College students who were not familiar with computers were
asked to produce written natural language procedural instruc-
tions as directions for others to follow. These directions were so-
lutions for six file-manipulation problems that also could reason-
ably be solved by writing computer programs. The written texts
were examined from five points of view: solution correctness,
preferences of expression, contextual referencing, word usage,
and formal programming languages. The results provide insight
both on the manner in which people express computer-like proce-
dures ‘‘naturally’’ and on what features programming languages
should include if they are to be made more *‘natural-like.”

Natural language programming: Styles, strategies, and

contrasts

by L. A. Miller

Computer programming is perhaps the best example of a class of
problem-solving tasks that can be called "‘procedure specifica-
tion.”” In these tasks a sequence of actions is specified in some
language such that, when these tasks are executed by a desig-
nated agent, a particular goal can be accomplished. In procedure
specification tasks other than computer programming, like the
writing of trouble-shooting manuals or kitchen recipes, the lan-
guage of specification is the writer’s natural language. Computer
programming, however, is accomplished in unnatural (some
would say “‘unholy’’), formally defined, and self-contained lan-
guages. Thus, to specify a procedure for a computer, it is not
sufficient to have the process in mind or to be able to describe it in

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract may be used
without further permission in computer-based and other information-service
systems. Permission to republish other excerpts should be obtained from
the Editor.

MILLER IBM SYST J & VOL 20 o NO 2 ¢, 1981

one’s own tongue; one must express this procedure in the com-
puter’s tongue. This latter requirement greatly restricts the us-
ability of computers.

But what are the alternatives? Some have argued that it is feasible
to build a computer interface that permits the user to interact in
more or less ‘‘natural’’ language, at least under restricted condi-
tions."* Others have been near-derisive in their dismissal of such
a possibility.>” Still others have argued that **naturalness’’ is per-
haps best attained by working the other way around—by modi-
fying programming languages so that they have more natural lan-
guage features.®® And finally there are a few unpublished but out-
spoken queries of computer sophisticates who wonder what the
fuss is all about: What’s so difficult anyway about learning a pro-
gramming language or three? (For discussions of these various
positions, see References 1 and 9 through 11. For reviews of natu-
ral language processing projects, see References 12 through 14.
For an example of a natural language processing project, see Ref-
erences 15 and 16.)

The motivation for the present research was that, regardless of
our intuitions, we still do not have enough empirical data to go on
to make an informed choice among the foregoing alternatives. To
be sure, there is evidence in abundance about the difficulties
people have with current programming languages'” " (also see the
extensive annotated bibliography of Atwood er al.*®). Never-
theless, we know very little about how people would perform
with constrained natural-like features built into programming lan-
guages, on the one hand, or how they would express computer-
like solutions in unconstrained natural language, on the other.
This study focused on the latter aspect, by studying **program-
ming’’ —procedure specification—independently of formal pro-
gramming languages, computer systems, and prior programming
experience. Qur purpose was to contrast this type of au naturel
programming to that which is accomplished with computer lan-
guages such as PL/I and FORTRAN.

The question to which we are really seeking a partial answer is: In
what ways would it be difficult, given today’s state-of-the-art ca-
pabilities in artificial intelligence and computational linguistics, to
actually implement a system that could take the texts of our un-
suspecting subjects and truly and completely understand them?
The reader is asked at this point to imagine what indeed these
difficulties might be, probably guessing—as we did—that there
might be many difficulties, but being uncertain as to which of the
envisioned problems would be found, and which encountered
ones would be unanticipated. Various results of the experiment
may indeed confirm some expectations. Qur agnostic objective,
however, was to provide a body of empirical data that could help
shift the basis of the discussions from conjecture towards fact.

IBM SYST J e VOL 20 ¢ NO 2 o 1981 MILLER

overview

subjects and
experimental design

Method

We here first provide a perspective for our general research meth-
odology and then discuss in detail its various aspects. The
method chosen to achieve our exploration objectives was (1) to
design an information-request task that was highly representative
of computer applications, (2) to generate specific problems for
testing which suggest—at least to programmers—the writing of
computer programs for their solution, and (3) to ask our com-
puter-naive subjects to create natural language texts that pro-
vided a procedure for someone else to follow to solve the prob-
lems. We take these texts to be the natural-language equivalents
of what would be produced by a programmer writing a short ad
hoc program to satisfy information requests in a situation in-
volving actual computerized files.

Our methodology is somewhat similar to the problem-solving pro-
tocol analyses of Newell and Simon®' and the communication
mode analyses of Chapanis.” In the former, subjects are asked to
verbalize out loud their thinking process as they attempt to solve
some problem; these verbalizations are subsequently transcribed
and analyzed in relation to ‘*micro-process’” models of problem
solving. An essential difference between our situation and this
one is that our subjects were not only to provide a procedural
solution to some problem but also to adopt the role of describing
this procedure as if it were to be instructions for other people to
follow. In this respect our task is much more like that of Chap-
anis, in which two people communicated to achieve some goal
(e.g., assembling a mechanical device). Nevertheless, our sub-
jects were writing procedures in the abstract, not in the context of
a real problem situation with a real cohort. This abstract imper-
sonal aspect of our task renders it, we argue, more typical of pro-
gram writing than in vivo communication.

In our analyses, we examined and re-examined the subjects’ texts
from a variety of perspectives, and each usually involved making
some theoretical assumptions about the psychological processes
of language use and problem-solving capability. Although it
would have been nice to have drawn upon strong psychological
theories relevant to the behavior we are studying, the state of the
art of psychology (and psycholinguistics) is such that it afforded us
little in this regard. Rather we have derived some new empirical
descriptions of *‘natural language programming’’ and have tried
to show how our results are relevant to the design of program-
ming languages.**®

The subjects were 14 undergraduate students from local colleges
who were paid for their participation. None had any prior experi-
ence with either programming or computer systems.

MILLER IBM SYST J e VOL 20 « NO 2 ¢ 1981

Figure 1 Description of information data structures used in the experimental probiems

File 1: Salary File
Records organized alphabetically by employee’s 1. Name

name, which is the first item on the record. Second 2. Wage
item is hourly wage; third is hours worked in last 3. Hired
pay period; fourth is amount deducted each period 4. Deduction
for savings bonds.

File 2: Personal File
Records organized alphabetically by employee’s 1. Name

name, which is the first item on the record. Second 2. Number

item is employee number: third item is age at last 3. Age

pay period; fourth is marital status. 4. Marital Status

File 3: Job File
Records organized in terms of increasing employee 1. Number
number, which is the first item on the record. Sec- 2. Title
ond item is job title; third is year in which employee 3. Hours
was hired; and fourth is supervisor’s rating of the 4, Rating
employee’s performance.

The single independent variable of the study was the factor of
problems, and, in what is called a “‘repeated-measures’’ design,
each subject specified natural English procedural solutions for the
same (randomly ordered) six problems.

A terminal-based (IBM 2741 SELECTRIC® typewriter terminal)
interactive computer system (System/360 Model 91) was used for
controlling (in APL) all aspects of the experiment, including pre-
sentation of the problems, entry of procedures, data measure-
ments, and data analysis. Instructions were provided by means
of a tape recorder and headphones.

The subjects were asked to imagine themselves as file clerks in
the personnel office of a hypothetical company with the responsi-
bility of maintaining and searching the company’s files in re-
sponse to management requests. A set of three hypothetical files
was described, each file containing records concerning individual
employees, with four pieces of information on each record (see
Figure 1). This information was given to each subject for refer-
ence throughout the experiment.

Subjects were asked to note that Files 1 and 2 are organized al-
phabetically by name, while File 3 is organized by increasing em-
ployee number. Thus, given only an employee’s name, and need-
ing to find information from File 3 (i.e., title, date hired, rating), it
is first necessary to obtain the person’s employee number (Item 2
in File 2) and then use this number to find the corresponding rec-
ord in File 3. The files were deliberately constructed in this way
to permit some problems to involve more complicated file access-
ing than others. The subjects were also told that they could not
modify these file structures in any way.

IBM SYST J ¢ VOL 20 % NO 2 e 1981 MILLER

apparatus

task scenario
and files

problems

procedure

Table 1 Statement of the six procedure-specification problems given subjects in the experi-
ment; Problems 1-4 are called the attribute-testing problems and 5-6 are called the
noncontingent problems

Attribute-testing, conjunctive, File 3
‘‘Make a list of employees who have a job title of photographer and who are
rated superior. List should be organized by employee number.”

Attribute-testing, conjunctive, Files 1 and 2
‘‘Make a list of those employees who make more than 8 dollars/hr. and also
are over 50 years old. List should be organized by employee name.”

Attribute-testing, conjunctive, Files 2 and 3

‘‘Make a list of all those employees who are 64 or more years old and who
also have 20 or more years of experience. List should be organized by em-
ployee name.”’

Attribute-testing, disjunctive, Files 1-3

‘‘Make one list of employees who meet either of the following criteria:
They have a job title of technician and they make 6 dollars/hr. or more.
They are unmarried and make less than 6 dollars/hr. List should be orga-
nized by employee name.”’

Noncontingent, wage-computation, File 1
‘‘Make a list of employees along with the wages they should receive for the
last pay period. List should be organized by employee name.”’

Noncontingent, new-entry, Files 1-3

‘“A new person has been hired. Enter the following information about him in
the appropriate files: Name— Xavier Tungsten; Employee number—4444;
Married; Wage—5 dollars/hr.; Title—technician; 21 years old; Hired in
1973; Deductions— 10 dollars/wk; no rating as yet.

We told subjects that their specific task would be to respond to
six requests for information. However, they were not actually to
obtain the information themselves; rather, they were to write
down a detailed instruction procedure that would be followed by
someone else, e.g., a new clerk they were breaking in.

Four of the problems (see Table 1 for full text) required the evalu-
ation of two pieces of information about the same individual. If a
person’s records met the problem criteria, then certain informa-
tion about him (e.g., name) was to be entered into a final list.
Three of these four attribute-testing problems involved a con-
junctive relation between the two pieces of information (both cri-
teria had to be satisfied), but differed in terms of the files that had
to be accessed, increasing in complexity from Problem 1 to Prob-
lem 3. The last of the four attribute-testing problems was the most
complex, in terms of data accessing and the testing criteria.

The remaining two problems, called noncontingent problems, did
not involve testing of attribute-value information, but one re-
quired a computation of salary earnings, and the other the entry
of information about a new employee.

The subjects were given a 30-minute training session, conducted
using tape-recorded instructions accompanied by practice at the

MILLER IBM SYST J & VOL 20 « NO 2 & 1981

computer terminal. These instructions explained the scenario, the
nature of the task, and the nature of the data structure involved in
all problems. Following presentation of each experimental prob-
lem, subjects were instructed to type in a sequence of steps that
was to represent a procedural solution for accompiishing the ob-
jective of the problem. Each step was to contain a more or less
independent action, and we emphasized that the procedures
should be written so as to be easily understood and executed by
persons similar to the originator.

The subjects were given no suggestions as to the form or language
to be used, but the instructions emphasized the requirement for
detail, particularly concerning the basis for making decisions. A
minimum of five steps was required for each problem to ensure
that some level of specificity in the procedural description was
obtained. Using the terminal, subjects typed their solution for
each problem, limiting each line of input (a step) to 80 characters
(if more than 80 were typed, they were asked to re-enter the line).
They were permitted to modify their procedure at any point
(change, insert, or delete steps). Completion of the task for a par-
ticular problem was signaled by the subject typing the word
“END.”” The next problem could then be self-initiated after a
short delay during which coded data were printed out. The total
time to complete both the training and the six problems ranged
from about three to seven hours, on from one to three days, with
an average total time of about four hours.

Results and discussion

Presentation of specific results is organized under the following
six headings: (1) general overview, (2) nature of problem solu-
tions, (3) preferences of expression, (4) contextual referencing,
(5) word usage, and (6) comparison to programming languages. A
summary included under each heading evaluates those results
with respect to the main thesis being investigated in this study:
that the way to vastly extend the usability of computer systems
for computer-naive people is to provide a full natural language
interface for them to specify computer procedures.

General overview

Almost all of the subjects expressed some reluctance about hav-
ing to specify a detailed sequence of steps to solve the problems.
They were willing to do so for the experimenter’s sake but in-
dicated they were used to following, not specifying, procedures;
besides, they commented, the problems were straightforward and
required little explanation (!). In producing the protocols, sub-
jects typically began typing within a very short time of being pre-
sented with the problem. There was no evidence of their having
thought through a complete problem solution beforehand. There

IBM SYST J & VOL 20 @ NO 2 e 1981 MILLER

Figure 2 Example of a solution for attribute-testing Problem 2, with content-category
codes inserted following the text to which they have been assigned

. Go to the personal file (1a).
. Make a list of all employees (2b) over 50 (3g).
. Take this list (2¢) to the salary file (1a).

. Make a list of all employees on the list (2b) who make more than 8
dollars an hour (3d).

. Arrange the employees on the final list into alphabetical order (5a).

Table 2 Content measures of the protocols for the six problems

Content Problems
measures

/ 2 3 4

Number of steps 6.00 8.07 8.50 12.86
Number of words 68.10 83.00 9520 144.50
Number of unique words 13.80 15.10 1490 20.20
Number of codes 10.34 1336 13.64 21.87
Words/step 11.35 10.29 11.20 11.24
Codes/step 1.72 1.66 1.60 1.70
Words/code 6.59 6.21 6.98 6.61

was almost no editing of their work except for correcting over-
runs of the 80-character limit on a step. Thus, protocols appear to
have been produced in a linear incremental fashion, with no evi-
dence of other than localized planning (an example of a somewhat
shorter solution to Problem 2 is given in Figure 2; the codes given
in parentheses are explained under the third heading).

The main experimental hypothesis of this study really concerns
the effect of problems: that performance would vary significantly
from problem to problem, particularly increasing with the com-
plexity of the attribute-testing problems 1-4. The first four mea-
sures shown in Table 2 assess the amount of ‘*content™ in the
individual solutions, and these were our primary performance
measures. (The number of **codes’ refers to the mapping of text
into the classifications given in Table 3 and discussed under the
next heading.) For each of these measures we performed two sep-
arate analyses of variance: one for all six problems, and one just
for the four attribute-testing problems. In all cases we determined
that the effect of problems was significant (the probability, p, of
this occurring by chance alone was less than 0.05). Such an unre-
markable gross effect had to occur and be detected, else there
would be no statistical justification for the detailed analyses
which follow.

The last three measures in Table 2 essentially measure the “*den-
sity”’ of information per unit of expression. Together they pro-

MILLER IBM SYST J ® VOL 20 ¢ NO 2 e {981

vide a sensitive assessment of the extent to which subjects solved
the problems more or less in the same way, using the same map-
ping of concepts to words: If there were significant differences
among problems on any of these measures, this could imply that
subjects varied the way they expressed concepts as a function of
the particular problem.

Such a result would make detailed comparisons among the prob-
lems much more tenuous. However, none of the analyses of vari-
ance tests showed significant effects of problems for these mea-
sures, for either the first four problems or all six (p > 0.20). Al-
though these findings are not conclusive, they do suggest that
subjects indeed approached all problems with the same concep-
tual problem-solving framework—analogous to using the same
“‘programming language’’ for all problems. instead of switching
between languages.

Nature of problem solutions

We now describe the strategies the subjects used in solving the
problems, then discuss the completeness of the solutions, and fi-
nally examine the relation between the strategy chosen and its
completeness.

In examining the subjects’ solutions from the point of view of the
underlying algorithms they chose to solve the problems, we first
tried to think of the different conceptual ways each problem could
be solved, and we classified these into a small number of proto-
type methods. We then matched (rather easily) the subjects’ solu-
tions to these prototypes.

Our main concern in developing the algorithm prototypes was for
the attribute-testing problems 2-4. There are really two different
approaches one can take for these problems: a person-by-person
search or a file-by-file search. In the former, you pick a file con-
taining information on one attribute value and check through the
records until you find a person meeting that criterion. You then
interrupt the search in that file, keeping your place, and find that
person’s record in the second file to check out the second criterial
attribute value: if the second is as it should be, you jot down the
person’s name for the final output list. Because of the interrupted
back-and-forth nature of this approach, it requires some complex
transfer-of-control specification, although it can actually involve
lesser amounts of data accessing and temporary data creation
than the second approach (especially for Problem 2). For the file-
by-file search, however, you pick the file containing information
on the first criterion and check every record in that file, noting
down information (e.g.. on a scratch list) about those people who
meet the criterion. Only after the first file has been completely
examined do you then go to the second file to check the other
criterion. Furthermore, for this particular type of search, there

IBM SYST J @ VOL 20 ¢ NO 2 o 1981 MILLER

subjects’
strategies

solution
completeness

are two different ways you can use your scratchpad notes: in
Type 1 you can use the notes from the first file to direct your
search in the second to a few specific records; else, in Type 2, you
can exhaustively search both files making independent notes on
each and subsequently compare (intersect) the lists of names to
find those common to both. There are, therefore, two basic types
of file-by-file algorithms, and a single person-by-person al-
gorithm, with a number of variations on these themes possible,
especially for the fourth problem. We note in passing, however,
that not even the identified person-by-person algorithm is as so-
phisticated or efficient as those which a moderately competent
programmer would likely produce (based on asking FORTRAN and
APL programmers to produce reasonable programs for Problems
2-4).

Having developed the three prototypes, we then examined the
subjects’ solutions to determine how they fit these. We found a
very clear-cut and consistent preference for the file-by-file strat-
egy, with 12 of the 14 subjects choosing this approach for all three
of Problems 2-4. The remaining two subjects picked the person-
by-person strategy for the three problems. For the 12 file-by-file
subjects, the number picking the Type 2 variation of intersecting
separately compiled lists was 4, 6, and 10 for Problems 2-4,
respectively.

Since the file-by-file strategy is viewed to be simpler, as is its
Type 2 variation, these results suggest that most subjects had a
consistent preference for simpler approaches, and this pre-
dilection for simpler strategies increased as solution complexity
increased (from Problem 2 to 4).

Having first categorized the solution strategies, we then graded
them for completeness. (It was the case that most solutions were
almost never really clearly incorrect; either they were obviously
right—albeit incomplete—or else they were sufficiently in-
complete that one could generously imagine omitted steps which,
if supplied, would render them correct.) In this scoring we first
established an overall understanding of the subject’s solution ap-
proach and then asked ourselves whether each logically neces-
sary step in this solution method was explicitly stated or at least
strongly implied. Our general bias was to give the subject the ben-
efit of the doubt wherever possible. In terms of the number of
subjects, out of 14, who provided 100 percent complete solutions
(whatever strategy), performance was high for only the first two
problems: 13, 13, 3, 4, 1, and 8 subjects were 100 percent com-
plete for Problems 1-6. When this ““perfect’ criterion was re-
laxed to an estimate of what would be at least 80 percent com-
plete solutions, the performance level improved but was still
poorer for the last three problems: 13, 13, 12,9, 7, and 9 subjects
were 80 percent complete for Problems 1-6. This partitioning of

MILLER IBM SYST J ¢ VOL 20 ® NO 2 o 1981

Problems 1-3 being relatively complete and 4-6 being relatively
incomplete was verified by totaling, over the 14 subjects, the
number of omitted actions for each problem: Problems 1-6 were
found to have a total of 1, 1, 13, 54, 17, and 16 omitted actions,
respectively.

It is clear, then, at least for the attribute-testing problems, that
the completeness of solutions decreases markedly as the com-
plexity of the problems increases. We speculate that this finding
could imply that the direct translation of natural language pro-
grams into formal computer programs may be feasible only for
rather simple problems; for more complex ones we could envi-
sion as being necessary much more complicated interactive pro-
cesses intervening between the subjects’ initial specifications and
their ultimate interpretations (see our ‘‘cognitive mismatch’’ hy-
pothesis below). This point of view assumes that people in gen-
eral can develop solutions for problems of even high complexity,
and it is just the manner in which they express the solutions that
can cause translation difficulties. Another view—certainly not
counter-indicated by our present data—is that the locus of diffi-
culty may well be conceptual, not expressional; that is, maybe
subjects’ solutions decrease in completeness with complexity be-
cause subjects are less and less able to formulate conceptually
adequate solutions, regardless of whether they are expressed in
*thoughts,’” natural language, or computer programs. Anecdotal
evidence from direct studies of the problems of naive-user pro-
gramming at least provides external support for this latter view.”

Examination of the nature of the omissions for Problems 4-6 sug-
gests that the omissions were not due to a single common factor
but have at least two different interpretations. Concerning the
most complex attribute-testing problem, Problem 4, subjects
were clearly not as sensitive as they should have been to the com-
plexities of accessing File 3 from File 1 or vice versa, as these
access actions were among the most frequently omitted. Thus,
they failed to pay sufficient attention to the data structure and its
organization. An implication of this finding for programming is
that an important area for assisting naive persons in specifying
procedures may be to provide functions that do not force them to
take into account the nature of the data structure, particularly as
it becomes complex.

As for the wage computation problem, the fifth one, most of the
omissions involved leaving out mention of finding an item, like
hourly pay, or omitting the hours-times-wage computation. Thus,
despite the rather clear problem specification, fairly obvious and
necessary aspects were omitted. We interpret this in terms of the
subjects being unwilling or careless in providing details of an ac-
tion that is viewed as being unitary or not easily analyzable. Simi-
larly, for the new entry problem, the omissions mainly concerned

IBM SYST j e VOL 20 ¢ NO 2 o {981 MILLER

relation between
strategy choice
and completeness

summary

the specifics about writing down the new information on a new
record and inserting that record in the file in the appropriate
place. Again, as for Problem 5, it appears that these omissions
can be attributed to subjects’ difficulties in being explicit about
the details of a process which for them was so well internalized or
practiced that it was a single undifferentiated action.

The obvious but important implication for programming of this
latter interpretation, for Problems 5 and 6, is that there may be
serious "‘cognitive mismatches’’ between the solutions provided
by naive programmers intended for other people and the solutions
required for effective computer programming. It may be expected
that, without extensive computer experience, naive users will
project onto the computer the same expectations they have of
other people, with respect to what things need to be specified in
great detail and what things are clearly **obvious,’’ requiring little
elaboration. To the extent that this is true, an approach to the
problem of making computer use more ‘‘natural’”’ would be
clearly inadequate if it emphasized only the capability to accept
the rich syntactic structures of natural language; such a system
would also have to incorporate a good deal of the semantic and
pragmatic ‘‘understanding’’ underlying the use of language (e.g.,
controlling the decomposition of verbs into complex programs as
a function of the context, the specification of default operations
as a function of the semantic nature of the entities acted upon,
etc.).

On the average, subjects who chose a file-by-file strategy had al-
most twice as many omissions per problem as did those who
chose the person-by-person solution strategy (1.8 versus 1).
Thus, although more people adopted the simpler approaches,
they produced more incomplete (and therefore more erroneous)
solutions. Since subjects stayed with the same strategy across
problems, it is likely that this phenomenon can be attributed to
differences in subjects’ specification skills, with those persons ca-
pable of generating more complex (but possibly more efficient)
strategies also better able to provide more complete specification
of them.

We emerge from this analysis of subjects’ solutions with a some-
what tentative yet nagging uncertainty concerning the viability of
an unconstrained natural language computer interface for pro-
gramming. Our problems were really not difficult, yet not only did
subjects employ rather simple—perhaps even simplistic—solu-
tion algorithms, but also the quality of these algorithms (as mea-
sured by completeness) decreased markedly with only moderate
increases in problem complexity. While we have no doubts at all
concerning the capacity of natural English for specifying highly
precise and complete procedures, we are concerned about
people’s abilities to use the language in this way, particularly for
difficult problems.

MILLER IBM SYST J » VOL 20 « NO 2 » 98]

Table 3 Classes and subclasses used for the content analysis of subjects’ solutions

. Actions involving existing data structures

(a) Files—go, get, use, look, open, select

(b) Records—same

(c) Records-—movement to a different location

(d) Item—go, get, use, look, select

(e) Problem—problem statement, other given information

. Actions involving new data structures

(a) Creating new item/record (single)
(b) Creating new item/record (multiple)
(¢) Manipulation—go, get, use, move, label

. Attribute testing

(a) Check on single record, attribute, and value mentioned explicitly

(b) Check on multiple records, attribute, and value mentioned explicitly

(c) Check on single record, only value explicit

(d) Check on multiple records, only value explicit

(e) Check on something other than attribute or value

(f) Check on single record, attribute/value mentioned only implicitly or in in-
complete linguistic structure

(g) Check on multiple records, attribute/value mentioned only implicitly or in
incomplete linguistic structure

. Transfer of control

(a) Iteration, repetition

(b) Full conditional (with provision for both outcomes)

(c) Partial conditional (provision only for successful test outcome; no provi-
sion for ““ELSE’’ or no outcome).

(d) Unconditional transfer or ‘**GOTOQ”’

(e) Sequencing reference— ‘‘after, when, until”’

(f) Reference to terminating procedure (*‘stop™)

. Transformations

(a) Explicit ordering of new data (‘‘alphabetize’’)
(b) Computations involving item information
(c) Invoke some other general procedure

. Miscellaneous

(a) Nonprocedural comments

Preferences of expression

We are concerned here with fine details about the elemental con-
ceptual process explicitly expressed in subjects’ textual solu-
tions, e.g., what kinds of data-referencing actions were ex-
pressed, how attribute checking was accomplished, etc. We were
not concerned, however, with the particular linguistic structures
subjects chose to express the same kind of concept; we felt that
such an analysis was probably premature and, in any event,
would require skills and programs that we did not at that time
possess. We therefore, after a number of iterative re-examina-
tions of subjects’ texts, developed a descriptive taxonomy of ele-
mental processes, as shown in Table 3. All of the results de-
scribed are based on examination of the subjects’ texts after they
were transformed into sequences of these codes.

IBM SYST J ® VOL 20 ® NO 2 » 1981 MILLER

content
analysis
methodology

overall results
and validation

All 84 texts were rated and transformed into content codes by two
judges according to the following procedure. By reading the texts
from left to right (and top to bottom), a string of words sufficient
to correspond to one of the content categories was identified
within a step (ranging from about three to ten words). This seg-
ment was assigned the appropriate category code, and the pro-
cess was repeated for any remaining material. Figure 2 illustrates
this coding procedure for a subject’s solution to the second attri-
bute-testing problem. Only a few times did the assignment of text
to codes cross step boundaries; further, the left-to-right analysis
was adequate except for a small number of instances in which one
action was embedded within another (the embedded action was
scored as occurring second). It is important to note that the pres-
ent analysis does not evaluate subjects’ solution strategies or
their correctness; it focuses only on the frequency with which the
various conceptual actions were expressed in the subjects’ text
(for discussion of the many problems of such **content analyses”’
see References 26 and 27).

We sought initially to determine whether subjects’ solutions re-
flected the logical structure of the problems. For example, the
first three attribute-testing problems differ primarily in the extent
to which data accessing in different files is required, and a mono-
tonic increase in Class 1 codes was expected. In the analyses, the
code frequencies were summed for each protocol, and these totals
were used as the basic measure in a two-factor (problems and
subjects), repeated-measure analysis of variance. The mean fre-
quencies per protocol are shown in Table 4, and the correspond-
ing percentages are shown in Table 5 for the attribute testing ver-
sus the noncontingent problems (the Knuth data are discussed
under the last of the six headings—comparison to programming
languages).

The analysis results provided strong evidence for the joint hy-
pothesis that the category codes validly reflected the semantic
information in the natural text and that the code frequencies re-
flected the logical requirements of the problems. Statistically re-
liable effects (p < 0.05) were found only when there was a strong
plausible basis for predicting them; further, the ordering of the
problem means was consistent with predictions in almost all
cases. A partial list of such findings follows: (1) the frequency of
data-accessing codes increased from Problems 1 to 3; (2) there
was a monotonic increase in Class la and 1c code frequencies
from Problems 1 to 3 (reflecting increasing complexity of data
accessing); (3) the first three problems do not show significant
overall differences of the attribute-testing codes (as they should
not, since this aspect was the same for these problems; p > 0.20);
(4) there was a significant effect of the attribute-testing code when
Problem 4 was included in the analysis (which problem is much
more complex in this respect); (5) the new-entry problem had sig-

MILLER IBM SYST J « VOL 20 ¢ NO 2 e 1981

Table 4 Mean frequencies for each of the major content classes for each of the six problems

Content Problems Overall
class —— means

4.27
0.71 2.85
0.35 1.11
6.64 2.25
0.14 0.20

Table 5 Percentage of all content codes deriving from each of the six content categories for
the four attribute-testing problems (Column 1) and the two noncontingent problems
(Column 2); Column 3 shows the results of applying the content analysis to Knuth's
(1971) data®

Content class Attrib. (%) Noncont. (%) Knuth (%)

. Existing data 40 21
. New data 16 45
. Attribute test 27 4
. Control 9 3
. Procedures 7 26
. Comments 1 1

nificantly greater data-creation code frequencies (Class 2) than the
computation problem (as it should).

Had there not been a reasonable relationship between the logical
characteristics of the problems and the coded solutions, either the
“rationality’’ of the subjects or the adequacy of the content anal-
yses could have been open to question. As it is, confidence must
accrue to both, and the following analyses can be viewed with
some credibility.

The data given in Tables 4 and 5 suggest that, overall, subjects
were most concerned with the access, creation, and manipula-
tion of data; they were least concerned with specification of
transfer of control. We now examine the five major content cate-
gories in turn, focusing on those subcategories that occurred most
frequently. This examination, while highly detailed, provides
strong evidence of subjects’ preferences in the expression of spe-
cific procedures; such preferences in turn have implications for
the design of programming interfaces.

Examination of the frequencies of Class I subcategories reveals
which aspects of existing data structures were of most concern to
subjects—the files themselves, the records in the files, or the
items on records (la, 1b, and 1d, respectively). The subcategory
accounting for the largest proportion of all Class 1 codes was that

IBM SYST J ¢ VOL 20 ¢ NO 2 e 1981 MILLER

subjects’
preferences
of expression

of general reference to files (1a), with percentages ranging from 70
to 100 percent. Thus, the dominant process associated with exist-
ing data structures was to identify the file of interest but not to
specify actions concerning records within files or items on rec-
ords (this finding is interpreted in the discussion of Class 3 codes).

The Class 2 codes for creation of new data structures indicate
that subjects could choose to focus either on individual elements
(2a) or on groups of elements (2b), but the latter action accounted
for the predominant portion of these actions (ranging from 92 to
95 percent across the attribute-testing problems, and from 53 to
72 percent for the noncontingent problems, 6 and 5, respectively).
Subjects clearly opted to specify creation of new data structures
en masse rather than on an individual entry basis. This finding
suggests that a programming language in which operations can be
performed on whole structures (as in APL) may be more compat-
ible with natural propensities than a language requiring iterative
item-by-item operations (as in FORTRAN).

The Class 3 subcategories provide the main basis for detecting
preferences of expression for attribute-testing problems (the non-
contingent results are not included due to the low frequency of
these codes in Problems 5 and 6). The previously mentioned
Class 1 predominance of reference to files rather than records or
items is explained by an analysis of use of the multiple record-
checking tests (Classes 3b, 3d, and 3g) versus tests of single rec-
ords (Classes 3a, 3¢, and 3f). The strongly preferred mode of ex-
pression was for muitiple record checking, with percentages rang-
ing from 85 to 96 percent. Since subjects expressed an attribute
test that was to be performed over all records in a file, it was
sufficient for them merely to specify the file of concern and the
attribute value of interest; no reference to subcomponents of the
file (records or items) is necessary with such an array operator
method. This finding of attribute testing at an array level is con-
sistent with the finding of array-type creation of new data struc-
tures detected from the Class 2 code frequencies, and it corrobo-
rates the inference that subjects prefer to deal with data struc-
tures on a mass rather than iterative basis.

A second major attribute-testing preference is indicated by com-
paring content codes for expressions that clearly identify both the
attribute category and the value of interest (3a and 3b) to codes
that clearly identify only the value (3¢ and 3d); the combined sub-
categories for the latter mode of expression accounted for much
the higher percentages (70-94 percent). Since, in many cases, the
appropriate attribute is implicit in the statement of a specific
value, this result could be interpreted by hypothesizing that sub-
jects considered it unnecessary to also specify the attribute name.
A tentative generalization of this interpretation is that naive pro-
grammers might well want or expect a computer system to figure

MILLER IBM SYST J e VOL 20 ¢ NO 2 e 1981

out the semantic implications involved in every aspect of their
input, a capability that would require extraordinarily detailed and
complex computer representations of word semantics and knowl-
edge structures—which capability would certainly be well in the
future, if at all.

There are two findings concerning Class 4 codes. First, the sub-
categories of the full **if-then-else’’ conditional (Class 4b) and the
unconditional transfer (Class 4d), both included on a priori
grounds from knowledge of programming languages, never oc-
curred. The second finding is that the majority of Class 4 actions
were accounted for by the partial **if-then’’ conditional statement
(Class 4¢), with a range of values from 82 to 87 percent in the
attribute-testing problems. These findings raise the general ques-
tion of the interpretability of the subjects’ protocol solutions, i.e.,
whether they could be understood and executed by other per-
sons. The attribute-testing problems, if written completely, need
explicit transfer-of-control structures. In our data, such control
statements were mostly not provided (cf. Table 4), and even
when they were present, they were incompletely specified.

In an attempt to provide qualitative information on the question
of interpretability of protocols, the following segment from a pro-
tocol was given informally to about two dozen persons untrained
in programming and not involved in the experiment (after describ-
ing the scenario):

**(1) See if the age of the person is greater than 50;
(2) Write his name down on a list.””

Those interviewed were asked if they would know what to do if
the age was not greater than 50 and, further, if they believed this
was implied by the protocol. The response was almost unani-
mous. “Of course,”” the reply went, ‘‘you just check the next
person, or if there are no more, you just go on.”” When asked
whether such a course of action was implied by the protocol seg-
ment, the response was typically: **Well, this is what one would
always do in this kind of situation.’” Apparently, the respondents
were drawing from some base of experience in following iterative
procedures. When searching for particular target values, the deci-
sion either to repeat an action or continue to the next one (or
stop) is apparently derived from this kind of experience. For ex-
ample, shampoo labels typically state: ‘*Wet hair, apply sham-
poo, rinse, and repeat.”” As it stands, this procedure creates an
eternal loop, but it is doubtful we would find many bathers for-
ever cycling through such a procedure. This anecdotal informa-
tion suggests that a large and complex body of experience is im-
portant in interpreting natural language procedure specifications.

Finally, for the Class 5 codes the subcategory of invoking a gen-
eral procedure (Class 5c¢) accounted for most of the Class 5 code

IBM SYST J @ VOL 20 e NO 2 o 1981 MILLER

summary

occurrences for the attribute-testing problems and for the new-
entry problem (Problem 6), ranging from 75 to 92 percent. Al-
though Class 5¢ was a catch-all, occurrences of this code do re-
flect the invoking of general procedures by subjects—as does the
organizing category 5a. For the wage-computation problem
(Problem 5), the computation subcategory (Class Sb) appropri-
ately accounted for the largest proportion, 46 percent. In one
sense, use of these actions may be viewed as instances of in-
voking ‘‘macro’’ procedures which are viewed by the subjects as
unanalyzed (or at least undetailed) '‘primitive’’ processes; the
complexity built into these primitives allows for a significant re-
duction in the level of detail needed to be expressed in the prob-
lem solutions. While it may be that subjects have these primitives
(formatting, alphabetizing, etc.) already well-learned and readily
available, it is not clear whether subjects could easily provide an
algorithmic description of these procedures.

The overall nature of the resuits of this section also does not eas-
ily provide support for the view that providing a natural language
programming interface is the way to radically improve computer
usability for naive programmers. Although the strong preference
for aggregate data accessing could certainly be implemented to
some extent (e.g., by APL), aggregate data creation could not be
supported so easily, and the other resuilts imply extensive re-
quirements for semantic interpretation of input and use of **world
knowledge’ well beyond present capabilities.

Contextual referencing

L]

The expression ‘‘put them back and check the others . . .” is

typical of many of the subjects’ statements and illustrates the ne-
cessity for interpreting the words as a function of their particular
contexts. Specifically, the statement illustrates the two pervasive
reference problems found in our subjects’ solutions: (1) knowing
what kind of entity was being referred to by the pronouns and
similar terms, and (2) once knowing what entity, determining
which one of several possibilities was intended.

We were not able to develop a satisfactory scheme to quantify
these problems separately, but we were able to assess the extent
to which a reference required some kind of other information for
interpreting either the entity type or the specific reference (or
both). We classified data references into four categories: (1) files,
(2) records within files, (3) items or other specific value informa-
tion on records, and (4) new data structures such as lists. We then
read each subject’s solution to identify each data reference, and
we classified it into one of these four types. We next assessed
what information was required to resolve the reference —actually
where in the solutions or elsewhere we found this information.
Three such information-location ‘‘levels’” were used: (1) Level
0—the information needed to determine the ‘‘what”” and

MILLER IBM SYST J « VOL 20 ¢ NO 2 » 1981

Table 6 Percent of data references requiring prior context for disambiguation; Level 1 in-
dicates that a minimal, local context was sufficient, whereas Level 2 requires sub-
stantial backtracking before the reference is disambiguated

Referent Contextual references

Total (%) Level 1 (%) Level 2 (%)

Record 34
New data 18
Item 26
File 6

Average 24

“which’’ of a reference was to be found within the same step as
the reference (e.g., ‘‘records’ in **Take all records from File 1

. .”” needs only the information of that step for interpretation),
(2) Level t—references were resolved by information provided in
the immediately preceding step, and (3) Level 2—resolution of
references required information from steps earlier than just the
last, or else required interpretation of the problem statement or
other information. These levels roughly index the amount of and
basis for inferencing required for resolution: for Level 0, the ref-
erences were often quite explicit in themselves or within the noun
phrase in which they occurred; resolution of many of the Level 1
pronouns was often achieved by the simple syntactic-based ac-
tion of finding the noun in the previous sentence which was in the
same grammatical case (e.g., subject, object) as the pronoun; but
Level 2 references mostly required a good deal of semantic infer-
ences considerably more complex than the simple checks of the
first two levels.

Of all the data references identified (see Table 6), 42 percent were
found to require the use of information outside the step unit to
resolve the referent; 18 percent were rated as Level 1 (requiring
only the previous line) and 24 percent were rated as Level 2 (re-
quiring other information). The breakdown by data category
shows that this overall finding of higher Level 2 contextuality is
also true for the individual data categories except the references
to files which, after all, had only three possible alternatives.

These estimates of contextual referencing, particularly those of
Level 2, are quite large, somewhat unexpectedly so in view of the
well-defined constraints of the problem and scenario, and in view
of our scoring bias to give subjects the benefit of the doubt when-
ever we were uncertain (scoring the referent as Level 0). In addi-
tion, a number of the Level 0 referents, although resolvable
within the step, involved contextual inferencing similar to the ref-
erents of Levels 1 and 2. These facts suggest that the overall 42
percent figure may well be a lower bound on the degree to which

IBM SYST J o VOL 20 @ NO 2 o 1981 MILLER

summary

context-dependent referencing occurs, with a greater extent to be
expected in less-constrained or less-well-specified situations. In-
deed, corroborating evidence for the contextual nature of lan-
guage use can be found in Kucera and Francis’ list®® of the 100
most frequent words occurring in a million-word sample of texts.
Almost every word that is clearly contextually referential oc-
curred in this list, including all personal, demonstrative, and rela-
tive pronouns. In addition, the word **the’’ alone accounted for
about seven percent of all the words; most expressions of the
form “‘the X’ can legitimately be countered with the question
“which X?7’—a question which is answerable only by the con-
text. Other aspects of these word-frequency data suggest, if not
contextuality, at least a level of expression far removed from the
“‘concrete:”’ among the 100 words, only four nouns were *‘con-
crete’’ (time, man, years, way); also, no adjective expressing an
absolute attribute of an object (e.g., green, heavy) was on the list;
and, finally, the only verb occurring which was of a **concrete”
or explicit action nature was “‘said.”

This evidence for high contextuality in natural language does not
necessarily imply that people cannot or will not learn to be spe-
cific in their references; indeed, the success in training people in
programming languages indicates that they do learn. Never-
theless, the propensity to refer to things contextually appears to
be very strong, and designers of new programming languages ori-
ented towards the naive programmer might do well to consider
providing some capability for interpreting contextual referencing
to support this normative characteristic.

The high degree of contextual referencing found in subjects’ solu-
tions provides yet another perspective for doubting the feasibility
of unconstrained natural language programming, at least by
people inexperienced in procedure specification. Natural lan-
guage supplies a variety of means for providing links between one
segment of a text and other portions, often known as "*cohesive”
mechanisms, and many of these are exceedingly complex in
terms of the required syntactic and semantic processing (see Hal-
liday and Hasan,* also Miller'®). However, most people are typi-
cally unaware of these complexities and would have difficulty in
limiting their use of such devices to just those for which computer
implementation could possibly be achieved. Thus, a fully uncon-
strained natural language programming interface would probably
have to support all of these mechanisms.

Word usage

We now focus on the most elemental aspect of subjects’ solu-
tions: the individual words. Considered first are the general char-
acteristics of word usage and then the possibility of enforcing a
restricted vocabulary.

MILLER IBM SYST | @ VOL 20 » NO 2 o 1981

There were a total of 8708 words (tokens) used in all of the 84
protocols, and these were repetitions of 610 unique words
(types). The per-protocol averages were 104 words, 9.8 steps, and
10.7 words per step. Each unique word was used, on the average,
14.3 times, a rather high token-to-type ratio for such a relatively
small body of text. Overall, then, it appears that verboseness was
not a characteristic of the subjects’ productions, and a relatively
small vocabulary sufficed for their work.

For the four attribute-testing problems a total of 5485 words
were used, whereas 3223 words were used in the noncontingent
problems. On the average, however, somewhat fewer words were
required for the former (98 words per solution) than for the latter
(115 words per solution). The numbers of unique words used for
the two kinds of problems were 473 and 360, and the average
token-to-type ratios were 11.2 and 9.0, respectively. (The latter
finding suggests a greater uniformity of expression in the attri-
bute-testing problems.)

We assessed commonality of word usage among subjects by the
following procedure. For each of the 14 subjects we determined
their 25 most frequently used words, which accounted for from 47
to 69 percent of the total words (words differing only in the ending
signifying plurality were grouped together—e.g., “‘file’’ and
‘‘files’’). Then, working with one list at a time, we took each of
the 25 words on this list and tallied how many times it appeared
anywhere within the other 13 subjects’ lists. This resulted in a 14
by 25 matrix of frequencies (subjects by words), with each cell
containing a number ranging from the maximum of 13 (the word
was found on all other lists) to the minimum of 0 (the word oc-
curred on no one else’s list). On the average, each high-frequency
word used by one subject was also used by 5.7 other persons;
given the maximum of 13, this means that almost 44 percent of the
top 25 words were shared in common. The top three words were
shared by an average of 9.9 persons (71 percent), whereas the top
five were shared by an average of 8.7 (62 percent). While this
analysis suggests a substantial degree of commonality among sub-
jects in word usage in the present experiment, the author unfortu-
nately does not know of other similar data which would permit
comparative assessment of this finding.

The final general analysis focused on the imperative verbs used
by subjects in their solutions (similar to procedure calls in pro-
gramming languages). We examined the attribute-testing prob-
lems separately from the noncontingent ones and computed for
each problem set the 10 most frequent words that were judged
unambiguously to be “*commands’’; excluded were words having
multiple unrelated meanings like ‘‘make’ (e.g., ‘'make a list

> versus ‘‘find those employees who make .. .”"). For the

IBM SYST J @ VOL 20 ¢ NO 2 o 1981 MILLER

general
characteristics
of word usage

vocabulary
restriction

attribute-testing problems these words, in the order of most to
least frequent, were ‘'go, look, take, check, find, put, remove,
pull, write, see’’; for the noncontingent problems these com-
mands were ‘“write, go, enter, put, take, indent, look, multiply,
leave, find.”’ These lists appear to be consistent with the nature of
the problems, with more ‘‘examination’’-type words occurring in
the attribute-testing list and more ‘‘data-manipulation’’-type
words in the noncontingent problems. We note, in passing, that
this type of method for characterizing word usage might be gener-
ally useful in providing a basis for selecting commands in re-
stricted-lexicon situations.

Although subjects were in no way restricted in the words they
could use, the above results show that they did not use all that
many words, and there was a good deal of commonality in their
usage. These findings suggested to us the possibility that perhaps
a restricted vocabulary could have been given to subjects without
serious ill effects.

One check on this possibility is provided by examination of the
very infrequently used words. We found that words that (on an
overall basis) occurred less than three times accounted for only
4.3 percent of the total words produced but accounted for 50 per-
cent of the unique words. We examined a sufficient number of
these words to give us confidence that the semantic content of
such idiosyncratically used words could be conveyed by other,
higher-frequency, words; this being true, the size of the lexicon
necessary for the present natural language expressions could be
cut in half—to about 300 words—leaving the protocols roughly 96
percent intact. We next examined the references to data struc-
tures and elements, finding that these accounted for almost 39
percent of the total words and 17 percent of the unique words,
substantially larger than any other word class examined (such as
articles, pronouns, prepositions, ‘‘command’’ verbs, etc.). The
overall 39 percent total word usage is quite appropriate to the
nature of the problems; however, the 17 percent proportion of the
unique words is not strictly necessary, since many synonyms
were used for the same data referent. Training in the use of the
data structures, along with instructions to use certain terms,
could certainly have permitted this number to be reduced sub-
stantially. Thus, with elimination of idiosyncratic low-frequency
words and standardization of data referencing, it can be argued
that a lexicon of about 200 words (eliminating 100 data structure
words) would suffice for the present language productions with-
out seriously affecting the amount of content or the semantic na-
ture of that content. We further estimate that this number could
be cut approximately in half if synonyms for words other than
data structures were eliminated; the resulting base lexicon would
thus be about 100 words. The behavioral feasibility of con-
straining word usage is given support by the study of Kelly and

MILLER IBM SYST J @ VOL 20 ¢ NO 2 o 1981

Chapanis,” who compared performance with a restricted vocabu-
lary versus an unrestricted one and found no behavioral diffi-
culties.

The data on word usage provide for the first time something other
than doubts and hesitations for the notion of an unconstrained
natural language programming interface. Subjects used a rela-
tively small number of unique words and total words, and they
appeared to use these words in the same way. The relatively high
frequency of synonym usage would not necessarily require exten-
sive semantics but rather a complete synonym dictionary.

Comparison to programming languages

We now compare and contrast the natural language productions
of this study to "“typical’’ features of programming languages. In
doing so, many of the issues and problems associated with dis-
criminations among programming languages (e.g., Ledgard™)
have been ignored so that very general points can be made.

We first make a very gross comparison based on the overall fre-
quencies of the six classes of actions we discussed earlier; then
we discuss the details of specific differences.

To provide a programming perspective for assessing the relative
frequencies of actions in our subjects’ solutions we analyzed
Knuth's frequency statistics®® for FORTRAN commands in pro-
grams written by Stanford University students. These students,
like ours, were relatively new to the task of specifying proce-
dures, and, similarly, the problems they were working on were
apparently of relatively low complexity. By making reasonable
assignments of the FORTRAN commands into our six major con-
tent categories we were able to compute the relative percentage
of each category, shown as the third column in Table 5.

Comparison of the programming percentages to those of our sub-
jects shows that the major discrepancies are for categories 4 and
6. Concerning the latter, the 10 percent level of occurrence of
comments in the programs probably reflects training in documen-
tation practices rather than a real propensity for the specification
of procedures. However, the 22 percent figure in Knuth’s data for
transfer-of-control actions most probably reflects definite require-
ments of programming language specifications. Indeed, as Knuth
pointed out, the students’ programs lacked the large sections of
code concerned with checking format, syntax, etc. that charac-
terizes the work of experienced programmers; the 22 percent
might therefore be viewed as an underestimate of the proportion
of transfer-of-control commands in professionals’ programs.

The discrepancy between the value of 22 percent from Knuth’s
data and the much lower values of nine percent and three percent

IBM SYST J ¢ VOL 20 ¢ NO 2 o 1981 MILLER

summary

overall classes
of actions

detailed
comparisons

found in our data suggests an important area of difference be-
tween the two specification modes: Formal programming lan-
guages seem to require much more extensive and explicit specifi-
cation of control aspects than natural language. Our earlier analy-
sis of control actions as well as those that follow further suggests
that this much lower degree of specificity would probably not be
corrected by subjects’ elaboration of their internal conceptual-
izations concerning the semantics of specific words; rather, it
would appear that the control aspects are supplied by pragmatic
experiences with procedures. In turn, this implies that substantial
psychological assessments of the subjects’ understanding of ac-
tions and procedures would have to form the basis for any imple-
mentation of an unconstrained natural language interface, and
such assessments have hardly yet begun.

Table 7 shows the highlights of the detailed comparisons, which
are discussed in order below.

Data. With respect to data aggregates, the very high level of con-
textuality of referents discussed under contextual referencing is
perhaps the most outstanding contrast between the natural lan-
guage and programming language procedures. While it is true that
the value of a particular variable in a program, for example, may
not be determinable except during execution, the variable (or
other data aggregate) must always be defined or declared, else a
syntactic language violation will occur. In the present protocols
there was a cavalier disregard for such details.

A second important data finding was the tendency to express
data-checking operations over a whole data aggregate, as pre-
viously noted. This is similar to that capability provided in APL,
for example, but is in contrast to the element-by-element mode in
a language such as FORTRAN.

There were also some other interesting differences. When in-
dexing occurred, the specification was typically in terms of local
adjacency, using words like ‘"next.”” Such a capability is not pro-
vided in most present-day programming languages. In contrast to
the penchant of programming languages for various data types
(e.g., fixed-point, double-precision, etc.), there were no such dis-
tinctions in the protocols. Similarly, data aggregates were not de-
fined, dimensioned, or declared, nor were distinctions made be-
tween literal and numeric entities. Explicit assignments, which
comprised roughly half of the commands in Knuth’s data,” al-
most never occurred; synonyms were introduced and values were
assigned implicitly.

These striking results concerning the contrast to programming
languages of our untutored subjects’ data manipulations makes
one pause at the sheer magnitude of the difficulty of developing a

MILLER IBM SYST J @ VOL 20 « NO 2 o 1981

Table 7 Comparison of natural language expressions of procedures to characteristics of
programming languages

Features

Declarations, etc.
References

Examination/
creation

Indexing

Data types
Format specs.
Transfer of control

Extent

IF-THEN-ELSE

IF (cond.) GOTO
Uncond. GOTO
Exception detec.

Structure

Procedure calls

Argument passing
General language

Lexicon

Sentence type

Sentence syntax

Programming
languages

Natural language
specifications

Always explicit
Explicit, well-defined

Usually iterative,
element by element

By numerical/variable
value, major aspect

Many, defined
Many, explicit

Major aspect of programs
and style

Most used at present

Major feature
Was major, still common
Important feature

Many types: recursion,
co-routines, nonlinear

Frequent, specified
completely

Always explicit

Very limited, except
for variable names

Active imperative
and conditional

Quite rigid

Never occurred
Implicit, contextual

On aggregate basis

Seldom occurred, then
contextually defined (e.g.
“‘next,”” ‘‘previous’’)

No distinction

Infrequent, contextual

Seldom specified

When occurred, only par-
tial —IF-THEN (no else)

Never occurred
Never occurred
Never occurred

Basically linear block
structures

Major control mechanism,
but context specified

Mostly implicit

Can be rich and large,
with many synonyms,
may be restricted

Mainly active
imperative, but can
be declarative/conditional

Extremely variable,
may be very complex

system capable of turning these fuzzy, incomplete, ambiguous,
and oh-so-knowledge-dependent specifications into the smooth,
precise statements required to guide computer execution.

Transfer of control. There is a sizable discrepancy between the
proportion of transfer-of-control commands in computer pro-
grams and the virtual absence of these in the present protocols
(review the previous discussion of this topic under the content-
analysis heading). In addition, even for the few instances of this

IBM SYST J # VOL 20 ® NO 2 e [98] MILLER

kind identified, the typical programming language constructions
of the full “*IF-THEN-ELSE’’ and the unconditional **GOTO’’ never
occurred. Certainly, no subject used any of his meager amount of
conditional expressions to do any exception handling, syntax
checking, end-of-file testing, consistency verification, etc., that is
a hallmark of normal good programming practice.

A partial explanation for the paucity of control specifications may
be due to the structure of the subjects’ procedures. In general,
they appeared to be very much like a linear sequence of blocks of
procedure calls in a somewhat narrative form and, of course,
missing the BEGIN-END delineators, arguments, declarations, etc.
Further, in informal testing, asking subjects to describe the de-
tails of specific procedures does not change the level of control
detail supplied: Subjects either provide another linear sequence
of more-detailed procedure calls, or else they give what is essen-
tially an example of the main processing path of the procedure,
without explicitly stating the general control structures. It there-
fore looks as though this major difference in the level of control
information supplied is not due to the level of detail at which sub-
jects are considering the problem; rather, it appears that speci-
fying control is simply not an emphasized aspect of procedures
(or their memory representations) at any level of detail.

Given that the major control characteristic of subjects’ programs
is that of a linear sequence of procedure calls, we can at least
examine how arguments are specified for the two methods. In
programming languages, of course, the arguments in a procedure
call are always completely and explicitly specified; further, the
order in which they are given almost always conforms to a single

predefined sequence. (This is even true of the majority of most
system commands, which can also be considered to be something
like procedures.) In natural language procedures, however, the
opposite is true: arguments were never completely and explicitly
stated, and missing arguments had to be inferred from context;
further, argument order could vary extensively.

General language features. It is in the area of vocabulary size and
sentence types that the two groups have the greatest similarity.
Both have relatively small vocabularies, and we have argued that
the subjects’ vocabularies could be extensively reduced without
significant impact. Also, the instructions in both are expressed
typically by active imperative sentences.

From the point of view of developing a parser for the commands,
the similarities vanish, however. Programming language com-
mands are restricted to a fixed syntactical arrangement of infor-
mation, with key words (e.g., **DO’’) or operators (e.g., assign-
ment symbol) determining a single syntactic construction for each
command aspect. The grammar rules in the program language

MILLER IBM SYST J @ VOL 20 ® NO 2 ¢ 198}

parsers need only consist of, at most, a relatively small set of
context-free rules; any complexity of the parsing algorithm itself
(e.g., LL versus LR versus Earley) is introduced from consid-
erations of efficient performance and is not due to any com-
plexities or vagaries in the source-command syntax (cf. Aho and
Ullman™).

In contrast to the "‘one syntactic structure maps to one com-
mand’’ feature of programming languages, natural languages are a
compiler-writer’s nightmare! First, the same ‘‘command’’ can be
expressed by a wide variety of different words (the differences in
meaning among them requiring wide variations in what other
words also occur) and also by a huge variety of syntactic struc-
tures (even keeping the words constant); second, in reverse, the
same syntactic structure—depending on the different words in-
serted into the structure—can map onto a wide diversity of ‘*com-
mands.’’

A second and more profound linguistic difference between natu-
ral and programming languages has to do with the notion of
“*style.”” Although there are many perspectives as to what linguis-
tic style is (see, for example, Sebeok®), we use the term to refer
to an author’s communication strategy as indicated in the au-
thor’s text by two features: (1) the nature of the conceptual prop-
ositions conveyed by the text, and (2) the manner in which these
propositions are organized or structured. Concerning (2), there
are two primary levels of organization to be examined for stylistic
features: (a) the structure within a sentence (or command), sen-
tential syntax, and (b) the structure among sentences in an overall
cohesive text, textual syntax. In these terms, our previous dis-
cussion of programming and natural language syntactic dif-
ferences indicates that, for the latter, there may be widely dif-
fering styles at the sentential level of syntax; for the former, how-
ever, the programming language formalisms enforce such strong
syntactic restrictions that there is little opportunity for programs
written in the same language to show stylistic variations at the
sentential level.

We therefore focused on stylistic differences from the viewpoint
of textual syntax, including in our observations a variety of dif-
ferent programming languages and a variety of other types of pro-
cedural text than just our present data (e.g., kitchen recipes, as-
sembly instructions, trouble-shooting manuals). Looking first at
programs, we see a very strong propensity in their opening ‘‘sen-
tences’’ to define, dimension, declare, and otherwise ‘‘size’’ data
structures. Such introductory data propositions can often com-
prise a major component of the overall contents of the programs.
In comparison, while we duly note that ‘‘natural’’ programs often
begin with (usually much shorter) lists of ingredients (edible or
otherwise), equally often these lists are not incorporated into the

IBM SYST J @ VOL 20 ¢ NO 2 » 1981 MILLER

Figure 3 Comparison of “normal forms” for programs versus natural language specifi-
cation of procedures: Task involves packing Christmas decorations into
boxes; Figure 3A illustrates typical conditioned action style of program-
ming; 3B illustrates natural action qualification style (the arrow represents the
primary action to be accomplished by the program)

DO END UNTIL TIME = 5:00 PM
1i=0
DO END.OUT WHILE I < 200
I=1+1
OPEN BOX(I)
J=20
DO END.IN WHILE J < 12
GET NEXT BALL
IF RED THEN
IF LARGE THEN
IF UNBROKEN THEN
=J+1
PACK BALL IN BOX(I) CELL({J)
RETURN (END.IN)
ELSE RETURN (END.IN)
ELSE RETURN (END.IN)
ELSE RETURN (END.IN)
END.IN
CLOSE BOX(I)
END.OUT
END

(A) Program Normal Form

PACK LARGE RED DECORATIONS TWELVE TO A BOX.
MAKE UP A TOTAL OF 200 BOXES.
STOP AT 5:00 PM IF NOT FINISHED.
BE SURE TO PACK ONLY THE UNBROKEN ONES.

(B) Natural Normal Form

main dialogue but are set aside and referred to in accompanying
tables. Further, there is not the programs’ single-minded concern

LX)

with “*sizing,”” although this is indeed a strong feature; rather, a
great deal of what can be called ""preprocessing’” is specified in
these data propositions (e.g. ** 1 dozen medium peppers,
seeded and chopped” or **. .. 16 four-inch lengths of No. 18
solid wire, with insulation removed 1/4 inch on each end . . .”").

The real stylistic differences appear after these initial data propo-
sitions, however. One has only to glance over a few well-written
programs to see the dominant textual style of programs: great
massive control structures of DOs and IFs, with the primary data-
manipulation activities embedded deep within these. For this rea-
son, we characterize this style as “‘conditionalized action.”” How-
ever, natural language procedures provide a reverse emphasis:
they almost always begin with those primary actions that are so
deeply embedded in programs; special conditions or circum-
stances that control if and how the action is to be applied are
expressed rather as “"qualifications,’” usually following the action
words. We therefore characterize natural language ‘‘program-

MILLER IBM SYST J « VOL 20 ®« NO 2 » 1981

ming’’ style as ‘‘action qualification.”’ The contrast between
these styles is shown by the contrived pseudo-program of Figure
3A and the corresponding natural language transformation in Fig-
ure 3B (see Miller”® for further discussion).

The enormous and profound differences so readily apparent in
comparisons of text and program samples signal differences that
may not be so obvious—e.g., the way exceptions are handled,
how values are assigned, the manner in which parameters are
passed, the defaults for unspecified function operands. Almost all
of the evidence thus points to fundamental, even incompatible,
differences between natural and programming specifications of
procedures. We believe that all of the activities associated with
generating, comprehending, and using natural language proce-
dures are deeply rooted in long-developed and practiced habits;
changing so firmly entrenched a manner of specification is akin to
asking people to change the way they walk and talk.

Conclusions

Our objective in this study was to obtain detailed empirical infor-
mation about the nature of natural language ‘‘programming’’ to
bring to bear on the issues of increasing the usability of computer
language interfaces. Although we expected numerous difficulties
to be detected concerning the potential of actually implementing a
system to interpret natural language programs, we were not pre-
pared for the magnitude of what we see as being the three major
obstacles: style, semantics, and world knowledge. Concerning
the first, there is little way in which the vast differences in styles
could be increased: programming-language style is simply alien to
natural specification. With respect to semantics, we also were un-
prepared to find out the extent to which the selection of the ap-
propriate ‘*'meaning’’ (to a word, phrase, or sentence) is depen-
dent upon the immediate and prior context. And as for world
knowledge, we suspect that the extent to which shared experi-
ences and knowledge are critical to procedural communication
and understanding among people has barely been hinted at by our
present data.

These findings would seem to remove from active consideration
the notion of radically improving computer usability by a totally
unrestricted natural language interface: the technology to accom-
plish this is simply not there, and probably will not be, even in
approximate form, for a number of years. Aside from the techni-
cal difficulties, some other aspects of our study make us skeptical
that merely (!) providing a natural language interface would per-
mit anyone to become a programmer, capable of specifying the
procedures necessary to develop complex computer programs.
We suspect that what would happen is that a lot of people would

IBM SYST J & VOL 20 @ NO 2 & 1981 MILLER

summary

be able to generate easily lots of programs that did not do what
they were supposed to—because the subtle conceptual com-
plexities of the problem were not appropriately understood and
dealt with. If there is any single thread running through our other
studies of programming and design (e.g., Miller®), it is that the
way to achieve better-quality output is to provide people with
tools that structure the problem and the implementation pro-
cesses. We suspect that this principle would hold equally well for
programming and for a natural language interface.

Although our results lead us to be negative towards the idea of an
unrestricted natural language interface, the same results (along
with other work) do give us some hope about the two obvious
compromises: (1) implementing a natural language interface sub-
ject to several constraints, and (2) modifying programming lan-
guages to include more natural language features. Our view is that
such compromises have in common two assumptions: (1) they
would include provision for interactive clarification of user input
and system output (such as proposed by Codd®®), and (2) they
would best be implemented, at least initially, as add-on features
(or overlaid interfaces) to existing languages rather than requiring
the design of completely new and stand-alone languages.

Concerning the first compromise, a constrained natural interface,
we believe there are selected application areas for which this ap-
proach would be quite workable and desirable—e.g., accounting
or computation (see Biermann and Ballard') and highly standard-
ized office tasks, including data base maintenance or query.

For this possibility we would recommend three kinds of con-
straints. First, the activity supported ought to be limited for use
by persons familiar with and experienced in the tasks; presum-
ably they would already be quite accustomed to the idea of algo-
rithmic procedures and would also be able to tolerate the other
constraints. Second, rather strong restrictions should be placed
on the users’ vocabularies, limiting each word also to only one
meaning. A basic vocabulary of perhaps 500 words might suffice
for about 80 percent of the interaction vocabulary required in the
envisioned tasks. Third, moderate restrictions should be placed
upon the syntax of the user’s input; constraints would include
limitations on sentence length, number of qualifications per noun,
sentence type, and prohibition of complex constructions (such as
nominalizations, complements, appositives, etc.). An interface
developed with these and the more general constraints should not
only be sufficiently powerful for an acceptable range of tasks but
should also ‘*feel”” quite comfortably “‘natural,”’ at least to the
experienced user.

With respect to the second compromise, making programming
languages more natural, we believe there are several ‘‘language

MILLER IBM SYST J e VOL 20 ¢ NO 2 o 1981

encoding mechanisms’ that are sufficiently well-defined and
‘*stand-alone’’ to be implemented as features in computer lan-
guages. In view of the strong degree to which references involved
context, the potentially most useful such mechanisms would be
those that permitted contextual referencing. Among such mecha-
nisms are those of pronominalization, ordination (*'first, second,
..., discriminant feature referencing (picking the salient or
unique feature; as with two black blocks, one larger, saying *‘the
large one’’), relative referencing (‘‘the next record . . .”’), and
collective referencing (*‘for all of these’’). Conventions for the
details of resolution and scope would have to be worked out and
communicated, of course, but implementation would appear to be
quite feasible.

A second type of implementable mechanism would be the devel-
opment of high-level programming ‘*macros’’ which—in appear-
ance, variation, and syntax—would be highly similar to natural
language expressions and would accomplish the same exten-
sive operations as their natural counterparts. For example, two
such macros that one can imagine being implemented for the
problems of our study are a “'find’’ and a “‘call-it”” macro. With
the key words given in capitals and the variable fields in lower
case, the format for the find might be

FIND <what> IN <where> WHICH HAVE
<attribute> <operator> <value>

(e.g., FIND names IN file 3 WHICH HAVE
title = photographer)

And the *‘call-it”” macro might be

CALL RESULT <what> and < do what to> IT
(e.g., CALL RESULT list 1 AND alphabetize IT)

Such macros could at least be defined and implemented for stable
application activities and might well be made more general opera-
tions of the added-to programming language itself.

Summing up, we believe the present study illustrates the great
difficulties opposing implementation of an unconstrained pro-
gramming-language interface. Nonetheless, important beginning
steps have been identified which can be taken now to improve the
natural ease of use of computer systems.

ACKNOWLEDGMENT

This paper is a highly augmented and rewritten version of an ear-
lier internal report (with Curtis Becker as a joint author; IBM
Research Report RC 5137, 1974). The research was supported, in
part, by a contract from Engineering Psychology Programs, Of-
fice of Naval Research.

IBM SYST J o VOL 20 » NO 2 o 1981 MILLER

CITED REFERENCES

1.

2.

A. W. Biermann and B. W. Ballard, '*“Toward natural language computa-
tion,”” American Journal of Computational Linguistics 6, 71-86 (1980).

L. A. Miller, Behavioral Studies of the Programming Process, Research Re-
port RC 7637, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 (1978).

. E. Dijkstra, *On the design of machine independent programming lan-

guages,” Annual Review in Automatic Programming (R. Goodman, Editor),
11, 27-42, Pergamon Press, New York (1963).

. E. Dijkstra, “*Some comments on the aims of MIRFAC,’’ Communications of

the ACM 7, 190 (1964).

. 1. D. Hill, **Wouldn’t it be nice if we could write programs in ordinary Eng-

lish—or would it?"” Computer Bulletin 16, 306-312 (1972).

. M. Elson, Concepts of Programming Languages, Science Research Associ-

ates, Inc., Chicago (1973).

. S. R. Petrick, "*On natural language based computer systems,”’ IBM Journal

of Research and Development 20, No. 4, 314-325 (July 1976).

. J. E. Sammet, Programming Languages: History and Fundamentals, Pren-

tice-Hall, Inc., Englewood Cliffs, NJ (1969).

. J. E. Sammet, ‘*Roster of programming languages,’” Computers and Automa-

tion 20, 6-13 (1971).

. M. Halpern, ‘*Foundations of the case for natural-language programming,’

IEEE Spectrum 4, 140-149 (1967).

. W. A. Woods, "*A personal view of natural language understanding,” in

“*‘Natural Language Interfaces,”” ACM SIGART Newsletter, 17-20 (February
1977).

. G. E. Heidorn, ** Automatic programming through natural language dialogue:

A survey,” IBM Journal of Research and Development 20, No. 4, 302-313
(July 1976).

. N. Findler (Editor), Associative Networks: Representation and Use of

Knowledge by Computers, Academic Press, Inc., New York (1979).

. R.J. Brachman and B. C. Smith (Editors), Special Issue On Knowledge Rep-

resentation, ACM SIGART Newsletter, No. 70 (1980).

. L. A. Miller, "*Project EPISTLE: A system for the automatic analysis of busi-

ness correspondence,”” Proceedings of the First Annual National Conference
on Artificial Intelligence (August 1980), pp. 280-282.

. L. A. Miller, G. E. Heidorn, and K. Jensen, Text Critiquing with the

EPISTLE System: An Author’s Aid to Better Syntax, Research Report RC
8601, IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598 (1980).

. M. E. Sime, T. R. G. Green, and D. G. Guest, **Psychological evaluation of

two conditional constructions used in computer languages,” International
Journal of Man-Machine Studies 5, 105-113 (1973).

. T.R. G. Green, "*Conditional program statements and their comprehensibility

to professional programmers,’’ Journal of Occupational Psychology 50, 93-
109 (1977).

. L. A. Miller, **Programming by non-programmers,’’ International Journal of

Man-Machine Studies 6, 237-260 (1974).

. M. E. Atwood, H. R. Ramsey, J. N. Hooper, and D. A. Kullas, ** Annotated

bibliography on human factors in software development,”” Army Research
Institute Technical Report, P-79-1 (1979).

. A. Newell and H. A. Simon, Human Problem Solving, Prentice-Hall, Inc.,

Englewood Cliffs, NJ (1972).

. P. R. Michaelis, A. Chapanis, G. D. Weeks, and M. J. Kelly, **Word usage in

interactive dialog with restricted and unrestricted vocabularies,” [EEE
Transactions on Professional Communication PC-20, 214-221 (1977).

. J. E. Sammet, ‘'The use of English as a programming language,”” Communi-

cations of the ACM 9, 228-230 (1966).

. J. E. Sammet, "*Programming languages: History and future,”” Communica-

tions of the ACM 15, 601-610 (1972).

MILLER IBM SYST J e VOL 20 NO 2 o 981

. B. M. Leavenworth and J. E. Sammet, An Overview of Nonprocedural Lan-
guages, Research Report RC 4685, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1974).

. G. Gerbner, O. Holsti, K. Krippendorff, W. J. Paisley, and P. J. Stone, The
Analysis of Communication Content, John Wiley & Sons, Inc., New York
(1969).

. P. J. Stone, D. C. Dunphy, M. S. Smith, and D. M. Ogilvie, The General
Inquirer: A Computer Approach to Content Analysis, MIT Press, Cambridge,
MA (1966).

. H. Kucera and W. N. Francis, Computational Analysis of Present-Day Amer-
ican English, Brown University Press, Providence, RI (1967).

. M. A. K. Halliday and R. Hasan, Cohesion in English, Longman Group Ltd.,
London (1976).

. M. J. Kelly and A. Chapanis, ‘‘Limited vocabulary natural language dia-
logue,” International Journal of Man-Machine Studies 9, 479-501 (1977).

. H. F. Ledgard, **Ten mini-languages: A study of topical issues in program-
ming languages,”” Computing Surveys 3, 115-146 (1971).

. D. E. Knuth, An Empirical Study of FORTRAN Programs, Research Report
RC 3276, IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598 (1971).

. A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Com-
piling, Prentice-Hall, Inc., Englewood Cliffs, NJ (1972).

. T. A. Sebeok, Style in Language , M.1.T. Technology Press, Cambridge, MA
(1960).

. L. A. Miller, Natural Language Procedures: Guides for Programming Lan-
guage Design, Reprint of talk delivered at International Ergonomics Associa-
tion Meeting, University of Maryland, College Park, MD (July 1976).

. E. F. Codd, "‘Seven steps to rendezvous with the casual user,”” in J. W.
Klimbie and K. L. Koffeman (Editors), Data Base Management: Proceedings
of the IFIP TC-2 Working Conference on Data Base Management Systems,
North-Holland Publishing Co., Amsterdam (1974).

The author is located at the IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598.

Reprint Order No. G321-5146.

IBM SYST J e VOL 20 @ NO 2 e 1981 MILLER 215

