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The ROMP processor is the microprocessor used in  the 
ISM RT PC. It is a 32-bit processor with an associated 
memory  management unit implemented on  two chips. 
ROMP is derived from the pioneering RlSC project, the 
801 Minicomputer at IBM Research.  This  paper  de- 
scribes some  of the trade-offs which were made to turn 
the research project into a product. It gives an intro- 
duction to the architecture of  ROMP, including the ad- 
dressing model supported by  ROMP'S memory man  
agement unit. Some  of the unique features of the pro- 
gramming model are explained, with high-level lan- 
guage coding examples which show  how  they can be 
exploited. ROMP'S architecture is extensible, and the 
fact that almost all programming for the RT  PC has 
been in high-level languages  means that the RT  PC 
hardware architecture can be  extended  as  needed to 
meet future requirements while preserving the invest- 
ment in existing software. 

ROMP'S 80 1 heritage shows  clearly in its architecture, 
and in fact the same highly optimizing compiler 
( P L . ~ ) ~ - ~  is  used for both. However, ROMP had a 
different  set of design  goals than  the 801. While the 
801 was an experiment in RISC architecture whose 
main goal was to demonstrate that a machine could 
be built which sustained a rate of one instruction per 
cycle, ROMP was to be part of a product and  thus had 
constraints (primarily cost) that did not apply to  the 
80 1. These constraints strongly affected ROMP'S de- 
sign. 

In this paper we first  give some details of the imple- 
mentation of the ROMP processor and its Memory 
Management Unit (MMU). The parallels  between the 
801 and ROMP are shown, and  the differences  be- 
tween them are explained. ROMP'S programming 
model  is described and some examples are given  of 
the use  of its features. 

A t the center of the IBM RT PC'" are  the IBM- 
designed Reduced Instruction Set Computer 

(RISC) processor and its memory management unit. 
The processor  is  called ROMP, an acronym for Re- 
search/oPD Micro Processor. The name tells some- 
thing of the origin of the processor. 

The 801 Minicomputer project at  the IBM Thomas 
J. Watson Research Center in Yorktown Heights, 
New York, had defined an architecture for and built 
a prototype of a simple but very high-performance 
computer.'.2 At about  the same time (the late 1970s) 
the IBM Office Products Division (OPD) in Austin, 
Texas, was searching for a new microprocessor to be 
used in advanced office equipment.  The ROMP proj- 
ect  began as a joint effort  between OPD and the 
Research Division, with the goal of adapting the 
architectural concepts of the 801 to  an actual prod- 
uct. 

Design goals 

The RT PC ROMP processor was designed to 

Provide an architected address and  data width  of 

Provide an efficient target for an optimizing com- 

Support virtual memory 

32 bits 

piler 
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Provide system integrity through separate user and 

Provide improved error detection and reporting 
supervisor states 

facilities 

The first requirement dictated an architecture pro- 
viding both 32-bit address and data quantities. As a 
result, it was decided that all  registers and  computa- 
tions would support 32-bit quantities. However, the 
architecture provides for specific support of 8-bit and 
16-bit quantities as well; individual 8-bit bytes and 
16-bit halfwords can be loaded and stored and  can 
be manipulated within the 32-bit  registers. 

The ROMP processor architecture was defined  with 
the assumption that most software would be devel- 
oped in a high-level  language. A joint study between 
OPD and  the IBM Research  Division was conducted 
to evaluate the PL.8 optimizing compiler and  the 
architectural requirements to take advantage of the 
compiler optimization techniques. The study indi- 
cated the need for a large number (1 6 or 32) of 32- 
bit general-purpose registers, and  an instruction set 
closely matched to the compiler intermediate lan- 
guage. 

During the architecture definition, it became clear 
that systems  using  processors of this class must pro- 
vide virtual memory. ROMP saves  sufficient machine 
state when a page fault occurs to identify the faulting 
instruction and address and  to re-execute the load 
or store operation once the fault has been resolved. 
This virtual memory support is common  on main- 
frames and some minicomputers, but had not ap- 
peared in a microprocessor prior to  the design of the 
ROMP. 

The need to provide protection of user programs and 
isolation of control program functions resulted in 
the definition of separate user and supervisor states. 
Only instructions which cannot be used to affect 
system integrity are valid  in  user state. Instructions 
associated  with control program functions are valid 
in supervisor state only. 

Certain requirements and facilities are provided for 
error detection and reporting, including parity 
checking on all external buses, bus time-out detec- 
tion,  and nonmaskable hardware error detection in- 
terrupts. 

Cost  constraints 

The prototype 801  had  been built from low-density 
but very high-speed circuitry. A VLSI version of the 
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801 in  the technology available at the outset would 
have required many chips, would  have dissipated 
power in excess  of requirements, and would  have 
exceeded the cost targets for a small system to be 
used in an office. ROMP’S design was driven by the 
need to minimize the  number of parts (VLSI chips). 

Two chips. Existing technology did  not allow func- 
tions as complex as the ROMP and its MMU to be 

ROMP’S 2-byte instructions  reduce 
the  bandwidth  required  for 

instruction  fetching. 

combined into a single chip, so one chip was  used 
for the processor and  one for the MMU. The split is 
about even; the two chips are of comparable com- 
plexity (the MMU is somewhat larger than  the ROMP). 

High performance  with inexpensive memory. The 
801 had exceptionally high performance: 15.1 MIPS 
at a cycle time of 63 nanoseconds. However, much 
of its performance depended on its two  caches,  which 
could deliver an instruction word and a data word 
on each CPU cycle. Since such caches were prohibi- 
tively  costly for small systems, pipelining techniques 
normally found in  larger machines were adapted to 
the ROMP so that useful  work  may be done  during 
the (comparatively) long time needed for memory 
operations. The techniques include asynchronous 
prefetching and partial decoding of instructions, a 
packet-switched channel between the ROMP and  the 
MMU, execution of instructions beyond a ‘‘load’’ until 
the loaded data are actually needed, and delayed 
branches which overlap the execution of another 
instruction with the fetching of the branch target. In 
addition, the fact that many of ROMP‘S instructions 
are only 2 bytes  long reduces the bandwidth required 
for instruction fetching; this bandwidth reduction is 
necessary  because without the 801’s two independent 
caches, the MMU can only supply one word  per  cycle 
to ROMP. 

RAM size. All of the 80 1’s instructions were 4 bytes 
long. This simplified instruction fetching and decod- 
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ing and allowed enough room to name three registers 
with  5-bit numbers in most instructions. Code den- 
sity was considered more important for ROMP, which 

The 2-byte instructions  predominate 
in  instruction  mixes. 

was to have a much smaller main memory than  the 
high-performance 801. ROMP has both 2-byte and 4- 
byte instructions, with the 2-byte instructions pre- 
dominating  in both the static and dynamic instruc- 
tion mixes. 

Adapting the 801 

ROMP’S similarities and differences. The ROMP pro- 
gramming model and instruction set are derived 
from the 801 processor for which the P L . ~  compiler 
was originally  designed. With the implementation of 
the short instruction format, it is clear that it is not 
possible to provide three 5-bit register  fields in a 16- 
bit instruction. To allow  space for an op-code, the 
instructions were changed from three-address to two- 
address and  the register  field width reduced from 5 
bits to 4. Thus ROMP has 16 general registers, rather 
than  the 801’s 32. Reducing the size  of the register 
file also freed silicon area on the ROMP chip for 
implementing the rest  of the CPU. 

None of the 801’s instruction set philosophy was 
changed, however. All storage accesses are still 
through “load”  and “store” instructions, and all 
computation is done  on operands in  the general 
registers. That  the ROMP instruction set is a good 
target for a compiler is demonstrated by the fact that 
the P L . ~  compiler generates ROMP object code that is 
generally smaller than 801 object code for the same 
program. 

The elimination of the 80 1’s caches means  that ROMP 
has a longer latency on memory accesses. The com- 
piler “pipelines” the  “load” operations by separating 
them from the use  of the loaded data as far as 
possible. If several instructions can be  placed be- 
tween a load and  the use  of the  data,  the storage 
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access is done in parallel with  useful  work in the 
CPU, as shown in Figure 1. The short loop illustrated 
is executed entirely from the ROMP instruction pre- 
fetch  buffer, so the loop-closing jump instruction 
takes only one cycle rather than five. The compiler 
schedules the load operation two instructions prior 
to the use of the  data loaded. Five total cycles are 
required for the load data  to become available, and 
the CIS (compare) must wait two cycles for the load 
to complete. However, this has reduced the effective 
load time from five to three cycles. The  combination 
of loop-mode execution from the pre-fetch  buffer 
and load scheduling has reduced the  total  number 
of execution cycles for this  loop from 15 to 9, a 40 
percent performance improvement. This loop exe- 
cutes at approximately 6.7 MIPS, in  an RT with an 
Advanced  Processor Card, 100 nanoseconds cycle 
time. This pipelining was also done  on  the 80 1, but 
the compiler tries to move the load and use instruc- 
tions farther apart on ROMP. Note that  the pipelining 
is possible  because the storage  access (load) and 
computation instructions are separate. If an instruc- 
tion such as “add storage to register”  were imple- 
mented, there would  be no  opportunity to fetch the 
operand from storage in advance of its use. 

ROMP does not have an instruction cache such as the 
801 had. Rather, instructions are fetched ahead a 
word at a time  into a 16-byte instruction queue 
(called a pre-fetch  buffer on ROMP). This queue is 
filled asynchronously as instructions are executed; 
the processor does not normally have to wait for an 
instruction to be returned from memory before  be- 
ginning execution except for branches taken. Two 
features are provided which utilize the time that 
would otherwise be wasted waiting for a branch 
target to be fetched. 

I .  80 1 -style  delayed branches (called branch-with- 
execute) allow ROMP to get a head start on fetching 
the branch target. The instruction which  physi- 
cally  follows the branch in memory is executed 
regardless  of the outcome of the conditional 
branch test, as if it had been before the branch. 
While this instruction (the subject instruction) is 
being executed, the branch target is being fetched. 
The compiler is often able to find an instruction 
which can be moved from just before to  just after 
the branch in this way; such instructions execute 
“for free,” as shown in Figure  2. The final store 
operation of this loop places the  computed value 
of y into array element x[i]. The execution of the 
STS (store) instruction is completely overlapped 
with the fetching of the branch target, the first 
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Figure 1 A typical memory-to-memory move in C programming language 

I *  C character  string  move -- Copy character  string s to 
string t until a zero  character  is  found  in s */  &* 

: move  (t , s )  
; a  

,:3 
char  *t,*s; . -  " 

{ 
while  (*t++ = * s + + ) ;  

; }  

2" 
;-ROMP object  code,  from  the PL.8 compiler: 

6 %6: p. LCS  rO,$MEMORY+*s(r3)  Register  scheduling 1 
INC r 3 ,  r3,l 1 
INC ~ 2 ,  r2,l 1 
C I S  CK,K0,0 Register  usage 
S T C  rO,$MEMORY+*t-l(r3) 
J N B  cr,b26/eq,%6  Loop-mode  jump 

instruction of the loop body. Thus,  the store takes 
zero cycles. This code fragment also shows an 
example of reduction in strength: Rather  than 
multiply the array index i by 4 (or even shift it 
left 2), an auxiliary variable is  used as a pointer 
into  the array and is bumped by 4 with a one- 
cycle ADD instruction each time through the loop. 

2. Loops within the pre-fetch  buffer are recognized 
by ROMP, and subsequent iterations of the loop 
are not re-fetched from memory. The branch 
which  closes  such a loop is thus reduced to  one 
cycle and  the entire memory bandwidth becomes 
available for data traffic.  Real application pro- 
grams have  been  observed in which the compiler 
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has generated these "tight" inner loops, and such 
programs approach the theoretical maximum rate 
of one instruction per  cycle ( 10 MIPS at a 100-ns 
cycle time). System subroutines such as character 
string move are hand-coded to take advantage of 
high-speed looping within the pre-fetch  buffer. 

Although most ROMP instructions execute in only 
one cycle, additional cycles are taken when it is 
necessary to wait for data  to be returned from mem- 
ory for loads and branches. As a result, ROMP takes 
about 2.3 cycles on the average for each instruction. 
At the cycle time of 100 nanoseconds used in  the RT 
PC, ROMP runs  at  about 4.3 MIPS. 
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Figure 2 Closing a loop with  branch  and  execute 

The ROMP programming  model 

Here we describe the major features of the registers, 
instruction set, and addressing  model of ROMP. More 
detail can  be found in the  reference^',^ and in the 
reference manuals for the RT PC.~.’O 

General-Purpose  Registers. ROMP has  sixteen  32-bit 
General-Purpose Registers (GPRS), as  shown in Fig- 
ure 3. The registers can be  used  for computation or 
as  base  registers,  as  with  System/370.  Register 0 has 
special meaning when  used as a base  register: The 
value 0 is  used  as the base rather than the contents 
of register 0. Thus, absolute addressing  is  provided 
by a convention on the base  register name rather 
than by a separate addressing  mode. 

Some  shift instructions consider the registers to be 
“paired” (e.g., 0 and 1, 14 and 15), with input from 
one register and output to the other register  of the 
pair (an implicit operand). This deviation from true 
RISC style was made in order to be  able to specify 
nondestructive shift instructions in the short (1 6-bit) 
format. 

Other  registers. The other registers  which  can  be 
seen by the programmer are the System Control 
Registers (SCRS) shown in Figure 4. Most of these 
deal  with  hardware control of timers and interrupts 
or  record  exception conditions (page  faults,  program 
checks). Two are directly  usable in application pro- 
grams. 
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The Condition Status (cs, Control Register  15)  is 
the equivalent of the System/370 Condition Code. 
Results of comparisons and arithmetic operations 
are recorded  here; the conditional branch instruc- 
tions specify a bit  in the Condition Status which 
determines whether the branch  is taken. One bit 
is permanently zero,  providing  for unconditional 
branches (and no-ops).  Another, the “test bit,” can 
be loaded  with  any  selected  bit in any general 
register and then used as a branch condition. 
The Muftipfier/Quotient (MQ, Control Register 10) 
register  holds  half  of the 64-bit product or dividend 
for  the  Multiply  Step and Divide  Step instructions. 
It is an implicit operand of those instructions, and 
is the result of a trade-off between architectural 
elegance and hardware  efficiency: As an implicit 

Figure 3 ROMP General-Purpose  Registers 

GPR 0 

1 

2 

3 

4 

5 

6 

7 

0 
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10 

11 

12 

13 
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15 

PAIR 

PAW3 

PAIR 

PAIR 

PAIR 

PAIR 

PAIR 

PAIR 

Figure 4 ROMP System  Control  Registers 

SCR 0 
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3 
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10 

11 

12 

13 

14 

15 

TS = TlMFR STAT1 1% . . . . . - . . . . - - 
MCS = MACHINE  CHECK  STATUS 
PCS - PROGRAM  CHECK  STATUS 
IRE = INTERRUPT  REQUEST  BUFFER 
ICs = INTERRUPT  CONTROL  STATUS 
CS = CONDITION  STATUS 

UNLAEELED=RESERVED 

operand, the MQ need not be named in the instruc- 
tion (thus the Multiply  Step and Divide  Step  in- 
structions can be 16 bits  long) and it is  imple- 
mented  as a high-speed  register  separate  from the 
general  register  file. 

The Instruction Address  Register (IAR) is contained 
in Control Register  13,  but  it  is not needed  directly 
by the programmer.  Most  branch instructions are 
implicitly  relative to the contents of the IAR, and the 
value  in the IAR can be loaded into a general  register 
by the Branch and Link instruction when  necessary. 
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Instruction set. The ROMP provides a total of 1 18 
instructions in the following ten classes: 

Instruction Class Number of Instructions 

1. Memory Access  17 
2.  Address Computation 8 
3. Branch and  Jump 16 
4. Trap 3 
5.  Move and Insert 13 
6. Arithmetic 21 
7.  Logical  16 
8. Shift 15 
9. System Control 7 

10. Input  and  Output 2 

Total 118 

The Memory .4ccess instructions permit loading and 
storing data between the 16 GPRS and  main memory. 
These instructions support four types of data: 

8-bit (character) quantities 
16-bit (halfword) quantities 
16-bit algebraic (sign-extended halfword) quan- 

32-bit (fullword) quantities. 

Load Multiple and Store Multiple instructions are 
also included in this class. They permit loading or 
storing from one  to 16 of the GPRS. A test and set 
instruction is provided for multiprocessor synchro- 
nization. 

All Memory Access instructions compute  the effec- 
tive memory address as the sum of a GPR contents 
plus an  immediate field specified in the instruction 
(base + displacement addressing). Two-byte memory 
access instructions provide a 4-bit immediate field, 
with  4-byte instructions providing a 16-bit immedi- 
ate field. 

The Memory Access instructions operate on  data 
between memory and  one  or more GPRS. No mem- 
ory-to-memory operations are provided. The archi- 
tecture allows instruction execution to  continue be- 
yond a load instruction before the load is complete, 
if subsequent instructions do not use the loaded data. 
This increases  system performance by overlapping 
memory access  with subsequent instruction execu- 
tion. 

The Address Computation instructions compute 
memory addresses without changing the status of the 
condition codes. These instructions include a three- 
address add instruction (Compute Address Short), 

tities 
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increment, decrement, and 2- and 4-byte instruc- 
tions which permit loading a GPR with a 4-bit or 16- 
bit immediate value,  respectively. Separate Compute 
Address  Lower and  Compute Address Upper instruc- 
tions are provided to load a 16-bit immediate value 
into either the lower  half or upper half  of a GPR. 
Two  Address Computation instructions are provided 
specifically to aid in the emulation of  16-bit archi- 
tectures. They allow the  computation of a 16-bit 
quantity to replace the low-order 16 bits of a GPR 
without altering the upper 16 bits. 

The Branch and Jump instructions are provided for 
decision making. Jumps are 2 bytes long, and pro- 
vide a relative  range  of plus or  minus 254  bytes. 
Branches are 4 bytes  long and provide a range  of up 
to plus or minus 1 megabyte. A group of Branch and 
Link (BAL) instructions are also provided for subrou- 
tine linkage. 

Many branch and branch-and-link instructions have 
a delayed branch form (called “Branch with  Exe- 
cute”) which  allows overlap of the branch target fetch 
with execution of one instruction following the 
branch (called the subject instruction). Execution of 
the subject occurs in parallel  with fetching of the 
target instruction, thereby eliminating dead cycles 
that would normally occur during fetching of the 
target instruction. 

Three Trap instructions are provided for run-time 
address checking. These instructions compare a reg- 
ister quantity against a limit, and cause a program 
check interrupt if the limit is exceeded. 

The Move and Insert instructions support testing the 
value  of any bit in a GPR, and  the movement of any 
of the four 1-byte  fields in a GPR. A Move instruction 
is provided that allows moving any  one of the 32 
bits in a GPR to a test bit in  the condition status 
register,  with a corresponding instruction that moves 
the test bit value to any of the 32 bits in a GPR. A 
series  of  Move Character instructions are included 
that move any of the four 1-byte  fields in a GPR to 
another 1-byte  field in a GPR. 

The Arithmetic class supports standard Add and 
Subtract operations in both single- and extended- 
precision  modes. Other instructions in this class 
include absolute value, ones- and twos-complement, 
compare, and sign-extend.  Also, Multiply Step and 
Divide Step instructions are provided. The Multiply 
Step instruction produces a 2-bit result per step, and 
can be used to construct variable-length multiply 
operations. The Divide Step instruction produces a 
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single-bit  result  per step, and can be  used to construct 
variable-length divide operations. 

The Logical class provides AND, OR,  XOR,  and nega- 
tion operations using two register quantities or one 
register and  an immediate value.  Also included in 
this class  is a group of  set and clear bit instructions 
that allow any bit in any GPR to be set to one or to 
zero. 

The Shift class provides algebraic shift right, shift 
right, shift left, and left and right paired shifts.  Shift 
amounts from 0 to 3 1 bits can be  specified either as 
an immediate quantity in the instruction or as an 
indirect amount using the value in a GPR. The paired 
shifts provide nondestructive shifts that shift a spec- 
ified GPR a given amount,  and place the result in a 
different register (the  other register  of a register pair) 
without altering the source register. 

Instructions in the System Control class are generally 
privileged instructions that  are valid only in super- 
visor state. Included in this class are instructions that 
move GPRS to  and from SCRS, set and clear SCR bits, 
Load Program Status, and Wait for interrupt. Also 
included is a nonprivileged Supervisor Call instruc- 
tion. 

Two instructions that load and store GPRS to I/O 
devices are included in the Input  and  Output class. 
These instructions are normally used to access con- 
trol registers in the MMU or  other system elements. 

Memory  addressing  model 

The basic concepts of memory addressing in ROMP 
are shown in Figure 5 and are similar to those of 
System/370. The smallest addressable storage unit is 
the %bit byte. Two bytes make a halfword, four 
bytes make a word (or fullword). Halfword and 
fullword quantities must be properly aligned on 2- 
byte and 4-byte boundaries in storage in order to be 
loaded and stored by the ROMP storage  access instruc- 
tions (in this area ROMP’S memory model is that of 
System/360 rather than System/370). Strings of 
bytes (character strings) can begin on any byte ad- 
dress, but they are manipulated by subroutines rather 
than low-level ROMP instructions. 

Memory addresses begin at 0 and increase “to  the 
right,” as in System/370. All quantities in storage 
are addressed by their leftmost (high-order) byte, 
without exception. This is true of the operands of 
load and store instructions and branch targets. The 
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Figure 5 ROMP memory  addressing  with  integral 
boundaries 

Figure 6 RT System  real  memory 

bytes  of arithmetic quantities are never  reversed as 
they are moved between memory and registers. 

When the virtual addressing mode of the ROMP MMU 
is enabled, there are three conceptual levels  of ad- 
dressing to be considered. 

Real  addressing. This is the lowest  level, as depicted 
in Figure 6 ,  the level that  the programmer sees  when 
running with virtual addressing turned off. Memory 
is a linear array of bytes starting at 0. Except for the 
recording of  reference and change information, there 
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000 

002 

FFE 

FFF 

I I 
I I 
I I 
L"" J 
PAGE TABLE 

40-BIT VIRTUAL SPACE 
(4096 256MB  SEGMENTS, 
TOTAL 1 TB) 

is no concept of  "pages" at  this level. Architecturally, the MMU is enabled for virtual address translation. 
real addresses are 32-bit quantities,  but in the RT PC Virtual memory can be  viewed as  a collection of 
the  maximum  amount of memory that can be in- segments of  256 megabytes each. There are 4096 
stalled is  16 megabytes. possible segments, each named by a 12-bit segment 

id. Each segment is made  up of 2K-byte pages. 
Long-form virtual addressing. This  intermediate Virtual addresses in this level are 40 bits: 12 bits for 
level, illustrated in Figure 7, becomes active when the segment id, 17 bits for the page number within 
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the segment, and 1 1  bits for the byte offset within 
the page. The total virtual space is thus 240 bytes, or 
1 terabyte. 

Of course, this is virtual space. In reality only a  tiny 
fraction of the 2”byte space is actually in use at 
once-only a few  of the 4096 segments, and a  max- 
imum of only a few megabytes within each of those 
segments. The mapping of 40-bit virtual addresses 
to real addresses is done by the MMU, which signals 
a page fault to ROMP when an access to  an  unmapped 
page  is attempted. 

The programmer does not deal directly with 40-bit 
addresses. As  is  seen below, the ROMP hardware 
generates 32-bit virtual addresses, and the MMU con- 
structs  the 40-bit virtual address internally before 
translating it to real. 

Short-form virtual addressing. This is the highest 
level, the level at which the  programmer deals with 
virtual addressing. ROMP’S address  generation process 
is the  same  whether or not virtual address translation 
is enabled: Address computations result in 32-bit 
values, and 32-bit addresses are  transmitted from 
ROMP to  the MMU for loads, stores, and instruction 
fetches. 

Inside the MMU, the first step of virtual address 
translation is the expansion of the 32-bit virtual 
address to a long-form (40-bit) address, as shown in 
Figure 8. To  do this, the high-order four bits of the 
32-bit short-form address are removed and used to 
select a 12-bit segment id from one of  16 segment 
registers. The segment registers are  contained within 
the MMU and  are loaded under  control of the  oper- 
ating system; they are protected from modification 
by application programs. The 12-bit segment id is 
concatenated with the  remaining 28 bits of the  short- 
form virtual address to make  a 40-bit virtual address. 

The effect  of this is that  a program has a 32-bit 
window on  the 40-bit world, in the form of a set of 
16  of the possible 4096 256-megabyte segments. The 
segment to be used is selected by the  top four bits of 
the 32-bit address, while the  remaining bits are  an 
offset within that segment. 

For most purposes, the program is not aware of the 
presence of one or more segments in  its 32-bit virtual 
space. With the AIX operating system, addresses of 
items on  the stack lie in  the range 30000000 through 
3FFFFFFF  (hex), while addresses of programs  are  in 
the range 20000000 through  2FFFFFFF. However, 
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Table 1 Page  protection  keys 

Page  Key  Type of Page  Access  Key  Load Stow 

00 System read/write 0 Yes  Yes 
User no access 1 No No 

0 1 System read/write 0 Yes  Yes 
User read-only 1 Yes No 

10 Public read/write 0 Yes  Yes 
1 Yes  Yes 

11  Public read-only 0 
1 

Yes No 
Yes No 

it is possible to  make  direct use of the segments by 
requesting that  the  operating system “map” a file to 
a segment, share one or more segments with other 
tasks, or use one of the segments to access the RT 
PC‘s memory-mapped I/O. A discussion of these uses 
is given below. 

Memory protection. In real addressing mode, no 
memory  protection is given. This  mode is intended 
for use by  low-level system programs such as  inter- 
rupt handlers. Almost all application code runs in 
virtual addressing mode. 

When virtual translation is enabled,  one of two 
protection modes is selected. The most  commonly 
used mode  (for  “normal” segments) is similar to  that 
of System/370, in which a  one-bit access key in 
the segment register  is tested against a two-bit page 
protection key for the selected page, as shown in 
Table 1. 

For “special” segments, a finer granularity of protec- 
tion is provided. This  mode is intended for use by 
database programs and  others who need to distin- 
guish between readlwrite  and read-only access on 
items smaller than  a page.  Each  page is divided into 
16 “lines” of  128 bytes each, with read and write 
access granted on  the individual line level. Details of 
this “line locking” function  are discussed in Refer- 
ences 7, 8, and 11. 

Programming the ROMP 

Almost all programming on  the RT is done in high- 
level languages which hide low-level details such as 
the  instruction set and  the  number of  registers. These 
details are still important, for they affect the effi- 
ciency of the code that  the compilers generate and 
thus  the  performance of RT programs. Some archi- 
tectural features are pervasive, and show through  the 
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Figure 8 Conversion of 32-bit virtual addresses to 40-bit virtual addresses 

32-BIT  VIRTUAL  ADDRESS  ROMP  MMU  SEGMENT  REGISTERS  40-BIT  VIRTUAL  ADDRESS 

h T”h-7 

31Z:F I r 
4 0000000 

F w 0000000 FFFFFFF 

32-BIT  VIRTUAL  SPACE 
(16 256MB  SEGMENTS, 
TOTAL 4GBl 

SID 110 

MEMORY-MAPPED 110 

000 

1 23 

124 

76A 

768 

40-BIT  VlRTUAL  SPACE 

TOTAL  1TB) 
(4096  256MB  SEGMENTS, 

languages. They affect the methodology used by the 
programmer in designing and coding an application. 

32 bits. On the RT, the  natural  unit of data is the 32- 
bit word. The general registers are 32 bits wide; 
hence, arithmetic on 32-bit quantities  and 32-bit 
addresses  is  very  efficient. The default integer size 
and pointer size for the various high-level  languages 
on the RT is 32  bits. 

Large  linear  memory space. There are no 64-kilobyte 
boundaries in the RT’S addressing space. The smallest 
boundary is  256  megabytes, the size  of a virtual 

storage segment. Almost  all programs can be written 
with the presumption that any data item can be 
addressed  with a standard 32-bit pointer; there are 
no distinctions between “near”  and “far” pointers. 
There are no array size limitations such as 64K total 
entries or 64  kilobytes total space. Programs and 
data  can easily  be  several  megabytes in size. 

Segments. A segment in the RT is much larger than 
the segments on most other machines, and it is  used 
for different purposes. Each segment can be up  to 
256  megabytes and begins on a 256-megabyte 
boundary in the 32-bit virtual space; segments do 
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not overlap. Up  to 16 segments can be mapped at 
once, and  the program can change the mapping 
through calls to the operating system. 

RT segments are used to provide 

Data isolation, through multiple address spaces. 
The address space of a task  is the collection of 
segments to which it has access.  In the AIX oper- 
ating system, for example, one segment will con- 
tain the private code for the process, another its 

are not mapped into  the address spaces of other 
processes, and  thus  are completely isolated from 
the  other processes. 

~ 

I 

I private data,  and  another its stack. These segments 

Data sharing, by mapping the same segment into 
several  different  processes. Private data remain 
isolated as described above. 
Different  levels of protection, by assigning  differ- 
ent hardware protection keys to different seg- 
ments. Thus, a segment containing code (even 
private code) is normally read-only, while a data 
segment is read-write. 
Access to input/output, by assigning a segment to 
memory-mapped I/O. 
Mapped files,  by mapping the image of a file on 
disk into a virtual storage segment. 

The other traditional use for segments, which  is to 
extend addressability beyond the  natural address 

I Figure 9 Writing  data to bit-mapped display using RT System’s  memory-mapped I/O 
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Figure 10 Random  access to a  mapped file on  the RT System 

width of the machine, is also possible in the RT but has not been explicitly granted access to the I/O 
is not used  nearly as often as  on machines with memory map  cannot accidentally trigger an I/O op- 
smaller address widths. A 32-bit address spans 4 eration. 
gigabytes,  which  is enough for most purposes. On 
the  RT, this can be extended to 1 terabyte by manip- For applications which  need to deal directly with I/O, 
ulating the  contents of the segment registers.  it  is simple to  do this in high-level  languages  by 

assigning the appropriate values to pointers and  then 
Memory-mapped I/O. On  the RT, a single segment using assignment statements to read from and write 
register is normally assigned to  map  the 110 address to  the I/O space. As an example, it is easy to code a 
space rather than virtual memory. Access to this c program which  writes a screen  full  of graphics data 
segment is controlled by protection hardware in the to a bit-mapped display,  as illustrated in Figure 9. 
RT PC‘s I/O channel controller in a  manner similar to 
the method used  by the MMU to control access to Mapped files. RT segments can be  used to  “map” 
pages  of virtual storage. Thus, an application which  files into virtual storage, as depicted in Figure 10. 
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After a file  is opened, an operating system  call con- 
verts the file identifier into an address in virtual 
storage (a  pointer) at which the first byte of the file 
appears. From then  on,  the file can be treated as a 
large array or structure in virtual storage, and is  read 
and written using assignment statements (i.e., load 
and store instructions). Actual I/O to the file is im- 
plicit and is done as needed by the paging supervisor. 
When the file  is  closed,  modified  pages are flushed 
out  to their proper places in the file system. 

This treatment of  files can greatly simplify an appli- 
cation, especially those that must read and write  files 
at  random. Assuming that  the file  will  fit into a 256- 
megabyte segment, it  is simpler and more efficient 
to access elements by moving a pointer or adjusting 
an array index than it  is to do explicit reads and 
writes through an 110 buffer. 

Conclusions 

The IBM RT PC‘s ROMP processor represents an effec- 
tive adaptation of the RISC approach begun in the 
801 to  the real  world  of a small but powerful com- 
puter system product. Many cost-driven trade-offs 
had to be made, but even so the ROMP executes at a 
sustained rate of 4.3 MIPS, just  under half that of an 
801 with the same cycle time. This is done without 
the benefit  of the 801’s two caches. 

ROMP is a good architectural base for future growth. 
All the size limits in the  current  implementation (12- 
bit segment ids,  16-megabyte  real memory) can be 
increased without major architectural modifications. 
It is  possible to add selected functions which are  not 
normally considered part of the RISC domain as long 
as they are carefully chosen and known from meas- 
urements of actual code to pay  back more in per- 
formance than they cost. Examples that come to 
mind  are floating-point and character string opera- 
tions. 

The RT PC is truly a high-level  language machine in 
that almost everything written for it has been in c, 
FORTRAN, or  some  other high-level  language. The 
programming interface has been moved above the 
assembly  language  level.  Because  of this, it  is  even 
possible to change the ROMP’S instruction set and still 
maintain  the parts of the programming model that 
show through in high-level  languages. Only the low- 
est-level routines in the operating system (interrupt 
handlers, for example) would  need to be changed; 
applications would  need only to be recompiled. This 
raising  of the level  of the programming interface may 

IBM  SYSTEMS JOURNAL,  VOL 26, NO 4, 1987 

prove to be one of the major benefits  of the RT PC in 
the long run. 

RT and RT PC are trademarks of International Business Machines 
Corporation. 
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