The age of the nonprogrammer user of computing systems is at
hand, bringing with it the special need of persons who are profession-
als in their own right to have easy ways to use a computing system.
Through the programming language discussed in this paper, execu-
tives and other office personnel can perform data and word process-
ing and communications via terminals. This language, called
Office-by-Example, provides rich and powerful access to the com-
puting system computation, data base, communication, and display
facilities. Discussed and illustrated by examples are a two-
dimensional screen editor, triggers, and data bases, as well as word
processing, electronic mail, customized menus, and application
development.

Office-by-Example: A business language that unifies data
and word processing and electronic mail

by M. M. Zloof

In recent years, we have been witnessing a rapid evolution in the
world of computer technology. This technology is advancing so
rapidly that interactive computing in businesses is commonplace, and
computers in the home are becoming a reality. Thus the age of the
nonprogrammer professional, i.e., the age of end users, is emerging.
These users, although professional in their own fields, have neither
the time nor the motivation to learn a conventional programming
language. Furthermore, the spectrum of end users is rapidly widen-
ing. Although a couple of years ago end user systems tried to address
secretaries and clerks, now the range includes executives, middle
managers, secretaries, engineers, clerks, and—perhaps soon—house-
wives.

A consequence of cheaper available hardware is that users are
becoming more sophisticated in their applications and require more
functions with better flexibility and ease of use. For example, users of
conventional word processing systems are requesting advanced data

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J & VOL 21 % NO 3 1982

processing functions. To meet some of these demands data base
systems are being linked to various word processors to enhance their
capabilities. Naturally, the more functions a system offers, the wider
the spectrum of its users, especially among the upper management
executives, who are more inclined to use a system that offers easy
access to remote and local data bases.

We are therefore faced with the following dilemma: power versus
ease of use. As the repertoire of facilities and functions increases, it
becomes more complicated to use a system with the conventional
approach of preprogrammed menus. A system that offers limited
functions can be interfaced by displaying a single menu to the user,
but a sophisticated system with a larger domain of facilities requires
many such menus, together with the ability to enter parameters at
various points. Thus the complex system is not as transparent to the
user as the simpler system. We are all familiar with such end users’
statements as “I had to go through so many menu options to do a very
simple task.”

Prespecified menus have another drawback in that they lack flexibili-
ty. If a user wishes to modify a function or add a new option, he must
consult the developers of the system or the programmers who
maintain it. In addition, the formats of any object—be it a letter
template (or skeleton), a form, a report—-are all preprogrammed into
the system with little or no ability for an end user to modify or define
a new one.

As more and more office functions become automated through
diverse products, cither offered or soon to be offered in the market,
the user has to learn different software manuals and languages to
interface with these products. Thus a user may have to use one
manual for data processing transactions, another for document
handling, and yet another for audio message handling. As we shall see
later, to accomplish those three functions the same file may be
invoked, but its use varies with function due to the fact that the
products mentioned have been developed separately by unrelated
efforts with different philosophies.

What we need, therefore, is a powerful end user oriented language
with which users can describe their application to the computer. This
language should require minimum training, yet be powerful enough
to cover a large domain of facilities.

This article describes a programming language we call Office-
by-Example (OBE), which is a two-dimensional language and system
that is an attempt to mimic manual procedures of business and office
systems. OBE is a superset and natural extension of the Query-
by-Examplel’7 data base management system, and contains features
from our earlier work on a System for Business Automation.*” Other
research in this area is listed in References 10—-18.

IBM SYST J @ VOL 21 @ NO 3 & 1982

Figure 1 Office-by-Example facilities

ONE
UNIFIED
LANGUAGE

GRAPHIC
OuTPUTS

QBE, a relational system,"” is an IBM product that is used in such
applications as distribution, finance, government, manufacturing,
processing, construction, and utilities. It is also used in many IBM
locations. At the Thomas J. Watson Research Center alone, QBE is
used in about one hundred applications by over two hundred users.
Reactions of various customers on the use of QBE are found in
References 20 and 21; psychological studies conducted on the

language, with comparison to others, show very favorable results.””

OBE is a Research Division project, currently in various stages of
architecture and development.

In the following sections we describe the OBE language and facilities
and the components of the OBE system. We then give illustrative
examples of end user programs and applications written in OBE.

The OBE language

The language for Office-by-Example (OBE) represents an attempt to
combine and unify aspects of word processing (including editing and

formatting), data processing, report writing, graphics, and electronic

ZLOOF IBM SYST J & VOL 21 « NO 3 » 1982

mail. With such a language, end users (secretaries, engineers, clerks,
etc.) are able to specify and store complex OBE programs, thus
developing their own applications. This concept is illustrated by
Figure 1. In addition, end users can set up menus (which in essence
are selections of stored OBE programs) for their use or for others who
are not motivated to learn details of the OBE language. An executive
can specify to an assistant the menu(s) he would like to select from
and the results to be displayed by the execution of the particular
program selection. As an example, the executive may want a menu in
order to see his mail and various summary reports (which aggregate
data from a data base), together with the ability to send messages.
Others may wish to see their calendars or to reserve a room
automatically. In all cases, the assistant or secretary can set up an
appropriate stored program based on the executive’s specifications.
The novelty in this approach is that menus are not preprogrammed by
the system developers; rather, they are customized according to
specification and set up (programmed) by end users for end users.
The programming style of OBE is the same as that of QBE: direct
programming within two-dimensional pictures of business objects.
The user of QBE requires very little additional training to be able to
use OBE.

Although the fundamental data object in QBE is the table, in OBE the
objects are more general, and include letters, forms, reports, charts,
and graphs, as illustrated in Figure 2 (see page 282).

A fundamental concept in OBE (as in QBE) is that of example element
variables. By utilizing these variables, users are able to program
within fields of different objects. (Example elements are specified in

this paper as underlined strings of characters such as X, LM, or G5.)
The concept of the example element is relatively simple, yet it allows
end users to perform a wide variety of operations such as the
following:

Cross-referencing between fields by entering identical example
elements in two or more fields of the same or different objects.
Formulating conditions of field values (e.g., X + Y > 50).

Moving data from one object to another (e.g., from a data base
table to a letter or a report).

Deriving new fields.

Locating text by using partially underlined strings of characters,
examples of which are given later in the paper.

Distributing objects to a dynamic list of destinations.

Another innovation of OBE is that end users themselves create
(define) business objects on the two-dimensional display in much the
same way they create these objects manually on paper. This contrasts
with conventional systems in which objects are usually predefined by
application programmers. Furthermore, since the QBE data base
management system is its base component, users can easily extract

IBM SYST J VOL 21 e NO 3 e 1982 ZLOOF

objects
and their
operations

summary
of the
OBE
facilities

data from the data base and copy it into the body of the objects.
Objects can also be edited and distributed through a communication
subsystem to other nodes by specifying the recipient users’ IDs. The
distribution list can be either static (i.e., predefined, such as a list of
all managers) or dynamic (i.e., variable, such as a list of all salesmen
who exceeded their quotas in the previous month). The distribution
list is found by the system upon issuing a query to the data base at the
time of the distribution.

Another important feature of OBE is the ability to express various
trigger conditions. When activated, these result in one or several
actions. For example, one could compose a congratulatory letter to be
sent to salesmen when they exceed their quotas. To check the quotas,
the system evaluates the data base with a specified frequency. For
each salesman whose sales exceed his quota, a trigger is activated and
the congratulatory message is sent. Naturally, the data base is a key
OBE component because it participates in all stages of the system:
creation, editing, storage and retrieval, distribution, and trigger
evaluation.

The OBE language can be characterized as a nonprocedural, two-
dimensional language, the facilities of which are now summarized.
The syntax used here is not that of OBE, which is illustrated through
the examples in the succeeding section.

Input. Input of data to the OBE system can be achieved by (a)
interactively entering it through the display terminal, (b) receiving it
from other nodes (other users) of the system, or (c¢) receiving it from
remote data bases (e.g., IMS).

Data structures. OBE data structures are two-dimensional and are
defined by end users. Data structures include the following:

* Two-dimensional data objects, including
RELATIONS
FORMS
REPORTS
IMS HIERARCHICAL STRUCTURES
DOCUMENTS
MENUS
Two-dimensional program objects, which are a collection of
various data objects and their operations. ‘

Data types. Within fields of the OBE objects, the following data types
can be declared:

CHAR
FIXED
FLOAT
DATE
TIME

IBM SYST J ® VOL 2] @ NO 3 e 1982

Conditions. By entering constants and example elements (variables)
in the appropriate fields of the various OBE structures, one can
achieve the following conditions:

Conditions on a single field.

Conditions between fields.

Conditions between fields of the same data base records (e.g., SAL
> COMMISSION). This kind of condition is called RESTRICTION in
relational algebra.

Conditions between fields of different data base records. This kind
of condition is called JOIN in relational algebra.

Conditions between fields of different structures. For example, a
field in a table must be greater than or equal to a field in a form.
Conditions on aggregates of field values.

Logical conditions (e.g., (SAL + COM = 50 or 60) AND W = 30).
Integrity constraints, which are conditions that must hold to
ensure the correctness of the data base.

Authority constraints, which are conditions that protect the data
base from unauthorized access and modification.

Data base query. OBE allows the user to define and query a relational
data base (Query-by-Example) as well as query a hierarchical (IMS)
data base. The query language is relationally complete. That is, it has
the equivalent of the following relational algebra operations:

SELECTION
PROJECTION
JOIN
INTERSECTION
UNION
DIFFERENCE

Branching. Branching in OBE is achieved by means of the trigger
facility. When a trigger is activated, it results in one of the following
actions:

DISPLAY an object
MODIFY an object
SEND an object
EXECUTE an object

These OBE facilities may be viewed as generalized DOs as in other
programming languages. The ELSE clause can be achieved by taking
an action when the trigger does not activate.

Nesting of programs. OBE allows the execution of programs within
the scope of other programs, thus achieving the equivalent of
program nesting.

IBM SYST J @ YOL 21 « NO 3 & 1982

Screen Manager—
two-dimensional
editor

278

Figure 3 System hardware configuration

Menu construction. OBE allows end users to set up menus, the
selections of which are OBE stored programs.

Commands. OBE uses commands to execute, send, print, display,
delete, or update. Some commands are entered in a special object
called a command box.

Output. OBE allows output data to be displayed on the screen, sent to
a printer, mapped to a disk, or sent to other locations.

OBE system components

In this section, an overview of the various OBE components from a
system point of view is presented exclusive of the details of their
application by end users. Users are introduced to the system by
learning the language interface described in later sections of this

paper.

The current implementation of OBE is carried out under the vM/CMS
operating system. Since, however, the language concepts and the
system configuration are theoretically independent of the underlying
operating system, we try not to depend on specific features of the
operating system. Ideally, we are seeking an architecture whereby
word-processing functions and access to personal data bases can be
carried out locally at the terminal site. Data processing functions and
access to remote large data bases are executed at the host, which may
connect to other large main frames via a network, as illustrated in
Figure 3.

The various system components are shown in Figure 4. We now
describe these components in more detail.

Since OBE is a two-dimensional language, the Screen Manager (SM)
supports and manipulates two-dimensional objects very flexibly. OBE

is written to support various terminals (IBM 3277, 3278, and the 3279

ZLOOF IBM SYST J & VOL 21 & NO 3 & 1982

Figure 4 Office-by-Example system components

color terminal), and with little effort can support an All Points
Addressable (APA) terminal. (The screens pictured in this paper were
produced using the IBM color display.)

The Screen Manager supports the following two-dimensional struc-
tures.

Multiple windows (view ports): A window (or view port in graphics

terminology) is a box that can be displayed on a screen by pressing an
appropriate function key. Windows and other objects are displayed
relative to the position of the cursor (with the top left corner of the
generated object at the cursor position). Each object is displayed as
though it is in a different depth plane. Thus objects can move over the
top of and relative to one another. Each window in OBE constitutes a
PROGRAM OBJECT. Therefore, two windows displayed simultaneously
on a screen can run two independent programs.

Multiple objects within a single window: Various business objects
can be displayed, moved, and scrolled within a single window. A box
is used to compose a letter, a table to define or to query a relational
data base, an x-y coordinate to define a graph, and so forth. We
distinguish between two types of objects, primitive and derived.
Primitive objects are prestored objects that can be displayed by
pressing appropriate function keys, such as the skeleton of a box or
the skeleton of a table. Derived objects are more complicated in that
they are created by end users and stored in the system for later use.
Examples are invoice form, memorandum, letter, or report skeletons.
Note that these derived objects are not preprogrammed into the
system by professional programmers (as it is done traditionally), but

IBM SYST J ¢ VOL 21 ¢ NO 3 e 1982 ZLOOF

are defined by end users mimicking the way these objects appear on
paper. (An example of how an end user defines a derived object is
shown in the next section.)

Editing of objects and text within objects: To manipulate objects and
text within the objects, we use the EXPAND, ERASE, MOVE, SCROLL,
LOCATE, ZOOM, and PUSHDOWN function keys.

Our main concern with the system is its ease of use, which we believe
is partly related to fewer function keys for more operations. To
achieve that, the operations carried out are a function of the position
of the cursor at the time the function key is pressed. For example, if
one presses the EXPAND function key, the action that occurs depends
on the location of the cursor, as follows:

If the cursor is positioned on the vertical boundary of a WINDOW,
the window expands vertically.

If the cursor is positioned on the horizontal boundary of a
WINDOW, the window expands horizontally.

If the cursor is positioned on a vertical boundary of an object
within a window, on a letter, for example, the letter expands
vertically.

If the cursor is positioned between two words in text within an
object, a space appears between these words for insertion of
additional text, and the rest of the text automatically wraps
around to adjust for that space.

This paradigm follows for the other function keys. If one places the
cursor on an object name, e.g., a table name, and presses the MOVE
function key, the system marks that position with an indicator. Then
when one moves the cursor to any other position and presses MOVE
again, the object moves from the marked position to the new cursor
position. Similarly, one can move text from within an object by first
marking the beginning and the ending of the text string, and then
moving the cursor to the new position where the text is to be
imbedded. In this way one can achieve the cut-and-paste operation
that exists in conventional word processors, using the same function
key that moves two-dimensional objects. The scope of each function
key (which depends on the cursor position) starts with the editing of
two-dimensional windows and descends hierarchically to objects
within windows, to fields within objects, and ends with text within
fields.

Briefly summarized, the above function keys perform the following
operations.

EXPAND — Expands windows and objects vertically and hori-
zontally, expands fields in tables, adds new columns
or rows to a table or a report, expands text by
creating space at the cursor position.

IBM SYST J e VOL 21 @ NO 3 & 1982

ERASE — Erases windows and objects within windows, erases

rows and columns of tables and data in fields of
objects, shrinks windows and objects horizontally or
vertically depending on cursor position, and erases
text within an object if the beginning and end of the
desired deletion are marked.
Moves windows, objects within windows, and text
within an object by marking beginning and end of
the text to be moved. The text is imbedded at the
new location, whether in the same object or in a
different object of a different window.

SCROLL — Scrolls all windows and their objects if the cursor
position is in the space between windows; scrolls all
the objects within one window if the cursor position
is on a particular window; and scrolls text within an
object if the cursor is within the object. For exam-
ple, if the output of a query requires more lines than
the table has, one can scroll the output records with
that space.

LOCATE — Locates windows, objects within windows, or text

within the objects by specifying what string of
characters one wants to locate. For example, if
cursor position is on a letter object and one presses
the LOCATE function key, the system asks one to
enter the string he wishes to locate. The system then
highlights occurrences of that string.
When windows or objects within windows are
moved or scrolled out of the screen, it becomes
difficult to keep track of their location. Therefore, a
ZOOM function is provided to scale down all the
objects so that they can fit simultaneously on the
screen. The scale varies depending on the distance
between objects. When scaled down (in a ZOOM
mode), a green rectangle is superimposed on the
objects as an indication of the screen position if one
leaves the ZOOM mode. Reduced objects in a ZOOM
mode can be moved by the MOVE function key. In
addition, the green rectangle can be moved to
capture different objects. When one leaves the
ZOOM mode, the object covered with the green
rectangle expands to a full-size screen. ZOOM is
illustrated in Figure 5.

PUSHDOWN — As previously stated, each object resides on a dif-
ferent depth plane. The PUSHDOWN key allows one
to push down the objects pointed to by the cursor to
the bottom of the pile of object planes.

This short summary of Screen Manager facilities does not exhaust
the list of its capabilities. The only limitation on the number and sizes
of objects that one can display simultaneously is that of the virtual

IBM SYST J & VOL 21 ® NO 3 1982

word
processor

Figure 2 Display of various Office-by-Example objects

Figure 5 ZOOM mode

address space of the machine. If too many objects clutter a single
window, one can use the LOCATE function key to locate each object
separately in sequential order.

As we mentioned in the Screen Manager section, most of the text
editing operations are accomplished by the Screen Manager (ERASE,
EXPAND, LOCATE, MOVE, etc.). If one wants to have an easy-to-use
system, the style of text editing must be the same as that of editing
two-dimensional objects. With a system architecture that can support
a local processor, text editing and formatting can be carried out
locally while data processing and other operations can be accom-

ZLOOF IBM SYST J ¢ VOL 21 e NO 3 » 1982

plished in the host processor. (Note that these considerations are
transparent to the user, who is not and should not be concerned with
where each part of the program is executed.)

At present, the Screen Manager is responsible for formatting the
objects and their texts. (Later on, this function should become part of
the word processor.) The way this is done is somewhat similar to the
present Displaywriter implementation. That is, when the user creates
a document, he may call a FORMATTING OPTIONS box to be superim-
posed on top of that document. This box has various formatting
options with their default values as shown in Figure 6.

The user may change these defaults permanently by updating the
box, or temporarily by changing a YES to a NO option or vice versa.
The option values are also cursor dependent, and they remain in
effect until the next change in options. Furthermore, formatting is
carried out interactively, and each time the ENTER key is pressed the
document is reformatted. The width of the FORMATTING OPTIONS
box is the same as that of the object being formatted. Thus the
displayed ruler can be used to set up tabs and margins as shown in
Figure 6.

As in QBE, OBE users may define their own data bases. Data bases can
be defined either as collections of relations (tables) or as hierarchical
views of relations. This is accomplished by displaying a blank
skeleton of a table (in the case of relations) on the screen and filling in
the table name, column names, and field attributes (such as TYPE,
IMAGE, KEY, etc.). An example of such a definition is shown in the
next section. In the case of a hierarchy, the user displays a blank
skeleton of a hierarchy on the screen (which consists of tables

pointing to other tables in a hierarchical fashion) and then fills the
blanks in the same manner as the relations.

A form in OBE is a generalization of a table and is viewed as a data
object. There is a major difference, however, in that a table (relation)
is a Screen Manager primitive object (i.e., its skeleton structure is
stored and can be displayed by pressing a function key), whereas a
form skeleton is a derived object and must first be constructed by the
users before defining its various fields. Once the skeleton form is
constructed, the user links its fields to fields in columns of an
associated table(s), and defines these fields almost as though they
were table fields. A form is considered to be a data base object and
thus can capture data, and its data fields can be modified. One can
also issue a query against a form. (An examplie of form definition is
shown later in this paper.)

Fields of a form are mapped into fields of corresponding table(s) so
that there is no need to define a special query language for forms.
Thus the same syntax used to express queries or modifications in
fields of relational table(s) can be used for fields in a form. This is
done because internally the form fields are mapped into table fields.

IBM SYST J ® VOL 21 @ NO 3 e 1982 ZLOOF

formatting

Figure 6 Formatting options
for objects and their
texts

data base
definition
processor

forms
and
reports

query
translator

and
processor

trigger
manager

Also, integrity and authority constraints can be specified on the form
fields, again to save the definition of a new form syntax. An example
of a form definition is shown later in this paper.

A report, on the other hand, is an output object only. It can, of course,
be stored globally as a string of text, but its structure is not stored in
the system. Thus data cannot be captured via a report, and one
cannot query a report.

As we shall see in the examples later in this paper, we distinguish
between two types of reports: single-stage report and two-stage
report. In a single-stage report, all fields are filled in by data copied
from a data base. In a two-stage report, some of the fields are first
copied from a data base. In the second stage, further processing is
carried out on the report itself to calculate other fields. For example,
totals and subtotals may be calculated after the data are copied from
the data base to the body of the report, or in the case of reports in
which one wants to total all the fields horizontally.

After the Screen Manager passes the linear string representing the
various objects and their entries, the string is passed to the Query
Translator, which parses it and checks the entries against the syntax
grammar of the various fields. At this point, conflicting data TYPEs,
invalid key words, etc. are detected and appropriate error messages
are passed back to the user. For example, if one links a character field
TYPE to a numeric field TYPE, an error message is issued to indicate
that there are incongruent fieids. After the program passes the
various checks, an internal representation of the query is created and
is passed to the Query Processor (QP) for selecting efficient search
criteria for the relations. The Query Processor, in turn, issues calls to
the HRMS (to be explained later) to perform such operations as create
relations, scan relations on particular selection criteria, create inver-
sions (indices) on certain columns of a relation, and sort relations on
particular columns.

A requirement of fundamental importance to office and business
automation is the ability of the system to act automatically when it
detects specified conditions. This allows the user to automate many
routine business procedures so as to devote more time to nonroutine
tasks. The following is a list of actions one may want to automate:

Deferred messages, such as prestored messages or reports to be
sent at predetermined dates or frequencies.

Objects to be automatically sent if a condition is met in the data
base, such as prestored messages to be sent automatically to
managers who exceed their travel budgets.

Follow-up procedures, such as an alert message automatically sent
to a user if a piece of outside correspondence is not answered
within a given time.

Acknowledgments.

IBM SYST J e VOL 21 ¢ NO 3 o 1982

» Update of the data base, such as automatic budget increases of
individual managers by an amount indexed to overall program
budget increases.

Creation of logs, such as the insertion of the name and address on
every outgoing letter into a predefined mail log table.

Inventory replenishment, such as the automatic sending of a
reorder message when the quantity of a stock item falls below a
certain level.

Most of the procedures just given can be automated by trigger
expressions. A trigger expression is defined as a labeled QBE expres-
sion that activates either an action or another trigger expression when
specified conditions are met in the data bases. A trigger expression is
evaluated either upon modifications of the data base or on the basis of
time (i.e., at specified times and dates or at specified intervals).

One of the tasks of the trigger manager is to keep and maintain
directories of all the trigger programs in the system. In the case of
time triggers, i.e., when trigger programs have to be executed either
at specified intervals or at specified future times, the trigger man-
ager, before logging off, passes to the underlying operating system the
date and time at which the OBE system must be awakened to evaluate
the next trigger program. We are assuming here that the underlying
operating system has an automatic logon feature such as in CMS. The
trigger manager also keeps track of the actions to be carried out if a
particular trigger is activated.

Two-dimensional programs can be stored in OBE by naming and
storing a window. A window may contain a command box that calls
for the execution of other programs. In this manner, the nesting of

programs is accomplished. Another way to execute a collection of
programs one at a time is by means of menus.

A menu is a box that can be defined by end users. The menu definer
can enter a sequence of various program names into a menu. Then if
one places the cursor on one of the menu selections and presses the
enter key, the underlying program is executed and the results
displayed. If, for example, one selects NEW MAIL for execution, an
underlying query program is carried out to do a simple query on the
incoming mail table.

For an office system to be useful, it is essential to provide the office
worker some access to large central data bases that in most cases are
stored as IMS hierarchical structures. It is the provision of such
facilities that determines whether an executive or a principal is going
to make the effort to learn a computer system, no matter how simply
it has been designed.

Conventionally, the only way to access IMS data bases is by writing a
DL/1batch program. OBE, on the other hand, provides an easy way for

IBM SYST J e VOL 21 e NO 3 e 1982

menus
and
stored
programs

access to
and
extraction
from

IMS

data bases

authority
subsystem
manager

Communication
Manager

Figure 7 Distribution options

an end user to call the IMS hierarchical structure, which is then
displayed as pictures on the screen. The user proceeds by filling in the
appropriate ficlds using the desired selection criteria. The system, in
turn, translates this high-level nonprocedural program into a conven-
tional DL/1-PL/I program that is to be shipped to IMS for processing.
(We are, of course, assuming that the workstation is connected via a
proper network to the IMS DB-DC processor.)

Furthermore, in many cases, one wants to extract a data subset from
IMS and map it locally into a different storage structure, such as a
relational structure. This can also be achieved by the end users by
specifying the mapping on the screen (via example elements, as
shown later in this paper). The current OBE implementation does not
include the capability to update an IMS data base from OBE.

As in QBE, OBE has sophisticated means by which users can specify
the delegation of authority. The creator of a table can, for example,
specify read, insert, delete, and update options for either an entire
table or a subset of a table, as determined by any query expression.
The same applies to the creation and modification of documents.

When a user issues a request to access or modify a data base that may
contain tables, forms, documents, etc., the Screen Manager passes
the request to the authority manager, which checks its validity. If the
request is valid, the Screen Manager proceeds to process the request
in the normal manner. Otherwise the user is notified that the request
is denied for lack of authority.

If an object of OBE is sent to other nodes of the system, or if an object
is received from other nodes, the Communication Manager interacts
with the underlying operating system to distribute such an object
according to user specification. The Communication Manager keeps
directories of user IDs of other locations. It also keeps directories of
users’ names and their IDs and department names and their node 1Ds,
since one can send an object to a user’s name, a department name, or
both.

When an object is requested for distribution, the Communication
Manager displays to the user a DISTRIBUTION OPTIONS object, as
shown in Figure 7.

Users have the option to change default values from NO to YES and
vice versa. If, for example, the ACK attribute is changed to YES, the
Communication Manager sends a request (attached to the object) to
the receiver for acknowledging the receipt of the object. If the LOG
option is changed to YES, the object is logged before it is sent. If the
CONF option is changed to YES, the Communication Manager
encrypts the confidential contents of the object and only by entering a
special key does the receiver have access to that object.

ZLOOF IBM SYST J @ VOL 21 ¢ NO 3 e 1982

Received objects are passed from the operating system to the
Communication Manager, which logs them in a MAIL table and
informs the user about the receipt of the object.

In OBE, a text document may be thought of as a report, that is, as a
report containing only text without any formal structure. Therefore, a
document can be stored in the same way as a report and other
objects.

A document can be retrieved by its name (as are tables, forms,
reports, etc.), but it can also be retrieved by the text content. Since
OBE is a superset of QBE, we are using the same partial-example-
element feature for searching by a word or sentence within the body
of the text. Furthermore, we use the same aggregate functions to
count documents that satisfy search criteria. For example, one can
easily request a count of all documents that have the words “com-
puter applications” in their texts. Similarly, one can request those
documents to be displayed on the screen for observation.

The OBE system interface to the operating system file manager is
called the Hierarchical Relational Memory Structure (HRMS). HRMS
provides the rest of the system facilities with a relational view of the
data base. Thus, one can issue calls to HRMS to perform such
operations as:

CREATE a relation

SCAN a relation

UPDATE a relation

CREATE INVERSIONS (index)
DROP INVERSIONS

The HRMS interface to the system can be viewed as a relational access
method interface, such as XRAM, which was used in the QBE product.
The one major difference is that it does not carry out any disk
accesses. We are assuming that a relatively large virtual memory is
available to a single user. This assumption seems reasonable for the
following reasons. A local workstation is not likely to be shared by
many users. Memory cost is decreasing and so memory is becoming
more available. We are assuming relatively small data bases, so that
they fit in the computer’s virtual address space.

Initial testing of the HRMS performance indicates significant
improvement over the performance of the Query-by-Example prod-
uct access method. Also, for medium-size data bases of several
thousands of records, the resources required are significantly
reduced.

Examples of OBE programs

Although the OBE language is very rich in facilities, its syntax and
concepts are simple. To begin, a new user needs to learn very little
more than the following:

IBM SYST J e VOL 21 ® NO 3 e 1982

document creation,
storage, and
retrieval

Hierarchical
Relational
Memory
Structure
(HRMS)

examples
of OBE
programming

1. Operators on programs or data within objects.

P. to present or display
1. to insert

D. to delete

u. to update

S. or SEND. to send

G. to group

. Example elements—underlined string of characters.
. Aggregate functions.

SUM. to sum or total multiple values

CNT. to count multiple values

AVG. to average multiple values

MAX. to find the maximum of multiple values
MIN. to find the minimum of multiple values
UNQ. to eliminate identical values

As in the case of the Screen Manager function keys, the OBE
operators work in a consistent manner and are context dependent
when placed in different fields within the objects. For example, if the
P. operator is placed on a window heading, it retrieves the names of all
stored windows. If P. is placed on a table heading, it displays the
names of all the stored tables in the system. If, on the other hand, P. is
placed within a field of a table, it displays the data associated with
that field. The same holds true for the rest of the operators: L., D., U.,
S.,and G.

We now illustrate OBE programming with some examples.

Document creation, storage, and distribution. To create a docu-
ment(s), one displays its skeleton on the screen and proceeds by
entering the text. The text can be edited by the Screen Manager
function keys as previously explained, and formatted dynamically
using the formatting options of Figure 6. Since objects can be moved
in different planes, one can create more than one object simulta-
neously. After the documents are created, one can store them by
placing an I. in front of their names. If one wants to distribute them to
other users, an S. command is placed in the OBE command box. These
operations are shown in Figure 8. Here, the 1. command stores the
documents, and the first S. command sends the letter to two
recipients. Before the system distributes these documents, a distribu-
tion option shown in Figure 7 is displayed for each document, and one
has the choice of changing the options (YES or NO) as explained. Thus
the user need not remember any of either the formatting options or
the distribution options because they are automatically displayed on
the screen. All one has to remember is to change the option YES to NO
or vice versa.

IBM SYST J ¢ VOL 21 @ NO 3 o 1982

Figure 8 Composing, storing, and distributing two documents

TAETTERY

Figure 9 A program (A) to retrieve documents containing the words ‘‘computer
applications,” and (B) the retrieved documents

IBM SYST J o 21 « NO 3 o 1982

Document retrieval, deletion, or update. Stored OBE documents can
be retrieved by their names by placing a P. followed by the document
name in the document name field. Thus P.LETTERI1 in the heading of
a document box retrieves the contents of the document LETTERI1.

Another way of retrieving documents is by using search criteria on
the text. This is achieved by specifying the search criteria in the body
of the text, as shown in Figure 9(A). The program retrieves all
documents that contain the words “computer applications” in their
bodies (Figure 9 (B)). If, for some reason, one wants to count the
documents, the operator and function P.CNT. is used instead of P..
This is an instruction to display the number of documents that were
found to meet the specified search criteria. This, of course, is a simple
example. Because of the richness of OBE, far more complex search
criteria can be used than the one illustrated here, by entering more
example elements and specifying more logical conditions in the
condition box.

Documents are deleted (destroyed) by entering a D. followed by the
document name, or updated by entering U. followed by the document
name.

Data base query and modification. Consider a relational data base
consisting of two tables: SALES, with the column headings SALES-
MAN, SALES QUOTA, and SALES TO DATE; and ITEM SALES, with the
headings ITEM, PRICE, SALESMAN. We start with a simple query on
the SALES table. (We are assuming the tables have been defined.)

Simple table selection. List, for example, the names of salesmen who
have exceeded $50 000 in sales. Initially, the user displays a blank
table skeleton. He then enters the table name into the table name
field (in this case SALES). The system then generates the column
heading automatically. Having established the column headings, the
user then programs within the skeleton by making the entries shown
in Figure 10. P.stands for either print or display. It indicates that the
desired outputs are names of salesmen and sales-to-date amounts, but
only of those who exceed $50 000.

Cross-referencing between fields. Suppose a manager wants to find
the names and telephone numbers of salesmen who exceeded $50 000
in sales, and suppose further that there is a DIRECTORY table that
contains the employees® NAME and PHONE #. This query is accom-
plished by displaying two table skeletons on the screen and entering
both table names in the appropriate spaces. The final formulation of
this query is shown in Figure 11.

The example element (variable) N in both tables causes the listings in
the NAME field to match the SALESMAN field; that is, only names and
telephone numbers of salesmen who made over $50 000 in sales are to
be displayed.

IBM SYST J o VOL 21 @ NO 3 e 1982

Figure 10 Simple table section

Figure 11 Cross referencing between tables

Figure 12 Cross referencing in the same table

Cross-referencing can also be done within records of the same table.
Consider, for example, the query to “List the name(s) of salesmen
whose sales to date exceed that of Smith.” This query is shown in
Figure 12. The order of the rows is immaterial.

Conditions on field values. List the names and sales to date of
salesmen who have exceeded their sales quotas. This is shown in
Figure 13. A condition box primitive object can be displayed through
a function key for the specification of conditions.

IBM SYST J o VOL 21 @ NO 3 e 1982

Figure 13 Using a condition box

Figure 14 Simple retrieval from an IMS data base

Figure 15 Extraction from IMS and copying into a relational data base

SALES QUOTA

IBM SYST J » VOL 21 ¢ NO 3 » 1982

To modify the data base, the operator’s 1., D., and U. are used
accordingly. Further examples of data base query and modification
are given in References 1-7.

Retrieval from IMS data base. In the case of IMS data bases, the user
displays a blank skeleton of a hierarchy on the screen and proceeds by
entering the IMS hierarchy name (Program Communication Blocks,
PCBs) in the appropriate space. The system then automatically
displays the hierarchical segments, which the user may access, and
their headings. This information is mapped from the IMS Data Base
Descriptions (DBDs) and PCBs directories.

Having established the hierarchical structure on the screen, the user
fills in the spaces by the OBE operators, as shown in Figure 14.

IMS extraction. By using example elements, one can extract data
from IMS and copy them into a relational data base. This is done by
displaying the hierarchy and the relation(s) skeletons and then
inserting (I.) example elements into the relation(s) linked to fields in
the hierarchy, as shown in Figure 15. For further details on hierarchi-
cal data base structures, see Reference 7.

Distributing merged text and data objects. In the previous examples,
we have illustrated word processing and data base operations. We
now combine the two. Suppose a manager wants to send congratula-
tory letters to all salesmen who have exceeded their sales quotas. This
is easily accomplished in OBE by mapping appropriate example
elements from the data base to the body of the document, as shown in
Figure 16.

Note that the S. to N in the command box establishes a dynamic
distribution list that is determined from a data base query. This
program, therefore, sends personalized letters to all salesmen who
have exceeded their quotas.

The example illustrated in Figure 16 is seemingly a rather trivial one.
One can imagine far more complex applications involving lengthy
documents or reports with example elements linked to more than one
data base table or IMS hierarchy and with more than one condition in
the data base. The purpose of this example is to demonstrate the
elegance of combining the activities of word processing, data process-
ing, and communications into a single unified interface.

Graph composition. Example element mapping can also be used to
generate graphs. Consider a COMPANY table that lists the earnings of
various companies by calendar year under the headings of NAME,
EARNINGS, and YEAR.

The formulation for a graph for each company that contains its
year-by-year earnings is shown in Figure 17. Here each company

IBM SYST J & VOL 21 ¢ NO 3 & 1982

Figure 16 Distribution of personalized letters

SALES T DRIE

name is mapped to a separate report. The x-y coordinates are called
YEAR and EARNINGS, respectively, and their values are mapped via
the example elements YR and E. The system adjusts the scale of the
coordinates to take full advantage of available space.

Table definition. We now give an example of how end users define
(create) tables in OBE. Starting from a blank table skeleton, the user
inserts the table name and the column headings as shown in Figure
18. When processing the entries in Figure 18, the system displays to
the user the row attributes shown in Figure 19. The user then
proceeds to fill in the attribute values as shown in Figure 20, as
follows:

IBM SYST J e VOL 21 @ NO 3 e 1982

Figure 18 Creation of table headings

Figure 19 Display of row attributes

Figure 20 Definition of row attributes

TYPE specifies the field type: CHAR, FIXED, FLOAT, DATE, TIME.
IFW (Input Field Width) specifies the desired width of the field
when displayed on the screen for input. A

OFW (Output Field Width) specifies the maximum desired width
of the field when output is displayed on the screen.

IMAGE specifies’ the image one wants the output to have. For
example, in Figure 20, the amounts have two characters after the
decimal points. (IMAGE does not refer to CHAR data type.)

Form and report definition. Forms and reports are defined in the
same style as tables. In this case, however, the user first graphically
structures the image of the form or report on the screen, mimicking
manual construction. The user then enters example elements in the

IBM SYST J e VOL 21 » NO 3 e 1982 ZLOOF

Figure 21 Constructing the structure and headings for a form

Figure 22 Form field definition

fields to be defined. As an example form, an invoice has been
constructed and headings given in Figure 21.

As in the example of the table, when the user processes the entries in
the form in Figure 21, the system prompts the user to provide data
attributes by displaying a corresponding table skeleton with the same
name, headings, and example elements as in the form. This table
structure includes row attributes for the definition of the report fields,
as shown in Figure 22.

The user proceeds by entering values for the various row attributes,
which are defined as follows:

IBM SYST J e VOL 21 « NO 3 e 1982

TYPE and FW As in the table definitign for Figure 20.

FLINE (Fold Line) YES means that if the output data string is
larger than the Fw, then fold the string on the
second line.

PB (Page Break) YES means that every time the value of the
field is changed, a new page is started.

SV (Single Value) YES means that the corresponding example
element cannot have more than one value.

OP (One Print) YES means to print only one of identical
values.

Also note that the number of row attributes is open-ended, so that Figure 23 MATRIX report
structure

other row attributes can be added as required to implement future
system capabilities.

After the definition of the form is complete, one can copy data from
other tables into that structure, again by means of example
elements.

Two-stage report. As mentioned earlier, it is sometimes desirable

first to, move some of the data from the data base tables and then

operate locally on the data of the report to produce totals and

subtotals, ctc. To demonstrate this, assume that we constructed a

MATRIX report to summarize the quarterly sales of three salesmen, as Figure 24 Filling in a MATRIX
shown in Figure 23. The program that copies data from a data base report
table(s) to the body of the report is shown in Figure 24. Note that the

example elements correspond to Single Value (SV) data moved from

SALES! table. The SUM. functions act to total these values both

vertically and horizontally. This is a two-stage report because the

sums can be carried out only after the data are placed in the report

structure.

Receiving objects. To keep track of received objects, the system
maintains a log called MAIL, which contains the headings shown in
Figure 25. When an object is received from other users, the system
automatically enters a record in the MAIL table that indicates from
whom and to whom the object was sent, as well as the object name,
classification, etc. The MAIL table is accessible to all users, but
various authority statements restrict access to particular subsets of it.
For example, one can issue an authority statement restricting a user
to reading his own mail only.

The syntax of a trigger expression consists of the identifier TR trigger
followed by a trigger name. (Trigger names are unique within a single programs
user ID.}) TR1 and TRABC are examples of valid trigger identifiers.

Triggers can have various parameters to indicate the frequency with

which corresponding QBE expressions are to be evaluated.

IBM SYST J @ VOL 21 e NO 3 » 1982

Figure 26 Example sequence
of trigger actions

Figure 25 MAIL log to track received objects

There are two types of triggers. Modification triggers are evaluated
upon a change in the data base. For example, TR1(D.) means
“evaluate trigger expression 1 upon deletions,” and TR2(1.,U.) means
“evaluate trigger expression 2 upon insertions or updates.” Time
triggers are evaluated at a specified time and date or at specified time
periods. For example, TR5(5/5/82 AT 16:00) means “evaluate trigger
expression 5 on 5/5/82 at 4 pm,” and TR6(DAILY) means “evaluate
trigger expression 6 daily.” Keywords can be used to specify the
period: HOURLY, DAILY, WEEKLY, MONTHLY, every WORKING DAY,
etc. If a trigger expression has no parameters——such as TR7—it is
evaluated when the stored program containing this trigger expression
is executed.

A trigger is said to be activated if its corresponding QBE expression is
satisfied. As previously mentioned, when a trigger is activated, it
causes either an action or the evaluation of another trigger expres-
sion. That is, one trigger can be a parameter of another trigger, as
shown in Figure 26.

The leaves of the tree in Figure 26 must always represent actions
because the activation of a trigger without subsequent effect is
meaningless. The following actions can take place upon the activation
of triggers:

DISPLAY DATA OBJECTS
INSERT DATA OBJECTS
UPDATE DATA OBJECTS
DELETE DATA OBJECTS

SEND DATA OBJECTS
EXECUTE PROGRAM OBJECTS

The syntax to carry out these actions is a generalization of the P., L.,
U, D., S., and E. operators with trigger expressions as parameters:

P (TR1 AND/ORTR2...).

I (TRI AND/ORTR2..).

U (TR1 AND/ORTR2..).

D (TRI AND/ORTR2..).

SEND (TR1 AND/OR TR2...). or S(TRIAND/OR TR2..).
EXECUTE (TR1 AND/OR TR2. . .). or E(TR1 AND/OR TR2..).

The following examples explain the above syntax:

IBM SYST J » VOL 21 ® NO 3 o 1982

Figure 27 Trigger program to check SALES table and send letters

TR MONTMLY)

¢
| SUTR1YLETTER TO
|

e el

Figure 28 Deletion of a record from the DIRECTORY table triggers the deletion of
the corresponding record from the SALES table

TRID)

DITRN.

I(TR1). Insert records in the corresponding table only if trigger 1 is
activated.

SEND (TR5 OR TR6).A Send object A only if either trigger 5 or
trigger 6 is activated.

EXECUTE (TR8).ABC Execute program ABC only if trigger 8 is
activated. ‘

Consider the program for the distribution of personalized letters

shown in Figure 16. Suppose Henry wants the system on a monthly
basis, to check and automatically send congratulatory notes to

IBM SYST J & VOL 21 ® NO 3 e 1982

examples
of trigger
programs

299

Figure 29 Monthly sales report program

FETRT

SALES SALES QU0TA

EXECUTE(MONTHLY), REP(RT

Figure 30 Program for daily sales update

FL R AR & 0]

{ PN WALES

{ SALES SALES 10 DTE

FEES R

!
§ EXFCUTELDRILY Y. SRLES UPD
H
{

salesmen who have exceeded their quotas. This can be achieved by
adding to the program in Figure 16 trigger expressions as shown in
Figure 27. Each month the trigger program checks the SALES table
and sends letters to salesmen who exceed their quotas.

Another example is the ability to modify one table as a consequence
of the modification of another. In doing this, triggers can be used to
ensure that referential constraints (18) are not violated. To illustrate
this operation, Figure 28 shows the deletion of information from the

IBM SYST J @ VOL 21 ¢ NO 3 o 1982

SALES table of a salesman who is deleted from the DIRECTORY table.
Upon the deletion of a record from the DIRECTORY table, trigger TR1
is activated and, in turn, deletes the corresponding record from the
SALES table.

Application development

The OBE features and facilities described in the previous sections are
now used to show that one can write an entire application to automate
various business and office procedures. Although the following
application dealing with sales management is simple, it demonstrates
the generality and the flexibility of the language.

Assume, as before, that a certain department store keeps information
on items and their prices sold by individual salesmen (for commission
purposes) in a table called ITEM SALES, in addition to the previous
table SALES, which is the cumulative monthly sales volume. These
two tables can be used to write the following high-level programs.

First is a program to issue monthly reports listing salesmen and their
total sales, sorted alphabetically by salesman’s name. The program
illustrated in Figure 29, arbitrarily called REPORT, produces a hard
copy listing of names and sales to data. The AO. function sorts the list
into alphabetical order and the command PRINTER produces the hard
copy. The statement at the bottom of the figure causes the execution
of this program on a monthly basis.

A program for updating the SALES TO DATE column of the SALES
table on a daily basis to reflect the daily sales is shown in Figure 30.
Here, the program SALES UPDATE sums for each salesman the prices
of all items sold and updates the SALES TO DATE field accordingly.
The second statement executes the program on a daily basis.

A trigger program shown in Figure 31 checks the SALES table on a
monthly basis and sends a report to the manager, Henry, only for
salesmen who exceed their quotas. The report should include the
salesmen’s names, their individual sales amounts, count of number of
salesmen exceeding quota (CNT.N), and the total of all sales (SUM.S).

These three programs illustrate the expressive power of OBE. Of
course, more complex programs involving many more tables, condi-
tions, triggers, messages, and reports can be composed.

The application illustrated in Figure 32 is that of the production and
distribution of invoices from a data base of fulfilled orders and item
prices. This program produces an INVOICE for each customer that
lists items, quantities, prices, and totals. The S. command in the box
causes the distribution of the invoices. In our terminology, the
INVOICE is considered to be a two-stage report.

IBM SYST J 0 VOL 21 8, NO 3 #1982

Figure 31 Sales report program listing salesmen who exceed monthly quota,
number who exceed quota, and the sum of their sales

SALES QUOTA | SARUES TD DATE

Figure 32 Program to produce an INVOICE for each customer

i T
CUBTOMER | 1712 ‘ H PRRUE TEM | UNIT PRITE I
L i

QUANTITY PATEMED PRI

Menus

As mentioned earlier, menus can be set up by end users for end users.
Here is an example of the setting up of a menu by a secretary for an
executive according to given specifications. Suppose the secretary
wants to create a menu with the following selection options: MAIL,
SEND A MESSAGE, and SALES REPORT. As shown in Figure 33, the
secretary starts by inserting the key word MENU followed by the
menu name in a box, and then proceeds by entering the selections

ZLOOF IBM SYST J ¢ VOL 21 « NO 3 e 1982

separated by asterisks. These selections are actually stored program
names that the secretary stores in the ordinary manner.

When the executive displays MENU ABC on the screen, places the
cursor on one of the selections, and hits the enter key, the system
executes the appropriate program and displays the results. Since the
execution of a program can cause the display of other objects (in this
example, other menus) the users can thus obtain a hierarchy of
menus, as illustrated in Figure 34.

For example, if one selects the MAIL option, the result could be
another menu, as shown in Figure 35. '

If the user now proceeds to select the option NEW MAIL from MAIL
menu, the system executes a query program on the MAIL table with
the selection criteria NEW under the NEW/OLD field.

In summary, users can ecasily customize a variety of menus for
themselves or others, so that one need not know more about the
system than to point at menu selections that have been designed
especially for them.

Concluding remarks

In conclusion, the QBE/OBE language is a high-level nonprocedural
language with the following unique features:

Requires very few concepts to get started.

Gives the feeling of manual manipulation of the objects.
Combines word processing, data processing, and communication
in an elegant, compact, and unified manner.

Allows users to customize their own menus.

Allows user access to centralized IMS data bases.

Allows end users to automate routine business procedures by
means of triggers.

ACKNOWLEDGMENTS

I am very much indebted to the Office Automation group for their
design and implementation of the various components of the OBE
system. In particular, I am grateful to Guy T. Hochgesang for the
design and implementation of the Screen Manager and to Arthur C.
Ammann for the design and implementation of the HRMS. My thanks
also go to Stephen P. Morgan, Ravindran Krishnamurthy, and
Erdwin C. Chua for their work on various design aspects of the
system. I also want to thank my wife, Rosy, and Erdwin C. Chua for
their editorial assistance, and Arthur J. Stein and Erdwin C. Chua
for their assistance with the graphics in this paper.

CITED REFERENCES

1. M. M. Zloof, “Query-by-Example: A data base language,” IBM Systems Journal
16, No. 4, 324-343 (1977).

iBM SYST J e VOL 21 ® NO 3 o 1982

Figure 33 Creating a menu

Figure 34 Hierarchy of menus

. M. M. Zloof, “Query-by-Example,” AFIPS Conference Proceedings, National
Computer Conference 44, 431-438 (1975).

. M. M. Zloof, “Query-by-Example: The invocation and definition of tables and
forms,” Proceedings of the International Conference on Very Large Data Bases,
September 1975, 1-24 (1975).

. M. M. Zloof, Query-by-Example: Operations on the Transitive Closure,
Research Report RC-5526, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1975).

. M. M. Zloof, Security and Integrity Within the Query-by-Example Data Base
Management Language, Research Report RC-6982, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 (1978).

. The QBE Terminal User’s Guide, SH20-2078; available through IBM branch
offices.

. M. M. Zloof, “Query-by-Example: Operation on hierarchical data bases,” AFIPS
Conference Proceedings, National Computer Conference 45, 845-853 (1976).

. M. M. Zioof and S. P. deJong, “The System for Business Automation (SBA),”
Communications of the ACM 20, No. 6, 385-396 (1977).

. S. P. deJong and M. M. Zloof, Communication within the System for Business
Automation, Research Report RC-6788, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 (1976).

. D. Tsichritzis, “OFS, An integrated form management system,” International
Conference on Very Large Data Bases (6th), 161-166 (1980).

. H. L. Morgan, “The future of office of the future,” Office Automation Conference
Digest, AFIPS Press, Roslyn, VA (1980).

. M. Hammer, Laboratory for Computer Science Progress Report: Office Automa-
tion Group, MIT Laboratory for Computer Science, Cambridge, MA 02139
(1979).

. C. Ellis and G. Nutt, Computer Science and Office Information Systems, Report
SSL-79-6, Xerox Palo Alto Research Center, Palo Alto, CA 94304 (June 1979).

. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie,
J. W. Mehl, P. Reisner, and B. W. Wade, “SEQUEL 2: A unified approach to
data definition, manipulation, and control,” IBM Journal of Research and
Development 20, No. 6, 560-575 (November 1976).

. E. F. Codd, “A data base sublanguage founded on the relational calculus,”
Proceedings, ACM SIGFIDET Workshop (1971).

. M. M. Stonebraker, Getting Started in INGRES-A, Report ERLM 518, Com-
puter Science Department, University of California, Berkeley, CA 94720 (1975).

. N. C. Shu, V. Y. Lum, S. C. Tung, and C. L. Cha, Specifications of Forms
Processing and Business Procedures for Office Automation, Research Report
RJ-3040, IBM Research Laboratory, San Jose, CA 95193 (January 1981).

. C. J. Date, Referential Integrity, Santa Teresa Laboratory Report TR03.132,
IBM Santa Teresa, San Jose, CA 95150 (January 1981).

. E. F. Codd, “A relational model for large shared data banks,” Communications of
the ACM 13, No. 6, 377-387 (1970).

. Merchandising Management Using Query-by-Example, CK20-1298-0 (1980);
available through IBM branch offices.

. Personnel, Finance, and Sales Applications Using Query-by-Example, CK20-
1342-0 (1980); available through IBM branch offices.

. J. C. Thomas and J. D. Gould, “A psychological study of Query-by-Example,”
AFIPS Conference Proceedings, National Computer Conference 44, 439-445
(1975).

. D. Greenblatt and J. Waxman, “A study of three data base query languages,” in
Data Bases, Improving Usability and Responsiveness, B. Schneiderman (Editor),
Academic Press, New York (1978).

The author is located at the IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598.

Reprint Order No. G321-5170.

IBM SYST J e VOL 21 ® NO 3 e 1982

