The extrapolated Liebmann method for solving partial differential
equaiions is selected for study. With typical computer characteristics
in mind, several schemes for organizing the requisite data flow are
discussed.

To show the potentialities of timing formulas, as well as their limita-
ttons and the problems encountered in their construction, one of the
data-flow schemes s treated at length. Kernel programs are included,
and timing formulas needed in making comparisons of various
configurations of two computers are developed.

Kernel analysis of elliptic partial
differential equations

by S. G. Hahn and E. V. Hankam

This paper describes an approach to evaluating computer per-
formance in solving a large class of problems. The procedure
leads to the development of a set of formulas which contain
problem-dependent and machine-dependent parameters, and
which, upon substitution of computer time specifications, yield
a measure of speed. These formulas take into consideration those
instructions which form the main body of a program and thus
are repeated over and over again. We shall refer to this set of
instructions, which also includes input/output operations for
entering the necessary data into main storage, as the “kernel.”

The area we have chosen for this analysis is the numerical
solution of partial differential equations, since they cover applica-
tions in a great variety of problems arising in physics, chemistry,
ete. Within this area, boundary value problems for linear second-
order elliptic equations have been selected; these frequently
occur in applications and lend themselves to the kind of analysis
we propose.

We briefly discuss the numerical solution of partial differential
equations and alternative ways of organizing the data flow for a
particular problem. Then kernel programs are given for the
sYsTEM /360 and the 1BM 7094 in order to compare the performances
of these computers. General timing formulas are derived that
include the time needed for both calculation and read/write
operations. Finally, the effect of several input/output devices
on the general timing formulas is discussed.

IBM SYSTEMS JOURNAL * VOL. 5 °* NO. 4 *» 1966

Classification and computational considerations

Most frequently arising in partial differential equations are bound-
ary value and initial-value (time-dependent) problems, where
mixed initial-boundary-value problems are included with the
latter. To solve the differential equations numerically, we first
convert them into difference equations and classify them in the
following manner:

e Boundary and initial-value problems involving constant co-
efficients
Boundary and initial-value problems involving coefficients that
depend upon the independent variables
Initial-value problems involving coefficients that depend both
upon the independent and dependent variables

Computational considerations in these three cases mainly
differ in input/output operations. In the first case, constant
coefficients are kept in main memory, and thus no auxiliary storage
is needed.

Difference equations with coefficients that depend upon the
independent variables arise either from converting linear dif-
ferential equations with variable coefficients for any mesh or from
using variable mesh size in equations with constant coefficients.
These coefficients must be computed at the beginning of the
program for every meshpoint, but will not change either at
different iterations of a boundary value problem or at different
time steps of an initial-value problem. Because of their great
number, coefficients usually require too much memory space and,
therefore, should be written in auxiliary storage. One or more
rows of coefficients are read into main storage at a time for the
computation of the corresponding row or rows of unknown
functions.

Initial-value problems involving coeflicients that depend upon
the unknown function are restricted to equations normalized in
such a way that the value of the coefficient of the unknown
function is always one; the other coefficients are computed for
every mesh point at every time step. These coeflicients need not
be stored, but their calculation may require many computer
instructions.

This classification omits the most general case, non-linear
equations, because no general theory for the numerical solution
of such equations exists at the present time. The literature only
contains methods concerning some highly specialized problems.

Higher-order single differential equations, as well as systems
of differential equations, can be converted into first-order systems.
Assuming that first-order systems can algebraically be solved for
one of the partial derivatives (the time derivative in initial-value
problems), the numerical calculation is essentially the same as
for a single linear equation. Thus, in timing calculations for an
electronic computer, the computing time for a single equation
is multiplied by the number of unknown functions.

KERNEL ANALYSIS

problem
classification

computational
considerations

further
classification

boundary
value

problem
considerations

A further classification of difference equations with respect
to the method of solution is:

~ Point schemes for boundary value problems
~ Explicit schemes for initial-value problems
» Line schemes for boundary value problems
~ Implicit schemes for initial-value problems

The main difference between the first two and the second
two schemes is that the latter two involve a special kind of matrix
inversion. The solution at each point of a boundary value problem
could, in principle, also be found by a matrix inversion. However,
because of the size of the matrices involved, no suitable methods
are available at the present time.

The number of iterations for boundary value problems is a
function of ¢ a chosen small positive number; the iterations
proceed until the absolute difference between two consecutive
function values is not greater than e for all points in the megh.
The number of time steps for the initial-value problem is de-
termined by the ratio of the time step to the mesh length and by
the time span of interest.

For machine evaluation we choose the numerical solution of
the boundary value problem for an elliptic linear partial differential
equation of second order with variable coefficients in some domain
in the plane. Such problems occur frequently.’ Thus, we seek the
function u(z, y) that satisfies the equation

Ci(@, e + Colx, Yu,, + Cslx, Yu. + Culz, Yu, + Cylx, y)u
= Cﬁ(x: Z/)

where C,(z, y) and C,(z, y) are of the same sign throughout the
domain. If we replace all derivatives by centered differences and
express the function at any point in terms of its four neighbors,
as in the 5-point star representation in Figure 1, we obtain

Usg = Qi T biier,; -+ iy o0 + digths jan + fii ¢y

where ¢ indicates the column and j the row of the matrix.

If the mesh length is variable, weight factors appear in the
finite differences, and thus are included in the coefficients of the
difference equation. The shape of the domain is taken care of
by the labeling of the mesh points. Irregular boundaries present
a problem; one way to handle them is to obtain by interpolation
the values of the unknown function at the grid points closest
to the boundary. For the purpose of the kernel analysis, we
restrict ourselves to rectangular domains with IJ (z = 1, -+, I;
j =1, ---,J) interior mesh points. The subscripts ¢ = 0, 7 + 1
and j = 0, J + 1 refer to boundary peints.

The coefficients may also indicate the type of boundary value
problem we are solving. In a Dirichlet problem, values of the
unknown function are prescribed along the boundary of the
domain. A Neumann problem has the normal derivative of the

HAHN AND HANKAM

unknown function prescribed on the boundary and the value
of the function given at one point. A third boundary value prob-
lem has a linear combination of the unknown function and its
normal derivative given along the boundary. Both the Dirichlet
and Neumann problems are special cases of the third boundary
value problem.
In the Dirichlet problem, additional terms appear on the
right-hand side of Equation 1 for the mesh points adjacent to
the boundary. For the Neumann and third boundary value prob-
lems, the difference equations at these points differ {from all
the others in the domain which results in changing the coefficients
for these points.
The coefficients must be initially computed for every mesh
point. If their number exceeds the allocated memory space—which
is expected to happen in most cases—we write them in auxiliary
storage. There are five records of coefficients per row, provided
none of them vanishes identically.
In the Richardson method of simultaneous displacements, Figure 1 5-point star difference
function values from the previous iterations are exclusively used scheme

.
uy::l = a;Wi-y; + biWia,; + CiWs o1 + A e+ Tis

where the superscript indicates the iteration number. In the
Liebmann method of successive displacements, funetion values
already computed replace the old ones

+1 +1 +1
ul' = el bl e i+ daul e 2

The extrapolated Liebmann method of successive overrelaxation
determines the new function value as a linear combination of
the old and computed values as follows:

wiy' =¥ + (1 — aul @)

with 1 < a < 2 (if @ = 1, we have the Liebmann method without Figure 2 9-point star difference

extrapolation). This method is used later in the paper since it scheme

converges when the proper extrapolation parameter is chosen. *
In this last scheme, we compute the function at each mesh

point from four neighbors using the 5-point star shown in Figure 1.

If we want to solve a boundary value problem: by the same

method, but for a second-order linear clliptic equation

Cu,, + Caty + Cothyy + Cau, 4 Cauy, + Csu = Cs

in which the mixed second-order derivative of the unknown func-
tion also appears, we would express the function at each mesh
point in terms of eight neighbors. We then have the 9-point star
shown in Figure 2, and the following equation:

Uej = QiUioy,i + bilivr,; + Ui jo1 + dilhs jor + [
4+ giUic1,i-1 + hohoer, o1 F+ kihicq jur + l.','u.’+1,,'+1

In this case, there are nine records of coeflicients for each row.

KERNEL ANALYSIS

Figure 3 13-point star difference
scheme

Figure 4 Method 1 data storage
allocation

I LOCATIONS

T4 2 LOCATIONS

If the equation is of higher order than two, still more points
must be added to the star. For example, the fourth order bihar-
monic equation

uzzzr, + 2uz;tml + utﬂllﬂl = f

requires a 13-point star as shown in Figure 3 and, consequently,
13 records of coefficients per row.

We described the extrapolated Liebmann method for the
boundary value problem in elliptic linear partial differential equa-
tions of second order with variable coeflicients. The corresponding
initial-value problem is handled in the same fashion as the method
of simultaneous displacements. Computations for the new time-
step in the initial-value problem are equivalent to a new iteration
in the boundary value problem. Since the new function values do
not immediately replace the old ones in the initial-value case, we
have to set aside an extra row for function values if the problem
requires auxiliary storage. In addition, all intermediate results
should be preserved for output.

In point schemes and explicit schemes, constant coefficients
are stored in memory in permanent locations. This also applies
to explicit schemes for initial-value problems involving coefficients
that depend upon the unknown function. Here, however, we have
to compute the coefficients for each mesh point over and over
again by using function values from the previous iteration or
time step. The remainder of the calculations is the same as in
the extrapolated Liebmann method.

Line schemes and implicit schemes require a completely dif-
ferent approach. For boundary value problems, we simultaneously
solve for all function values in the same row. Similarly, in an
implicit scheme for an initial-value problem, where the (known)
function values for the previous time step are expressed in terms
of the (unknown) function values for the present time, we are
faced with the inversion of a special matrix.

For equations of order not higher than two, the matrix for
any row of I elements will be an I by I tridiagonal matrix. It can
be factored into two matrices, one consisting of the main diagonal
and the next diagonal below, the other consisting of the main
diagonal and the next diagonal above; all other elements are
zero. The first main diagonal has all ones. Making use of this
factorization, two sets of simple linear algebraic equations can be
written which are solved recursively.

Line schemes for boundary value problems and implicit schemes
for initial-value problems again differ only by the way the coeffi-
cients are stored. Otherwise the procedure is exactly the same as
in the corresponding point and explicit schemes.

Data flow methods

Assume that a computer has M locations of main storage and that
Equation 3 is to be solved in a domain requiring a mesh with
J + 2 rows and I 4 2 points per row including boundary points.

HAHN AND HANKAM

Furthermore, we use an s-point star. Let L be the number of Figure 5 Method 2 data storage
memory locations required for instructions necessary to solve allocation

the equation, including input/output operations. Then the prob-
lem can be solved without auxiliary storage if

+2J+2)+slJ+L<M

Generally, L < (I + 2)(J + 2) + sIJ; the determining factor
as to whether auxiliary storage is required is the right-hand side
of this inequality.

Let us also assume that the amount of data (unknown functions
and coefficients) exceeds the available main storage and thus
requires auxiliary storage. Although we use a point-successive
computational method, we assume that unknowns and coefficients
are read in and written out a row at a time. We further assume
that in solving for the unknowns along the jth row, only three
rows of data are needed; namely, the (j — 1)st, jth and (j + 1)st
rows.’

The most efficient method of arranging the internal flow of
data depends upon the characteristics of the computer. To il-
lustrate the problem, we present three alternative methods.
Method 1 is efficient on a machine having only one index register,
but allowing address modification. Method 2 leads to a program
suitable for a computer, such as the 7004, that has at least three
index registers. Method 3 can be used on a machine that provides
for rapid movement of blocks of data internally.

In Method 1, the program requires 51 locations with ad-
dresses A, B, C, D, F, for storing the coefficients a.;, bi;, ¢i;, dijy
and f;;, and 3(4+ 1) locations with addresses UM, U, UP for
storing the unknowns u;,;_;, %:;, and u;, ;4+, as shown in Figure 4.
As soon as a row is computed, the addresses of the instructions
involving the function values are modified. The row just computed
becomes the (j — 1)st row for the next calculation. The previous
(j + 1)st row is computed next, and the new row read in is the
new (j 4 1)st row. Thus the addresses are modified as follows:
U becomes UM, UP becomes U, and UM becomes UP. Once this
is done, the next row of coefficients is read in over the old ones,
and the next row of function values is read into the locations
now labeled UP.

In Method 2, 157 locations are set aside with base addresses
A, B, C, D, F, and 3(I + 2) locations with base address U to be
used for storing the coefficients a;, bi;, ¢y, diyy fi;, and the un-
knowns u,;, as illustrated by Figure 5. New data are read in over
data no longer needed, and index registers are used to avoid inter-
nal data movement. To illustrate this procedure, let U; represent
the vector of unknowns in the jth row, i.e.,

I LOCATIONS

I+ 2 LOCATIONS

Figure 6 Storage when
U; = (Woj, Urjy == * 5 YUzs1.5) computing Uj
um U,

and assume that U;_,, U;, and U,,, are stored in three consecutive
blocks as shown in Figure 6. Index Register 1 is loaded with the
base address of U;_,, Index Register 2 with that of U;, and Index

u Y,
up U

KERNEL ANALYSIS

Figure 7 Storage when computing

up
um

U

Uy .1 by method 2

UHz

U,

j

UH 1

modifications

Figure 8 Storage when computing

Uj ;1 by methoed 3

Register 3 with that of U;,,. As points along the jth row are
computed, they are written in auxiliary storage. As shown in
Figure 7, U;,, is read in over U;_,, which is no longer needed,
and Uj;,, is computed. The initial contents of the three index
registers are rotated; i.e., Index Register 1 is now used for the
base address of U;, Index Register 2 for that of U;,,, while Index
Register 3 must be loaded with the base address of U,,,. The
coefficients are treated as the unknowns, except that they need
not be written in auxiliary storage.

In Method 3, storage assignment is the same as in Method 1.
The three rows of unknowns U;_,, U;, and U,,, occupy the same
locations. When the computation of a row is completed, U,_,
is written in auxiliary storage, and U; and U,,, are moved into
the blocks previously containing U;_, and U;, respectively. The
new row, U;.., of data is read into the block previously containing
U,.,. These procedures are summarized as follows:

U, —U._
U,..—T;

} Internal move

U...— U,,; Read in from auxiliary storage

At the end of each iteration, three rows of unknowns are written
in auxiliary storage.

When computing U;, the storage assignments of the unknowns
are as shown in Figure 6; when computing U;.,,, the assignments
are as shown in Figure 8.

Unless the computer has small storage capacity or the number
of elements in a row is very large, it is normally possible to store
more than three rows of the unknown function and one row of
coefficients at one time. Then the data flow must be modified.

In general, a computer holds % rows of coefficients and k¥ + 2
rows of unknowns if

4+ +2)+ksI+L <M
that is,

M~ L -2+2
S S

One should choose & as a divisor of J.

Methods 1 and 2 are modified so that after the rows 2to & + 1
have been computed and rows 1 to & written in auxiliary storage,
rows £ + 1 and & 4+ 2 of the unknown function are moved into
rows 1 and 2, and the next & rows are read into rows 8 to & + 2
of the blocks. The next %k rows of coefficients simply replace
the old ones.

With these modifications, Methods 1 and 2 are now essentially
identical since a single index register suffices to scan all arrays.
This index register is initially set to correspond to the first in-
terior point of the first interior row. It is subsequently stepped
by one word until the last interior point of the row is processed.

HAHN AND HANKAM

Before continuing with the caleulation of the next row, the index
register must be appropriately changed to skip over the boundary
points. This procedure is repeated until the entire block is ex-
hausted. In order to make indexing uniform for unknowns and
coefficients, it is assumed that a row of coefficients also consists
of I + 2 elements, although the two (arbitrary) values at the
vertical boundaries are actually never used in the calculations.
Under the modified procedure, limitations are given by

G+DT+2) +hks(I+2+L <M (4)
that is, by

M—-L -2+ 2
(s+ DU+ 2)

In modified Method 3, after the computation of any row is
finished, all blocks should be moved up by one row. An additional
row should be read into the vacated areas until the last rows
have been transmitted to main memory.

Although we have presented three methods in detail, it must
not be assumed that these are the only three available. For
example, using a computer with four index registers, Method 2
would require the same number of locations as Methods 1 and 3.
Other schemes involving, for instance, indirect addressing could
be devised. The most efficient method depends upon the char-
acteristics of the computer. However, we feel that the comparison
of computers based upon the schemes selected is valid for a wide
class of partial differential equations.

Whichever method is used, there is a cost factor associated
with setting up the next line of computation. In Method 1 this
cost factor is based on address modification, in Method 2 the
cost relates to the proper setting of index registers, and in Method 3
the cost is in the internal moving of data.

k< ®)

Kernel programs for sYSTEM /260

Consider the internal data flow of modified Method 2 for a 5-point
star difference scheme. Equations 4 and 5 must be modified for
SYSTEM/360, since each memory location holds one byte consisting
of 8 bits, and 4 bytes constitute one word.> Thus we have

4k + 2T +2) + 20T +2) + L < M (6)

and

M—L—8I+2
24(1 + 2) @)

k<

Addresses A, B, C, D, F refer to the first element in the cor-
responding block; UM is the address of ue, and U that of uy,.
Whatever the size of the mesh and the memory, six registers are
allocated to hold the base addresses of the instruction set and
the six arrays. Symbols R0, R1, R2, etc., are used to designate

KERNEL ANALYSIS

additional
considerations

short
arithmetic

long
arithmetic

Table 1 Registers for modified method 2 short arithmetic

Register* Contents

R15 Addresses of instructions,
constants, and an
R14 Address of bn
R13 Address of ca
Ri2 Address of dy
R11 Address of fn
R10 Address of ug
RO 4 To increment R2
R6 8 To skip boundary points
R7 A(E—1)I+2)+1] To test the end of a block
R9 4(I+42) To test the inner loop
E4 EPSLON To test convergence
E6 ALPHA Extrapolation parameter

* R: General register E: Floating-point register

general registers and Eo, E2, etc. floating-point registers which
need not coincide with the register bearing the same number
(e.g., RO need not correspond with General Register 0).

At the beginning of the program, assume the registers to be
loaded as shown in Table 1.

In the kernel program for system/360 short arithmetic (Ap-
pendix 1), we use the symbols UM for the (f — 1)st row and U
for the jth row; storage allocation for these quantities is illustrated
in Figure 4. Instructions executed with the same frequency are
grouped together in anticipation of their use in the derivation
of timing formulas. Excluded from timing considerations are
instructions executed only once per iteration, since a kernel pro-
gram, by definition, contains only those segments of a program
which contribute significantly to the overall timing. Some of
these instructions are, however, included in the program to pre-
serve continuity.

If we consider the internal data flow using long arithmetic
and a 5-point star difference scheme, Equations 6 and 7 become,
because of the double-word length,

SE+2T+2) +40kI+2)+ L < M
and

M—L—16I+ 2
48(I + 2)

k<

At the beginning of the program, the general registers shown
in Table 2 are loaded differently from the corresponding ones
in short arithmetic.

Appendix 2 lists those instruction groups for long arithmetic
which differ from the ones in Appendix 1 for short arithmetic.

HAHN AND HANKAM

computation
timing

a new last row for each block is read in. Writing should start
simultaneously with the computing of the second row. When
the whole block is moved up a row, reading into the last row
should begin.

Whichever method is used, it is clear that if more than one
channel is attached to a computer, the coefficients should be
distributed in the best way among input/output devices belonging
to the different channels. The two sets of unknowns u,; should
be transmitted through two different channels to take advantage
of simultaneous reading and writing.

Timing of operations

Here we first derive separate timing formulas for computation
and input/output operations and then an expression for deter-
mining the total time necessary for one iteration assuming overlap
between computation and input/output.

Let 7', be the execution time for instructions in Group A
(Groups A, and A,) for both the sysTtEM/360 and the 7094; these
instructions evaluate u};', assuming a 5-point star difference
scheme.

Let T3 be the computing time for any additional point, i.e.,
T is the execution time for the following instructions.

e SYSTEM/360 short arithmetic:
LE
ME
AER
& 7094 single precision:
LDQ
FMP
FAD
STO

Let Ty be the computing time for testing successive iterations
performed by instructions in Group B.

Instructions in Groups A and B constitute the innermost
loop. Group A is executed once for each interior point. On the other
hand, Group B is not always performed for every interior point
of the mesh since a|uii' — u};l < eis true for every 7, j only in
the last iteration. One may, therefore, assume that this test occurs
only half the time,

Let T be the execution time of instructions required to set
up the next row of computation, i.e. Group C. Note that T'¢
depends upon the method chosen for internal data flow.

Let T’y be the time for initializing the MOVE sequence and, for
SYSTEM/360 only, for moving the last words of a block (Groups D,
and D,).

Let T be the time for moving the last two rows of a block
into first positions (Group E).

If we denote the computing time for one interation by T,

HAHN AND HANKAM

we have

T, = IJ{T\ + (s — 5)T5 + 1T}

T + <§ - 1)(TD + pT)

where

2(I + 2) 7094

p = [I—;—é—ljl SYSTEM/360 short arithmetic

‘:I—j—é—l] SYSTEM /360 long arithmetic
(The bracketed symbol represents the ““integer’”” portion of the
quantity contained therein.)

In these timing considerations, variable coefficients as well
as initial guesses for the solution are assumed to be available
in auxiliary storage. There is, of course, a certain amount of
computing time involved in calculating the coefficients and
writing them, say, on tape. Since this is done only once per
problem, the generating time is not included in the overall timing.
In addition, any instructions carried out at most once per iteration
are also excluded from the timing formulas since their execution
time is negligible. The first instruction in Group D, (BCT in the
SYSTEM/360 and TNX in the 7094 programs) also falls into this
category when performed for the last time in any iteration since
it is executed J/k times, whereas the remaining instructions
in Groups D, and D, are executed only J/k — 1 times as indicated
in Equation 9.

In the 7094 programs, the last instruction in Group A, (a TXI
instruction) is performed J times less frequently than the re-
mainder of the instructions in the same group. To compensate
for this, another TXI instruction, the first instruction listed after
Group C, has been excluded from the timing of Group C. It should
be observed that this TXI, and the preceding three instructions
in Group C in the 7094 program (CLA, SUB and STO), are executed
only J — J/k times rather than J times as indicated in Equa-
tion 9. However, J /k is, in general, a comparatively small number,
and this simplification has been made to obtain a uniform timing
formula.

The computing time T, (Equation 9) does not include time
required to read information into main memory or to write it
into auxiliary storage. If we now define

Total data transmission time

Total access time for positioning a given read/write
mechanism

Total time for input/output operations

(10)

KERNEL ANALYSIS

Figure 9

Layout of data
transmission

READ READ
UNKNOWNS WRITE COEFFICIENTS

s

FIRST BLOCK

K

Oz

Il

Oz
‘ UK_z

0°

:|K~2

INTERIOR BLOCKS

)

02

LAST BLOCK

tape
access
time

The total access time, T's, varies according to the input/output
device used. The total transmission time, T,, is the transmission
time of one word multiplied by a factor, that depends upon the
size of the problem and upon the number of channels available.
The total transmission time is calculated by using the following
equation:

T, = (I + 2){([—8—';—1] + 1>J + 4}t (11)

where

t Time to read or write one word
! Number of channels

Formulas for calculating T's are given later in this paper.

It should be pointed out that the number of rows of unknowns
read in and written out within the same block are not always
equal, as shown in Figure 9. The rectangles represent records
which consist of the number of rows shown. At the beginning
of each iteration, & -+ 2 rows of unknowns are read in and k rows
are written out; whereas at the end of each iteration, k rows
are read and k 4 2 rows are written. For interior blocks, the
number of rows read and written is k. To allow the proper number
of rows to be written in one iteration and read in the next, the
records must be of appropriate length. In particular, we write
2J/k — 1 records per iteration. The first record consists of k rows,
the next 2J/k — 3 records contain alternately 2 and k — 2 rows,
and the last record contains k rows. Thus, we first read two records
of unknowns in order to obtain k¥ + 2 rows, and write out one
record of k rows. For the next J/k — 2 times, we both read and
write two records consisting of k rows in each record. At the end
of the iteration, the last record with % rows is read in and two
records, one containing two rows and the other containing & rows,
are written out. Finally, the total time required for computing
one iteration in a buffered computer is

T {Tg if T, < ’YTz
T, + T, _7T2 = T1+(1 —’Y)Tz if T1>’YT2

where v is the overlap factor, i.e., the percentage of input/output
time available for computation.

We now describe the use of tapes as auxiliary storage for the
coefficients and unknown functions. A minimum number® of three
data tapes is necessary for the previously described methods:
one tape for the coefficients (TC1) and two tapes for the unknowns
(TU1 and TU2). Their activity during two consecutive iterations,
n and n + 1, is given in Table 3. In this case, computation is
delayed while the tapes are rewinding

Rewind time can be overlapped with computation by using
six tapes: two tapes for the coefficients (TC1 and TC2) and four
tapes for the unknowns (TU1, TU2, TU3, and TU4). The six-tape
activity is given in Table 4.

HAHN AND HANKAM

Table 3 Activity of three tapes

Iteration Operations

Read TC1
Read TU1
Write TU2
Rewind all three tapes

Read TC1
Read TU2
Write TU1
Rewind all three tapes

Thus far we have assumed that all of the s sets of coeflicients
are stored on the same tape. This, of course, need not be so, and as
many as s different tapes may be available for this purpose.

Using two sets of tapes to eliminate rewind time, and keeping
in mind that there are J/k records of coefficients or 2J/k — 1
records of unknowns on a set of two tapes (see Figure 9), total
access time will be

6a, + (5% - 8>a2 for =1

4a1+(3 —4)a2 for 2<I1<s+1

2a,+<2 —2>a2 for l>s42

where a, is the start time from the load point, and a, is the record-
gap access time,.

If the number of tape units available per channel does not
allow the doubling of tapes, the timing formulas have to be
altered accordingly; i.e., backspace times have to be added, and
half of the start times from the load point have to be replaced
by record-gap times.

Consider now disk storage for input/output operations. Each
disk has “tracks,” i.e., concentric circles on which information
is stored. All tracks of the same radius on a disk storage unit
are vertically aligned and form a “cylinder.” Information is read
or written with the help of a comb-like access arm with a read/
write head for each recording surface that can be adjusted to
read from or write on any of the cylinders.®

Since the access mechanism consists of one read/write head
for each track of a cylinder, no mechanical motion of the arm
is necessary when reading or writing data records which extend
over several tracks on the same cylinder. Therefore, it is ad-
vantageous to store data on consecutive tracks of an accessed
cylinder rather than on adjacent tracks of a disk surface.

KERNEL ANALYSIS

disk
access
time

Table 4 Activity of six tapes

Tteration Blocks Operations

Read TC1
Read TU1
Write TU2
Rewind TC1, TU1, TU2

[%} + 1 to - Read TC2
Read TU3
Write TU4
Rewind TC2, TU3, TU4

Read TC1
Read TU2
Write TU1
Rewind TC1, TU2, TU1

n+1 |j2—}10:] + 1 to - Read TC2
Read TU4
Write TU3
Rewind TC2, TU4, TU3

A single disk unit has, in general, adequate storage capacity
for both unknowns and coefficients. The number of cylinders
required to store them depends upon the type of disk unit and

the size of the problem. To minimize the motion of the access
mechanism, storage should be allocated on adjacent cylinders.
To keep the timing formulas simple, we assume that a cylinder
holds an integral number of blocks of coefficients or unknowns.

Because of the continuous rotation of the disks, the search
for the beginning of a record on a track takes an average rotational
delay time which must be added to the lateral access time re-
quired to locate the addressed cylinder.

Since several arms may be in motion simultaneously, the
lateral access time may be reduced if several disk units (or one
disk unit equipped with several access mechanisms) are available
even though they are attached to the same channel. The avail-
ability of several channels permits simultaneous data transmission
and, therefore, tends to minimize rotational delay time. When
the number of channels is 2 < I < s + 1, the data should be
distributed in the most economic way. In any case, u?; and u};’
should be transmitted through different channels, while the co-
efficients should be divided in an optimal manner. In the case
of s 4+ 2 channels, each coeflicient would be transmitted over
a separate channel.

HAHN AND HANKAM

Using the notation introduced in Equation 10, we define
Tﬂ = Tﬁl + Tﬁz
where

T, Total lateral access time (time required for the lateral move-
ment of the arm between cylinders)

Ts, Total rotational delay time (time required for the read/write
head to reach the desired record on the selected cylinder)

These times may be calculated as follows:

3 % a, + (C, — Da, for l = and &

2%% + (€. — Da, [for =1 and § =
101“2§l§s-|—1and B
for =1 and §

a4+ (C, —Day, yor2<I1<s—+1and s
lor 1>s+2and &

(3%—{—0,,—1)03 for l=1

<2%+C"——1>d for 2< 1 <s+1

<%+Cu—1>d for Il >s+2

where

a, Time for the access mechanism to move between non-adjacent
cylinders
Time for the access mechanism to move between adjacent
cylinders
Number of cylinders to store all unknowns
Number of access mechanisms per channel
Average rotational delay time

If the number of elements in a block exceeds the storage
capacity of a eylinder, the timing formulas must be altered
accordingly; i.e., for each cylinder-crossing within a block, terms
(J/k)a, and (J/k)d may have to be added to the right-hand
sides of Equations 12 and 13, respectively.

For the first iteration (or on restart), the initial movement
of the access mechanism may require more time than for sub-
sequent iterations. Since this happens only once per problem, it
need not be included in the timing formulas.

Drum storage is available as auxiliary storage for sYsTEM/360.
A drum with a read/write head for each track is equivalent to
one cylinder of a disk unit; there is a rotational delay prior to
a read or write operation, but no other access time.’

KERNEL ANALYSIS

drum
access
time

In the following discussion, we assume one drum unit per
channel since one drum usually has sufficient capacity to store
all data, and no speed is gained by using two or more drums
on the same channel. If the problem is so large that more than
one drum per channel is needed, each drum should hold an integral
number of blocks. Considerations regarding several channels are
the same as for disks.

Using the notation of Equations 10, 12, and 13, for drums
Ts, = 0, C, = 1, so that Ty = Tp; and

J
3kd for =1

Z%d for 2<1<s+1

-];d for l>s+2

Summary

The procedure described in this paper gives insight into the eco-
nomic use of computing devices when large blocks of data can be
transmitted at the same time. It also demonstrates that com-
puting time can be reduced by an appropriate plan for distribu-
ting data among main memory and various input/output devices.

Frequently-used applications in certain scientific areas may
emphasize special features of computers that are not particularly
important in the procedure we have chosen. For example, in
solving partial differential equations by alternating direction
methods, data cannot easily be read or written in blocks, and
thus the use of a computer with very large main storage even
though part of it may have relatively slow access would be pre-
ferable to other input/output devices. Although disks offer direct
access, seek time would considerably slow down data transmission.

Throughout this paper, it is assumed that only one kind of
input/output equipment is available. In reality, this is very
rarely the case. For example, one could consider using two types
of devices for data transmission and then develop timing formulas
for such a configuration. Many such combinations are possible,
and the timing equations become more complicated accordingly.

Thus, the widely used and comparatively simple problem
chosen for this paper yields rather elaborate timing formulas.
For a computer other than the ones discussed, parts of the pro-
cedure may have to be modified in order to take advantage of
any special feature offered. However, the overall approach es-
sentially remains the same.

ACKNOWLEDGMENT

The authors wish to express their appreciation to Kurt Spielberg,
who introduced us to this type of kernel analysis, and to Michael

HAHN AND HANKAM

Held for his contributions during the early stages of the formula-
tion of the problem.

CITED REFERENCES AND FOOTNOTES

1. G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial
Differential Equations, John Wiley and Sons, New York (1960).

2. This is usually true for all second-order equations. In general, for 2kth
order equations, 2k -4 1 rows are required.

3. G. A. Blaauw and F. P. Brooks, Jr., “The structure of sysTem/380,
Part I—Outline of the logical structure,” IBM Systems Journal 3, No. 2,
119-135 (1964).

. 1BM 7094 Data Processing System, A22-6703, 1BM Data Processing Division,
White Plains, New York.

. In this paper we ignore the possible desirability of using additional tapes or
other input/output devices to provide for such unusual conditions as
reruns due to errors in writing.

. IBM SYSTEM/360 Component Descriptions, A26-5988-0, 1BM Data Processing
Division, White Plains, New York.

Appendix 1 Kernel program for SYSTEM/360 short arithmetic

Group Instructions

Comments

Initializes R8 once per iteration
by loading it with J/k (the num-
ber of blocks to be processed in
one iteration). Initializes R1 and
R2 once per block; sets R1 to 47
to test the end of the first row,
and sets R2 to 4 for addressing
U1y.

RS, BLOCK

Read in u?;, coefficients
i1

R1, R2, FIRST

Set R8 to J/k

Set R1 and R2 to 4] and 4

0, U—4(R2)
0, A(R2)

2, U+4(R2)
2, B(R2)
0,2

2, UM(R2)
2, C(R2)
0,2

A; Computes u}*! from
Equation 2 and a(u}*! — u

2, U+4(I+2)(R2)
2, D(R2)
0,2

0, F(R2)
0, U(R2)
0,6

0, CONT

. +1
Pick up uii; ;

Multiply by a.;

Pick up u3,,,;
Multiply by b:;
aiuity ;b
Pick up u?*},
Multiply by c¢:;
aiﬂ?i{,i + bijuisr.;
+ C-’:’U?n‘l—l

Pick up uf} ;44

Multiply by ds;
a-’ﬂ';‘ii,,‘ + bt

+ Ci:’u?fil-x + diju? ;i1
wiptt

No operation

KERNEL ANALYSIS

265

Appendix 1 Continued

Group

Instructions

Comments

B Compares o [u}!*! — u?,| with ¢,

to test the absolute error.

After an unsuccessful test, the
program is changed to skip the
entire testing procedure,

LPER 2,0
CER 2,4

BC 12, CONT

NOP1+1, X'FO’

fn+l n
a [— i

kn+l n
Compare a |u¥/ uy;
with e

g+l :

If a Wit — uwll < ¢ skip
next instruction

If o ¥t — o] > ¢
stop testing

Computes %7} * from Equation 3,

and tests to see whether the cur-
rent row is finished.

0, U(R2)
0, U(R2)
R2, RO, INNERL

a(uf™h — ul) +
untt

2]
Set R2 for next element

Tests to see if the last row of the
block is completed, and incre-
ments the row counter.

R1, R9
R2, R6, INNERL

Set R1 for next row
Set R2 for next row

Write out u%}*

Tests to see if the last block has
been processed, and initializes
R3, R4, and Rb5.

RS, NEXTIT

R3, TWOROS
R4, ADRUM
R5, LASTRO

If last block has been proc-
essed, start next iteration
(I 4+ 2)

Address of g

Address of up k1

Moves the last two rows of un-
knowns to the beginning of the
block, unless the last block has
been processed. This is accom-
plished by successive transfers
of 64 words, the maximum per-
mitted by the MVC instruc-
tion. This part of the program
assumes I > 30.

0(256, R4), O(R5)
R4, TWO56
R5, TWO56
R3, TWO56

R3, TWO56
2, MOVE

Move 64 words to top
Increment addresses for
MVC instruction by 256

8(I +2) — 256

8(I + 2) — 256 —; 256
Repeat if more than 64
words remain

Completes the transfer to the
beginning of the block for
words in excess of a multiple of
64 and returns to the read se-
quence.

0, (REM, R4), O(R5)

15, READ

Move remaining words to
top
Return to read sequence

266 HAHN AND HANKAM

Appendix 2 Modifications in kernal program for SYSTEM/360 long arithmetic

Group

Instructions

Comments

LM

R1, R2, FIRST

Set R1 and R2 to 87 and 8

INNERL

0, U—8(R2)
0, A(R2)

2, U+8(R2)

2, B(R2)

0,2

2, UM(R2)

2, C(R2)

0,2

2, U+8(I+2)(R2)
2, D(R2)

0,2

0, F(R2)

n+1

Pick up u3I] ;

Multiply by a:;

Pick up u?,, ;

Multiply by b;;

a3t + biley

Pick up u}t}L,

Multiply by ¢;;

aiiiy o+ biuty, ; + ity
Pick up v} ;,,

Multiply by d;;

aith] o+ bty

+ ot diul

u?’yﬁ-l

— Uy
— wy;

No operation

kn+1
@ Iuif" - u;‘,l
Compare a |u}f*! — u},| with e

If & ju¥rt? — u?;| < e skip next

instruction

0, U(R2)
0, U(R2)
R2, RO, INNERL

a(u:'kinﬂ — uf;) +ul;
Wit
Set R2 for next element

RS, NEXT IT

R3, TWOROS
R4, ADRUM
R5, LASTRO

If last block has been processed,
start next iteration

16 (1-+2)

Address of ug

Address of uo,xp

0(256, R4), O(R5)
R4, TWO56
R5, TWO56
R3, TWO56

R3, TWO56
2, MOVE

Move 32 words to top
{Increment addresses for MVC
instruction by 256

16(14+2) — 256

16(142) — 256 é 256

Repeat if more than 32 words
remain

KERNEL ANALYSIS 267

Appendix 3 Kernel program for 7094 single precision

Group Instructions Comments

LXD BLOCK, 4

Read in u};, coefficients

FIRST, 2 kI +2)—2
ENDFR KI+2) - +1)
CONT TXL2, 2, k(I +2) — (I + 1)

U—(I+3),2 Pick up u*} ;
A2 Multiply by a,;
F, 2 Add in f,','
ERASE

U—~(I+1),2 Pick up u?,, . ;
B,2 Multiply by by;
ERASE

ERASE

U—-2(1+2),2 Pick up u}'},
C, 2 Multiply by ¢;;
ERASE B

ERASE

U, 2 Pick up u7? ; 4y
D, 2 Multiply by di;
ERASE u¥*lin AC
U—(1+2), 2 uwit =
35

ALPHA a(ulrtt — ul) = ult - u}
ERASE

U—(I+2),2 Add u};
U—(1+42), 2 i

ERASE

En+1

a [U;

n
= U

EPSLN

*nt+l __ , n»
a |u,-,~ uiil >

€
*nt+l _ ,n
a |u,-,- Ui €

TXL2, 2, k(I+2)—(1+1) Test for end of row
INNER, 2, —1 Increment for next ¢

SKIP TRA CONT
TRA Stop testing
CONT

WRITE, 2, 1 Test for completion of block
CLA CONT
SUB ROW I+2
STO CONT TXL?, 2, (k—1)(I42)—(141)
TXI INNER, 2, -3 Increment for next j

268 HAHN AND HANEKAM

Appendix 3 Continved

Group

Instructions

Comments

Write out u'

n+1
i5

TNX NEXT, 4,1

LXD TWORO, 1

If last block has been processed,
start next iteration

oI +2)

MOVE CLA
STO
TIX

U+1, 1

U—k(I+2)+1, 1

MOVE, 1, 1

Uok
Uge
Increment for next ¢

TRA

READ

Return to read sequence

Appendix 4 Modifications in kernal program for 7094 double precision

Group

Instructions

Comments

LXD
CLA
STD

FIRST
ENDFR
CONT

k(T +2)—2]
k(1 +2)—(141)]
TXL2, 2, 20k(14+2)—(I+1)]

INNER DLD
DFMP
DFAD
DST
DLD
DFMP
DFAD
DST
DLD
DFMP
DFAD
DST
DLD
DFMP
DFAD
DFSB
DFMP
DST
DFAD
DST

TRA DLD

U—2(I+3), 2
A2

F, 2

ERASE
U—2(I+1), 2
B, 2

ERASE
ERASE
U—4(1+2), 2
C, 2

ERASE
ERASE

U, 2

D, 2

ERASE
U—2(1+2), 2
ALPHA
ERASE
U-2(1+2), 2
U—2(1+2), 2
ERASE

n+1l

Pick up 31 ;
Multiply by ai;
Add in f.','

Pick up u},, ;
Multiply by bs;

n+1

Pick up w77,
Multiply by ¢;;

Pick up u} ;4
Multiply by d:;

kn+l
Ui

KERNEL ANALYSIS

Appendix 4 Continuved

Group

Instructions

Comments

A,

TXL, 2, 2[k(I+2)—(I+1)]
INNER, 2, —2

Test for end of row
Increment for next ¢

WRITE, 2, 2
CONT

ROW

CONT
INNER, 2, —6

Test for completion of block

2(1+2)
TXLZ, 2, 2[(k—1)(I+2)—(I+1)]

Increment for next 7

NEXT, 4, 1

TWORO, 1

If last block has been processed,
start next iteration

4I14+2)

U+2, 1
U—20k(I+2)+1], 1
MOVE, 1, 2

Uk
Uoo
Increment for next ¢

270

HAHN AND HANKAM

