerged, multiple packaging arrangements
were introduced to deliver these products to the user
in as timely a fashion as possible. After the initial
version of the MVS product was shipped, many of the
processor and performance support packages were
shipped as selectable units (sus). They were followed
by system extensions in which significant perform-
ance packages were separately priced. Finally in
1980, MVS became a priced product with the intro-
duction of MvSISP Release 1. By then an MvsIsP
system might contain the Virtual Telecommunica-
tions Access Method (VTAM), Resource Access Con-
trol Facility (RACF), Resource Measurement Facility
(RMF), TSO, Customer Information Control System
(CICS), IMS, or Job Entry Subsystem 2 or 3 (JESZ or
JES~) . Many of these products provided services to
any job, users, or application that executed in an
MVS address space, and many managed resources

IBM SYSTEMS XXlRNAL VOL 28. NO 1. 1989

that were global or common to all of the MVS address
spaces. Because of global requirements and perform-
ance considerations, many of these products were
placing programs and control blocks in common
storage areas of MVS. Although this placement helped
meet the performance and global resource manage-
ment requirements, it was also reducing the amount
of privately addressable storage available to the user,
job, application, or subsystem.

Still other products were utilizing the address space
of MVS to isolate and protect their programs and
control blocks, thus increasing the amount being
placed in privately addressable storage and increas-
ing the need for additional private storage. When an
installation needed both types of products to meet
its data processing requirements, the potential ex-
isted for virtual storage constraints. Increased func-
tion in many of these products and the additional
number of jobs and users that could be supported
on the 303X and 308X processors resulted in many
M v s l s p users experiencing virtual storage constraints
in both the common and private storage areas of the
system.

MVS/SP 1.2 and 1.3-cross memory services and
the DAS architecture facilities. The first products
that provided some relief from the virtual storage
constraints were M v s l s p Version 1.2 and M v s / s p Ver-
sion 1.3, which provided cross memory services nec-
essary to utilize the dual address space (DAS) archi-
tecture facilities. The products were announced in
June 1980, signifying the first architectural change
to the System/370 virtual addressing architecture
since its announcement. Concurrent with MVSISP 1.3,
the System/370 dynamic address translation mech-
anism was changed to support extended real address-
ing (26-bit real addresses) and the common segment
bit.

The combination of the cross memory services and
DAS facilities provided two ways to help relieve use
of common storage. They supplied a program with
the capability to move data directly between separate
address spaces and directly call another program in
a different address space.

The DAS facilities permitted authorized programs to
have concurrent addressability to two separate ad-
dress spaces, a primary one and a secondary one.
MVS and the DAS facilities provided the control struc-
tures and authorization mechanisms necessary to
establish the primary and secondary relationship of
address spaces.

Figure 2 MVS cross-memory move of data

USER'S
PRIVATE '

AREA

SYSTEM .
AREA

PROGRAM A

MVCP Y.2

-1 16 MEGABYTES

~,

16 MEGABYTES

P6A
4K BYTES

0

Two new move instructions, Move To Primary
(MVCP) and Move To Secondary (MVCS), alpwed data
to be moved betyeen the primary (PASN) and sec-
ondary (the SASN) address spaces as shown in Figure
2. Thus programs such as Program A in the figure
could move an amount of data directly from its
address space, the primary address space (ASNI, Ad-
dress Space Number 1, shown in the figure) to or
from a secondary address space (ASNZ), without hav-
ing to move the data or place the code in common
storage. In order to move data between two address
spaces before the DAS facilities were available, a

program would have to move the data to common
storage, then schedule a service request block (SRB)
to inform a program in the second address space that
the data were accessible. Such a move required mul-
tiple dispatches and synchronization points for this
operation as well as the use of common storage.

Another benefit of cross memory services was the
ability to perform synchronous linkage between two
programs in two separate address spaces by using the
program call (Pc)/program transfer (PT) linkage in-
structions. Figure 3 illustrates this synchronous link-

Wd SYSTEMS JOURNAL VOL 28. NO 1, 1989

Figure 3 MVS cross-memory linkage facility

l"---l
16 MEGABYTES

USER'S
PRIVATE
AREA

L

LSQA 97 TCE-E

PROGRAM A (TASK El PROGRAM B

ASlDl OR ASNl ASID2 OR ASN2 ASlDn

INSTANCE PRIMARY ADDRESS SECONDARY ADDRESS HOME ADDRESS REASON
SPACE (PASNI SPACE (SASNI SPACE

2
ASN2

2
ASN2

2
ASN2

INITIAL DISPATCH

0 1 ASNl I ASN2 1 ASNP I PC

l 2 2
ASN2 1 ASN2 1 ASNP 1 PT I

IBM SYSTEMS JOURNAL VOL 28. NO 1. 1989

Table 1 Initial users of the MVS cross-memory facilities

PCAUTH COMTASK
GRS ALLOCATION
JES3 IMS

age between programs in two address spaces ASIDI
and ASIDZ. (ASID is an MVS identifier of an address
space and is equivalent to ASN.) Thus, a program
executing in Address Space 1 could directly call a
program residing in Address Space 2. After the exe-
cution of the PC, Address Space' 1 would become the
primary address space (the PASN) and Address Space
2 would become the secondary address space (the
SASN). Instructions and data would be accessed from
Primary Address Space 1 on behalf of the program
that was the target of the PC instruction. This pro-
gram would use either the MVCP or MVCS instructions
to access data from the program in the secondary
space (space 2) when required to access its caller's
data. When the called program had completed, it
would return to the calling program in Address Space
2 by issuing a PT instruction which would reset the
primary address space to Address Space 2, and in-
structions would once more be executed from the
program in Address Space 2.

The combination of the cross-memory move instruc-
tions and the cross-memory linkage instructions al-
lowed programs and data that previously required
MVS common storage to be placed in the privately
addressed storage of an MVS address space. This
combination not only provided constraint relief of
MVS common addressable storage, but also provided
the isolation and protection of the MVS address space
for components and products electing to utilize the
cross-memory facilities. The initial components and
products that utilized the MVS cross-memory facilities
are listed in Table 1. Through the use of these
facilities, GRS and PCAUTH were able to encapsulate
their control block structures in their own address
spaces. ALLOCATION and J E S ~ also placed some of
their control data and data buffers in separate spaces.
Use of the facilities not only isolated their structures
to their own code, it eliminated the need for a
significant amount of commonly addressable stor-
age. COMTASK and IMS not only benefitted from the
isolation but also eliminated the move of data
through common storage in order to transfer data
from one address space to another address space.

MVS cross memory services that allowed the estab-
lishment of a cross-memory environment required

130 CLARK

the user to be executing in a privileged state. This
requirement meant that in general only system code,
subsystem code, or privileged applications could take
advantage of these facilities. However, this set of
components and products provided much needed
virtual storage constraint relief by placing their pro-
grams, data, and control blocks in their own private
storage. In addition, this placement isolated data and
control structures from accidental overlays by other
privileged programs executing in the system.

31-bit extended addressing. Even before the DAS
facilities were available, it was apparent that many
major products, components, and applications
needed more virtual addressing than was available
in the private or common areas of a 16-megabyte
address space. It was also true for some of the pro-
grams planning to use the DAS facilities. The proc-
essing power of the high-end processors had doubled
between 1974 and 1978, doubled again between
1978 and 198 1, and would more than double by
1983. A user could have experienced a 10- to 30-
fold increase in processing capability within a single
system since MVS was introduced in 1974. Many of
the largest users of IBM'S largest processors were ex-
periencing difficulty in utilizing the full capabilities
of the processors because of constraints, particularly
in virtual storage addressing.

In 1981 IBM announced the most significant archi-
tecture and system change to System/370 since its
announcement: the System/370 Extended Architec-
ture (370-XA) and the Mvs/Extended Addressing
(MVS/XA) operating systems. This combination ex-
tended the virtual addressing capability of each MVS
address space to 2 gigabytes (2 174 484 648 bytes).
As shown in Figure 4, not only were the previous
system and common storage areas significantly ex-
tended for system and subsystem code and control
blocks, but the user was allocated an extended pri-
vate area that could be utilized for any programs
written to execute in 3 1-bit addressing mode.

In addition to extending the virtual addressing ca-
pability, the real addressing capability was also ex-
tended to 3 1 bits, and a new I/O subsystem architec-
ture was introduced to eliminate many of the 110
constraints associated with the new processing ca-
pabilities of the processors.

MVSIXA and 370-XA included and enhanced the DAS
facilities. Users of the DAS facilities had the ability to
utilize the full 3 1-bit addressing. By release of MVS/SP
2.1, at least 16 major MVS products or components

IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989

Figure 4 Address space structure of MVSlXA

EXTENDED
USER'S
PRIVATE <
AREA

EXTENDED
COMMON <

AREA

COMMON
AREA

r I I
ELSQA

EXTENDED
USER
REGION

USER'S
PRIVATE
AREA

I LSQA

I REGION

ELSQA ELSQA

EXTENDED
USER
REGION

EXTENDED
USER
REGON

EPLPA
EFLPA
EMLPA

ESQA

2 GIGABYTES

NUCLEUS

NUCLEUS

"""""" 16 MEGABYTES

SQA

PLPA/FLPA/MLPA I
CSA I
LSQA LSQA

I
PSA

' 4K BYTES

t
EM SYSTEMS XXlRNAL VOL 28. No 1. 1989

Table 2 DAS users on MVS/SP Version 2 4 1 COMTASK ALLOCATION LLA

DUMPING SERVICES PCAUTH IRLM

GRS
TRACE RMF

were using the DAS facilities and the extended archi-
tecture as indicated in Table 2.

A significant amount of time was needed to redesign,
develop, and test the products and applications that
would take advantage of these new capabilities. Even
so, there were already indications that in certain
environments, applications could use more virtual
addressability than had been provided. In an attempt
to address these concerns, improve on the limited
capabilities of the DAS facilities, and yet be available
before the user was seriously constrained again,
~ S ~ 1 3 7 0 and MVSIESA were announced in 1988. The
following sections describe the MVSIESA primitives,
facilities, and services.

MVS/ESA and MVS/SP Version 3

As previously mentioned, MVSJESA and E S A I ~ ~ O pro-
vide the following capabilities:

Additional virtual storage addressing
The full ~ ~ ~ 1 3 7 0 instruction set available to address

Additional granularity in data isolation and shar-

Improved linkage facilities for program call and

Improved linkage facilities between address spaces

It is important to note that existing programs can
execute on the new system and architecture without
any modifications, thus being completely compati-
ble. For new programs and programs that are to be
changed, MVSIESA provides a new set of services and
facilities that offer new capabilities to the user. Some
programs will directly use the new architecture facil-
ities to realize the new capabilities; others will benefit
from utilizing the new system services. Others will
not need to change to benefit-they benefit from
using existing functions or services that have been
modified to use the new facilities.

A very extensive description of how to use the
MVSIESA services and facilities can be found in Ref-

multiple spaces

ing

branch linkages

erence 3, particularly from a programmer’s view-
point. Additional information is available on the
Virtual Lookaside Facility and Library Lookaside
Facility in References 4, 5 , and 6 .

Additional virtual storage addressing. Prior to the
availability of Mvs/EsA, a program executing in 3 1-
bit addressing mode had the capability to address 2
gigabytes of data and programs in its primary address
space. A program using 3 I-bit addressing in cross-
memory mode could address 2 gigabytes of data and
programs in its primary address space and 2 giga-
bytes of data and programs in its secondary address
space, but could only concurrently reference data in
both address spaces via the two move instructions,
MVCP and MVCS.

With Mvs/EsA, a program written to execute in 3 1 -
bit addressing mode and use the ESA facilities has
direct addressability to 2 gigabytes of data and pro-
grams in its primary address space. This program
can execute instructions in its primary space, and
with a single instruction can concurrently reference
data in two other 2-gigabyte address or data spaces.
The full set of ~ S ~ 1 3 7 0 instructions, with a few excep-
tions, is available for addressing data in these other
spaces. This availability allows general, decimal,
floating-point, and vector operation2 to be per-
formed on data in spaces separate from the space
where the instructions are executed.

The new concepts introduced in MVSIESA and ~ ~ ~ 1 3 7 0
were the data space, access list, access registers, and
access register (AR) mode. The last three concept!
are described in detail in the papers by Scalzi et al.
and ;lambeck.’ Data spaces are introduced in Scalzi
et al. and will be described here in more detail later.
Briefly, a data space allows a program to have a
virtual addressable space of up to 2 gigabytes of data.
An access list is the construct in the architecture
through which the access of a program to other
address spaces or data spaces is governed. Access
registers complement the general-purpose registers
and identify the space where the data will be ac-
cessed. This addressing capability is only available
when a program is executing in AR mode.

Figure 5 demonstrates how a program (Program A)
can move data between its own address space (ASIDI)
and a data space, as well as between another address
space AS ID^) and a data space using the System/370
instruction set, in this case, MVC. Note that the PSA
(prefixed storage area), the common area, and the
extended common area are not mapped in the data

132 CLARK IBM SYSTEMS JWRNAL VOL 28. NO 1. 1989

Figure 5 MVSlESA addressing to multiple data and address spaces

d

'ROGRAM A r MVC w,x
MVC Y,Z

'ROORAM B

TCB-8

TASK B

PSA

"""""" 16 MEGA-
BYTES

I 4K BYTES

"""""" 0

DATA SPACE ASlDl ADDRESS ASID2 ADDRESS
SPACE

ASlDn ADDRESS
SPACE SPACE

BM SYSJEMS JOURNAL VOL 28. NO 1. 1989

space. The entire 2 gigabytes of address space are
available to map a user's data.

With these new constructs, a program written to
execute on MvspsA in AR mode can address up to
16 separate spaces without changing a control regis-
ter or an access register. One of the spaces must be
an MVS address space, the PASN, where the instruc-
tions are executed. By simply changing the contents
of an access register, a program can access up to 256

A data space is a new type of MVS
address space.

different spaces. Finally, by changing the content of
an access list and an access register, a program can
access more than 256 spaces. The relationships be-
tween address spaces, access registers, and access lists
are presented later in Figure 8.

In addition, MVSIESA provides hiperspaces and win-
dow services for programs that cannot or will not be
written to execute in AR mode. This provision is
particularly important for HLL programs that must
reference large amounts of virtual storage. Using
hiperspaces and window services, the programs are
allowed to view portions of a very large data object
in their own primary address space. The current
limit for a permanent data object is 4 gigabytes of
data, and the size of the window is limited by the
amount of storage the program can obtain with the
MVS GETMAIN service. The parts of the object not
being currently viewed do not occupy real storage
frames and will be located on expanded or auxiliary
storage. Hiperspaces and data window services are
described in more detail by Rubsam."

In addition to hiperspaces, data spaces, access lists,
access registers, and addressing in AR mode extend
the amount of virtual addressing available to a pro-
gram and also provide for additional levels of data
sharing and isolation. How MVSIESA and its services
provide for these capabilities will be described for
each function.

134 CLARK

contains only data; that is, no facility exists to exe-
cute instructions in a data space. It only contains the
data the user places in the space. The entire space is
available to the user, contains no system control
blocks, and maps none of the MVSIESA common area.
A data space is a linear mapping of virtual storage
that begins at virtual address 0 or 4K bytes, depend-
ing on the processor model on which MVSIESA is
executing, and can extend up to 2 gigabytes. Figure
6 is a comparison of an MVS address space and a data
space.

The newly created data space will appear to the user
to be initialized to zeros (X'OO'). It does not require
any real storage until the user first attempts to use
the space and then only when a new page is used. If
pages in the data space are never accessed, they never
need to exist in real storage. The data space is as-
signed a storage protection key of the requestor.
However, privileged programs can request that a
specific storage protection key be assigned. In addi-
tion, privileged programs can request that the data
space be fetch-protected, and they can also create
data spaces that may be shared between tasks or
address spaces. The nonprivileged program can share
its data spaces only with subtasks that it created. See
Figure 7 for an example of how spaces may be shared
or isolated between tasks and address spaces.

Data spaces, MVS/ESA, and ESA/370. Data spaces
have some very unique properties that are provided
by the design and constructs of MvSIES.4 and its use
of ~ ~ ~ 1 3 7 0 . When executing in AR mode, data and
instructions may be accessed from the same or sep-
arate spaces. This capability allows programs to ref-
erence data residing with the program (e.g., data
constants and relocatable address constants). It also
provides for a data space that can be completely void
of any programs and still be accessed with the full
~ ~ ~ 1 3 7 0 instruction set. A data space, however, can-
not be the target or source of an MVCP or MVCS
instruction because a data space can never be a
primary or secondary address space. MVSIESA pre-
vents data spaces from being eligible as primary and
secondary address spaces. This constraint along with
the architecture prevents data spaces from being
designated spaces for a load program status word
(LPSW), PT, PC, or branch instructions and, hence,
prevents any (accidental or otherwise) execution of
instructions in data spaces.

Creating a data space. The data space manager is
the entity by which a data space is created. The data

IBM SYSTEMS JOURNAL VOC 28, NO 1, 1989

Figure 6 MVSlESA data space versus MVS address space

4K

0
DATA SPACE DATA SPACE DATA SPACE

*SIZE OF DATA SPACE SPECIFIED BY NUMBER OF
4K BLOCKS INDICATED ON THE DSPSERV CREATE.
BLOCKS - n MACRO SERVICE

2 GIGABYTES

0

ELSQA

EXTENDED
PRIVATE
AREA

EXTENDED
COMMON
AREA

COMMON
AREA

LSQA

USER'S
PRIVATE
AREA

PSA

AN ADDRESS SPACE

space manager resides in a separate address space
and uses its own data spaces to contain the control
structure for all other data spaces in the system. This
arrangement isolates the control structures that iden-
tify and map the resource (the data space) to the
manager of the resource (data space manager). It also
avoids using any of the virtual addressing space in
the requestor's data space to map the data space.
The DSPSERV macro facility is the MVS/ESA interface
to the data space management services. The macro
interface will provide the necessary program call to

I
IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989

the appropriate data space service in the address
space of the data space manager. The macro is
available to programs written in BAL. HLL programs
may call user-written BAL programs that will create,
delete, and manage data in data spaces.

The ability to create a data space is provided by the
DSPSERV CREATE macro. When a request for a data
space is made, the service will create the data space
and return a unique token, named a STOKEN, to the
requestor. At this point, the data space has no ad-

dressability. The STOKEN must be used as input to
the access list services (ALESERV) to add the data
space to an access list in order to establish addressa-
bility to the space. Both privileged and nonprivileged
programs can create data spaces. The size of the data
space, the number of data spaces, and the total
amount of storage available for all data spaces cre-
ated on behalf of a single address space (typically, a
job or a user) is limited by the system. These values
can be established on an installation basis and can
be overridden in the SMF exit, IEFUSI, of the installa-
tion. Details are described in References 5 and 1 1.

Data can be placed into a data space by programs
executing in AR mode and using E S A ~ ~ O instructions
to move data from one space to another. Data can
also be placed into a data space by I/O operations.
Current support for 110 operations in a data space is
limited to data-in-virtual (DIV) services. ;he DIV
services are described in detail by Rubsam.

Data space sharing and isolation capabilities. A data
space may be assigned to a single task and hence be
addressable only to programs executing under that
task. A data space may be shared between a task and
any subtasks that it creates, or it may be shared
between any number of tasks and/or address spaces.
The creator of the data space must indicate on the
DSPSERV CREATE request that SCOPE=ALL is the option
if the data space is to be shared between address
spaces and unrelated tasks. This option is only avail-
able for privileged programs, and the owner of the
SCOPE=ALL data space must be a nonswappable
address space. A data space created with the
SCOPE=SINGLE option can only be added to the access
list of the creating task. However, the owning task
can share the data space with any subtasks it creates
by specifying ALCOPY=YES on the ATTACH request.
This option will provide the subtask with a copy of
the access list of the creating task at the time of the
ATTACH.

Figure 7 shows some of the combinations of data
space sharing and isolation that are available in
MVS/ESA. Data spaces (D S ~ , DS3, D S ~ , and D S ~) are
only accessible from single MVS tasks whose (DU-AL)
dispatchable unit access list contains those data
spaces. Ds1 can be accessed by both Task A and Task
A' in Address Space 1. However, other tasks in
Address Space 1 would not have access to m i . Ds9
can be accessed by Task B in Address Space 2 and
Task C in Address Space 3. D S ~ can be accessed by
all tasks in Address Space 2, and D S ~ can be accessed
by all tasks in Address Space 3 because these data

136 CLARK

A DU-AL

DS2

L
D 821

ACCESS CAPABILITIES (A=ACCESSIBLE)

DS1* OS2 OS3

TASK A A A

TASK A' A A

TASK B

TASK C

TASK C'

*DS1 IS SHARED VIA ATTACH W/ALCOPY

- DU-AL
' TASK B

DSQ -
DS7 I

DS7

I

f'
"

1

DS4 r

PASN-AL

1 r

-r

DS5 -

PASN-AL

- C DU-AL
TASK C

DS5 - DS8

DSQ I

" C' DU-AL
TASK C'

LlUUU
DSQ

LI SCOPE- I4

I ALL

137

ACCESS CAPABILITIES (A=ACCESSIBLE)

DS4 DSS 0 5 6 DS7 DSB DSQ

DU-AL

0

1

2

3 DSZ
4 DS'l

\
L

\

i
ROGRAM B

LAM 2, DSPALET LOAD AR2 WITH DS2's ALET

L 5, o m LOAD R5 FROM @ X IN DS2
SLR 3,3 ZERO R 3
SAR 4,3 SET AR4 TO ZERO
LA 4 .8Y LOA0 BY INTO R 4

ST 5. OL41 STORE R5 VALUE INTO Y

DS2 ALET 3 4

-

1

DS1 DS2 DS3 AS1 AS2 AS n

IBM SYSTEMS JOURNAL VOC 8 , NO 1, 1989

1

t

I

J

1 .
PROCiRAM 8

ARS

GPRs

ARs

GPRs

PSW

AR IC
MODE

INSTRUCTION FORMAT

OP R, X, B, D,
CODE

LOAD INSTRUCTION L 5, 01.2)

58 6 0 2 000

-
2 3 4 5 . T l) v A r

AFTER

INSTRUCTION

2 3 4 5

LA
INSTRUCTION

spaces have been added to the PASN-AL (the primary
address space access list). DS5 can be accessed by all
tasks in both Address Spaces 2 and 3 as the data
space has been added to the PASN-ALS of both address
spaces.

Access list

The access list is the construct through which the
ESA/370 hardware and MVS/ESA determine which
spaces a program is authorized to access. In addition,
the hardware uses the access list in its access-register
translation process to select a segment table descrip-
tor (STD) for resolving the virtual address through its
dynamic address translation mechanism. The ESA
authorization and address translation mechanisms
are utilized when a program executing in AR mode
must reference a virtual address in spaces other than
the primary space where instructions are being exe-
cuted. A program can add an entry to the access list
for an address space or data space if the program is
authorized to that space.

The ALESERV macro facility is the MVS/ESA interface
to add spaces to the access lists. The STOKEN of the
address space or data space the user wishes to add to
the access list must be specified as input to ALESERV.
The STOKEN is a unique identifier of an address space
or a data space. The ALESERV service returns an
access list entry token (ALET) that can be loaded into
an access register by the program. In ~s~/370, each
general-purpose register has a corresponding access
register. When executing in AR mode, the Sys-
tem/370 hardware will decode the instruction. If the
instruction designates a base register, the correspond-
ing access register will be used to determine the STD
of the space (address or data space) in order to resolve
the virtual address (the base register value plus the
displacement and index register value if appropriate).
The program thus has the capability in AR mode to
access the space with any instruction by loading an
access register with the desired ALET and using the
corresponding general-purpose register (GPR) as a
base register.

Figure 8 shows how a program (Program B) execut-
ing in AR mode loads the value of a word (X) from
Data Space 2 into GPR 5 and then stores the value
at the address of word (Y) in the address space of
Program B. Access Register 2 is loaded with an ALET
that represents Data Space 2 . Assume the data space
was created, added to the DU-AL via the ALESERV,
and was assigned the ALET 3 via ALESERV services.
GPR 2 is used as a base register for the load instruc-

3d

E 1-sv z

w-na
v nsvl L

Figure 9 shows how the address space qualification
of ALET 0 and 1 change across space-switching pro-
gram calls and how ALET 2 remains qualified to the
home address space.

The linkage stack facility

Although the dual address space facility and the
cross-memory mode support are very restrictive, a
significant number of products and components
were using the facilities to provide their services in a
separate address space. These services were callable
by the space-switching program call/program trans-
fer (PC/PT) instructions. The services utilized the
separate address space to increase the amount of
virtual storage available to them, provide for the
isolation and protection of their data, and have their
functions only accessible through well-defined inter-
faces (the space-switching PCS for the requested func-
tion). The PC of the DAS facility required the called
function to save a great deal of control information
about the caller (e.g., caller’s addressing mode, au-
thorization state, program key mask [PKM], and re-
turn address). This control information was required
for the PT instruction to return to the caller and was
in addition to the general-purpose registers that the
service had to save and restore. MVS offered services
to assist these functions in status saving and restor-
ing, storage management, and functional recovery,
but those services were limited to key 0, supervisor
state routines. E S A / ~ and MVSIESA provide many
improvements for these cross-memory mode servers
and other programs as well.

In addition to the full ~ ~ ~ 1 3 7 0 instruction set for
managing data across multiple spaces, MvS/ESA has a
linkage stack facility to assist in managing program
calls. The linkage stack facility provides an auto-
matic status saving and restoring facility for both
privileged and nonprivileged programs across pro-
gram call and program return linkages and the new
branch linkages. This facility relieves the called pro-
grams from managing return status. In addition, it
provides for more ready usage of registers since the
contents of the registers have been saved on a stack.
Saving is automatic on execution of the new calling
instructions. MVSIESA also provides the ability to
establish and remove a recovery environment that is
associated with the call and return of a program.
Because it is associated with the MvS/ESA PC/PR, this
recovery is available at no additional cost to the path
length of the mainline program.

CLARK 141

6861 ‘1 ON ‘82 1 0 A 1VNtIllOT SN3SAS WBI

The return mechanism for both of the stacking calls
is the PR instruction. This instruction results in re-
storing GPRS 2- 14 and ARS 2- 14 from the values saved
in the current stack entry. The 0, 1, and 15 GPRS and
corresponding ARS are not restored and are un-
changed from the values in those registers at the time
of the PR, thus permitting the called routine to pass
back return information to the calling routine. As a
result of the PR, the PSW that was saved on the BAKR
or PC instruction in the current stack entry is loaded,
thus restoring the return address and the caller’s
addressing mode and PSW KEY. If the call was a PC,
the PR will also result in the PASN, SASN, PKM, and
EAX being restored from the stack entry.

Additional stacking operations. In addition to the
linkage instructions that utilize the stack, extract
instructions allow a program to obtain the data that
were stored in the current stack entry. The Extract
Stacked Registers instruction, EREG ~ 1 ~ ~ 2 , permits a
range of access and general-purpose registers to be
specified and will load those registers with the cor-
responding register values saved in the current stack
entry. The Extract Stacked State instruction, ESTA
RI,RZ, will extract one of four eight-byte state entry
fields in the current linkage stack entry and place the
information in the pair of general registers designated
by RI. The selection of the eight-byte entry field is
based on the value in ~ 2 . Figure 11 illustrates the
values a program can obtain from the state entry
information.

The modified area in the stack is a double word in
each stack entry that is available to the program to
make modifications through a Modify Stack State
instruction, MSTA RI . The R I field specifies the even-
number register of an even-odd pair of general-
purpose registers whose values will be stored in the
modified area of the current stack entry. A typical
use of this field would be to allow a program to
coordinate its mainline function with its recovery
process. For instance, the mainline function might
request storage using the GETMAIN service and place
the address of the storage in the stack. The mainline
function could record information in the storage area
to aid in its recovery. When the recovery retry rou-
tine received control, it could extract the data (the
address of the storage) from the stack by the ESTA
instruction.

These instructions permit programs utilizing the
stack to have access to data in the stack without
needing direct addressability to the stack. MVS/ESA
furthers this isolation of the stack by locating the

BM SYSTEMS XWRNAL VOL 28, No 1. 1989

Figure 11 MVSlXA linkage stack extract stacked state

stack in one of two new storage subpools. For tasks,
the linkage stack segmen$ are obtained from disable
reference storage (DREF) subpool 215 in extended
private storage ELSQA, the extended local system
queue area. For service request blocks (SRBS), the
linkage stack segments are obtained from DREF sub-
pool 247 in extended common storage, ESQA. Both
of these subpools have the attributes of key 0, fetch-
protected storage. The storage backing these sub-
pools may be paged to expanded storage if it exists.
However, the data may never be paged to auxiliary
storage. This attribute allows the system to page the
storage, backing the linkage stacks to expanded stor-
age, and yet allows disabled callers to utilize the
stack. This is permitted since page faults to expanded
storage can be resolved synchronously without re-
quiring the suspension of the faulting program.

Linkage stack and MVS control structures. The
normal linkage stack for each work unit has the
capacity to hold 96 entries which would allow up to
96 calls to be held without an intervening return. If
a program determines that the nesting level of calls
would exceed this value, the maximum number of
entries can be extended to 16 000. The LSEXPAND

NoRMAL=nnn macro invokes this service. However,
this must be done prior to reaching the current
maximum limits. If the current maximum limit is
reached, a recovery stack with the capacity to hold
24 entries is provided such that the recovery routines

MVS/ESA coordinates the linkage
stack with the previous execution

work unit structures that exist
in MVS.

can use the stack while cleaning up from a stack-full
exception condition. The recovery stack can also be
extended up to 4000 entries if the expansion is done
while executing under the normal stack.

MVS/ESA utilizes the ~ S ~ / 3 7 0 linkage stack architecture
for these large stack capabilities. The entire stack
does not have to be initialized, as the stack manager
will process stack segments of 4096 bytes. After the
first segment has been initialized, subsequent stack
segments will only be used and connected to the
previous stack segment if required by the depth of
the calling sequences that use stacking calls.

MVS/ESA coordinates the linkage stack with the pre-
vious execution work unit structures that exist in
MVS. For many years, programs have been repre-
sented by request blocks (RBS) that have been chained
to the task, TCB, under which they were invoked.
This representation has often been referred to as the
TCBIRB queue or stack. These RBS could have been
created by a program making a synchronous request,
a supervisor call, or svc, instruction which would
result in a supervisor request block (SVRB) being
placed on the queue for the svc routine. A synchron-
ous request for a program made by a LINK request
would have placed a program request block (PRB) on
the queue for the called program. Asynchronous
events such as a timer event would have placed an
Interrupt Request Block (IRB) on the RB queue of
the execution unit. These structures are still a basic
part of the MVS task structure. When the linkage
stack was designed, there had to be a corresponding
relationship of programs called by stacking facilities

and programs called by the previous calling conven-
tions. MVSIESA keeps track of which linkage stack
entries are formed under which RB. Programs exe-
cuting under one RB are not permitted to delete stack
entries created under previous RBS. If a program
represented by an RB exits without having deleted all
the stack entries created in its behalf, MVS/ESA will
purge the linkage stack back to the entry that makes
it consistent with the next RB on the MVS TCBIRB
queue.

Recovery and the linkage stack. In addition to main-
taining the correspondence between RBS and the
linkage stack, MVS/ESA correlates recovery routines
and the appropriate entry on the linkage stack. If
specify task abnormal exit (ESTAE) recovery routines
are required, the ESTAE must be created and deleted
under the same linkage stack entry, just as previously
ESTAES had to be created and deleted under the same
RB. If an ESTAE is created by a stacking program (e.g.,
a program invoked by a stacking PC) and that pro-
gram attempts to return to its caller via an unstacking
operation (the PR), an exception will be recognized
by MVS/ESA. The system will delete the ESTAE associ-
ated with that stack entry and then permit the return
to complete such that the stack and the recovery are
kept in synchronization.

ESTAE routines will receive control without any as-
surance of the position of the linkage stack. However,
the system will keep track of the current stack entry
and the stack entry that existed at the time the ESTAE
was created. If the ESTAE routine elects to retry, the
retry routine will be given control with the current
linkage stack entry being the same entry that existed
whenever the ESTAE was created. Function recovery
routines (FRRS) have the option to retry with the
linkage stack entry that was current at the time of
the error or with the entry that was current at the
time of the SETFRR invocation.

MVS has many services available for establishing re-
covery routines. Not all of these services and not all
recovery mechanisms are available in AR mode. The
SETFRR, ESTAEX (the specify task abnormal exit facil-
ity for AR mode programs), and the associated recov-
ery routines are available for access register mode
programs.

Additional services for cross-memory mode pro-
grams. As previously discussed, the services available
to cross-memory mode programs initially provided
support only for key 0 programs. In MVS/ESA S P ~ , the
ESTAEX service provided conditions where nonprivi-

IBM SYSTEMS JOURNAL VOL 28, NO 1. 1989

leged programs executing in a cross-memory envi-
ronment could establish ESTAE recovery routines.
The LINKAGE=SYSTEM options were added to wait
and post services, providing a wait and post function
that could be invoked in cross-memory mode and
by nonprivileged callers. A new storage service was
provided to allow privileged and nonpriv-
ileged callers to acquire virtual storage in either cross-
memory or access register mode and in either prob-
lem or privileged state. A new recovery termination
service, RESMGR, is provided for privileged programs
to establish a dynamic resource manager exit that

address spaces. The service will allow the user to
specify an exit to receive control if a task terminates,
be it a particular one or not. Like the task termina-
tion exit, an address space termination exit can be
specified for a specific address space or all address
spaces. The service will also allow the deletion of the
resource manager from a list of exits that are called
by the resource termination recovery manager of the
system.

Additional enhancements to the stacking program
call. A new macro interface has been provided to
assist the programmer in defining the options avail-
able on a program call. This new macro, ETDEF,”
assists in defining the entry table entry fields for the
program call. Several new options are available on
the program call to assist in establishing the desired
program environment. One option previously men-
tioned is the ability to specify an associated recovery
routine exit (an address of an exit or a name of an
exit that resides in the link pack area). By specifying

b
an associated recovery exit, the mainline function of
the PC routine does not have to establish or delete a
recovery routine in its mainline processing. When-
ever the stacking PC places the PC number in the
stack, the system has enough information to locate
the recovery exit if there is a failure in the PC routine.
The recovery routine is automatically deleted when
the routine returns via program return.

Several new options are available to the stacking PC
that will simplify the programming for a PC called
routine. Three options that all PC routines may want
to consider are

1. The address space control (ASC) mode that the PC
routine will be given control of may be specified
as primary or AR mode. The PC will set the new
ASC mode. The old mode is saved in the stack
entry.

2. The PC routine can be entered with the SASN set
to the PASN of the PC routine or the caller’s PASN.

I will be given control on termination of tasks or

1

IBM SYSTEMS JOURNAL VOL 28. NO 1, 1989

Selecting the PASN of the PC routine eliminates
the requirement that the called space must be
authorized for the caller’s space.

3. The execution authorization index, EAX, may be
specified to a designated value. The address space
issuing the ETCRE macro must own the authori-
zation index (AX) value.

The Virtual Lookaside Facility

The Virtual Lookaside Facility (VLF) is new in MVS/
ESA and utilizes ARS, data spaces, and linkage stack
facilities, and other MVS/ESA services. VLF exists in
its own address space. The VLF services are invoked
by the P c / m program linkages. When invoked, ARS
and data spaces provide VLF with addressing capa-
bilities that far exceed the 2 gigabytes of virtual
addressing in its own address space. These new capa-
bilities allow VLF to provide its users significant im-
provements in response time and throughput by
eliminating I/o activity.

VLF provides a set of services that will manage named
temporary objects in the storage of VLF. These serv-
ices create and delete named objects that can be
retrieved by one or more users (here meaning a
program or component that is utilizing some facility)
with minimum cost. The services to define users and
object classes and to create and delete objects are
limited to privileged callers. Once identified as a user
for a class of objects, the user, whether privileged or
nonprivileged, may retrieve objects from that class.
The user must recognize that the objects managed
by VLF on its behalf are temporary in nature, because
VLF is a cache-like facility. In managing its storage,
VLF may decide to delete an object from its storage
on the basis of demand for that object versus other
objects VLF is managing. If VLF does not exist or if
VLF indicates the object no longer exists as an object
it is managing, the user must be prepared to obtain
the object in the manner the user would have origi-
nally acquired the object. However, users that re-
quire repeated access to objects that reside on storage
volumes can eliminate I/O delays and contention by
allowing VLF to manage these objects.

As an example, the Library Lookaside Facility (LLA)
uses VLF to cache frequently invoked programs. If
VLF is managing the desired program as a named
object in its storage, LLA will have access to a copy
of the program. The result can be the elimination of
I/O activity to find the location of the program on a
direct-access storage device (DASD) and to fetch the
program into main storage.

CLARK 145

In another example, TSO/E uses VLF to cache fre-
quently invoked command lists (CLISTS). Since an
invocation of a TSO CLIST involves a preprocessing
phase, the output of this phase is given to VLF as a
named object to manage. On subsequent requests
for the same CLIST, TSO/E invokes VLF to retrieve the
named object. If retrieved, TSO/E can generally avoid
the 110 operation to read in the CLIST fyd the result-
ing contention on the SYSPROC dataset and volume.
In addition, TSO/E can avoid the overhead of the
preprocessing phase of the CLIST process.

In both of these examples, the system and its end
users benefit from VLF. The end user and the prod-
ucts that service the user derived these benefits with-
out having to understand or produce code for the
unique facilities of =A. However, VLF uses most of
the features previously discussed to provide these
benefits.

VLF use of ESA. VLF is initialized in its own address
space as the result of a START VLF,SUB=MSTR com-
mand by an operator or automatically by an IPL. If
the installation desires to provide control informa-
tion to VLF, a new parmlib member (a partitioned
dataset member of a system parameter library) can
be specified instead of the default parmlib member,
COFVLFOO, by adding a keyword, NN=XX, to identify
the new COFVLFXX parmlib member. Through the
parmlib control information, the installation can
specify the classes of objects eligible for VLF manage-
ment and the amount of virtual storage to be allo-
cated for each class.

For each specified object class that is actually acti-
vated, VLF will create two data spaces per class to be
managed. One data space will contain control infor-
mation about the class, and one data space will
contain the named objects associated with that class.
Because VLF exists in its own address space, VLF
creates the necessary program call entry table entries
for the VLF services. VLF connects the entry table to
a system level linkage table entry it has reserved,
thus providing its services to every address space in
the system.

The services are invoked through VLF-supplied ma-
cros that result in the appropriate program call being
issued. VLF defined the program calls to be the ESA
stacking program calls, thereby using the PCIPR in-
structions to save and restore the caller’s status (GPRS,
ARS, PSW, XM status, where XM is cross memory,
generically used to refer to programs executing in a
cross-memory environment) on the linkage stack. In

146 CLARK

addition, using the associated recovery option on the
stacking program call, VLF has its recovery environ-
ment automatically established on the call and de-
leted on the Program Return at no extra performance
cost.

The data spaces that are created for each class are
added by VLF to its PASN-AL. Thus, as soon as the
VLF program calls are issued, VLF receives control in
its address space with the capability to access these

Names of objects managed by VLF
can be viewed as having

a threelevel name.

data spaces. When VLF completes its processing and
returns to its caller via program return, the capabil-
ities to access the data spaces are revoked automati-
cally on the program return, thus providing VLF with
complete encapsulation of its programs and data.

For each object class, VLF maintains the named
objects in one data space and the control structures
in another data space. This separation makes dump-
ing of error data easy and allows VLF to disconnect
the data and control structures on a class basis.
Because data spaces are unique instances in the life
of the system, VLF does not have to worry about
latent binds or problems of address reuse. Any ref-
erence to the old data space will result in an error,
which VLF has recovery routines in place to handle.
This is then turned into a return code that the user
can process as part of the calling sequence.

VLF uses access registers both to address the data
residing in data spaces and to address the caller’s
information and data areas residing in the caller’s
space($, thereby affording VLF the full ~SA/370 in-
struction set to manage the data it needs to reference,
regardless of location.

Figure 12 shows the VLF structure that utilizes
MVS/ESA to meet its requirements of managing large
amounts of virtual storage. This storage and the

IBM SYSTEMS JOURNAL VOL 28. NO 1, 1989

~~

Figure 12 Use of MVSlESA address space and data spaces by VLF

I vLF

COFXXX
PC *

CLASS CONTROL OBJECT
BLOCK
DATA SPACE

DATA SPACE

TARGET AREA
USERS BUFFER

I I L TI
OBJECT

ADDRESS SPACE ADDRESS SPACE PER ACTIVATED OBJECT CLASS

objects it contains are completely isolated from the
VLF users and other products in the system. Still, VLF
provides a high-performance retrieval mechanism to
its users for the objects it is managing.

VLF facilities and services

VLF object naming. Names of objects managed by
VLF can be viewed as having a three-level name:
CLASS.MAJOR.MINOR. VLF allows similar objects (e.g.,
CLISTS) to be grouped and managed by a class. Within
a class, an object is distinguished by its major and
minor name. For each major name, objects must
have unique minor names. This requirement mimics
the structure of a partitioned dataset (PDS), where for
each dataset name the member name must be
unique. As with PDS member names, duplicate mi-
nor names may exist in other major names. There-
fore, before retrieving objects, each user must indi-
cate the search order of major names. This search

order is defined by the user, when the user is first
identified to VLF. If VLF is to manage objects that
correspond to members of a partitioned dataset, the
search order is implied by identifying the DDNAME
of the concatenated dataset list, which is the source
of the data for the VLF object for this class.

The following subsections describe briefly some of
the concepts and features of the invention, Virtual
Lookaside Facility,” on which VLF is based.

VLF object storing and retrieving. Prior to retrieving
or storing objects in VLF, a user and the user’s order
of searching the major names must be identified to
VLF.

An object can be retrieved only after it has been
saved. At the time an object is saved, the user pro-
vides the major name (indirectly) and the minor
name identifying the object being saved. Once saved,

BM SYSTEMS XXlRNAL VOL 28, NO 1, 1989

Table 3 Initial services provided by VLF

Function

DEFINE CLASS
PURGE CLASS
IDENTIFY USER
REMOVE USER
CREATE OBJECT
RETRIEVE OBJECT
NOTIFY

COFDEFIN
COFPURGE
COFIDENT
COFREMOV
COFCREAT
COFRETRI
COFNOTIF

the object is available to all users with a search
sequence that results in the saved object being lo-
cated before any other object with the same name.

The minor name is manipulated by a hash routine.I6
If a duplicate for the major is found, the duplicate
object is not saved, since the existing object is known
to be the same. The invention disclosure describes
the technique that VLF used for preserving dynami-
cally obtained information about an object and its
major and minor name relationship. The technique
provided the following benefits to VLF:

First, a complete list of all minor names in every
major name was unnecessary, and thus, it was not
necessary to read and maintain copies of partitioned
dataset directories. This kept VLF out of the data
management business and allowed it to keep infor-
mation only for minors actually in the lookaside
facility.

Second, this arrangement enables a very fast deter-
mination of the correct object for a particular search
sequence.

The VLF services. VLF provides interfaces to its
services through the macros listed in Table 3. Each
function is discussed below.

Dejine class. This function activates a new class of
objects if none were previously activated. The class
had to be previously defined in the initialization
parmlib member. Through the define class service,
the maximum major and minor name length can be
specified. An option exists to indicate whether VLF
should “trim” or remove objects from the class if
needed for space reclamation. If requested, this will
be done on the LRU algorithms of VLF. Otherwise
VLF will only remove objects when explicitly re-
quested. This service is only available to privileged
programs.

148 CLARK

Purge class. This service immediately deletes all
objects associated with the specified class. The service
is only available to privileged programs.

Identify user. For the specified class, the service
identifies an end user to VLF and the major name
search order for that user. The identify user function
returns a UTOKEN to be used on subsequent requests.
Through identify user, the scope of the UTOKEN can
be specified as HOME or SYSTEM, thus restricting all
subsequent requests to be invoked only when the
user’s space is the HOME space. SYSTEM will allow
retrieves to come from a user when the home address
space is different than the address space that issued
the identify user. This allows the server address space
to utilize VLF on behalf of many users, requiring only
the server address space to identify the user to VLF.
This service is only available to privileged users.

Remove user. This service removes an end-user ac-
cess to VLF services for the class of objects associated
with the UTOKEN. Remove user is only available to
privileged users.

Create object. The create object service must be
invoked while executing under a task in the same
home address space as the issuer of an identify user.
Create object must specify the major and minor
name of the object. For those classes of objects with
the major-name-to-PDs-name correspondence, the
concatenation index of the major name must be
specified. For concatenated partitioned datasets, the
CINDEX value is the same as the “K” concatenation
index value returned when a build list (BLDL) is
performed to locate a member. For each object, a
parts list must be specified that can identify up to
255 separate parts of the object that VLF will combine
into a single continuous object. Prior to issuing a
create object, a retrieve object for the same minor
name must be attempted on behalf of the user. Only
if the retrieve object service returns a “no object
found,” “best available object found,” or “best object
found, but target area is too small for retrieve”
message will the create object function be performed
and then only if the concatenation index values do
not match. This service is only available to privileged
users.

Retrieve object. The retrieve object service must spec-
ify the UTOKEN of the requestor and the minor name.
If the object exists, the object and its size will be
returned to the user’s specified area if the area is of
sufficient size. The CINDEX of the major name where

IBM SYSTEMS JOURNAL VOL 28. NO 1, 1989

the object was located will be returned. If the object
will not fit in the user’s receive area, the size of the
object will be returned. Only if the object is returned
with a return code of zero can the user be guaranteed
that the object represents the highest occurrence of
the object in the concatenation list. For the other
return codes (2,4,6, and S), the conventional mech-
anism must be invoked to find the highest level of
the object. Then creation of that object with the
CINDEX value will allow VLF to update its existence
table information for those major names where in-
formation was not previously known.

Notify. The notify service allows the user to notify
VLF when a change in the external source of objects
would invalidate the caching and existence knowl-
edge that VLF has about that object. Notify is the
facility that DFP services (STOW, SCRATCH, CLOSE,
RENAME) or data facility dataset services (DFDSS)
COPY uses to inform VLF of changes to partitioned
datasets. VLF also informs ALLOCATION of what
DDNAMES it is interested in, and ALLOCATION informs
VLF Of any change to those DDNAMEs.

Concluding remarks

MVS/ESA developed from many requirements that
were generated as MVS evolved to meet the increasing
demands for data processing capacity. Not only were
the requirements stemming from the current MVS
products and system considered, but a set of primi-
tives were included in MVS/ESA to allow for uncon-
strained growth well into the future. The design of
MVSIESA encompassed these considerations without
sacrificing users’ investments in existing programs.

MVS/ESA provides facilities that enable applications
to utilize the full capabilities and capacity of IBM’S

largest systems. These facilities extended the address-
ing capabilities and capacity far beyond those of the
previous architecture. The facilities in the previous
dual address space facility and the Extended Archi-
tecture were incorporated, extended, and enhanced
to allow the full use of expanded storage, main
storage, and the complete ~ S A / 3 7 0 instruction set to
manage data in multiple address and data spaces.

Basic MVSIESA services were enhanced to utilize
unique features so as to benefit many applications.
Other MVS/ESA services were offered that provided
benefits to applications and required minimum
changes.

Some products (e.g., TSOIE, IMS) benefit from
throughput and response time improvements pro-

IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989

vided by the LLA facility without any design or code
changes. Products that use VSAM (e.g., IMS) may
obtain performance improvements and realize vir-
tual storage constraint relief through VSAM’S use of
hiperspaces. Other products may require minor
changes to them to realize the performance advan-
tages of the VLF of MVS/ESA. Still other products may
have to be redesigned or recoded in order to take
advantage of the large-system capabilities offered by
the MVSIESA facilities.

MVSIESA provides a range of capabilities to meet a
range of application requirements. It is anticipated
that MVS/ESA will continue to expand these services
at each level, enabling a wide range of users’ appli-
cations to fully utilize the capacity and capabilities
that were introduced with MVSIESA, the ~SA/370 ar-
chitecture, and IBM’S E S A ~ ~ O processors.

Acknowledgments

In addition to the authors of other papers in this
issue of the IBM Systems Journal, I would like to
recognize the efforts of several people who have
contributed so much to the MVS/ESA product from
the design phase until it was shipped. Their contri-
butions were not only to the design and development
of the product, but also to the level of documentation
that has been prepared for use of MvS/ESA by appli-
cations. I particularly cite Mike Mall, Rich Howarth,
Jeff Frey, Rick Reinheimer, Kathy Eilert, Bob Sea-
borg, and Peter Cochrane among those who have
contributed to the design and development of
MVSIESA as well as to the documentation described
in the cited references. Duna Williamson from MVS
information development worked unrelentingly on
describing these very technical concepts and services
in many of the excellent detailed descriptions found
in the cited IBM publications. There are, of course,
many more people and areas of MVS design, devel-
opment, performance, test, and management that I
have not mentioned, but whose contributions were
invaluable to the success of the MVS/ESA product.

Enterprise Systems Architecture/370, ESA/370, MVS/ESA,
MVS/SP, and MVS/DFP are trademarks of International Business
Machines Corporation.

Cited references and notes

1. In the strictest architectural sense, PASN is the primary ad-
dress-space number. It also sometimes refers to the primary
address space. See IBM System/370 Principles of Operation,
GA22-7000, IBM Corporation; available through IBM branch
offices.

CLARK 149

2. In the strictest architectural sense, SASN is the secondary
address-space number. It is sometimes used in referring to the
secondary address space. See IBM SystemJ370 Principles of
Operation, GA22-7000, IBM Corporation; available through
IBM branch offices.

3. MVSIESA System Programming Library: Application Devel-
opment-Extended Addressability, GC28-1854, IBM Corpo-
ration; available through IBM branch offices.

4. MVSIESA System Programming Library: Initialization and
Tuning, GC28-1828, IBM Corporation; available through
IBM branch offices.

5 . MVSIESA System Programming Library: User Exits, GC28-
1836, IBM Corporation; available through IBM branch offices.

6. MVSJESA System Programming Library: Application Devel-
opment Guide, GC28- 1852, IBM Corporation; available
through IBM branch offices.

7. W. Buchholz, “The IBM SystemJ370 vector architecture,”
IBM Systems Journal 25, No. 1, 51-62 (1986).

8. C. A. Scalzi, A. G. Ganek, and R. J. Schmalz, “Enterprise
Systems Architecture/370 An architecture for multiple virtual
space access and authorization,” IBM Systems Journal 28,
No. 1 , 15-38 (1989, this issue).

9. K. E. Plambeck, “Concepts of Enterprise Systems Architec-
turel370,” IBMSystems Journal 28, No. 1, 39-61 (1989, this
issue).

10. K. G. Rubsam, “MVS data services,” IBM Systems Journal
28, No. 1, 151-164 (1989, this issue).

11. MVSJESA System Programming Library: System ModiJica-
tions, GC28-1831, IBM Corporation; available through IBM
branch offices.

12. LXRES is defined as reserve a linkage index, an MVS service
that operates through a macro facility to reserve a linkage
index (an index to the linkage table). ETDEF is the entry table
definition, an MVS service that defines the contents of entries
in an entry table. It is used for program call linkages. ETCRE
is entry table create, an MVS service for creating an entry
table. ETCON is entry table connect, an MVS service for
connecting an entry table to a linkage table entry.

13. Disable reference storage is a new MVS storage attribute in
which storage can be referenced by disabled routines. The
storage is not fixed; it is pageable. But if it is paged, it will be
resolved by synchronous page faults. It cannot be used as
storage for inputJoutput.

14. SYSPROC is the set of partitioned datasets whose members
represent procedures that can be executed, e g , CLISTs.

15. D. D. Brown, W. J. Morschhauser, R. F. Reinheimer, and M.
D. Swanson, Virtual Lookaside Facility, U.S. Patent Appli-
cation, PO9-88-006, IBM Corporation.

16. A hash routine is a programming technique to reduce a key
or string of characters to a unique smaller representation of
the same.

Carl E. Clark IBM Data Systems Division, P.O. Box 390, Pough-
keepsie, New York 12602. Mr. Clark is a senior technical staff
member at the Myers Corners Laboratory. He joined the IBM
Data Processing Division in 1967 after receiving a B.B.A. in
accounting from George Washington University. During his IBM
career, Mr. Clark has been involved in the development and design
of the MVS control program. In 1979 and 1988 he received
Outstanding Innovation Awards for MVS supervisor performance
enhancements and for the Enterprise Systems Architecture1370
respectively, and in 1987 he received his Second Level Invention
Achievement Award. He currently is working in MVS system
architecture.

150 CLARK

Reprint Order No. G321-5351.

IEM SYSTEMS JOURNAL VOL 28, NO 1. 1989

