The IBM RT PC ROMP
processor and memory
management unit
architecture

The ROMP processor is the microprocessor used in the
IBM RT PC. It is a 32-bit processor with an associated
memory management unit implemented on two chips.
ROMP is derived from the pioneering RISC project, the
801 Minicomputer at IBM Research. This paper de-
scribes some of the trade-offs which were made to turn
the research project into a product. It gives an intro-
duction to the architecture of ROMP, including the ad-
dressing model supported by ROMP’s memory man-
agement unit. Some of the unique features of the pro-
gramming model are explained, with high-level lan-
guage coding examples which show how they can be
exploited. ROMP’s architecture is extensible, and the
fact that almost all programming for the RT PC has
been in high-level languages means that the RT PC
hardware architecture can be extended as needed to
meet future requirements while preserving the invest-
ment in existing software.

t the center of the 1BM RT PC™ are the IBM-

designed Reduced Instruction Set Computer
(RISC) processor and its memory management unit.
The processor is called ROMP, an acronym for Re-
search/oPD Micro Processor. The name tells some-
thing of the origin of the processor.

The 801 Minicomputer project at the 1BM Thomas
J. Watson Research Center in Yorktown Heights,
New York, had defined an architecture for and built
a prototype of a simple but very high-performance
computer.'? At about the same time (the late 1970s)
the 1BM Office Products Division (OPD) in Austin,
Texas, was searching for a new microprocessor to be
used in advanced office equipment. The ROMP proj-
ect began as a joint effort between opD and the
Research Division, with the goal of adapting the
architectural concepts of the 801 to an actual prod-
uct.
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ROMP’s 801 heritage shows clearly in its architecture,
and in fact the same highly optimizing compiler
(PL.8)*® is used for both. However, ROMP had a
different set of design goals than the 801. While the
801 was an experiment in RISC architecture whose
main goal was to demonstrate that a machine could
be built which sustained a rate of one instruction per
cycle, ROMP was to be part of a product and thus had
constraints (primarily cost) that did not apply to the
801. These constraints strongly affected ROMP’s de-
sign.

In this paper we first give some details of the imple-
mentation of the ROMP processor and its Memory
Management Unit (MMU). The parallels between the
801 and roMp are shown, and the differences be-
tween them are explained. ROMP’s programming
model is described and some examples are given of
the use of its features.

Design goals

The RT PC ROMP processor was designed to

¢ Provide an architected address and data width of
32 bits

* Provide an efficient target for an optimizing com-
piler

e Support virtual memory
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¢ Provide system integrity through separate user and
supervisor states

¢ Provide improved error detection and reporting
facilities

The first requirement dictated an architecture pro-
viding both 32-bit address and data quantities. As a
result, it was decided that all registers and computa-
tions would support 32-bit quantities. However, the
architecture provides for specific support of 8-bit and
16-bit quantities as well; individual 8-bit bytes and
16-bit halfwords can be loaded and stored and can
be manipulated within the 32-bit registers.

The ROMP processor architecture was defined with
the assumption that most software would be devel-
oped in a high-level language. A joint study between
oprD and the 1BM Research Division was conducted
to evaluate the PL.8 optimizing compiler and the
architectural requirements to take advantage of the
compiler optimization techniques. The study indi-
cated the need for a large number (16 or 32) of 32-
bit general-purpose registers, and an instruction set
closely matched to the compiler intermediate lan-
guage.

During the architecture definition, it became clear
that systems using processors of this class must pro-
vide virtual memory. ROMP saves sufficient machine
state when a page fault occurs to identify the faulting
instruction and address and to re-execute the load
or store operation once the fault has been resolved.
This virtual memory support is common on main-
frames and some minicomputers, but had not ap-
peared in a microprocessor prior to the design of the
ROMP.

The need to provide protection of user programs and
isolation of control program functions resulted in
the definition of separate user and supervisor states.
Only instructions which cannot be used to affect
system integrity are valid in user state. Instructions
associated with control program functions are valid
in supervisor state only.

Certain requirements and facilities are provided for
error detection and reporting, including parity
checking on all external buses, bus time-out detec-
tion, and nonmaskable hardware error detection in-
terrupts.

Cost constraints

The prototype 801 had been built from low-density
but very high-speed circuitry. A vLsI version of the
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801 in the technology available at the outset would
have required many chips, would have dissipated
power in excess of requirements, and would have
exceeded the cost targets for a small system to be
used in an office. ROMP’s design was driven by the
need to minimize the number of parts (vLSI chips).

Two chips. Existing technology did not allow func-
tions as complex as the ROMP and its MMU to be

ROMP’s 2-byte instructions reduce
the bandwidth required for
instruction fetching.

combined into a single chip, so one chip was used
for the processor and one for the MMu. The split is
about even; the two chips are of comparable com-
plexity (the MMU is somewhat larger than the ROMP).

High performance with inexpensive memeory. The
801 had exceptionally high performance: 15.1 MIpPS
at a cycle time of 63 nanoseconds. However, much
of its performance depended on its two caches, which
could deliver an instruction word and a data word
on each cpu cycle. Since such caches were prohibi-
tively costly for small systems, pipelining techniques
normally found in larger machines were adapted to
the ROMP so that useful work may be done during
the (comparatively) long time needed for memory
operations. The techniques include asynchronous
prefetching and partial decoding of instructions, a
packet-switched channel between the ROMP and the
MMU, execution of instructions beyond a “load” until
the loaded data are actually needed, and delayed
branches which overlap the execution of another
instruction with the fetching of the branch target. In
addition, the fact that many of ROMP’s instructions
are only 2 bytes long reduces the bandwidth required
for instruction fetching; this bandwidth reduction is
necessary because without the 801’s two independent
caches, the MMU can only supply one word per cycle
10 ROMP.,

RAM size. All of the 801’s instructions were 4 bytes
long. This simplified instruction fetching and decod-
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ing and allowed enough room to name three registers
with 5-bit numbers in most instructions. Code den-
sity was considered more important for ROMP, which

The 2-byte instructions predominate
in instruction mixes.

was to have a much smaller main memory than the
high-performance 801. ROMP has both 2-byte and 4-
byte instructions, with the 2-byte instructions pre-
dominating in both the static and dynamic instruc-
tion mixes.

Adapting the 801

ROMP’s similarities and differences. The ROMP pro-
gramming model and instruction set are derived
from the 801 processor for which the pL.8 compiler
was originally designed. With the implementation of
the short instruction format, it is clear that it is not
possible to provide three 5-bit register fields in a 16-
bit instruction. To allow space for an op-code, the
instructions were changed from three-address to two-
address and the register field width reduced from 5
bits to 4. Thus ROMP has 16 general registers, rather
than the 801’s 32. Reducing the size of the register
file also freed silicon area on the rRomp chip for
implementing the rest of the cpu.

None of the 801’s instruction set philosophy was
changed, however. All storage accesses are still
through “load” and “store” instructions, and all
computation is done on operands in the general
registers. That the ROMP instruction set is a good
target for a compiler is demonstrated by the fact that
the pL.8 compiler generates ROMP object code that is
generally smaller than 801 object code for the same
program.

The elimination of the 801°s caches means that ROMP
has a longer latency on memory accesses. The com-
piler “pipelines” the “load” operations by separating
them from the use of the loaded data as far as
possible. If several instructions can be placed be-
tween a load and the use of the data, the storage
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access is done in parallel with useful work in the
cPU, as shown in Figure 1. The short loop illustrated
is executed entirely from the ROMP instruction pre-
fetch buffer, so the loop-closing jump instruction
takes only one cycle rather than five. The compiler
schedules the load operation two instructions prior
to the use of the data loaded. Five total cycles are
required for the load data to become available, and
the c1s (compare) must wait two cycles for the load
to complete. However, this has reduced the effective
load time from five to three cycles. The combination
of loop-mode execution from the pre-fetch buffer
and load scheduling has reduced the total number
of execution cycles for this loop from 15 10 9, a 40
percent performance improvement. This loop exe-
cutes at approximately 6.7 MIPS - in an RT with an
Advanced Processor Card, 100 nanoseconds cycle
time. This pipelining was also done on the 801, but
the compiler tries to move the load and use instruc-
tions farther apart on ROMP. Note that the pipelining
is possible because the storage access (load) and
computation instructions are separate. If an instruc-
tion such as “add storage to register” were imple-
mented, there would be no opportunity to fetch the
operand from storage in advance of its use.

ROMP does not have an instruction cache such as the
801 had. Rather, instructions are fetched ahead a
word at a time into a 16-byte instruction queue
(called a pre-fetch buffer on romP). This queue is
filled asynchronously as instructions are executed;
the processor does not normally have to wait for an
instruction to be returned from memory before be-
ginning execution except for branches taken. Two
features are provided which utilize the time that
would otherwise be wasted waiting for a branch
target to be fetched.

1. 801-style delayed branches (called branch-with-
execute) allow ROMP to get a head start on fetching
the branch target. The instruction which physi-
cally follows the branch in memory is executed
regardless of the outcome of the conditional
branch test, as if it had been before the branch.
While this instruction (the subject instruction) is
being executed, the branch target is being fetched.
The compiler is often able to find an instruction
which can be moved from just before to just after
the branch in this way; such instructions execute
“for free,” as shown in Figure 2. The final store
operation of this loop places the computed value
of y into array element x[i]. The execution of the
STS (store) instruction is completely overlapped
with the fetching of the branch target, the first
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Figure 1

A typical memory-to-memory move in C programming language

/* C character string move -~ Copy character string s to
string t until a zero character is found in s */

move (t,s)
char *t,*s;
{

while (*t++ = *g++);

céde, from the PL.8 compiler:

r0, SMEMORY+*s(r3)
r3,r3,1

r2,r2,1

cr,r0,0

r0, SMEMORY+*¢=1(r3)
cr,b26/eq, %6

instruction of the loop body. Thus, the store takes
zero cycles. This code fragment also shows an
example of reduction in strength: Rather than
multiply the array index i by 4 (or even shift it
left 2), an auxiliary variable is used as a pointer
into the array and is bumped by 4 with a one-
cycle ADD instruction each time through the loop.
. Loops within the pre-fetch buffer are recognized
by ROMP, and subsequent iterations of the loop
are not re-fetched from memory. The branch
which closes such a loop is thus reduced to one
cycle and the entire memory bandwidth becomes
available for data traffic. Real application pro-
grams have been observed in which the compiler
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Execution cycl

Register scheduling

Register usage

Loop-mode jump

Total cycles

has generated these “tight” inner loops, and such
programs approach the theoretical maximum rate
of one instruction per cycle (10 MIPS at a 100-ns
cycle time). System subroutines such as character
string move are hand-coded to take advantage of
high-speed looping within the pre-fetch buffer.

Although most ROMP instructions execute in only
one cycle, additional cycles are taken when it is
necessary to wait for data to be returned from mem-
ory for loads and branches. As a result, ROMP takes
about 2.3 cycles on the average for each instruction.
At the cycle time of 100 nanoseconds used in the RT
PC, ROMP runs at about 4.3 MIPS.
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Figure2 Closing aloop with branch and execute

Closing a loop with branch with execute:
int x{50];

for (i=0; i<50; i++) { /* compute array elements */

(body of loop)

x[(1] = y;

}

ROMP object code, from the PL.8 compiler:
%61
(body of 1loop)
LS r0,y(rl)
A r2,r2,rl3
INC rl2,rl12,1
CI cr,rl2,50
BTX cr,b25/1t,%6
STS r0,x(r2)

Load value of y

Increment x array pointer
Increment loop counter

Test loop termination

Branch (with execute) if not done
Store x{1i]

350

The ROMP programming model

Here we describe the major features of the registers,
instruction set, and addressing model of ROMP. More
detail can be found in the references”® and in the
reference manuals for the rT PC.>!?

General-Purpose Registers. ROMP has sixteen 32-bit
General-Purpose Registers (GPRs), as shown in Fig-
ure 3. The registers can be used for computation or
as base registers, as with System/370. Register 0 has
special meaning when used as a base register: The
value 0 is used as the base rather than the contents
of register 0. Thus, absolute addressing is provided
by a convention on the base register name rather
than by a separate addressing mode.

SIMPSON AND HESTER

Some shift instructions consider the registers to be
“paired” (e.g., 0 and 1, 14 and 15), with input from
one register and output to the other register of the
pair (an implicit operand). This deviation from true
RISC style was made in order to be able to specify
nondestructive shift instructions in the short (16-bit)
format.

Other registers. The other registers which can be
seen by the programmer are the System Control
Registers (SCRs) shown in Figure 4. Most of these
deal with hardware control of timers and interrupts
or record exception conditions (page faults, program
checks). Two are directly usable in application pro-
grams.
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¢ The Condition Status (cs, Control Register 15) is
the equivalent of the System/370 Condition Code.
Results of comparisons and arithmetic operations
are recorded here; the conditional branch instruc-
tions specify a bit in the Condition Status which
determines whether the branch is taken. One bit
is permanently zero, providing for unconditional SCR
branches (and no-ops). Another, the “test bit,” can
be loaded with any selected bit in any general
register and then used as a branch condition.

o The Multiplier/Quotient (MQ, Control Register 10)
register holds half of the 64-bit product or dividend
for the Multiply Step and Divide Step instructions.
It is an implicit operand of those instructions, and
is the result of a trade-off between architectural
elegance and hardware efficiency: As an implicit

Figure4 ROMP System Control Registers

Figure3 ROMP General-Purpose Registers

GPR PAIR

PAIR

PAIR TS = TIMER STATUS

MCS = MACHINE CHECK STATUS

PCS = PROGRAM CHECK STATUS
IRB = INTERRUPT REQUEST BUFFER
ICS = INTERRUPT CONTROL STATUS

PAIR €S = CONDITION STATUS

UNLABELED = RESERVED

PAIR

PAIR

operand, the MQ need not be named in the instruc-
tion (thus the Multiply Step and Divide Step in-
PAIR structions can be 16 bits long) and it is imple-
mented as a high-speed register separate from the
general register file.

PAIR

The Instruction Address Register (IAR) is contained
in Control Register 13, but it is not needed directly
by the programmer. Most branch instructions are
implicitly relative to the contents of the 1AR, and the
value in the IAR can be loaded into a general register
by the Branch and Link instruction when necessary.

32-8ITS
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Instruction set. The ROMP provides a total of 118
instructions in the following ten classes:

Instruction Class Number of Instructions

1. Memory Access 17
2. Address Computation 8
3. Branch and Jump 16
4. Trap 3
5. Move and Insert 13
6. Arithmetic 21
7. Logical 16
8. Shift 15
9. System Control 7
10. Input and Output _2
Total 118

The Memory Access instructions permit loading and
storing data between the 16 GPRs and main memory.
These instructions support four types of data:

« 8-bit (character) quantities

» 16-bit (halfword) quantities

e 16-bit algebraic (sign-extended halfword) quan-
tities

« 32-bit (fullword) quantities.

Load Multiple and Store Multiple instructions are
also included in this class. They permit loading or
storing from one to 16 of the GPRs. A test and set
instruction is provided for multiprocessor synchro-
nization.

All Memory Access instructions compute the effec-
tive memory address as the sum of a GPR contents
plus an immediate field specified in the instruction
(base + displacement addressing). Two-byte memory
access instructions provide a 4-bit immediate field,
with 4-byte instructions providing a 16-bit immedi-
ate field.

The Memory Access instructions operate on data
between memory and one or more GPRs. No mem-
ory-to-memory operations are provided. The archi-
tecture allows instruction execution to continue be-
yond a load instruction before the load is complete,
if subsequent instructions do not use the loaded data.
This increases system performance by overlapping
memory access with subsequent instruction execu-
tion.

The Address Computation instructions compute
memory addresses without changing the status of the
condition codes. These instructions include a three-
address add instruction (Compute Address Short),
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increment, decrement, and 2- and 4-byte instruc-
tions which permit loading a GPr with a 4-bit or 16-
bit immediate value, respectively. Separate Compute
Address Lower and Compute Address Upper instruc-
tions are provided to load a 16-bit immediate value
into either the lower half or upper half of a GPr.
Two Address Computation instructions are provided
specifically to aid in the emulation of 16-bit archi-
tectures. They allow the computation of a 16-bit
quantity to replace the low-order 16 bits of a GPR
without altering the upper 16 bits.

The Branch and Jump instructions are provided for
decision making. Jumps are 2 bytes long, and pro-
vide a relative range of plus or minus 254 bytes.
Branches are 4 bytes long and provide a range of up
to plus or minus 1 megabyte. A group of Branch and
Link (BAL) instructions are also provided for subrou-
tine linkage.

Many branch and branch-and-link instructions have
a delayed branch form (called “Branch with Exe-
cute”) which allows overlap of the branch target fetch
with execution of one instruction following the
branch (called the subject instruction). Execution of
the subject occurs in parallel with fetching of the
target instruction, thereby eliminating dead cycles
that would normally occur during fetching of the
target instruction,

Three Trap instructions are provided for run-time
address checking. These instructions compare a reg-
ister quantity against a limit, and cause a program
check interrupt if the limit is exceeded.

The Move and Insert instructions support testing the
value of any bit in a GPR, and the movement of any
of the four 1-byte fields in a GPR. A Move instruction
is provided that allows moving any one of the 32
bits in a GPR to a test bit in the condition status
register, with a corresponding instruction that moves
the test bit value to any of the 32 bits in a GPR. A
series of Move Character instructions are included
that move any of the four 1-byte fields in a GPR to
another 1-byte field in a GPR.

The Arithmetic class supports standard Add and
Subtract operations in both single- and extended-
precision modes. Other instructions in this class
include absolute value, ones- and twos-complement,
compare, and sign-extend. Also, Multiply Step and
Divide Step instructions are provided. The Multiply
Step instruction produces a 2-bit result per step, and
can be used to construct variable-length multiply
operations. The Divide Step instruction produces a
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single-bit result per step, and can be used to construct
variable-length divide operations.

The Logical class provides AND, OR, XOR, and nega-
tion operations using two register quantities or one
register and an immediate value. Also included in
this class is a group of set and clear bit instructions
that allow any bit in any GPR to be set to one or to
Zero.

The Shift class provides algebraic shift right, shift
right, shift left, and left and right paired shifts. Shift
amounts from O to 31 bits can be specified either as
an immediate quantity in the instruction or as an
indirect amount using the value in a GPR. The paired
shifts provide nondestructive shifts that shift a spec-
ified GPR a given amount, and place the result in a
different register (the other register of a register pair)
without altering the source register.

Instructions in the System Control class are generally
privileged instructions that are valid only in super-
visor state. Included in this class are instructions that
move GPRs to and from SCRs, set and clear SCR bits,
Load Program Status, and Wait for interrupt. Also
included is a nonprivileged Supervisor Call instruc-
tion.

Two instructions that load and store GPRs to 1/0
devices are included in the Input and Output class.
These instructions are normally used to access con-
trol registers in the MMU or other system elements.

Memory addressing model

The basic concepts of memory addressing in ROMP
are shown in Figure 5 and are similar to those of
System/370. The smallest addressable storage unit is
the 8-bit byte. Two bytes make a halfword, four
bytes make a word (or fullword). Halfword and
fullword quantities must be properly aligned on 2-
byte and 4-byte boundaries in storage in order to be
loaded and stored by the ROMP storage access instruc-
tions (in this area ROMP’s memory model is that of
System/360 rather than System/370). Strings of
bytes (character strings) can begin on any byte ad-
dress, but they are manipulated by subroutines rather
than low-level ROMP instructions.

Memory addresses begin at 0 and increase “to the
right,” as in System/370. All quantities in storage
are addressed by their leftmost (high-order) byte,
without exception. This is true of the operands of
load and store instructions and branch targets. The
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Figure5 ROMP memory addressing with integral
boundaries

Figure6 RT System real memory

bytes of arithmetic quantities are never reversed as
they are moved between memory and registers.

When the virtual addressing mode of the RoMP MMU
is enabled, there are three conceptual levels of ad-
dressing to be considered.

Real addressing. This is the lowest level, as depicted
in Figure 6, the level that the programmer sees when
running with virtual addressing turned off. Memory
is a linear array of bytes starting at 0. Except for the
recording of reference and change information, there
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Figure 7 Mapping of 40-bit virtual addresses to real addresses
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is no concept of “pages” at this level. Architecturally,
real addresses are 32-bit quantities, but in the RT PC
the maximum amount of memory that can be in-
stalled is 16 megabytes.

Long-form virtual addressing. This intermediate
level, illustrated in Figure 7, becomes active when
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the MMU is enabled for virtual address translation.
Virtual memory can be viewed as a collection of
segments of 256 megabytes each. There are 4096
possible segments, cach named by a 12-bit segment
id. Each segment is made up of 2K-byte pages.
Virtual addresses in this level are 40 bits: 12 bits for
the segment id, 17 bits for the page number within
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the segment, and 11 bits for the byte offset within
the page. The total virtual space is thus 2** bytes, or
1 terabyte.

Of course, this is virtual space. In reality only a tiny
fraction of the 2*-byte space is actually in use at
once—only a few of the 4096 segments, and a max-
imum of only a few megabytes within each of those
segments. The mapping of 40-bit virtual addresses
to real addresses is done by the MMU, which signals
a page fault to ROMP when an access to an unmapped
page is attempted.

The programmer does not deal directly with 40-bit
addresses. As is seen below, the ROMP hardware
generates 32-bit virtual addresses, and the MMU con-
structs the 40-bit virtual address internally before
translating it to real.

Short-form virtual addressing. This is the highest
level, the level at which the programmer deals with
virtual addressing. ROMP’s address generation process
is the same whether or not virtual address translation
is enabled: Address computations result in 32-bit
values, and 32-bit addresses are transmitted from
ROMP to the MMU for loads, stores, and instruction
fetches.

Inside the MMuU, the first step of virtual address
translation is the expansion of the 32-bit virtual
address to a long-form (40-bit) address, as shown in
Figure 8. To do this, the high-order four bits of the
32-bit short-form address are removed and used to
select a 12-bit segment id from one of 16 segment
registers. The segment registers are contained within
the MMU and are loaded under control of the oper-
ating system; they are protected from modification
by application programs. The 12-bit segment id is
concatenated with the remaining 28 bits of the short-
form virtual address to make a 40-bit virtual address.

The effect of this is that a program has a 32-bit
window on the 40-bit world, in the form of a set of
16 of the possible 4096 256-megabyte segments. The
segment to be used is selected by the top four bits of
the 32-bit address, while the remaining bits are an
offset within that segment.

For most purposes, the program is not aware of the
presence of one or more segments in its 32-bit virtual
space. With the AIX operating system, addresses of
items on the stack lie in the range 30000000 through
3FFFFFFF (hex), while addresses of programs are in
the range 20000000 through 2FFFFFFF. However,
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Table 1 Page protection keys

Page Key Type of Page  Access Key Load Store

00 System read/write 0 Yes Yes
User no access 1 No No

01 System read/write 0 Yes  Yes
User read-only 1 Yes No

10 Public read/write 0 Yes  Yes

1 Yes Yes

11 Public read-only 0 Yes No

1 Yes No

it is possible to make direct use of the segments by
requesting that the operating system “map” a file to
a segment, share one or more segments with other
tasks, or use one of the segments to access the RT
PC's memory-mapped 1/0. A discussion of these uses
is given below.

Memory protection. In real addressing mode, no
memory protection is given. This mode is intended
for use by low-level system programs such as inter-
rupt handlers. Almost all application code runs in
virtual addressing mode.

When virtual translation is enabled, one of two
protection modes is selected. The most commonly
used mode (for “normal” segments) is similar to that
of System/370, in which a one-bit access key in
the segment register is tested against a two-bit page
protection key for the selected page, as shown in
Table 1.

For “special” segments, a finer granularity of protec-
tion is provided. This mode is intended for use by
database programs and others who need to distin-
guish between read/write and read-only access on
items smaller than a page. Each page is divided into
16 “lines” of 128 bytes each, with read and write
access granted on the individual line level. Details of
this “line locking” function are discussed in Refer-
ences 7, 8,and 11.

Programming the ROMP

Almost all programming on the RT is done in high-
level languages which hide low-level details such as
the instruction set and the number of registers. These
details are still important, for they affect the effi-
ciency of the code that the compilers generate and
thus the performance of RT programs. Some archi-
tectural features are pervasive, and show through the
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Figure8 Conversion of 32-bit virtual addresses to 40-bit virtual addresses
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languages. They affect the methodology used by the
programmer in designing and coding an application.

32 bits. On the RT, the natural unit of data is the 32-
bit word. The general registers are 32 bits wide;
hence, arithmetic on 32-bit quantities and 32-bit
addresses is very efficient. The default integer size
and pointer size for the various high-level languages
on the RT is 32 bits.

Large linear memory space. There are no 64-kilobyte
boundaries in the RT’s addressing space. The smallest
boundary is 256 megabytes, the size of a virtual
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storage segment. Almost all programs can be written
with the presumption that any data item can be
addressed with a standard 32-bit pointer; there are
no distinctions between “near” and “far” pointers.
There are no array size limitations such as 64K total
entries or 64 kilobytes total space. Programs and
data can easily be several megabytes in size.

Segments. A segment in the RT is much larger than
the segments on most other machines, and it is used
for different purposes. Each segment can be up to
256 megabytes and begins on a 256-megabyte
boundary in the 32-bit virtual space; segments do
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not overlap. Up to 16 segments can be mapped at
once, and the program can change the mapping
through calls to the operating system.

RT segments are used to provide

» Data isolation, through multiple address spaces.
The address space of a task is the collection of
segments to which it has access. In the AIx oper-
ating system, for example, one segment will con-
tain the private code for the process, another its
private data, and another its stack. These segments
are not mapped into the address spaces of other
processes, and thus are completely isolated from
the other processes.

Data sharing, by mapping the same segment into
several different processes. Private data remain
1solated as described above.

Different levels of protection, by assigning differ-
ent hardware protection keys to different seg-
ments. Thus, a segment containing code (even
private code) is normally read-only, while a data
segment is read-write.

Access to input/output, by assigning a segment to
memory-mapped 1/0.

Mapped files, by mapping the image of a file on
disk into a virtual storage segment.

The other traditional use for segments, which is to
extend addressability beyond the natural address

Figure9 Writing data to bit-mapped display using RT System’s memory-mapped 1/0

at bus; file deseriptor for I/0 bus

truct hwdbase busbase; returned values of bus addresses
*regen_buf; memory-mapped addr of display buffer
*p; ptr to a location in display buffer

= open("/dev/bus",0_RDWR); /* get read/write access to 1/0 space
octl(bus,HWDBASE,&busbase); get starting addr of memory-mapped I/0
display_ buf = compute starting addr of display buffer

(short *) (busbase.hwdmem + 0xD80000);

p = display_buf + /* point to proper location in display buf
~ <Koffset of desired locationD;
*%p = <{value; /* store data into display buffer
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Figure 10 Random access to a mapped file on the RT System

structure mapping records in file

isbn[16];

author[50};

title[100];

publisher([50];

year;
s
truct book *ptr; /* ptr to base address of mapped file *
nt bookfile; /* file descriptor *

/* open the file for reading
open(<filename>,0_RDONLY);
= /* map file into virtual memory
(struct book *) /* set "ptr" to its starting address

shmat (bookfile,0,SHM_MAP|SHM_RDONLY);

* print out the "author” field of the Nth record in the file

ntf("author = %s\n",ptr{Nl.author);

width of the machine, is also possible in the RT but
is not used nearly as often as on machines with
smaller address widths. A 32-bit address spans 4
gigabytes, which is enough for most purposes. On
the RT, this can be extended to | terabyte by manip-
ulating the contents of the segment registers.

Memory-mapped 1/0. On the RT, a single segment
register is normally assigned to map the 1/0 address
space rather than virtual memory. Access to this
segment is controlled by protection hardware in the
RT PC’s I/0 channel controller in a manner similar to
the method used by the MMU to control access to
pages of virtual storage. Thus, an application which
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has not been explicitly granted access to the 1/0
memory map cannot accidentally trigger an 1/0 op-
eration.

For applications which need to deal directly with 1/0,
it is simple to do this in high-level languages by
assigning the appropriate values to pointers and then
using assignment statements to read from and write
to the 1/0 space. As an example, it is easy to code a
¢ program which writes a screen full of graphics data
to a bit-mapped display, as illustrated in Figure 9.

Mapped files. RT segments can be used to “map”
files into virtual storage, as depicted in Figure 10,
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After a file is opened, an operating system call con-
verts the file identifier into an address in virtual
storage (a pointer) at which the first byte of the file
appears. From then on, the file can be treated as a
large array or structure in virtual storage, and is read
and written using assignment statements (i.e., load
and store instructions). Actual 1/0 to the file is im-
plicit and is done as needed by the paging supervisor.
When the file is closed, modified pages are flushed
out to their proper places in the file system.

This treatment of files can greatly simplify an appli-
cation, especially those that must read and write files
at random. Assuming that the file will fit into a 256-
megabyte segment, it is simpler and more efficient
to access elements by moving a pointer or adjusting
an array index than it is to do explicit reads and
writes through an 1/0 buffer.

Conclusions

The IBM RT PC’s ROMP processor represents an effec-
tive adaptation of the RiSC approach begun in the
801 to the real world of a small but powerful com-
puter system product. Many cost-driven trade-offs
had to be made, but even so the ROMP executes at a
sustained rate of 4.3 Mips, just under half that of an
801 with the same cycle time. This is done without
the benefit of the 801’s two caches.

ROMP is a good architectural base for future growth.
All the size limits in the current implementation (12-
bit segment ids, 16-megabyte real memory) can be
increased without major architectural modifications.
It is possible to add selected functions which are not
normally considered part of the risC domain as long
as they are carefully chosen and known from meas-
urements of actual code to pay back more in per-
formance than they cost. Examples that come to
mind are floating-point and character string opera-
tions.

The RT PC is truly a high-level language machine in
that almost everything written for it has been in C,
FORTRAN, or some other high-level language. The
programming interface has been moved above the
assembly language level. Because of this, it is even
possible to change the ROMP’s instruction set and still
maintain the parts of the programming model that
show through in high-level languages. Only the low-
est-level routines in the operating system (interrupt
handlers, for example) would need to be changed;
applications would need only to be recompiled. This
raising of the level of the programming interface may
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prove to be one of the major benefits of the RT PC in
the long run.

RT and RT PC are trademarks of International Business Machines
Corporation.
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