
The age of the nonprogrammer user of computing systems is at
hand, bringing with it the special need ofpersons who areprofession-
als in their own right to have easy ways to use a computing system.
Through the programming language discussed in this paper, execu-
tives and other ofice personnel can perform data and word process-
ing and communications via terminals. This language, called
Ofice-by-Example, provides rich and powerful access to the com-
puting system computation, data base, communication, and display
facilities. Discussed and illustrated by examples are a two-
dimensional screen editor, triggers, and data bases, as well as word
processing, electronic mail, customized menus, and application
development.

Office-by-Example: A business language that unifies data
and word processing and electronic mail

by M. M. Zloof

In recent years, we have been witnessing a rapid evolution in the
world of computer technology. This technology is advancing so
rapidly that interactive computing in businesses is commonplace, and
computers in the home are becoming a reality. Thus the age of the
nonprogrammer professional, i.e., the age of end users, is emerging.
These users, although professional in their own fields, have neither
the time nor the motivation to learn a conventional programming
language. Furthermore, the spectrum of end users is rapidly widen-
ing. Although a couple of years ago end user systems tried to address
secretaries and clerks, now the range includes executives, middle
managers, secretaries, engineers, clerks, and-perhaps soon-house-
wives.

A consequence of cheaper available hardware is that users are
becoming more sophisticated in their applications and require more
functions with better flexibility and ease of use. For example, users of
conventional word processing systems are requesting advanced data

OCopyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

272 ZLOOF IBM SYST J VOL 21 NO 3 1982

Figure 3 System hardware configuration

Menu construction. OBE allows end users to set up menus, the
selections of which are OBE stored programs.

Commands. OBE uses commands to execute, send, print, display,
delete, or update. Some commands are entered in a special object
called a command box.

Output. OBE allows output data to be displayed on the screen, sent to
a printer, mapped to a disk, or sent to other locations. I
OBE system components

In this section, an overview of the various OBE components from a
system point of view is presented exclusive of the details of their
application by end users. Users are introduced to the system by
learning the language interface described in later sections of this
paper.

The current implementation of OBE is carried out under the VM/CMS
operating system. Since, however, the language concepts and the
system configuration are theoretically independent of the underlying
operating system, we try not to depend on specific features of the
operating system. Ideally, we are seeking an architecture whereby
word-processing functions and access to personal data bases can be
carried out locally at the terminal site. Data processing functions and
access to remote large data bases are executed at the host, which may
connect to other large main frames via a network, as illustrated in
Figure 3.

The various system components are shown in Figure 4. We now
describe these components in more detail.

Screen Manager- Since OBE is a two-dimensional language, the Screen Manager (SM)
two-dimensional supports and manipulates two-dimensional objects very flexibly. OBE

editor is written to support various terminals (IBM 3277,3278, and the 3279

278 ZLOOF IBM SYST J VOL 21 NO 3 1982

are defined by end users mimicking the way these objects appear on
paper. (An example of how an end user defines a derived object is
shown in the next section.)

Editing of objects and text within objects: To manipulate objects and
text within the objects, we use the EXPAND, ERASE, MOVE, SCROLL, (
LOCATE, ZOOM, and PUSHDOWN function keys.

Our main concern with the system is its ease of use, which we believe
is partly related to fewer function keys for more operations. To
achieve that, the operations carried out are a function of the position
of the cursor at the time the function key is pressed. For example, if 4
one presses the EXPAND function key, the action that occurs depends
on the location of the cursor, as follows:

If the cursor is positioned on the vertical boundary of a WINDOW,
the window expands vertically.
If the cursor is positioned on the horizontal boundary of a
WINDOW, the window expands horizontally.
If the cursor is positioned on a vertical boundary of an object
within a window, on a letter, for example, the letter expands
vertically.
If the cursor is positioned between two words in text within an
object, a space appears between these words for insertion of
additional text, and the rest of the text automatically wraps
around to adjust for that space.

I

This paradigm follows for the other function keys. If one places the
cursor on an object name, e.g., a table name, and presses the MOVE
function key, the system marks that position with an indicator. Then
when one moves the cursor to any other position and presses MOVE
again, the object moves from the marked position to the new cursor
position. Similarly, one can move text from within an object by first
marking the beginning and the ending of the text string, and then
moving the cursor to the new position where the text is to be
imbedded. In this way one can achieve the cut-and-paste operation
that exists in conventional word processors, using the same function
key that moves two-dimensional objects. The scope of each function
key (which depends on the cursor position) starts with the editing of
two-dimensional windows and descends hierarchically to objects
within windows, to fields within objects, and ends with text within
fields.

Briefly summarized, the above function keys perform the following
operations.

EXPAND - Expands windows and objects vertically and hori-
zontally, expands fields in tables, adds new columns
or rows to a table or a report, expands text by
creating mace at the cursor position.

280 ZLOOF

ERASE - Erases windows and objects within windows, erases
rows and columns of tables and data in fields of
objects, shrinks windows and objects horizontally or
vertically depending on cursor position, and erases
text within an object if the beginning and end of the
desired deletion are marked.

MOVE - Moves windows, objects within windows, and text
within an object by marking beginning and end of
the text to be moved. The text is imbedded at the
new location, whether in the same object or in a
different object of a different window.

SCROLL - Scrolls all windows and their objects if the cursor
position is in the space between windows; scrolls all
the objects within one window if the cursor position
is on a particular window; and scrolls text within an
object if the cursor is within the object. For exam-
ple, if the output of a query requires more lines than
the table has, one can scroll the output records with
that space.

LOCATE - Locates windows, objects within windows, or text
within the objects by specifying what string of
characters one wants to locate. For example, if
cursor position is on a letter object and one presses
the LOCATE function key, the system asks one to
enter the string he wishes to locate. The system then
highlights occurrences of that string.

ZOOM - When windows or objects within windows are
moved or scrolled out of the screen, it becomes
difficult to keep track of their location. Therefore, a
ZOOM function is provided to scale down all the
objects so that they can fit simultaneously on the
screen. The scale varies depending on the distance
between objects. When scaled down (in a ZOOM
mode), a green rectangle is superimposed on the
objects as an indication of the screen position if one
leaves the ZOOM mode. Reduced objects in a ZOOM
mode can be moved by the MOVE function key. In
addition, the green rectangle can be moved to
capture different objects. When one leaves the
ZOOM mode, the object covered with the green
rectangle expands to a full-size screen. ZOOM is
illustrated in Figure 5.

PUSHDOWN - As previously stated, each object resides on a dif-
ferent depth plane. The PUSHDOWN key allows one
to push down the objects pointed to by the cursor to
the bottom of the pile of object planes.

This short summary of Screen Manager facilities does not exhaust
the list of its capabilities. The only limitation on the number and sizes
of objects that one can display simultaneously is that of the virtual

IBM SYST J VOL 21 0 NO 3 1982 ZLOOF 281 I

plished in the host processor. (Note that these considerations are
transparent to the user, who is not and should not be concerned with
where each part of the program is executed.)

At present, the Screen Manager is responsible for formatting the
objects and their texts. (Later on, this function should become part of
the word processor.) The way this is done is somewhat similar to the
present Displaywriter implementation. That is, when the user creates
a document, he may call a FORMATTING OPTIONS box to be superim-
posed on top of that document. This box has various formatting
options with their default values as shown in Figure 6.

The user may change these defaults permanently by updating the
box, or temporarily by changing a YES to a NO option or vice versa.
The option values are also cursor dependent, and they remain in
effect until the next change in options. Furthermore, formatting is
carried out interactively, and each time the ENTER key is pressed the
document is reformatted. The width of the FORMATTING OPTIONS
box is the same as that of the object being formatted. Thus the
displayed ruler can be used to set up tabs and margins as shown in
Figure 6.

As in QBE, OBE users may define their own data bases. Data bases can
be defined either as collections of relations (tables) or as hierarchical
views of relations. This is accomplished by displaying a blank
skeleton of a table (in the case of relations) on the screen and filling in
the table name, column names, and field attributes (such as TYPE,
IMAGE, KEY, etc.). An example of such a definition is shown in the
next section. In the case of a hierarchy, the user displays a blank
skeleton of a hierarchy on the screen (which consists of tables
pointing to other tables in a hierarchical fashion) and then fills the
blanks in the same manner as the relations.

A form in OBE is a generalization of a table and is viewed as a data
object. There is a major difference, however, in that a table (relation)
is a Screen Manager primitive object (i.e., its skeleton structure is
stored and can be displayed by pressing a function key), whereas a
form skeleton is a derived object and must first be constructed by the
users before defining its various fields. Once the skeleton form is
constructed, the user links its fields to fields in columns of an
associated table(s), and defines these fields almost as though they
were table fields. A form is considered to be a data base object and
thus can capture data, and its data fields can be modified. One can
also issue a query against a form. (An example of form definition is
shown later in this paper.)

Fields of a form are mapped into fields of corresponding table(s) so
that there is no need to define a special query language for forms.
Thus the same syntax used to express queries or modifications in
fields of relational table(s) can be used for fields in a form. This is
done because internally the form fields are mapped into table fields.

IBM SYST J VOL 21 NO 3 1982 ZLOOF

formatting

Figure 6 Formatting options
for objects and their
texts

data base
definition
processor

forms
and
reports

283

query
translator

and
processor

trigger
manager

Also, integrity and authority constraints can be specified on the form
fields, again to save the definition of a new form syntax. An example
of a form definition is shown later in this paper.

A report, on the other hand, is an output object only. It can, of course,
be stored globally as a string of text, but its structure is not stored in
the system. Thus data cannot be captured via a report, and one
cannot query a report.

As we shall see in the examples later in this paper, we distinguish
between two types of reports: single-stage report and two-stage
report. In a single-stage report, all fields are filled in by data copied
from a data base. In a two-stage report, some of the fields are first
copied from a data base. In the second stage, further processing is
carried out on the report itself to calculate other fields. For example,
totals and subtotals may be calculated after the data are copied from
the data base to the body of the report, or in the case of reports in
which one wants to total all the fields horizontally.

After the Screen Manager passes the linear string representing the
various objects and their entries, the string is passed to the Query
Translator, which parses it and checks the entries against the syntax
grammar of the various fields. At this point, conflicting data TYPES,
invalid key words, etc. are detected and appropriate error messages
are passed back to the user. For example, if one links a character field
TYPE to a numeric field TYPE, an error message is issued to indicate
that there are incongruent fields. After the program passes the
various checks, an internal representation of the query is created and
is passed to the Query Processor (QP) for selecting efficient search
criteria for the relations. The Query Processor, in turn, issues calls to
the HRMS (to be explained later) to perform such operations as create
relations, scan relations on particular selection criteria, create inver-
sions (indices) on certain columns of a relation, and sort relations on
particular columns.

A requirement of fundamental importance to office and business
automation is the ability of the system to act automatically when it
detects specified conditions. This allows the user to automate many
routine business procedures so as to devote more time to nonroutine
tasks. The following is a list of actions one may want to automate:

Deferred messages, such as prestored messages or reports to be
sent at predetermined dates or frequencies.
Objects to be automatically sent if a condition is met in the data
base, such as prestored messages to be sent automatically to
managers who exceed their travel budgets.
Follow-up procedures, such as an alert message automatically sent

1
Update of the data base, such as automatic budget increases of
individual managers by an amount indexed to overall program
budget increases.
Creation of logs, such as the insertion of the name and address on
every outgoing letter into a predefined mail log table. ’ Inventory replenishment, such as the automatic sending of a
reorder message when the quantity of a stock item falls below a
certain level.

Most of the procedures just given can be automated by trigger
expressions. A trigger expression is defined as a labeled QBE expres- ’ sion that activates either an action or another trigger expression when
specified conditions are met in the data bases. A trigger expression is
evaluated either upon modifications of the data base or on the basis of
time (i.e., at specified times and dates or at specified intervals).

One of the tasks of the trigger manager is to keep and maintain
directories of all the trigger programs in the system. In the case of
time triggers, i.e., when trigger programs have to be executed either
at specified intervals or at specified future times, the trigger man-
ager, before logging off, passes to the underlying operating system the
date and time at which the OBE system must be awakened to evaluate
the next trigger program. We are assuming here that the underlying
operating system has an automatic logon feature such as in CMS. The
trigger manager also keeps track of the actions to be carried out if a
particular trigger is activated.

Two-dimensional programs can be stored in OBE by naming and
storing a window. A window may contain a command box that calls
for the execution of other programs. In this manner, the nesting of
programs is accomplished. Another way to execute a collection of
programs one at a time is by means of menus.

A menu is a box that can be defined by end users. The menu definer
can enter a sequence of various program names into a menu. Then if
one places the cursor on one of the menu selections and presses the
enter key, the underlying program is executed and the results
displayed. If, for example, one selects NEW MAIL for execution, an
underlying query program is carried out to do a simple query on the
incoming mail table.

For an office system to be useful, it is essential to provide the office
worker some access to large central data bases that in most cases are
stored as IMS hierarchical structures. It is the provision of such
facilities that determines whether an executive or a principal is going
to make the effort to learn a computer system, no matter how simply
it has been designed.

Conventionally, the only way to access IMS data bases is by writing a
DL/I batch program. OBE, on the other hand, provides an easy way for

I

IBM SYST J VOL 21 NO 3 1982 ZLOOF

menus
and
stored
programs

access to
and
extraction
from
IMS
data bases

285

an end user to call the IMS hierarchical structure, which is then
displayed as pictures on the screen. The user proceeds by filling in the
appropriate fields using the desired selection criteria. The system, in
turn, translates this high-level nonprocedural program into a conven-
tional DL/I-PL/I program that is to be shipped to IMS for processing.
(We are, of course, assuming that the workstation is connected via a
proper network to the IMS DB-DC processor.)

Furthermore, in many cases, one wants to extract a data subset from
IMS and map it locally into a different storage structure, such as a
relational structure. This can also be achieved by the end users by
specifying the mapping on the screen (via example elements, as
shown later in this paper). The current OBE implementation does not
include the capability to update an IMS data base from OBE.

authority As in QBE, OBE has sophisticated means by which users can specify
subsystem the delegation of authority. The creator of a table can, for example,

manager specify read, insert, delete, and update options for either an entire
table or a subset of a table, as determined by any query expression.
The same applies to the creation and modification of documents.

When a user issues a request to access or modify a data base that may
contain tables, forms, documents, etc., the Screen Manager passes
the request to the authority manager, which checks its validity. If the
request is valid, the Screen Manager proceeds to process the request
in the normal manner. Otherwise the user is notified that the request
is denied for lack of authority.

Communication If an object of OBE is sent to other nodes of the system, or if an object
Manager is received from other nodes, the Communication Manager interacts

with the underlying operating system to distribute such an object
according to user specification. The Communication Manager keeps
directories of user IDS of other locations. It also keeps directories of
users’ names and their IDS and department names and their node IDS,
since one can send an object to a user’s name, a department name, or
both.

Figure 7 Distribution options When an object is requested for distribution, the Communication
Manager displays to the user a DISTRIBUTION OPTIONS object, as
shown in Figure 7.

Users have the option to change default values from N O to YES and
vice versa. If, for example, the ACK attribute is changed to YES, the
Communication Manager sends a request (attached to the object) to
the receiver for acknowledging the receipt of the object. If the LOG
option is changed to YES, the object is logged before it is sent. If the
CONF option is changed to YES, the Communication Manager
encrypts the confidential contents of the object and only by entering a
special key does the receiver have access to that object.

286 ZLOOF IBM SYST J VOL 21 NO 3 1982

Received objects are passed from the operating system to the
Communication Manager, which logs them in a MAIL table and
informs the user about the receipt of the object.

In OBE, a text document may be thought of as a report, that is, as a
report containing only text without any formal structure. Therefore, a
document can be stored in the same way as a report and other
objects.

A document can be retrieved by its name (as are tables, forms,
reports, etc.), but it can also be retrieved by the text content. Since
OBE is a superset of QBE, we are using the same partial-example-
element feature for searching by a word or sentence within the body
of the text. Furthermore, we use the same aggregate functions to
count documents that satisfy search criteria. For example, one can
easily request a count of all documents that have the words “com-
puter applications” in their texts. Similarly, one can request those
documents to be displayed on the screen for observation.

The OBE system interface to the operating system file manager is
called the Hierarchical Relational Memory Structure (H I ”) . HRMS
provides the rest of the system facilities with a relational view of the
data base. Thus, one can issue calls to HRMS to perform such
operations as:

CREATE a relation
SCAN a relation
UPDATE a relation
CREATE INVERSIONS (index)
DROP INVERSIONS

The HRMS interface to the system can be viewed as a relational access
method interface, such as XRAM, which was used in the QBE product.
The one major difference is that it does not carry out any disk
accesses. We are assuming that a relatively large virtual memory is
available to a single user. This assumption seems reasonable for the
following reasons. A local workstation is not likely to be shared by
many users. Memory cost is decreasing and so memory is becoming
more available. We are assuming relatively small data bases, so that
they fit in the computer’s virtual address space.

Initial testing of the HRMS performance indicates significant
improvement over the performance of the Query-by-Example prod-
uct access method. Also, for medium-size data bases of several
thousands of records, the resources required are significantly
reduced.

Examples of OBE programs

Although the OBE language is very rich in facilities, its syntax and
concepts are simple. To begin, a new user needs to learn very little
more than the following:

IBM SYST J VOL 21 NO 3 1982 ZLOOF

1. Operators on programs or data within objects.

P. to present or display
1. to insert
D. to delete
U. to update

G . to group
S. or SEND. to send

2. Example elements-underlined string of characters.
3. Aggregate functions.

SUM. to sum or total multiple values
CNT. to count multiple values
AVG . to average multiple values
MAX. to find the maximum of multiple values
MIN. to find the minimum of multiple values
UNQ. to eliminate identical values

examples
of OBE

programming

As in the case of the Screen Manager function keys, the OBE
operators work in a consistent manner and are context dependent
when placed in different fields within the objects. For example, if the
P. operator is placed on a window heading, it retrieves the names of all
stored windows. If P. is placed on a table heading, it displays the
names of all the stored tables in the system. If, on the other hand, P. is
placed within a field of a table, it displays the data associated with
that field. The same holds true for the rest of the operators: I., D., U. ,
S., and G.

We now illustrate OBE programming with some examples.

Document creation, storage, and distribution. To create a docu-
ment(s), one displays its skeleton on the screen and proceeds by
entering the text. The text can be edited by the Screen Manager
function keys as previously explained, and formatted dynamically
using the formatting options of Figure 6. Since objects can be moved
in different planes, one can create more than one object simulta-
neously. After the documents are created, one can store them by
placing an I . in front of their names. If one wants to distribute them to
other users, an S . command is placed in the OBE command box. These
operations are shown in Figure 8. Here, the I . command stores the
documents, and the first S. command sends the letter to two
recipients. Before the system distributes these documents, a distribu-
tion option shown in Figure 7 is displayed for each document, and one
has the choice of changing the options (YES or NO) as explained. Thus
the user need not remember any of either the formatting options or
the distribution options because they are automatically displayed on

Figure 8 Composing, storing, and distributing two documents

Figure 9 A program (A) to retrieve documents containing the words ”computer
applications,” and (B) the retrieved documents

ZLOOF

Document retrieval, deletion, or update. Stored OBE documents can
be retrieved by their names by placing a P. followed by the document
name in the document name field. Thus P.LETTER1 in the heading of
a document box retrieves the contents of the document LETTER1.

Another way of retrieving documents is by using search criteria on
the text. This is achieved by specifying the search criteria in the body
of the text, as shown in Figure 9(A). The program retrieves all
documents that contain the words “computer applications” in their
bodies (Figure 9 (B)). If, for some reason, one wants to count the
documents, the operator and function P.CNT. is used instead of P..
This is an instruction to display the number of documents that were
found to meet the specified search criteria. This, of course, is a simple
example. Because of the richness of OBE, far more complex search
criteria can be used than the one illustrated here, by entering more
example elements and specifying more logical conditions in the
condition box.

Documents are deleted (destroyed) by entering a D. followed by the
document name, or updated by entering U. followed by the document
name.

Data base query and modification. Consider a relational data base
consisting of two tables: SALES, with the column headings SALES-
MAN, SALES QUOTA, and SALES TO DATE; and ITEM SALES, with the
headings ITEM, PRICE, SALESMAN. We start with a simple query on
the SALES table. (We are assuming the tables have been defined.)

Simple table selection. List, for example, the names of salesmen who
have exceeded $50 000 in sales. Initially, the user displays a blank
table skeleton. He then enters the table name into the table name
field (in this case SALES). The system then generates the column
heading automatically. Having established the column headings, the
user then programs within the skeleton by making the entries shown
in Figure 10. P. stands for either print or display. It indicates that the
desired outputs are names of salesmen and sales-to-date amounts, but
only of those who exceed $50 000.

Cross-referencing between fields. Suppose a manager wants to find
the names and telephone numbers of salesmen who exceeded $50 000
in sales, and suppose further that there is a DIRECTORY table that
contains the employees’ NAME and PHONE #. This query is accom-
plished by displaying two table skeletons on the screen and entering
both table names in the appropriate spaces. The final formulation of
this query is shown in Figure 1 1.

The example element (variable) N in both tables causes the listings in
the NAME field to match the SALESMAN field; that is, only names and
telephone numbers of salesmen who made over $50 000 in sales are to
be displayed.

290 ZLOOF IBM SYST J VOL 21 NO 3 1982

Figure 10 Simple table section

Figure 1 1 Cross referencing between tables

Figure 12 Cross referencing in the same table

Cross-referencing can also be done within records of the same table.
Consider, for example, the query to “List the name(s) of salesmen
whose sales to date exceed that of Smith.” This query is shown in
Figure 12. The order of the rows is immaterial.

Conditions on jield values. List the names and sales to date of
salesmen who have exceeded their sales quotas. This is shown in
Figure 13. A condition box primitive object can be displayed through
a function key for the specification of conditions.

IBM SYST J VOL 21 NO 3 1982 ZLOOF 291

To modify the data base, the operator’s I. , D., and U. are used
accordingly. Further examples of data base query and modification
are given in References 1-7.

Retrieval from IMS data base. In the case of IMS data bases, the user
displays a blank skeleton of a hierarchy on the screen and proceeds by
entering the IMS hierarchy name (Program Communication Blocks,
PCBs) in the appropriate space. The system then automatically
displays the hierarchical segments, which the user may access, and
their headings. This information is mapped from the IMS Data Base
Descriptions (DBDS) and PCBs directories.

Having established the hierarchical structure on the screen, the user
fills in the spaces by the OBE operators, as shown in Figure 14.

IMS extraction. By using example elements, one can extract data
from IMS and copy them into a relational data base. This is done by
displaying the hierarchy and the relation(s) skeletons and then
inserting (I .) example elements into the relation(s) linked to fields in
the hierarchy, as shown in Figure 15. For further details on hierarchi-
cal data base structures, see Reference 7.

Distributing merged text and data objects. In the previous examples,
we have illustrated word processing and data base operations. We
now combine the two. Suppose a manager wants to send congratula-
tory letters to all salesmen who have exceeded their sales quotas. This
is easily accomplished in OBE by mapping appropriate example
elements from the data base to the body of the document, as shown in
Figure 16.

Note that the S. to 8 in the command box establishes a dynamic
distribution list that is determined from a data base query. This
program, therefore, sends personalized letters to all salesmen who
have exceeded their quotas.

The example illustrated in Figure 16 is seemingly a rather trivial one.
One can imagine far more complex applications involving lengthy
documents or reports with example elements linked to more than one
data base table or IMS hierarchy and with more than one condition in
the data base. The purpose of this example is to demonstrate the
elegance of combining the activities of word processing, data process-
ing, and communications into a single unified interface.

Graph composition. Example element mapping can also be used to
, generate graphs. Consider a COMPANY table that lists the earnings of

various companies by calendar year under the headings of NAME,
EARNINGS, and YEAR.

The formulation for a graph for each company that contains its
year-by-year earnings is shown in Figure 17. Here each company

IBM SYST J VOL 21 NO 3 1982 ZLOOF 293

TYPE and FW - As in the table definition for Figure 20.
FLINE (Fold Line) - YES means that if the output data string is

larger than the FW, then fold the string on the
second line.

PB (Page Break) - YES'means that every time the value of the
field is changed, a new page is started.

SV (Single Value) - YES means that the corresponding example
element cannot have more than one value.

OP (One Print) - YES means to print only one of identical
values.

Also note that the number of row attributes is open-ended, so that
other row attributes can be added as required to implement future
system capabilities.

After the definition of the form is complete, one can copy data from
other tables into that structure, again by means of example
elements.

Two-stage report. As mentioned earlier, it is sometimes desirable
first to. move some of the data from the data base tables and then
operate locally on the data of the report to produce totals and
subtotals, etc. To demonstrate this, assume that we constructed a
MATRIX report to summarize the quarterly sales of three salesmen, as
shown in Figure 23. The program that copies data from a data base
table(s) to the body of the report is shown in Figure 24. Note that the
example elements correspond to Single Value (SV) data moved from
SALES1 table. The SUM. functions act to total these values both
vertically and horizontally. This is a two-stage report because the
sums can be carried out only after the data are placed in the report
structure.

Receiving objects. To keep track of received objects, the system
maintains a log called MAIL, which contains the headings shown in
Figure 25. When an object is received from other users, the system
automatically enters a record in the MAIL table that indicates from
whom and to whom the object was sent, as well as the object name,
classification, etc. The MAIL table is accessible to all users, but
various authority statements restrict access to particular subsets of it.
For example, one can issue an authority statement restricting a user
to reading his own mail only.

The syntax of a trigger expression consists of the identifier TR
followed by a trigger name. (Trigger names are unique within a single
user ID.) TRI and TRABC are examples of valid trigger identifiers.
Triggers can have various parameters to indicate the frequency with
which corresponding QBE expressions are to be evaluated.

IBM SYST J VOL 21 NO 3 0 1982 ZLOOF

Figure 23 M A T R I X r e p o r t
structure

Figure 24 Filling in a MATRIX
report

trigger
programs

297

SALES table of a salesman who is deleted from the DIRECTORY table.
Upon the deletion of a record from the DIRECTORY table, trigger TRl
is activated and, in turn, deletes the corresponding record from the
SALES table.

Application development

The OBE features and facilities described in the previous sections are
now used to show that one can write an entire application to automate
various business and office procedures. Although the following
application dealing with sales management is simple, it demonstrates
the generality and the flexibility of the language.

Assume, as before, that a certain department store keeps information
on items and their prices sold by individual salesmen (for commission
purposes) in a table called ITEM SALES, in addition to the previous ’ table SALES, which is the cumulative monthly sales volume. These
two tables can be used to write the following high-level programs.

First is a program to issue monthly reports listing salesmen and their
total sales, sorted alphabetically by salesman’s name. The program
illustrated in Figure 29, arbitrarily called REPORT, produces a hard
copy listing of names and sales to data. The AO. function sorts the list
into alphabetical order and the command PRINTER produces the hard
copy. The statement at the bottom of the figure causes the execution
of this program on a monthly basis.

A program for updating the SALES TO DATE column of the SALES
table on a daily basis to reflect the daily sales is shown in Figure 30.
Here, the program SALES UPDATE sums for each salesman the prices
of all items sold and updates the SALES TO DATE field accordingly.
The second statement executes the program on a daily basis.

A trigger program shown in Figure 31 checks the SALES table on a
monthly basis and sends a report to the manager, Henry, only for
salesmen who exceed their quotas. The report should include the
salesmen’s names, their individual sales amounts, count of number of
salesmen exceeding quota (CNT.N), and the total of all sales (SUM.?).

These three programs illustrate the expressive power of OBE. Of
course, more complex programs involving many more tables, condi-
tions, triggers, messages, and reports can be composed.

The application illustrated in Figure 32 is that of the production and
distribution of invoices from a data base of fulfilled orders and item
prices. This program produces an INVOICE for each customer that
lists items, quantities, prices, and totals. The s. command in the box
causes the distribution of the invoices. In our terminology, the
INVOICE is considered to be a two-stage report.

I IBM SYST J VOL 21 NO 3 1982 ZLOOF 301 I

separated by asterisks. These selections are actually stored program Figure 33 Creating a menu
names that the secretary stores in the ordinary manner.

When the executive displays MENU ABC on the screen, places the
cursor on one of the selections, and hits the enter key, the system
executes the appropriate program and displays the results. Since the
execution of a program can cause the display of other objects (in this
example, other menus) the users can thus obtain a hierarchy of
menus, as illustrated in Figure 34.

For example, if one selects the MAIL option, the result could be
another menu, as shown in Figure 35.

If the user now proceeds to select the option NEW MAIL from MAIL
menu, the system executes a query program on the MAIL table with
the selection criteria NEW under the NEW/OLD field.

In summary, users can easily customize a variety of menus for Figure 34 Hierarchy of menus
themselves or others, so that one need not know more about the
system than to point at menu selections that have been designed
especially for them.

Concluding remarks

In conclusion, the QBE/OBE language is a high-level nonprocedural
language with the following unique features:

Requires very few concepts to get started.
Gives the feeling of manual manipulation of the objects.
Combines word processing, data processing, and communication
in an elegant, compact, and unified manner.
Allows users to customize their own menus.
Allows user access to centralized IMS data bases.
Allows end users to automate routine business procedures by
means of triggers.

ACKNOWLEDGMENTS

I am very much indebted to the Office Automation group for their
design and implementation of the various components of the OBE
system. In particular, I am grateful to Guy T. Hochgesang for the
design and implementation of the Screen Manager and to Arthur C.
Ammann for the design and implementation of the HRMS. My thanks
also go to Stephen P. Morgan, Ravindran Krishnamurthy, and
Erdwin C. Chua for their work on various design aspects of the
system. I also want to thank my wife, Rosy, and Erdwin C. Chua for
their editorial assistance, and Arthur J. Stein and Erdwin C. Chua
for their assistance with the graphics in this paper.

’ CITED REFERENCES
1 . M. M. Zloof, “Query-by-Example: A data base language,” IBMSystems Journal

16, NO. 4,324-343 (1977).

IBM SYST J VOL 21 NO 3 1982 ZLOOF 303 I

2. M. M. Zloof, “Query-by-Example,” AFIPS Conference Proceedings. National
Computer Conference 44,431438 (1975).

3. M. M. Zloof, “Query-by-Example: The invocation and definition of tables and
forms,’’ Proceedings of the International Conference on Very Large Data Bases,
September 1975, 1-24 (1975).

4. M. M. Zloof, Query-by-Example: Operations on the Transitive Closure,
Research Report RC-5526, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1975).

5. M. M. Zloof, Security and Integrity Within the Query-by-Example Data Base
Management Language, Research Report RC-6982, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 (1978).

6. The QBE Terminal User’s Guide, SH20-2078; available through IBM branch
offices.

7. M. M. Zloof, “Query-by-Example: Operation on hierarchical data bases,” AFIPS
Conference Proceedings, National Computer Conference 45,845-853 (1976).

8. M. M. Zloof and S. P. deJong, “The System for Business Automation (SBA),”
Communications of the ACM 20, No. 6, 385-396 (1977).

9. S. P. deJong and M. M. Zloof, Communication within the System for Business
Automation, Research Report RC-6788, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 (1976).

10. D. Tsichritzis, “OFS, An integrated form management system,” International
Conference on Very Large Data Bases (6th), 161-166 (1980).

11. H. L. Morgan, “The future of office of the future,” Ofice Automation Conference
Digest. AFIPS Press, Roslyn, VA (1980).

12. M. Hammer, Laboratoryfor Computer Science Progress Report: Ofice Automa-
tion Group, MIT Laboratory for Computer Science, Cambridge, MA 02139
(1 979).

13. C. Ellis and G. Nutt, Computer Science and Ofice Information Systems, Report
SSL-79-6, Xerox Palo Alto Research Center, Palo Alto, CA 94304 (June 1979).

14. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie,
J. W. Mehl, P. Reisner, and B. W. Wade, “SEQUEL 2: A unified approach to
data definition, manipulation, and control,” IBM Journal of Research and
Development 20, No. 6,560-575 (November 1976).

15. E. F. Codd, “A data base sublanguage founded on the relational calculus,”
Proceedings, ACM SIGFIDET Workshop (1971).

16. M. M. Stonebraker, Getting Started in INGRES-A, Report ERLM 518, Com-
puter Science Department, University of California, Berkeley, CA 94720 (1975).

17. N. C. Shu, V. Y. Lum, S. C. Tung, and C. L. Cha, SpeciJications of Forms
Processing and Business Procedures for Ofice Automation. Research Report
RJ-3040, IBM Research Laboratory, San Jose, CA 95193 (January 1981).

18. C. J. Date, Referential Integrity, Santa Teresa Laboratory Report TR03.132,
IBM Santa Teresa, San Jose, CA 95150 (January 1981).

19. E. F. Codd, “A relational model for large shared data banks,” Communications of
the ACM 13, No. 6,377-387 (1970).

20. Merchandising Management Using Query-by-Example, CK20-1298-0 (1980);
available through IBM branch offices.

1342-0 (1 980); available through IBM branch offices.

AFIPS Conference Proceedings, National Computer Conference 44, 439-445
(1975).

23. D. Greenblatt and J. Waxman, “A study of three data base query languages,” in
Data Bases, Improving Usability and Responsiveness, B. Schneiderman (Editor),
Academic Press, New York (1 978).

22. J. C. Thomas and J. D. Gould, “A psychological study of Query-by-Example,” 1

The author is located at the IBM Thomas J . Watson Research
Center, P.O. Box 218, Yorktown Heights, N Y 10598.

Reprint Order No. G321-5 170.

304 ZLOOF IBM SYST J VOL 21 NO 3 1982

