
A page-swapping  prototype 
for VM/HPO 

This paper  discusses  a  series of changes that were 
made to a  system  running the Virtual Machinelsystem 
Product with the High  Performance  Option to enhance 
paging.  The  motivation  and the background for these 
enhancements are discussed,  and  the  design  of  a se- 
ries  of experimental  paging  subsystems  is  described 
and  contrasted with the old design:  specifically,  the 
new  algorithms  for  main  memory  management,  block 
paging,  working set identification,  trimming, prepag 
ing,  page  replacement,  page-out  device  selection, and 
page-out  slot  selection.  The  performance  impact of 
these  changes  is  illustrated by  results  of benchmark 
measurements,  which are then contrasted to measure- 
ments  without the enhancements. Some things  learned 
in running the prototype are discussed  and  conclu- 
sions drawn. 

T he productivity of Virtual Machine/System 
Product (VM/SP) users  is improved through low- 

ered system response times.'.* Analysis  of VM/SP 
systems frequently shows that  the greatest  leverage 
in improving response times comes from improving 
the paging ~ubsystem.~ This paper explains a series 
of experiments conducted with the paging algorithms 
using a VM/SP, or VM, system  with the High  Perfor- 
mance Option (HPO). These experiments and proto- 
types led directly to the HPO Release 3.4 system 
paging enhancements. 

We  have studied VM paging  extensively4 on a number 
of  real  systems.  These studies indicated some prob- 
lem areas, but  more  importantly, they  suggested that 
interactive users had working sets that were  largely 
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repeatable across transactions. These studies then led 
to some small experiments on real  systems. Next, an 
extensive prototype was coded and benchmarked. 
Finally, the prototype was  used in production on 
one of the VM systems at  the IBM Research Center in 
Yorktown Heights, New York. 

Work on  the paging prototypes was started in 1980, 
and they became operational in 198 1. The perfor- 
mance characteristics were explored during 198 1 and 
1982. Data were obtained on IBM 434 1-2 and 308 1- 
D processors. A prototype production system was 
operational at  the Research Center in 1983 on a 
308 1 K ( 16MB) processor. 

Background 

An increasing desire for low subsecond interactive 
response times led  us to analyze existing interactive 
response times. We found that  in  many cases the 
largest component of the response time was paging 
delay. This finding in  turn led  us to consider how 
paging response time could be improved. Our anal- 
ysis of  paging in Conversational Monitor System 
(cMs)-intensive  systems  suggested that interactive 
users had working sets that were repeatable across 
transactions. We theorized that page reference his- 
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tory and scheduler information could be  used to 
improve the page-replacement algorithm and con- 
sequently to reduce the paging  delays contained in 
the response times. 

Another consideration was the tremendous growth 
in CPU power, “MIPS,” or millions of instructions per 
second,  which was not matched by a similar reduc- 
tion in  Direct Access Storage  Device (DASD) paging 
access time. Simply put, paging DASD access time 
was too long. In order to reduce  paging  delays, it 
appeared  necessary to move pages into or out of 
main storage  faster than the existing VM demand 
paging  was  capable of doing.  Since  access time re- 
duction was not readily  provided by hardware  evo- 
lution, an appropriate software solution had to be 
found. 

VM’ classifies  users  in the multiprogramming set as 
either queue one ( ~ 1 )  or queue two (QZ). The termi- 
nology comes from the fact that they are concep- 
tually on  one of two  lists or queues.  Users are nor- 
mally  placed in Q I  at the beginning of a transaction 
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and later moved to QZ if they consume a  specific 
amount of CPU time (called  a Q I  time slice).  When  a 
user completes his transaction, the virtual machine 
goes idle, and the machine is  said to be dropped 
from queue. If the scheduler  chooses to remove  a 
virtual machine from the multiprogramming set, the 
machine is  said to be involuntarily dropped from 
queue. 

During our analysis of the system, we found several 
cases  where  users  were  unnecessarily dropped from 
queue during the life of an essentially QI transaction. 
In the prototype (and subsequently in the product) 
these  “false” queue-drops were eliminated. Thus, the 
~1 drop counts more closely correspond to actual 
transaction counts. Experience  has  shown that while 
the real  response time is not affected  significantly, 
the QI drop rate  may be reduced to as little as one 
third of its previous  value, and a corresponding 
threefold  increase in the VM Monitor Analysis Pro- 
gram (VMMAP)~  response time measure (Q~SEC) value 
may occur. 

Figure 1 shows  a conceptual paging  schema  for VM/ 
SP and the HPO (prior to HPO Release 3.4), referred 
to as VM for short in the rest of this paper. 

The algorithm that is used to select  a  page  for  paging 
out in  a  paging  system  is  called the page-replacement 
algorithm. The selected  page  frees up a  four-kilobyte- 
size  place  in main memory, called aframe. VM uses 
a  global  Least  Recently  Used (LRU) demand paging 
page-replacement  algorithm. The LRU algorithm’ 
calls  for  removing the page that has  gone  unrefer- 
enced  for the longest time. The frame freed up can 
be used for  a newly referenced page that was not in 
main memory. The LRU algorithm is  used  because 
of its ability to predict the page that is  most  likely to 
go unreferenced  for the longest time in the future. 
The algorithm is categorized  as  “global” LRU because 
all  users compete for  frames on an LRU elapsed-time 
basis  equally,  as one collective  working  set  irrespec- 
tive of individual working  sets. 

The free  list in VM is  a  list of immediately available 
page frames.  They are immediately  available  because 
the contents are written to backing store as part 
of the process  of  placing them in the free  list. This 
list is  kept at a  size that is equal to the 
multiprogramming8 set plus one. The size  of the list 
ensures that if each  task  requires one free frame, one 
spare frame is  left  over. The free  list  is  replenished 
from the pool of  assigned  real  memory locations 
whenever it falls  below the threshold. Requests  for 
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frames come one  at a time because  of  page  faults, so 
the free  list tends to fall one below the threshold. 
The page-replacement algorithm then has to find 
one free frame for the free  list.  Because the threshold 
is  satisfied  when  only one frame is  placed on the free 
list, it is refilled one frame at a time. If the selected 
page has  been  changed  since it was last written, the 
new  copy must be written to a  paging  device. This 
process in turn leads to writing pages out one at a 
time. The only  chance  for  multiple-page transfers is 
when the paging  device  is  overloaded,  therefore  ac- 
cumulating a queue of  paging  requests. In this special 
case VM combines the paging  requests into a  single 
Start Input/Output Operation (SIO) if the queued 
requests are directed to the same paging  cylinder. 

The first  choice  for  frames to refill the free  list  is 
among those on the flush list. The flush list is a  first- 
in-first-out (FIFO) list  of frames that belong to users 
who  had  been dropped from queue and who are thus 
out of the multiprogramming set. In normal opera- 
tions, pages  belonging to dropped users are not 
placed on the flush  list; instead they are left in storage 
so that they  reduce the need  for  paging in the next 
transaction. Flushing is only  invoked as an overload 
control mechanism. In well-tuned  systems the flush 
list  is empty, so that the second  choice, the LRU 
algorithm known  as “core table scan,” is  used. 

VM uses an approximation to the global LRU algo- 
rithm in  selecting  a page to be removed  from main 
memory to make a page frame available. The VM 
algorithm is sometimes called  a  one-bit approxima- 
tion to LRU, because the page reference  bit  is treated 
much like  a  two-state  unreferenced interval timer. 

The LRU algorithm usually  provides  a frame belong- 
ing to  an out-of-queue  user. If a frame belonging to 
an in-queue user  is taken, this action is called  a  “page 
steal.” 

The core  table  scan  process  has  a pointer steadily 
advancing through a map of main  storage, the “core 
table,” resetting the reference bit associated  with  each 
frame. If the reference bit of a page  is not set, the 
scan  process  moves the frame onto the free  list, 
thereby  making the frame available  for other use. 
Having completed its task, the scan is then sus- 
pended. The next  scan will pick up at the next  frame. 
The time taken through the entire core  table is called 
the scan  period. 

The effect  of the core  table  scan  is that in-queue 
users,  who  reference their pages, tend to maintain 

IBM SYSTEMS X)URNAL, VOL 2 6 ,  No 2, 1987 

their frames, and out-of-queue users tend to lose 
their frames.  Because  of the random distribution of 
pages in the core table, a  user tends to lose  only one 
page at one time. Since the free  list  requires  replen- 
ishing  whenever it falls  below its threshold, pages are 
usually  moved onto the free  list one at a time. 

In VM, the process of removing  a virtual machine 
from the multiprogramming set  is  called  a queue- 
drop. At queue-drop the individual page  reference 

Flushing is a  mechanism that VM 
may invoke  at  queue-drop  time. 

bits  of  pages  belonging to a  user are reset,  thereby 
making the frames  available the very next time the 
core  scan  analysis examines them. Thus, all  of the 
user’s  pages  will  be taken in one full core scan  period, 
and the average  page  life  is one half  of the core scan 
period  for queue-dropped users. For users  who are 
in the multiprogramming set (in-queue users), it 
takes one full  core  table  scan  period to reset  all the 
reference bits associated  with their (usually  recently) 
referenced  pages. During a subsequent scan, the 
now-unreferenced pages are taken away,  resulting in 
an average  page  life  of 1.5 scans  for members of the 
multiprogramming set.  Therefore, the LRU algorithm 
is  biased  strongly  toward in-queue users.  But note 
that out-of-queue  users are allowed to hold pages for 
a  while, depending on the speed of the core  scan. 
The totality of frames  belonging to users dropped 
from queue is called the paging  buffer, and specifi- 
cally, the set of  pages  belonging to former QI users  is 
called the QI or interactive bufer. 

In VM the device  for  a  page-out allocation is  selected 
on a  basically round-robin basis;  i.e.,  each  device is 
selected in turn. The paging  algorithm remembers 
the last  cylinder  used on a  paging  device, and it 
attempts to find an unused slot  for  a  page-out on 
that cylinder. 

If it cannot do so, it locates the available  slot  closest 
to the center of the volume. If the center of the 
volume is within the paging area, the pages  will  be 



clustered around that point. If the paging area does 
not include the center cylinder, the pages  will  be 
packed at the edge nearest to the center. The inten- 
tion of this algorithm is to reduce seek distances on 
the device by clustering the pages. The algorithm  is 
sometimes  called zigzag, because of the tendency to 
move  back and forth across a volume  when the 
paging  area spans the center of the volume. In prac- 
tice, the very middle area of the device is  fully 
allocated  with pages.  New allocations and page reads 
tend to come at the edges  of the area. 

Simple tuning experiments. Trying to decide how to 
improve VM paging, we evaluated the results of  sev- 
eral  experiments.  These experiments are interesting, 
even  though  they  did not yield  positive  results. 

Flushing experiments. “Flushing” is a mechanism 
that VM may  invoke at queue-drop time if the system 
is experiencing  paging  problems. The exact  feedback 
algorithm that triggers  flushing  is unimportant to 
this discussion.  When  flushing is enabled, the pages 
of users are placed on the flush  list  when the user  is 
dropped from queue. The flush  list  is  used as the first 
source of frames. If it is empty, core table  scan 
provides the frames.  Flushing  has the effect  of pro- 
tecting  the in-queue users  from  core  table  scan by 
making all of the framys  of  out-of-queue  users im- 
mediately  available.  Since the flush  list  is a FIFO list, 
it is  essentially an LRU algorithm applied to dropped 
users. 

Some installations have found that their systems are 
more stable if the flushing  mechanism is disabled. It 
is  possible that the flushing  mechanism  actually 
made the system  worse  by overprotecting the pages 
of in-queue noninteractive users at the expense of 
interactive users. 

In order to better understand flushing, we modified 
a real  system (with real  users)  so that it flushed  all 
the time. The rationale was that if flushing was a 
good  idea  with  heavy  loads, it should be reasonable 
with  lighter  loads.  In  fact, the change  caused an 
unsustainably high  paging  load. The users demanded 
an immediate removal of the change. 

Changing the flushing algorithm to “last in first out” 
(LIFO) produced the same adverse  result. 

We concluded that flushing  is inappropriate to use 
as an overload control mechanism. If it has a place, 
it is to protect long-running batch, service, or guest 
machines by sacrificing the interactive users. 
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Reference bit resetting experiments. At queue-drop 
time the reference  bits of the pages  of dropped users 
are  reset.  Resetting  has the effect  of  biasing the LRU 
algorithm so that it will take these pages earlier, 
yielding a form of protection for the in-queue users, 
though one that is much less  severe than the flushing 
just described. 

In the next experiment we disabled the resetting of 
the reference  bit at queue-drop time. The idea  was 
that the interactive users  could  hold their pages 
potentially  longer  between transactions; they  could 
get absolute protection for one core  scan time. 

Performance  became worse. The core  scan  rate  be- 
came much greater,  with the core  scan time appro- 
priately  reduced. The reduction  in  paging  for the 
interactive users  was more than offset  by the increase 
in  paging by the in-queue users. The system  was 
characterized by a higher  rate of stealing of  pages 
from in-queue users.  Although it was  possible to  run 
the system  for a whole  day without removing the 
change, it was clear that the change was not benefi- 
cial. 

The  core  scan rate became  faster  because of the 
increase in page  residency  of the interactive users. 
With the modification, the workmg  set of a queue- 
dropped user  can  stay  resident  for 1.5 times the core 
scan time instead of 0.5 times the scan time. With 
an increase  in the residency  of  these  pages, other 
pages must be  paged out sooner. The core table  scan 
algorithm  reacts automatically by scanning more 
pages, thus reducing the core  scan period. The result 
was higher CPU overhead  for the page-replacement 
algorithm and a higher  overall  paging rate. 

Observations on VM paging. VM achieves a very 
delicate  balance  between the protection of the pages 
belonging to the in-queue users and the need to 
buffer interactive user  pages, from transaction to 
transaction. Attempts to shift the balance either to- 
ward the in-queue (continuous flushing) or toward 
interactive users (no reference  bit  reset)  resulted in 
higher  paging  rates and poorer performance. 

Although it is attractive to do paging experiments 
on a real  system,  they  must  be  preceded by controlled 
experiments with a known  workload and no real 
users to be disrupted. 

Prototype experiments 

Our basic  objective was to improve interactive (CMS) 
response time by reducing page  waits and making 
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the paging  subsystem more efficient,  especially for 
large  systems. 

A series  of prototype experiments was started when 
we discovered indirect evidence in VMlMonitor data9 
that CMS working sets  were  highly repeatable. The 
prototypes aimed to exploit this observation. 

Fortuitously, high-data-rate movable-head direct ac- 
cess  devices (i.e., the IBM 3380 DASD) became avail- 
able in this time frame. The prototypes tried to make 
use  of the fast data transfer capability of these DASD 
devices by using  page-blocking techniques. 

Working set considerations. One observes that VM 
systems  with more storage  page  less. One may  as- 
sume  that this occurs because  fewer  pages are stolen 
from active users.  In fact, the pages  belonging to 
queue-dropped users are retained in main storage 
and are reused during the next transaction. Traces 
of user activity demonstrated that  the more frames 
a CMS user  still owns in main storage at queue-add 
time (when the user becomes active), the fewer  page 
faults the user encounters. Figure 2 illustrates this 
phenomenon. We concluded that CMS users  have a 
repeatable working set, i.e., one that goes  across 
“transactions,” which are queue-stays (not CMS trans- 
actions). From this conclusion we inferred that ex- 
plicit  prepaging, i.e., fetching the pages  belonging to 
a user’s working set  all at once, instead of one at a 
time, might work. 

DASD considerations. The use  of single-page SIOS is 
not very efficient  for DASD (or for the CPU), so we 
decided to make an  attempt to use “block paging” 
when  possible. 

Figure 3 illustrates the conceptual advantages of 
block  paging.  Each SIO operation incurs  an “over- 
head” A, consisting of control unit protocol time, 
seek to the cylinder sought, rotational latency to 
reach the desired  page, and potentially additional 
lost rotations if the path is  busy  when the  attempt is 
made to reconnect to  do the  data transfer (RPS miss). 
Thus, in the case  of a single  page  being transferred 
per SIO, there is one overhead A associated  with each 
page transfer B. In contrast, when multiple consec- 
utive pages are transferred with a single SIO opera- 
tion, there is a single overhead A associated with 
multiple Bs. Clearly, the  importance of the overhead 
diminishes. 

Table 1 shows the results  of modeling the compari- 
son for demand  and block  paging  use  of 3380s. The 
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Figure 2 The  importance of resident  pages 

Figure 3 Advantages of blocked I10 operations 

Table 1 3380 Paging  performance  in  demand  and  block 
~ ~ _ _ _  

paging  modes 

Demand Block 
Paging Paging 

Pages  per S I 0  1 10 
Actuators per path 4 2 
Paging rate per path 60/s 2W/s 
Paging rate per actuator 15/s 1 W/s 
SI0  response time 29 ms 48 ms 
Average time for one page 29 ms 4.8 ms 

left column indicates that when 3380s are used in 
demand paging mode, a paging response time of 29 
milliseconds (ms) is obtained with 15 pages per 



Figure 4 Allocation  density by cylinder 

second (s) per actuator, and four actuators per path. 
The right column indicates that with  block  paging 
( 10 pages per sro) 100 pages  per  second  per actuator 
per path can be supported with  only  two actuators 
per path, and the SIO completion takes 48 ms, i.e., 
4.8 ms  per page. Clearly,  blocking is advantageous. 

Its effect  is to essentially  establish  “big  pages,”  since 
the result  is as if a  single  big  page  were transferred 
when multiple related pages are transferred with  a 
single SIO. 

Note that a granularity advantage  is obtained in 
comparison with  a  scheme that used  genuine big 
pages, since the individual small-page components 
of this big  page can be (are) changed  individually 
with time, which  would not be true for  a  single big 
page. 

Real  storage  use  considerations. In VM, pages be- 
longing to inactive users are retained  in main storage 
without any consideration as to whether such a  user 
is  likely to be dispatched or the page  is  likely to be 
used. We change this situation by more closely relat- 
ing  real  storage use and prepaging to scheduling, 
which  is done by letting the scheduler  provide  fre- 
quent hints to the paging  subsystem. 

In VM, the size  of  a  user  working  set  was  indirectly 
estimated in a way that was dependent on the work- 
load. We reduce this workload dependency by deter- 
mining the real  working  set of  users,  which  is done 
by trying to identify the actual working  set pages. 
Furthermore, if main storage is overcommitted, we 
keep  only the “needed” working  set pages for  sched- 
uled  users.  Specifically, the number of in-queue users 
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is controlled on the basis  of  storage  use,  thereby 
avoiding  a strong overcommitment of main storage. 

Explicitly maintaining an interactive or QI buffer  by 
holding Q I  users’  working  sets  in  memory  as  long  as 
possible after queue-drop is an attempt to improve 
interactive response time. 

Round-turkey  prototype. The page-allocation  algo- 
rithm that places  pages into paging areas on DASD is 
changed in this prototype in order to encourage the 
frequency of block  page-outs. Our goal  was to write 
multiple pages on each  device  as it was  selected in 
turn; we aimed to reduce 

The number of I/O operations initiated 
The number of times that disk arms need be 

The distance when  they are moved 

Three algorithms were  changed: the ones for  device 
and slot  selection and the one for handling of un- 
changed  pages. 

Device selection. VM selects  a  device to be  used  for 
page-out by placing one page on one device and 
placing the second page on the next  device on a 
round-robin basis. 

The basic concept of the new device-selection  algo- 
rithm in the prototype is to select the same  page-out 
device (up to) eight times, unless  a  cylinder boundary 
is reached. The repeated  selection of the same  device 
allows the grouping of multiple page-out  requests 
within the same sro operation, resulting in blocked 
page-out  requests. Thus, in view of the previous 
terminology, the new algorithm  is  seen as a bigger 
but slower-moving bird-a “round turkey.” The pro- 
totype  itself took its name from the device-selection 
algorithm. Note that page reads remain unblocked. 

New slot-selection algorithm. The zigzag  slot-selec- 
tion algorithm of VM is  replaced  with  a  “moving- 
cursor” algorithm. This algorithm maintains a 
pointer that moves  across the paging area. The cursor 
points at a  slot that is to be  used for  allocation if the 
slot is  free. The cursor is advanced steadily  across 
the paging area, as required by the allocations taking 
place. The expectation is to find empty, unused areas 
ahead of the cursor. This construction was  devised 
to provide  a high probability  for the existence of 
contiguous empty slots,  which in turn provides effec- 
tive  blocked  page-outs. It also  reduces nonzero seek 
frequency and seek  distances.  Experience indicates 

moved 
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that as the allocation cursor is advanced, a wave  of 
page  references  moves across the DASD volume. The 
allocation occurs ahead of the cursor, and page reads 
occur behind the cursor, but  the band of  pages 
referenced frequently is rather narrow; i.e., there is a 

We designed  the  prototype so that 
unchanged  user  pages  are paged 

out. 

well-defined temporal locality of reference. The cur- 
sor is  reflected at the end of the paging area to avoid 
long seeks  which  would  be  necessary  if allocation 
were then  to return to  the beginning of the area. 
Figure 4 shows the density of the pages allocated to 
cylinders in the paging area at a point of time. 

Writing unchanged pages. VM (as do other  demand 
paging operating systems) retains the backing slot 
location of  page frames that  are brought into main 
memory. If the frame is needed later, the  contents 
need not be written out if the page has not been 
changed. This algorithm reduces the number of I/O 
operations required. 

We designed the prototype so that unchanged user 
pages are paged out in order to aid the moving- 
cursor-allocation algorithm. It is intended to move 
referenced but unchanged pages along with the mov- 
ing wave of pages across the paging area. This reduces 
the need to move the disk arm  to a random point 
away from the  current  arm position when such a 
page  is later referenced. Thus, arm movement is 
reduced at  the expense of a higher  page-out rate. 
Since page-outs are blocked, this design  seemed to 
be a good  trade-off. 

Importance of contiguous slot allocation. An experi- 
ment was done in which the moving-cursor algo- 
rithm was disabled. The system  was changed to 
allocate at  the right  edge of the paging area. This 
allocation is  very similar to  the one  that VM does 
within an off-center  paging area. The scheduling of 
multiple page-outs to a device was still attempted, 
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but  the lack  of contiguous allocation caused scattered 
allocation. As a result, the use  of a single channel 
program for the set  of  pages to be written was pre- 
vented. Performance of the system  with this change 
was  worse than  that of the base system. 

Experimental results. The  combination of round- 
turkey and moving-cursor algorithms tends  to result 
in an effective  page-out  blocking method. Care must 
be  used that  the paging area is  large enough to allow 
contiguous page allocation, yet small enough that 
seeking does not become excessive.  If the area is 
overly  large, the occasional seek to a page at a 
random point in the area may be a long distance 
from the cursor. It was shown that  the contiguous 
slot allocation was critical to  the  other algorithms in 
the prototype. The prototype illustrated reduced re- 
sponse times, reduced frequency of paging SIO oper- 
ations, and improved throughput. 

Prepage  prototype. Figure 5 shows the paging 
schema in the prototype system. A brief  overview  of 
the schema is given  first,  followed by a detailed 
discussion  of some aspects. The left  side  of the 
diagram is  very similar to  the  demand paging  sub- 
system in VM, illustrated in Figure 1. When a page 
fault occurs and  the page  resides on a paging DASD, 
a frame is obtained from the free list; then a page-in 
operation for one page takes place in  the  normal 
fashion into this frame. Page-outs are performed in 
a similar fashion, but now  they tend to be blocked, 
in contrast to VM. 

The right  side  of the diagram represents the new 
swapping operations. When a user reaches the  end 
of its queue-slice and is queue-dropped, the user’s 
working set pages are “logically swapped,” which 
means that  under  normal circumstances they are 
retained in  main storage. Pages not in  the working 
set are “trimmed”; i.e., they are moved onto  the flush 
list,  which  is the first source of frames with  which to 
replenish the free  list. Thus, in the experimental 
system,  flushing is a normal, expected operation. 

Obviously it is not possible to  maintain  the working 
set  of  all  users in  main storage  forever. When a page 
frame shortage is detected, the honeymoon of a 
logically swapped user comes to  an end,  and physical 
swap-out takes place,  releasing some of the user’s 
frames for other use.  In other words,  physical  swap- 
out is then used to replenish the free  list. 

Physical swap-out means that  the next user on  the 
swap  list  is identified, and some of his working set 
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pages are swapped out.  The next physical swap-out 
operation required because  of frame shortages forces 
more of the working set pages  of this user to be 
swapped out. A user  is  always totally swapped out 
before another user  is  selected from the swap  list as 
a candidate for physical swap-out. 

Users are placed on  the swap  list in FIFO order as 
they drop from the active queue. However, there is 
a separate swap list for Q2 and Q I  dropped users, and 
~2 users are physically swapped out before ~1 users, 
thereby providing preference to QI users. 

Sometime later a swap-in operation will sequentially 
read back the swapped-out working set  pages of the 
user. 

Relationship to scheduling. In the earlier paging sys- 
tems most of the concern for the management of 
page frames centered around identifying working  set 
frames for a running program. In interactive systems 
a slowly reacting (at least in machine terms) user 
appears as an I/O device to  the system. Since it has 

become clear that working set  pages span transac- 
tions in VM, it is desirable to have the scheduler 
provide additional hints  to  the paging system. 

The scheduler needs to tell the paging  subsystem 
when transactions start  and stop, when the scheduler 
temporarily suspends them, when time slices end, 
and whether they are interactive or long-running. 
These hints are used  by the paging  system in  man- 
aging  real memory, in the page-replacement algo- 
rithm,  and  in determining working  set  pages. In 
order to provide these hints a number of scheduler 
changes had to be  effected. 

Working set identijcation. At queue-drop the exper- 
imental system  identifies all nonshared pages  refer- 
enced during the previous queue-stay. These pages 
can be considered to be the real working set pages” 
with a fixed delta tau (using Denning’s terminology) 
equal to  the  time slice. The reference bits of these 
pages are reset. It is immaterial whether these refer- 
enced  pages are changed or unchanged, and by our 
definition these are “needed pages.” These pages are 
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logically swapped, whereas the  “unneeded” pages are 
trimmed  to  the flush  list. 

In order to identify working sets on a transaction 
basis, a significant change was made to  the manage- 
ment of  page  reference  bits. It is important  that 
reference bits not be reset by an asynchronous func- 
tion  (the core table scan) during the processing  of a 
trivial transaction. Such resetting would make pages 
appear to be unreferenced at  the  end of the transac- 
tion,  thus removing them from the working set. The 
system was changed to cause reference bit resetting 
at queue-drop time instead, as a part of working  set 
determination. 

Swap-out operations. Physical swap-out means that 
the next  user on  the swap list  is identified, and  one 
or more of his  swap  sets  is  swapped out. 

The so-called swap sets are formed by grouping the 
logically swapped (working set) pages  of a given  user 
in order of virtual addresses into sets  of  pages. Thus, 
swap sets are related by virtual address and time of 
reference, since all the pages in a swap set  were 
referenced during  the same queue-stay. The pages in 
a swap set are written together on a paging  device. 
In most cases the allocation yields consecutive slots 
on  the device. The size  of a swap set is an adjustable 
system parameter. A swap set exists on a paging 
device until it is swapped in, after which the affinity 
of the pages  is lost. 

After  writing a swap set, the user will have one or 
more swap sets on  the paging  device, but  the user 
may still  have other frames in main storage, still in 
logical  swap status. Thus, a user can be partially 
swapped. 

After each new queue-stay, swap  sets are formed 
afresh for swap-out, and  the pages in  them may be 
different than before. Note that not all swap sets of 
a virtual machine necessarily come from the same 
queue stay. 

Swap-in operations. When an interactive user  be- 
comes ready again, preliminary to being queue- 
added, this condition normally causes a page fault 
to take place,  usually for the first  page in  the user’s 
address space. If the page fault occurs to a page in a 
swap set, the entire swap  set  is swapped in. This 
procedure, called “swap faulting,” provides the 
blocking advantages described earlier. The swap-in 
operation will sequentially read back  all the pages in 
the swap  set into nonadjacent frames of main stor- 
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age.  At this time  the locations of the slots on  the 
paging  device are made available for reuse. The 

The  process of bringing  in all  pages 
of a  swap  set  is  a form of prepaging. 

process  of bringing in all pages  of a swap  set  is a 
form of  prepaging. It is assumed that  the  time of last 
reference and  the virtual address affinity  of the pages 
predict a likely future use  of the  other pages. Should 
any of the pages not be  referenced, they are  trimmed 
at  the next queue-drop. If a swap  set  is not brought 
into  main storage during a queue-stay, its identity 
can be retained across multiple queue-stays. In most 
instances, however,  especially for interactive users, a 
swap  set  exists only between consecutive queue- 
stays.  Swap sets are really big pages, since they are 
always written and read together, and a page fault to 
any one, a swap fault, causes the entire swap  set to 
be  read. 

After a swap-in operation the referenced bits of the 
pages  swapped in are reset in order to avoid mislead- 
ing reference indications. The user’s continued exe- 
cution will later cause setting of most page reference 
bits, but  not all  pages  swapped in are subsequently 
referenced. The unreferenced pages in referenced 
swap sets are called  prepage errors. These are page 
reads that a demand paging  system would not have 
done. They represent the change in content of  work- 
ing sets through time. At the next queue-drop the 
unreferenced pages  will be flushed and paged out. 

Logical swapping. At queue-drop the user’s working 
set  pages are “logically  swapped out”; i.e.,  his  page 
tables are invalidated, and  the user is placed on  the 
swap  list. Under  normal circumstances the user’s, 
especially an interactive user’s, working set pages 
therefore are retained in  main storage, even though 
the page tables are invalidated. The totality of such 
working set pages  belonging to interactive users rep- 
resents the interactive buffer. 

The most important source of  pages for a transaction 
is those pages that have been retained in main  mem- 
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ory from the last transaction; Le., they were  logically 
swapped out. When a transaction starts, all the user’s 
logically swapped-out pages are immediately re- 
turned to him with the reference bits turned o@ i.e., 
these pages are logically  swapped in. The logical 
swap-in, unlike physical  swap-in, returns all of the 
prior working  set to  the user. In a well-tuned system, 
most transactions complete without the need for any 
physical  swap-ins. At the next queue-drop any re- 
maining unreferenced pages are paged out. These 
pages  were present in the prior working set, but  are 
not a part of the  current working set. 

Multiprogramming level control. In VM, users  were 
queue-added if the projected working set of the user 
plus the sum of the working sets of in-queue users 
(SUMWSS) amounted  to less than  the Available Frame 
Count (APAGES). Q I  users  were  given preference be- 
cause APAGES was increased by a factor of 1.25 for 
Q I  users; thus they  rarely noticed the reality  of main 
storage constraint. The calculation ignores the re- 
quirement for an interactive buffer. Some installa- 
tions attempted  to obtain that by artificially  lowering 
APAGES. 

We concluded that VM tended to place an excessive 
number of 4 2  users into  the multiprogramming set. 
The prototype was  used to evaluate the possible 
benefit  associated  with regaining the frames of some 
of these 0 2  users.  In order to regain the frames, a 
fixed upper limit on  the number of Q2 users was 
established. The  number was experimentally set to a 
point that reduced the  number of Q2 users requiring 
resident pages but still prevented throughput reduc- 
tion because  of a lower Multi-Programming Level. 
If this artifice was found to be  effective, a feedback 
mechanism would be created in the future. 

Minimum working set. A default systemwide mini- 
mum working set size  of two swap sets is established 
for users. This means that if the user has at least two 
swap  sets’ worth of  pages at queue-drop time, his 
working set will not be trimmed below that value, 
and  at least this much will  be  physically swapped out 
if physical  swap takes place. Normally noninteractive 
users have many more pages than two swap sets’ 
worth (i.e., 16  pages  if a swap set size  of eight is 
used), so the effect  of this value is to guarantee less 
trimming for interactive users,  which translates into 
more physical swapping and less demand paging. 

Replacement  algorithm. The effect  of the various 
modifications is to convert the page-replacement 
algorithm from a global LRU page replacement to a 

hybrid. Swap  pages  of dropped users and trim pages 
are handled in FIFO queues, and are thus global LRU. 
The page-replacement algorithm for in-queue users 
becomes oriented to  the working set, since at each 
reexamination of a user by the scheduler, the  un- 
referenced  pages from the last examination are 
trimmed. All reference bits are  then reset so that 
trim and working set pages can be determined on 
the next examination. 

Prepaging at  queue-add. In order to take advantage 
of the parallelism of swap paths, the experimental 
system provides for a minimum swap-in  size of two 
swap sets for interactive users. This means that when 
an interactive user becomes ready, two of his  swap 
sets are prepaged, i.e., swapped in.  The experimental 
system does no prepaging for noninteractive users. 
It is important  to limit prepaging: If all the swap sets 
were  always swapped in  or  out  at once, a large  user, 
e.g., a Multiple Virtual Storage (MVS) guest, could 
easily overwhelm the paging subsystem. 

Free list replenishment. During early runs with the 
prototype we observed that  the free  list was fre- 
quently empty. This problem is serious, because it 
leads to waiting for page-out completion before  page- 
ins can be scheduled. The correction .is to increase 
the  minimum size  of the free  list. 

Full prepaging experiment. An experiment was done 
in which the working  sets  of  all Q I  and Q2 users  were 
fully prepaged at queue-add. The system  showed  very 
high  swap rate and poor performance. This amount 
of prepaging brought in pages much earlier and 
brought in whole swap sets that were ultimately not 
referenced at all. Such unnecessary use  of main 
memory caused contention for memory which  re- 
sulted in high  swap  rates.  We  observed that users 
with  large  working sets would fully consume  the free 
list in order to prepage  all  of the swap  sets. Thus,  the 
idea of full prepaging was abandoned. 

Results. In the experimental system, physical  swap- 
out,  not core table scan as  in VM, is the major source 
of frames for the free list. If for some reason swap- 
outs do not provide enough frames to replenish the 
free list, user  page “stealing” (via core table scan) 
remains as the mechanism of  last resort. If core table 
scan  is invoked frequently, as demonstrated by a 
high steal rate in VMMAP, the swap mechanism is not 
functioning properly or  the system  is running  out of 
memory below the 16-megabyte line. 

Since most of the  time swap-in operations require 
more than  one frame at a time, the free  list had to 
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Figure 6 The  experimental  system  paging  schema 
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be made  larger than before by requiring a higher 
minimum. 

This prototype was characterized by an increased 
paging  rate and a dramatic reduction in  trivial  re- 
sponse time. In addition, there was a small  increase 
in CPU time in  supervisor state, due  to increased 
management of  paging and the higher  paging  rate. 

Contiguous block page prototype. The contiguous 
block  page prototype was characterized by the addi- 
tion of special  paging areas for the placement of  swap 
sets.  This addition was made in order to ensure 
contiguous allocation and a single SIO for  each swap 
set. 

Figure 6 shows a conceptual schema of paging  in the 
experimental Swap Prototype system. The diagram 
is  very similar to the demand paging  subsystem in 
VM, illustrated  in  Figure 5. The special data sets  for 
contiguous allocation of  swap  pages  have  been added 
to the diagram. 
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Two  new algorithms were added to this prototype. 
The first  was for management of swap  areas, and the 
second was for  demand-paging certain pages that are 
not  subject to swapping. 

Contiguous  page datasets. Contiguous page datasets, 
or swap  areas,  are used to contain working  set pages. 
The format is the same  as  for any other paging area 
in the system. The moving-cursor  algorithm is  used 
for  allocation. The big  difference  is that the number 
of pages allocated at one time is equal to the size  of 
a swap  set. Thus, a single SIO is  all that is  ever  needed 
to read or write a single  swap  set. 

Garbage collector. Pages  belonging to virtual ma- 
chines are handled by logical  swap, trim, and physi- 
cal  swap. There are pages that do not belong in this 
category,  such  as 

Shared  segment pages 
Control-program-owned pages 
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Figure 7 Trivial  transaction  response 

Table 2 Measurements on a 3081D 

VM System Base Prototype 

Users 310 3 10 
Main  memory 16 MB 16 MB 

CPU busy (per  CPU) 1 0 0 %  100% 

VI0 rate 377 412 
Paging SI0 rate 240 136 
Percent  page  wait 14 6 
Page 1/0 time 20 16 
Swap 1/0 time - 42 

Q1 seconds 0.78 0.36 
Q1 drop  rate 19.4  20.5 
Page read per Q1 11.6 1.4 

Q2 seconds 10.3 8.6 
Q2 drop  rate 4.8  4.4 

Users in Q 1 15 10 
Users in Q2 55  40 

Swap  paging  rate - 720 
Demand  paging  rate 425 50 

User  pages not in  working  set (obtained without 

Spool  buffer  pages 
queue-add and not trimmed) 

In VM the “core table scan” disposed of these pages. 
In the experimental system, core table  scan is not 
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normally  invoked  (except  as a last resort); thus a new 
mechanism is required to handle “disposable” pages 
of this type. A periodic core  table  scan is introduced 
which looks  for  these pages. It  scans one eighth of 
the dynamic paging area every four seconds,  resets 
the reference  bits  of  pages  of this type, and disposes 
of unreferenced “nonuser” pages  by putting them on 
the flush  list,  i.e.,  effectively  establishing a working 
set  for this type of page and trimming the disposable 
ones.  Clearly  all  such  pages are examined in 32 
seconds, and the unreferenced page lifetime is 48 
seconds on average  for  these kinds of  pages. 

Results. This swapping  mechanism  provides at least 
two blocking  advantages.  Since  all the pages written 
by a single SIO are contiguous, device  busy time is 
reduced. Also, the blocking means that the number 
of SIOS executed  is  reduced, and thus many CPU 
cycles are saved.  Both a SIO reduction and a CPU 
reduction  (significantly  below either the prior  pro- 
totype or the base  system) were found in this proto- 
type. This result was also translated into an increase 
in throughput. The prototype also  showed a yet 
greater improvement in the interactive response 
time. 

Performance  results 

Measurements were made on a 16MB 308 1 D proc- 
essor  with VM/SP HPO 1.0 and compared with the 
experimental system  prototype. In this measure- 
ment, the number of users  was  varied  between 125 
and 360, and a synthetic benchmark was  used  with 
a randomly generated “user think time” averaging 
15 seconds. 

The paging  configuration used  was  six IBM 2305 
Fixed  Head  Storage actuators on three channels for 
the VM (base)  case. 

The  paging  configuration  for the experimental sys- 
tem prototype was as follows: 

Swapping: 

Paging: 
Six 3380 actuators on three channels 

Two 2305 drums  on one channel 

There was no other configuration  change  between 
the two runs. 

The prototype contained code to limit the number 
of 42 users to a fixed number. False queue-drops 
make the average 41 transaction appear to have 
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much shorter response time than it  really  has. The 
HPO 1 .O system was modified in a way similar to  the 
prototype to avoid  false queue-drops in order to 
make transactions (and measurements) consistent. 

Figure 7 indicates little difference  between the trivial 
responses for the cases  when the  number of users 
was kept  low. For the case  with  310  users, the 
experimental system prototype provided much bet- 
ter response time  than  the base  case,  whose response 
time became unacceptable. The experimental system 
could still support 360  users,  whereas the base  case 
could not. 

Table 2 shows a  number of important improve- 
ments. The most important result  is the reduction 
in Q I  response time (known as Qmcs in VMMAP). 
The  number of  page reads (demand paging)  shows a 
dramatic reduction, which also largely accounts for 
the reduction in percent page  waits. There is a slight 
improvement in throughput, as indicated by the 
virtual input-output (VIO) rate and 91 drop rate 
increases. The reduction in ~2 drop rate can probably 
be explained by 4 2  transactions becoming Q I  trans- 
actions because of  less paging. There is a significant 
reduction in paging SIOS and interrupts, resulting in 
the CPU saving  which  led to  the  throughput improve- 
ment.  The overall  paging rate increased significantly 
but did not present a problem since the 3380 paths 
could handle the load. The 3380  disk  devices could 
handle the swap paging rate without any difficulty. 
The reduction in the number of 2305s did not hurt 
performance, and perhaps their presence was not 
essential. 

Two sets of measurements were made on a 4MB 
4341-2 CPU. User think times were randomly gen- 
erated to obtain the desired think  time averages. In 
one case, 10 seconds of think time was  used  with 50 
users; in the  other case,  15 seconds of think time was 
used  with 75 users. Note that each combination of 
think  time  and  number of users results in  the same 
system transaction rate. 

In all  of the measurements, six IBM 3350 DASD 
actuators  on three (nondedicated) channels were 
used for paging.  In the prototype case, three actuators 
were  used for swapping and three for paging. There 
was no other configuration change of any kind. 

Table 3 shows the range of improvements when 
measurements of VM/SP 1.1 are compared with the 
prototype. Trivial response time improved signifi- 
cantly, and  the throughput improved slightly on the 
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Figure 8 Response  time  for  the 4341 experiments 

Table 3 Measurement  results  on 4MB 4341-2 

Improvement 

Virtual  CPU  increase 3 to 4% 
VI0 increase 4 to 6% 
Trivial  rate  increase 4 t o 5 %  
Scripts  completed 4 to 6% 
1/0 interrupt  decrease 26 to 35% 
Trivial  response  improvement 28 to 36% 
Paging SI0 decrease 52 to 60% 
Dispatch  decrease 11 to 12% 
Paging  rate  increase 41 to 60% 

prototype when compared with the base. The 
throughput improvement can be attributed  to  the 
reduction in paging SIOS and interrupts. The overall 
paging rate increased but did not present a problem. 

Figure 8 shows a plot of response time versus active 
users. This plot combined the results of all the IBM 
4341  processor measurement runs. The plot shows 
that response time remained essentially unchanged 
with the prototype while  it rapidly increased in the 
base  case. The plot would indicate that  the same 
response time can be obtained with 20 active users 
in the base and 30  users in the prototype. This result 
seems to indicate a capability to  support 50 percent 
more users  with the same response time. 



Observations  based on  the  prototype  measurements. 
All of the measurements indicate that  the experi- 
mental system (1) can support a larger number of 
users than  the base, or (2) can provide improved 
response time, or (3) can offer some  combination of 
both. 

Things learned 

The experiments with the prototype provided some 
useful observations: 

1. Demand Swap (swap fault) works. There is an 
indication that it is worthwhile not swapping in 
all of the swap sets at  the same time, since occa- 
sionally there are swap  sets that remain unused. 
It was beneficial to limit the  automatic prepaging 
at  the beginning of a transaction. It limits the 
loading effect on the swapping subsystem that 
would  be caused by the  immediate prepaging of 
a large number of  swap  sets. Further,  the potential 
storage pressure is also reduced. 

2. Page  Steal Rate is a sensitive indicator. When free 
list  value was not set high enough, significant 
(higher than  one percent) stealing occurred. 
Clearly, in a swapping system stealing is undesir- 
able. 

3. Multi-Programming Level (MPL) control is im- 
portant. When the prototype was initially run 
without explicit MPL control, too many ~2 users 
were queue-added. Thus, the prototype was 
changed to  run with a “fixed” Q2 MPL control. 
Furthermore,  the VM/HPO Release 3.4 product 
was designed to provide dynamic MPL control 
using the interactive buffer concept. 

4. Overall paging rate increases, but  demand paging 
rate is much lower. The paging rate increases 
(most of paging  is due to swapping) partly because 
of the fact that  the increased throughput requires 
more paging, partly because some of the pages 
swapped in  are  not really required, and partly 
because prepaging causes pages to occupy frames 
before they are actually referenced, which may 
increase page  residency time. However, in all 
observed  cases, demand paging rate was dramat- 
ically decreased, thereby reducing (or eliminating) 
the need for 2305s. 

5 .  3380 devices are excellent for swap  paging. In  the 
308 1D measurements a paging rate of up  to 800 
pages per second was  easily supported by 3380s. 
Thus, since the high data rate dominates for 
swapping load, 3380s are eminently suitable de- 
vices. 

6 .  Prepaging  large ( ~ 2 )  users may be destructive. In 
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an early  version of the prototype the entire work- 
ing set was swapped, and  the 3350s used could 
not support  the heavy instantaneous paging load 
that resulted. Also, total swapping created an 
instantaneous requirement for a large number of 
free  page frames. Thus, swap faults were invented, 
and prepaging control was introduced. 

7. The old size  of the free  list is inadequate in a swap 
environment. Prepaging requires that many free 
pages  be available suddenly, and  the old free list 
could not supply frames fast enough. 

8. Blocked  page-outs are helpful. The round-turkey 
prototype has shown  significant improvements 
just by blocking  page-outs without any other 
change. 

Conclusions 

The experimental system  paging enhancements  im- 
prove interactive response time by improving the 

The  experimental  system is only an 
adjunct  to large real memory. 

efficiency  of the paging subsystem. The efficiency 
was improved in several ways. The system  now 
makes better use  of  real memory and therefore 
makes some  demand paging unnecessary. In many 
cases multiple contiguous pages are transferred fol- 
lowing one DASD access, reducing average  access time 
and DASD busy time. 

The experimental system  is only an adjunct  to large 
real memory. Ample real memory remains a require- 
ment for large  systems. The experimental system 
provides the best  benefit in heavy  paging environ- 
ments. Although the prototype was aimed at inter- 
active users, it works acceptably for long-running 
tasks. 

The experimental system  paging enhancements  im- 
prove interactive response time, but they also im- 
prove throughput because the supervisor CPU time 
is reduced. The CPU time is reduced as a side effect 
of the page-bloclung techniques which reduced the 
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frequency of s~os and I/O interrupts. Also, the reduc- 
tion in the number of user  page-wait conditions 
reduces  scheduler and dispatcher invocations. 

Relationship  to  the HPO Release 3.4 product 

The experiences  gained in doing this series of pro- 
totypes led directly to the paging enhancements in 
Release 3.4 of H P O . ~ , ” - ~ ~  There are  several  differences 
between the prototype and the product. 

The operational and system generation character- 
istics  were  improved in the product by making 
many hard-coded constants into installation-speci- 
fiable parameters. 
In the absence of defined  swap  areas, the product 
pages out pages that would  otherwise  have  been 
swapped. At the time of a reference to such a page, 
the product brings in the particular page,  whereas 
the prototype brought in all  of the pages that 
would  have  been  swapped in. The product has the 
advantage of behaving  in a way more consistent 
with prior releases in the absence of  swap  areas. 
The prototype made no change to the selection of 
members of the multiprogramming set but did put 
a fixed limit on the size. The product has much 
more  sophisticated  algorithms,  with appropriate 
feedback,  for determining the size and content of 
the multiprogramming set. 
The product contains a new parameterized  algo- 
rithm to select interactive and noninteractive users 
for  physical  swap-outs. 
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