
The experimental EPISTLE system is intended to provide ‘i‘ntelli-
gent” functions for processing business correspondence and other
texts in an ofice environment. This paper focuses on the initial
objectives of the system: critiquing written material on points of
grammar and style. The overall system is described, with some
details of the implementation, the user interface, and the three levels
of processing, especially the syntactic parsing of sentences with a
computerized English grammar.

The EPISTLE text-critiquing system
by G. E. Heidorn, K. Jensen, L. A. Miller, R. J. Byrd, and
M. S. Chodorow

The long-term objectives of the EPISTLE project are to provide office
workers, particularly middle-level managers, with a variety of appli-
cation packages to help them interact with natural language texts.
Initially we are focusing on business letters and on the first of two
classes of applications. This first class will provide services for the
author, initially furnishing critiques of a draft of a letter or other text,
and eventually helping him write an initial draft based on a terse
statement of what he wants to say. The second class of applications
will deal with incoming texts, synopsizing letter contents, highlight-
ing portions known to be of interest, and automatically generating
index terms based on conceptual or thematic characteristics rather
than key words.

In its current experimental form, the EPISTLE system addresses only
the tasks of grammar and style checking of texts written in English.
Grammar checking deals with such errors as lack of number agree-
ment between subject and verb; style checking points out such

0 Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL. 305

problems as overly complex sentences. Even in this limited form, the
system is still under development and is not available for general use
at this time.

The processing in EPISTLE is done at three levels. Word level
processing is mostly a matter of efficient dictionary lookup, but also
includes handling of suffixes and prefixes. The information retrieved
from the dictionary provides parts of speech and other attributes of
words needed for later processing. Grammar checking is done by a
general language processing system that attempts to parse each
sentence according to the rules of English grammar. If any rules have
to be relaxed to bring about a parse, a grammar error is noted. Style
processing uses the parse trees developed during grammar checking
to detect potential problems in exposition.

This paper begins with a description of the natural language process-
ing system that underlies EPISTLE, along with a discussion of the user
interface developed for this application. Then the processing is
described for each of the three levels. Most emphasis is placed on the
grammar processing because it is considered to be the central
element. Finally, the current status of the system and both our
immediate and longer-range plans are discussed. Earlier descriptions
of EPISTLE can be found in Miller’ and in Miller, Heidorn, and
Jensen.*

Overview of the EPISTLE system

EPISTLE is built upon a general language processing system called
NLP, which is used here primarily to parse English sentences, i.e., to
determine their syntactic structures. In this section, NLP is discussed
first and then the EPISTLE user interface is described.

The NLP natural language processing system

NLP is based on the concept of augmented phrase structure grammar
(APSG).3’4 The current implementation is embedded in the Yorktown
LISP system, a revision of LISP/370,’ and, for EPISTLE, requires a
four-megabyte virtual machine under VM/370. (However, a new
version of NLP is being implemented in PL/I and should be able to run
EPISTLE in about 500K bytes.)

The basic units of data in NLP are attribute-value pairs, which are
grouped into records. Named records initially hold static informa-
tion; segment records hold dynamic information and are created and
destroyed during processing. Most of the attribute values in a record,
except those low-level records associated with individual words, are
pointers to other records, thus forming a network of information
called a “record structure.”

Processing in NLP is specified by augmented phrase structure rules.
There are decoding rules that specify how input text is to be

306 HEIDORN ET AL. IBM SYST J VOL 21 NO 3 I982

Figure IC Error with fix window and help window

Figure 1D No remaining grammatical errors

The NLP system consists of a rule translator and a run-time environ-
ment with two processing algorithms. The translator converts NLP
rules into LISP functions, which are then compiled into System/370
machine code by the LISP compiler. The two run-time algorithms
apply the decoding and encoding rules. The decoding algorithm
operates in a left-to-right, bottom-up, parallel-processing fashion,
similar to a syntax-directed compiler, but with the addition of
nondeterminism. The encoding algorithm operates in a top-down,
serial-processing fashion, producing output from left to right.

308 HEIDORN ET AL. IBM SYST J VOL 21 NO 3 0 1982

Until last year, dictionary processing in NLP used a named record for
each word stem, with attributes for parts of speech and valid suffixes,
along with morphological decoding rules that specified how the
individual characters in an input text were assembled into words.
Now, in order to make the system’s vocabulary essentially unlimited,
it uses a standard on-line dictionary of over 100 000 entries, in which
it finds the parts of speech. A separate routine does some morphologi-
cal processing for prefixes and suffixes. Currently, NLP gets most of
its word information from this on-line dictionary. A small file of
named records is still maintained for some function words and
syntactic data (such as verb complement types), but this older
method of dictionary processing will soon be phased out completely.
The latest version of the newer method is described in some detail in
the next section, dictionary processing.

The EPISTLE user interface

The interface processor controls the user’s session. It reads input text,
passes it to NLP for analysis, and then displays the results. The user
sees the system as a text editor with sophisticated enhancements.

Much recent work on programming and office automation systems
suggests that multiple overlapping windows provide a natural model
for the interaction between the user and the computer (e.g., see
Ingalls6). Window location, size, texture, and color all play a role in
associating and dissociating portions of the information. When
combined with a flexible pointing mechanism, windows provide an
easy-to-use interface. We have adopted that model in the interface to
EPISTLE and have implemented the scenario described below on an
IBM 3279 color terminal with a light pen.

The main window in the interface is white and displays the current
state of the text. If the text is too large for the screen, only a portion of
it is shown at one time. Appended to this window are mode indicators,
essentially a window containing a menu, which allows the user to
select the service to be invoked-spelling, grammar, or style check-
ing. (The system does not currently include a spelling checker, but an
available one will eventually be incorporated into it to form a
complete text-critiquing package.)

Figure 1A shows the screen that results from selecting grammar
checking to be applied to a sample document. Notice that the
GRAMMAR item in the mode window has turned yellow, suggesting
caution because of potential grammatical errors. The erroneous
words or phrases are highlighted in red within their original context.

The user focuses on one of the errors by selecting it with a light pen.
Immediately, the other errors resume their background white color,
and a new window appears in the vicinity of the selected error,
overlapping the original document. Thisfix window contains a brief

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL.

At this point the user may take one of four actions:

1. Ignore the system’s suggestion by selecting the red-highlighted
text a second time. This action causes the system to treat the
word or phrase as correct. (For personalized style checking, a
future version of the system could store such a decision in its
catalog of user preferences, to avoid signaling similar errors to
this user in subsequent documents.)

2. Request additional information about the error by selecting the
title of thefix window. The system responds with a help window
which, depending upon the error type, contains (1) an expanded
description of the error, (2) the system’s strategy for producing
the recommended fixes, or (3) a strategy for the user to apply in
generating his own fix. If this action were taken for Figure lB,
the result would appear as Figure 1 C .

3. Accept the system’s determination of an error, and select one of
the menu items in the fix window. The selected material replaces
the red-highlighted text, and the system treats the result as
correct.

4. Agree that there is an error but not wish to use any of the
suggested fixes. In this case, the user may enter his/her own
correction in place of the red-highlighted text, and the system
will assume that the new text is correct.

When the error has been corrected, the red highlighting disappears
from that portion of the text and reappears for any remaining
grammar errors. Figure ID shows that when all grammar errors have
been corrected, the GRAMMAR indicator in the mode window is
displayed in green.

When the user selects SPELLING or STYLE, he/she goes through the
same sequence of steps.

Dictionary processing

The dictionary contains information about words. The current dic-
tionary processor is written in the EXEC-2 programming language, but
an improved version is being done in PL/I. We now briefly discuss
morphological processing, the form of the dictionary output,
improved spelling checking, and fact identification.

Morphological processing

The morphological component takes advantage of derivational and
inflectional regularities in the structure of English words to reduce
the number of words that must be explicitly stored and to generate
syntactic and semantic information that is predictable from word

310 HEIDORN ET AL. IBM SYST J VOL 21 NO 3 1982

Figure 2 Word segment records for the example sentence

he
POS. PRONOUN
PERSON 3
NUMBER SING
ANIMATE YES

knows
POS. VERB
PERSON 3
NUMBER SING
TENSE PRESENT
COMPLEMENT CLAUSE
VCLASS ATTITUDE

Will Wlll Wdl

VFORM INFINITIVE
POS VERB POS VERB POS. NOUN

VFORM MODAL NUMBER SING
COMPLEMENT NP COUNTABILITY COUNT

prioriize
POS VERB
VFORM INFINITIVE
COMPLEMENT NP

well well well well
POS NOUN
NUMBER SING
COUNTABILITY COUNT

POS ADV POS VERB
VFORM INFINITIVE

POS ADJ

J

structure. The mechanism used is an extension of the one described
by Amsler’ for dealing with plural inflections on nouns. The exten-
sions exploit some of the theoretical results of Aronoffs study’ of
word formation rules.

A simple example of the first benefit of morphological processing is
that plurals for most nouns need not be stored explicitly, since they
may easily be formed from the singular forms. The second type of
benefit can be illustrated by the word complexity. If the stored data
contains complex as an adjective and if there is a morphological rule
that a word is an abstract noun when it has the form Adjective + ity,
then we can generate the syntactic information that complexity is a
noun and the semantic information that it is abstract.

Dictionary output for grammar processing

During the parsing of a sentence, the dictionary processor looks up
each word and produces NLP records needed by the parser. For
example, Figure 2 shows a portion of the records produced for some of
the words in the sentence

He knows Mr. Jones will prioritize it as well.

taken from the letter in Figures 1 A-ID. Only those attributes of the
records that are relevant to our discussion have been included in the
figure. I n actual use, the dictionary provides much more information
about these words. There are several points to notice about this.

Many words in English are ambiguous. The word “well” has multiple
purrs of speech; it could be a noun (“John fell into the well”), an

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL. 31 1

adverb (“John sang well”), a verb (“Tears did well up in John’s
eyes”), or an adjective (“John got well in three days”). Another
ambiguity can be seen for the word “will,” which has multiple verb
senses, one for the transitive verb (“John did will his fortune”) and
the other for the modal (“John will go”). Since the dictionary
processor has no way of knowing which form of the word is appropri-
ate for the input being parsed, it returns records for all of them. In
most cases, the ambiguity will be resolved by the grammar, as
described in the next section, grammar parsing.

The word “prioritize” is not stored in the dictionary. Rather, a
morphological rule specifies that a transitive verb can be formed from
a base noun ending in -y by removing the -y and adding -ize. Since the
necessary base (“priority”) is in the dictionary, the system deter-
mines that “prioritize” is a verb. The fact that it is transitive is
signaled by an attribute that says that it takes an NP (Noun Phrase)
complement.

In contrast to the basic infinitive form marked for “prioritize,” the
dictionary can determine that “knows” is a third person singular,
present tense verb because of the -s inflection found on a base
consisting of the verb “know.” Note that, as far as the dictionary
processor is concerned, the third person singular designation for this
verb is independent of the same designation for the pronoun “he.”
However, as discussed later, the co-occurrence of words with such
designations allows the grammar to check for subject-verb agreement
in a clause.

Possibilities for improved spelling checking

Current spelling checkers produce a list of words that are close in
spelling to some misspelled word and let the user make a choice. A
shortcoming of this approach is that the lists frequently contain words
that could not possibly be intended. Many words in such lists either
have the wrong part of speech or are inappropriately inflected for the
context in which they occur. For the misspelling “receieve,” one such
system produced the list: “receiver,” “received,” “reprieve,” “re-
trieve,” “reactive.” In EPISTLE, the combination of a dictionary
component that can analyze inflections and generate correctly
inflected words and a parser that can analyze syntactic context and
determine the permissible attributes of a misspelled word will allow
correction lists that more closely match the user’s intention. The
capability for creating such lists, however, has not yet been devel-
oped.

Fact identification

Although the dictionary currently provides almost exclusively syntac-
tic information, work is being done to augment it in the near future
with some semantic information about the words. For example, nouns
can have attributes related to animacy, time, place, or measure. This

312 HEIDORN ET AL. IBM SYST J VOL 21 NO 3 1982

type of information would be helpful both in writing grammar rules
and for identifying facts: either the name of something or the
quantification of something in terms of time, location, or some other
measurement attribute.

Identifying facts in a document has at least two important applica-
tions. First, the job of parsing text can be simplified somewhat by
replacing a string of words with a token indicating the fact category.
Thus, in the example letter of Figures IA-1D the string “Harold
White, Dir. Staff Operations,” could be replaced with a person-
name-title token, and “Dec. 1 7, 198 1 ,” could be replaced with a date
token. Such replacements would occur between dictionary processing
and parsing.

The second application of fact identification is document-indexing-
the characterization of a document in terms of a set of features or
indices to be used to retrieve the document. (This is one of the
longer-range objectives of the EPISTLE project.) Facts, being specific
or unique references, provide an excellent base for supporting retriev-
al, since most queries have specific components-like places, names,
and dates. However, fact-indexing provides a potentially much more
powerful retrieval technology than present-day key-word-in-context
methods since the fact identification algorithms would map poten-
tially widely differing token strings into the same fact category.

Although fact identification has not yet been incorporated into the
EPISTLE system, algorithms have been developed and tested for a
comprehensive and detailed taxonomy of facts.’

Grammar processing

Grammar processing is the central component of the EPISTLE system.
In this section, parsing is treated in some detail, followed by a
description of the grammatical error diagnosis done by the system.

Parsing in EPISTLE

We now discuss what parsing of English sentences is, and then
describe the way it is done in the EPISTLE system. Thereafter, the
current system’s coverage of English grammar is discussed, including
the results of benchmark testing.

To parse means to break down a sentence into its component parts of
speech with an explanation of the form, function, and syntactic
relationship of each part. The component parts of a sentence include,
first of all, its subject and predicate. The subject is the thing that the
sentence is talking about, and the predicate is what is being said
about the subject.

IBM SYST J VOL 21 N O 3 1982 HEIDORN ET AL.

SENT NP PRON* "HE"
VERB*
VP

"KNOWS"

NP NP NOUN* "MR."

VERB "WILL"
VERB* "PRIORITIZE"
NP PRON* "IT"
AVP ADV* "AS WELL"

,,1,

NOUN* "JONES"

Figure 4 Sample NLP decoding rules with explanations

RULE

(1) NOUN - NP (HEAD=NOUN)
(2) PRON - NP (HEAD=PRON)

(3) NP (1PRON) NP (1PRON) - NP

(4) VERB - VP (HEAD=VERB)
(5) VERB ('WILL'] VP - VP (FUTURE='YES')

(6) VP NP - VP (OBJECT=NP)

(7) VP AVP - VP

(8) PREP ('AS') ADV ('WELL') - AVP ('ALSO')

(9) PREP NP- PP

(10) NP
VP (NUMB.AGREE NUMB(NP)) - VP(SUBJECT=NP)

INTERPRETATION

(2) A pronoun can also be called a noun
(1) A noun can be called a noun phrase

(3) Consecutive NPs (provlded they are
phrase

not pronouns) can be put together
to form another NP.

(4) A verb can be called a verb phrase.
(5) The modal verb "will" followed by a

VP can be comblned into a new VP.
The new VP will indicate future tlme.

a new VP, with the NP becoming its

(7) A VP followed by an adverb phrase
direct object

(8) The preposition "as" followed by
also cornblnes into a new VP.

the adverb ''well" functions like the
one-word adverb "also "

(9) A preposltlon (such as "to," ''by,''

a preposltlonal phrase.
"as," etc) followed by an NP forms

(10) An NP followed by a VP, where the
number of the VP agrees wlth the
number of the NP (singular wlth sin-

gular, or plural with plural), can be
called a VP, with the NP functlonlng
as subject of the new VP. This rule
forms a complete clause.

(6) A VP followed by an NP can become

(consisting of a pronoun) "he." "He" has neither premodifiers nor
postmodifiers. The postmodifier of "knows" is the VP containing the
entire second clause of the sentence. That clause, in turn, has a head,
two premodifiers, and two postmodifiers; the subject NP of this clause
has one premodifier.

The EPISTLE parser can produce sentence outlines (called "parses" or
"parse trees") like the one above for the majority of English sentences
encountered in a large data base of business letters. In addition to the
outlines, records for each sentence are constructed, containing infor-
mation about the heads and modifiers of its component phrases. The
information contained in these records forms the basis for the
grammatical diagnostic work of EPISTLE.

Figure 4 gives a set of simplified NLP decoding rules. The actual rules
used in the grammar contain much more detail. This list includes the
rules that would be necessary to produce the parse in Figure 3. Terms
that are on the left of the arrow, outside the parentheses, are the
names of the sentence parts that are being put together. Terms on the
left of the arrow inside the parentheses are conditions that must be
met before the rule can be applied. The term on the right of the arrow
outside the parentheses is the name of the sentence part being
formed. Terms inside the parentheses on the right of the arrow
specify how to create a record structure to describe the new segment
being formed. The equal sign is the attribute assignment operator.

IBM SYST J VOL 21 0 NO 3 1982 HEIWRN ET AL.

Figure 6 A second parse for the example sentence

NOUN* ““MR ”

NOUN* “JONES”
“WILL”

PRON’ “IT”
“PRIORITIZE”

PREP “AS”
NOUN* “WELL”

VERB*

be a noun (“John fell into the well”), the phrase in question could be
parsed by Rule (9) to yield a prepositional phrase. The output from
this second parse is shown in Figure 6 .

It is not clear how this parse might be interpreted by an English
speaker. “Into the well” would be comprehensible, but “as well”
(where “well” means the same thing as it does in “into the well”)”?
Clearly the grammar is in trouble here if its purpose is to produce a
parse that will explain the functions and relationships of the sentence
and its parts.

One way around this problem would be to use more of the informa-
tion supplied by the dictionary and carried in the records. The noun
“well” is a count noun. Therefore, it should not stand alone as it does
in Figure 6 . If we are referring to one well, we must say “the well,” or
“a well,” or “my grandfather‘s well,” but not just “well.” Therefore,
the prepositional phrase in Figure 6 is not a possible construction in
English.

A simple addition to Rule (9) in the grammar of Figure 4 can block
the unwanted parse

(9) PREP NP(MASS(HEAD) I PRMODS) - PP

The condition added here says that if the NP following a preposition
has a head which is a mass noun, then it is acceptable, but if it does
not, the noun phrase must contain premodifiers (like “the,” or “a,” or
“my grandfather’s’’). Since “well” is not a mass noun and does not
have any premodifiers, it will fail to satisfy the revised Rule (9) , and
the incorrect parse in Figure 6 will never be produced. This example
illustrates the kind of modifications that are regularly made to the
EPISTLE grammar during its development.

The EPISTLE grammar must cover all the topics traditionally treated
in a grammar book. There are rules that describe noun phrases, verb
phrases, adjective, adverb, and prepositional phrases, subordinate
clauses, participial phrases, and other typical topics of grammar. The
current rules can identify the main sentence types: declarative,
imperative, question, and exclamatory.

There are groups of rules that treat variations on basic sentence
structures. For example, the sentence

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL.

might be varied by moving the final time phrase to the front:

Last SeDtember he wrote that reDort.

or even by moving the direct object to the front:

That report he wrote last September.

All of these variations have to be accepted by the grammar to result in
structures that are different in their shape and in the ordering of their
parts, but that reveal that those parts have identical functions and
relationships.

The EPISTLE grammar currently contains about 250 NLP decoding
rules for English. These rules are intended to produce what we call “a
unique approximate parse” for each sentence. Such a parse may not
always be semantically correct, e.g., some prepositional phrases may
be attached incorrectly, but it is adequate for the critiquing tasks of
the system.

A benchmark test of the parser was run in December 1981 on 2254
sentences from 41 1 business letters. Many of these sentences are long
and extremely complex (the longest sentence contains 63 words). The
average number of words per sentence was 19. The average process-
ing time per sentence was 10 CPU seconds on an IBM 3033 computer,
and the average working storage used per sentence was 150K bytes.
The grammar produced parses for 64 percent of these sentences
(which was up from 43 percent six months earlier). Of the total, 41
percent had single parses, 11 percent had double parses, 11 percent
had numbers of parses ranging from three to nine, and 1 percent had
ten or more parses.

Although these percentages fall short of the near-perfect score that
will be needed for the final implementation, the rate of improvement
is strong and continues to be so. Furthermore, since the tested
sentences had not been edited before processing, many of them
contained grammatical, punctuation, or other errors, which pre-
vented some parses that would otherwise have been obtained. Since
EPISTLE is currently implemented in LISP, it is expensive both in time
and in space. If these facts are taken into consideration, the perfor-
mance of the EPISTLE parser seems quite satisfactory at this stage.

Grammar checking

The types of grammatical errors diagnosed by the current system are
now presented; then the algorithm used to diagnose them is briefly
described. We conclude the discussion with some types of errors that
the current system does not handle.

318 H E I W R N ET AL. IBM SYST J VOL 21 0 NO 3 0 1982

consulting textbooks and authorities on English usage (e.g., Warriner currently
and Griffith,” Strunk and White”), and (2) by reading real business diagnosed
correspondence and watching for stigmatized constructions. Both

1 methods have been used to collect the grammar problems that
EPISTLE addresses. The EPISTLE critiques do not cover all possible
grammar errors in English, but they do address those that are most
often mentioned in the literature and most frequently found in the
observed correspondence.

1 Most grammar errors violate important conditions in the decoding
rules and prevent a sentence from being parsed. For example,
consider how Rule (10) in the grammar of Figure 4 would interact
with the sentence

Your file and your note of correction does not contain proper
information.

The condition on Rule (IO) says that the number of the subject noun
phrase must agree with the number of the verb phrase in order to
form a sentence. But the subject of the sentence is the conjoined noun
phrase “Your file and your note of correction,” which is plural, and
the verb phrase “does contain” is singular. Therefore, this sentence

1 could not be accepted by Rule (IO), and it could be said that the
sentence contains a grammatical error.

EPISTLE currently diagnoses five classes of grammatical errors:

Class 1: Subject-verb disagreement
(a) Your statement of deficiencies have not been completed

(b) Mr. Jones, as well as his assistants, are entitled to the commis-

(c) Neither Mr. Smith nor his associates wishes to participate

(d) Either of the models are acceptable (should be is) .

Class 2: Wrong pronoun case
(a) The Harrison contract was written by Bob Lee and I (should be

(b) The company will sell this product to whomever asks for it

(c) I would not advise that course of action, if I were him (should be

(d) If you have any further questions, please call either myself or

I

(should be has).

sion (should be is) .

(should be wish).

me).

(should be whoever).

he).

Arthur Hill (should be me).

Class 3: Noun-modifier disagreement
(a) These report must be checked by our trained personnel (should

(b) Several of the misplaced memo were found in the files (should
be reports).

be memos).

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL. 319

(c) Such large group cannot be served in the allotted time (should
be such a large group or such large groups).

Class 4: Nonstandard verb forms
(a) The judge cannot forget his preconceive notions (should be

(b) The completed manuscript was wrote by Tom Brown and
preconceived).

Jeffrey White (should be written).

Class 5: Nonparallel structures
(a) We will accept the funds, send receipts to the payers, and

crediting their accounts at the same time (should be credit).
(b) Sorting equipment would save time, money, and provide

greater control (should be save time and money, and pro-
vide. . .).

algorithm for The EPISTLE system uses the following three steps to detect grammat-
grammatical ical errors:

error detection
1. Attempt to parse the sentence, using fully grammatical rules

(where “fully grammatical” includes conditions on, for example,
number agreement between subject and verb). Only sentences
that fit the constituent class patterns and obey all conditions on
the patterns will be parsed successfully.

2. If the sentence was not parsed in the first step, then try again, but
this time with some of the conditions relaxed and with some
additional rules.

3. If the sentence is parsed in the second step, then make note of
what condition had to be relaxed and where in the sentence the
problem occurred, and pass appropriate information back to the
interface processor for display to the user.

The general approach stated here is similar to techniques described in
Weischedel and Black’’ and in Kwasny and Sondheimer.’’

errors not Although the current system can handle the five classes of errors
currently previously listed, there are other types of errors whose detection
handled requires information that the system does not yet have available. For

instance, the phrase “the the standard operating procedure” is
incorrect, because English does not allow repeated sequences of
determiners (words like “the,” “a,” “these,” etc.). But how about
“the standard standard operating procedure”? It is difficult to be
completely sure that “standard standard” is not a legitimate adjec-
tive phrase. Certainly “very very good” is acceptable English,
although it may be questionable style in the business environment. So
it is impossible to state generally that all sequences of identical words
are grammatically unacceptable.

In addition to the problem of repeated words, there are three more
categories of grammatical errors that the system does not currently
handle well. These problems do not necessarily cause the parse to fail,
but they do make it difficult to guarantee that the parse is correct.

320 HEIDORN ET AL. IBM SYST J VOL 21 0 NO 3 1982

Class 6: Repeated words (just discussed)

Class 7: Apostrophes
(a) This critique is complimentary to the writers effort (should be

writer’s).
(b) Their cooperation is worthy of thanks’ (should be thanks).
(c) It is unfortunate when management does not seem to care about

other’s needs (should be others’).

Class 8: Faulty comparisons
(a) His price is much lower than our competitor (how low is our

competitor?).
(b) The special features of our operating system justify a higher

price than that charged for other inferior systems (is our system
also inferior?).

Class 9: Position of modifiers
(a) We received a letter from your secretary, Ms. Hinchley, dated

August 16 (which one was dated, the letter or Ms. Hinchley?).
(b) Walking across the aisle, a mail cart hit Mr. Phelps (it’s

unusual to see a mail cart walking).
(c) You have been most helpful to us in advising our customers

(who actually did the advising, you or we?).
I

Style processing

We define style as the author’s strategy for organizing information. It
is not, in our terms, simply a lexical phenomenon (that is, it does not
have to do only with choice of words.) This section lists several types
of style errors and tells how the style critiques were developed,
followed by an explanation of a style rule in NLP form. Style errors in
the example sentence are then discussed.

Types of style errors

Style can be critiqued on several different structural levels: word,
phrase, sentence, and paragraph. Categorizing the errors by level
helps to maintain a perspective on the complicated array of advice
that is given in textbooks. Some errors that EPISTLE detects are

Word-level critiques
1. “Business-ese” (e.g., “prioritize,” “dollarization”)
2. Spelling nonpreferred (e.g., “labelled” versus “labeled”)
3. Bad connotations (e.g., “hate”)

Phrase-level critiques
1. Awkward, redundant or jargonistic phrases (e.g., “effect an

alternative procedure,” “merge together,” “surface the recom-
mendation”)

2. Too much qualification of a noun (e.g., “The disk pack holder
mount flange tip”)

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL. 321

3 . Too many intensifiers (e.g., “This seems like a very very good
idea”)

Sentence-level critiques
1. Sentence too long (or too short)
2. Too many negatives (e.g., “They don’t know nothing,” “That is a

3 . Too many “attitude” verbs (e.g., ‘‘I know that you think that I
not unwise decision”)

believe that you feel confused”)

Paragraph-level critiques
1. Too many passive sentences (e.g., “All requirements for that

program have not been ful’lled. . . . Eligibility may be attained
by you if the deficiencies can be overcome”)

2. Too many compound or complex sentences (i.e., sentences con-
taining more than one clause)

3 . Poor readability score (as measured by some standard readabil-
ity index)

Another system that does style critiquing is the “Writer’s Work-
bench.”14-lh It does many of the same style critiques as EPISTLE, but
because it does not have a parser, it cannot do critiquing that requires
having a parse tree for the sentence, such as “subject-verb distance
too great.”

The development of style critiques

The EPISTLE style critiques were developed in five stages. First,
principles of good style (especially those for the business environ-
ment) had to be identified. This stage was done largely by reviewing
several text and “how-to” books on writing (e.g., Bates,” Cloke and
Wallace,’* Dyer,” Wilkinson et al.”). For example, three commonly
agreed-upon principles of good business style are

1. Prefer the active voice
2. Use strong verbs
3. Make sentences readable

The second stage in developing style critiques was to determine the
ways of violating each principle. For example, the readability princi-
ple could be violated in several ways:

a. Too many words in the sentence
b. Too many dependent clauses
c. Too great a distance between the subject and the verb

Given this expansion of a principle into classes of violation, the third
step was to identify for each the specific grammatical cues that could
be used to detect an instance of violation and its severity. For
example, violation class c above has two obvious grammatical cues:
the locations of the subject and of the verb; these can be identified as
Loc(Subj) and Loc(Verb). Less obvious, perhaps, is the consideration

322 HEIDORN ET AL. IBM SYST .I VO1. 21 NO 3 19x7 I

concentrated effort has been on developing and testing the grammar.
We are satisfied with our progress toward a grammar that will cover
almost all sentences that appear in business letters. During this same
time we have improved the underlying natural language processing

1 system and have demonstrated a capability for doing grammar
checking and style checking. Also, a considerable amount of work has
been done with an on-line version of a standard dictionary to produce
the part-of-speech information that is used by the parser.

At present, we are working on several items toward the goal of
1 making an experimental version of EPISTLE available. We are imple-

menting techniques for dealing with sentences that are only partially
parsed by the grammar, and we are refining techniques for dealing
with sentences that result in multiple parses.2’ Then we have to
expand the grammar-checking and style-checking functions from a
demonstration level to a level of real usefulness. Along with this, work

1 on the dictionary is continuing, both to improve the access times and
to provide more syntactic and semantic information. As stated
earlier, the underlying natural language processing system is being
reimplemented in a more efficient language to reduce the time and
space requirements.

1 In the longer term, in addition to handling whatever deficiencies are
found by experimental use, we will increase the amount of semantic
information that is available to the processor so that the system can
diagnose the more difficult kinds of errors not currently handled.
Critiquing at the paragraph level would also become possible if the
system could represent the “meaning” of each sentence as a series of

I related propositions and then assess their continuity by comparing
them to known patterns of good exposition. We would also like to do
the semi-automatic creation of first drafts, using some techniques
discussed in Jensen.” Eventually, there is the second class of applica-
tions mentioned in the introduction to be worked on, dealing with the

1 synopsizing, indexing, and retrieving of incoming documents.

ACKNOWLEDGMENTS

We would like to thank Evon Greanias, Tony Hwang, and Ken

I John Sowa and the referees for their careful reading of the manu- I
script.

CITED REFERENCES
I . L. A. Miller, “A system for the automatic analysis of business correspondence,”

Proceedings of the First Annual National Conference on Artificial Intelligence,
Stanford University (1980), pp. 280-282.

2. L. A. Miller, G. E. Heidorn, and K. Jensen, “Text-critiquing with the EPISTLE
system: An author’s aid to better syntax,” AFIPS Conference Proceedings 50,
649-655 (May 1981).

3. G . E. Heidorn, Natural Language Inputs to a Simulation Programming System,
Naval Postgraduate School Technical Report No. NPS-55HD72101A (1972).
(Copies are available from the author at the IBM Thomas J. Watson Research
Center in Yorktown Heights, NY.)

IBM SYST J VOL 21 NO 3 1982 HEIDORN ET AL. 325 I

4. G . E. Heidorn, “Augmented phrase structure grammars,” in Theoretical Issues in
Natural Language Processing, Editors: B. L. Nash-Webber and R. C. Schank,
Association for Computational Linguistics, Menlo Park, CA (1975).

5. LISP/370 Program Description/Operations Manual, SH20-2076-0, IBM Corpo-
ration (1978); available through IBM branch offices.

6. D. H. H. Ingalls, “The Smalltalk-76 Programming System: Design and imple-
mentation,” Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages (1978), pp. 9-16.

7. R. A. Amsler, The Structure of the Merriam-Webster Pocket Dictionary,
Doctoral Dissertation TR-164, University of Texas, Austin, TX (1980).

8. M. Aronoff, Word Formation in Generative Grammar, M.I.T. Press, Cambridge,
MA(1976).

9. L. A. Miller and G. Carriero, The Automatic Identijication of Facts in Natural
Language Text, Research Report, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (to be published in 1982).

10. J. E. Warriner and F. Griffith, English Grammar and Composition, Harcourt,
Brace, and World, Inc., New York (1963).

1 1. W. Strunk, Jr. and E. B. White, The Elements of Style, Third Edition, Macmillan
Publishing Company, Inc., New York (1979).

12. R. M. Weischedel and J. E. Black, “Responding intelligently to unparsable
inputs,” American Journal of Computational Linguistics 6, No. 2, 97-109
(April-May 1980).

13. S. C. Kwasny and N. K. Sondheimer, “Relaxation techniques for parsing
grammatically ill-formed input in natural language understanding systems,”
American Journal of Computational Linguistics 7, No. 2, 99-108 (April-June
1981).

14. L. L. Cherry, PARTS-A System for Assigning Word Classes to English Text.
Bell Laboratories Computing Science Technical Report No. 8 1, Bell Laboratories,
Murray Hill, NJ (1978).

15. L. L. Cherry, Writing Tools-The STYLE and DICTION Programs, Bell
Laboratories Computing Science Technical Report No. 9, Bell Laboratories,
Murray Hill, NJ (1980).

16. N. Macdonald, Pattern Matching and Language Analysis as Editing Support,
paper presented at the American Educational Research Association Meeting,
Boston (April 1979).

17. J. D. Bates, Writing with Precision, Acropolis Books, Ltd., Washington (1978).
18. M. Cloke and R. Wallace, The Modern Business Letter Writer’s Manual,

Doubleday and Co., New York (1969).
19. F. C. Dyer, Executive’s Guide to Effective Speaking and Writing, Prentice-Hall,

Inc., E n g l e w d Cliffs, NJ (1962).
20. C. W. Wilkinson, P. B. Clarke, and D. C. M. Wilkinson, Communicating through

Letters and Reports, Seventh Edition, Richard D. Irwin, Inc., Homewood, IL
(1980).

21. G . E. Heidorn, “Experience with an easily computed metric for ranking alterna-
tive parses,” presented at the Twentieth Annual Meeting of the Association for
Computational Linguistics, Toronto (June 1982); also to be published in 1982 as a
Research Report, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598.

22. K. Jensen, “Computer generation of topic paragraphs: structure and style,”
presented at the ACL sessions of the 56th Annual Meeting of the Linguistics
Society of America, New York (December 198 1); also to be published in 1982 as a
Research Report, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598.

G. E . Heidorn, K . Jensen, L. A. Miller, and R. J , Byrd are located at
the IBM Thomas J . Watson Research Center, P . 0. Box 218,
Yorktown Heights, NY 10598; M. S. Chodorow is with the Psychol-
ogy Department of Hunter College, City University of New York,
695 Park Avenue, New York, NY 10021.
Reprint Order No. G321-5171.

326 HEIDORN ET AL. IBM SYST J VOL 21 NO 3 0 1982

