Today’s complex operating and computing systems make systems
testing a difficult task. Major problems arise when one attempts to
measure the performance of a system in a multiprogram environment
and to evaluate the interfaces between computer elements, programs,
and operator.

Historically, testing devices were first developed to monifor system
activity and to produce lest data. Separate computer systems were next
used to permit on-line data reduction and generation of appropriate
test conditions.

The purpose of this paper s to describe a hierarchical control program
design which incorporates the major capabilities of the previous solu-
tions without requiring a separate computer. This low-cost, flexible
technique has been applied in the measurement of various performance
characteristics, in generating simulated error conditions, and in
simulating machine devices and features.

Hierarchical control programs for systems evaluation
by D. D. Keefe

The task of testing a complete operating and computing system
has become increasingly difficult, primarily because of the growing
complexity of today’s systems. An operating system consists of a
control program and a set of job programs; a computing system
consists of at least one processing unit and various channels, con-
trol units, and input/output devices. Not only must each program
and system device be individually tested to assure proper function-
ing, but the various interfaces between programs in the operating
system and devices in the computing system must also be tested.
Finally, all parts of the system must be pulled together for the
complete systems test required to gauge the performance of the
system and to check the functional relationship among operator,
operating system, and computing system.

In this paper, the major problems encountered in a typical
systems test are discussed, two established solutions are reviewed,
and an experimental technique, called hierarchical control, is de-
seribed. Applications of the technique are used to illustrate its
advantages and disadvantages.

The class of systems which the technique assumes is typified by = assumptions
the 1BM sYsTEM/360.! Applicable features include:

® Several interrupt levels and a priority scheme for choosing
among simultaneous interrupt conditions.
A privileged mode of operation (called supervisor state) that can
utilize the full instruction set of the computer and run in an
uninterruptable state.

.2+ 1968 HIERARCHICAL CONTROL PROGRAMS

testing
problems

established
solutions

A nonprivileged, interruptable mode of operation (called prob-
lem state) which can utilize an instruction subset that normally
includes all arithmetic, logical, and internal data handling
operations.

A hierarchy of active programs consisting of a control program
that operates in the supervisor state and one or more job pro-
grams that operate in the problem state. The job programs
may have priority levels that further contribute to the hierarchy.
Input/output error-detection operations performed by devices,
control units, and channels.

Input/output error-recovery operations issued by the control
program with the aid of status information presented by the
channels.

The control program is assumed to be an integral part of the
computing system. That is, the control program is considered as
necessary to the operation of the system as are the devices. The
job programs use the control program and, through the control
program, the computing system to accomplish application-oriented
tasks.

Let us consider some of the problems which the system tester
must solve. In a one-job program environment, performance is
principally determined by straightforward throughput timings, and
all costs of operating the system are directly chargeable to the job
program. Even in this environment, however, it can be difficult to
derive performance figures for specific phases or routines. The
difficulties are compounded when the control program manages
two or more job programs, using a multiprogramming algorithm
to allocate processing time to the individual programs. The job
programs require differing amounts of supervisor time and other
system resources. It thus becomes difficult to efficiently assess the
effect of an individual program on system performance.? It is
similarly difficult to establish a valid execution cost of operating
any one program in the system.

A control program must be capable of handling any error con-
dition, whether the error originates in a device or a program. As is
well known, the errors destined to occur eventually, once the sys-
tem begins production runs, are often difficult to produce in a test
environment. Moreover, some means of assessing system activity
is of great importance to the designer of an operating system in
determining whether the system is functioning as anticipated, and
in isolating problem areas if it is not. Inasmuch as a thorough test
is vital to assure proper operation of a system once it is released,
one desires a method that tests a system vigorously and at the
least possible cost.

Looking back through the short history of systems testing, we
find that two main techniques have evolved. The first uses specially
built equipment to monitor system activities and produce output
on graphic displays or magnetic tape, while other devices are
employed to create error conditions within the system.® The

KEEFE IBM SYST J

special-purpose devices are characteristically one-directional, i.e.,
they either record data or provide input signals. This approach is
accurate and reliable and has the advantage of not disturbing the
operating environment of the system. A large amount of data can
be collected in a short period of time, and most of the data reduction
is performed later, either by visual inspection of results or by
analysis on a computer. The disadvantages of this approach stem
primarily from its high cost and lack of flexibility.

A second approach uses a separate computer to monitor opera-
tions in the system under test. In this case, most of the data can
be evaluated as soon as collected. The ability to modify the moni-
toring program gives this approach a great deal of flexibility, and
false status information can easily be sent to the monitored system
to force simulated error conditions. However, unless the monitor
computer is very much faster than the monitored computer, it is
difficult to prevent the loss of some data. This ecan be avoided by
halting the processor of the monitored system until the monitor is
ready to accept more data—at an additional cost in elapsed testing
time. Regular control program and job program timings can be
kept in normal relationship by using separate clocks to monitor the
processor and channel operations. The monitor program inhibits
attempts to pass interrupts to the monitored system until the job
program reaches the point where the interrupt would have nor-
mally occurred. This we call “modified-time-base” processing.
With a programmed monitor, data gathered from the test system
can serve as feedback to subsequent operations, thereby providing
the effect of “bidirectional’”’ operations. External devices are often
useful in providing the monitor computer with additional inputs
that may be used immediately within the system. The major dis-
advantage of this technique is the additional cost of using a sep-
arate computer.

Let us now consider an approach that provides the main capa-
bilities of the previous two methods at a much lower cost. Essen-
tially, we take greater advantage of the multiprogramming capa-
bility of the computer systems by transforming the previously
described two-computer technique into one that requires no sep-
arate computer.

An example of a hierarchy of programs in a normal system is
given in Figure 1. We have a control program operating in the
supervisor state and three job programs operating in the problem
state. Job Program A is at a higher priority level than Programs
B and C, that is, B and C are given the system only when A is
unable to use it. Since B and C are at the same level, they alter-
nate in using the system whenever activity drops to their level.
Now let us expand the hierarchy by introducing two higher-
priority programs, as shown in Figure 2.

The monitor control program, or monitor, operates in the
supervisor state and takes control at all interrupt conditions. Ap-
propriate indications are passed to the test analysis program for
further processing. The conditions to be monitored are specified

NO. 2 -+ 1968 HIERARCHICAL CONTROL PROGRAMS

hierarchical
solution

Figure 1 Hierarchy of programs in a typical normal system

SUPERVISOR STATE PRIORITY
LEVEL

REGULAR CONTROL
PROGRAM

PROBLEM- PROGRAM
STATE

JOB PROGRAM
A

JOB PROGRAM JOB PRé)GRAM
B

Figure 2 Hierarchy of programs in a test analysis system

SUPERVISOR STATE PRIORITY
LEVEL

MONITOR CONTROL
PROGRAM

TEST ANALYSIS
PROGRAM

PROBLEM-PROGRAM
STATE

REGULAR CONTROL
PROGRAM

JOB PROGRAM
A

JOB PROGRAM JOB PROGRAM
B [

in the test analysis program at the time it is loaded. Although
the test analysis program serves as a job program for the monitor,
it is run in the supervisor state to give the test programmer maxi-
mum flexibility in altering the system to suit the requirements of his
test. Moreover, the functions of the monitor and the test analysis

KEEFE IBM SYST J

Figure 3 Control flow diagram

A. NORMAL OPERATION

REGULAR CONTROL
JOB PROGRAMS PROGRAM HARDWARE

B. MONITORED OPERATION

REGULAR CONTROL
JOB PROGRAMS PROGRAM HARDWARE

MONITOR CONTROL
PROGRAM

TEST ANALYSIS
PROGRAM

program are identical to those performed within the separate moni-
toring computer discussed in the second approach. The monitor
must ensure that all information presented to the regular control
program and its job programs appears exactly as it would in nor-

mal operation. The feedback capability of the two-computer sys-
tem is also retained, adding greatly to the utility of the technique.

Note that the regular control program operates in the problem
state. Consequently, when it issues a privileged instruction, a
program-check interrupt occurs. The monitor takes the interrupt
and is free to execute the instruction as issued, ignore the instruc-
tion, or modify the instruction before execution. This gives the
monitor two key advantages:

¢ The monitor can bar the regular control program from usurping
control.

® The monitor can detect and handle all privileged instructions
issued by the regular control program.

Also, linkages to the test analysis program may be formed for
most types of privileged instructions and all interrupt conditions.

The flow of control between job program, control program, and
equipment is depicted in Figure 3A for normal operation, and in
Figure 3B for monitored operation. To better understand this,
consider the time sequence of a typical input/output operation.
In normal operation, a job program requests the control program
to perform an input/output operation. This is shown in Figure 4A.

NO. 2 - 1968 HIERARCHICAL CONTROL PROGRAMS

control
flow

Figure 4 1/O request to completion

A. NORMAL GPERATION

JOB PROGRAM

CONTROL
PROGRAM

CHANNEL

B. MONITORED OPERATION

JOB PROGRAM

CONTROL
PROGRAM

MONITOR

CHANNEL

EVENT DESCRIPTION

A JCB PROGRAM REQUESTS THE CONTROL PRCGRAM TO PERFORM AN t/O OPERATION

B CONTRCOL PROGRAM {SSUES “"START /0" PRIVILEGED INSTRUCTION

C CONTROL PROGRAM RETURNS CONTROL TO THE JOB PROGRAM

D UPON COMPLETION OF THE I/0 OPERATION. AN INTERRUPT CALLS THE CONTROL PROGRAM
E THE CONTROL PROGRAM PROCESSES THE INTERRUPT, TESTS FOR ERRORS.

F THE CONTRCL PROGRAM RETURNS CONTRCL TO THE JOB PROGRAM

The control program initiates the operation and returns control
to the job program. When the operation has been completed, the
control program takes an input/output interrupt and checks for
error-free operation. Control is then passed back to the job pro-
gram. Iligure 4B shows the same functions under monitor opera-
tion. The monitor does not pass the interrupt directly back to the
control program. Rather, the interrupt is passed when the job
program reaches the point of normal interruption. Thus, a normal
timing relationship between the job program and the control pro-
gram is maintained.

In designing a monitor program, two of the goals are high
speed and low cost. In some respects, these are complementary,
since increasing the speed of the monitor reduces the overhead
associated with monitor execution. However, any costs associated

KEEFE IBM SYST J

with achieving increased speed must be balanced against the sav-
ings produced.

Because the main storage required by the monitor and test
analysis program makes up the major cost in a control program
hierarchy, the basic monitor should be designed to be as small as
possible, considering the desire for increased execution speed. The
remaining storage requirement is largely a function of test analysis
program complexity. Because registers used by the monitor have
to be stored and loaded for every interrupt condition, execution
speed tends to be inversely related to the number of index and
general-purpose working registers used by the monitor.

The monitor must maintain an indication of the state (super-
visor or problem state) that the regular control program has set for
the system. For example, a privileged instruction causes an inter-
rupt whether issued by the regular control program or by a job
program. In the first case, the monitor ignores the interrupt and
performs the instruction; in the second case, the monitor passes
the interrupt to the regular control program. The monitor can
normally use built-in storage protection features to prevent the
regular control program from infringing upon the monitor storage
area, thereby maintaining the proper “sphere of protection” for
the control program and job programs.* The monitor must, of
course, simulate all protection functions used by the control pro-
gram, and it must ensure that the proper protection indications
are forwarded to the control program.

Finally, linkages to the test analysis programs must be provided
at relevant control points, which include all interrupt conditions
as well as most privileged operations. These linkages enable a
single control program to operate with all test analysis programs,

much as in the case of a normal control program with a set of job

programs.

Given a monitor, system control can be established and main-
tained in one of several ways. The regular operating system can be
relocated to an area of main storage other than that which it
normally occupies. The facility for operating in this relocated area
can be provided by a ‘‘relocation register,”’? such as the Preferential
Storage Base Address register of the 1BM 9020,° or it can be achieved
by using a relocatably assembled supervisor, providing that the
computer and supervisor are designed for this type of operation.

A second possibility is to relocate the interrupt control area
from the regular control program area to the monitor control pro-
gram area. This is equivalent to the first method, except that only
one operating system may be accommodated. The relocation can
be achieved either by a special hardware feature or by a micropro-
gramming modification.

Finally, under a third approach, the interrupt control area can
be program-modified to link to the monitor program. This approach
has the advantage of requiring minimum special features or modi-
fications. However, the monitor may be vulnerable to loss of con-
trol if the control program inserts new values into its interrupt

NO. 2 - 1968 HIERARCHICAL CONTROL PROGRAMS

monitor
functions

system
control

129

experimental
use

locations. To prevent this, the monitor may either be tailored to a
specific control program or use storage protection to guard the
interrupt area from alteration by the control program.

In the course of full-scale, practical experimentation, the latter
two techniques have been successfully applied at both the Op-
erating System/360 (0s/360) and the levels of the Basie, Disk, and
Tape Operating Systems (BOS, DOS, TOS/360).

To effectively measure performance, one needs high-resolution
timers. The timers may be built into the processing unit, or they
may be external devices. Several suitable timers are now com-
mercially available with resolution times of less than one micro-
second. The time spent in the regular control program and the job
programs should be maintained, as this is the “process time’” to be
considered. Real-time data for input/output operations should be
gathered, so that the appropriate interrupt points may be chosen.
It may even be necessary to compensate for the storage cycles used
by the channels while running in the monitor and test analysis
programs, depending on the accuracy desired. Direct access devices
may require synchronization loops to ensure that rotational delays
are the same in the monitored system as in the original. As the
degree of realism increases, so do the storage requirements and the
actual execution time of the system being tested. Thus some trade-
off is normally called for, and a degree of timing approximation is
accepted to hold the system cost at a realistic level.

A brief look at an actual implementation of the technique should
help to place the operating cost in proper perspective. (The sys-
tem described is only operating in an experimental mode in a
laboratory environment.) Our computing system is a modified 1BM
sysTEM/360 Model 30. The modifications consist of special micro-
programs that perform the following functions:

® Relocate the interrupt control area from the regular control
program area.
Store a selected register into monitor program fixed location.
Load Program Status Word (psw) from monitor program fixed
location.
Switch from normal sYsTEM/360 operations to monitor-mode
operation.

The latter three functions are program-initiated via the DIAGNOSE
instruction. Control over an external timing unit, implemented with
the aid of the READ DIRECT and WRITE DIRECT instructions,
permits such functions as start timer, stop timer, reset, and read
into storage.

The monitor program, written as assembly-language macroin-
structions, requires a basic 500 bytes of storage. Linkage to each
test-analysis routine requires four additional bytes, plus the stor-
age required for the routine itself. To use the monitor, a test-
analysis programmer issues the macroinstructions and parameters
specifying the points at which he wants control. This is followed
by the coding for his analysis routines.

KEEFE IBM SYST J

The monitor is normally entered into the computer system via
initial program load (IPL). Once loaded, the monitor issues the
diagnose instruction to escape the normal sysTeEM/360 mode of
operation. It then performs an IPL procedure to load the regular
control program and commences operation. The execution times of
the various monitor routines are summarized in Table 1.

A more meaningful deseription of the execution times is shown
in Table 2, which presents actual run times for several jobs under
pos. The time for each job is shown for both normal execution and
execution under the monitor. Total size of the monitor and test
analysis program was 2,066 bytes, and these programs used the
highest-address 4K block of storage. The test analysis program in
this case counted and classified the various interrupts by type,
and the increase in time eompared to total test time is seen to be
well under ten percent. This shows that nontrivial test data can
be garnered at acceptable cost levels. On the other hand, to be
sure, a highly elaborate test analysis routine could raise the execu-
tion time by several thousand percent.

In speaking of applications of hierarchical control, one thinks
of a given application in terms of a particular test analysis program
running under the monitor control program. To formulate an
application, appropriate control program linkages are selected and
the corresponding routines are written. The test analysis program-
mer, like the job programmer in normal operations, is spared all
of the considerations involved in actually controlling the system.

Table 1 Sample overhead times for SYSTEM/ 360 Model 30

Routine in monator Ezecution time (microseconds)

Supervisor call interrupt 464
1/0 interrupt 431
External interrupt 478
Program interrupt 549

Load PSW instruction 742
1/0 instruction (s10, TIO, etc.) 666*

* Plus channel response time.

Table 2 Sample execution time for a job stream

Time
Under Percentage
Job Type Monitor Difference

min sec
cosoL (Compile and Go) 4 57 4.6
FORTRAN Compile 3 14 7.7
reG Compile and co 1 47 5.9

NO. 2 - 1968 HIERARCHICAL CONTROL PROGRAMS

applications

131

Applications that concern timing of various conditions have
already been mentioned; these conditions were said to be those
associated with interrupts or privileged instructions. It is also
possible to time routines that are not interrupt-oriented by insert-
ing ‘“‘pseudosupervisor call”’ instructions at the start and end of the
routine to be timed. Job programs can use supervisor call instrue-
tions to request action by the control program. Such an instruction
causes a coded interrupt which specifies the called-for action. A
pseudosupervisor call uses a code that is invalid to the normal
control program, and the test analysis program employs the super-
visor call linkage in the monitor to watch for these special codes.
When one occurs, the time is recorded and control is passed back
to the job program. The normal control program is not entered; it
need not know that the interrupt occurred.

Other feasible applications of this technique are: traces of
input/output operations, of all interrupts, and of privileged instruc-
tions; timing of program phases; and summaries of interrupt
activities.

Asmentioned earlier, the feedback capabilities of the technique
can support other interesting applications, some of which are as
useful in component testing as in systems testing. For example,
consider the problem of writing a program to test a particular
input/output device that has never been attached to a computer.
To hold test time at a minimum, the test program should be ready
to run as soon as the hardware is available. How then debug the
test program? A test analysis program to simulate the operation of
the missing devices is a ready-made solution. The simulator is
entered whenever a test program tries to operate the device. Simu-
lation can range from substituting a similar device to total genera-
tion of all status information and delays within the program,
Applied at the systems test level, a whole communication network
can be simulated, with messages arriving according to statistically
distributed frequencies and responses analyzed for validity as they
are issued.

Error recovery procedures have been completely tested by
generating every possible device error condition in a test analysis
program. In this approach, a device error bit is forced ON when an
input/output interrupt indicates that the channel has finished an
operation. To help pinpoint the specific error cause, normal control
program operation interrogates the device in a ‘‘sense’ operation.
As soon as the sense data has been read in, the test analysis pro-
gram modifies 1t to yield the desired error data. The reaction of the
control program is then evaluated against the expected reactiort.
In this way, error recovery procedures can be validated in a few
minutes, as contrasted with several hours or days in previous
methods.

Another useful application has emerged in the form of program-
testing techniques for getting more value out of each test run. In
normal operation, when a programming error causes a program
check interrupt, the control program cancels execution of the

KEEFE IBM SYST J

program and goes on to the next job. It is possible, however, that
the test analysis program be given a list of the starting addresses
for each routine in the program to be tested. When a program check
occurs, the test analysis program intercepts it, sends out appro-
priate diagnostic messages, and returns to the next routine in the
list. This ensures that each routine in the job program is at-
tempted. Without the technique, the probability of getting any
useful data out of the test run after the first failure is zero. With
the technique, it is usually close to one.

A hierarchical control program structure proves to be a feasible
and effective systems testing tool. The monitor program permits
data. to be gathered on almost any type of program activity and to
be reduced in an on-line fashion. Applications of the technique are
beneficial for component testing at both the computer and program
level. In fact, the applicable range of systems testing applications
appears to be limited primarily by the ingenuity of test designers.

CITED REFERENCES

1. G. M. Amdah], G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of the
IBM sYSTEM /360, I BM Journal of Research and Development 8, No. 2, 87-97
(April 1964).

G. A. Blaauw and F. P. Brooks, Jr., “The structure of sysTEM/360, Part I,
Outline of the logieal structure,” IBM Systems Journal 3, No. 2, 119-135
(1964).

. P. Calingaert, “System performance evaluation: survey and appraisal,”’
Communications of the ACM 10, No. 1, 12-18 (January 1967).

. C. T. Apple, “The program monitor, a device for program performance
measurement,” Proceedings of the ACM National Conference P-65, 65-75
(August 1965).

. J. B. Dennis and E. C. Van Horn, “Programming semantics for multipro-
grammed computation,” Communications of the ACM 9, No. 3, 143-155
(March 1966).

. J. B. Dennis, ‘“‘Segmentation and the design of multiprogrammed computer
systems,”” Journal of the ACM 12, No. 4, 589-602 (October 1955).

. G. R. Blakeney, L. F. Cudney, and C. R. Eickhorn, “An application-
oriented multiprocessing system, Part II, Design characteristics of the 9020
system,”’ IBM Systems Journal 6, No. 2, 80-94 (1967).

HIERARCHICAL CONTROL PROGRAMS

summary
comment

133

