Designers and users of multitasking operating systems must be alert
to the problem of task deadlock, which prevents the affected tasks from
being completed.

This paper describes the conditions that can result in task deadlock in
any multitasking systems. Also discussed are technigues for avoiding
deadlock in both operating system and application program design.
Finally, it is shown how these techniques were applied in the design
of the sYsTEM/360 Operating System job iniliator, the part of the sys-
tem that allocates major resources needed to execute jobs.

Avoiding deadlock in multitasking systems
by J. W. Havender

Modern operating systems, by permitting more than one data
processing task to be performed concurrently, make possible more
efficient use of system resources. If a program that is being exe-
cuted to accomplish a task must be delayed, for example, until
more data is read into the computer, performance of some other
completely independent task can proceed. The central processing
unit can execute another program or even execute the same pro-
gram to accomplish a different task.

In the competition for system resources, such as main storage
space or data sets (files), however, all multitasking systems are
subject to a condition referred to as deadlock. This condition pre-
vents the affected tasks from being carried out to completion.
Several conditions must exist for tasks to become deadlocked.
Consider a simple example involving only two tasks that are being
performed concurrently. Assume that each task has been allocated
a system resource which has been used in partially completing the
task. Assume also that allocated resources are released only after
completion of the task. If completing each task requires an addi-
tional resource and if the additional resource has been allocated
to the other task, neither task can be completed; that is, task
deadlock exists.

Such impasses can arise in many forms involving many tasks,
and when task deadlock does oceur, there is no known general
technique for correcting the condition. Recovery procedures, if
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they exist, are dependent on the particular processes that give
rise to the situation. Thus, task deadlock situations are not now
amenable to system recovery procedures. However, the problem
has been dealt with effectively in the sysTEM/360 Operating Sys-
tem! by systematically avoiding task deadlock. Throughout this
paper, the term “operating system’ implies that version of the
sysTEM/360 Operating System that provides multiprogramming
with a variable number of tasks (MvT).

Although deadlock problems between jobs have been overcome
within the operating system, deadlock is a real possibility that
must be considered by designers of other multitasking systems
and by users of this system who plan to exploit its multitasking
capability in application programs. In the following discussion,
some background information about the operating system is pro-
vided, the deadlock problem is defined more completely, some
techniques that have been useful in circumventing deadlock situa-
tions are described, and, finally, examples taken from the job
initiator design are used to illustrate some of these techniques.

Background

Although the multitasking concept of the operating system is
dominated by the theme of executing tasks independently, some
interdependence among tasks is necessary. To accommodate this
interdependence, the abstract concept of an event was evolved.
Completion of a task may depend on the occurrence of one or
more events, such as transferring data between an 1/0 device and
main storage. While the original task is deferred until the occur-
rence of such an event, the system can proceed with other tasks.
We will call these interdependencies among tasks #nterlocks, and
provisions are made in this operating system for two basic kinds of
interlocks among tasks, which we call explicit and implicit.

Two system macroinstructions have been provided to permit
explicit interlocks. The WAIT macroinstruction permits a pro-
grammer to request that a task be delayed until the occurrence of
one or more events; the POST macroinstruction permits him to
signal that an event has in fact occurred.

Implicit interlocks are provided when a service or resource that
is under operating system control is required for a task. The sys-
tem forces the task to be deferred until the needed resource is
available. For example, if a serially reusable program that is cur-
rently being used to perform one task is required to perform a
second task, the system delays the second task until the event
“program has become available” occurs.

It was also realized that a mechanism was required to co-
ordinate the use of resources not under system control. Provisions
were incorporated to permit such resources to be defined and
named, and the macroinstructions ENQ and DEQ were provided
to control access to them.? The ENQ macroinstruction causes a
request to be put on the queue for a named resource; the DEQ
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macroinstruction requests removal from the queue because use of
the resource is completed.

A further refinement came about when it was realized that a
resource might or might not have to be used serially. To accom-
modate this situation, use of a named resource may be defined as
exclusive or shareable. The system coordinates use of such a re-
source so that exclusive use precludes any other concurrent use,
while any number of shareable uses can be made concurrently.

The original multitasking concept of the operating system en-
visioned relatively unrestrained competition for resources to per-
form a number of tasks concurrently. The system acted mainly as
a dispenser and collector of these resources. But, as the system
evolved, many instances of task deadlock were.uncovered, most
of which were centered about the single resource—main storage.
The planned solution was ““roll out.” In this procedure, the pro-
gram that is to be executed to perform the task is rolled out of
main storage onto external storage to make more main storage
available. However, the problems encountered with roll-out re-
quired a redirection in thinking, leading to the current version. In
this operating system, a subset of system resources is allocated to
the job step. The job initiator, one of the job management routines,
obtains the subset of resources needed for a job step in a manner
designed to avoid deadlocks.

The deadlock problem

Deadlock situations arise when a group of tasks becomes inter-
locked in such a way that they cannot be completed. Consider
first a simple example involving explicit interlocks. Assume that
completion of task A depends on the occurrence of event b; task
B on event a. Also assume that only the program being executed
to accomplish A can record (post) the occurrence of event a; only
the program for task B can post event b. Clearly, this design makes
deadlock inevitable. But this type of problem is not likely to occur
in practice, because the designer had to take explicit steps to create
the problem. However, interlocks involving system resources that
must be used serially can produce deadlocks in much more subtle
ways.

Using a resource that must be used serially to accomplish sep-
arate tasks necessarily results in interlocks among the tasks. If a
task requires 2. resource that is not available, that task becomes
dependent upon some other task for release of the resource. And
if the task to which the resource has been allocated requires, in
turn, a resource allocated for the original task (or otherwise be-
comes interlocked with the original task), a deadlock situation
oceurs.

In the earlier example of explicit interlocks, the two events, a
and b, must first be defined and then the programs must be de-
signed so that the occurrence of each of the two events depends
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explicitly upon occurrence of the other. However, if we consider a
task that first requires a serially reusable resource, 4, and later an
additional resource, B, it is not so obvious that deadlock is pos-
sible. Yet deadlock can occur if there is another task or group of
interlocked tasks that first requires resource B and then resource
A. If, in addition, the order of execution of the programs is such
that each progresses beyond the point of acquiring their first re-
source before either requests their second resource, deadlock be-
comes inevitable.

Although deadlocks can arise from any type of task interlock,
the emphasis in the following discussion is on deadlocks arising
from requests for serially reusable resources. Most system resources
are serially reusable. Consider the following examples:

Storage media (not to be confused with the information they con-
tain). These qualify as serially reusable resources—serial because
they contain only one set of information at a time; reusable be-
cause they can contain other information when the original in-
formation is no longer required. (Although not all storage media
fulfill these requirements, the ones of interest here, such as tape,
disk tracks, and main storage, do.)

System components (such as tape drives, disk drives, access mech-
anisms, and central processing units). Some components, such as
tape drives and unit record equipment, are commonly considered
to be serially reusable. Disk drives are intrinsically shareable in
performing independent tasks, but when one contains a volume
totally dedicated to an application, it must be considered to be
serially reusable.

Information. In a static state, information is intrinsically share-
able (although it may be defined not shareable for security rea-
sons). Examples of shareable information are tables of values or
read-only programs. But, while information is being changed, it is
typically nonshareable. The classical example of this is updating
a record in place. Only one updating process can take place at one
time. More ecomplex information transitions than this occur in
practice, but they have the characteristic property that two such
processes on the same information cannot overlap. (The ENQ-DEQ
faeility should prove to be useful in preventing the overlapping of
such processes.)

Avoiding deadlock

To recapitulate, we can see that, as performance of a task pro-
gresses, resources are required. If requests are made for more re-
sources for a task to which resources have already been allocated,
the possibility of task deadlock must be examined. The pertinent
question to be asked is: Is it possible for another task, B, to exist
at the same time as this task, A, and that (1) task B has a resource
allocated to it that is required for task A, and (2) task B may
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require resources that have been allocated to task A before the
resources allocated to task B can be relinquished? Typically, the
answer is affirmative, and task deadlock may occur. However,
this points the way to the first approach to avoiding the deadlock
problem:

Approach 1. In designing a program, request a resource for a task
while another resource has been allocated to it only if it can be
demonstrated that no other group of interlocked tasks will exist
concurrently that (1) have been allocated the required resource
and (2) will later require the resource allocated to the original
task. Simply stated, ensure that resources are requested for all
tasks in the same order.

If, as is often the case, the first approach is not applicable, there
are three alternatives:

Approach 2. Request resources collectively. Do not proceed with
the task until all required resources have been obtained.

Approach 3. If holding a formerly obtained resource may prevent
acquisition of an additional resource, release the original resource
before obtaining the additional resource. If the original resource
is still. required, re-request it collectively with the additional
resource.

Approach 4. When a request for a resource is denied and when
Approach 1 is not applicable, be prepared to take an alternative
course of action. Do not wait for the needed resource while retain-
ing other resources.

Observe here that a task should not be delayed for a requested

resource even when no known threat of deadlock exists. Consider
the example in Figure 1, which involves three tasks and three
resources. Time is shown horizontally in the figure, and the
vertical line indicates the present time. Use of resources A, B,
and C is represented by horizontal bars, which, when they cross
the vertical line, indicate that the resource is presently being used.
Resource bars beginning to the right of the vertical line indicate
that use is planned for the future.

At the present time, resource B has been denied to task 1, be-
cause it has been allocated to task 2. The question the designer
must answer is: Should task 1 be delayed until resource B is made
available? The answer is negative, because inspection of the figure
reveals that the future resource requirements of interlocked tasks
2 and 3 will ultimately result in deadlock if all tasks are delayed
until resources become available. Thus, task 2, which cannot be
completed, will never relinquish resource B for task 1.

It is theoretically possible for the control program to detect
deadlocks from requests for resources under its control, but only
as they arise—too late to avoid terminating one task. However,
interlocks can be established among tasks completely independ-
ently of the control program. For example, when a task awaits an
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Figure 1 Three tasks competing for resources
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unposted event, the control program does not know which task
will post the occurrence of the event. Therefore, it must be assumed
that deadlock is generally undetectable. Of course, designers of
application programs are in a position to be aware of interlocks
among nonsystem tasks and can take advantage of this knowledge.

Case histories

The cases to be considered involve the job initiator, the function
of which is to process a stream of incoming jobs. This involves
repeating the basic cycle of selecting jobs from an input job queue,
acquiring for each job step, in turn, the resources required to
execute it, and attaching each job step as a task to be done under
control of the supervisor. Multijobbing is achieved by concur-
rently executing multiple copies of the initiator program as inde-
pendent tasks. Thus, steps from different jobs are initiated for
concurrent execution. However, because the initiator tasks in-
clude acquiring three resources, one at a time, for each job step,
deadlocks among initiator tasks could occur if appropriate pre-
cautions were not taken.

The three major resources acquired for jobs by the initiator
are: devices and auxiliary storage, data sets, and main storage.
We consider first the problem of allocating these three resources
individually and then of allocating them in eombination.

Consider first the allocation of devices to a job step. It is in-
tuitively appealing to permit free contention among initiator tasks
for individual devices, until all devices required for a step have
been accumulated. However, this design would permit two or
more initiator tasks to become deadlocked. This and other con-
siderations led to the current design in which all devices required
for a job step are acquired collectively. While an initiator program
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is collecting devices, an interlock incorporated into the control pro-
gram prevents other initiators from acquiring devices. (Of course,
initiators can release devices at virtually any time.)

The next case to be considered is the allocation of data sets,
which, in turn, involves an additional problem of data set integ-
rity. To maintain data set integrity, job steps must not be sched-
uled for concurrent execution if they use common data sets in
such a way as to impair either the data sets or the results of the
job. Fortunately, many data sets do not enter into the data set
integrity problem, including: (1) those that are totally local to the
job, such as work files; (2) program libraries that are usually used
in a read-only fashion; and (3) those that may be written into but
to which access by jobs is controlled by a record or track hold
mechanism. However, the possibility of global data sets must be
considered (especially in systems having large data bases). Global
data sets, which are accessible by all jobs in the system, are some-
times accessed in a fashion designed to prevent their concurrent
use by several jobs. Thus, the deadlock problem must be con-
sidered.

The deadlock problem hinges on the treatment of global data
sets that are passed from one job step to another. Therefore, the
first question to be answered is: Should the integrity of a passed
data set be maintained from step to step? It is certainly conceiv-
able that a global data set could be read in the first step of a job,
that the information in the data set be processed in one or more
succeeding steps, and that finally an updated version of the data
set be written out in the last step.? Therefore, it was decided that
the integrity of a passed data set would be maintained from step
to step of a job. Thus, we define a passed data set to be in con-
tinuous use from the first to the last step that refers to it.

The possibility of deadlock arises when we consider the fact
that another global data set may be required for the second step.
If each of the data sets is requested within the job step in which
it is required, a deadlock can clearly arise if another job that has
been scheduled for concurrent execution requires the same data
sets in the opposite order. Because this possibility cannot be ef-
fectively excluded, Approach 1 is not applicable. Approach 3, re-
leasing formerly acquired data sets and then requesting the new
group of data sets, has also been ruled out because of the need
to retain data set integrity from step to step. Thus, Approach 2
must be used.

A list of all external data sets referred to in a job is compiled
as the job is read into the system. FFor each data set referred to,
the user must also declare whether use of the data set is shareable
or exclusive. Then, the ENQ macroinstruction is used to control
concurrent execution of the jobs based on these declarations.*

Allocating devices for a job presents a problem similar to that
of aliocating data sets; as execution of the job progresses, it may
require additional devices. Two jobs being executed concurrently
could reach a point where each required some of the devices allo-
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cated to the other to proceed to completion. Here, allocating de-
vices for the whole job would avoid deadlock, just as with data
sets. However, the requests of two jobs for devices are far more
likely to conflict than requests for data sets, so the alternative of
allocating all devices required for the total job was not chosen.
Instead, Approach 3 was used: all devices allocated to a step are
released at the end of the step. Then, the requirements of the
next step are considered. This approach is permissible because
there is no integrity problem with devices (i.e., a step of another
job can intervene between the steps of the original job and a de-
vice can be used in all three steps without detrimental results).?
However, this approach opens up a potential problem, since it will
sometimes require dismounting and mounting of volumes. But this
problem is addressed in a different manner.®

The next resource that the initiator obtains for a job step is
the region of main storage in which the step will be executed. Be-
cause main storage is a valuable resource, allocating a region large
enough for the largest step in the job is out of the question. There-
fore, a region is obtained for each job step. The region for one
step may be larger than that for the previous step, but the previ-
ously obtained region is freed prior to requesting the next one.
Hence, there is no deadlock problem related to regions alone.

Up to this point, the allocation of data sets, devices, and re-
gions have been considered individually in relation to the dead-
lock problem. It now becomes necessary to consider acquisition of
all three of these resources in combination. But to do this, it is
necessary to digress and describe certain design characteristics of
the operating system.

Two areas of main storage for the operating system are of in-
terest. The dynamic area is a pool of main storage from which
regions are allocated both for job steps and for such system tasks
as executing input readers, output writers, and certain operator
command routines. The link pack area, which is fixed at the time
the operating system control program is first loaded into the com-
puter, contains selected programs from system libraries. Although
certain system programs must reside in the link pack area, the
user may choose to keep some additional system programs there,
based on available storage space and frequency of use.

As each initiator selects a job step, it requests a main storage
region in which the step will later be executed. If the request,
which is made to the supervisor main storage management rou-
tines, cannot be satisfied, that initiator task must wait until a
region of the required size becomes available.

A design objective for the operating system was to execute the
initiator in the region that would later be used for the job step, in
order to reduce the amount of main storage required for the job
scheduling function. When a job step is ready to be attached
(formally designated as a task to be coordinated under control of
the supervisor), the initiator relinquishes the region to the job
step by transferring control to a small module in the link pack
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Figure 2 Initiator allocation points not yet established
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area. This module actually issues the ATTACH macroinstruction,
and then waits for the job step to be completed. When the step is
completed, this initiator module transfers control back to the re-
gion, where step termination procedures are carried out.

Returning to allocation, the three resources—main storage re-
gions (REG), data sets (ps), and devices (DEV)—must be allocated
in an order that precludes deadlock. The flowchart in Figure 2
shows the program logic of the initiator. The points in the flow at
which devieces are allocated and released are shown as fixed, but
only general areas are shown for the acquisition of data sets and
regions, since it is precise placement of these functions that must
be established.

Because data sets are allocated for the life of the job, while
the other two resources are allocated only for a step, data sets for
the job should be allocated first. The reason for this can be seen
by considering the consequences of allocating devices for step one
and then data sets for the job, resulting in an order of DEV — Ds.
For step two, data sets would have been allocated previously, so
that only devices would now be alloeated, an order of ps — pEV.
Thus, the order of allocation would have been reversed in going
from step one to step two, creating the possibility of deadlock.
Similar reasoning can be applied to the acquisition of regions be-
fore data sets. Thus, we have the order ps — (DEV, REG).

The problem remaining then is to decide on the order for
acquiring regions and devices. At first glance, it appears reason-
able to acquire devices first and defer acquiring a region until just
before attaching the job step, since the initiator must relinquish
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Figure 3 Initiator allocation points in fina! design
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the space in the dynamic area at this time in any case. This se-
quence would be pEVv — REG. Because the initiator tasks are al-
ways carried out in this order, the requirements of Approach 1
would appear to be satisfied. Unfortunately, this is not the case,
as can be seen from Figure 2. After a job step has been completed,
cPU control is passed to the routine that allocates devices, so that
the devices needed for the next step can be acquired. However,
this routine is executed in the region acquired for the previous
job step. Thus, the order for acquiring devices and regions has
been effectively reversed to REc — pEV, and deadlock can oceur.
In the final design, regions are allocated before devices, and the
sequence for acquiring the three resources is p§ — REG — DEV,
as shown in Figure 3.

Summary comment

Deadlock problems can arise in many subtle ways in a multitask-
ing system. System designers must be constantly alert to the dead-
lock possibilities of any proposed design. Users designing applica-
tion programs in which multitasking ecapabilities are used face
similar problems. Once a deadlock situation has been recognized,
it can probably be circumvented by one of the techniques de-
scribed.
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The operating system supervisor could be modified to detect
deadlocks after they had actually occurred. However, the added
time required to perform this funetion does not seem justified
since a task would have to be terminated nonetheless. The reason
that the supervisor cannot anticipate deadlocks is that no means
presently exist for communicating to the supervisor the future
interlock plans for a task. Theoretically, the supervisor could de-
tect and circumvent deadlocks before they occurred if the future
plans for a task were specified. Of course, the supervisor would
have to be apprised of all future plans, not just those involving
future plans for resource use. Only in this way could a really com-
plete solution to deadlock be achieved.
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. The generation data group presents an added facet to this problem, since
concurrent execution of jobs, some or all of which are creating new gen-
erations, could cause unpredictable shifts in the generation number base
as the jobs were executed.

. A request from within the job step for access to data sets in addition to
those obtained by the initiator is not prohibited. However, such requests
must be made with great care, since main storage, devices, and probably
other data sets have already been allocated to the job step. Thus, such
requests are fraught with deadlock potential.

. Printers using the universal character set feature are the first devices to
present an integrity problem, since they have a loadable buffer that de-
fines the print chain characteristics.

. The job scheduler has been designed to minimize this operational problem.
First, when devices containing passed data sets or volumes that are to be
retained are released at the end of a job step, the volumes are not dis-
mounted. Second, the device allocation program has been designed to
avoid allocating devices containing passed data sets or retained volumes
if they are not to be used in the step for which devices are being allocated.
When this cannot be avoided, the affected volumes must be dismounted
and later remounted.
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