
Designers and users of multitasking operating systems must be alert
to the problem of task deadlock, which prevents the affected tasks from
being completed.

This paper describes the conditions that can result in task deadlock in
any multitasking systems. Also discussed are techniques for avoiding
deadlock in both operating system and applicatim program design.
Finally, i t is shown how these techniques were applied in the design
of the SYSTEMI~~Q Operating system job initiator, the part of the sys-
tem that allocates major resources needed to execute jobs.

Avoiding deadlock in multitasking systems
by J. W. Havender

Modern operating systems, by permitting more than one data
processing task to be performed concurrently, make possible more
efficient use of system resources. If a program that is being exe-
cuted to accomplish a task must be delayed, for example, until
more aata is read into the computer, performance of some other
completely independent task can proceed. The central processing
unit can execute another program or even execute the same pro-
gram to accomplish a different task.

In the competition for system resources, such as main storage
space or data sets (files), however, all multitasking systems are
subject to a condition referred to as deadlock. This condition pre-
vents the affected tasks from being carried out to completion.
Several conditions must exist for tasks to become deadlocked.
Consider a simple example involving only two tasks that are being
performed concurrently. Assume that each task has been allocated
a system resource which has been used in partially completing the
task. Assume also that allocated resources are released only after
completion of the task. If completing each task requires an addi-
tional resource and if the additional resource has been allocated
to the other task, neither task can be completed; that is, task
deadlock exists.

Such impasses can arise in many forms involving many tasks,
and when task deadlock does occur, there is no known general
technique for correcting the condition. Recovery procedures, if

I 74 HAVENDER ISM SYST J

macroinstruction requests removal from the queue because use of
the resource is completed.

A further refinement came about when it was realized that a
resource might or might not have to be used serially. To accom-
modate this situation, use of a named resource may be defined as
exclusive or shareable. The system coordinates use of such a re-
source so that exclusive use precludes any other concurrent use,
while any number of shareable uses can be made concurrently.

The original multitasking concept of the operating system en-
visioned relatively unrestrained competition for resources to per-
form a number of tasks concurrently. The system acted mainly as
a dispenser and collector of these resources. But, as the system
evolved, many instances of task deadlock were.uncovered, most
of which were centered about the single resource-main storage.
The planned solution mas “roll out.” In this procedure, the pro-
gram that is to be executed to perform the task is rolled out of
main storage onto external storage to make more main storage
available. However, the problems encountered with roll-out re-
quired a redirection in thinking, leading to the current version. In
this operating system, a subset of system resources is alI’ocated to
the job step. The job initiator, one of the job management routines,
obtains the subset of resources needed for a job step in a manner
designed to avoid deadlocks.

The deadlock problem

Deadlock situations arise when a group of tasks becomes inter-
locked in such a way that they cannot be completed. Consider
first a simple example involving explicit interlocks. Assume that
completion of task A depends on the occurrence of event b ; task
B on event a. Also assume that only the program being executed
to accomplish A can record (post) the occurrence of event a ; only
the program for task B can post event b. Clearly, this design makes
deadlock inevitable. But this type of problem is not likely to occur
in practice, because the designer had to take explicit steps to create
the problem. However, interlocks involving system resources that
must be used serially can produce deadlocks in much more subtle
ways.

Using a resource that must be used serially to accomplish sep-
arate tasks necessa,rily results in interlocks among the tasks. If a
task requires P - resource that is not available, that task becomes
dependent upon some other task for release of the resource. And
if the task to which the resource has been allocated requires, in
turn, a resource allocated for the original task (or otherwise be-
comes interlocked with the original task), a deadlock situation
occurs.

In the earlier example of explicit interlocks, the two events, a
and b, must first be defined and then the programs must be de-
signed so that the occurrence of each of the two events depends

76 HBVENDER IBM SYST J

explicitly upon occurrence of the other. However, if we consider a
task that first requires a serially reusable resource, A , and later an
additional resource, B, it is not so obvious that deadlock is pos-
sible. Yet deadlock can occur if there is another task or group of
interlocked tasks that first requires resource B and then resource
A. If, in addition, the order of execution of the programs is such
that each progresses beyond the point of acquiring their first re-
source before either requests their second resource, deadlock be-
comes inevitable.

Although deadlocks can arise from any type of task interlock,
the emphasis in the following discussion is on deadlocks arising
from request.s for serially reusable resources. Most system resources
are serially reusable. Consider the following examples:

Storage media (not to be confused with the information they con-
tain). These qualify as serially reusable resources-serial because
they contain only one set of information a t a time; reusable be-
cause they can contain other information when the original in-
formation is no longer required. (Although not all storage media
fulfill these requirements, the ones of interest here, such as tape,
disk tracks, and main storage, do.)

System components (such as tape drives, disk drives, access mech-
anisms, and central processing units). Some components, such as
tape drives and unit record equipment, are commonly considered
to be serially reusable. Disk drives are intrinsically shareable in
performing independent tasks, but when one contains a volume
totally dedicated to an application, it must be considered to be
serially reusable.

Information. In a stabic state, information is intrinsically share-
able (although i t may be defined not shareable for security rea-
sons). Examples of shareable information are tables of values or
read-only programs. But, while information is being changed, it is
typically nonshareable. The classical example of this is updating
a record in place. Only one updating process can take place a t one
time. More complex information transitions than this occur in
practice, but they have the characteristic property that two such
processes on the same information cannot overlap. (The EN&-DE&
facility should prove to be useful in preventing the overlapping of
such processes.)

Avoiding deadlock

To recapitulate, we can see that, as performance of a task pro-
gresses, resources are required. If requests are made for more re-
sources for a task to which resources have already been allocated,
the possibility of task deadlock must be examined. The pertinent
question to be asked is: Is i t possible for another task, B, to exist
at the same time as this task, A , and that (1) task B has a resource
allocated to it that is required for task A , and (2) task B may

NO. 2 . 1968 AVOIDING TASK DEADLOCK

require resources that have been allocated to task A before the
resources allocated to task B can be relinquished? Typically, the
answer is affirmative, and task deadlock may occur. However,
this points the way to the first approach to avoiding the deadlock
problem:

Approach I . In designing a program, request a resource for a task
while another resource has been allocated to it only if it can be
demonstrated that no other group of interlocked tasks will exist
concurrently that (1) have been allocated the required resource
and (2) will later require the resource allocated to the original
task. Simply stated, ensure that resources are requested for all
tasks in the same order.

If, as is often the case, the first approach is not applicable, there
are three alternatives:

Approach 2. Request resources collectively. Do not proceed with
the task until all required resources have been obtained.

Approach 3. If holding a formerly obtained resource may prevent
acquisition of an additional resource, release the original resource
before obtaining the additional resource. If the original resource
is still. required, re-request it collectively with the additional
resource.

Approach 4. When a request for a resource is denied and when
Approach 1 is not applicable, be prepared to take an alternative
course of action. Do not wait for the needed resource while retain-
ing other resources.

Observe here that a task should not be delayed for a requested
resource even when no known threat of deadlock exists. Consider
the example in Figure 1, which involves three tasks and three
resources. Time is shown horizontally in the figure, and the
vertical line indicates the present time. Use of resources A , B,
and C is represented by horizontal bars, which, when they cross
the vertical line, indicate that the resource is presently being used.
Resource bars beginning to the right of the vertical line indicate
that use is planned for the future.

At the present time, resource B has been denied to task 1, be-
cause it has been allocated to task 2. The question the designer
must answer is: Should task 1 be delayed until resource B is made
available? The answer is negative, because inspection of the figure
reveals that the future resource requirements of interlocked tasks
2 and 3 will ultimately result in deadlock if all tasks are delayed
until resources become available. Thus, task 2, which cannot be
completed, will never relinquish resource B for task 1.

It is theoretically possible for the control program to detect
deadlocks from requests for resources under its control, but only
as they arise-too late to avoid terminating one task. However,
interlocks can be established among tasks completely independ-
ently of the control program. For example, when a task awaits an

HAVENDER IBM SYST J

Fiaure 1 Three tasks competina for resources

."
TIME-

unposted event, the control program does not know which task
will post the occurrence of the event. Therefore, it must be assumed
that deadlock is generally undetectable. Of course, designers of
application programs are in a position to be aware of interlocks
among nonsystem tasks and can take advantage of this knowledge.

Case histories

The cases to be considered involve the job initiator, the function
of which is t o process a stream of incoming jobs. This involves
repeating the basic cycle of selecting jobs from an input job queue,
acquiring for each job step, in turn, the resources required to
execute it, and attaching each job step as a task to be done under
control of the supervisor. Riultijobbing is achieved by concur-
rently executing multiple copies of the initiator program as inde-
pendent tasks. Thus, steps from different jobs are initiated for
concurrent execution. However, because the initiator tasks in-
clude acquiring three resources, one a t a time, for each job step,
deadlocks among initiator tasks could occur if appropriate pre-
cautions were not taken.

The three major resources acquired for jobs by the initiator
are: devices and auxiliary storage, data sets, and main storage.
We consider first the problem of allocating these three resources
individually and then of allocating them in combination.

Consider first the allocation of devices to a job step. It is in-
tuitively appealing to permit free contention among initiator tasks
€or individual devices, until all devices required for a step have
been accumulated. However, this design would permit two or
more initiator tasks to become deadlocked. This and other con-
siderations led to the current design in which all devices required
for a job step are acquired collectively. While an initiator program

NO. 2 . 1968 AVOIDING TASK DEADLOCK 79

gram prevents other initiators from acquiring devices. (Of course,
initiators can release devices a t virtually any time.)

The next case to be considered is the allocation of data sets,
data set which, in turn, involves an additional problem of data set integ-

allocation rity. To maintain data set integrity, job steps must not be sched-
uled for concurrent execution if they use common data sets in
such a way as to impair either the data sets or the results of the
job. Fortunately, many data sets do not enter into the data set
integrity problem, including: (1) those that are totally local to the
job, such as work files; (2) program libraries that are usually used
in a read-only fashion; and (3) those that may be written into but
to yhich access by jobs is controlled by a record or track hold
mechanism. However, the possibility of global data sets must be
considered (especially in systems having large data bases). Global
data sets, which are accessible by all jobs in the system, are some-
times accessed in a fashion designed to prevent t,heir concurrent,
use by several jobs. Thus, the deadlock problem must, be con-
sidered.

The deadlock problem hinges on the treatment of global data
sets that are passed from one job step to another. Therefore, the
first question to be answered is: Should the integrity of a passed
data set be maintained from step to step? It is certainly conceiv-
able that a global data set could be read in the first step of a job,
that the information in the data set be processed in one or more
succeeding steps, and that finally an updated version of the data
set be written out in the last step.3 Therefore, i t was decided that
the integrity of a passed data set would be maintained from step
to step of a job. Thus, we define a passed data set to be in con-
tinuous use from the first to the last step that refers to it.

The possibility of deadlock arises when we consider the fact
that another global data set may be required for the second step.
If each of the data sets is requested within the job step in which
it is required, a deadlock can clearly arise if another job that has
been scheduled for concurrent execution requires the same data
sets in the opposite order. Because this possibility cannot be ef-
fectively excluded, Approach 1 is not applicable. Approach 3, re-
leasing formerly acquired data sets and then requesting the new
group of data sets, has also been ruled out because of the need
to retain data set integrity from step to step. Thus, Approach 2
must be used.

A list of all external data sets referred to in a job is compiled
as the job is read into the systenl. For each data set referred to,
the user must also declare whether use of the data set is shareable
or exclusive. Then, the EN& macroinstruction is used to control i
concurrent execution of the jobs based on these declaration^.^

Allocating devices for a job presents a problem similar to that
device of aliocating data set's; as execution of the job progresses, it may

allocation require additional devices. Two jobs being executed concurrently
could reach a point where each required some of the devices allo-

80 HAVENDER IBM SYST J

I Figure 2 Initiator allocation points not vet established
DYNAMIC AREA LINK PACK AREA

, -.
/

/ I i DATA SETS
\

I

1
ATTACH

STEP AND

ES

. RELEASE
DEVICES

I

1

area. This module actually issues the ATTACH macroinstruction,
and then waits for the job step to be completed. When the step is
completed, this initiator module transfers control back to the re-
gion, where step termination procedures are carried out.

Returning to allocation, the three resources-main storage re-
gions (REG), data sets (DS), and devices (mv)-must be allocated
in an order that precludes deadlock. The flowchart in Figure 2
shows the program logic of the initiator. The points in the flow a t
which devices are allocated and released are shown as fixed, but
only general areas are shown for the acquisition of data sets and
regions, since i t is precise placement of these functions that must
be established.

Because data sets are allocated for the life of the job, while
the other two resources are allocated only for a step, data sets for
the job should be allocated first. The reason for this can be seen
by considering the consequences of allocating devices for step one
and then data sets for the job, resulting in an order of DEV ”+ DS.

For step two, data sets would have been allocated previously, so
that only devices would now be allocated, an order of DS + DEV.

Thus, the order of allocation would have been reversed in going
from step one to step two, creating the possibility of deadlock.
Similar reasoning can be applied to the acquisition of regions be-
fore data sets. Thus, we have the order DS ”+ (DEV, REG).

The problem remaining then is to decide on the order for
acquiring regions and devices. At first glance, it appears reason-
able to acquire devices first and defer acquiring a region until just
before attaching the job step, since the initiator must relinquish

82 HAVENDER IBM SYST J

SELECT
JOB -

I

SELECT ,

STEP REGION
FREE

1

i DATA SETS
ACQUIRE

!

I I

RELEASE
DEVICES

the space in the dynamic area at this time in any case. This se-
quence would be DEV "-f REG. Because the initiator tasks are al-
ways carried out in this order, the requirements of Approach l
would appear to be satisfied. Unfortunately, this is not the case,
as can be seen from Figure 2 . After a job step has been completed,
CPU control is passed to the routine that allocates devices, so that
the devices needed for the next step can be acquired. However,
this routine is executed in the region acquired for the previous
job step. Thus, the order for acquiring devices and regions has
been effectively reversed to REG + DEV, and deadlock can occur.
In the final design, regions are allocated before devices, and the
sequence for acquiring the three resources is DS + REG + DEV,

as shown in Figure 3.

Summary comment
Deadlock problems can arise in many subtle ways in a multitask-
ing system. System designers must be constantly alert to the dead-
lock possibilities of any proposed design. Users designing applica-
tion programs in which multitasking capabilities are used face
similar problems. Once a deadlock situation has been recognized.

deadlocks after they had actually occurred. However, the added
time required to perform this function does not seem justified
since a task would have to be terminated nonetheless. The reason
that the supervisor cannot anticipate deadlocks is that no means
presently exist for communicating to the supervisor the future
interlock plans for a task. Theoret,ically, the supervisor could de-
tect and circumvent deadlocks before they occurred if the future
plans for a task were specified. Of course, the supervisor would
have to be apprised of all future plans, not just those involving
future plans for resource use. Only in this way could a really com-
plete solution to deadlock be achieved.

CITED REFERENCES AND FOOTNOTES I
1. Many of the terms and concepts of the S Y S T E M / ~ ~ O Operating System are

explained in the three-part article “The functional st,ructure of OS/360”

particularly in B. I. Witt’s part on “Job and task management,” IBM
Systems Journal 5, No. 1, 12-29 (1966).

2. IBM SYSTEM/SGO Operating System: Supervisor and Data Management
Services ‘228-6646-0, I M a Processing Division, White Plains, New York.

3. The generation data group presents an added facet to this problem, since
concurrent execution of jobs, some or all of which are creating new gen-
erations, could cause Impredictable shifts in the generation number base
as the jobs were executed.

4. A request from within the job step for access to data sets in addition to
those obtained by the initiator is not prohibited. However, such requests
mnst be made with great care. since main storage. devices. and Drobablv

requests are fraught with deadlock potential.
5. Printers using the Imiversal character set feature are the first devices to

present an integrity problem, since they have a loadable buffer that de-
fines the print chain characteristics.

6 . The job scheduler has been designed to minimize this operational problem.
First, when devices containing passed data sets or volumes that are to be
rehined are released at the end of a job step, the volumes are not dis-
mounted. Second, the device allocation program has been designed to
avoid allocating devices containing passed data set,s or retained volumes
if they are not t,o be used in the step for which devices are being allocated.
When this cannot be avoided, the affected volumes must be dismounted
and later remounted.

84 HAVENDER

