
Discussed in  this  paper is the eflect offlouting bufleering on the execu- 
tion time of a program. 

An analytic  model of floating buffering is deueloped and discussed. 
It is shown thut  with use of the model it is  possible to compute the 
run time of a program as a function of the  number of floating buflers 
it uses. 

A model of floating  buffering 
by L. J.  Woodrum 

In computing systems, it is a  common  occurrence  for the execution 
of a  program  to result  in  the  concurrent processing of several related 
input files. A set of input files is considered  related  when at least 
one unprocessed record  from each file must  be  present in memory 
before  the  program  can  proceed.  In  this  paper, we discuss the effect 
of floating buffering on the  total time  required  for  execution of the 
program. An analytic model of floating buffering is developed, 
and conclusions about  the number of floating buffers needed are 
presented. It is shown that  an analytic  model  can  provide  valuable 
insight into a process, even though simplifying assumptions  must 
be made in the  model. 

We are concerned here with the  reading of q input files only. The 
model that is developed is appropriate  for  a  program  that causes 
the  reading of q files from  a single disk with one access arm  or from 
a set of tapes on a single channel  or  any  other  situation  where only 
one  read at a  time is permitted. It is assumed that  the q files consist 
of blocks of records,  and  the  number of records per block is the 
same  for all q files, but  the  number of records  in  each of the files 
can  vary. We assume  that if output is produced,  it  does  not  inter- 
fere  with  the  reading of the  input files. 

Using the model, we discover from  computations  that when  one 
or  two  floating buffers are used, the  program  run time decreases 
sharply, and,  as  the number of buffers increases, the  time  asymptoti- 



cally approaches  the  minimum possible. The effect  of the  number 
of floating buffers on the  run time is principally a  function of (1) 
the  ratio of processing time per buffer to  the time to read  a buffer 
and ( 2 )  the coefficients of variation of the processing and  reading 
times (C(x) = “(x) t ,?(x)). Other  things being equal, the  run 
time is slowest in approaching  the  minimum  as  the  number of 
floating buffers is increased when the average  central processing 
unit (CPU) processing time for  a block is equal  to  the average 
read  time  for a block. 

The following section begins by contrasting floating buffering with 
double  buffering,  two  methods of buffering that  are commonly 
used for input.  On this basis, the  analytic  model is built  and  dis- 
cussed. 

Note  that all subscripting  and indexing in  this  paper is zero-origin, 
i.e., if A is a  vector, A[O] is its  first  element. 

Two buffering methods 

A  common buffering method  for  input is called duuble buffering. 
In this  method,  a  contiguous  amount of main  memory  space  capable 
of storing  two  blocks is allocated  for each of the q input files. Proc- 
essing of the records  in  a block is done  one by one in the buffer area, 
and when all  records in an  input buffer have been processed, a 
read of the  corresponding input file is  initiated  into  the  just-emptied 
buffer. While  this  read is in  progress, processing can  continue  on 
the  other buffer for that  input file. The space  required  for  double 
buffering is 2qb1, where b is the number of records per block and I 
is the length of a  record. 

Another  method called Jloating buffering differs from  double  buf- 
fering in  that  a  contiguous  amount of space  in  main  memory 
capable of storing  a single block of records is allocated  for each 
of the q input files, and f extra  input buffers are used as well. There 
are q + f input buffers altogether,  and each buffer is exactly big 
enough to hold  one  block of records. The space  required  for floating 
buffering is bl(q + f ) ,  where b is the  number of records  in  a block 
and I is the  length of a  record.  Initially, q buffers are filled  by reading 
the first block from  each of the q input files. Then,  the  program 
determines which of the q input buffers will empty first (if possible). 
A read  is  initiated into  one of the f extra buffers from  the file cor- 
responding  to the buffer that will empty first, while processing 
continues on the q buffers initially filled. If the q input files are being 
processed based on a  collating  sequence of keys present  in  the 
records, as is the case in merging while sorting,  then  the file to be 
read next can  be  determined by examining the  last (highest) key 
present  in memory for  each of the q files, and finding the smallest 
of these. The file with the smallest last key  is the file to be  read  next. 
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It is assumed that whenever a  read  is  done, it is from  the file that 
has been determined  in  this way. This  assumption is an essential 
part of the model. 

When  the  read of the first of the f buffers has been completed, the 
program  again  determines (if possible) which input file to read 
by an examination of the  contents of q of the q + 1 nonempty buffers. 
Reading  may  continue in this  fashion  until  there are q + f nonempty 
buffers in main  memory. 

When  a buffer has been emptied by processing all the  records  it 
contains,  the empty buffer is exchanged for  a full one,  which  has 
been filled in  advance by reading using one of the f extra buffers. 
The empty buffer now becomes one of the .f extra buffers, and  the 
full buffer becomes one of the q buffers being processed. This  situa- 
tion is represented pictorially in  Figure 1. 

Following are definitions of terms  found  in  Figure 1 and in later 
discussions : 

X the average arrival  rate (in buffers per second) of buffers from 
the CPU queue to  the refill queue, given that  the CPU is 
processing. When the c p u  is processing, it emits  (empties) 
buffers at  the  rate of X buffers per  second. 

the refill queue  into  the CPU queue, given that there are 
buffers in  the refill queue. 

measured  from  the  instant the seek is initiated to read  into 
the buffer to  the  instant  the read  has been completed. 

P the  average  arrival rate (in buffers per  second) of buffers from 

t ,  the  time  for  a  read to  take place. The  random variable t ,  is 

n ,  the number of buffers currently in  the CPU queue. 
n ,  the  number of buffers currently in the refill queue, including 

q + f the  total number of buffers in the system. Note  the identity 
the  one  currently being read  into. 

n,  + I L  = q + .t 
f l l  the time spent in the processing state between buffer 

emissions. 

The CPU is always in  one of two  states here-it is either waiting 
for  a  read to be completed or  not. If it is not  waiting  for  a  read to 
be  completed,  then it is actively processing records; hence, this  state 
is called the processing state. If it is waiting for  a  read to  be  com- 
pleted,  it is not actively processing records;  this  state  is called the 
nonprocessing  state. For brevity we say that  the cPU is processing 
when it is in  the processing state,  and say it is not processing when 
it is in  the nonprocessing  state. The  term “CPU time” as used in 
this  paper is the time  spent in processing. 

The expected processing time  for the CPU to emit  a buffer is 

E(&) = - 
1 
h 
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Figure 1 A model of floating buffering 
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In Figure I ,  the processing of and  reading  into  a buffer is represented 
by the CPU queue  and  the refill queue.  The CPU queue  consists 
of q nonempty buffers being concurrently processed (emptied) 
by the CPU and  a wait line of full buffers waiting to be processed, 
whereas the refill queue consists of empty buffers being filled by 
reading.  Initially, q buffers are filled  by reading  and join  the CpU 
queue. The  input files are related,  and  the cpu cannot  continue 
processing until there  are  at least q nonempty buffers. The  other f 
buffers join  the refill queue. 

The CPU is a “fluky” server in its processing of the q buffers. It 
determines, in  a way analogous to flipping a q-sided die,  from which 
buffer to select the next record to process. When a buffer is emptied 
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by this  procedure (all records in it are processed), then the buffer 
is emitted  and  joins  the refill queue. 

If the CPU empties  a buffer before another is ready to  take its place 
(none  are waiting in  the buffer wait  line  for processing), processing 
stops until the  completion of the needed read.  Then  the new buffer 
joins  the C p u  queue,  the  empty  one  joins  the refill queue,  and 
processing continues.  At no time is the  number of nonempty buffers 
(the  number in the CPU queue) allowed to be less than q - 1. 
When the number of buffers in  the CPU queue, nc, is greater  than 
or  equal to q, the CPU continues processing, and when n,. = q - 1, 
processing stops while reading is completed. 

Because of the way in which the file to be read is chosen  in the 
refill queue, whenever n,. = q - 1, the file currently being read  is the 
one  from which records are needed to  continue processing, and 
processing can  resume as soon as  the  current  read  is  completed. 
This is easy to see, because if no  record is present in memory  from 
a file, then  the  last  record processed for that file was less than or 
equal to  the last  record  present in  memory  for  any of the  other 
q - 1 files. But if a read is in  progress,  and no record is in memory 
from  this file, then  the read  must  be  from  this file because that is 
exactly the way to determine which file to read. 

Note  that this  model differs from  the classic problem of servicing 
machines  in  two  basic respects:' 

In  the  machine  repair  model,  the  arrival rate of broken  machines 
to  the repair  queue  is  dependent on how many  machines are 
up and  running, whereas in  this model  the  arrival rate of empty 
buffers (corresponding to  the  broken machines) to  the refill 
queue  (corresponding to  the repair  queue) is always either X 
or zero. 
In the machine  repair  model, the number of machines  not  broken 
can  be 0, 1, 2 ,  . . . , m, where nz is the  number of machines.  In 
this  model,  the  number of nonempty buffers must always be 
at least q - 1 and must  be at least q for  the  arrival  rate of buffers 
to the refill queue to be  nonzero. 

Mathematical model 

With  the system of the two queues  in  Figure 1 in  mind, we describe 
the way in which the  total  run time of the  program  can  be  deter- 
mined,  after first describing  a way of looking at the  problem in 
which the  run time cannot be  calculated. 

pitfalls We might  think that if the  average  time  for  a buffer to go  through 
both  queues (the cycle time of the system) is known,  then  the  total 
run time  can be determined by multiplying the  total  number of 
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reads (buffer fillings) by the cycle time.  This  is  not the right  answer, 
which is obvious  from the trivial example of exactly two files and 
three buffers. Suppose that  the read time, t , ,  in the read queue 
always takes  a  constant  one second,  and  the  time in  the CPU queue 
also  takes  a  constant  one  second,  then  the cycle time for the system 
is  two  seconds. Because the  read  time is always overlapped with 
the CPU time in the CPU queue, buffers can  be  considered to actually 
go through  the system at the  rate of one buffer per second. 

We can  determine the  total  run  time by examining certain  probabil- 
ities associated with a  Markov  chain  and  a  semi-Markov process. 
The reader  already familiar with these may  skip immediately to 
the  section on states  in the semi-Markov process. Briefly, a  Markov 
chain  is  a  collection of s states  and  the probabilities associated with 
directed  lines  connecting  the ~ t a t e s . ~ ' ~  A Markov  chain  is easiest 
to visualize as a  directed graph, where each  point is a  state,  and  the 
lines are directed  from state  to  state. Imagine  a  particle  wandering 
around in this  network.  It  can  go  from  any specified point to another 
point  along  a directed line. If a  point  has  more  than  one  line  emanat- 
ing from  it, then  each of the lines has associated with it  the  prob- 
ability that  the particle will choose that line when departing  from 
the  point.  The sum of the  probabilities on the lines emanating 
from  a given point  must  be  one, since the  particle always picks 
one of the lines when departing  from  the  point. 

A step  in  a Markov chain is the  transition of the  particle  from  one 
state  to  another.  The process is said to be in  a state i from  the  instant 
the  particle  enters  state  (point) i until  it  enters  another  state j .  State i 
may be the  same as j if there is a directed line  from i to i. If  we assume 
that each step  takes  some  period of time,  then we may talk about 
the  time it takes to go  from  state to state,  as well as the  number of 
steps  it  takes.  It is customary to label  the s states 0, 1, 2, . . . , s - 1, 
as all subscripting is done in zero-origin. We can  represent  a  Markov 
chain by a  matrix of transition  probabilities, P ,  where P[i;j] is 
the  probability that when the system is in  state i it will go to  state j 
next. From  the P matrix  it is possible to calculate  the  various  statis- 
tical moments of the  number of steps required to go from  any  state i 
to any  state j .  In a  Markov  chain,  it is usually assumed that it  takes 
a  constant  unit of time to go from  one  state to  another. 

Of special interest is the  probability that during  a  step in the process 
the system will be in  any  state i after  a  long  time  has passed (the 
process has  reached  a  steady  state, where the  probability of being 
in any  state  during  a  step is independent of the  state  in which the 
process was initially). If 'X is a vector such that 'X, is the  steady-state 
probability of being in  state i at  an  arbitrary step  in  the process, 
then  the  steady-state  probability of being in state i in any  step is 
the  same  as  the  steady-state  probability that  it will be in  state i on 
the next step.  This  leads to the  matric  equation ZP = X ,  which 
the 'X vector must satisfy. 
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The vector X may be computed using the following four-line deriva- 
tion, where I is the identity matrix, U is the  matrix of all ones, 

= U - I, and u is the row vector of  all ones. 

aP = X (1) 

XU = u, because X ,  = 1 .  (2) 

By adding  Equations 1 and 2 together, we get 

a P + . x u = X + u  (3) 

and, factoring, we get 

x(P + U - I )  = u, or X = u(P + !)-' (4) 

Thus by adding up the  columns of the inverse, we get X .  Most of 
the  other  calculations  are  also just as easily obatined. 

semi-Markov A  semi-Markov process (hereafter abbreviated as SMP) is essentially 
processes the  same as a  Markov  chain, except that  the time for  the  particle 

to traverse  a  line is a  random  variable,  and each of the lines can 
have its own arbitrary statistical  distribution  for  the  time it takes 
for the particle to cross a  line. In  an SMP, we are  more interested 
in the statistical moments of the time required to go  from  a  state i 
to a  state j than  the number of steps. Therefore, it is customary to 
define a  matrix of the first moments of the  time to traverse each 
line (i,  j ) ,  called TI,  so that Tl[ i ;  j ]  is the first moment of the time 
to traverse  the  line (i ,  j ) .  Similarly, matrices T2, T3, etc., may be 
used to record second, third,  etc.,  moments. These matrices are 
called the matrices of the  statistical  moments of conditional holding 
times. Analogous to the X vector is a vector P ,  where P i  is the 
steady-state  probability of being in state i at  an  arbitrary  instant 
in time after all initial effects have worn off (i.e.,  independent of the 
state  it  started in). 

For a full discussion of semi-Markov processes, see Barlow and 
Proscham3  and  also Appendix A, where methods of computing 
the  various items in an SMP are discussed. 

The semi-Markov process I 
state For the  model of floating buffers, we define a collection of states 

space labeled 0, 1, 2, . . . , s - 1, so that the process is in  state 0 when no 
reading is taking place and is in state i, providing i # 0,  when a 
read is in progress that was started when exactly i of the buffers 
were in  the refill queue. When, for example, the process is in state I ,  
it means that a  read is in progress that started when there was exactly 
one buffer in the refill queue. If no other buffers enter  the refill 
queue  during  this  read,  the process goes to state 0, meaning there 
are  no buffers in the refill queue. If a  read  starts with one  buffer 
in the refill queue,  then  the process remains  in  state 1 until  the  read 
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is finished, no matter how many buffers join  the refill queue while 
the read is in progress. If a read starts with two buffers in the refill 
queue  and  four buffers join  the refill queue while the process is in 
state 2, the process remains in state  2 until the read is completed, 
next enters  state 5, and  another  read is started.  State 5 is then held 
until  the new read is completed. 

A  transition from state 0 to a  nonzero  state is allowed as soon as 
the CPU has  a buffer empty and  ready to  be refilled. This  means 
that  state 0 can only change to state 1. For analysis involving disks 
or  rotary devices this is a simplified treatment of the  transition 
from  state 0, but for analysis of reading tapes,  or devices where 
no  rotational delay is present, this is a  reasonable way to define 
the  transition  from  state 0. (See Appendix B, item 2, for further 
discussion of this  point.) 

The  states in the process correspond to the number of buffers in 
the refill queue when a  read is started.  Then if there  are f floating 
buffers, there  cannot  be  more  than f buffers in  the refill queue when 
a  read begins. Since we allowed state 0 to only go to state 1,  when a 
transition to state f occurs, it must always be  just after  a read is 
completed,  and whenever a read is completed,  the CPU is able to 
start processing immediately as mentioned earlier. Since the CPU 
can always start processing when state f is entered,  there  must 
be exactly q buffers in  the CPU queue. But if there  are  a  total of 
q + f buffers, and q of these are  in  the CPU queue,  there  can only 
be f of them in the refill queue when the next read is started. Hence, 
we may  take  the s states to be 0, 1,2, . . . , f, where s = f+ 1. Observe 
that q is not present in the  model,  as  the effect  of floating buffers 
does  not depend on q when q is  sufficiently large. Accordingly, 
we have dequeued our model. 

Let P be an s by s probability  transition  matrix, where an entry 
P[i; j ]  in row i and  column j is the  probability that when the  pro- 
cess  is  in state i it will next be in state j .  Since there  are i buffers 
in the refiil queue when a read starts,  and  one buffer leaves the 
refill queue when the read is finished, the number of buffers in 
the refill queue at the  completion of the read is (i - 1) plus the 
number that  join  the refill queue  during  the  read. If a  transition 
to state j is made,  then  1 + j - i buffers have joined  the refill 
queue  during  the  read.  Therefore,  the probability that when the 
system is  in state i it goes to j next is also  the  probability that 
exactly 1 + .j - i buffers join  the refill queue  during  a  read.  This 
is only true if i # 0 because from  state 0 it always goes to  state 1. 

The  entries in the  probability  transition  matrix P depend upon  the 
statistical  distributions of the c p u  processing time for a  buffer 
and  the time to read  a buffer of records. We  will here assume that 
the inter-emission processing time, t,, for buffers to be emptied 
and  join  the refill queue  has  a negative exponential distribution, 
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with mean 1 t X. For  the  arguments  justifying  this  assumption, 
see Appendix B. This  assumption  depends on the  fact that  the 
distribution of the superposition of a  number of renewal processes 
can be  estimated by the negative exponential  distribution.  This 
estimate is easily made  precise; see Reference 4, and  also see Ref- 
erence 3, pages 18-22, for the exponential  as  the  failure  law of 
complex equipment. 

refill time We take the  read time, t,, to be  a discrete random  variable, given 
distribution by the  two  vectors R and H, where the  probability  that t ,  = R, 

is H,. R is the vector of possible values of t,, and H is the corre- 
sponding vector of the  probabilities  that t, will assume  the values 
in R. Since the  completion of a  read  can only occur at  the end of 
a  revolution when reading  full-track  records  from  a  disk,  the seek 
plus  read time must be a  multiple of one  rotation time. Since a 
seek and  read is started at  the end of another seek and read if 
there is another  read  request  pending,  it  makes sense to restrict 
the values of t ,  to multiples of a full revolution. Note  that the 
division of a refill operation  into seek, wait  for one-half a  revolu- 
tion (average), and  read will not yield correct  results  when  reading 
full-track  records. For example, if  seek time were always distributed 
uniformly in  the  range of 25 to 35 milliseconds, three full revolu- 
tions would be needed for every full-track  record,  whereas using 
seek plus wait plus  read would yield 25 + 30 + 12.5 = 67.5 milli- 
seconds instead of  75. 

When  records  are being read that  are  not full-track  records,  this 
must be modified to always be a  multiple of the  rotational  time to 
pass over one  record.  The  exact values for H and R are  not, generally, 
easy to  obtain  and  must depend on the  particular  application. 

With these assumptions, the entries  in  the  probability  transition 
matrix P for  the  model are given by 

P [ i ;  j ]  = 0 if i = 0 ,  j # 1 (5a) 

P [ i ;  j ]  = 1 if i = 0 ,  j = 1 (5b) 

P [ i ;  j ]  = 0 if i > j + 1 ( 5 c )  

( 5 4  

P [ i ;  j l  = 1 - ~ [ i ;  k ] ,  if i z 0, j = f (5e )  

Equations 5a through 5c are justified in  the previous discussion; 
Equation 5d  is an application of the  fact that  the Poisson  distribu- 
tion is the  distribution  function of the  number of arrivals  in  a given 
period of time  when  the  interarrival time has  the negative exponential 
distribution;  and  Equation 5e expresses the fact that  the last  entry 
in each row of P is set to one minus the sum of the  other entries. 

I" I 

k = O  

126 WOODRUM IBM SYST J 



( 1  0) 

FLOATING  BUFFERING 127 



With the model now complete, we may compute  run times, using 
the APL program EVL shown in  Figure 2. (EVL uses the  supporting 
function SMP, described in Appendix A.) EVL produces  a  matrix 
result Z that  has  four rows and nine  columns.  Figure 3 contains 
sample  executions of EVL. Row 0 of Z is an index of the number 
of floating buffers used, e.g., Z[O; 21 is a 2, meaning the  other 
numbers in column 2 are  the results of using two  floating buffers. 

Row 1 of Z contains  the  run times, in seconds, when the indicated 
number of floating buffers is used. The  last  entry in  row 1, Z[1; 81, 
is the minimum achievable run time (which occurs only if processing 
and reading are overlapped to the  maximum  extent possible). 

Row 2 of Z is obtained  from  row 1 of Z by dividing  row 1 by Z [  1 ; 81. 
This expresses the  run time  for  each choice of floating buffers in 
terms of the  minimum achievable run time.  Thus, if Z[2 ; 31 = 1.076, 
using three  floating buffers results  in  a run time that is 1.076 times 
as long as  the minimum possible time. Since Z[2; 81 would always 
be 1, 2[2 ; 81 instead  contains  the expected value of buffer refill time, 
E(t,). 

Row 3 of Z contains  the  fraction of recoverable  time  remaining 
when the indicated  number of buffers is used. By recoverable time 
we mean  the difference between the  actual  run time and the minimum 
achievable run time.  When  zero  floating buffers are used, then 
the  run time  is the  sum of the processing and refilling times. The 
minimum  achievable  time  is the maximum of the processing and 
refilling times. The difference between run  time using zero  floating 
buffers and  the  minimum achievable is the maximum  recoverable 
run time. By dividing the recoverable run  time for i floating buffers 
by the  maximum  recoverable run time, we get the entry  in  column i, 
row 3 of Z,  Z [ 3  ;i]. For example, if Z[3   ;3 ]  = 0.091, then 91.9 percent 
of the recoverable time is recovered by using only three  floating 
buffers, and 9.1 percent  remains. Since 2[3 $1 would always be 
zero. 2[3;8] instead  contains  the coefficient of variation of buffer 
refill time, 2 , .  The coefficient of variation of a random variable t ,  
C(t), is defined by C(t) = ~ ( t )  t E(t). 

To show how the coefficient of variation of  refill time affects the 
output of the EVL program, several executions  are  shown in Figure 3,  
where E(t,), average refill time, is the  same  for  all,  and only C(t,.) is 
different. Note how run time increases as  the coefficient of variation 
increases. 

The  inputs  to EVL are  the vectors R and H, which give the refill 
distribution,  and a three-element vector, NBX, containing the 
number of reads  to be done  during  the  run,  the number of records 
per block,  and  the CPU processing time  per  record, respectively. 
In  the examples in Figure 3, there are 1000 blocks, 50 records per 
block,  and  the processing time per record  is 0.001667 second.  This 
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Figure 3 Examples of executions of EVL 
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A EXAMPLE 1. C=O.214 

153.350 106.679 94.892 
. o o o  1.000 2.000 

1 . 8 4 0  1.280 1.138 
1.000 .333 .165 

89.706 87.330 85.960 85.110 84.557 83.350 
3.000 4.000 5.000 6.000 7.000 . O O O  

1.076 1 . 0 4 8  1.031 1.021 1.014 ,070 
.091 .057 .037 . 0 2 5  .017 . o o o  

E V L  1 0 0 0  50 .001667 

3.000 4.000 5.000 6.000 7.000 . O O O  
90.075 87.606 86.170 85.272 84.684 83.350 
1.081 1.051 1.034 1.023 1.016 ,070 
,096 .061 . 0 4 0  .027 .019 .214 

(1 EXAMPLE 2. C.O.385 
3 EDT .025 .05 .075 .1 .l . 4  .1 .4 E V L  1000  50  .001667 

153.350 107.908 95.930 90.872 88.220 8 6 . 6 5 0  85.650 84.983 
.OOO 1.000 2.000 3.000 4.000 5.000 6.000 7.000 

1 . 8 4 0  1.295 1.151 1.090 1 . 0 5 8  1.040 1.028 1.020 
1.000 .351 .180 .lo7 .070 .047 .033 .023 

3 EDT .025 .1 .4 .6 E V L  1 0 0 0  5 0  .001667 
A EXAMPLE 3. C=O.525 

153.350 109.767 97.329 91.889 88.988 87.747 86.12? RS.360 
. O O O  1.000 2.000 3.000 4.000 5.000 6.000 7.000 

1 . 8 4 0  1.317 1.168 1.102 1.068 1.047 1.033 1.024 
1 . o o o  .377  .200 ,122 .081 . 0 5 6  . 0 4 0  .029 

R EXAMPLE 4 ,  C=O.711 
3 EUT .025 .125 . 5 5  .45  EVL 1 0 0 0  5 0  .001667 

153.350  112.335  99.570 93.635  90.358 88.343  87.012 86.089 
. O O O  1.000 2.000 3.000 4 . 0 0 0  5.000 6.000 7.000 

1 . 8 4 0  1.348 1.195 1.123 1.084  1.060 1.044 1.033 
1.000 .414  .232 .147 .lo0 .071  .052 .039 

3 EUT .025  .250 .8  . 2  EVL 1 0 0 0  5 0  ,001667 
R EXAMPLE 5, C.1.286. AN U N R E A L I S T I C   S I T U A T I O N  FOR  A   DISK.  

. o o o  
83.350 

.070 

.385 

8?.3ZC 
.ooo  

.070 

.525 

83.350 
. o o o  

.070 

.711 

. O O O  1 . 0 0 0  2 .000 3.000 4.000 5.000 6.000 7.000 . O O O  
153.350 120.231 108.206 101.200 96.690 93.651 91.512 89.942 83.350 

1 . 0 0 0  e527 .355 .255 .191 .I47 .I17 .094 1.286 
1.840 1.442 1.298 1.214 1.160 1.124 1.098 1.079 .070 
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results  in  a CPU processing rate of X = 50 X 0.001667 = 0.08335 
buffer per second. In Example 2 of  Figure 3, R = (0.025, 0.05, 
0.075, 0.1) and H = (0.1, 0.4, 0.1, 0.4). The vectors R and H are 
catenated  to  form  one  vector, which is the left operand of EVL. 

By examining  the  results of many executions of EVL, we found 
that, in  general,  the run time  depends  primarily  upon the  ratio 
of CPU speed to  input/output speed,  the  number of floating buffers, 
and  the coefficient of variation of the refill time t,. However, these 
three  parameters do not always result  in the same run time. We 
have  refrained  from including a table of run times based on these 
parameters because it  might mislead one  into believing that  run 
time  depends solely on these parameters. It must  be emphasized 
that there  does not  appear  to be a simple way to calculate run times 
without using matrix inversion to solve for the vector 'X in the 
Markov chain. For a  small  number of floating buffers, it is possible 
to obtain  formulas  for  the  run  time by symbolically inverting the 
P + 1 matrix.  This is a  mere exercise in  algebra  and  is left to the 
reader. 

use of More  information  about  the behavior of a  program  than  just  run 
Semi-Markov times can  be  obtained by examining  results of other  computations 

process made using the SMP. In the following discussion, we  will use the 
notation described in Appendix A. 

Since the  program always starts in state f ,  it is of interest to  deter- 
mine how long  the  program would have to  run before  reaching 
any selected state of interest. If we found,  for  example,  that  the 
expected time for the  program  to  run before reaching state 0 from 
the  initial statef is greater  than  the run time of the  program itself, 
we would rightly suspect that  usingf buffers would be  unnecessary. 
This  time, E( , t fo ) ,  is  calculated  in  the APL function SMP described 
i n  Appendix  A. 

Related to this is the probability of the  program being in a  state 
at any instant in  time.  This  information is given by the vector I), 
and if we find probabilities which are very small, we can conclude 
that  more buffers are used than necessary. 

As an aside. note that if a  program were written using a fixed number 
of buffers, and  the  probability of the refill queue being empty  (or 
full) were so small that it would not  be likely to  appear  in  the testing 
of the  program,  then special care  must  be  taken to  ensure  proper 
functioning  for such a  rare  event.  This is an interesting use of 
modeling in general-to determine when conditions  are so rare 
as  to merit special care in debugging  a  program. 

Since the probability x0  is crucial in computing  average run times, 
it is of interest to know how long it takes  from  the  time the system 
enters  state 0 to the  time  the system subsequently  returns to it, 
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and also to know the  standard  deviation of the  return time. If the 
standard  deviation of the first passage time  from  state 0 to state 0 
is large relative to its  mean (C(,too) is large), then we can expect the 
run  time of the  program to have a larger standard  deviation as 
well. This would mean  that  the  computed  average  run time might 
not correspond very often with actual  run times. This  standard 
deviation, u(,too), is given by the SMP function  in  the vector SIG. 
See Appendix A for  further discussion of these  computations. 

No model is complete  without  a list of the  assumptions  and  a  dis- 
cussion of their importance, so such a list is given in  Appendix B. 
Of particular  interest are  the assumptions that  the steady-state 
probabilities do in fact describe the behavior of the  program,  and 
that  the arrival  pattern of buffers to the refill queue is Poisson. 
When a program begins execution,  it usually does so with all 
the buffers full from  the first  read of each of the q  inputs.  It will 
be awhile before any of them  empties,  and  then they will all  tend 
to empty  together.  This  situation will recur  until  enough  records 
have been processed for  the  reads to become more  independent of 
the  initial  conditions.  The wearing off of these initial  conditions is 
not  the  same  as  the wearing off of the  initial  conditions described 
previously when discussing the  steady-state  probability vector Z. 

In  the previous case, we talk about  the steady-state  independence 
of the  state  the process starts  in, which is the  statef, with the refill 
queue  full.  Now we are concerned with the use of the negative 
exponential  distribution  to describe the inter-emission time of buffers 
by the CPU. The negative exponential  distribution  does not describe 
very  well the  behavior of the  program when it is first being executed 
but  more and more closely describes its  behavior  as time goes on 
and  more  records  are processed. 

This is analogous to  (but  not exuctly the  same  as) shuffling q decks 
of cards  together in  a q-way shuffle, where only the  last  card of 
each deck is marked,  and  then examining the resulting single deck 
for the  marked  cards. They will tend to all fall together at the  end. 
Under  repeated q-way shuffles, we would expect the  distance between 
marked  cards to  be better  approximated by the negative exponential 
distribution.  Obviously,  the negative exponential  distribution  can 
never describe  this exactly, since intercard  distances  are discrete 
random variables, whereas the negative exponential  distribution 
applies to  continuous  random variables. 

As a consequence of this tendency for buffers to initially empty 
together,  run times would be greater  than  the  computations  indi- 
cated. The effect of this clustering persists for  some significant 
portion of the  run if there  are  not very many blocks in each of 
the  input files. How long  this persists has not been investigated 
extensively, but we do know that  it causes run time to increase. 
Here is a case where the physical situation  does  not  correspond to 
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mathematical reality. What  must clearly be  done is to change  the 
physical situation  in  such  a way that it  does  correspond to mathe- 
matical reality. 

As in the case of a deck of marked  cards, if we would like to have 
a shuffled deck,  then it is best to begin with a shuffled deck.  This 
may be  done by writing a  random number of records  in  the jirst 
block only of each input file when the  input files are  created. For 
fur tkr  discussion of this point, see Appendix B, item 5. 

Summary comment 

An  analytic  model of floating buffering has been obtained with 
which program  run times can  be  computed. The  run time per block 
was found to depend principally on the number of floating buffers, 
the  ratio of CPU processing time per block to the input/output 
refill time per block,  and  the coefficient of variation of the input,' 
output refill time. 

The various  results of computation using the SMP model  provide  a 
method of estimating  the  magnitude of the variability of run time, 
and even call attention in such a  program to possible errors  that 
might  go undetected due  to their infrequent occurrence. When 
this  model was compared to  an actual  run of a  program,  the  run 
time for the  program was 42.1 seconds, and  the  computed  run 
time was 39.1 Probably,  the  computed  run time was less 
than  the  actual  run time because the run was not long  enough for 
the negative exponential  distribution to be a good approximation 
to the time between the emptying of buffers. The run times obtained 
using the  model  are  reasonable  estimates of the  run times of actual 
programs.  Other  things being equal,  as  the number of floating buffers 
used  is increased, the  run  time is slowest in approaching  the mini- 
mum when the average CPU processing time for a block is equal to 
the average read time for a block. 

The computations involved in the analysis of an SMP model  are 
as easy to obtain  as  the vector 'X, provided one  has  the necessary 
familiarity with vectors and matrices. In the investigations of  this 
model,  the use  of APL\360 for computations was especially useful 
because the  language is well-suited for the vector and  matrix  opera- 
tions needed. It seems likely that the use of stochastic models for 
analyzing computing  situations will become a  more widely used 
technique. 
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Table 1 Summary of  notation 

S = S, the  number of states 

J j ,  the selected state of interest 
P = (Pin} 
P 3 ( P i }  
" 

TI {E( fd)  
T2 = {E(?:k)} 
T3 ( E ( t , 3 k ) }  

PI = x 

ET1 = 
ET2 = 
ET3 = 
E1T = 

Q = P,  except column j is all zeros 
Q Ip = ( I  - Q)-' 

~ 

In every case, the braces, { }, are used to indicate a vector or  matrix of the elements obtained by letting i and k range 
over the values from 0 to S - 1. Also, j is a fixed scalar. 

S IG An S-element vector giving the  standard  deviation of the 
first passage times. SIG[i] is the  standard  deviation of the 
time to go  from any state i to  the selected state , j  for  the 
first time. 

ET3 An S-element vector giving the  third  moments of uncondi- 
tional  holding time for each of the  states. 

E3T An S-element vector giving the  third  moments of first 
passage time from  each of the  states to  the selected state j .  

SKW An S-element vector giving the skew of the  first passage 
times from each of the  states to  the selected state j .  The skew 
given is the normalized third  central  moment,  i.e., the  third 
moment with respect to  the mean, divided by the  cube of 
the  standard  deviation. 

The following input  data must be supplied to use the  program: 

J The  state of special interest (see the previous descriptions of 

P The S by S probability  transition  matrix. P[ i ;  k ]  is the  prob- 
ability that if the system is in  state i, it will  be in  state k next. 

TI The S by S matrix of first moments of conditional  holding 
time. Tl[i;  k ]  is the first moment of the time required to go 
to  state k from  state i directly, given that  the system is in 
state i and will be  in  state k next. 

output). 

The following input  data is optional  and  must  be set to zero if not 
used : 

T2 The S by S matrix of second moments of conditional  holding 

T3 The third  moments of conditional  holding  time. 
time. 

If T2 is not supplied,  the  program will not  produce  the  outputs 
ET2, EZT, ET3,  E3T, SIG, and SKW. If T3 is not  supplied, the 
program will not produce  the  outputs ET3,  E3T, and SKW. Table 1 
is a  summary of the  notation.. 
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The mnemonics for the  three  functions are SMP for  semi-Markov 
process, INV for matrix  inversion,  and EDT for  editing or displaying 
data after  it  has been entered. The syntax of SMP is “PRT SMP J,” 
where PRT is a  zero if no typewriter display of the  results of com- 
putations is desired,  and PRT is a  one if typed output is desired. 
J is the selected state of interest,  as described earlier. In every case, 
SMP will leave its  computed  results  as  variables global to it with 
the  names described above. 

In  the SMP function,  there  are  three  diagnostic messages. The first, 
on  line 4 of SMP, “ROW SUMS OF P ARE  RAD.” ,  appears when the 
rows of P don’t  sum to ones.  However, the function  continues 
anyway since the difference may  be caused by slight imprecisions in 
the  calculation of the  entries  in P. Accompanying  this message is a 
display of the  actual  row  sums that  are  not ones, with the  rows 
indicated in the  display.  Two  other  diagnostic messages may  occur, 
on lines 8 and 12 of the SMP function, when the second or  third 
moments  are in error. If either of these messages occurs, it will 
exit by means of a  right  arrow (-) by itself because when this 
happens  there is an error  in  the  computation of the entries in one  or 
more of the  conditional  holding  time  matrices. 

If any  problem  should arise while executing these functions, such as 
running  out of workspace, so that execution is suspended, an exit 
can  be made completely from all function execution by entering 
a  right  arrow. 

A  variable  can  be displayed when no  execution ‘is taking place by 
typing  its  name or using the EDT function. The syntax  for EDT is 
“f EDT M”, whereJ’is the  number of fractional  digits to be displayed 
and M is the  name of the  matrix  or vector to be  displayed. To display 
scalars, always do so by entering  the  name of the  variable; do not 
use the EDT function.  When displaying variables by name,  or when 
data is typed from SMP, the  number of digits displayed can  be 
restricted by the system command “)DIGITS (1”. If this is entered 
before the display, only d significant digits will be  displayed. 

We now describe the way the  statistical  moments of first passage 
times, E(,zYj) are  computed.  The  random  variable , t , ,  is the  sum of 
a  number of random  variables t k h ,  the times to go  from  states k to 
other  states h, where k and h are  states passed through on the way 
from i to j .  With probability P,,, the  random variable ,t,, is equal 
to t , , ,  since if the system goes directly from  state i to  state ,j, , t t i  = 

1,;. With  probability Pzk, k # j ,  the system goes to some  state k 
directly, and then  from k to j for  the first time. Thus with proba- 
bility P, k ,  = t ,  , + This  means that 

E(] t i i )  = P { , E ( ~ , , )  + P,,E(t?, + , t k i )  and  also 

E(I~:,) = Pi,E(t: j )  + P,,E(t,, + 
k i t  i 

k f i  

NO. 2 * 1970 FLOATING BUFFERING 135 



I f  ( t , k  + I f B i ) "  is expanded using the binomial  theorem,  then 

z = n  

where C: is the  number of combinations of n things  taken x at a 
time. We can then see that 

E(, t : j )  = P,iE(t:'j) + &E( 2 c:"t:,= Ji;) 
k # i  I = o  

Since the expected value of the sum of a  number of independent 
random  variables is equal to  the sum of their expected values, and 
all the  random variables are  independent of one  another in  the 
above  sum that  has x as  the index of summation, we can  write the 
expected value operation inside the  summation sign. Then we get 

E(,t7,!i) = P T I E ( t : , )  + P T k  E(CZt:"i' It;i) 

Now when x = 0, the  summation  term  is E(C:t:, It,"i), which is 
E(z ;~ ) .  Taking  this  term  out of the  summation, we let x go  from 1 
to n instead of from 0 to n, and get 

r 1 

k # i  z=O 

Observe that  the first summation  is over k # j ,  and the term inside 
the  summation, PtkE( t : ,J ,  is the  same  as  the first term  in the above 
expression, P,,E(Z:~) ,  except that k is present as a subscript  instead 
of j .  Since the first summation is for all k # j ,  we can put P,,E(t'ti) 
inside the  range of the  first  summation  and  let k range over all 
values from 0 to s - I ,  including j .  Then we find that 

The  part of the expression in brackets, ck P, kE(t:k),  is the expected 
value of the nth moment of the unconditional  holding  time  in 
state i, because that is the definition of E(t;). The  equation is then 

k f  1 1 = 1  

When x = n, the  term inside the  range of the second summation 
sign is the last  term  in the binomial  expansion of E(t, ,  + I tk l )n ,  
which is E(l~;i). Taking  this  last  term  out of the second summation, 
and  letting x go  from 1 to n - 1 instead of from 1 to n, we see that 
the  equation becomes 

Now if the  matrix P is replaced in the expression by a  matrix Q, 
where Q is formed  from P by setting  column j to all zeros, we can 
let k range over all values from 0 to s - 1,  including j ,  since Q7,  is 



E(, t?;)  = EO:) + Qtk  2 E(C:tYIIZ + QM%&) 
r=1 

Suppose that j is held at a fixed value and we imagine that we have 
written the  above  equation s times, once for each possible choice 
of i. Then we get a system of s equations.  These s equations  can be 
represented by a single equation involving matrices and vectors. 
The term  on  the left side of the  equation, E(,t;;), gives a  column 
vector of s elements, one  for  each i from 0 to s - 1. Let the symbols 

stand for this  column  vector. Similarly the  term E(I?)  
yields a  column  vector, represented by the symbols E(/:)\ .  

Looking at  the last  term, X I .  QzkE( , t : ; ) ,  we see that  the  summation 
over k is equivalent to taking the vector inner product of row i of 
Q with the vector { E ( l z ; j ) ] ,  formed by letting k assume all values 
from 0 to s - 1.  We can  then write this  term  as Q;{E(llZ,)], where 
; represents  the  usual  matrix  or vector product.  This  last  term is 
the  column vector that results  from  taking  the inner product of 
each row of q with the vector {E(,l:i)}. 

I In  the  term 

I k 2 = 1  

interchanging  the  order of summation gives the  same  answer, 
so that 

k r = l  z=1 k 

The expected value of the  product of independent  random variables 
is equal to  the product of their expected values, thus 
n-1 n- 1 

z = 1  k 2=1 k 

Let 2 be the above  expression.  Taking  the C: outside  the  summation, 
we get 

n- 1 

z = I  k 

Now let  the symbols { E ( z ~ ; ~ ) \  stand for the whole matrix of 
(n  - x)th  moments of holding time, and,  as before, { E ( l ~ E , ) ]  
represents  the vector of xth  moments of first passage times from 
each state k to  the fixed state j .  Let Z be the  column vector that 
results  from  the s equations  formed by letting i take on all values 
from 0 to s - 1 .  Then 

where the symbol x after the Q means  the  multiplication of cor- 
responding elements of Q and  the  matrix [ E ( z ; ; ~ ) } ,  and,  as  before, 
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represents  the  usual  inner  product of a  matrix  and  a  vector. The 
summation involving k has been replaced by the  matrix  product 
operation,  and  the  remaining single summation  represents  the  sum 
of corresponding elements of n - 1 column vectors. 

Collecting all these observations, we can  write 

Looking at  the last vector in the  equation, { E ( , t ; j ) }  observe that it 
is the  same  as  the vector on  the left side of the  equal sign, which is 
the vector of nth  moments of first passage time  from  each of the 
states to the selected state j .  Subtracting Q: { E(,z;~)] from  both sides, 
we get 

where {E(l i ; i )}  has been replaced by {~?(~l;!)}. 

Since x goes from 1 to n - 1, all the  statistical  moments of the  form 
E(lt;i) are  the  xth  moments of first passage times  from  state k to 
state j ,  but x is less than  or  equal  to n - 1, so that  the nth  moments 
of first passage time  are now all on  the left  side of the  equation, 
and only smaller moments are  on  the  right side. 

The left side of the  equation is a vector minus  a  matrix times the 
same  vector, which can be  factored to be 

where I is the  identity  matrix. 

Then, multiplying both sides of the previous equation by the  matrix 
inverse of (I - Q), which is (I - Q)", obviously 

Now we have the nth  moments of first passage time expressed 
as a  function of the nth moments  and lower moments of holding 
times and of moments of first passage times lower than n. 

If the statistical  distributions of the  holding  times are  known, any 
statistical  moments of first passage times can  be computed by a 
recursive procedure using the  above results. 
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121  2-NTR JNCll 
V 

111 * 2 ~ C N L P P Z ~ I X O L X + ~ I  
C21 Z-Zt(X!N)x(&xT %-X)+.xNTX  X 

V 2-NTH N:X 

131 * 4 ZCN>X-Xtll 
C U I  Z-Qt.xZ+t/PrT  N 

V 

V Z+T N 

V 
C11 Z+Tl*N 

3 2 1  

6 5 3  

36 25 9 

216  125  27 

SET 0 0 

SET 0 1 

S E T  0 2 

S E T  0 3 

SET 0 4 
1296  625 81 

SET 0 5 
7776  3125  243 

S E T  0 6 
46656 15625 729 

SET 1 0 
1 3 2  

1 6 4  

1 36 16 

SET 1 1 

SET 1 2 
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Figure 6 Sample of additional  information  obtainable  from SMP function 

PRT+l 
3 EDT . 0 2 5  . 0 5  . 0 7 5  .1 .1 . 2  .5 . 2  EVt 1 0 0 0  5 0  . 0 0 1 6 6 7  

P I S  0 . 3 U 7 6  0 . 6 5 2 4  

P IS 0 . 2 6 6 3  0 . 4 9 9 9  0 . 2 3 3 8  I 

SIG I S  0 . 2 6 0 9  0 . 2 4 7 2   0 . 2 7 5 1  
SXW I S  2 . 1 5 9  2 . 4 6 1  1 . 9 5 5  

S IS 4. .T IS 0 

ET1 IS 0 . 0 8 3 3 5  0 . 0 7  0 . 0 7  0 . 0 7  I 

SKW I S  2 . 7 3 5  2 . 9 2  2 . 1 0 7   1 . 9 3 2  

S I S  5. J IS 0 

SKW I S  3 . 2 3  3 . 3 6 2  2.34 1 . 9 9 7  1.913 

S I S  6 ,  J IS 0 
PI I S  0 . 1 6 4 5   0 . 3 6 7 6  0.1719 n . 1 3 0 1  0 . 0 9 ~ 1 7 3  n . n 7 n l  

E 1 T  I S  0 . 4 3 8 9  0 . 3 5 5 5  0 . 6 8 1 3  0 . 9 6 6 2  1 . 1 9 6  1 . 3 5 7  I 

P I S  0 . 1 7 4 8  0 . 3 2 8 2  0 . 1 5 3 5  0.1161 0 . 0 1 5 4 5   0 . 0 6 7 5 1   0 . 0 U S R 1  0.03353 I 

SIG I S  0 . 7 5 0 8  0.7461 1 . 0 0 6   1 . 1 6 6  1 . 2 6 4   1 . 3 1 8   1 . 3 4 1  1.347 
SXW I S  4 . 4 6 8  4 . 5 4 9  3.116 2 . 4 9  2 . 1 4 8   1 . 9 6 1  1 . 8 7 7  1 . 8 5 6  

. o o o  1 . 0 0 0  2 . 0 0 0   3 . 0 0 0   4 . 0 0 0   5 . 0 0 0  6 . 0 0 0  7 . 0 0 0  . o o o  

1 . 0 0 0  .342 . I 7 2   . I O 2  . 0 6 5  . 0 4 4  . 0 3 0  . 0 2 1  . 3 1 1  I 

Note  that ~ ( , t , , , ~ )  is 0.5951, compared  with E(,tocJ) = 0.4389, which 
indicates  that  the  run  time for the  program will not  vary  wildly, 
at  least.  Unfortunately, it does  not  seem  to  be easy to calculate 
the  standard  deviation of run  time  directly  from  this  information. 

Following  these  displays,  the  results of EVL have been edited  using 
the EDT function  and  displayed. 
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first block of each sequence. For example, if there were 50 
records in a  block  and  ten  input files, writing five records  in  the 
first block of the first input, ten records  in the first block of the 
second input, etc.,  the effect achieved is similar to  the steady- 
state effect. We emphasize the  point  that  the steady  state  here 
discussed is not the  same  as  the steady  state of the  semi-Markov 
process. 

6. Whenever a buffer is placed in the refill queue,  it is in  fact  the 
next one needed, i.e., the prediction of which file to read next 
is based on examining the  last record  in  each  block. 

7. The  random variable t ,  is a discrete random variable given by 
the vectors R and H. This  important assumption is discussed in 
the  text in  the  paragraph labeled refill time  distribution. 

CITED REFERENCES AND FOOTNOTE 

1. L. Takacs, “A process of servicing machines,” Introduction to the Theory 
offeueues, Oxford University Press, New York, New York, Chapter 5 (1962). 

2. W. Chang, “Single-server queuing processes in computing systems,” IBM 
Systems Journal 9, No. 1 ,  36-71  (1970). 

3. R. E. Barlow and F. Proscham, Mafhemafical Theory of Reliability, John 
Wiley & Sons, Inc., New York, New York, 121-151  (1965). 

4.  W. Feller, An Introduction to Probability  Theory and Its Applications, Vol. 2, 
John Wiley & Sons, Inc., New York, New York, 355-356  (1966). 

5. The actual program run time  was furnished by R. F. Zorn. 
6. The APL functions are based on the notes from a course taught by Dr. J. E. 

Flanagan  at  the IBM Systems Research Institute, New York,  in 1968. 
7.  A. D. Falkoff and K. E. Iverson, APL\360 User’s  Manual, International 

Business Machines Corporation,  Thomas J. Watson Research Center, York- 
town Heights, New York (August 1968). 

144 WOODRUM IBM SYST J 


