
Sampling the state of interactive computer users of hardware and
programming in a time-sharing system leads to an understanding
of delays to users caused by contention for resources. This paper
discusses user state sampling by means of a program called V M l
Monitor on the interactive time-sharing system, VMi370, although
the methodology is applicable to other time-sharing systems.
Also discussed are system bottleneck detection and secondary
tuning after bottlenecks have been found. Possible extensions of
the technique are also presented.

State sampling of interactive VM/370 users
by W. H. Tetzlaff

A fundamental change is taking place in the economics of com-
puting systems as they interact with people: The cost of the hard-
ware is decreasing, while labor costs are increasing. In time-shar-
ing systems, the larger expense is also shifting from the hardware
to the logged-on users.' This shift motivates installation manage-
ment to understand the user characteristics in order to maximize
the efficiency of the enterprise as a whole, rather than the com-
puting hardware alone.

Computing systems typically cost hundreds of dollars per hour to
maintain, whereas individual system user costs are usually tens of
dollars per hour. For a large number of users on an interactive
system, the cost for all users can be thousands of dollars per
hour. If the key user-effectiveness bottlenecks in a system can be
located and broken, the gain can be very large.

Additions to a computing system that can break bottlenecks and
greatly add to the user productivity often add only tens of dollars
per hour. When a key bottleneck is found, dramatic throughput
changes may be realized by augmenting the critical path with
such hardware as more main storage, additional input/output
(UO) paths, faster I/O devices for important data, or additional ac-
cess arms. Calculation of the incremental cost of a change is nor-
mally an easy task, although measurement of the incremental
user throughput improvement is more difficult. Both topics are
discussed in this paper.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
uermission in comouter-based and other information-service svstems. Permission

It is important to be able to solve system-performance problems
as quickly as possible. When performance problems are investi-
gated by analyzing large amounts of data, as they usually are,
computer programs are needed to process the data. The writing of
these programs is a costly effort, and the programming process is
placed in the analysis process. This is particularly time consum-
ing because the development of one program is seldom enough.
The completion and running of one data reduction program may
provide some insight into a problem, but such a program usually
raises further questions that require more data reduction.

Even when a large number of data reduction programs have been
created, they have never been sufficient to handle all future prob-
lems because many system variables change with time. Operating
system changes, for example, redefine the meaning of data items.
Operating system changes also cause new data to be collected.
New problems require new views of the data. The best hope of
dealing with a problem is to mechanize the process of writing the
data reduction programs that deal with it. Problems are solved
faster, because new programming is no longer a part of the pro-
cess. A program generator would have the potential of being easy
to adapt to changing data collectors and operating systems.

Data collection and reduction

At the IBM Thomas J. Watson Research Center at Yorktown
Heights, NY, a program called vM/Monitor2 collects data during
the first shift for two VMi370 systems. vM/Monitor has long been
the primary VMi370 data collection tool3 at Yorktown, as the Re-
search Center is familiarly called. VWMonitor collects system
performance and resource utilization data by means of sampling
and trace techniques, and writes the data collected on tape or
(under Release 5) on a spool file. Some of the captured events-
terminal input, for example-are caused by the activities of sys-
tem users. Other events correspond to the use of resources, such
as individual Direct Access Storage Device (DASD) accesses. Still
other events are caused when scheduling decisions are made: for
example, moving a user from one scheduling queue to another.
Sampling is initiated by the expiration of an interval of time. The
time-driven events are used to cause information about each indi-
vidual user to be recorded, as well as to cause information about
DASD and tape device utilization to be written periodically.

During normal operation, we use vWMonitor options that cause
the recording of summary information at one-minute intervals.
This procedure minimizes overhead, yet gives a good picture of
system performance. A single logical record is written that sum-
marizes system-wide activity during the last interval of time. An-
other logical record is written that summarizes device activity on

IBM SYST J VOL 18 NO I 1979 TETZLAFF

all DASD and tape devices. Finally, logical records are written for
all logged-on users to summarize their activities during the pre-
vious interval.

generalized Data reduction of the vM/Monitor data is accomplished through
reduction the use of a special data reduction package produced at Yorktown

of and known as the generalized reduction of information program.
information This program is a program generator that has been designed to

increase the productivity and effectiveness of performance ana-
lysts by allowing analysts to spend more time on analysis and less
time on either defining or writing data reduction programs. Mech-
anizing the job of writing data reduction programs has greatly im-
proved the speed of problem analysis. A program generator frees
analysts from dealing with the details of input and output format-
ting, and it automatically performs many useful forms of data
summarization.

It is important to consider the nature of performance data before
attempting to write a processor for it. In the case of system per-
formance data, there are a number of characteristics to be kept in
mind. The quantity of data can be very large. Traces of frequent
operating system events can produce enormous but still useful
quantities of data. A data reduction package must be able to pro-
cess large quantities of such data without consuming an unaccept-
able amount of resources. In many cases, the data are used only
once, and often they are not used at all. Elaborate data base pre-
processing for performance data that are used only once, or not at
all, is not sensible.

Typically the basic structure of a system performance data base is
stable, and the content of the data base records changes only
modestly. In most cases, the type of change is the addition of new
data items. The collected data usually have a hierarchical struc-
ture that may not be as evident in the physical layout of the data
as it is in the logical relationships among the data items.

The types of reports that performance analysts need contain
many common features. Therefore, the frequently needed output
formats should be easy to create. Record formats and data-item
formats may be very complex, and are very tightly coded so as to
reduce the record sizes. This is because collectors are written to
minimize collection overhead. Data collectors do little reformat-
ting of the data found in system control blocks, which means that
such data items are frequently in inconvenient forms for higher-
level languages.

During the fall of 1972 and the early part of 1973, the external
features of the generalized reduction of information program
were defined. During the summer of 1973, the specifications and
the initial coding of the program were completed and then became

166 TETZLAFF IBM SYST I 0 VOL 18 NO 1 1979

available at Yorktown. The first version of the data base defini-
tion for vM/Monitor data was made during the summer of 1974,
and the program continued to be used substantially in that form
for data reduction for vM/Monitor data for several years. In 1976
the author became more involved with VMi370 performance, and
rewrote the data base definition and extended the library of data
reduction requests.

The same information collected by the program can be obtained
in a number of other ways. For example, the IBM Field Developed
Program, vWStatistics Generating Package4 can be used to pre-
sent all information shown in the examples in this paper. The IBM
Field Developed Program, VMi370 Performance Monitor Analysis,’
accesses the same data and presents reports that are similar to
many of the examples. One can, of course, write programs to
read VM/Monitor data and produce similar reports.

State samples of user

At regular intervals, the vM/Monitor records state data about
each user. By examining the data, it is possible to classify each
user into one of several states that are useful for analysis. The
states are summarized as follows:

IDLE- keying, thinking, or absent
RUNNABLE- in storage and ready to use the CPU

0 110 WAIT- waiting for user I/O to complete
0 PAGEWAIT- waiting for a page-in to complete
0 ELIGIBLE- waiting for storage to become free

Analysis of state data helps locate bottlenecks in the system, and
allows analysts to measure the effect of bottlenecks on the users.

The IDLE state indicates that the system is waiting for a response
from the user by showing that a user’s virtual machine is idle. All
the other states represent active states of the virtual machine. In
the case of the CPU, it is possible to differentiate between the state
of using the CPU and waiting for it. In the cases of paging and 110,
it is not possible from the VM/Monitor data to distinguish between
the state of waiting for a physical resource and that of using it. A
user in the ELIGIBLE state has been temporarily removed from the
dispatchable set because there is insufficient main storage for all
active users. For more information on VM/370 states and the tran-
sitions among states, the reader is referred to Reference 6. Once
all of the state data snapshots are available, we can use them in a
number of ways by postprocessing them, as we do at Yorktown.
It is also possible to state-sample a running system and produce
the same reports on the fly. One way to use the state data is to

RUNNING- using the CPU

IBM SYST J VOL I8 NO I 1979 TETZLAFF

state, and tabulate them. By aggregating the data for all users, we
observe the time spent by all users or by an average user in each
state. The percentages of all states provide a picture of how the
logged-on time of the users is spent. It is expected that most of
the logged-on time on a time-sharing system is spent in the IDLE
or user-response state. Even when a user is working intensely at
the terminal, the user response time-which includes keying time
and thinking time-dominates the elapsed time. The number of
terminals, placement of terminals, local habits and any forced
log-off procedures also influence the idle time. This is primarily
because these factors influence the number and length of long
periods of time when a user appears to be idle.

The difference between the user’s idle time and logged-on time,
or the sum of the active time, becomes an effective measure of the
quality of the service provided. This time is the part of the user’s
logged-on time during which he is forced to wait for the system to
respond and may be regarded as the percentage of time that the
system intrudes upon the user. A lower than normal idle percent-
age indicates that poorer service is being provided.

A determination of normal idle and active percentages of logged-
on time can be done only for a particular system. Comparisons
from one system to another system are not usually possible be-
cause of the many factors that influence long idle periods pre-
viously mentioned. However, as shown later in the paper, it is
possible to refine idle- and active-time measures in a number of
ways that make it possible to compare systems.

The active-time measure is directly related to the mean response
time and can be calculated by multiplying the logged-on time by
the fraction of state samples that represent active states. Mean
response time may be calculated by dividing the active time by
the number of transactions. This makes it possible to calculate
mean response through the use of state samples and a transaction
count, instead of through the more expensive timing of individual
transactions.

168 TETZLAFF IBM SYST J VOL 16 NO 1 1979

I

Table 2 An example I/O bound system

User Logged- Active
status on time time
name

(percent)

IDLE 84.4
RUNNABLE
RUNNING

0.9 5.1
3 .1 23.8

I/O WAIT 9.3 59.6
PAGEWAIT 1 .1 1.3
ELIGIBLE 0.7 3.6

The system-wide summary of user states gives insight into the
relative importance of I/O, CPU paging, and main storage. In the
user-state summary in Table 1, there is no clearly dominant state
in the system. The users have spent about forty-one percent of
their time using or waiting for the CPU, and about the same time
waiting for or using I/O devices. They have spent about five per-
cent of their logged-on time waiting for the system, which in this
case is quite good.

Users whose states are summarized in Table 1 have never been in
the ELIGIBLE state, meaning that there has always been enough
main storage to add them to the multiprogramming set when they
were ready to run. This suggests that the main storage was suf-
ficient. The low percentage of the time spent waiting for pages
suggests that paging was not a problem.

The forty-two percent of the time that users spent using or wait-
ing for the CPU would be reduced by a faster CPU. An Attached
Processor (i.e., an additional CPU that uses that same main stor-
age as the primary CPU and is controlled by the same VM/370 oper-
ating system) would not reduce the running time, but it would
reduce the RuNNABLE time, which was thirty-one percent of the
active time. Reorganization of the existing DASD or the addition of
more r/o-related hardware would attack the forty-one percent I/O
waiting time.

In the example in Table 2, I/O is clearly the dominant factor. The
users have been waiting for the system 15.6 percent of their
logged-on time, which may indicate poor service. These data sug-
gest taking a further look at the I/O subsystem to find bottlenecks
or to increase the I/O capacity.

One of the problems with aggregating all users is that different
types of work may be inappropriately reported together. A way to
deal with this situation is to group the data by type of work. At
Yorktown this is done on the basis of User Identification
(USERID). There is a mapping between USERID and a group name,
which makes possible separate reports of state information for

IBM SYST J VOL 18 NO 1 1979 TETZLAFF 169

Table 3 State summaries by groups of users

Group Elapsed Logged- ELI- RUN- RUN- PAGE-
name time on GIBLE I 1 0 NING NABLE WAlT

(h) time
(h) (percent)

A 8.73 1321.9 0.1 42.9 11.2 31.8 14.0
B 8.67 10.2 0.0 41.2 11.8 41.2
C

5.9
7.98

D
8.7 0.0 0.0 0.0 0.0 0.0

8.53 8.6 0.0 40.0 20.0 40.0 0.0
E 8.53 8.6 0.0 0.0 0.0 0.0 0.0
F
G

8.58 72.2 0.0 40.7 16.8 32.7 9.7
8.58 65.3 0.0 43.7 11.3 18.3 26.8

interactive users, system functions, service virtual machines,
batch virtual machines, etc. This may allow the identification of a
service problem for a particular class of work, when there ap-
pears to be no overall service problem. Table 3 gives an example
of printing out of state summaries by groups of users.

Expansion factors

Expansion factors are used to evaluate service relative to the
shortest time within which work could have been completed. One
way to find the run time for a unit of work in a contention-free
environment is to repeat the work under such conditions. This is,
of course, not possible when trying to measure users at terminals
doing real work. An alternative is to measure the resources used
and estimate the period of time the work would have taken with-
out contention. We use the term minimum time to designate the
minimum elapsed time within which a given body of work could
be completed without contention. The CPU component of mini-
mum time is the easiest part to estimate accurately, since it is
simply the measured CPU time.

VMIMonitor provides a count of the number of uo operations
done by each user. At Yorktown, we know from other measure-
ments that most of our users are CMS users who do predominantly
CMS sequential I/O steps. If we assume a random rotational posi-
tion of the disk, we would expect a one-half rotation time to find
each item of data and a small time to read it. If the 110 were se-
quential and immediate, it would take one rotation to obtain the
next sequential data record, plus a small data transfer time. A
reasonable estimate of the elapsed time of one I/O operation is one
disk rotation. Thus for the Yorktown VMi370 systems a coefficient
(C) of 0.017 seconds is appropriate because IBM 3330 disk units are
used.

170 TETZLAFF IBM SYST J VOL 18 NO I 1979

Similar arguments lead to calculations for the elapsed time to ac-
complish spooling operations that involve the virtual card reader,
card punch, and printer. Knowledge of spool device character-
istics and blocking factors allows for the calculation of the spool
coefficients C,, C, , and C,. The minimum time formulas are the
following:

Minimum CPU = Measured CPU time

Minimum 110 = I/O count X C

Minimum spool = Cards in x C, +
cards out X C, +
lines out X C,

Minimum time = Minimum CPU +
rhinimum I/O +
minimum SPOOL

The minimum time assumes that there is no overlap of inputlout-
put operations and CPU processing. Although some programs
make specific use of large virtual storage for storage manage-
ment, it is assumed that all paging is done for the convenience of
the system. As a result, there is no paging component to mini-
mum time. Minimum times can also be used to measure the sys-
tem load caused by an individual user. Minimum times are linear
combinations of CPU, I/O, and spooling usage. This is very similar
to the service-unit concept used in MVS. In VMl370 the coefficients
(C, C,, C,, and C,) are calculated in order to give service units the
dimension of elapsed time.

The next step is to measure the actual elapsed time during which
a user’s work has completed, which can be done by using state
samples. To estimate the time spent in a particular state, multiply
the fraction of the samples in that state by the logged-on time.
The time spent in any one of several states can be calculated ei-
ther by adding the state counts together or by calculating the
elapsed times and adding them together. The following formula
gives elapsed-time estimates:

I

I Samples in state
Total samples

Elapsed time = x Logged-on time

Given methods for estimating elapsed time and minimum time
one can calculate expansion factors. An expansionfactor, calcu-
lated by the following equation, is the ratio of the elapsed time to
the minimum time. Thus, for example, an expansion factor of 3
indicates that the work required three times the elapsed time that
would have been required without contention.

I Elamed time

IBM SYST J VOL 18 NO 1 1919 TETZLAFF 171

The most important expansion factor is calculated from active
time and minimum time. Other expansion factors can also be cal-
culated by considering only the I/O or CPU component of both the
active time and the minimum time.

There are a number of ways that expansion factors can be pre-
sented. If all the data that apply to one user are used, an expan-
sion factor for that user can be calculated. If all the data during
successive time periods are used, changes in expansion factors
through time can be shown. Table 4 shows expansion factors cal-
culated for all interactive users at one-hour intervals for one day.
This becomes a time-of-day service measure. Other expansion-
factor reports could be created for classes of users or particular
users for hours, days, or longer.

Further refinement of the expansion factor is necessary to permit
comparison of one system with another. A faster processor re-
turns work to a user faster than a slower one, when the expansion
factors are the same. A way to correct this is to normalize the
minimum time to a particular processor and type of I/O device.
Then the normalized expansion factor becomes relative to the se-
lected “normal system.”

User productivity

In order to talk about a user’s productivity it is necessary to esti-
mate the length of time the user is actually at the terminal doing
work. Historically, the first estimate used for this was logged-on
time, a measure with many inaccuracies. For example, the avail-
ability of terminals in private offices allows persons to remain
logged on while not working, or to initiate long-running tasks and
then leave the terminal. On the other hand, terminal rooms and
shared terminals force LOGOFFS after inactivity. Restricted ac-
cess causes continuous activity during logged-on time.

user-active As a better approximation to the true user-present time we calcu-
time late a user-active time, which is the sum of short elapsed-time

intervals during which there was some system activity by a user.
We compute user-active time by summing the short time periods
(with a one-minute default) during which there is activity. During
the remainder of the user’s connect time it is almost certain that
he was not present.

It is also possible to estimate the sum of the system response
times from the state samples. System times are shown in Table 5
under the column headed “Active system.”

user-present The user is probably present for only a parr of the system re-
time sponse time, but for nearly all the transactions, whereas he prob-

172 TETZLAFF IBM SYST J VOL 18 NO 1 1979

~~

Table 4 Expansion summary by time of day

Start Expansion factors
time

Overall IIO CPU Paging

1 1 : o o 4.83 2.59 7.29 2.13
12:oo 3.83 2.36 4.97 2.40
13:OO 2.04 1.55 1.67 4.23
14:OO 3.44 2.48 4.16 2.09
15:OO 3.22 2.46 2.64 3.01
16:OO 2.85 2.27 2.78 I .77
17:OO 4.11 2.40 5.29 2.71

Table 5 Activity summary by time of day

Start Average User Active
time users active system

logged (h) (h)
on

1 l:oo 152.5 81.7 10.0
12:oo 153.6 64.7 6.8
13:OO 151.5 51.4 3.4
14:OO 158.0 72.8 6.7
15:OO 183.9 81.9 6.8
16:OO 195.0 95.2 5.6
17:oo 153.7 67.1 8.4

ably lets long-running transactions remain active at the terminal
while he does other work. Thus user-active time is the upper limit
of true user-present time, and user-active time minus system-ac-
tive time is a lower estimate of user-present time. This is shown in
Figure 1 . In most systems, the system-active time is five to fifteen
percent of the user-active time. Fairly accurate estimates of user-
present time can be made on the basis of these considerations.

A way to further improve the estimate of user-present time is to
determine whether the system has received terminal input from
the user during the previous interval of time. One of the vM/Mon-
itor options causes a time-stamped recording of all terminal in-
puts to the system. If the user enters an input line to the system
during the current interval, he is assumed to be in a present state.
If he has not entered an input, he is considered not present. Al-
though this method refines the estimate of user-present time con-
siderably, it tends to underestimate it slightly because during ex-
tended periods of time when a user is observing the output of a
program he does not interact with the system and is considered
not present.

Provided up to this point is sufficient information to calculate a
system-independent measure of service based on state samples.

IBM SYST J VOL 18 NO 1 1979 TETZLAFF

Figure 2 Productive CPU use ver-
sus contention

CON-
m p .
EENT
TRANS- FRE-
ACTION QUENCY
QANGE COUNT 0 100

I I
IJ - 1 26
2 - 3 42

v c

4 - 5 102
6 - 7 109
8~ 9 82

v c

16. - 17 15
! 4 ~ 15 26

18 - 19 5
20 - 21 2
32 - 23 1

V VIRTUALCPU TIME
C TOTAI. CPU TIME USED

Figure 3 I/O and paging versus
contention

CON-
CUR-
RENT
TRANS. FRE-
ACTION QUENCY
RANGE COUNT

0 - 1 26

4 - 5 102
2 - 3 42

6 - 7 109

10" 11 64
8 - 9 82

12- 13 48
14 - 15 26
16- 17 15

20- 21 2
18- 19 5

22 - 23 1

A,

P I
P I

P I
P I
P I
P I
P I

P I
P I

P I
P I
I P

P PAGING RATE(PERSEC0ND)
I I/ORATE(PERSECONO)

174

The preferable measure is the fraction of user-present time that
the user waits for the system. We approximate that measure by
using the fraction of user-active time that the user waits for the
system. The measure should be used to compare similar work
only. Thus it is necessary to group USEKIDS as shown earlier in
this paper.

At Yorktown we produce a number of reports that show the many
resources consumed by each system user. Table 6 shows a
sample report that has been valuable in tracking large users and in
understanding problems of particular users.

CPU monitoring

In the graphs in Figures 2 and 3, several resource utilization in-
dicators are plotted relative to the number of concurrent transac-
tions. The number of concurrent transactions is the number of
commands that have been entered into the system but have not
yet been completed. Each line on the graph summarizes all one-
minute intervals that have ended with a particular number of con-
current transactions. As the number of concurrent transactions
increases, contention for page frames increases, with the result
that the paging rate increases. CPU utilization also goes up until it
reaches one hundred percent. The percentage of time in problem
state declines at higher levels of contention because more super-
visor time is consumed in managing the resources.

The frequency counts are crucial in interpreting these figures.
When the vM/Monitor default monitoring interval is used, state
samples are produced every minute. Thus each data point repre-
sents one minute of elapsed time. If most of the data points are in
the range of effective CPU utilization (i.e., below the point of de-
clining problem state CPU time), the system is not overloaded.
The higher contention part of the curve indicates occasional oc-
currences of overload that can be tolerated. The higher part of the
curve also suggests what is expected to happen as the load grows.
If the bulk of the data points are in the area where problem state
CPU is declining and paging is growing too high, the system is
already overloaded. For further discussions of CPU overload see
References 3 and 6 .

If the CPU is overloaded, two courses of action are possible. One
is to increase the capacity of the CPU, which usually involves add-
ing hardware, though it may involve tuning in order to make more
of the present CPU available. The other possible action is to re-
duce the load. Table 7 shows resource consumption by USERID.
This report is sorted in decreasing order by minimum time; thus
the larger resource consumers are at the top of the table. Two
columns show the percentage of all CPU time and I/O operations

TETZLAFF IBM SYST J VOL 18 NO 1 1979

Table 6 Individual user status

USERID Logged- Active Active User User User User
on time ratio status status status status

(min) (min) RUNNABLE PAGEWAIT I10 WAIT RUNNING
-

(percent)

USER 1 97 96 0.99 15.0 5.0 80.0 0.0

280 181 0.65 4.0 0.0 90.0 4.0
250 152 0.61 68.0 2.0 2.0 26.0

USER 4 263 I66 0.63 31.0 3 .O 56.0 9.0
USER 5 165 158 0.96 33.0 11.0 44.0 11.0
USER 6 280 198 0.71 68.0 6.0 21.0 3 .O
USER 7 293 252 0.86 17.0 17.0 57.0 8.0
USER 8 148 148 1 .OO 81.0 4.0 4.0 9.0
USER 9 214 130 0.61 25.0 0.0 66.0 8.0
USER 10 287 124 0.43 25 .O 0.0 75 .O 0.0
USER 11 280 280 1 .OO 20.0 40.0 0.0 40.0
USER 12 293 11s 0.39 50.0 2.0 20.0 26.0
USER 14 286 117 0.41 46.0 6.0 33.0 13.0

' :::E
~~~~~~~ ~ ~ 

Table 7 Resource  consumption  by  user 

USERID 

USER 1 
USER 2 
USER 3 
USER 4 
USER 5 
USER 6 
USER 7 
USER 8 
USER 9 
USER 10 
USER 11 
USER 12 

Logged- 
on 

time 
(min) 

172 
170 
122 
173 
172 
95 

173 
172 
173 
160 
173 
105 

Active 
time 
(min) 

171 
168 
102 
170 
116 
95 

144 
143 
172 
146 
149 
105 

Minimum 
time 
(min) 

14 
10 
10 
9 
8 
8 
8 
7 
6 
5 
5 
5 

Total 
CPU 

(percent) 

3.32 
2.38 
1.21 
1.79 
3.12 
1.33 
1.37 
I .95 
2.65 
2.42 
1.14 
1.58 

Virtual 
CPU 
per 
110 

0.003 
0.001 
0.001 
0.002 
0.002 
0.002 
0.001 
0.006 
0.003 
0.010 
0.003 
0.005 

Virtual 
CPU 
per 

page in 

0.033 
0.011 
0.022 
0.005 
0.002 
0.014 
0.004 
0.019 
0.004 
0.037 
0.016 
0.012 

Total 
I10 

(percent) 

5.58 
3.95 
5.11 
3.87 
2.06 
3.70 
3.63 
2.43 
1.16 
1.16 
2.13 
1.51 

for  each  user. Two other  columns  show  the  average virtual CPU 
time between page-in operations  and 110 operations.  These  col- 
umns help identify the  degree to which particular  users are 1/0 
bound or paging bound.  This  type of report may be used to  locate 
the large resource  users  on  the  system who might be candidates 
to be moved to  another CPU. Another  alternative would be to  tune 
particular programs of high CPU users. 

Paging  subsystem  monitoring 

On VM/370, the ability to do demand paging very quickly is key  to 
interactive  response  time  because  each new terminal transaction 

IBM SYST I VOL I8 NO I 1979 TETZLAFF 175 



Figure 4 Page-in  time as related to 
drum  fraction 

....... ............ j" a I w 2 .................... ......................... ....................... ................. 

z .......................... .......... ........ ........ ........ ......... ............ ................. ............... ............ ....... 
ALL DISK ALL DRUM 

PAGING DEVICES 

Figure 5 Page-in  time  as  related to 
paging rate 

............. .............. ............... ................. ................... ...................... ........................ ............................... ............................ ......................... ....................... 

PAGING RATE 

176 

initiates  the processing of a command with a different working set 
of pages. This makes the effectiveness of the  users highly depen- 
dent  on  the ability to  fetch new pages from  external  storage.  Thus 
the paging subsystem should be monitored  on  a regular basis, 
which can  be  done very simply.  vWMonitor  writes  records that 
summarize  the  current paging activity, with a default time inter- 
val of one minute. The average time delay for  each page read  into 
main storage (page in) can  be  calculated in almost  the  same way 
that  the paging expansion  factor is calculated. 

Problems that seem to be in the paging subsystem may have  their 
origigs in other  areas. If there is insufficient main storage avail- 
able  for paging, one might first see paging as a  problem. In the 
case of insufficient storage  for paging, the  users  are in page-wait 
state longer than  they should be.  The  system also reacts  to  the 
shortage by placing users in the eligible state.  The  need  to  do 
more paging  might also cause a high paging rate, and that would 
overload  the paging subsystem,  thereby  causing  further delays in 
paging. Insufficient high-speed paging space could result in long 
delays to  the  users. Table 8 shows  the mean page-in time (in  mil- 
liseconds) as a  function of time of day.  This  table also shows  the 
fraction of pages that  the active  users (i.e.,  some  resource  con- 
sumption in the  last minute) have  on  drum. 

Ideally nearly all the pages should be on  drum if both disk and 
drum paging are  used.  A program known as  the System Extension 
Program  Product-Resource  Manager attempts  to keep  the  most 
active pages on drum by copying inactive pages onto disk period- 
ically. In the  scatter plot in Figure 4, each  point, which represents 
one  hour of system  activity,  can be of great help in understanding 
the  relationship of drum  use  and page-in time.  The  area in which 
the  data points fall depends upon the load and  the  hardware  con- 
figuration. This  method of presenting the  data shows the system 
reaction  to different levels of overcommitment of the  drum  stor- 
age. The placement of the  points on the vertical scale  indicates 
the  degree of degradation, while point placement  on  the horizon- 
tal scale indicates the  elapsed time during which the  system is 
degraded.  Trend lines can  also  be  created by averaging the points 
that fall within ranges of the  drum-fraction variable and plotting 
the averages.  This plotting technique is similar to  that used for  the 
CPU graph in Figure 2. 

The  scatter plot in Figure 5 has a different characteristic  curve 
and  shows  the  relationship  between paging rate  and page-in time. 
At lower paging rates,  the page-in time  is relatively insensitive to 
the paging rate. At higher paging rates,  the page-in time  rises  rap- 
idly as  the paging rate goes up.  The  general  shape of the region 
depends on the  particular  system configuration. Channel  con- 
tention,  control unit contention, disk arm  contention,  speed of 
paging devices, etc. influence the  shape of the point distribution. 

TETZLAFF IBM SYST J VOL 18 NO 1 1979 



Table 8 Page-in time  by  time of day 

Start  Average  Mean  Drum 
time  users  page-in  fraction 

logged  time 
on (ms) 

1 1 : o o  152.5 17 0.68 
12:oo 153.6 19 0.66 
13:OO 151.5 34 0.68 
14:OO 158.0 17 0.70 
15:00 183.9 26 0.66 
16:OO 195.0 34 0.64 
17:OO 153.7 22 0.73 

Table 9 Storage-constrained (2-megabyte) system 

User 
sfafus 
name 

Status  Logged- Active 
count on time time 

(percent) 

IDLE 3652 
RUNNABLE 12 
RUNNING 250 
YO WAIT  200 
PAGEWAIT 101 
ELIGIBLE 84 

84.9 
0.2 
5.8 
4.6 
2.3 
1.9 

1.8 
38.6 
30.9 
15.6 
12.9 

The  important thing to  observe is whether most of the  data  points 
lie within the region of lower  and  consistent page-in times. If they 
do  not,  the cause should be investigated. 

Main-storage  monitoring 

Adequate main storage is very  important in a paging system so 
that  there is a high enough multiprogramming level to make full 
use of the CPU and I/O devices. Insufficient storage may be recog- 
nized by some combination of I/O and page-wait delay on  the  part 
of the CPU, i.e.,  users  spending  excessive  time in the page-wait 
and eligible states,  and a high  paging rate. 

Table 9 shows  user-state data  on a storage-constrained  system. 
The large amount of active  time suggests that users  are being sig- 
nificantly intruded  upon in their  work by long responses.  The 15.6 
percent of the time that  users  are in a page-wait state is a bit high, 
and the 13 percent of the time that  users  are in the eligible state is 
much too high. 

IBM SYST 1 VOL 18 NO I 1979 TETZLAFF 177 



Figure 6 Estimating  user  time sav- 
ings 

2-MEGABYTE 168 

("THINKTIME-I-SYSTIME-~J 
85 UNITS  15  UNITS 

3-MEGABYTE 168 REDUCES  SYSTEM TIME 

~-THINKTIME-~*SYSTIMEc~ 
85UNITS 8 UNITS 

3-MEGABYTE 168 REDUCED SYSTEM TIME 
REDUCESTHINKTIME 

I-THINKTIME-~-SYSTIME~( 
78UNITS  8UNITS 

Table  10  Non-storage-constrained  (3-megabyte) system 

User  Status  Logged-  Active 
stutus  count on time  time 
name 

(percent) 

IDLE 1315 91.9 
RUNNABLE 13 0.9 11.3 
RUNNING 56 
YO WAIT 

3.9 48.6 
37 

PAGEWAIT 
2.5 

9 
32.1 

ELIGIBLE 
0.6 7.8 

0 0.0 0.0 

When more storage is added  to  the  system,  as  shown in Table 10, 
the  time  that  users wait for  the  system goes from 15.1 to 8.1 per- 
cent of their terminal session.  The  improvement  results from a 
lowering of the time that  users wait on  the eligible list for  storage 
and the time they wait for pages while in  storage. Reducing stor- 
age contention indirectly increases  the CPU time available for 
users by lowering the CPU time used for paging. Having more 
dispatchable  users in storage  increased the CPU utilization. These 
actions  have  resulted in a  dramatic  improvement from the  users' 
standpoint. 

Under  the  assumption that  the users  continue  to use eighty-five 
units of time to  prepare the work that  the  system  completes in 
eight units of time,  the  potential savings in user time is seven 
percent,  as  shown in Figure 6. Reference 7 suggests that  users 
may actually save  an  additional  seven  units of time through  their 
own performance, as indicated  by  the  lower  bar in Figure 6. 

The  cost of the additional megabyte to this Systed370 Model 168 
is a  very small incremental cost compared  to  the  user  productiv- 
ity benefit. The  overall  throughput  has  increased  as  a result of 
reducing CPU paging overhead  and using CPU time that had pre- 
viously been wait time. User productivity  could  have  increased 
as much as fourteen  percent. Most impressive is the  improvement 
as  the  user  sees  the  system. Work that had previously taken fif- 
teen  units of time now takes eight units of time,  for a reduction in 
system  response time of forty-seven  percent. 

Concluding remarks 

Measurement of interactive  systems should be a  continuous  pro- 
cess.  It need not be done  on  a  twenty-four-hour  basis,  but it 
should be  done  regularly, such  as by partial  measurements  every 
day or complete  measurements  every few days. Collection during 
all hours when large numbers of users  are  present is most  desir- 
able. 

178 TETZLAFF IBM SYST J VOL 18 NO 1 1979 



Under Release 5 of VMi370, it is possible to  have  vWMonitor data 
written  into a spool file that is placed in the  virtual  reader of a 
particular machine when collection is completed.  vWMonitor  can 
also be  turned on and off at specific times of day  without  the  inter- 
vention of the  operator.  These  two  features make continuous  use 
of  VMlMonitor very easy. One of the primary reasons  for  regular 
monitoring is to build up  a body of information on  system  per- 
formance with its regular workload under normal conditions. 
Without such  a  history, it is very difficult for computing center 
management to  understand  the  changes  that  have  taken  place 
when a problem arises. A lack of information about normal sys- 
tem running  reduces  the usefulness of a measurement tool to  that 
of an  uncalibrated  thermometer. 

Another  important  reason  for regular monitoring is to allow the 
collection of historical load and  service data. This  then  becomes 
part of the input to be used for load projection  and  capacity plan- 
ning. 

During the beginning states of monitoring, the  system  program- 
mer who  checks  the daily reports gains in knowledge of the  sys- 
tem. Gradually the  reports may be restructured so that  they re- 
port exceptional  conditions  only.  Even if exception  reporting is 
not  done  formally, as a  part of the  programs  that  produce  the 
reports, it  is done informally by the  system  programmer.  The  pro- 
grammer  learns which items  require daily inspection  and  the  nor- 
mal ranges of values for  those  items. 

This methodology can be applied to both  operating  systems  and 
special-purpose  application  systems. When starting  to  measure a 
system,  one should determine  the significant states  for  users of 
that  system  and how to  test for  them.  The methodology presented 
in this  paper could then  be  applied.  Potential  states in other  sys- 
tems might include waiting for spooling, waiting for  a  particular 
lock, waiting for  a  data set, waiting for  a  shared DASD volume, 
waiting for program loading, waiting for  the CPU, and using the 
CPU . 

Sampling the  status of users  on  an  interactive  system  has proved 
to be a valuable tool  for  understanding  the  factors  that delay re- 
sponse.  The  state information provides insight into  the  relative 
importance of the  bottlenecks in a  system.  Elapsed times may be 
calculated from state  data  without  resorting  to  event timing. Be- 
cause  the  technique is inexpensive-sampling with vM/Monitor 
takes a fraction of one  percent of the CPU time-sampling can be 
done on a  continuous  basis. 

ACKNOWLEDGMENTS 
Many people have played a part in  making the generalized reduc- 
tion of information program available initially and  then applying it 

IBM SYST J VOL 18 NO 1 1979 TETZLAFF 



to vM/Monitor data.  The  author especially acknowledges  the fol- 
lowing persons. H. W. Lynch, J. A. Cooperman,  and  P. H. Calla- 
way influenced the  features in the data reduction  program. L. 
Flon was  responsible  for much of the design and programming of 
the  program  generator. D. H. Potter,  an  early  user of the program 
generator,  provided valuable feedback. L. Flon and P. H. Calla- 
way created  the initial VM/Monitor data base definition. P. H. 
Callaway and W. M. Buco used the vM/Monitor data  for  several 
years  and  developed a library of data  reduction  programs. W. M. 
Buco’s knowledge of the VM/370 was vital in interpreting  the VM/ 
Monitor data. W. J .  Doherty made many helpful suggestions and 
offered useful observations  about  the significance of the vM/Mon- 
itor output. W. J. Doherty, H. Serenson,  and R. P. Kelisky pro- 
vided management support  and  a fertile environment in which the 
work could be  done. 

CITED  REFERENCES 
1 .  W. J .  Doherty  and  R.  P.  Kelisky, “Managing VMICMS systems  for  user ef- 

fectiveness,” IBM Systems  Journal 18, No. 1, 143-163 (1979, this issue). 
2. VM1370 System  Programmer’s  Guide, Document GC20-1807, IBM Corpora- 

tion,  Data Processing  Division, White Plains,  New York 10604. 
3. P. Callaway, “VM/370 performance tools,” IBM Systems Journal 14, No. 2, 

134-160 (1975). 
4. VMISGP  Program  Description  and  Operations  Manual, Document SH20- 

1550, IBM Corporation,  Data Processing  Division, White Plains,  New  York 
10604. 

5 .  VM1370 Perfbrmance  Monitor  Analysis  Program  Description  and  Operations 
Manual, Document SB21-2101, IBM Corporation,  Data Processing  Division, 
White  Plains, New York 10604. 

6. Y .  Bard,  “Performance analysis of virtual  memory  time-sharing systems,” 
IBM Systems Journal 14, No. 4, 366-384 (1975). 

7. S. J .  Boies,  “User behavior on  an interactive computer  system,” IEM Systems 
Journal 13, No. 1, 2-18 (1974). 

Reprint Order  No. G321-5091. 

180 TETZLAFF 


