Discussed in this paper is the effect of floating buffering on the execu-
tion time of a program.

An analytic model of floating buffering is developed and discussed.
It is shown that with use of the model it is possible to compute the
run time of a program as a function of the number of floating buffers
it uses.

A model of floating buffering
by L. J. Woodrum

In computing systems, it is a common occurrence for the execution
of a program to result in the concurrent processing of several related
input files. A set of input files is considered related when at least
one unprocessed record from each file must be present in memory
before the program can proceed. In this paper, we discuss the effect

of floating buffering on the total time required for execution of the
program. An analytic model of floating buffering is developed,
and conclusions about the number of floating buffers needed are
presented. It is shown that an analytic model can provide valuable
insight into a process, even though simplifying assumptions must
be made in the model.

We are concerned here with the reading of ¢ input files only. The
model that is developed is appropriate for a program that causes
the reading of ¢ files from a single disk with one access arm or from
a set of tapes on a single channel or any other situation where only
one read at a time is permitted. It is assumed that the ¢ files consist
of blocks of records, and the number of records per block is the
same for all ¢ files, but the number of records in each of the files
can vary. We assume that if output is produced, it does not inter-
fere with the reading of the input files.

Using the model, we discover from computations that when one
or two floating buffers are used, the program run time decreases

sharply, and, as the number of buffers increases, the time asymptoti-
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cally approaches the minimum possible. The effect of the number
of floating buffers on the run time is principally a function of (1)
the ratio of processing time per buffer to the time to read a buffer
and (2) the coefficients of variation of the processing and reading
times (C(x) = o(x) + E(x)). Other things being equal, the run
time is slowest in approaching the minimum as the number of
floating buffers is increased when the average central processing
unit (CPU) processing time for a block is equal to the average
read time for a block.

The following section begins by contrasting floating buffering with
double buffering, two methods of buffering that are commonly
used for input. On this basis, the analytic model is built and dis-
cussed.

Note that all subscripting and indexing in this paper is zero-origin,
i.e., if A is a vector, A[0] is its first element.

Two buffering methods

A common buffering method for input is called double buffering.
In this method, a contiguous amount of main memory space capable
of storing two blocks is allocated for each of the ¢ input files. Proc-
essing of the records in a block is done one by one in the buffer area,
and when all records in an input buffer have been processed, a
read of the corresponding input file is initiated into the just-emptied
buffer. While this read is in progress, processing can continue on
the other buffer for that input file. The space required for double
buffering is 2¢gbl, where b is the number of records per block and /
is the length of a record.

Another method called floating buffering differs from double buf-
fering in that a contiguous amount of space in main memory
capable of storing a single block of records is allocated for each
of the ¢ input files, and f extra input buffers are used as well. There
are ¢ + f input buffers altogether, and each buffer is exactly big
enough to hold one block of records. The space required for floating
buffering is bi(q + f), where b is the number of records in a block
and /s the length of a record. Initially, g buffers are filled by reading
the first block from each of the g input files. Then, the program
determines which of the g input buffers will empty first (if possible).
A read is initiated into one of the f extra buffers from the file cor-
responding to the buffer that will empty first, while processing
continues on the ¢ buffers initially filled. If the ¢ input files are being
processed based on a collating sequence of keys present in the
records, as is the case in merging while sorting, then the file to be
read next can be determined by examining the last (highest) key
present in memory for each of the g files, and finding the smallest
of these. The file with the smallest last key is the file to be read next.
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It is assumed that whenever a read is done, it is from the file that
has been determined in this way. This assumption is an essential
part of the model.

When the read of the first of the f buffers has been completed, the
program again determines (if possible) which input file to read
by an examination of the contents of ¢ of the ¢ + 1 nonempty buffers.
Reading may continue in this fashion until there are ¢ + f nonempty
buffers in main memory.

When a buffer has been emptied by processing all the records it
contains, the empty buffer is exchanged for a full one, which has
been filled in advance by reading using one of the f extra buffers.
The empty buffer now becomes one of the f extra buffers, and the
full buffer becomes one of the ¢ buffers being processed. This situa-
tion is represented pictorially in Figure 1.

Following are definitions of terms found in Figure 1 and in later
discussions:

A the average arrival rate (in buffers per second) of buffers from
the CPU queue to the refill queue, given that the CPU is
processing. When the CPU is processing, it emits (empties)
buffers at the rate of A buffers per second.
the average arrival rate (in buffers per second) of buffers from
the refill queue into the CPU queue, given that there are
buffers in the refill queue.
the time for a read to take place. The random variable 7, is
measured from the instant the seek is initiated to read into
the buffer to the instant the read has been completed.
the number of buffers currently in the CPU queue.
the number of buffers currently in the refill queue, including
the one currently being read into.
the total number of buffers in the system. Note the identity
n,+n =q+ f
the time spent in the processing state between buffer
emissions.

The CPU is always in one of two states here—it is either waiting
for a read to be completed or not. If it is not waiting for a read to
be completed, then it is actively processing records; hence, this state
is called the processing state. If it is waiting for a read to be com-
pleted, it is not actively processing records; this state is called the
nonprocessing state. For brevity we say that the CPU is processing
when it is in the processing state, and say it is not processing when
it is in the nonprocessing state. The term “CPU time” as used in
this paper is the time spent in processing.

The expected processing time for the CPU to emit a buffer is

E() = 5
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Figure 1 A model of floating buffering
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In Figure I, the processing of and reading into a buffer is represented
by the CPU queue and the refill queue. The CPU queue consists
of g nonempty buffers being concurrently processed (emptied)
by the CPU and a wait line of full buffers waiting to be processed,
whereas the refill queue consists of empty buffers being filled by
reading. Initially, ¢ buffers are filled by reading and join the CPU
queue. The input files are related, and the CPU cannot continue
processing until there are at least ¢ nonempty buffers. The other f
buffers join the refill queue.

The CPU is a “fluky” server in its processing of the ¢ buffers. It
determines, in a way analogous to flipping a g-sided die, from which

buffer to select the next record to process. When a buffer is emptied
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pitfalls

by this procedure (all records in it are processed), then the buffer
is emitted and joins the refill queue.

If the CPU empties a buffer before another is ready to take its place
(none are waiting in the buffer wait line for processing), processing
stops unti} the completion of the needed read. Then the new buffer
joins the CPU queue, the empty one joins the refill queue, and
processing continues. At no time is the number of nonempty buffers
(the number in the CPU queue) allowed to be less than ¢ — 1.
When the number of buffers in the CPU queue, n,, is greater than
or equal to ¢, the CPU continues processing, and when n, = ¢ — 1,
processing stops while reading is completed.

Because of the way in which the file to be read is chosen in the
refill queue, whenever n, = ¢ — 1, the file currently being read is the
one from which records are needed to continue processing, and
processing can resume as soon as the current read is completed.
This is easy to see, because if no record is present in memory from
a file, then the last record processed for that file was less than or
equal to the last record present in memory for any of the other
g — 1 files. But if a read is in progress, and no record is in memory
from this file, then the read must be from this file because that is
exactly the way to determine which file to read.

Note that this model differs from the classic problem of servicing
machines in two basic respects:’

e In the machine repair model, the arrival rate of broken machines

to the repair queue is dependent on how many machines are
up and running, whereas in this model the arrival rate of empty
buffers (corresponding to the broken machines) to the refill
queue (corresponding to the repair queue) is always either A
or zero.
In the machine repair model, the number of machines not broken
can be 0, 1, 2, ---, m, where m is the number of machines. In
this model, the number of nonempty buffers must always be
at least ¢ — 1 and must be at least ¢ for the arrival rate of buffers
to the refill queue to be nonzero.

Mathematical model

With the system of the two queues in Figure 1 in mind, we describe
the way in which the total run time of the program can be deter-
mined, after first describing a way of looking at the problem in
which the run time cannot be calculated.

We might think that if the average time for a buffer to go through
both queues (the cycle time of the system) is known, then the total

run time can be determined by multiplying the total number of
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reads (buffer fillings) by the cycle time. This is not the right answer,
which is obvious from the trivial example of exactly two files and
three buffers. Suppose that the read time, ¢,, in the read queue
always takes a constant one second, and the time in the CPU queue
also takes a constant one second, then the cycle time for the system
is two seconds. Because the read time is always overlapped with
the CPU time in the CPU queue, buffers can be considered to actually
go through the system at the rate of one buffer per second.

We can determine the total run time by examining certain probabil-
ities associated with a Markov chain and a semi-Markov process.
The reader already familiar with these may skip immediately to
the section on states in the semi-Markov process. Briefly, a Markov
chain is a collection of s states and the probabilities associated with
directed lines connecting the states.”> A Markov chain is easiest
to visualize as a directed graph, where each point is a state, and the
lines are directed from state to state. Imagine a particle wandering
around in this network. It can go from any specified point to another
point along a directed line. If a point has more than one line emanat-
ing from it, then each of the lines has associated with it the prob-
ability that the particle will choose that line when departing from
the point. The sum of the probabilities on the lines emanating
from a given point must be one, since the particle always picks
one of the lines when departing from the point.

A step in a Markov chain is the transition of the particle from one
state to another. The process is said to be in a state i from the instant
the particle enters state (point) / until it enters another state j. State
may be the same as j if there is a directed line from / to i. If we assume
that each step takes some period of time, then we may talk about
the time it takes to go from state to state, as well as the number of
steps it takes. It is customary to label the s states 0, 1,2, - -+, s — 1,
as all subscripting is done in zero-origin. We can represent a Markov
chain by a matrix of transition probabilities, P, where P[i; j] is
the probability that when the system is in state / it will go to state j
next. From the P matrix it is possible to calculate the various statis-
tical moments of the number of steps required to go from any state i
to any state j. In a Markov chain, it is usually assumed that it takes
a constant unit of time to go from one state to another.

Of special interest is the probability that during a step in the process
the system will be in any state / after a long time has passed (the
process has reached a steady state, where the probability of being
in any state during a step is independent of the state in which the
process was initially). If = is a vector such that =, is the steady-state
probability of being in state i at an arbitrary step in the process,
then the steady-state probability of being in state / in any step is
the same as the steady-state probability that it will be in state i on
the next step. This leads to the matric equation =P = =, which
the = vector must satisfy.
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The vector = may be computed using the following four-line deriva-
tion, where I is the identity matrix, U is the matrix of all ones,
I = U — I, and u is the row vector of all ones.

xP == Q)]
=U = u, because Y = = I. )

By adding Equations 1 and 2 together, we get

mP+ zU==+u 3
and, factoring, we get

®P+U—D=u, or n=ulP+ D’ )

Thus by adding up the columns of the inverse, we get =. Most of
the other calculations are also just as easily obatined.

A semi-Markov process (hereafter abbreviated as SMP) is essentially
the same as a Markov chain, except that the time for the particle
to traverse a line is a random variable, and each of the lines can
have its own arbitrary statistical distribution for the time it takes
for the particle to cross a line. In an SMP, we are more interested
in the statistical moments of the time required to go from a state i
to a state j than the number of steps. Therefore, it is customary to
define a matrix of the first moments of the time to traverse each
line (i, j), called T1, so that T1[i; j] is the first moment of the time
to traverse the line (i, j). Similarly, matrices 72, T3, etc., may be
used to record second, third, etc., moments. These matrices are
called the matrices of the statistical moments of conditional holding
times. Analogous to the = vector is a vector P, where P, is the
steady-state probability of being in state i at an arbitrary instant
in time after all initial effects have worn off (i.e., independent of the
state it started in).

For a full discussion of semi-Markov processes, see Barlow and
Proscham® and also Appendix A, where methods of computing
the various items in an SMP are discussed.

The semi-Markov process

For the model of floating buffers, we define a collection of states
labeled 0, 1, 2, ---, s — 1, so that the process is in state 0 when no
reading is taking place and is in state i, providing i > 0, when a
read is in progress that was started when exactly i of the buffers
were in the refill queue. When, for example, the process is in state 1,
it means that a read is in progress that started when there was exactly
one buffer in the refill queue. If no other buffers enter the refill
queue during this read, the process goes to state 0, meaning there
are no buffers in the refill queue. If a read starts with one buffer
in the refill queue, then the process remains in state 1 until the read
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is finished, no matter how many buffers join the refill queue while
the read is in progress. If a read starts with two buffers in the refill
queue and four buffers join the refill queue while the process is in
state 2, the process remains in state 2 until the read is completed,
next enters state 5, and another read is started. State 5 is then held

until the new read is completed.

A transition from state 0 to a nonzero state is allowed as soon as
the CPU has a buffer empty and ready to be refilled. This means
that state 0 can only change to state 1. For analysis involving disks
or rotary devices this is a simplified treatment of the transition
from state 0, but for analysis of reading tapes, or devices where
no rotational delay is present, this is a reasonable way to define
the transition from state 0. (See Appendix B, item 2, for further
discussion of this point.)

The states in the process correspond to the number of buffers in
the refill queue when a read is started. Then if there are f floating
buffers, there cannot be more than f buffers in the refill queue when
a read begins. Since we allowed state O to only go to state 1, when a
transition to state f occurs, it must always be just after a read is
completed, and whenever a read is completed, the CPU is able to
start processing immediately as mentioned earlier. Since the CPU
can always start processing when state f is entered, there must
be exactly ¢ buffers in the CPU queue. But if there are a total of
g + f buffers, and g of these are in the CPU queue, there can only
be f of them in the refill queue when the next read is started. Hence,
we may take the s statestobe O, 1,2, - - -, f, where s = f 4 1. Observe
that ¢ is not present in the model, as the effect of floating buffers
does not depend on ¢ when ¢ is sufficiently large. Accordingly,
we have dequeued our model.

Let P be an s by s probability transition matrix, where an entry
P[i; j] in row i and column j is the probability that when the pro-
cess is in state 7 it will next be in state j. Since there are i buffers
in the refill queue when a read starts, and one buffer leaves the
refill queue when the read is finished, the number of buffers in
the refill queue at the completion of the read is (i — 1) plus the
number that join the refill queue during the read. If a transition
to state j is made, then 1 4+ j — i buffers have joined the refill
queue during the read. Therefore, the probability that when the
system is in state i it goes to j next is also the probability that
exactly 1 + j — i buffers join the refill queue during a read. This
is only true if / > O because from state 0 it always goes to state 1.

The entries in the probability transition matrix P depend upon the
statistical distributions of the CPU processing time for a buffer
and the time to read a buffer of records. We will here assume that
the inter-emission processing time, t,, for buffers to be emptied
and join the refill queue has a negative exponential distribution,
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with mean 1 <+ A. For the arguments justifying this assumption,
see Appendix B. This assumption depends on the fact that the
distribution of the superposition of a number of renewal processes
can be estimated by the negative exponential distribution. This
estimate is easily made precise; see Reference 4, and also see Ref-
erence 3, pages 18-22, for the exponential as the failure law of
complex equipment.

We take the read time, 1,, to be a discrete random variable, given
by the two vectors R and H, where the probability that 1, = R,
is H,. R is the vector of possible values of #,, and H is the corre-
sponding vector of the probabilities that ¢, will assume the values
in R, Since the completion of a read can only occur at the end of
a revolution when reading full-track records from a disk, the seek
plus read time must be a multiple of one rotation time. Since a
seek and read is started at the end of another seek and read if
there is another read request pending, it makes sense to restrict
the values of ¢, to multiples of a full revolution. Note that the
division of a refill operation into seek, wait for one-half a revolu-
tion (average), and read will not yield correct results when reading
full-track records. For example, if seek time were always distributed
uniformly in the range of 25 to 35 milliseconds, three full revolu-
tions would be needed for every full-track record, whereas using
seek plus wait plus read would yield 25 4+ 30 + 12.5 = 67.5 milli-
seconds instead of 75.

When records are being read that are not full-track records, this
must be modified to always be a multiple of the rotational time to
pass over one record. The exact values for H and R are not, generally,
easy to obtain and must depend on the particular application.

With these assumptions, the entries in the probability transition
matrix P for the model are given by

Pli;jl=0 if i=0, j#1 (5a)
Pli;jl=1 if i=0, j=1 (5b)
Pli;jl=0 if i>j+1 (5¢)

()\Rk)l +i—i

e L < <
a4+ 7=0° if iZ0, i<j4+1L7f

(5d)

Pli; j1 = 3 He ™
k

r-1
Pli;jl=1— D Pli;kl, if i%0, j=f (5¢)

Equations 5a through 5c are justified in the previous discussion;
Equation 5d is an application of the fact that the Poisson distribu-
tion is the distribution function of the number of arrivals in a given
period of time when the interarrival time has the negative exponential
distribution; and Equation Se expresses the fact that the last entry
in each row of P is set to one minus the sum of the other entries,
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Equation 5e is justified because the emission of buffers continues
as a Poisson process until emission stops and resumes as a Poisson
process exactly as if no interruption had occured. Besides, probabil-
ities must sum to one by convention.

Next, we define a matrix 71, which is an s by s matrix containing
the first moments of conditional holding time for each of the states.
TI[i;j] is the first moment of the time spent in state 7, given that a
transition to state j will be made next. In general, it is not necessary
for any of the T1 entries to be the same in an SMP; they can be
completely different for each (i, j) pair of states. T1 is called the
matrix of first moments of conditional holding times because the
holding time can depend on the next state. For this model, the T}
elements are given by

Tili; j1=0 if PL;jl=0 (6a)

Ti[i; j1 = if i=0, j=1 (6b)

1

A

T1{i; j1 = 2 HR, elsewhere (6¢)
k

Similarly, we define matrices 72 and T3 to be matrices of the second

and third moments of conditional holding time. 72 and 73 are
given by

T2[i; 1 =0 if Pli;j1=0 (7a)

T = 5 if : (7b)

T2[i; j1 = Z H,R] elsewhere (7¢)
k

T3[i; j1=0 if Pli;j1=0 (8a)

T3 1 = 5 i : (8b)

T3{i; j] = Z H.R} elsewhere (8¢)
k

We are now in a position to compute the execution time for a
program using floating buffering. The total execution time for the
program is equal to the time spent reading all the blocks of input
data, plus the time spent with the CPU processing and no reading
taking place. State O in the SMP is the only state where reading is
not taking place, and P, is the fraction of the total execution time
that is spent in state 0. Then (1 — P,) is the fraction of total execu-
tion time spent reading, so that if N blocks are read we have

Runtime (1 — P,) = N(E(t,)) )
Clearly,

NE(t,)

Runtime =
1 - P, (10)
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With the model now complete, we may compute run times, using
the APL program EVL shown in Figure 2. (EVL uses the supporting
function SMP, described in Appendix A.) EVL produces a matrix
result Z that has four rows and nine columns. Figure 3 contains
sample executions of EVL. Row 0 of Z is an index of the number
of floating buffers used, e.g., Z[0; 2] is a 2, meaning the other
numbers in column 2 are the results of using two floating buffers.

Row 1 of Z contains the run times, in seconds, when the indicated
number of floating buffers is used. The last entry in row 1, Z[1; §],
is the minimum achievable run time (which occurs only if processing

and reading are overlapped to the maximum extent possible).

Row 2 of Z is obtained from row 1 of Z by dividing row 1 by Z[1; 8].
This expresses the run time for each choice of floating buffers in
terms of the minimum achievable run time. Thus, if Z[2; 3] = 1.076,
using three floating buffers results in a run time that is 1.076 times
as long as the minimum possible time. Since Z[2; 8] would always
be 1, Z[2; 8] instead contains the expected value of buffer refill time,
E(1,).

Row 3 of Z contains the fraction of recoverable time remaining
when the indicated number of buffers is used. By recoverable time
we mean the difference between the actual run time and the minimum
achievable run time. When zero floating buffers are used, then
the run time is the sum of the processing and refilling times. The
minimum achievable time is the maximum of the processing and
refilling times. The difference between run time using zero floating
buffers and the minimum achievable is the maximum recoverable
run time. By dividing the recoverable run time for i floating buffers
by the maximum recoverable run time, we get the entry in column i,
row 3 of Z, Z[3;i]. For example, if Z[3;3] = 0.091, then 91.9 percent
of the recoverable time is recovered by using only three floating
buffers, and 9.1 percent remains. Since Z[3;8] would always be
zero, Z[3;8] instead contains the coefficient of variation of buffer
refill time, ¢,. The coefficient of variation of a random variable ¢,
C(?), is defined by C(r) = o(f) + E(2).

To show how the coefficient of variation of refill time affects the
output of the EVL program, several executions are shown in Figure 3,
where E(t,), average refill time, is the same for all, and only C(z,) is
different. Note how run time increases as the coefficient of variation
increases.

The inputs to EVL are the vectors R and H, which give the refill
distribution, and a three-element vector, NBX, containing the
number of reads to be done during the run, the number of records
per block, and the CPU processing time per record, respectively.
In the examples in Figure 3, there are 1000 blocks, 50 records per
block, and the processing time per record is 0.001667 second. This
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Figure 2 APL pragram EVL, which computes run times using SMP

V Z+RH EVL NBX;HiN:B;X;A;I3P3KiLiPI;C3JET1E1T;
ET23E2T ET3;E3T;SS;5IG;5KW;T1;T2;T3;8;P;Q:F
R«{(pH«(0,5xpRH Y+RH )+RH
L«1#C+«(B<«NBX[1])xX«NBX[2+0xN«¥BX[ 01}

Z« 2 9 pOxS5«2
Pe(55«5,5)40[(-J)o.+14J41S5
Pe(Jeo,S1+J)x((Hx*~LxR)+,x{(LxR}o ,#P):!P
PL0O;]«1=d

P[;8-1]+1-2/ 0 "1 +P

P1+SSt+ 1 2 +C

T1[K«14J; J«A«H+ , xR

72«85+ 71 T2 42xCxC

T2[K; J«H+ . xRxR

T3<S8+ 71 T2 46xCx3

T3[K; )«H+ ,xR%3

PRT SMP ©

Z[35-1)«(S5-1) ,(NxPI+,xC,{S-1)pA)+1-PI[0]
+ 17 4[825+5+11

Z[;01«0 ,NxC+4

Z2[;81«0,NxCTA

Z« 1 1.0 0 %%

z[23)«201;142(1;8]
2[3;31+(201;1-201;383)+-/211; O 8]
Z03;8]«(((H+,xR*x2)-Ax2)%0.5)22[2;8]«4

Figure 3 Examples of executions of EVL

PRT+0
A EXAMPLE 0, COEFFICIENT OF VARIATION IS ZERO.
3 EDT .07 1 EVL 1000 S0 ,001667

.000 1.000 2,000 3,000 4,000 5,000
153.350 105.989 94.380 89,706 87.330 85,960
1.840 1,272 1.132 1.076 1,048 1.031
1.000 .323 .158 .091 057 .037

n EXAMPLE 1, C=0.214
3 EDT .025 .075 .1 .9 EVL 1000 50 ,001667

.000 1.000 2,000 3.000 4,000 5.000 6,000
153,350 106.679 94,892 90,075 87,606 86.170 85,272
1.840 1.280 1,138 1,081 1.051 1,034 1,028
1.000 .333 .165 .096 .061 040 027

A EXAMPLE 2, C=0.385
3 EDTr ,025 .05 ,075 .1 .1 .4 ,1 .4 EVL 1000 50 ,001667

.000 1.000 2,000 3.000 4.000 5,000 6.000
153.350 107.908 95,930 90.872 88.220 B86.650 85,650
i.8u40 1.285 1.151 1.090 1.058 1.040 1.028
1.000 .351 .180 .107 +070 047 .033

A EXAMPLE 3, (=0.525
3 EDT .025 .1 .4 .6 EVL 1000 50 ,001667

.000 1,000 2,000 3.000 4,000 5.000
153,350 109,767 97.329 91.889 88.988 87,247
1.840 1.317 1.168 1.102 1.068 1.047
1.0600 .377 .200 122 .081 058

a EXAMPLE &, C=0.711
3 EDT .025 .125 .55 .45 EVL 1000 S0 ,001667

.000 1.000 2.000 3.000 4,000 5.000 6,000 7.000
153.350 112,335 99.570 93,635 90.358 88,343 87,012 86,089
1.8u0 1.348 1.195 1.123 1.08n 1.060 1.0u4y 1.033
1.000 JHiy .232 147 «100 .071 .052 .039

a EXAMPLE 5, (C=1.286, ANV UNREALISTIC SITUATION FOR A DISK.
3 EDT .025 ,250 .8 .2 EVL 1000 50 ,001667

.000 1.000 2.000 3.000 4,000 §.000 6.000 7.000 .000
153,350 120.231 108.206 101.200 96,690 93.651 91,512 89.942 83.350
1.840 l.u42 1.298 1.214 1.160 1.124 1.098 1.079 .070
1.000 .527 .355 .255 .191 YY) 117 094 1.286
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results in a CPU processing rate of A = 50 X 0.001667 = 0.08335
buffer per second. In Example 2 of Figure 3, R = (0.025, 0.05,
0.075, 0.1) and H = (0.1, 0.4, 0.1, 0.4). The vectors R and H are
catenated to form one vector, which is the left operand of EVL.

By examining the results of many executions of EVL, we found
that, in general, the run time depends primarily upon the ratio
of CPU speed to input/output speed, the number of floating buffers,
and the coefficient of variation of the refill time 7,. However, these
three parameters do not always result in the same run time. We
have refrained from including a table of run times based on these
parameters because it might mislead one into believing that run
time depends solely on these parameters. It must be emphasized
that there does not appear to be a simple way to calculate run times
without using matrix inversion to solve for the vector = in the
Markov chain. For a small number of floating buffers, it is possible
to obtain formulas for the run time by symbolically inverting the
P + I matrix. This is a mere exercise in algebra and is left to the
reader.

More information about the behavior of a program than just run
times can be obtained by examining results of other computations
made using the SMP. In the following discussion, we will use the
notation described in Appendix A.

Since the program always starts in state f, it is of interest to deter-
mine how long the program would have to run before reaching
any selected state of interest. If we found, for example, that the
expected time for the program to run before reaching state 0 from
the initial state fis greater than the run time of the program itself,

we would rightly suspect that using f buffers would be unnecessary.
This time, E(,#,,), is calculated in the APL function SMP described
in Appendix A.

Related to this is the probability of the program being in a state
at any instant in time. This information is given by the vector P,
and if we find probabilities which are very small, we can conclude
that more buffers are used than necessary.

As an aside, note that if a program were written using a fixed number
of buffers, and the probability of the refill queue being empty (or
full) were so small that it would not be likely to appear in the testing
of the program, then special care must be taken to ensure proper
functioning for such a rare event. This is an interesting use of
modeling in general—to determine when conditions are so rare
as to merit special care in debugging a program.

Since the probability =, is crucial in computing average run times,
it is of interest to know how long it takes from the time the system

enters state 0 to the time the system subsequently returns to it,
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and also to know the standard deviation of the return time. If the
standard deviation of the first passage time from state O to state 0
is large relative to its mean (C(,1,,) is large), then we can expect the
run time of the program to have a larger standard deviation as
well. This would mean that the computed average run time might
not correspond very often with actual run times. This standard
deviation, o(,790), is given by the SMP function in the vector SIG.
See Appendix A for further discussion of these computations.

No model is complete without a list of the assumptions and a dis-
cussion of their importance, so such a list is given in Appendix B.
Of particular interest are the assumptions that the steady-state
probabilities do in fact describe the behavior of the program, and
that the arrival pattern of buffers to the refill queue is Poisson.
When a program begins execution, it usually does so with all
the buffers full from the first read of each of the ¢ inputs. It will
be awhile before any of them empties, and then they will all tend
to empty together. This situation will recur until enough records
have been processed for the reads to become more independent of
the initial conditions. The wearing off of these initial conditions is
not the same as the wearing off of the initial conditions described
previously when discussing the steady-state probability vector =.

In the previous case, we talk about the steady-state independence
of the state the process starts in, which is the state f, with the refill
queue full. Now we are concerned with the use of the negative
exponential distribution to describe the inter-emission time of buffers
by the CPU. The negative exponential distribution does not describe
very well the behavior of the program when it is first being executed
but more and more closely describes its behavior as time goes on
and more records are processed.

This is analogous to (but not exactly the same as) shuffling ¢ decks
of cards together in a g-way shuffle, where only the last card of
each deck is marked, and then examining the resulting single deck
for the marked cards. They will tend to all fall together at the end.
Under repeated g-way shuffles, we would expect the distance between
marked cards to be better approximated by the negative exponential
distribution. Obviously, the negative exponential distribution can
never describe this exactly, since intercard distances are discrete
random variables, whereas the negative exponential distribution
applies to continuous random variables.

As a consequence of this tendency for buffers to initially empty
together, run times would be greater than the computations indi-
cated. The effect of this clustering persists for some significant
portion of the run if there are not very many blocks in each of
the input files. How long this persists has not been investigated
extensively, but we do know that it causes run time to increase.
Here is a case where the physical situation does not correspond to
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mathematical reality. What must clearly be done is to change the
physical situation in such a way that it does correspond to mathe-
matical reality. '

As in the case of a deck of marked cards, if we would like to have
a shuffled deck, then it is best to begin with a shuffled deck. This
may be done by writing a random number of records in the firsz
block only of each input file when the input files are created. For
further discussion of this point, see Appendix B, item 5.

Summary comment

An analytic model of floating buffering has been obtained with
which program run times can be computed. The run time per block
was found to depend principally on the number of floating buffers,
the ratio of CPU processing time per block to the input/output
refill time per block, and the coefficient of variation of the input/
output refill time.

The various results of computation using the SMP model provide a
method of estimating the magnitude of the variability of run time,
and even call attention in such a program to possible errors that
might go undetected due to their infrequent occurrence. When
this model was compared to an actual run of a program, the run
time for the program was 42.1 seconds, and the computed run
time was 39.1 seconds.” Probably, the computed run time was less
than the actual run time because the run was not long enough for
the negative exponential distribution to be a good approximation
to the time between the emptying of buffers. The run times obtained
using the model are reasonable estimates of the run times of actual
programs. Other things being equal, as the number of floating buffers
used is increased, the run time is slowest in approaching the mini-
mum when the average CPU processing time for a block is equal to
the average read time for a block.

The computations involved in the analysis of an SMP model are
as easy to obtain as the vector =, provided one has the necessary
familiarity with vectors and matrices. In the investigations of this
model; the use of APL\360 for computations was especially useful
because the language is well-suited for the vector and matrix opera-
tions needed. It seems likely that the use of stochastic models for
analyzing computing situations will become a more widely used
technique.
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Appendix A: APL functions for analyzing semi-Markov
processes

This appendix describes a set of three APL functions for obtaining
information about a semi-Markov process.’”” The primary function,
called SMP, is used when its inputs have been precalculated and are
already defined when its execution starts. When optional input data
is omitted, the corresponding global variable must be set to zero
before execution of the APL function SMP. In what follows, the
random variable 7, is the time it takes for the process to go directly
from a state i to a state j. The random variable ,z,; is the time it
takes for the process to go from a state i to a state j for the first
time by any path. The time ,z,; is measured from the instant state ;
is entered until the instant state j is subsequently entered for the
first time. The SMP function computes the following information
provided the appropriate input data is supplied:

PI  An S-element vector giving the steady-state probability of
being in each of the states during any step of the process
after the effects of the initial conditions have worn off,
where S is the number of states in the system. PI[/] is the
steady-state probability of being in state i at any instant
in time in the associated Markov chain after the effects
of the initial conditions have worn off. PI[i] = =..

An S-element vector giving the first moments of the uncondi-
tional holding time for each of the states. ET1[/] = E(z.),
where the random variable ¢, is the unconditional holding
time in state / regardless of the state it goes to next. E(z,) =
> P E(t;,), where t,, is the random variable representing
the time to go directly from i to k along a directed line.

An S-element vector giving the steady-state probability of
being in each of the states at any instant in time in the SMP
after the effects of the initial conditions have worn off.
P, = [=E(1)] =+ [, =EW]

An S-element vector giving the first moments of the time
required to go from each of the states to a selected state,
called j, for the first time. E1T[/] is the first moment of the
time to go from any state i to j for the first time. E1T[/] =
E(.1,), where ,1;; is the random variable representing the
time to go from state i to state j for the first time by any
path. The time ,,; is measured from the instant the system
enters state / to the instant the system subsequently enters
state j for the first time. Thus E1T contains the first moments
of the first passage times from all states i to the selected state .
An S-element vector giving the second moments of uncondi-
tional holding time. ET2[i] is the second moment of the
unconditional holding time for any state i.

An S-element vector giving second moments of first passage
time. E2T[/] is the second moment of the time to go from
any state i to the selected state j for the first time.
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Table 1 Summary of notation

S = §, the number of states

J = J, the selected state of interest
P = {Py}

P = {P;}

Tl = {E(t:in)}

T2 = {E(t{)}

T3 = {E(1ip)}

Pl=x = {o(it:))}

ET1 = {E(1;)} _ JELti; —EGE)P

ET2 = (E(1%)) a*t:)

ET3 = {(E(r})} P, except column j is all zeros

E1T {EG1:iDY 1P

E2T = {EGuti)}
{

E3T = {E(12))}

= -0

In every case, the braces, { }, are used to indicate a vector or matrix of the elements obtained by letting i and k range
over the values from 0 to S — 1. Also, j is a fixed scalar.

SIG An S-element vector giving the standard deviation of the
first passage times. SIG[i] is the standard deviation of the
time to go from any state i to the selected state j for the
first time.

An S-element vector giving the third moments of uncondi-
tional holding time for each of the states.

An S-element vector giving the third moments of first
passage time from each of the states to the selected state j.
An S-element vector giving the skew of the first passage
times from each of the states to the selected state j. The skew
given is the normalized third central moment, i.e., the third
moment with respect to the mean, divided by the cube of
the standard deviation.

The following input data must be supplied to use the program:

J The state of special interest (see the previous descriptions of
output).

P The S by S probability transition matrix. P[i; k] is the prob-
ability that if the system is in state i, it will be in state k& next.
The S by S matrix of first moments of conditional holding
time. T'1[7; k] is the first moment of the time required to go
to state k from state i directly, given that the system is in
state 7 and will be in state k next.

The following input data is optional and must be set to zero if not
used :

T2  The S by S matrix of second moments of conditional holding
time.
T3 The third moments of conditional holding time.

If T2 is not supplied, the program will not produce the outpuis
ET2, E2T, ET3, E3T, SIG, and SKW. If T3 is not supplied, the
program will not produce the outputs ET3, E3T, and SKW. Table 1
is a summary of the notation..
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The mnemonics for the three functions are SMP for semi-Markov
process, INV for matrix inversion, and EDT for editing or displaying
data after it has been entered. The syntax of SMP is “PRT SMP 1,”
where PRT is a zero if no typewriter display of the results of com-
putations is desired, and PRT is a one if typed output is desired.
J is the selected state of interest, as described earlier. In every case,
SMP will leave its computed results as variables global to it with
the names described above.

In the SMP function, there are three diagnostic messages. The first,
on line 4 of SMP, “ROW SUMS OF P ARE BAD.”, appears when the
rows of P don’t sum to ones. However, the function continues
anyway since the difference may be caused by slight imprecisions in
the calculation of the entries in P. Accompanying this message is a
display of the actual row sums that are not ones, with the rows
indicated in the display. Two other diagnostic messages may occur,
on lines 8 and 12 of the SMP function, when the second or third
moments are in error. If either of these messages occurs, it will
exit by means of a right arrow (—) by itself because when this
happens there is an error in the computation of the entries in one or
more of the conditional holding time matrices.

If any problem should arise while executing these functions, such as
running out of workspace, so that execution is suspended, an exit
can be made completely from all function execution by entering
a right arrow.

A variable can be displayed when no execution is taking place by
typing its name or using the EDT function. The syntax for EDT is
“f EDT M”, where f'is the number of fractional digits to be displayed

and M is the name of the matrix or vector to be displayed. To display
scalars, always do so by entering the name of the variable; do not
use the EDT function. When displaying variables by name, or when
data is typed from SMP, the number of digits displayed can be
restricted by the system command “)DIGITS d”. If this is entered
before the display, only d significant digits will be displayed.

We now describe the way the statistical moments of first passage
times, E(,77,) are computed. The random variable ,7;; is the sum of
a number of random variables ¢,,, the times to go from states k to
other states 4, where k and / are states passed through on the way
from i to j. With probability P,;, the random variable ¢z, is equal
to t,;, since if the system goes directly from state i to state j, ,¢,, =
t;. With probability P,,, k & j, the system goes to. some state k
directly, and then from k to j for the first time. Thus with proba-
bility Py, it;; = t:» + .t;;. This means that

EGt:;) = P,EQ;) + Z P E(t; + 11,;) and also

k=i

E(f) = PLEW) + Z P E(t + 1t:)

k#§
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If (¢, + 11,;)" 1s expanded using the binomial theorem, then
(ta + 1) = 20 CL7 1
z=0

where C! is the number of combinations of n things taken x at a
time. We can then see that

EGf5) = PiE) + ; P,.-kE<Z;j Cti” 1t£f>

i z=
Since the expected value of the sum of a number of independent
random variables is equal to the sum of their expected values, and
all the random variables are independent of one another in the
above sum that has x as the index of summation, we can write the
expected value operation inside the summation sign. Then we get

BGE) = PLEWE) + 22 P 20 E(CIG 1)

ket =0
Now when x = 0, the summation term is E(Cy7, 1},), which is
E(17,). Taking this term out of the summation, we let x go from 1
to n instead of from 0 to n, and get

E(riy) = PLEGE) + [Z Pq.kE(rm] + 2 Pu 2 ECHET L)
Sk 1 x=

Observe that the first summation is over k  j, and the term inside
the summation, P, E(t},), is the same as the first term in the above
expression, P, E(1},), except that k is present as a subscript instead
of j. Since the first summation is for all & > j, we can put P, E(17},)
inside the range of the first summation and let k range over all
values from 0 to s — 1, including j. Then we find that

n

E(,t};) = [Z P,.vkE(z?k)] + > P X ECUHT )
k=0

k=i x=1

The part of the expression in brackets, D, P;.E(1%,), is the expected
value of the nth moment of the unconditional holding time in
state 7, because that is the definition of E(¢7). The equation is then

EGE) = EW) + 2 Pu 20 B(CHLT 1))

When x = n, the term inside the range of the second summation
sign is the last term in the binomial expansion of E(f;, + t4)"
which is E(,1},). Taking this last term out of the second summation,
and letting x go from 1 to n — 1 instead of from 1 to n, we see that
the equation becomes

n—1
EGf) = E(6) + [Z Py > E(C” ltz,-)] + 22 PiEGH)
3 z=1 3
Now if the matrix P is replaced in the expression by a matrix Q,
where Q is formed from P by setting column j to all zeros, we can
let k range over all values from 0 to s — 1, including j, since Q,; is
always zero. Doing this, we see the expression is
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n—1
EGL) = EW) + [Z O Z E(CiT 1ti,-)] + Z 0. EGLL)
Suppose that j is held at a fixed value and we imagine that we have
written the above equation s times, once for each possible choice
of i. Then we get a system of s equations. These s equations can be
represented by a single equation involving matrices and vectors.
The term on the left side of the equation, E(,1%,), gives a column
vector of s elements, one for each / from 0 to s — 1. Let the symbols
{E(t;)} stand for this column vector. Similarly the term E(¢7)
yields a column vector, represented by the symbols | E(r7)}.

Looking at the last term, Zk Q. .E(,1},), we see that the summation
over k is equivalent to taking the vector inner product of row / of
Q with the vector {E(,#;,)}, formed by letting k assume all values
from 0 to s — 1. We can then write this term as Qf{ E(,7;,)}, where
* represents the usual matrix or vector product. This last term is
the column vector that results from taking the inner product of

each row of g with the vector {E(,#})}.

In the term

n—1

20 0 2 E(CIHET 1)
k z=1

interchanging the order of summation gives the same answer,
so that

n—1

Z 0. Z E(C57 ) = 2, 20 QuE(Cis 1)
=1 k

The expected value of the product of independent random variables
is equal to the product of their expected values, thus

n—1

n—1
2 20 0uE(CHET ) = 30 20 QuE(CI)EGH)
z=1 k z=1 k

Let Z be the above expression. Taking the C outside the summation,
we get

n—1
L €2 X0 QuEWDEGH))

Now let the symbols | E(¢7;7)} stand for the whole matrix of
(n — x)th moments of holding time, and, as before, {E(,1},)}
represents the vector of xth moments of first passage times from
each state k to the fixed state j. Let Z be the column vector that
results from the s equations formed by letting i take on all values
from 0 to s — 1. Then

- Z [C0 X {ECHN T {EGE)}

where the symbol X after the Q means the multiplication of cor-
responding elements of Q and the matrix | E(/7;®)}, and, as before,
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% represents the usual inner product of a matrix and a vector. The
summation involving k has been replaced by the matrix product
operation, and the remaining single summation represents the sum
of corresponding elements of n — 1 column vectors.

Collecting all these observations, we can write

LEGE DY = {E(D) + [2 Cllo X {EFNY] {E(lti,-)}]

+o ¥ (B

Looking at the last vector in the equation, { E(,#};)} observe that it
is the same as the vector on the left side of the equal sign, which is
the vector of nth moments of first passage time from each of the
states to the selected state j. Subtracting QF { E(,7;,)} from both sides,
we get

(EGED) — 0 % EGE))
= {E(D} + z;; [CZ[Q X {E()] ->|<_ {E(ltij)}:l
where { £(,1;;)} has been replaced by { E(,f}))}.

Since x goes from 1 to n — 1, all the statistical moments of the form
E(,#;,) are the xth moments of first passage times from state k to
state j, but x is less than or equal to # — 1, so that the nth moments
of first passage time are now all on the left side of the equation,
and only smaller moments are on the right side.

The left side of the equation is a vector minus a matrix times the
same vector, which can be factored to be

(EGE)) — 0 % UEGE)) = (U — 0) X 1B
where [ is the identity matrix.

Then, multiplying both sides of the previous equation by the matrix
inverse of (I — Q), which is ( — Q)"', obviously

VEGE D)
-1 + n = 3 n-x + z
= —0) x ({E(Ii)} + ; [Cz[Q X {E(t3; )}] X {E(ltki)]>

Now we have the nth moments of first passage time expressed
as a function of the nth moments and lower moments of holding
times and of moments of first passage times lower than n.

If the statistical distributions of the holding times are known, any
statistical moments of first passage times can be computed by a

recursive procedure using the above results.
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Figure 4 An example of the computation of moments of first passage time

0 1 1

V Z«SET JN;T;@;Q
QeINV(Ie.=I)-QePx(JNLOI[OxT)o.2l«114pP
Z«NTH JN[1]

EXAMPLE OF A TRIVIAL
Z«NTH N;X THREE-STATE PROCESS
+ 2 u{NsppZ+Ix0lX+1] WITH CONSTANT
Z«Z+(XIN)%(QxT N-X)+.xNTH X HOLDING TIMES
+ 4 2[N>X+X+1]
Z+«Q+ . xZ++/PxT N

Z+2 N
{11 Z+T1wN

SET 0 0 1o
3 2 1 0 1
SET 0 1
6 5 3 1 0 o
SET 0 2
36 25 9 PROBABILITY Q(FOR j=0)
SET TRANSITION
216 125 MATRIX P
SET
1296 625
SET 12
7776 3125 1 0
SET 0 6
15625 729 0o 2
SET 1 0

0 0

Tl

2
SET 1 1
4

SET 1 2
16 MATRICES FOR MOMENTS OF HOLDING TIME

Let @ be the inverse of (/ — Q), and suppose that an APL function
called T exists in a workspace that computes the matrix of nth
moments of conditional holding time. The syntax of T is given by
its header line, VZ < T N, so that T has only one input parameter,
N, and it returns a value, Z, which is the matrix of nth moments
of conditional holding time.

Then the recursive computation of any statistical moments of
first passage time is trivial, and the moments are given by the APL
function NTH, displayed in Figure 4. The function SET, also dis-
played in Figure 4, computes the Q and the @ for use in NTH. Sample
executions are shown using a simple process whose statistical
moments of first passage time are obvious so that the results can
be checked by inspection.

Although the function SMP only computes the first three moments
of first passage time, any moments may be obtained in this fashion.

The standard deviation of first passage time is

o(it,;) = LEGE) — [EGLOT]?
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Figure 5 Computations in the APL function SMP

Y PP SMP J;I;1;IP;02:73;5
+ 3 2[PRTIS«(pP)[0]1]
Oe(1 1 o' "3'S IS ';8;, J IS ';d)
> 4 p[0=pPe(12+/P)/I+15]
O«"ROW SUMS OF P ARE BAD.'
O<(2,0B)pB.+/PlE; ]
14 [1J2+~1€T220
> 10 8[0eI«T2271xT1]
U« ('TPHESE 2ND MOMENTS APE < 157 MOMENLS SQUAFED:';'xU'[I])
N

>1u[1L3+~1eT320
+ 14 12[0eI+«T3272%1.5]
U«('THESE 3PD MOMENTS ARE < 2ND MOMENTS TO THE 1.5:';'x[1'{I])

>
PI++4IRV Pt+]J+Te ,2l+\S

P+Ds+/P«PIxET1«+/PxT1

E1T«(IP+«INV 1-J+Px(Spd )e .2l )+ xET1

+ 22 18[PRT]

Ue('PI IS ';PI)

O«('p I8 ' P)

0« ('ET1 IS ';ET1)

U«('E17 IS ';E1T)

»172

ET2++/PxT2

E20«IP+ xET242x(P[ 3 I1xTa0 ;1)) 4, xE1T(I+(I=J) /1]
SIGe(I+E2T-E1TxE1T)*0.5

> 28 27[PRT]

U«('SIG I5 ';8IC)

113

ET3++/PxT3

E3T«IP+ xET3+3x ((PL;IIxT20;T1)+ . xELTT I Y+ (Pl ;I1xT1[;I1)+.xE2TTI]
SKEW<«(E3T+(2xE1T%3)-3%xE1TxE2T )+ {[=0)+I*1.5
+1~PRT

O« ('SKW IS ';SL¥W)

Z«INV C;H;I;J:8;P;Q;R

HeP+R«C+114pZ+C

8¢ (1-2[;J)«I=H)xQ«Z[;J+«C[ (12T I«RTO1S];CI NS« /0«1 /12[R;C11]
L+2-80,x2[I;]«Z{I;1+QLI]

C+(C=zP[Il«J)/C

+ 6 2{0#pR+«(I=R)/R]

Z+Z[4P;P]

4«F EDT X;WiWF38;P3Q;FR

WF«(3+F+110[ ,@HWF),F,3+F+[10@WF«WF+1L  9>KWF«[ /011X

S<'T 0123456789',', '[WF[1]=0]

Z+Z-Q+710=(Z+(F2P+dPI\"10+2+10 L (110, 5+Xx10%F+HF[1])e, +10%d1W-1)T. L
11xPo , >P« 1 W«WF{0]

Z«Z-((@nXe <WpO)[ .xP+l)oe,=P

Z+((T14pX ), Wx 14pX)pS502+12]

+12=pWF

Z( (24WF)o.>P)/2Z

The skew of first passage time is given by

skew (;¢;;) = E[ 0'3(1ti7') :]

skew (1t¢,’) =

E[lt?i 3 ltfiE(ltii) + 3 1tuE2(1tu) - E3(1’n‘)]
03(1t¢f)

EGti) — 3EGEDEGE ) + 3E°Gty) — E'Gli;)
US(ltif)

skew (4¢.;)

EG#}) — 3EG)EGL) + 2E°(¢t,,)
03(1tii)

skew (1t;;) =

description With the above derivations of the information about first passage
of the SMP times in mind, we describe the computations in the APL function
function  SMP, shown in Figure 5, along with the functions INV and EDT:
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Lines i and 2 test PRT to determine whether a typewriter display
is desired. If PRT = 1, then the values for §, the number of
states, and J, the selected state of interest, are displayed.

Lines 3 through 5 check the row sums of P to see if they are
all equal to one. If any are not, they are displayed along with
the diagnostic message ““ROW SUMS OF P ARE BAD.” Neverthe-
less, execution will continue since the fact that the row sums are
not all equal to one might be due to imprecisions in the computa-
tion of P.

Line 6 checks the second moment matrix, 72, to see if the second
moments are supplied. 1f all elements of 72 are zeros, then all
calculations involving second and third moments are bypassed
in the rest of the function. If the second moments are supplied,
then they are checked for validity on lines 7 to 9. If they are
found to be in error, then SMP exits completely from function
execution by means of the — operation.

Lines 11 to 13 perform a similar check for the third moments,
if supplied.

Line 14 computes the vector = by using the matrix inversion
function INV, also displayed in Figure 4.

Line 15 computes the vector P.

Line 16 computes the vector EIT, the first moments of first
passage times from each of the states to the selected state J.
Lines 17 to 21 display the results of the computations thus
far if PRT = 1.

Line 22 exits from SMP if no matrix of second moments was
supplied.

Line 23 computes the second moments of unconditional holding
times, and line 24 computes the second moments of first passage
times from each of the states to state J. These are then used on
line 25 to calculate the standard deviations of first passage times.
Lines 26 and 27 display the standard deviations of first passage
times if PRT is a one.

Line 28 exits from the function if no matrix of third moments was
supplied, i.e., 73 has only zeros in it.

Line 29 obtains the unconditional third moments of holding
time, ET3.

Lines 30 and 31 compute the third moments of first passage
times, E3T, and the skew of first passage times, SKW.

Lines 32 and 33 display SKW if PRT is a one.

A sample execution of EVL, which uses SMP, is shown in Figure 6,
with PRT = 1, so that the intermediate displays appear from SMP.
Observe that when S = 6, five floating buffers are used, and the ex-
pected value of the time to go from state 5 to state 0 is 1.352 seconds
with a standard deviation of 0.895]1 and a skew of 1.895. The skew
tells us that this passage time is not normally distributed, and, since
the run time for this case is 86.410 seconds, the effects of starting the
program in state 5, with all five,buffers in the refill queue, do not last
very long compared to the total run time.
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Figure 6 Sample of additional information obtainable from SMP function

PRT<+1
3 EPr .025 ,05 .075 .1 .1 .2 .S .2 EVL 1000 50 .001667

s Is 2, JI5 0
PI IS 0.,3091 0,6909
P 15 0.3476 0.6524
ET1 IS 0,08335 0.07
E1T IS 0.2398 0.1564
SIG IS 0.1467 0.1208
SKKW IS 1,49 2,014

SIS 3, IS0
pPI I8 0.2336 0,5222 0,2442
L IS 0.2663 0.4899 0,2338
ET1 IS 0,08335 0.07 0.07
E1T IS 0.313 0,2296 0,3861
SIG IS 0.2609 0.2472 0,2751
SKW IS 2.159 2.461 1,955

S5ISwu, JISO
PI IS 0.1972 0.4407 0,2061 0.156
P IS ©0,2263 0,u248 10,1986 0.1503
ETi IS 0,08335 0,07 0.07 0,07
E1T IS 0.3683 0.285 0,5146 0.671
SIG IS 0.3827 0.3736 0.4479 0,4639
SKW IS 2.735 2,92 2.107 1,932

5185, dIs0

PI IS 0.176% 0.3954 10,1849 0.1399 0,1029
£ IS 0,2038 0.3825 10,1789 0.1353 0.09959
ET1 IS 0.08335 0,07 0,07 0.07 ©.07
E1T IS 0.4091 0,3257 0.6107 10,8403 0,9967
SIG IS 0,4958 0.4887 0,6151 0.6629 0,6739
SKW IS 3.23 3,362 2.3u 1.997 1,913

SIS 6, JISO
PI IS 0.1645 0.3676 0.171% 0,1301 0.09573 0,0701
P IS 0.1899 0,3565 0.1667 0.1261 0.09282 0,.06797
ET1 IS 0.08335 0.07 0,07 0.07 0.07 0,07

E1T IS 0.4389 0,3555 0.6813 0,9662 1,196 1,352

SIG IS 0.5951 0.5892 10,7655 0.8518 ©0,8869 0.8951
SKW IS 3.677 3.782 2,599 2.133 1,343 1,895

$IS 7, IS0
PI IS 0,1565 0.3497 0.1635 0.1238 0,09106 0.06668 0.04881
2 IS 0.1809 10,3396 0.1588 0,1202 0,08842 0.06475 0.0u74
EFT1 I8 0.08335 0.07 0.07 0.07 0,07 0,07 0,07

E1T IS 0,4607 0.377% 0.7329 1,053 1,344 1,573 1,73

SIG IS 0.6798 0.67u47 0,8957 1,02 1,087 1.114 1.121

SKW IS u,087 4.177 2.861 2.305 2.027 1.906 1.876

5 1Is 8, J IS O
PI IS 0,1511 0.3376 0.1579 0.2195 0,08792 0,06u38 0.04713 0.0345
P IS 0.1748 10,3282 0,1535 0.1161 0.08545 0.06258 0.04581 0,03353
ET1 IS 0.08335 0,07 0.07 0.07 0,07 ©0.07 0,07 0,07
E1r IS 0.,4767 0.3934% 0.7708 1,126 1.452 1,737 1,967 2,123
SIG IS 0.7508 0.7461 1,006 1.166, 1.264 1,318 1,341 1,347
SK¥ IS u.u68 4,549 3,110 2,49 2,148 1,961 1,877 1,856

.000 1.000 2,000 3.000 4.000 5.000 6.000 7.000 000
153,350 107.29% 95,410 90,474 87.913 86,410 85,460 84,832 83,350
1.840 i.287 1,145 1,085 1,055 1,037 1,025 1.018 .070
1.000 342 172 .102 .065 Jouy .030 021 311

Note that o(1,) is 0.5951, compared with E(,z,,) = 0.4389, which
indicates that the run time for the program will not vary wildly,
at least. Unfortunately, it does not seem to be easy to calculate
the standard deviation of run time directly from this information.

Following these displays, the results of EVL have been edited using
the EDT function and displayed.
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Appendix B: Assumptions for the model

1.

The writing of the output of the program does not in any way
affect the reading and processing of the input. When the output
is on a separate channel, the time for the writing can be ignored
if and only if it can never cause either processing or reading to
stop. This will be the case when the time to write is always less
than or equal to the processing time for a block of records, and
will also be the case if the time for a read is never smaller than
the time for a write.

If the output is written sequentially on another channel and
arm, then this will usually be the case, except for one extra
rotation when a cylinder is crossed. This is a negligible portion
of the total run time.

. The holding time E(t,) is 1 = X. Since the program, when

reading full-track records from a disk, usually cannot read in
less than two full revolutions of the disk, it might be argued
that the holding time in all cases should be a multiple of a revolu-
tion time. If this were done for state 0, and if the seek can be
initiated in the middle of a revolution, it becomes more difficult
to determine the effect of this on the time to read the next record.
For tape inputs, this problem does not exist.

On running EVL repeatedly in two ways—the way it is, and
with E(t,) rounded to the nearest multiple of 0.025—there
was little effect on the results. When this change is made, the
entries in the first row of the probability transition matrix P
must also be changed.

This holding time, f,, is also dependent on Assumption 3.

The arrival pattern of buffers to the refill queue is Poisson.
This is in part based on experience, and also on results in
References 3 and 4. This point is addressed in the text in the
paragraph labeled assumptions.

All reading is done from a single channel, so that reads cannot
be overlapped with one another.

. The initial effects of priming all the buffers have worn off, i.e.,

that the initial tendency for them to all empty simultaneously
has disappeared. This assumption is partly related to the
assumption in item 3.

The consequences are that the run times are somewhat lower
than they would be if the initial effects were considered. This can
be compensated for by making the program correspond to mathe-
matical reality, i.e., by getting it into steady state immediately.
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This can be done by writing out a variable length block as the
first block of each sequence. For example, if there were 50
records in a block and ten input files, writing five records in the
first block of the first input, ten records in the first block of the
second input, etc., the effect achieved is similar to the steady-
state effect. We emphasize the point that the steady state here
discussed is not the same as the steady state of the semi-Markov
process.

Whenever a buffer is placed in the refill queue, it is in fact the
next one needed, i.e., the prediction of which file to read next
is based on examining the last record in each block.

The random variable ¢, is a discrete random variable given by
the vectors R and H. This important assumption is discussed in
the text in the paragraph labeled refill time distribution.
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