A page-swapping prototype
for VM/HPO

This paper discusses a series of changes that were
made to a system running the Virtual Machine/System
Product with the High Performance Option to enhance
paging. The motivation and the background for these
enhancements are discussed, and the design of a se-
ries of experimental paging subsystems is described
and contrasted with the old design: specifically, the
new algorithms for main memory management, block
paging, working set identification, trimming, prepag-
ing, page replacement, page-out device selection, and
page-out slot selection. The performance impact of
these changes is illustrated by results of benchmark
measurements, which are then contrasted to measure-
ments without the enhancements. Some things learned
in running the prototype are discussed and concilu-
sions drawn.

he productivity of Virtual Machine/System

Product (vM/sP) users is improved through low-
ered system response times.'? Analysis of vM/sp
systems frequently shows that the greatest leverage
in improving response times comes from improving
the paging subsystem.? This paper explains a series
of experiments conducted with the paging algorithms
using a VM/SP, or vM, system with the High Perfor-
mance Option (HPO). These experiments and proto-
types led directly to the HPO Release 3.4 system
paging enhancements.

We have studied vM paging extensively* on a number
of real systems. These studies indicated some prob-
lem areas, but more importantly, they suggested that
interactive users had working sets that were largely
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repeatable across transactions. These studies then led
to some small experiments on real systems. Next, an
extensive prototype was coded and benchmarked.
Finally, the prototype was used in production on
one of the vM systems at the 1BM Research Center in
Yorktown Heights, New York.

Work on the paging prototypes was started in 1980,
and they became operational in 1981. The perfor-
mance characteristics were explored during 1981 and
1982. Data were obtained on 1BM 4341-2 and 3081-
D processors. A prototype production system was
operational at the Research Center in 1983 on a
3081K (16MB) processor.

Background

An increasing desire for low subsecond interactive
response times led us to analyze existing interactive
response times. We found that in many cases the
largest component of the response time was paging
delay. This finding in turn led us to consider how
paging response time could be improved. Qur anal-
ysis of paging in Conversational Monitor System
(cMs)-intensive systems suggested that interactive
users had working sets that were repeatable across
transactions. We theorized that page reference his-
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Figure 1 Paging schema
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tory and scheduler information could be used to
improve the page-replacement algorithm and con-
sequently to reduce the paging delays contained in
the response times.

Another consideration was the tremendous growth
in CPU power, “MIPS,” or millions of instructions per
second, which was not matched by a similar reduc-
tion in Direct Access Storage Device (DASD) paging
access time. Simply put, paging DASD access time
was too long. In order to reduce paging delays, it
appeared necessary to move pages into or out of
main storage faster than the existing vM demand
paging was capable of doing. Since access time re-
duction was not readily provided by hardware evo-
lution, an appropriate software solution had to be
found.

vM? classifies users in the multiprogramming set as
either queue one (Q1) or queue two (Q2). The termi-
nology comes from the fact that they are concep-
tually on one of two lists or queues. Users are nor-
mally placed in Qi at the beginning of a transaction
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and later moved to Q2 if they consume a specific
amount of cpu time (called a Q1 time slice). When a
user completes his transaction, the virtual machine
goes idle, and the machine is said to be dropped
from queue. If the scheduler chooses to remove a
virtual machine from the multiprogramming set, the
machine is said to be involuntarily dropped from
queue.

During our analysis of the system, we found several
cases where users were unnecessarily dropped from
queune during the life of an essentially Q1 transaction.
In the prototype (and subsequently in the product)
these “false” queue-drops were eliminated. Thus, the
Q1 drop counts more closely correspond to actual
transaction counts. Experience has shown that while
the real response time is not affected significantly,
the Q1 drop rate may be reduced to as little as one
third of its previous value, and a corresponding
threefold increase in the vM Monitor Analysis Pro-
gram (VMMAP)® response time measure (QiSEC) value
may occur.

Figure 1 shows a conceptual paging schema for vm/
sp and the HPO (prior to HPO Release 3.4), referred
to as vM for short in the rest of this paper.

The algorithm that is used to select a page for paging
out in a paging system is called the page-replacement
algorithm. The selected page frees up a four-kilobyte-
size place in main memory, called a frame. VM uses
a global Least Recently Used (LRU) demand paging
page-replacement algorithm. The LrRU algorithm’
calls for removing the page that has gone unrefer-
enced for the longest time. The frame freed up can
be used for a newly referenced page that was not in
main memory. The LRU algorithm is used because
of its ability to predict the page that is most likely to
go unreferenced for the longest time in the future.
The algorithm is categorized as “global” LRU because
all users compete for frames on an LRU elapsed-time
basis equally, as one collective working set irrespec-
tive of individual working sets.

The free list in vM is a list of immediately available
page frames. They are immediately available because
the contents are written to backing store as part
of the process of placing them in the free list. This
list is kept at a size that is equal to the
multiprogramming? set plus one. The size of the list
ensures that if each task requires one free frame, one
spare frame is left over. The free list is replenished
from the pool of assigned real memory locations
whenever it falls below the threshold. Requests for
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frames come one at a time because of page faults, so
the free list tends to fall one below the threshold.
The page-replacement algorithm then has to find
one free frame for the free list. Because the threshold
is satisfied when only one frame is placed on the free
list, it is refilled one frame at a time. If the selected
page has been changed since it was last written, the
new copy must be written to a paging device. This
process in turn leads to writing pages out one at a
time. The only chance for multiple-page transfers is
when the paging device is overloaded, therefore ac-
cumulating a queue of paging requests. In this special
case VM combines the paging requests into a single
Start Input/Output Operation (sio) if the queued
requests are directed to the same paging cylinder.

The first choice for frames to refill the free list is
among those on the flush list. The flush list is a first-
in-first-out (FIFO) list of frames that belong to users
who had been dropped from queue and who are thus
out of the multiprogramming set. In normal opera-
tions, pages belonging to dropped users are not
placed on the flush list; instead they are left in storage
so that they reduce the need for paging in the next
transaction. Flushing is only invoked as an overload
control mechanism. In well-tuned systems the flush
list is empty, so that the second choice, the LRU
algorithm known as “core table scan,” is used.

VM uses an approximation to the global LrRU algo-
rithm in selecting a page to be removed from main
memory to make a page frame available. The vM
algorithm is sometimes called a one-bit approxima-
tion to LRU, because the page reference bit is treated
much like a two-state unreferenced interval timer.

The LRU algorithm usually provides a frame belong-
ing to an out-of-queue user. If a frame belonging to
an in-queue user is taken, this action is called a “page
steal.”

The core table scan process has a pointer steadily
advancing through a map of main storage, the “core
table,” resetting the reference bit associated with each
frame. If the reference bit of a page is not set, the
scan process moves the frame onto the free list,
thereby making the frame available for other use.
Having completed its task, the scan is then sus-
pended. The next scan will pick up at the next frame.
The time taken through the entire core table is called
the scan period.

The effect of the core table scan is that in-queue
users, who reference their pages, tend to maintain
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their frames, and out-of-queue users tend to lose
their frames. Because of the random distribution of
pages in the core table, a user tends to lose only one
page at one time. Since the free list requires replen-
ishing whenever it falls below its threshold, pages are
usually moved onto the free list one at a time.

In vM, the process of removing a virtual machine

from the multiprogramming set is called a queue-
drop. At queue-drop the individual page reference

Flushing is a mechanism that VM
may invoke at queue-drop time.

bits of pages belonging to a user are reset, thereby
making the frames available the very next time the
core scan analysis examines them. Thus, all of the
user’s pages will be taken in one full core scan period,
and the average page life is one half of the core scan
period for queue-dropped users. For users who are
in the multiprogramming set (in-queue users), it
takes one full core table scan period to reset all the
reference bits associated with their (usually recently)
referenced pages. During a subsequent scan, the
now-unreferenced pages are taken away, resulting in
an average page life of 1.5 scans for members of the
multiprogramming set. Therefore, the LRU algorithm
is biased strongly toward in-queue users. But note
that out-of-queue users are allowed to hold pages for
a while, depending on the speed of the core scan.
The totality of frames belonging to users dropped
from queue is called the paging buffer, and specifi-
cally, the set of pages belonging to former Q1 users is
called the Q1 or interactive buffer.

In vm the device for a page-out allocation is selected
on a basically round-robin basis; i.e., each device is
selected in turn. The paging algorithm remembers
the last cylinder used on a paging device, and it
attempts to find an unused slot for a page-out on
that cylinder.

If it cannot do so, it locates the available slot closest
to the center of the volume. If the center of the
volume is within the paging area, the pages will be
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clustered around that point. If the paging area does
not include the center cylinder, the pages will be
packed at the edge nearest to the center. The inten-
tion of this algorithm is to reduce seek distances on
the device by clustering the pages. The algorithm is
sometimes called zigzag, because of the tendency to
move back and forth across a volume when the
paging area spans the center of the volume. In prac-
tice, the very middle area of the device is fully
allocated with pages. New allocations and page reads
tend to come at the edges of the area.

Simple tuning experiments. Trying to decide how to
improve vM paging, we evaluated the results of sev-
eral experiments. These experiments are interesting,
even though they did not yield positive results.

Flushing experiments. “Flushing” is a mechanism
that vM may invoke at queue-drop time if the system
is experiencing paging problems. The exact feedback
algorithm that triggers flushing is unimportant to
this discussion. When flushing is enabled, the pages
of users are placed on the flush list when the user 1s
dropped from queue. The flush list is used as the first
source of frames. If it is empty, core table scan
provides the frames. Flushing has the effect of pro-
tecting the in-queue users from core table scan by
making all of the fram@s of out-of-queue users im-
mediately available. Since the flush list is a FIFO list,
it is essentially an LRU algorithm applied to dropped
users.

Some installations have found that their systems are
more stable if the flushing mechanism is disabled. It
is possible that the flushing mechanism actually
made the system worse by overprotecting the pages
of in-queue noninteractive users at the expense of
interactive users.

In order to better understand flushing, we modified
a real system (with real users) so that it flushed all
the time. The rationale was that if flushing was a
good idea with heavy loads, it should be reasonable
with lighter loads. In fact, the change caused an
unsustainably high paging load. The users demanded
an immediate removal of the change.

Changing the flushing algorithm to “last in first out”
(L1FO) produced the same adverse result.

We concluded that flushing is inappropriate to use
as an overload control mechanism. If it has a place,
it is to protect long-running batch, service, or guest
machines by sacrificing the interactive users.
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Reference bit resetting experiments. At queue-drop
time the reference bits of the pages of dropped users
are reset. Resetting has the effect of biasing the LRU
algorithm so that it will take these pages earlier,
yielding a form of protection for the in-queue users,
though one that is much less severe than the flushing
just described.

In the next experiment we disabled the resetting of
the reference bit at queue-drop time. The idea was
that the interactive users could hold their pages
potentially longer between transactions; they could
get absolute protection for one core scan time.

Performance became worse. The core scan rate be-
came much greater, with the core scan time appro-
priately reduced. The reduction in paging for the
interactive users was more than offset by the increase
in paging by the in-queue users. The system was
characterized by a higher rate of stealing of pages
from in-queue users. Although it was possible to run
the system for a whole day without removing the
change, it was clear that the change was not benefi-
cial.

The core scan rate became faster because of the
increase in page residency of the interactive users.
With the modification, the working set of a queue-
dropped user can stay resident for 1.5 times the core
scan time instead of 0.5 times the scan time. With
an increase in the residency of these pages, other
pages must be paged out sooner. The core table scan
algorithm reacts automatically by scanning more
pages, thus reducing the core scan period. The result
was higher CPU overhead for the page-replacement
algorithm and a higher overall paging rate.

Observations on VM paging. vM achieves a very
delicate balance between the protection of the pages
belonging to the in-queue users and the need to
buffer interactive user pages, from transaction to
transaction. Attempts to shift the balance either to-
ward the in-queue (continuous flushing) or toward
interactive users (no reference bit reset) resulted in
higher paging rates and poorer performance.

Although it is attractive to do paging experiments
on a real system, they must be preceded by controlled
experiments with a known workload and no real
users to be disrupted.

Prototype experiments

Our basic objective was to improve interactive (CMs)
response time by reducing page waits and making
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the paging subsystem more efficient, especially for
large systems.

A series of prototype experiments was started when
we discovered indirect evidence in vM/Monitor data®
that cMs working sets were highly repeatable. The
prototypes aimed to exploit this observation.

Fortuitously, high-data-rate movable-head direct ac-
cess devices (i.e., the 1BM 3380 DASD) became avail-
able in this time frame. The prototypes tried to make
use of the fast data transfer capability of these DASD
devices by using page-blocking techniques.

Working set considerations. One observes that vm
systems with more storage page less. One may as-
sume that this occurs because fewer pages are stolen
from active users. In fact, the pages belonging to
queue-dropped users are retained in main storage
and are reused during the next transaction. Traces
of user activity demonstrated that the more frames
a cMms user still owns in main storage at queue-add
time (when the user becomes active), the fewer page
faults the user encounters. Figure 2 illustrates this
phenomenon. We concluded that cMs users have a
repeatable working set, i.e., one that goes across
“transactions,” which are queue-stays (not CMS trans-
actions). From this conclusion we inferred that ex-
plicit prepaging, i.e., fetching the pages belonging to
a user’s working set all at once, instead of one at a
time, might work.

DASD considerations. The use of single-page S10s is
not very efficient for DASD (or for the CPU), so we
decided to make an attempt to use “block paging”
when possible.

Figure 3 illustrates the conceptual advantages of
block paging. Each sio operation incurs an “over-
head” A, consisting of control unit protocol time,
seek to the cylinder sought, rotational latency to
reach the desired page, and potentially additional
lost rotations if the path is busy when the attempt is
made to reconnect to do the data transfer (RpS miss).
Thus, in the case of a single page being transferred
per SIO, there is one overhead A associated with each
page transfer B. In contrast, when multiple consec-
utive pages are transferred with a single sio opera-
tion, there is a single overhead A associated with
multiple Bs. Clearly, the importance of the overhead
diminishes.

Table 1 shows the results of modeling the compari-
son for demand and block paging use of 3380s. The
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Figure2 The importance of resident pages
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Table 1 3380 Paging performance in demand and block
paging modes

Demand Block

Paging Paging
Pages per SIO 1 10
Actuators per path 4 2
Paging rate per path 60/s 200/s
Paging rate per actuator 15/s 100/s
SIO response time 29 ms 48 ms
Average time for one page 29 ms 4.8 ms

left column indicates that when 3380s are used in
demand paging mode, a paging response time of 29
milliseconds (ms) is obtained with 15 pages per
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Figure 4 Allocation density by cylinder

second (s) per actuator, and four actuators per path.
The right column indicates that with block paging
(10 pages per s10) 100 pages per second per actuator
per path can be supported with only two actuators
per path, and the s10 completion takes 48 ms, i.e.,
4.8 ms per page. Clearly, blocking is advantageous.

Its effect is to essentially establish “big pages,” since
the result is as if a single big page were transferred
when multiple related pages are transferred with a
single S10.

Note that a granularity advantage is obtained in
comparison with a scheme that used genuine big
pages, since the individual small-page components
of this big page can be (are) changed individually
with time, which would not be true for a single big
page.

Real storage use considerations. In vM, pages be-
longing to inactive users are retained in main storage
without any consideration as to whether such a user
is likely to be dispatched or the page is likely to be
used. We change this situation by more closely relat-
ing real storage use and prepaging to scheduling,
which is done by letting the scheduler provide fre-
quent hints to the paging subsystem.

In vM, the size of a user working set was indirectly
estimated in a way that was dependent on the work-
load. We reduce this workload dependency by deter-
mining the real working set of users, which is done
by trying to identify the actual working set pages.
Furthermore, if main storage is overcommitted, we
keep only the “needed” working set pages for sched-
uled users. Specifically, the number of in-queue users
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is controlled on the basis of storage use, thereby
avoiding a strong overcommitment of main storage.

Explicitly maintaining an interactive or Q1 buffer by
holding Q1 users’ working sets in memory as long as
possible after queue-drop is an attempt to improve
interactive response time.

Round-turkey prototype. The page-allocation algo-
rithm that places pages into paging areas on DASD is
changed in this prototype in order to encourage the
frequency of block page-outs. Our goal was to write
multiple pages on each device as it was selected in
turn; we aimed to reduce

* The number of 1/0 operations initiated

e The number of times that disk arms need be
moved

¢ The distance when they are moved

Three algorithms were changed: the ones for device
and slot selection and the one for handling of un-
changed pages.

Device selection. vM selects a device to be used for
page-out by placing one page on one device and
placing the second page on the next device on a
round-robin basis.

The basic concept of the new device-selection algo-
rithm in the prototype is to select the same page-out
device (up to) eight times, unless a cylinder boundary
is reached. The repeated selection of the same device
allows the grouping of multiple page-out requests
within the same SI0 operation, resulting in blocked
page-out requests. Thus, in view of the previous
terminology, the new algorithm is seen as a bigger
but slower-moving bird—a “round turkey.” The pro-
totype itself took its name from the device-selection
algorithm. Note that page reads remain unblocked.

New slot-selection algorithm. The zigzag slot-selec-
tion algorithm of vM is replaced with a “moving-
cursor” algorithm. This algorithm maintains a
pointer that moves across the paging area. The cursor
points at a slot that is to be used for allocation if the
slot is free. The cursor is advanced steadily across
the paging area, as required by the allocations taking
place. The expectation is to find empty, unused areas
ahead of the cursor. This construction was devised
to provide a high probability for the existence of
contiguous empty slots, which in turn provides effec-
tive blocked page-outs. It also reduces nonzero seek
frequency and seek distances. Experience indicates
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that as the allocation cursor is advanced, a wave of
page references moves across the DASD volume. The
allocation occurs ahead of the cursor, and page reads
occur behind the cursor, but the band of pages
referenced frequently is rather narrow; i.c., there is a

We designed the prototype so that
unchanged user pages are paged
out.

well-defined temporal locality of reference. The cur-
sor is reflected at the end of the paging area to avoid
long seeks which would be necessary if allocation
were then to return to the beginning of the area.
Figure 4 shows the density of the pages allocated to
cylinders in the paging area at a point of time.

Writing unchanged pages. vM (as do other demand
paging operating systems) retains the backing slot
location of page frames that are brought into main
memory. If the frame is needed later, the contents
need not be written out if the page has not been
changed. This algorithm reduces the number of 1/0
operations required.

We designed the prototype so that unchanged user
pages are paged out in order to aid the moving-
cursor-allocation algorithm. It is intended to move
referenced but unchanged pages along with the mov-
ing wave of pages across the paging area. This reduces
the need to move the disk arm to a random point
away from the current arm position when such a
page is later referenced. Thus, arm movement is
reduced at the expense of a higher page-out rate.
Since page-outs are blocked, this design seemed to
be a good trade-off.

Importance of contiguous slot allocation. An experi-
ment was done in which the moving-cursor algo-
rithm was disabled. The system was changed to
allocate at the right edge of the paging area. This
allocation is very similar to the one that vM does
within an off-center paging area. The scheduling of
multiple page-outs to a device was still attempted,
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but the lack of contiguous allocation caused scattered
allocation. As a result, the use of a single channel
program for the set of pages to be written was pre-
vented. Performance of the system with this change
was worse than that of the base system.

Experimental results. The combination of round-
turkey and moving-cursor algorithms tends to result
in an effective page-out blocking method. Care must
be used that the paging area is large enough to allow
contiguous page allocation, yet small enough that
seeking does not become excessive. If the area is
overly large, the occasional seek to a page at a
random point in the area may be a long distance
from the cursor. It was shown that the contiguous
slot allocation was critical to the other algorithms in
the prototype. The prototype illustrated reduced re-
sponse times, reduced frequency of paging sio oper-
ations, and improved throughput.

Prepage prototype. Figure 5 shows the paging
schema in the prototype system. A brief overview of
the schema is given first, followed by a detailed
discussion of some aspects. The left side of the
diagram is very similar to the demand paging sub-
system in vM, illustrated in Figure 1. When a page
fault occurs and the page resides on a paging DASD,
a frame is obtained from the free list; then a page-in
operation for one page takes place in the normal
fashion into this frame. Page-outs are performed in
a similar fashion, but now they tend to be blocked,
in contrast to VM.

The right side of the diagram represents the new
swapping operations. When a user reaches the end
of its queue-slice and is queue-dropped, the user’s
working set pages are “logically swapped,” which
means that under normal circumstances they are
retained in main storage. Pages not in the working
set are “trimmed”; i.e., they are moved onto the flush
list, which is the first source of frames with which to
replenish the free list. Thus, in the experimental
system, flushing is a normal, expected operation.

Obviously it is not possible to maintain the working
set of all users in main storage forever. When a page
frame shortage is detected, the honeymoon of a
logically swapped user comes to an end, and physical
swap-out takes place, releasing some of the user’s
frames for other use. In other words, physical swap-
out is then used to replenish the free list.

Physical swap-out means that the next user on the
swap list is identified, and some of his working set

TETZLAFF ET AL, 921




Figure 5 The experimental prepage system schema
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pages are swapped out. The next physical swap-out
operation required because of frame shortages forces
more of the working set pages of this user to be
swapped out. A user is always totally swapped out
before another user is selected from the swap list as
a candidate for physical swap-out.

Users are placed on the swap list in FIFO order as
they drop from the active queue. However, there is
a separate swap list for Q2 and Q1 dropped users, and
Q2 users are physically swapped out before Q1 users,
thereby providing preference to Q1 users.

Sometime later a swap-in operation will sequentially
read back the swapped-out working set pages of the
user.

Relationship to scheduling. In the earlier paging sys-
tems most of the concern for the management of
page frames centered around identifying working set
frames for a running program. In interactive systems
a slowly reacting (at least in machine terms) user
appears as an 1/0 device to the system. Since it has
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become clear that working set pages span transac-
tions in VM, it is desirable to have the scheduler
provide additional hints to the paging system.

The scheduler needs to tell the paging subsystem
when transactions start and stop, when the scheduler
temporarily suspends them, when time slices end,
and whether they are interactive or long-running.
These hints are used by the paging system in man-
aging real memory, in the page-replacement algo-
rithm, and in determining working set pages. In
order to provide these hints a number of scheduler
changes had to be effected.

Working set identification. At queue-drop the exper-
imental system identifies all nonshared pages refer-
enced during the previous queue-stay. These pages
can be considered to be the real working set pages'’
with a fixed delta tau (using Denning’s terminology)
equal to the time slice. The reference bits of these
pages are reset. It is immaterial whether these refer-
enced pages are changed or unchanged, and by our
definition these are “needed pages.” These pages are

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987




logically swapped, whereas the “unneeded” pages are
trimmed to the flush list.

In order to identify working sets on a transaction
basis, a significant change was made to the manage-
ment of page reference bits. It is important that
reference bits not be reset by an asynchronous func-
tion (the core table scan) during the processing of a
trivial transaction. Such resetting would make pages
appear to be unreferenced at the end of the transac-
tion, thus removing them from the working set. The
system was changed to cause reference bit resetting
at queue-drop time instead, as a part of working set
determination.

Swap-out operations. Physical swap-out means that
the next user on the swap list is identified, and one
or more of his swap sets is swapped out.

The so-called swap sets are formed by grouping the
logically swapped (working set) pages of a given user
in order of virtual addresses into sets of pages. Thus,
swap sets are related by virtual address and time of
reference, since all the pages in a swap set were
referenced during the same queue-stay. The pages in
a swap set are written together on a paging device.
In most cases the allocation yields consecutive slots
on the device. The size of a swap set is an adjustable
system parameter. A swap set exists on a paging
device until it is swapped in, after which the affinity
of the pages is lost.

After writing a swap set, the user will have one or
more swap sets on the paging device, but the user
may still have other frames in main storage, still in
logical swap status. Thus, a user can be partially
swapped.

After each new queue-stay, swap sets are formed
afresh for swap-out, and the pages in them may be
different than before. Note that not all swap sets of
a virtual machine necessarily come from the same
queue stay.

Swap-in operations. When an interactive user be-
comes ready again, preliminary to being queue-
added, this condition normally causes a page fault
to take place, usually for the first page in the user’s
address space. If the page fault occurs to a page in a
swap set, the entire swap set is swapped in. This
procedure, called “swap faulting,” provides the
blocking advantages described earlier. The swap-in
operation will sequentially read back all the pages in
the swap set into nonadjacent frames of main stor-
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age. At this time the locations of the slots on the
paging device are made available for reuse. The

The process of bringing in all pages
of a swap set is a form of prepaging.

process of bringing in all pages of a swap set is a
form of prepaging. It is assumed that the time of last
reference and the virtual address affinity of the pages
predict a likely future use of the other pages. Should
any of the pages not be referenced, they are trimmed
at the next queue-drop. If a swap set is not brought
into main storage during a queue-stay, its identity
can be retained across multiple queue-stays. In most
instances, however, especially for interactive users, a
swap set exists only between consecutive queue-
stays. Swap sets are really big pages, since they are
always written and read together, and a page fault to
any one, a swap fault, causes the entire swap set to
be read.

After a swap-in operation the referenced bits of the
pages swapped in are reset in order to avoid mislead-
ing reference indications. The user’s continued exe-
cution will later cause setting of most page reference
bits, but not all pages swapped in are subsequently
referenced. The unreferenced pages in referenced
swap sets are called prepage errors. These are page
reads that a demand paging system would not have
done. They represent the change in content of work-
ing sets through time. At the next queue-drop the
unreferenced pages will be flushed and paged out.

Logical swapping. At queue-drop the user’s working
set pages are “logically swapped out”; i.e., his page
tables are invalidated, and the user is placed on the
swap list. Under normal circumstances the user’s,
especially an interactive user’s, working set pages
therefore are retained in main storage, even though
the page tables are invalidated. The totality of such
working set pages belonging to interactive users rep-
resents the interactive buffer.

The most important source of pages for a transaction
is those pages that have been retained in main mem-
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ory from the last transaction; i.e., they were logically
swapped out. When a transaction starts, all the user’s
logically swapped-out pages are immediately re-
turned to him with the reference bits turned off; i.e.,
these pages are logically swapped in. The logical
swap-in, unlike physical swap-in, returns all of the
prior working set to the user. In a well-tuned system,
most transactions complete without the need for any
physical swap-ins. At the next queue-drop any re-
maining unreferenced pages are paged out. These
pages were present in the prior working set, but are
not a part of the current working set.

Multiprogramming level control. In vM, users were
queue-added if the projected working set of the user
plus the sum of the working sets of in-queue users
(suMwss) amounted to less than the Available Frame
Count (APAGES). Q1 users were given preference be-
cause APAGES was increased by a factor of 1.25 for
Q1 users; thus they rarely noticed the reality of main
storage constraint. The calculation ignores the re-
quirement for an interactive buffer. Some installa-
tions attempted to obtain that by artificially lowering
APAGES.

We concluded that vM tended to place an excessive
number of Q2 users into the multiprogramming set.
The prototype was used to evaluate the possible
benefit associated with regaining the frames of some
of these Q2 users. In order to regain the frames, a
fixed upper limit on the number of Q2 users was
established. The number was experimentally set to a
point that reduced the number of Q2 users requiring
resident pages but still prevented throughput reduc-
tion because of a lower Multi-Programming Level.
If this artifice was found to be effective, a feedback
mechanism would be created in the future.

Minimum working set. A default systemwide mini-
mum working set size of two swap sets is established
for users. This means that if the user has at least two
swap sets’ worth of pages at queue-drop time, his
working set will not be trimmed below that value,
and at least this much will be physically swapped out
if physical swap takes place. Normally noninteractive
users have many more pages than two swap sets’
worth (i.e., 16 pages if a swap set size of eight is
used), so the effect of this value is to guarantee less
trimming for interactive users, which translates into
more physical swapping and less demand paging.

Replacement algorithm. The effect of the various
modifications is to convert the page-replacement
algorithm from a global LRU page replacement to a
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hybrid. Swap pages of dropped users and trim pages
are handled in FIFO queues, and are thus global LRU.
The page-replacement algorithm for in-queue users
becomes oriented to the working set, since at each
reexamination of a user by the scheduler, the un-
referenced pages from the last examination are
trimmed. All reference bits are then reset so that
trim and working set pages can be determined on
the next examination.

Prepaging at queue-add. In order to take advantage
of the parallelism of swap paths, the experimental
system provides for a minimum swap-in size of two
swap sets for interactive users. This means that when
an interactive user becomes ready, two of his swap
sets are prepaged, i.e., swapped in. The experimental
system does no prepaging for noninteractive users.
It is important to limit prepaging: If all the swap sets
were always swapped in or out at once, a large user,
€.g., a Multiple Virtual Storage (Mvs) guest, could
easily overwhelm the paging subsystem.

Free list replenishment. During early runs with the
prototype we observed that the free list was fre-
quently empty. This problem is serious, because it
leads to waiting for page-out completion before page-
ins can be scheduled. The correction is to increase
the minimum size of the free list.

Full prepaging experiment. An experiment was done
in which the working sets of all Q1 and Q2 users were
Sfully prepaged at queue-add. The system showed very
high swap rate and poor performance. This amount
of prepaging brought in pages much earlier and
brought in whole swap sets that were ultimately not
referenced at all. Such unnecessary use of main
memory caused contention for memory which re-
sulted in high swap rates. We observed that users
with large working sets would fully consume the free
list in order to prepage all of the swap sets. Thus, the
idea of full prepaging was abandoned.

Results. In the experimental system, physical swap-
out, not core table scan as in VM, is the major source
of frames for the free list. If for some reason swap-
outs do not provide enough frames to replenish the
free list, user page “stealing” (via core table scan)
remains as the mechanism of last resort. If core table
scan is invoked frequently, as demonstrated by a
high steal rate in VMMAP, the swap mechanism is not
functioning properly or the system is running out of
memory below the 16-megabyte line.

Since most of the time swap-in operations require
more than one frame at a time, the free list had to

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987




Figure 6 The experimental system paging schema
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be made larger than before by requiring a higher
minimum.

This prototype was characterized by an increased
paging rate and a dramatic reduction in trivial re-
sponse time. In addition, there was a small increase
in CPU time in supervisor state, due to increased
management of paging and the higher paging rate.

Contiguous block page prototype. The contiguous
block page prototype was characterized by the addi-
tion of special paging areas for the placement of swap
sets. This addition was made in order to ensure
contiguous allocation and a single s1o for each swap
set.

Figure 6 shows a conceptual schema of paging in the
experimental Swap Prototype system. The diagram
is very similar to the demand paging subsystem in
vy, illustrated in Figure 5. The special data sets for
contiguous allocation of swap pages have been added
to the diagram.
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Two new algorithms were added to this prototype.
The first was for management of swap areas, and the
second was for demand-paging certain pages that are
not subject to swapping.

Contiguous page datasets. Contiguous page datasets,
or swap areas, are used to contain working set pages.
The format is the same as for any other paging area
in the system. The moving-cursor algorithm is used
for allocation. The big difference is that the number
of pages allocated at one time is equal to the size of
a swap set. Thus, a single s10 is all that is ever needed
to read or write a single swap set.

Garbage collector. Pages belonging to virtual ma-
chines are handled by logical swap, trim, and physi-
cal swap. There are pages that do not belong in this
category, such as

¢ Shared segment pages
¢ Control-program-owned pages
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Figure 7 Trivial transaction response
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Table2 Measurements on a 3081D

VM System Base Prototype
Users 310 310
Main memory 16 MB 16 MB
CPU busy (per CPU) 100% 100%
VIO rate 377 412
Paging SIO rate 240 136
Percent page wait 14 6
Page I/O time 20 16
Swap 1/0O time _— 42
QI seconds 0.78 0.36
QI drop rate 19.4 20.5
Page read per Q1 11.6 1.4
Q2 seconds 10.3 8.6
Q2 drop rate 4.8 4.4
Users in Q1 15 10
Users in Q2 55 40
Swap paging rate —_ 720
Demand paging rate 425 50

s User pages not in working set (obtained without
queue-add and not trimmed)
¢ Spool buffer pages

In vM the “core table scan” disposed of these pages.
In the experimental system, core table scan is not
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normally invoked (except as a last resort); thus a new
mechanism is required to handle “disposable™ pages
of this type. A periodic core table scan is introduced
which looks for these pages. It scans one eighth of
the dynamic paging area every four seconds, resets
the reference bits of pages of this type, and disposes
of unreferenced “nonuser” pages by putting them on
the flush list, i.e., effectively establishing a working
set for this type of page and trimming the disposable
ones. Clearly all such pages are examined in 32
seconds, and the unreferenced page lifetime is 48
seconds on average for these kinds of pages.

Results. This swapping mechanism provides at least
two blocking advantages. Since all the pages written
by a single sI0 are contiguous, device busy time is
reduced. Also, the blocking means that the number
of sios executed is reduced, and thus many cru
cycles are saved. Both a sio reduction and a cpu
reduction (significantly below either the prior pro-
totype or the base system) were found in this proto-
type. This result was also translated into an increase
in throughput. The prototype also showed a yet
greater improvement in the interactive response
time.

Performance results

Measurements were made on a 16MB 3081D proc-
essor with vM/sp HPO 1.0 and compared with the
experimental system prototype. In this measure-
ment, the number of users was varied between 125
and 360, and a synthetic benchmark was used with
a randomly generated “user think time” averaging
15 seconds.

The paging configuration used was six 1BM 2305
Fixed Head Storage actuators on three channels for
the vMm (base) case.

The paging configuration for the experimental sys-
tem prototype was as follows:

Swapping:

Six 3380 actuators on three channels
Paging:

Two 2305 drums on one channel

There was no other configuration change between
the two runs.

The prototype contained code to limit the number

of Q2 users to a fixed number. False queue-drops
make the average Q1 transaction appear to have
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much shorter response time than it really has. The
HPO 1.0 system was modified in a way similar to the
prototype to avoid false queue-drops in order to
make transactions (and measurements) consistent.

Figure 7 indicates little difference between the trivial
responses for the cases when the number of users
was kept low. For the case with 310 users, the
experimental system prototype provided much bet-
ter response time than the base case, whose response
time became unacceptable. The experimental system
could still support 360 users, whereas the base case
could not.

Table 2 shows a number of important improve-
ments. The most important result is the reduction
in Q1 response time (known as QISECS in VMMAP).
The number of page reads (demand paging) shows a
dramatic reduction, which also largely accounts for
the reduction in percent page waits. There is a slight
improvement in throughput, as indicated by the
virtual input-output (vio) rate and Q! drop rate
increases. The reduction in Q2 drop rate can probably
be explained by Q2 transactions becoming Q1 trans-
actions because of less paging. There is a significant
reduction in paging sios and interrupts, resulting in
the cpu saving which led to the throughput improve-
ment. The overall paging rate increased significantly
but did not present a problem since the 3380 paths
could handle the load. The 3380 disk devices could
handle the swap paging rate without any difficulty.
The reduction in the number of 2305s did not hurt
performance, and perhaps their presence was not
essential.

Two sets of measurements were made on a 4MB
4341-2 cpu. User think times were randomly gen-
erated to obtain the desired think time averages. In
one case, 10 seconds of think time was used with 50
users; in the other case, 15 seconds of think time was
used with 75 users. Note that each combination of
think time and number of users results in the same
system transaction rate.

In all of the measurements, six 1BM 3350 DASD
actuators on three (nondedicated) channels were
used for paging. In the prototype case, three actuators
were used for swapping and three for paging. There
was no other configuration change of any kind.

Table 3 shows the range of improvements when
measurements of vM/sSp 1.1 are compared with the
prototype. Trivial response time improved signifi-
cantly, and the throughput improved slightly on the
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Figure 8 Response time for the 4341 experiments

Table3 Measurement results on 4MB 4341-2

Improvement
Virtual CPU increase 3t04%
VIO increase 410 6%
Trivial rate increase 4105%
Scripts completed 410 6%
I/0 interrupt decrease 26 to 35%
Trivial response improvement 28 t0 36%
Paging SIO decrease 52 to 60%
Dispatch decrease 11to 12%
Paging rate increase 4] to 60%

prototype when compared with the base. The
throughput improvement can be attributed to the
reduction in paging s10s and interrupts. The overall
paging rate increased but did not present a problem.

Figure 8 shows a plot of response time versus active
users. This plot combined the results of all the 1BM
4341 processor measurement runs. The plot shows
that response time remained essentially unchanged
with the prototype while it rapidly increased in the
base case. The plot would indicate that the same
response time can be obtained with 20 active users
in the base and 30 users in the prototype. This result
seems to indicate a capability to support 50 percent
more users with the same response time.
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Observations based on the prototype measurements.
All of the measurements indicate that the experi-
mental system (1) can support a larger number of
users than the base, or (2) can provide improved
response time, or (3) can offer some combination of
both.

Things learned

The experiments with the prototype provided some
useful observations:

1. Demand Swap (swap fault) works. There is an
indication that it is worthwhile not swapping in
all of the swap sets at the same time, since occa-
sionally there are swap sets that remain unused.
It was beneficial to limit the automatic prepaging
at the beginning of a transaction. It limits the
loading effect on the swapping subsystem that
would be caused by the immediate prepaging of
a large number of swap sets. Further, the potential
storage pressure is also reduced.

2. Page Steal Rate is a sensitive indicator. When free
list value was not set high enough, significant
(higher than one percent) stealing occurred.
Clearly, in a swapping system stealing is undesir-
able.

3. Multi-Programming Level (MPL) control is im-
portant. When the prototype was initially run
without explicit MPL control, too many Q2 users
were queue-added. Thus, the prototype was
changed to run with a “fixed” Q2 MPL control.
Furthermore, the vM/HPO Release 3.4 product
was designed to provide dynamic MPL control
using the interactive buffer concept.

4. Overall paging rate increases, but demand paging
rate is much lower. The paging rate increases
(most of paging is due to swapping) partly because
of the fact that the increased throughput requires
more paging, partly because some of the pages
swapped in are not really required, and partly
because prepaging causes pages to occupy frames
before they are actually referenced, which may
increase page residency time. However, in all
observed cases, demand paging rate was dramat-
ically decreased, thereby reducing (or eliminating)
the need for 2305s.

5. 3380 devices are excellent for swap paging. In the
3081D measurements a paging rate of up to 800
pages per second was easily supported by 3380s.
Thus, since the high data rate dominates for
swapping load, 3380s are eminently suitable de-
vices.

6. Prepaging large (Q2) users may be destructive. In
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an early version of the prototype the entire work-
ing set was swapped, and the 3350s used could
not support the heavy instantaneous paging load
that resulted. Also, total swapping created an
instantaneous requirement for a large number of
free page frames. Thus, swap faults were invented,
and prepaging control was introduced.

. The old size of the free list is inadequate in a swap
environment. Prepaging requires that many free
pages be available suddenly, and the old free list
could not supply frames fast enough.

. Blocked page-outs are helpful. The round-turkey
prototype has shown significant improvements
just by blocking page-outs without any other
change.

~

o0

Conclusions

The experimental system paging enhancements im-
prove interactive response time by improving the

The experimental system is only an
adjunct to large real memory.

efficiency of the paging subsystem. The efficiency
was improved in several ways. The system now
makes better use of real memory and therefore
makes some demand paging unnecessary. In many
cases multiple contiguous pages are transferred fol-
lowing one DASD access, reducing average access time
and DASD busy time.

The experimental system is only an adjunct to large
real memory. Ample real memory remains a require-
ment for large systems. The experimental system
provides the best benefit in heavy paging environ-
ments. Although the prototype was aimed at inter-
active users, it works acceptably for long-running
tasks.

The experimental system paging enhancements im-
prove interactive response time, but they also im-
prove throughput because the supervisor CPU time
is reduced. The cpu time is reduced as a side effect
of the page-blocking techniques which reduced the
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frequency of s10s and 1/0 interrupts. Also, the reduc-
tion in the number of user page-wait conditions
reduces scheduler and dispatcher invocations.

Relationship to the HPO Release 3.4 product

The experiences gained in doing this series of pro-
totypes led directly to the paging enhancements in
Release 3.4 of HPO.> '!-!3 There are several differences
between the prototype and the product.

¢ The operational and system generation character-
istics were improved in the product by making
many hard-coded constants into installation-speci-
fiable parameters.

« In the absence of defined swap areas, the product
pages out pages that would otherwise have been
swapped. At the time of a reference to such a page,
the product brings in the particular page, whereas
the prototype brought in all of the pages that
would have been swapped in. The product has the
advantage of behaving in a way more consistent
with prior releases in the absence of swap areas.

¢ The prototype made no change to the selection of
members of the multiprogramming set but did put
a fixed limit on the size. The product has much
more sophisticated algorithms, with appropriate
feedback, for determining the size and content of
the multiprogramming set.

¢ The product contains a new parameterized algo-
rithm to select interactive and noninteractive users
for physical swap-outs.
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