
College students who were not .familiar with computers were
asked to produce written natural language procedural instruc-
tions us directions .for others to follow. These directions were so-
lutions f o r six $le-manipulation problems that also could reason-
ably be solved by writing computer programs. The written texts
were examined from jive points of view: solution correctness,
preferences of expression, contextual referencing, word usage,
and formal programming languages. The results provide insight
both on the manner in which people express computer-like proce-
dures “naturally” and on what features programming languages
should include if they are to be made more “natural-like.”

Natural language programming: Styles, strategies, and
contrasts

by L. A. Miller

Computer programming is perhaps the best example of a class of
problem-solving tasks that can be called “procedure specifica-
tion.” In these tasks a sequence of actions is specified in some
language such that, when these tasks are executed by a desig-
nated agent, a particular goal can be accomplished. In procedure
specification tasks other than computer programming, like the
writing of trouble-shooting manuals or kitchen recipes, the lan-
guage of specification is the writer’s natural language. Computer
programming, however, is accomplished in unnatural (some
would say “unholy”), formally defined, and self-contained lan-
guages. Thus, to specify a procedure for a computer, it is not
sufficient to have the process in mind or to be able to describe it in

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journul reference and IBM copyright
notice are included on the first page. The title and abstract may be used
without further permission in computer-based and other information-service
systems. Permission to republish other excerpts should be obtained from
the Editor.

184 MILLER IBM SYST J VOL 20 NO 2 1981

Met hod

overview We here first provide a perspective for our general research meth-
odology and then discuss in detail its various aspects. The
method chosen to achieve our exploration objectives was (1) to
design an information-request task that was highly representative
of computer applications, (2) to generate specific problems for
testing which suggest-at least to programmers-the writing of
computer programs for their solution, and (3) to ask our com-
puter-naive subjects to create natural language texts that pro-
vided a procedure for someone else to follow to solve the prob-
lems. We take these texts to be the natural-language equivalents
of what would be produced by a programmer writing a short ad
hoc program to satisfy information requests in a situation in-
volving actual computerized files.

Our methodology is somewhat similar to the problem-solving pro-
tocol analyses of Newel1 and Simon” and the communication
mode analyses of Chapank2’ In the former, subjects are asked to
verbalize out loud their thinking process as they attempt to solve
some problem; these verbalizations are subsequently transcribed
and analyzed in relation to “micro-process” models of problem
solving. An essential difference between our situation and this
one is that our subjects were not only to provide a procedural
solution to some problem but also to adopt the role of describing
this procedure as if it were to be instructions for other people to
follow. In this respect our task is much more like that of Chap-
anis, in which two people communicated to achieve some goal
(e.g., assembling a mechanical device). Nevertheless, our sub-
jects were writing procedures in the abstract, not in the context of
a real problem situation with a real cohort. This abstract imper-
sonal aspect of our task renders it, we argue, more typical of pro-
gram writing than in vivo communication.

In our analyses, we examined and re-examined the subjects’ texts
from a variety of perspectives, and each usually involved making
some theoretical assumptions about the psychological processes
of language use and problem-solving capability. Although it
would have been nice to have drawn upon strong psychological
theories relevant to the behavior we are studying, the state of the
art of psychology (and psycholinguistics) is such that it afforded us
little in this regard. Rather we have derived some new empirical
descriptions of “natural language programming” and have tried
to show how our results are relevant to the design of program-
ming language^.'^-'^

subjects and The subjects were 14 undergraduate students from local colleges
experimental design who were paid for their participation. None had any prior experi-

Figure 1 Description of information data structures used in the experimental problems

File 1: Salary File
Records organized alphabetically by employee’s
name, which is the first item on the record. Second
item is hourly wage: third is hours worked in last
pay period; fourth is amount deducted each period
for savings bonds.

File 2: Personal File
Records organized alphabetically by employee’s
name, which is the first item on the record. Second
item is employee number; third item is age at last
pay period: fourth is marital status.

File 3: Job File
Records organized in terms of increasing employee
number, which is the first item on the record. Sec-
ond item is job title: third is year in which employee
was hired: and fourth is supervisor’s rating of the
employee’s performance.

1. Name
2. Wage
3. Hired
4. Deduction

2. Number
3. Age
4. Marital Status

1. Number
2. Title
3. Hours
4. Rating

The single independent variable of the study was the factor of
problems, and, in what is called a “repeated-measures” design,
each subject specified natural English procedural solutions for the
same (randomly ordered) six problems.

A terminal-based (IBM 274 1 SELECTRIP typewriter terminal)
interactive computer system (System/360 Model 91) was used for
controlling (in APL) all aspects of the experiment, including pre-
sentation of the problems, entry of procedures, data measure-
ments, and data analysis. Instructions were provided by means
of a tape recorder and headphones.

The subjects were asked to imagine themselves as file clerks in
the personnel office of a hypothetical company with the responsi-
bility of maintaining and searching the company’s files in re-
sponse to management requests. A set of three hypothetical files
was described, each file containing records concerning individual
employees, with four pieces of information on each record (see
Figure 1). This information was given to each subject for refer-
ence throughout the experiment.

Subjects were asked to note that Files 1 and 2 are organized al-
phabetically by name, while File 3 is organized by increasing em-
ployee number. Thus, given only an employee’s name, and need-
ing to find information from File 3 (i.e., title, date hired, rating), it
is first necessary to obtain the person’s employee number (Item 2
in File 2) and then use this number to find the corresponding rec-
ord in File 3. The files were deliberately constructed in this way
to permit some problems to involve more complicated file access-
ing than others. The subjects were also told that they could not
modify these file structures in any way.

apparatus

task scenario
and files

IBM SYST J VOL 20 NO 2 0 1Y81 MILLER 187

Table 1 Statement of the six procedure-specification problems given subjects in the experi-
ment; Problems 1-4 are called the attribute-testing problems and 5-6 are called the
noncontingent problems

1. Attribute-testing, conjunctive, File 3
“Make a list of employees who have ajob title of photographer and who are
rated superior. List should be organized by employee number.”

2. Attribute-testing, conjunctive, Files 1 and 2
“Make a list of those employees who make more than 8 dollarslhr. and also
are over 50 years old. List should be organized by employee name.”

3 . Attribute-testing, conjunctive, Files 2 and 3
“Make a list of all those employees who are 64 or more years old and who
also have 20 or more years of experience. List should be organized by em-
ployee name.”

4. Attribute-testing. disjunctive, Files 1-3
“Make one list of employees who meet either of the following criteria:

(1) They have a job title of technician and they make 6 dolladhr. or more.
(2) They are unmarried and make less than 6 dollars/hr. List should be orga-

nized by employee name.”

5 . Noncontingent, wage-computation, File I
“Make a list of employees along with the wages they should receive for the
last pay period. List should be organized by employee name.”

6 . Noncontingent, new-ently, Files 1-3
“ A new person has been hired. Enter the following information about him in
the appropriate files: Name-Xavier Tungsten; Employee number-4444:
Married; Wage-5 dollardhr.; Title-technician: 21 years old; Hired in
1973; Deductions-10 dollardwk; no rating as yet.

We told subjects that their specific task would be to respond to
six requests for information. However, they were not actually to
obtain the information themselves; rather, they were to write
down a detailed instruction procedure that would be followed by
someone else, e.g., a new clerk they were breaking in.

problems Four of the problems (see Table 1 for full text) required the evalu-
ation of two pieces of information about the same individual. If a
person’s records met the problem criteria, then certain informa-
tion about him (e.g., name) was to be entered into a final list.
Three of these four attrihute-testing problems involved a con-
junctive relation between the two pieces of information (both cri-
teria had to be satisfied), but differed in terms of the files that had
to be accessed, increasing in complexity from Problem 1 to Prob-
lem 3. The last of the four attribute-testing problems was the most
complex, in terms of data accessing and the testing criteria.

The remaining two problems, called noncontingent problems, did
not involve testing of attribute-value information, but one re-
quired a computation of salary earnings, and the other the entry
of information about a new employee.

procedure The subjects were given a 30-minute training session, conducted
using tape-recorded instructions accomnanied by practice at the

188 MILLER IBM SYST J VOL 20 NO 2 1981

computer terminal. These instructions explained the scenario, the
nature of the task, and the nature of the data structure involved in
all problems. Following presentation of each experimental prob-
lem, subjects were instructed to type in a sequence of steps that
was to represent a procedural solution for accompiishing the ob-
jective of the problem. Each step was to contain a more or less
independent action, and we emphasized that the procedures
should be written so as to be easily understood and executed by
persons similar to the originator.

The subjects were given no suggestions as to the form or language
to be used, but the instructions emphasized the requirement for
detail, particularly concerning the basis for making decisions. A
minimum of five steps was required for each problem to ensure
that some level of specificity in the procedural description was
obtained. Using the terminal, subjects typed their solution for
each problem, limiting each line of input (a step) to 80 characters
(if more than 80 were typed, they were asked to re-enter the line).
They were permitted to modify their procedure at any point
(change, insert, or delete steps). Completion of the task for a par-
ticular problem was signaled by the subject typing the word
“END.” The next problem could then be self-initiated after a
short delay during which coded data were printed out. The total
time to complete both the training and the six problems ranged
from about three to seven hours, on from one to three days, with
an average total time of about four hours.

Results and discussion

Presentation of specific results is organized under the following
six headings: (1) general overview, (2) nature of problem solu-
tions, (3) preferences of expression, (4) contextual referencing,
(5) word usage, and (6) comparison to programming languages. A
summary included under each heading evaluates those results
with respect to the main thesis being investigated in this study:
that the way to vastly extend the usability of computer systems
for computer-naive people is to provide a full natural language
interface for them to specify computer procedures.

General overview

Almost all of the subjects expressed some reluctance about hav-
ing to specify a detailed sequence of steps to solve the problems.
They were willing to do so for the experimenter’s sake but in-
dicated they were used to following, not specifying, procedures:
besides, they commented, the problems were straightforward and
required little explanation (!). In producing the protocols, sub-
jects typically began typing within a very short time of being pre-
sented with the problem. There was no evidence of their having
thought through a complete problem solution beforehand. There

I

IBM SYST J VOL 20 NO 2 1981 MILLER 189

Figure 2 Example of a solution for attribute-testing Problem 2, with content-category
codes inserted following the text to which they have been assigned

I . Go to the personal file (la).

2. Make a list of all employees (2b) over 50 (3g).

3. Take this list (2c) to the salary file (la).

4. Make a list of all employees on the list (2b) who make more than 8
dollars an hour (3d).

5 . Arrange the employees on the final list into alphabetical order (5a).

Table 2 Content measures of the protocols for the SIX problems

Number of steps
Number of words
Number of unique words
Number of codes
Wordsistep
Codeslstep
Wordsicode

Problems

I
~~~ ~ 

6.00 
68.10 
13.80 
10.34 
11.35 

1.72 
6.59 

8.07 
83.00 
15.10 
13.36 
10.29 

1.66 
6.21 

3 4 

8.50 12.86 
95.20 144.50 
14.90 20.20 
13.64 21.87 
11.20 11.24 

1 . 6 0  1.70 
6.98 6.61 

5 

8.93 
93.50 
16.50 
11.65 
10.47 

1.30 
8.30 

6 
~~~~~ 

14.29
136.70

15.60
24.13
9.57
1.69
5.67

was almost no editing of their work except for correcting over-
runs of the SO-character limit on a step. Thus, protocols appear to
have been produced in a linear incremental fashion, with no evi-
dence of other than localized planning (an example of a somewhat
shorter solution to Problem 2 is given in Figure 2; the codes given
in parentheses are explained under the third heading).

The main experimental hypothesis of this study really concerns
the effect of problems: that performance would vary significantly
from problem to problem, particularly increasing with the com-
plexity of the attribute-testing problems 1-4. The first four mea-
sures shown in Table 2 assess the amount of “content” in the
individual solutions, and these were our primary performance
measures. (The number of “codes“ refers to the mapping of text
into the classifications given in Table 3 and discussed under the
next heading.) For each of these measures we performed two sep-
arate analyses of variance: one for all six problems. and one just
for the four attribute-testing problems. In all cases we determined
that the effect of problems was significant (the probability, p , of
this occurring by chance alone was less than 0.05). Such an unre-
markable gross effect had to occur and be detected, else there
would be no statistical justification for the detailed analyses
which follow.

The last three measures in Table 2 essentially measure the “den-

vide a sensitive assessment of the extent to which subjects solved
the problems more or less in the same way, using the same map-
ping of concepts to words: If there were significant differences
among problems on any of these measures, this could imply that
subjects varied the way they expressed concepts as a function of
the particular problem.

Such a result would make detailed comparisons among the prob-
lems much more tenuous. However, none of the analyses of vari-
ance tests showed significant effects of problems for these mea-
sures, for either the first four problems or all six (p > 0.20). Al-
though these findings are not conclusive, they do suggest that
subjects indeed approached all problems with the same concep-
tual problem-solving framework-analogous to using the same
“programming language” for all problems, instead of switching
between languages.

Nature of problem solutions

We now describe the strategies the subjects used in solving the
problems, then discuss the completeness of the solutions, and fi-
nally examine the relation between the strategy chosen and its
completeness.

In examining the subjects‘ solutions from the point of view of the
underlying algorithms they chose to solve the problems, we first
tried to think of the different conceptual ways each problem could
be solved, and we classified these into a small number of proto-
type methods. We then matched (rather easily) the subjects’ solu-
tions to these prototypes.

Our main concern in developing the algorithm prototypes was for
the attribute-testing problems 2-4. There are really two different
approaches one can take for these problems: a person-hy-person
search or afile-h.vfile search. In the former. you pick a file con-
taining information on one attribute value and check through the
records until you find a person meeting that criterion. You then
interrupt the search in that file, keeping your place, and find that
person’s record in the second file to check out the second criteria1
attribute value: if the second is as it should be, you jot down the
person’s name for the final output list. Because of the interrupted
back-and-forth nature of this approach, it requires some complex
transfer-of-control specification, although it can actually involve
lesser amounts of data accessing and temporary data creation
than the second approach (especially for Problem 2). For the file-
by-file search. however, you pick the file containing information
on the first criterion and check every record in that file, noting
down information (e.g.. on a scratch list) about those people who
meet the criterion. Only after the first file has been completely
examined do you then go to the second file to check the other
criterion. Furthermore, for this particular type of search, there

IBM SYST J VOL 20 NO 2 1981 MILLER

Problems 1-3 being relatively complete and 4-6 being relatively
incomplete was verified by totaling, over the 14 subjects, the
number of omitted actions for each problem: Problems 1-6 were
found to have a total of 1, 1, 13, 54, 17, and 16 omitted actions,
respectively.

It is clear, then, at least for the attribute-testing problems, that
the completeness of solutions decreases markedly as the com-
plexity of the problems increases. We speculate that this finding
could imply that the direct translation of natural language pro-
grams into formal computer programs may be feasible only for
rather simple problems; for more complex ones we could envi-
sion as being necessary much more complicated interactive pro-
cesses intervening between the subjects’ initial specifications and
their ultimate interpretations (see our “cognitive mismatch” hy-
pothesis below). This point of view assumes that people in gen-
eral can develop solutions for problems of even high complexity,
and it is just the manner in which they express the solutions that
can cause translation difficulties. Another view-certainly not
counter-indicated by our present data-is that the locus of diffi-
culty may well be conceptual, not expressional; that is, maybe
subjects’ solutions decrease in completeness with complexity be-
cause subjects are less and less able to formulate conceptually
adequate solutions, regardless of whether they are expressed in
”thoughts,” natural language, or computer programs. Anecdotal
evidence from direct studies of the problems of naive-user pro-
gramming at least provides external support for this latter view.2

Examination of the nature of the omissions for Problems 416 sug-
gests that the omissions were nor due to a single common factor
but have at least two different interpretations. Concerning the
most complex attribute-testing problem, Problem 4, subjects
were clearly not as sensitive as they should have been to the com-
plexities of accessing File 3 from File 1 or vice versa, as these
access actions were among the most frequently omitted. Thus,
they failed to pay sufficient attention to the data structure and its
organization. An implication of this finding for programming is
that an important area for assisting naive persons in specifying
procedures may be to provide functions that do not force them to
take into account the nature of the data structure, particularly as
it becomes complex.

As for the wage computation problem, the fifth one, most of the
omissions involved leaving out mention of finding an item, like

’ hourly pay, or omitting the hours-times-wage computation. Thus,
despite the rather clear problem specification, fairly obvious and

i necessary aspects were omitted. We interpret this in terms of the
~ subjects being unwilling or careless in providing details of an ac-

tion that is viewed as being unitary or not easily analyzable. Simi-
larly, for the new entry problem, the omissions mainly concerned

IBM SYST J 0 VOL 20 NO 2 1961 MILLER 193

of general reference to files (la), with percentages ranging from 70
to 100 percent. Thus, the dominant process associated with exist-
ing data structures was to identify the file of interest but not to
specify actions concerning records within files or items on rec-
ords (this finding is interpreted in the discussion of Class 3 codes).

The Class 2 codes for creation of new data structures indicate
that subjects could choose to focus either on individual elements
(2a) or on groups of elements (2b), but the latter action accounted
for the predominant portion of these actions (ranging from 92 to
95 percent across the attribute-testing problems, and from 53 to
72 percent for the noncontingent problems, 6 and 5, respectively).
Subjects clearly opted to specify creation of new data structures
en masse rather than on an individual entry basis. This finding
suggests that a programming language in which operations can be
performed on whole structures (as in APL) may be more compat-
ible with natural propensities than a language requiring iterative
item-by-item operations (as in FORTRAN).

The Class 3 subcategories provide the main basis for detecting
preferences of expression for attribute-testing problems (the non-
contingent results are not included due to the low frequency of
these codes in Problems 5 and 6). The previously mentioned
Class 1 predominance of reference to files rather than records or
items is explained by an analysis of use of the multiple record-
checking tests (Classes 3b, 3d, and 3g) versus tests of single rec-
ords (Classes 3a, 3c, and 3f). The strongly preferred mode of ex-
pression was for multiple record checking, with percentages rang-
ing from 85 to 96 percent. Since subjects expressed an attribute
test that was to be performed over all records in a file, it was
sufficient for them merely to specify the file of concern and the
attribute value of interest; no reference to subcomponents of the
file (records or items) is necessary with such an array operator
method. This finding of attribute testing at an array level is con-
sistent with the finding of array-type creation of new data struc-
tures detected from the Class 2 code frequencies, and it corrobo-
rates the inference that subjects prefer to deal with data struc-
tures on a mass rather than iterative basis.

A second major attribute-testing preference is indicated by com-
paring content codes for expressions that clearly identify both the
attribute category and the value of interest (3a and 3b) to codes
that clearly identify only the value (3c and 3d); the combined sub-
categories for the latter mode of expression accounted for much
the higher percentages (70-94 percent). Since, in many cases, the
appropriate attribute is implicit in the statement of a specific
value, this result could be interpreted by hypothesizing that sub-
jects considered it unnecessary to also specify the attribute name.
A tentative generalization of this interpretation is that naive pro-

out the semantic implications involved in every aspect of their
input, a capability that would require extraordinarily detailed and
complex computer representations of word semantics and knowl-
edge structures-which capability would certainly be well in the
future, if at all.

There are two findings concerning Class 4 codes. First, the sub-
categories of the full “if-then-else” conditional (Class 4b) and the
unconditional transfer (Class 4d), both included on a priori
grounds from knowledge of programming languages, never oc-
curred. The second finding is that the majority of Class 4 actions
were accounted for by the partial “if-then” conditional statement
(Class 4c), with a range of values from 82 to 87 percent in the
attribute-testing problems. These findings raise the general ques-
tion of the interpretability of the subjects’ protocol solutions, i.e.,
whether they could be understood and executed by other per-
sons. The attribute-testing problems, if written completely, need
explicit transfer-of-control structures. In our data, such control
statements were mostly not provided (cf. Table 4), and even
when they were present, they were incompletely specified.

In an attempt to provide qualitative information on the question
of interpretability of protocols, the following segment from a pro-
tocol was given informally to about two dozen persons untrained
in programming and not involved in the experiment (after describ-
ing the scenario):

“(1) See if the age of the person is greater than 50;
(2) Write his name down on a list.”

Those interviewed were asked if they would know what to do if
the age was not greater than 50 and, further, if they believed this
was implied by the protocol. The response was almost unani-
mous. “Of course,” the reply went, “you just check the next
person, or if there are no more, you just go on.” When asked
whether such a course of action was implied by the protocol seg-
ment, the response was typically: ”Well, this is what one would
always do in this kind of situation.” Apparently, the respondents
were drawing from some base of experience in following iterative
procedures. When searching for particular target values, the deci-
sion either to repeat an action or continue to the next one (or
stop) is apparently derived from this kind of experience. For ex-
ample, shampoo labels typically state: “Wet hair, apply sham-
poo, rinse, and repeat.” As it stands, this procedure creates an
eternal loop, but it is doubtful we would find many bathers for-
ever cycling through such a procedure. This anecdotal informa-
tion suggests that a large and complex body of experience is im-
portant in interpreting natural language procedure specifications.

Finally, for the Class 5 codes the subcategory of invoking a gen-
eral procedure (Class 5c) accounted for most of the Class 5 code

IBM SYST J VOL 20 NO 2 1981 MILLER 199

I Table 6 Percent of data references requiring prior context for disambiguation; Level 1 in-
dicates that a minimal, local context was sufficient, whereas Level 2 requires sub-
stantial backtracking before the reference is disambiguated

I
Referent Contextual references I

I
Total (%) Level I (%) Level 2 (%) I

Record 55 21 34
New data 53 24 18
Item 44 18 26
File 14 8 6

Average 42 18 24
~ ~ ~

“which” of a reference was to be found within the same step as
the reference (e.g., “records” in “Take all records from File 1
. . .” needs only the information of that step for interpretation),
(2) Level 1-references were resolved by information provided in
the immediately preceding step, and (3) Level 2-resolution of
references required information from steps earlier than just the
last, or else required interpretation of the problem statement or
other information. These levels roughly index the amount of and
basis for inferencing required for resolution: for Level 0, the ref-
erences were often quite explicit in themselves or within the noun
phrase in which they occurred; resolution of many of the Level 1
pronouns was often achieved by the simple syntactic-based ac-

’ tion of finding the noun in the previous sentence which was in the
same grammatical case (e.g., subject, object) as the pronoun; but
Level 2 references mostly required a good deal of semantic infer-
ences considerably more complex than the simple checks of the
first two levels.

Of all the data references identified (see Table 6) , 42 percent were
found to require the use of information outside the step unit to
resolve the referent; 18 percent were rated as Level 1 (requiring
only the previous line) and 24 percent were rated as Level 2 (re-
quiring other information). The breakdown by data category
shows that this overall finding of higher Level 2 contextuality is
also true for the individual data categories except the references
to files which, after all, had only three possible alternatives.

These estimates of contextual referencing, particularly those of
Level 2, are quite large, somewhat unexpectedly so in view of the
well-defined constraints of the problem and scenario, and in view
of our scoring bias to give subjects the benefit of the doubt when-
ever we were uncertain (scoring the referent as Level 0). In addi-
tion, a number of the Level 0 referents, although resolvable
within the step, involved contextual inferencing similar to the ref-
erents of Levels 1 and 2. These facts suggest that the overall 42
percent figure may well be a lower bound on the degree to which

IBM SYST J VOL 20 NO 2 1981 MILLER 201

There were a total of 8708 words (tokens) used in all of the 84
protocols, and these were repetitions of 610 unique words
(types). The per-protocol averages were 104 words, 9.8 steps, and
10.7 words per step. Each unique word was used, on the average,
14.3 times, a rather high token-to-type ratio for such a relatively
small body of text. Overall, then, it appears that verboseness was
not a characteristic of the subjects’ productions, and a relatively
small vocabulary sufficed for their work.

For the four attribute-testing problems a total of 5485 words
were used, whereas 3223 words were used in the noncontingent
problems. On the average, however, somewhat fewer words were
required for the former (98 words per solution) than for the latter
(115 words per solution). The numbers of unique words used for
the two kinds of problems were 473 and 360, and the average
token-to-type ratios were 11.2 and 9.0, respectively. (The latter
finding suggests a greater uniformity of expression in the attri-
bute-testing problems.)

We assessed commonality of word usage among subjects by the
following procedure. For each of the 14 subjects we determined
their 25 most frequently used words, which accounted for from 47
to 69 percent of the total words (words differing only in the ending
signifying plurality were grouped together-e.g., “file” and
“files”). Then, working with one list at a time, we took each of
the 25 words on this list and tallied how many times it appeared
anywhere within the other 13 subjects’ lists. This resulted in a 14
by 25 matrix of frequencies (subjects by words), with each cell
containing a number ranging from the maximum of 13 (the word
was found on all other lists) to the minimum of 0 (the word oc-
curred on no one else’s list). On the average, each high-frequency
word used by one subject was also used by 5.7 other persons;
given the maximum of 13, this means that almost 44 percent of the
top 25 words were shared in common. The top three words were
shared by an average of 9.9 persons (71 percent), whereas the top
five were shared by an average of 8.7 (62 percent). While this
analysis suggests a substantial degree of commonality among sub-
jects in word usage in the present experiment, the author unfortu-
nately does not know of other similar data which would permit
comparative assessment of this finding.

The final general analysis focused on the imperative verbs used
by subjects in their solutions (similar to procedure calls in pro-
gramming languages). We examined the attribute-testing prob-
lems separately from the noncontingent ones and computed for
each problem set the 10 most frequent words that were judged
unambiguously to be “commands”; excluded were words having
multiple unrelated meanings like “make” (e.g., “make a list
. . .” versus “find those employees who make . . .”). For the

IBM SYST J VOL 20 NO 2 1981 MILLER

Chapanis,’” who compared performance with a restricted vocabu-
lary versus an unrestricted one and found no behavioral diffi-
culties.

The data on word usage provide for the first time something other
than doubts and hesitations for the notion of an unconstrained
natural language programming interface. Subjects used a rela-
tively small number of unique words and total words, and they
appeared to use these words in the same way. The relatively high
frequency of synonym usage would not necessarily require exten-
sive semantics but rather a complete synonym dictionary.

Comparison to programming languages

We now compare and contrast the natural language productions
of this study to “typical” features of programming languages. In
doing so, many of the issues and problems associated with dis-
criminations among programming languages (e.g., Ledgard”)
have been ignored so that very general points can be made.

We first make a very gross comparison based on the overall fre-
quencies of the six classes of actions we discussed earlier; then
we discuss the details of specific differences.

To provide a programming perspective for assessing the relative
frequencies of actions in our subjects’ solutions we analyzed
Knuth’s frequency statistics” for FORTRAN commands in pro-
grams written by Stanford University students. These students,
like ours, were relatively new to the task of specifying proce-
dures, and, similarly, the problems they were working on were
apparently of relatively low complexity. By making reasonable
assignments of the FORTRAN commands into our six major con-
tent categories we were able to compute the relative percentage
of each category, shown as the third column in Table 5 .

Comparison of the programming percentages to those of our sub-
jects shows that the major discrepancies are for categories 4 and
6 . Concerning the latter, the 10 percent level of occurrence of
comments in the programs probably reflects training in documen-
tation practices rather than a real propensity for the specification
of procedures. However, the 22 percent figure in Knuth’s data for
transfer-of-control actions most probably reflects definite require-
ments of programming language specifications. Indeed, as Knuth
pointed out, the students’ programs lacked the large sections of
code concerned with checking format, syntax, etc. that charac-
terizes the work of experienced programmers; the 22 percent
might therefore be viewed as an underestimate of the proportion
of transfer-of-control commands in professionals’ programs.

The discrepancy between the value of 22 percent from Knuth’s
data and the much lower values of nine percent and three percent

IBM SYST J VOL 20 NO 2 1981 MILLER

Table 7 Comparison of natural language expressions of procedures to characteristics of
programming languages

Feutures Programming Nuturul language
lunguuges specijications

Data

Declarations, etc. Always explicit Never occurred

References Explicit, well-defined Implicit, contextual

Examination[Usually iterative, On aggregate basis
creation element by element

Indexing By numericaVvariable Seldom occurred, then
value, major aspect contextually defined (e.g.

“next,” “previous”)

Data types Many, defined No distinction

Format specs. Many, explicit Infrequent, contextual

Transfer of control

Extent Major aspect of programs Seldom specified
and style

IF-THEN-ELSE Most used at present When occurred, only par.
tial-IF-THEN (no else)

IF (cond.) GOTO Major feature Never occurred

Uncond. GOTO Was major, still common Never occurred

Exception detec. Important feature Never occurred

Structure Many types: recursion, Basically linear block
co-routines, nonlinear structures

Procedure calls Frequent, specified Major control mechanism,
completely but context specified

Argument passing Always explicit Mostly implicit

General lunguage

Lexicon Very limited, except Can be rich and large,
for variable names with many synonyms,

may be restricted

Sentence type Active imperative Mainly active
and conditional imperative, but can

be declarativeiconditional

Sentence syntax Quite rigid Extremely variable,
may be very complex

system capable of turning these fuzzy, incomplete, ambiguous,
and oh-so-knowledge-dependent specifications into the smooth,
precise statements required to guide computer execution.

Transfer of control. There is a sizable discrepancy between the
proportion of transfer-of-control commands in computer pro-
grams and the virtual absence of these in the present protocols
(review the previous discussion of this topic under the content-

parsers need only consist of, at most, a relatively small set of
context-free rules; any complexity of the parsing algorithm itself
(e.g., L L versus LR versus Earley) is introduced from consid-
erations of efficient performance and is not due to any com-
plexities or vagaries in the source-command syntax (cf. Aho and
 man^^).

In contrast to the “one syntactic structure maps to one com-
mand” feature of programming languages, natural languages are a
compiler-writer’s nightmare! First, the same “command” can be
expressed by a wide variety of different words (the differences in
meaning among them requiring wide variations in what other
words also occur) and also by a huge variety of syntactic struc-
tures (even keeping the words constant); second, in reverse, the
same syntactic structure-depending on the different words in-
serted into the structure-can map onto a wide diversity of “com-
mands.”

A second and more profound linguistic difference between natu-
ral and programming languages has to do with the notion of
“style.” Although there are many perspectives as to what linguis-
tic style is (see, for example, S e b e ~ k ~ ~) , we use the term to refer
to an author’s communication strategy as indicated in the au-
thor’s text by two features: (1) the nature of the conceptual prop-
ositions conveyed by the text, and (2) the manner in which these
propositions are organized or structured. Concerning (2) , there
are two primary levels of organization to be examined for stylistic
features: (a) the structure within a sentence (or command), sen-
tentiaf syntax, and (b) the structure among sentences in an overall
cohesive text, textual syntax. In these terms, our previous dis-
cussion of programming and natural language syntactic dif-
ferences indicates that, for the latter, there may be widely dif-
fering styles at the sentential level of syntax; for the former, how-
ever, the programming language formalisms enforce such strong
syntactic restrictions that there is little opportunity for programs
written in the same language to show stylistic variations at the
sentential level.

We therefore focused on stylistic differences from the viewpoint
of textual syntax, including in our observations a variety of dif-
ferent programming languages and a variety of other types of pro-
cedural text than just our present data (e.g., kitchen recipes, as-
sembly instructions, trouble-shooting manuals). Looking first at
programs, we see a very strong propensity in their opening “sen-
tences’’ to define, dimension, declare, and otherwise “size” data
structures. Such introductory data propositions can often com-
prise a major component of the overall contents of the programs.
In comparison, while we duly note that “natural” programs often
begin with (usually much shorter) lists of ingredients (edible or
otherwise), equally often these lists are not incorporated into the

IBM SYST J VOL 20 8 NO 2 0 1981 MILLER 209

Figure 3 Comparison of “normal forms” for programs versus natural language specifi-
cation of procedures: Task involves packing Christmas decorations into
boxes; Figure 3A illustrates typical conditioned action style of program-
ming; 38 illustrates natural action qualification style (the arrow represents the
primary action to be accomplished by the program)

DO END UNTIL TIME = 5:OO PM

DO END.OUT WHILE I < 200
I = O

OPEN BOX(1)
I = I + 1

J = O
DO END.IN WHILE J < 12

GET NEXT BALL
IF RED THEN

IF LARGE THEN
IF UNBROKEN THEN

J = J + 1
PACK BALL IN BOX(1) CELL(J)
RETURN (END.IN)

ELSE RETURN (END.IN)
ELSE RETURN (END.IN)

ELSE RETURN (END.IN)
END.IN
CLOSE BOX(1)

END.OUT
END

(A) Program Normal Form

- PACK LARGE RED DECORATIONS TWELVE TO A BOX.
MAKE UP A TOTAL OF 200 BOXES.
STOP AT 5:OO PM IF NOT FINISHED.
BE SURE TO PACK ONLY THE UNBROKEN ONES.

(B) Natural Normal Form

main dialogue but are set aside and referred to in accompanying
tables. Further, there is not the programs’ single-minded concern
with “sizing,” although this is indeed a strong feature; rather, a
great deal of what can be called “preprocessing” is specified in
these data propositions (e.g. “. . . 1 dozen medium peppers,
seeded and chopped” or ”. . . 16 four-inch lengths of No. 18
solid wire, with insulation removed 1/4 inch on each end . . .”).

The real stylistic differences appear after these initial data propo-
sitions, however. One has only to glance over a few well-written
programs to see the dominant textual style of programs: great
massive control structures of DOS and IFS, with the primary data-
manipulation activities embedded deep within these. For this rea-
son, we characterize this style as “conditionalized action .” How-
ever, natural language procedures provide a reverse emphasis:
they almost always begin with those primary actions that are so
deeply embedded in programs; special conditions or circum-
stances that control if and how the action is to be applied are
expressed rather as “qualifications,” usually following the action

ming” style as “action yualijication.” The contrast between
these styles is shown by the contrived pseudo-program of Figure
3A and the corresponding natural language transformation in Fig-
ure 3B (see Miller2335 for further discussion).

The enormous and profound differences so readily apparent in
comparisons of text and program samples signal differences that
may not be so obvious-e.g., the way exceptions are handled,
how values are assigned, the manner in which parameters are
passed, the defaults for unspecified function operands. Almost all
of the evidence thus points to fundamental, even incompatible,
differences between natural and programming specifications of
procedures. We believe that all of the activities associated with
generating, comprehending, and using natural language proce-
dures are deeply rooted in long-developed and practiced habits;
changing so firmly entrenched a manner of specification is akin to
asking people to change the way they walk and talk.

Conclusions

Our objective in this study was to obtain detailed empirical infor-
mation about the nature of natural language “programming” to
bring to bear on the issues of increasing the usability of computer
language interfaces. Although we expected numerous difficulties
to be detected concerning the potential of actually implementing a
system to interpret natural language programs, we were not pre-
pared for the magnitude of what we see as being the three major
obstacles: style, semantics, and world knowledge. Concerning
the first, there is little way in which the vast differences in styles
could be increased: programming-language style is simply alien to
natural specification. With respect to semantics, we also were un-
prepared to find out the extent to which the selection of the ap-
propriate “meaning” (to a word, phrase, or sentence) is depen-
dent upon the immediate and prior context. And as for world
knowledge, we suspect that the extent to which shared experi-
ences and knowledge are critical to procedural communication
and understanding among people has barely been hinted at by our
present data.

These findings would seem to remove from active consideration
the notion of radically improving computer usability by a totally
unrestricted natural language interface: the technology to accom-
plish this is simply not there, and probably will not be, even in
approximate form, for a number of years. Aside from the techni-
cal difficulties, some other aspects of our study make us skeptical
that merely (!) providing a natural language interface would per-
mit anyone to become a programmer, capable of specifying the
procedures necessary to develop complex computer programs.
We suspect that what would happen is that a lot of people would

IBM SYST J VOL 20 NO 2 1981 MILLER

25. B. M. Leavenworth and J. E. Sammet, An Overview of Nonprocedural Lan-
guages, Research Report RC 4685, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1974).

26. G. Gerbner, 0. Holsti, K. Krippendofl, W. J. Paisley, and P. J. Stone, The
Analysis of Communicurion Content, John Wiley & Sons, Inc., New York
(1969).

27. P. J. Stone, D. C. Dunphy, M. S. Smith, and D. M. Ogilvie, The General
Inquirer: A Computer Approach to Content Analysis, MIT Press, Cambridge,
MA (1966).

28. H. Kucera and W . N. Francis, Computational Analysis ofpresent-Day Amer-
icun English, Brown University Press, Providence, RI (1967).

29. M. A. K. Halliday and R. Hasan, Cohesion in English, Longman Group Ltd.,
London (1976).

30. M. J. Kelly and A. Chapanis, “Limited vocabulary natural language dia-
logue,” lnternutional Journal of Man-Machine Studies 9, 479-501 (1977).

31. H. F. Ledgard, “Ten mini-languages: A study of topical issues in program-
ming languages,” Computing Surveys 3, 115-146 (1971).

32. D. E. Knuth, An Empiricul Study of FORTRAN Programs, Research Report
RC 3276, IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598 (1971).

33. A. V. Aho and J. D. Ullman, The Theory ofparsing, Translation, and Com-
piling, Prentice-Hall, Inc., Englewood Cliffs, NJ (1972).

34. T. A. Sebeok, Style in Language, M.I.T. Technology Press, Cambridge, MA
(1960).

35. L. A. Miller, Natural Language Procedures: Guides Jor Progrrrmming Lrrn-
guuge Design, Reprint of talk delivered at International Ergonomics Associa-
tion Meeting, University of Maryland, College Park, MD (July 1976).

36. E. F. Codd, “Seven steps to rendezvous with the casual user,” in J. W.
Klimbie and K. L. Koffernan (Editors),Duta Base Management: Proceedings
qf’the IFIP TC-2 Working Conjerence on Data Base Manugement Systems,
North-Holland Publishing Co., Amsterdam (1974).

’ The author i s located ut the IBM Thomas J . Watson Research
Center, P.O. Box 218, Yorktown Heights, N Y 10598.

Reurint Order No. G32 1-5 146.

I 1BM SYST J VOL 20 N O 2 1981 MILLER 215

