Sampling the state of interactive computer users of hardware and
programming in a time-sharing system leads to an understanding
of delays to users caused by contention for resources. This paper
discusses user state sampling by means of a program called vM/
Monitor on the interactive time-sharing system, VM/370, although
the methodology is applicable to other time-sharing systems.
Also discussed are system bottleneck detection and secondary
tuning after bottlenecks have been found. Possible extensions of
the technique are also presented.

State sampling of interactive VM/370 users
by W. H. Tetzlaff

A fundamental change is taking place in the economics of com-
puting systems as they interact with people: The cost of the hard-
ware is decreasing, while labor costs are increasing. In time-shar-
ing systems, the larger expense is also shifting from the hardware
to the logged-on users.” This shift motivates installation manage-
ment to understand the user characteristics in order to maximize
the efficiency of the enterprise as a whole, rather than the com-
puting hardware alone.

Computing systems typically cost hundreds of dollars per hour to
maintain, whereas individual system user costs are usually tens of
doltars per hour. For a large number of users on an interactive
system, the cost for all users can be thousands of dollars per

hour. If the key user-effectiveness bottlenecks in a system can be
located and broken, the gain can be very large.

Additions to a computing system that can break bottlenecks and
greatly add to the user productivity often add only tens of dollars
per hour. When a key bottleneck is found, dramatic throughput
changes may be realized by augmenting the critical path with
such hardware as more main storage, additional input/output
(0) paths, faster 1/0 devices for important data, or additional ac-
cess arms. Calculation of the incremental cost of a change is nor-
mally an easy task, although measurement of the incremental
user throughput improvement is more difficult. Both topics are
discussed in this paper.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

TETZLAFF IBM SYST J @ VOL 18 ¢ NO 1 ¢ 1979

It is important to be able to solve system-performance problems
as quickly as possible. When performance problems are investi-
gated by analyzing large amounts of data, as they usually are,
computer programs are needed to process the data. The writing of
these programs is a costly effort, and the programming process is
placed in the analysis process. This is particularly time consum-
ing because the development of one program is seldom enough.
The completion and running of one data reduction program may
provide some insight into a problem, but such a program usually
raises further questions that require more data reduction.

Even when a large number of data reduction programs have been
created, they have never been sufficient to handle all future prob-
lems because many system variables change with time. Operating
system changes, for example, redefine the meaning of data items.
Operating system changes also cause new data to be collected.
New problems require new views of the data. The best hope of
dealing with a problem is to mechanize the process of writing the
data reduction programs that deal with it. Problems are solved
faster, because new programming is no longer a part of the pro-
cess. A program generator would have the potential of being easy
to adapt to changing data collectors and operating systems.

Data collection and reduction

At the 1BM Thomas J. Watson Research Center at Yorktown
Heights, NY, a program called vM/Monitor® collects data during
the first shift for two vM/370 systems. vM/Monitor has long been
the primary VM/370 data collection tool’ at Yorktown, as the Re-
search Center is familiarly called. vM/Monitor collects system
performance and resource utilization data by means of sampling
and trace techniques, and writes the data collected on tape or
(under Release 5) on a spool file. Some of the captured events—
terminal input, for example—are caused by the activities of sys-
tem users. Other events correspond to the use of resources, such
as individual Direct Access Storage Device (DASD) accesses. Still
other events are caused when scheduling decisions are made: for
example, moving a user from one scheduling queue to another.
Sampling is initiated by the expiration of an interval of time. The
time-driven events are used to cause information about each indi-
vidual user to be recorded, as well as to cause information about
DASD and tape device utilization to be written periodically.

During normal operation, we use VM/Monitor options that cause
the recording of summary information at one-minute intervals.
This procedure minimizes overhead, yet gives a good picture of
system performance. A single logical record is written that sum-
marizes system-wide activity during the last interval of time. An-
other logical record is written that summarizes device activity on

IBM SYST) e VOL 18 @ NO 1 e 1979 TETZLAFF

generalized
reduction
of
information

all DASD and tape devices. Finally, logical records are written for
all logged-on users to summarize their activities during the pre-
vious interval.

Data reduction of the vM/Monitor data is accomplished through
the use of a special data reduction package produced at Yorktown
and known as the generalized reduction of information program.
This program is a program generator that has been designed to
increase the productivity and effectiveness of performance ana-
lysts by allowing analysts to spend more time on analysis and less
time on either defining or writing data reduction programs. Mech-
anizing the job of writing data reduction programs has greatly im-
proved the speed of problem analysis. A program generator frees
analysts from dealing with the details of input and output format-
ting, and it automatically performs many useful forms of data
summarization.

It is important to consider the nature of performance data before
attempting to write a processor for it. In the case of system per-
formance data, there are a number of characteristics to be kept in
mind. The quantity of data can be very large. Traces of frequent
operating system events can produce enormous but still useful
quantities of data. A data reduction package must be able to pro-
cess large quantities of such data without consuming an unaccept-
able amount of resources. In many cases, the data are used only
once, and often they are not used at all. Elaborate data base pre-
processing for performance data that are used only once, or not at
all, is not sensible.

Typically the basic structure of a system performance data base is
stable, and the content of the data base records changes only
modestly. In most cases, the type of change is the addition of new
data items. The collected data usually have a hierarchical struc-
ture that may not be as evident in the physical layout of the data
as it is in the logical relationships among the data items.

The types of reports that performance analysts need contain
many common features. Therefore, the frequently needed output
formats should be easy to create. Record formats and data-item
formats may be very complex, and are very tightly coded so as to
reduce the record sizes. This is because collectors are written to
minimize collection overhead. Data collectors do little reformat-
ting of the data found in system control blocks, which means that
such data items are frequently in inconvenient forms for higher-
level languages.

During the fall of 1972 and the early part of 1973, the external
features of the generalized reduction of information program
were defined. During the summer of 1973, the specifications and
the initial coding of the program were completed and then became

TETZLAFF IBM SYST J e VOL 18 @ NO 1 e 1979

available at Yorktown. The first version of the data base defini-
tion for vM/Monitor data was made during the summer of 1974,
and the program continued to be used substantially in that form
for data reduction for vM/Monitor data for several years. In 1976
the author became more involved with vM/370 performance, and
rewrote the data base definition and extended the library of data
reduction requests.

The same information collected by the program can be obtained
in a number of other ways. For example, the IBM Field Developed
Program, VM/Statistics Generating Package® can be used to pre-
sent all information shown in the examples in this paper. The 1BM
Field Developed Program, vM/370 Performance Monitor Analysis,’
accesses the same data and presents reports that are similar to
many of the examples. One can, of course, write programs to
read vM/Monitor data and produce similar reports.

State samples of user

At regular intervals, the vM/Monitor records state data about
each user. By examining the data, it is possible to classify each
user into one of several states that are useful for analysis. The
states are summarized as follows: ’

IDLE— keying, thinking, or absent
RUNNABLE— in storage and ready to use the CPU
RUNNING— using the CPU

O WAIT— waiting for user /O to complete
PAGEWAIT— waiting for a page-in to complete
ELIGIBLE— waiting for storage to become free

Analysis of state data helps locate bottlenecks in the system, and
allows analysts to measure the effect of bottlenecks on the users.

The IDLE state indicates that the system is waiting for a response
from the user by showing that a user’s virtual machine is idle. All
the other states represent active states of the virtual machine. In
the case of the CPU, it is possible to differentiate between the state
of using the CPU and waiting for it. In the cases of paging and V0,
it is not possible from the vM/Monitor data to distinguish between
the state of waiting for a physical resource and that of using it. A
user in the ELIGIBLE state has been temporarily removed from the
dispatchable set because there is insufficient main storage for all
active users. For more information on VM/370 states and the tran-
sitions among states, the reader is referred to Reference 6. Once
all of the state data snapshots are available, we can use them in a
number of ways by postprocessing them, as we do at Yorktown.
It is also possible to state-sample a running system and produce
the same reports on the fly. One way to use the state data is to

IBM SYST J @ VOL {8 @ NO | ® 1979 TETZLAFF

Table 1 Summary of user states

User Status Logged- Active
status count ontime time
name

(percent)

IDLE .

RUNNABLE . 30.7
RUNNING . 11.3
1/0 WAIT . 41.1
PAGEWAIT . 16.7
ELIGIBLE . 0.0

count all the states, calculate percentages of occurrences of each
state, and tabulate them. By aggregating the data for all users, we
observe the time $pent by all users or by an average user in each
state. The percentages of all states provide a picture of how the
logged-on time of the users is spent. It is expected that most of
the logged-on time on a time-sharing system is spent in the IDLE
or user-response state. Even when a user is working intensely at
the terminal, the user response time—which includes keying time
and thinking time—dominates the elapsed time. The number of
terminals, placement of terminals, local habits and any forced
log-off procedures also influence the idle time. This is primarily
because these factors influence the number and length of long
periods of time when a user appears to be idle.

The difference between the user’s idle time and logged-on time,
or the sum of the active time, becomes an effective measure of the
quality of the service provided. This time is the part of the user’s
logged-on time duting which he is forced to wait for the system to

respond and may be regarded as the percentage of time that the
system intrudes upon the user. A lower than normal idle percent-
age indicates that poorer service is being provided.

A determination of normal idle and active percentages of logged-
on time can be done only for a particular system. Comparisons
from one system to another system are not usually possible be-
cause of the many factors that influence long idle periods pre-
viously mentioned. However, as shown later in the paper, it is
possible to refine idle- and active-time measures in a number of
ways that make it possible to compare systems.

The active-time measure is directly related to the mean response
time and can be calculated by multiplying the logged-on time by
the fraction of state samples that represent active states. Mean
response time may be calculated by dividing the active time by
the number of transactions. This makes it possible to calculate
mean response through the use of state samples and a transaction
count, instead of through the more expensive timing of individual
transactions.

TETZLAFF IBM SYST] e VOL 18 @ NO 1 @ 1979

Table 2 An example /O bound system

User Logged- Active
status on time time
name

(percent)

IDLE 84.4
RUNNABLE 0.9
RUNNING 3.7
/O WAIT 9.3
PAGEWAIT 1.1
ELIGIBLE 0.7

The system-wide summary of user states gives insight into the
relative importance of /0, CPU paging, and main storage. In the
user-state summary in Table 1, there is no clearly dominant state
in the system. The users have spent about forty-one percent of
their time using or waiting for the CPU, and about the same time
waiting for or using /0 devices. They have spent about five per-
cent of their logged-on time waiting for the system, which in this
case is quite good.

Users whose states are summarized in Table 1 have never been in
the ELIGIBLE state, meaning that there has always been enough
main storage to add them to the multiprogramming set when they
were ready to run. This suggests that the main storage was suf-
ficient. The low percentage of the time spent waiting for pages
suggests that paging was not a problem.

The forty-two percent of the time that users spent using or wait-
ing for the CPU would be reduced by a faster CPU. An Attached
Processor (i.e., an additional CPU that uses that same main stor-

age as the primary CPU and is controlled by the same VvM/370 oper-
ating system) would not reduce the running time, but it would
reduce the RUNNABLE time, which was thirty-one percent of the
active time. Reorganization of the existing DASD or the addition of
more LO-related hardware would attack the forty-one percent 1/0
waiting time.

In the example in Table 2, 1/0 is clearly the dominant factor. The
users have been waiting for the system 15.6 percent of their
logged-on time, which may indicate poor service. These data sug-
gest taking a further look at the /0 subsystem to find bottlenecks
or to increase the I/O capacity.

One of the problems with aggregating all users is that different
types of work may be inappropriately reported together. A way to
deal with this situation is to group the data by type of work. At
Yorktown this is done on the basis of User Identification
(USERID). There is a mapping between USERID and a group name,
which makes possible separate reports of state information for

IBM SYST J e VOL 18 @ NO 1 ® 1979 TETZLAFF

Table 3 State summaries by groups of users

Group Elapsed Logged- ELI- RUN- RUN-
name time on GIBLE NING NABLE
(h) time
(h) (percent)

1321.9 . 11.2
11.8

0.0

20.0

0.0

16.8

11.3

QTMmgoO®wy»

interactive users, system functions, service virtual machines,
batch virtual machines, etc. This may allow the identification of a
service problem for a particular class of work, when there ap-
pears to be no overall service problem. Table 3 gives an example
of printing out of state summaries by groups of users.

Expansion factors

Expansion factors are used to evaluate service relative to the
shortest time within which work could have been completed. One
way to find the run time for a unit of work in a contention-free
environment is to repeat the work under such conditions. This is,
of course, not possible when trying to measure users at terminals
doing real work. An alternative is to measure the resources used
and estimate the period of time the work would have taken with-
out contention. We use the term minimum time to designate the
minimum elapsed time within which a given body of work could
be completed without contention. The CPU component of mini-
mum time is the easiest part to estimate accurately, since it is
simply the measured CPU time.

VM/Monitor provides a count of the number of /0 operations
done by each user. At Yorktown, we know from other measure-
ments that most of our users are CMS users who do predominantly
CMS sequential [/O steps. If we assume a random rotational posi-
tion of the disk, we would expect a one-half rotation time to find
each item of data and a small time to read it. If the /0 were se-
quential and immediate, it would take one rotation to obtain the
next sequential data record, plus a small data transfer time. A
reasonable estimate of the elapsed time of one I/O operation is one
disk rotation. Thus for the Yorktown vM/370 systems a coefficient
(C) of 0.017 seconds is appropriate because IBM 3330 disk units are
used.

TETZLAFF IBM SYST J @ VOL 18 @ NO 1 e 1979

Similar arguments lead to calculations for the elapsed time to ac-
complish spooling operations that involve the virtual card reader,
card punch, and printer. Knowledge of spool device character-
istics and blocking factors allows for the calculation of the spool
coefficients C , C,, and C,. The minimum time formulas are the
following:

Minimum CPU Measured CPU time
Minimum /O 1/0 count X C

Minimum spool Cardsin X C, +
cardsout X C, +
lines out x C,

Minimum time Minimum CPU +
rhinimum /O +
minimum SPOOL

The minimum time assumes that there is no overlap of input/out-
put operations and CPU processing. Although some programs
make specific use of large virtual storage for storage manage-
ment, it is assumed that all paging is done for the convenience of
the system. As a result, there is no paging component to mini-
mum time. Minimum times can also be used to measure the sys-
tem load caused by an individual user. Minimum times are linear
combinations of CPU, /0, and spooling usage. This is very similar
to the service-unit concept used in MVS. In vM/370 the coefficients
(C, C,, C,, and C,) are calculated in order to give service units the
dimension of elapsed time.

The next step is to measure the actual elapsed time during which
a user’s work has completed, which can be done by using state
samples. To estimate the time spent in a particular state, multiply
the fraction of the samples in that state by the logged-on time.
The time spent in any one of several states can be calculated ei-
ther by adding the state counts together or by calculating the
elapsed times and adding them together. The following formula
gives elapsed-time estimates:

Samples in state

Elapsed time = X Logged-on time

Total samples

Given methods for estimating elapsed time and minimum time
one can calculate expansion factors. An expansion factor, calcu-
lated by the following equation, is the ratio of the elapsed time to
the minimum time. Thus, for example, an expansion factor of 3
indicates that the work required three times the elapsed time that
would have been required without contention.

) Elapsed time
Expansion factor =

Minimum time

IBM SYST J e VOL 18 @ NO 1 @ 1979 TETZLAFF

user-active
time

user-present
time

172

The most important expansion factor is calculated from active
time and minimum time. Other expansion factors can also be cal-
culated by considering only the 1/0 or CPU component of both the
active time and the minimum time.

There are a number of ways that expansion factors can be pre-
sented. If all the data that apply to one user are used, an expan-
sion factor for that user can be calculated. If all the data during
successive time periods are used, changes in expansion factors
through time can be shown. Table 4 shows expansion factors cal-
culated for all interactive users at one-hour intervals for one day.
This becomes a time-of-day service measure. Other expansion-
factor reports could be created for classes of users or particular
users for hours, days, or longer.

Further refinement of the expansion factor is necessary to permit
comparison of one system with another. A faster processor re-
turns work to a user faster than a slower one, when the expansion
factors are the same. A way to correct this is to normalize the
minimum time to a particular processor and type of Lo device.
Then the normalized expansion factor becomes relative to the se-
lected ‘‘normal system.’’

User productivity

In order to talk about a user’s productivity it is necessary to esti-
mate the length of time the user is actually at the terminal doing
work. Historically, the first estimate used for this was logged-on
time, a measure with many inaccuracies. For example, the avail-
ability of terminals in private offices allows persons to remain

logged on while not working, or to initiate long-running tasks and
then leave the terminal. On the other hand, terminal rooms and
shared terminals force LOGOFFs after inactivity. Restricted ac-
cess causes continuous activity during logged-on time.

As a better approximation to the true user-present time we calcu-
late a user-active time, which is the sum of short elapsed-time
intervals during which there was some system activity by a user.
We compute user-active time by summing the short time periods
(with a one-minute default) during which there is activity. During
the remainder of the user’s connect time it is almost certain that
he was not present.

It is also possible to estimate the sum of the system response
times from the state samples. System times are shown in Table 5

under the column headed **Active system.”

The user is probably present for only a part of the system re-
sponse time, but for nearly all the transactions, whereas he prob-

TETZLAFF IBM SYST J @ VOL 18 ® NO 1 e 1979

Table 4 Expansion summary by time of day

Start Expansion factors
time

Overall CPU

11:00 4.83 7.29
12:00 3.83 . 4.97
13:00 2.04 . 1.67
14:00 3.44 . 4.16
15:00 3.22 . 2.64
16:00 2.85 . 2.78
17:00 4.11

Table 5 Activity summary by time of day

Start Average User Active
time users active system
logged (h) (h)
on

152.5 81.7
153.6 64.7
151.5 51.4
158.0 72.8
183.9 81.9
195.0 95.2
153.7 67.1

ably lets long-running transactions remain active at the terminal
while he does other work. Thus user-active time is the upper limit
of true user-present time, and user-active time minus system-ac-
tive time is a lower estimate of user-present time. This is shown in
Figure 1. In most systems, the system-active time is five to fifteen
percent of the user-active time. Fairly accurate estimates of user-
present time can be made on the basis of these considerations.

A way to further improve the estimate of user-present time is to
determine whether the system has received terminal input from
the user during the previous interval of time. One of the vM/Mon-
itor options causes a time-stamped recording of all terminal in-
puts to the system. If the user enters an input line to the system
during the current interval, he is assumed to be in a present state.
If he has not entered an input, he is considered not present. Al-
though this method refines the estimate of user-present time con-
siderably, it tends to underestimate it slightly because during ex-
tended periods of time when a user is observing the output of a
program he does not interact with the system and is considered
not present.

Provided up to this point is sufficient information to calculate a
system-independent measure of service based on state samples.

IBM SYST J e VOL 18 « NO 1 ® 1979 TETZLAFF

Figure 1 Estimating user-present
time

-¢———— LOGGED-ON TIME —————cp)

<%— JSER-ACTIVE TIME ————

SYSTEM-
ACTIVE
TIME

l-¢— USER-PRESENT TIME —

Figure 2 Productive CPU use ver-
sus contention

CON-

CUR-

RENT

TRANS- FRE-
ACTION QUENCY
RANGE COUNT 0

- 1
2.~ 3
4— 8
6-- 7
8-~ 9
10— 11
12 —13
14 .- 15
1617
18— 19
20 - 21
2% - 23

<
<o
o
[¢d
o
o

<< €T

V- VIRTUAL CPU TIME
C: TOTAL CPU TIME USED

Figure 3 1/O and paging versus
contention

CON-

CUR-

RENT

TRANS- FRE-
ACTION QUENCY
RANGE COUNT 0

26
42
102

P
e
|

22 — 23 P

P PAGING RATE (PER SECOND)
i: t/ORATE (PER SECOND)

The preferable measure is the fraction of user-present time that
the user waits for the system. We approximate that measure by
using the fraction of user-active time that the user waits for the
system. The measure should be used to compare similar work
only. Thus it is necessary to group USERIDs as shown earlier in
this paper.

At Yorktown we produce a number of reports that show the many
resources consumed by each system user. Table 6 shows a
sample report that has been valuable in tracking large users and in
understanding problems of particular users.

CPU monitoring

In the graphs in Figures 2 and 3, several resource utilization in-
dicators are plotted relative to the number of concurrent transac-
tions. The number of concurrent transactions is the number of
commands that have been entered into the system but have not
yet been completed. Each line on the graph summarizes all one-
minute intervals that have ended with a particular number of con-
current transactions. As the number of concurrent transactions
increases, contention for page frames increases, with the result
that the paging rate increases. CPU utilization also goes up until it
reaches one hundred percent. The percentage of time in problem
state declines at higher levels of contention because more super-
visor time is consumed in managing the resources.

The frequency counts are crucial in interpreting these figures.
When the vM/Monitor default monitoring interval is used, state
samples are produced every minute. Thus each data point repre-
sents one minute of elapsed time. If most of the data points are in
the range of effective CPU utilization (i.e., below the point of de-
clining problem state CPU time), the system is not overloaded.
The higher contention part of the curve indicates occasional oc-
currences of overload that can be tolerated. The higher part of the
curve also suggests what is expected to happen as the load grows.
If the bulk of the data points are in the area where problem state
CPU is declining and paging is growing too high, the system is
already overloaded. For further discussions of CPU overload see
References 3 and 6.

If the CPU is overloaded, two courses of action are possible. One
is to increase the capacity of the cPU, which usually involves add-
ing hardware, though it may involve tuning in order to make more
of the present CPU available. The other possible action is to re-
duce the load. Table 7 shows resource consumption by USERID.
This report is sorted in decreasing order by minimum time; thus
the larger resource consumers are at the top of the table. Two
columns show the percentage of all CPU time and /0 operations

TETZLAFF IBM SYST Jj @ VOL 18 ¢ NO 1 ® 1979

Table 6 Iindividual user status

USERID Logged- Active Active User User User User
on time ratio status status status status
(min) (min) RUNNABLE PAGEWAIT Iio WAIT RUNNING

(percent)

USER 1 15.0
USER2 . 4.0
USER3 . 68.0
USER 4 31.0
USER S 33.0
USER 6 8 68.0
USER7 . 17.0
USERS8 . 81.0
USERY9 . 25.0
USER 10 . 25.0
USER 11 20.0
USER 12 50.0
USER 14

Table 7 Resource consumption by user

USERID Logged- Active Minimum Total Virtual Virtual Total
on time time CPU CPU CPU 110
time (min) (min) (percent) per per (percent)
(min) I/0 page in

USER 1 172 171 3.32 0.003 0.033 5.58
USER2 170 168 2.38 0.001 0.011 3.95
USER3 122 102 1.21 0.001 0.022 5.11
USER 4 173 170 1.79 0.002 0.005 3.87
USERS 172 116 3.12 0.002 0.002 2.06
USER6 95 95 1.33 0.002 0.014 3.70
USER7 173 144 1.37 0.001 0.004 3.63
USER8 172 143 1.95 0.006 0.019 2.43
USERY9 173 172 2.65 0.003 0.004 1.16
USER 10 160 146 2.42 0.010 0.037 1.16
USER 11 173 149 1.14 0.003 0.016 2.13
USER 12 105 105 1.58 0.005 0.012 1.51

W v 100 00 00 \D

for each user. Two other columns show the average virtual CPU
time between page-in operations and /O operations. These col-
umns help identify the degree to which particular users are /O
bound or paging bound. This type of report may be used to locate
the large resource users on the system who might be candidates
to be moved to another CPU. Another alternative would be to tune
particular programs of high CPU users.

Paging subsystem monitoring

On vM/370, the ability to do demand paging very quickly is key to
interactive response time because each new terminal transaction

IBM SYST J e VOL 18 @ NO 1 ® 1979 TETZLAFF

Figure 4 Page-in time as related to
drum fraction

MEAN PAGE-IN TIME

ALL DISK ALL DRUM
PAGING DEVICES

Figure 5 Page-in time as related to
paging rate

MEAN PAGE-IN TIME

PAGING RATE

initiates the processing of a command with a different working set
of pages. This makes the effectiveness of the users highly depen-
dent on the ability to fetch new pages from external storage. Thus
the paging subsystem should be monitored on a regular basis,
which can be done very simply. vM/Monitor writes records that
summarize the current paging activity, with a default time inter-
val of one minute. The average time delay for each page read into
main storage (page in) can be calculated in almost the same way
that the paging expansion factor is calculated.

Problems that seem to be in the paging subsystem may have their
origins in other areas. If there is insufficient main storage avail-
able for paging, one might first see paging as a problem. In the
case of insufficient storage for paging, the users are in page-wait
state longer than they should be. The system also reacts to the
shortage by placing users in the eligible state. The need to do
more paging might also cause a high paging rate, and that would
overload the paging subsystem, thereby causing further delays in
paging. Insufficient high-speed paging space could result in long
delays to the users. Table 8 shows the mean page-in time (in mil-
liseconds) as a function of time of day. This table also shows the
fraction of pages that the active users (i.e., some resource con-
sumption in the last minute) have on drum.

Ideally nearly all the pages should be on drum if both disk and
drum paging are used. A program known as the System Extension
Program Product —Resource Manager attempts to keep the most
active pages on drum by copying inactive pages onto disk period-
ically. In the scatter plot in Figure 4, each point, which represents
one hour of system activity, can be of great help in understanding
the relationship of drum use and page-in time. The area in which

the data points fall depends upon the load and the hardware con-
figuration. This method of presenting the data shows the system
reaction to different levels of overcommitment of the drum stor-
age. The placement of the points on the vertical scale indicates
the degree of degradation, while point placement on the horizon-
tal scale indicates the elapsed time during which the system is
degraded. Trend lines can also be created by averaging the points
that fall within ranges of the drum-fraction variable and plotting
the averages. This plotting technique is similar to that used for the
CPU graph in Figure 2.

The scatter plot in Figure 5 has a different characteristic curve
and shows the relationship between paging rate and page-in time.
At lower paging rates, the page-in time is relatively insensitive to
the paging rate. At higher paging rates, the page-in time rises rap-
idly as the paging rate goes up. The general shape of the region
depends on the particular system configuration. Channel con-
tention, control unit contention, disk arm contention, speed of
paging devices, etc. influence the shape of the point distribution.

TETZLAFF IBM SYST J @ VOL 18 ¢ NO 1 o 1979

Table 8 Page-in time by time of day

Start Average Mean Drum
time users page-in fraction
logged time
on (ms)

152.5 17
153.6
151.5
158.0
183.9
195.0
153.7

Table 9 Storage-constrained (2-megabyte) system

User Status Logged- Active
status count on time time
name

(percent)

IDLE
RUNNABLE
RUNNING
/O WAIT
PAGEWAIT
ELIGIBLE

The important thing to observe is whether most of the data points
lie within the region of lower and consistent page-in times. If they
do not, the cause should be investigated.

Main-storage monitoring

Adequate main storage is very important in a paging system so
that there is a high enough multiprogramming level to make full
use of the CPU and 1/0 devices. Insufficient storage may be recog-
nized by some combination of /0 and page-wait delay on the part
of the CPU, i.e., users spending excessive time in the page-wait
and eligible states, and a high paging rate.

Table 9 shows user-state data on a storage-constrained system.
The large amount of active time suggests that users are being sig-
nificantly intruded upon in their work by long responses. The 15.6
percent of the time that users are in a page-wait state is a bit high,
and the 13 percent of the time that users are in the eligible state is
much too high.

IBM SYST J & VOL 18 ¢ NO 1 ¢ 1979 TETZLAFF

Figure 6 Estimating user time sav-
ings
2.MEGABYTE 168

|- #———THINK TIME ———w-|-#—S$YS TIME-]
85 UNITS 15 UNITS

3-MEGABYTE 168 REDUCES SYSTEM TIME

|4————THINK TIME ~——s-| S YS TIMEw|
85 UNITS 8UNITS

3-MEGABYTE 168 REDUCED SYSTEM TIME
REDUCES THINK TIME

J#——THINK TIME ———#|~SYS TIME™|
78 UNITS BUNITS

Table 10 Non-storage-constrained (3-megabyte) system

Logged- Active
ontime time

User Status
status count
name

(percent)

IDLE
RUNNABLE
RUNNING
/O WAIT
PAGEWAIT
ELIGIBLE

When more storage is added to the system, as shown in Table 10,
the time that users wait for the system goes from 15.1 to 8.1 per-
cent of their terminal session. The improvement results from a
lowering of the time that users wait on the eligible list for storage
and the time they wait for pages while in storage. Reducing stor-
age contention indirectly increases the CPU time available for
users by lowering the CPU time used for paging. Having more
dispatchable users in storage increased the CPU utilization. These
actions have resulted in a dramatic improvement from the users’
standpoint.

Under the assumption that the users continue to use eighty-five
units of time to prepare the work that the system completes in
eight units of time, the potential savings in user time is seven
percent, as shown in Figure 6. Reference 7 suggests that users
may actually save an additional seven units of time through their
own performance, as indicated by the lower bar in Figure 6.

The cost of the additional megabyte to this System/370 Model 168
is a very small incremental cost compared to the user productiv-
ity benefit. The overall throughput has increased as a result of
reducing CPU paging overhead and using CPU time that had pre-
viously been wait time. User productivity could have increased
as much as fourteen percent. Most impressive is the improvement
as the user sees the system. Work that had previously taken fif-
teen units of time now takes eight units of time, for a reduction in
system response time of forty-seven percent.

Concluding remarks

Measurement of interactive systems should be a continuous pro-
cess. It need not be done on a twenty-four-hour basis, but it
should be done regularly, such as by partial measurements every
day or complete measurements every few days. Collection during
all hours when large numbers of users are present is most desir-
able.

TETZLAFF IBM SYST J & VOL 18 & NO 1 » 1979

Under Release 5 of vM/370, it is possible to have vM/Monitor data
written into a spool file that is placed in the virtual reader of a
particular machine when collection is completed. VM/Monitor can
also be turned on and off at specific times of day without the inter-
vention of the operator. These two features make continuous use
of vM/Monitor very easy. One of the primary reasons for regular
monitoring is to build up a body of information on system per-
formance with its regular workload under normal conditions.
Without such a history, it is very difficult for computing center
management to understand the changes that have taken place
when a problem arises. A lack of information about normal sys-
tem running reduces the usefulness of a measurement tool to that
of an uncalibrated thermometer.

Another important reason for regular monitoring is to allow the
collection of historical load and service data. This then becomes
part of the input to be used for load projection and capacity plan-
ning.

During the beginning states of monitoring, the system program-
mer who checks the daily reports gains in knowledge of the sys-
tem. Gradually the reports may be restructured so that they re-
port exceptional conditions only. Even if exception reporting is
not done formally, as a part of the programs that produce the
reports, it is done informally by the system programmer. The pro-
grammer learns which items require daily inspection and the nor-
mal ranges of values for those items.

This methodology can be applied to both operating systems and
special-purpose application systems. When starting to measure a
system, one should determine the significant states for users of

that system and how to test for them. The methodology presented
in this paper could then be applied. Potential states in other sys-
tems might include waiting for spooling, waiting for a particular
lock, waiting for a data set, waiting for a shared DASD volume,
waiting for program loading, waiting for the CPU, and using the
CPU.

Sampling the status of users on an interactive system has proved
to be a valuable tool for understanding the factors that delay re-
sponse. The state information provides insight into the relative
importance of the bottlenecks in a system. Elapsed times may be
calculated from state data without resorting to event timing. Be-
cause the technique is inexpensive—sampling with vM/Monitor
takes a fraction of one percent of the CPU time —sampling can be
done on a continuous basis.

ACKNOWLEDGMENTS

Many people have played a part in making the generalized reduc-
tion of information program available initially and then applying it

IBM SYST J e VOL 18 e NO 1 ® 1979 TETZLAFF

180

to VM/Monitor data. The author especially acknowledges the fol-
lowing persons. H. W. Lynch, J. A. Cooperman, and P. H. Calla-
way influenced the features in the data reduction program. L.
Flon was responsible for much of the design and programming of
the program generator. D. H. Potter, an early user of the program
generator, provided valuable feedback. L. Flon and P. H. Calla-
way created the initial vM/Monitor data base definition. P. H.
Callaway and W. M. Buco used the vM/Monitor data for several
years and developed a library of data reduction programs. W. M.
Buco’s knowledge of the VM/370 was vital in interpreting the vMm/
Monitor data. W. J. Doherty made many helpful suggestions and
offered useful observations about the significance of the vM/Mon-
itor output. W. J. Doherty, H. Serenson, and R. P. Kelisky pro-
vided management support and a fertile environment in which the
work could be done.

CITED REFERENCES

1. W. J. Doherty and R. P. Kelisky, ‘‘Managing VM/CMS systems for user ef-
fectiveness,”” IBM Systems Journal 18, No. 1, 143-163 (1979, this issue).

2. VM/370 System Programmer’s Guide, Document GC20-1807, IBM Corpora-
tion, Data Processing Division, White Plains, New York 10604.

3. P. Callaway, ‘*VM/370 performance tools,”” IBM Systems Journal 14, No. 2,
134-160 (1975).

. VMISGP Program Description and Operations Manual, Document SH20-
1550, IBM Corporation, Data Processing Division, White Plains, New York
10604. '

. VM/370 Performance Monitor Analysis Program Description and Operations
Manual, Document SB21-2101, IBM Corporation, Data Processing Division,
White Plains, New York 10604.

. Y. Bard, ‘“‘Performance analysis of virtual memory time-sharing systems,”’
IBM Systems Journal 14, No. 4, 366-384 (1975).

. S.J. Boies, ‘*User behavior on an interactive computer system,”” IBM Systems
Journal 13, No. 1, 2-18 (1974).

Reprint Order No. G321-5091.

TETZLAFF [BM SYST J e VOL 18 ® NO 1 e 1979

