
The  extrapolated  Liebmann method for solving partial  differential 
equations i s  selected for study. W i t h  typical  computer  characteristics 
in mind ,  several schemes for organizing  the  requisite  data $ow are 
discussed. 

To show the potentialities of timing formulas,  as well as  their  limita- 
tions  and the problems encountered in their  construction,  one of the 
data-$ow schemes i s  treated at length. Kernel  programs  are  included, 
and  timing  formulas needed in making  comparisons of various 
conJigurations of two computers are developed. 

Kernel analysis of elliptic  partial 
differential  equations 

by S. G. Hahn  and E. V. Hankam 

This  paper describes an approach to evaluating  computer per- 
formance in solving a large class of problems. The procedure 
leads to  the development of a set of formulas which contain 
problem-dependent and machine-dependent  parameters, and 
which, upon  substitution of computer  time specifications, yield 
a  measure of speed. These  formulas take  into consideration  those 
instructions which form  the main  body of a program and  thus 
are repeated  over  and  over  again. We shall refer to this  set of 
instructions, which also includes input/output operations for 
entering  the necessary data into  main  storage,  as the “kernel.” 

The  area we have chosen for this analysis  is the numerical 
solution of partial differential equations, since they cover applica- 
tions  in  a great  variety of problems arising in physics, chemistry, 
etc.  Within  this  area,  boundary  value problems for linear second- 
order elliptic equations  have been selected;  these  frequently 
occur in applications  and lend themselves to  the kind of analysis 
we propose. 

We briefly discuss the numerical  solution of partial differential 
equations  and  alternative ways of organizing the  data flow for a 
particular  problem.  Then  kernel  programs  are given for the 
SYSTEM/~BO and  the IBM 7094 in order to compare the performances 
of these  computers.  General  timing  formulas are derived that 
include the time needed for both  calculation and  read/write 
operations.  Finally, the effect of several input/output devices 
on the general  timing  formulas is discussed. 
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Classification  and computational considerations 
Most frequently arising in partial differential equations  are bound- problem 
ary  value  and initial-value (time-dependent) problems, where classification 
mixed initial-boundary-value problems are included with the 
latter. To solve the differential equations numerically, we first 
convert them  into difference equations  and classify them in the 
following manner: 

Boundary  and initial-value problems involving constant co- 

Boundary  and initial-value problems involving coefficients that 

Initial-value problems involving coefficients that depend both 

efficients 

depend upon the independent variables 

upon the independent and  dependent variables 
Computational considerations in these three cases mainly computational 

differ in input/output operations. In  the first case, constant considerations 
coefficients are  kept in main memory, and  thus no auxiliary storage 
is needed. 

Difference equations with coefficients that depend upon the 
independent variables arise either from converting linear dif- 
ferential  equations  with variable coefficients for any mesh or from 
using variable mesh  size in equations with constant coefficients. 
These coefficients must  be computed at  the beginning of the 
program for every meshpoint, but will not change either at 
different iterations of a  boundary value problem or at  different 
time  steps of an initial-value problem. Because of their  great 
number, coefficients usually require too much memory space and, 
therefore, should be written  in auxiliary storage. One or more 
rows of coefficients are read into main storage a t  a  time for the 
computation of the corresponding row or rows of unknown 
functions. 

Initial-value problems involving coefficients that depend upon 
the unknown function are  restricted to equations normalized in 
such a way that  the value of the coefficient of the unknown 
function is always one; the other coefficients are computed for 
every mesh point at every time  step.  These coefficients  need not 
be stored, but their calculation may require many computer 
instructions. 

This classification omits the most general case, non-linear 
equations, because  no general theory  for  the numerical solution 
of such equations exists at  the present  time. The literature only 
contains methods concerning some highly specialized problems. 

Higher-order single differential equations, as well as systems 
of differential equations, can be converted into first-order systems. 
Assuming that first-order systems can algebraically be solved for 
one of the  partial derivatives  (the  time  derivative  in initial-value 
problems), the numerical calculation is essentially the same as 
for a single linear equation.  Thus,  in timing calculations for an 
electronic computer, the computing time for a single equation 

~ is multiplied by the number of unknown functions. 
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A further classification of difference equations  with  respect 
further to the method of solution is: 
classification 

Point schemes for  boundary  value  problems 
Explicit  schemes  for  initial-value  problems 
Line schemes for boundary  value  problems 
Implicit  schemes for initial-value  problems 

The main difference between the first  two and  the second 
two schemes is that  the  latter two  involve  a special kind of matrix 
inversion. The solution a t  each  point of a  boundary  value  problem 
could, in  principle, also be  found  by a matrix inversion.  However, 
because of the size of the matrices  involved,  no suitable  methods 
are  available at  the present  time. 

The number of iterations  for  boundary  value problems is a 
function of e, a chosen small  positive number;  the  iterations 
proceed until  the  absolute difference between  two  consecutive 
function  values is not  greater  than e for  all  points in  the mesh. 
The number of time  steps for the initial-value  problem is de- 
termined  by  the  ratio of the  time  step  to  the mesh  length  and  by 
the  time  span of interest. 

For machine  evaluation we choose the numerical  solution of 
boundary the boundary  value  problem for  an elliptic  linear partial differential 
value equation of second order  with  variable coefficients in  some  domain 
problem in the plane.  Such  problems  occur  frequently.’  Thus, we scek the 
considerations fnnction u(x, y) that satisfies the equation 

C I ( X ,  y)u,, + C Z ( X ,  ?/)U,, + C3(Z, y)u, + C4(Z, y)u, + CdZ, y)u 

= CdX,  !I) 

where CI(x, y) and C2(x, y) are of the same sign throughout  the 
domain. If we replace  all  derivatives by centered differences and 
express the function at  any point  in  terms of its  four neighbors, 
as  in  the 5-point star representation  in  Figure 1, we obtain 

u . .  = a..u.  
2 1  2 1  % - I , ;  + bbiui+1,; + c i i ~ i . j - 1  + diiui,i+l + f i i  (1) 

where i indicates the column and j the row of the matrix. 
If the mesh  length is variable,  weight factors  appear  in  the 

finite differences, and  thus  are included in  the coefficients of the 
difference equation. The  shape of the domain is taken care of 
by the labeling of the mesh points.  Irregular  boundaries  present 
a problem;  one  way to handle  them  is  to  obtain  by  interpolation 
the  values of the unknown  function at   the grid  points closest 
to  the boundary. For the purpose of the kernel  analysis, we 
restrict  oursclves to rectangular  domains  with I J  (i = 1, . . * , I; 

and j = 0, J + 1 refer to  boundary  points. 
The coefficients may also indicate  the  type of boundary  value 

problem we are solving. In  a Dirichlet  problem,  values of the 
unknown  function  are  prescribed  along the  boundary of the 
domain. A Neumann problem has  the normal  derivative of the 

j = 1, . . .  , J) interior  mesh  points. The subscripts i = 0, I + 1 
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unknown  function prescribed on the boundary  and  the value 
of the  function given a t  one  point. A third  boundary  value prob- 
lem  has  a  linear  combination of the unknown  function  and  its 
normal  derivative given along the  boundary.  Both  the Dirichlet 
and  Neumann problems are special cases of the  third  boundary 
value  problem. 

In  the Dirichlet problem, additional  terms  appear  on the 
right-hand  side of Equation 1 for the mesh points  adjacent  to 
the boundary. For the Neumann  and  third  boundary value  prob- 
lems, the difference equations a t  these  points differ from a11 
the others  in  the domain which results  in changing the coefficients 
for  these  points. 

The coefficients must  be initially  computed for every mesh 
point. If their  number exceeds the allocated  memory space-which 
is expected to happen  in most cases-we write them in  auxiliary 
storage. There  are five records of coefficicnts per row, provided 
none of them vanishes identically. 

In  the Richardson  method of simultaneous  displacements, 
function  values from the previous  iterations  are exclusivcly used 

n + 1  - u;; - ai,u:-1,i + hlu:+l,i + ci;u;,i-1 + dii2C,j+l + f i i  

where the superscript  indicates the iteration  number. In  the 
Liebmann  method of successive displacements,  function  valucs 
already  computed  replace the old ones 

ut; - aiiui-1,; + biiu:+l,i + ct,u:til-l + diiu?,i+l + f t i  (2 )  * n + l  - n+ 1 

The  extrapolated Liebmann  method of successive overrelaxation 
determines the new function  value as a  linear  combination of 
the old and comput,ed values  as follows: 

UYj?' = a!u*!L+' Z )  + (1 - 4u:i (3) 

with 1 < a < 2 (if a! = 1, we have  the Liebmann  method  without 
extrapolation).  This  method is used later  in  the  paper since it 
converges when the proper  extrapolation  parameter  is chosen. 

In  this  last scheme, we compute the function a t  each mesh 
point  from  four neighbors using the 5-point star shown in  Figure 1. 
If we want  to solve a boundary  value  problem  by the same 
met,hod, but for a second-order linear elliptic equation 

CIU,, + C7Uzv + czu,, + c,u, + C,U, + c,u = c, 
in which the mixed second-order derivative of the unknown func- 
tion also appears, we would express the function a t  each mesh 
point  in  terms of eight neighbors. We then  have  the 9-point star 
shown in  Figure 2, and  the following equation: 

u.. = a. .u .  
I t  $ 2  s - 1 , i  + biiui+l,i + ciiui,i-1 + diiu,,i+l + f i i  

+ giiui-1,i-l + /Ltiui+l,i-l + kiiu;-l,i+l + tsiui+l.i+l 
In  this case, there  are nine records of coefficients for each row. 
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Figure 3 13-point star difference 
scheme 
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If the equation is of higher  order than two, still more points 
must  be added to  the  star. For example, the  fourth order  bihar- 
monic equation 

U Z Z Z ,  + 2 U Z Z Y "  + u,,,, = f 
requires a 13-point star as shown in Figure  3  and, consequently, 
13 records of coefficients per row. 

We described the extrapolated  Liebmann  method  for  the 
boundary  value problem in elliptic  linear  partial differential equa- 
tions of second order  with  variable coefficients. The corresponding 
initial-value problem is handled in  the same fashion as the method 
of simultaneous displacements. Computations for the new time- 
step in the initial-value problem are  equivalent  to a new iteration 
in the  boundary value problem. Since the new function  values do 
not immediately replace the old ones in  the initial-value case, we 
have  to  set aside an extra row for function  values if the problem 
requires  auxiliary  storage. In  addition, all intermediate  results 
should be preserved for output. 

In  point schemes and explicit schemes, constant coefficients 
are  stored  in memory in  permanent locations. This also applies 
to explicit schemes for initial-value problems involving coefficients 
that depend  upon the unknown  function.  Here, however, we have 
to compute the coefficients for each mesh point  over and over 
again by using function  values from the previous  iteration or 
time  step. The remainder of the calculations  is the same as  in 
the  extrapolated Liebmann  method. 

Line schemes and implicit schemes require a completely dif- 
ferent  approach.  For  boundary  value problems, we simultaneously 
solve for all function  values  in the same row. Similarly, in  an 
implicit scheme for an initial-value problem, where the (known) 
function  values for the previous time  step  are expressed in  terms 
of the (unknown)  function  values for the present  time, we are 
faced with the inversion of a special matrix. 

For equations of order  not higher than two, the matrix  for 
any row of I elements will be  an I by I tridiagonal  matrix. It can 
be  factored into two matrices,  one consisting of the  main diagonal 
and  the next diagonal below, the other consisting of the main 
diagonal  and the next  diagonal  above;  all  other  elements are 
zero. The first main  diagonal  has  all ones. Making  use of this 
factorization, two sets of simple linear algebraic equations  can be 
written which are solved recursively. 

Line schemes for  boundary  value problems and implicit schemes 
for initial-value problems again differ only  by  the way the coeffi- 
cients  are  stored. Otherwise the procedure is exactly the same as 
in  the corresponding point and explicit schemes. 

Data flow methods 
Assume that a  computer  has M locations of main  storage  and that 
Equation 3 is to be solved in  a  domain  requiring  a mesh with 
J + 2 rows and I + 2 points  per row including boundary  points. 
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Furthermore, we use an s-point star. Let L be the number of 
memory  locations  required  for  instructions necessary to solve 
the equation,  including input/output operations. Then  the prob- 
lem  can be solved without auxiliary  storage if 

(1 + 2)(J + 2) + sIJ + L < M 

Generally, L << ( I  + 2)(J  + 2) + sIJ; the determining  factor 
as  to  whether auxiliary  storage  is  required  is the right-hand side 
of this  inequality. 

Let us also assume that  the  amount of data (unknown  functions 
and coefficients) exceeds the  available  main  storage  and  thus 
requires  auxiliary  storage.  Although we use a point-successive 
computational  method, we assume that unknowns and coefficients 
are  read  in  and  written  out a row a t  a  time.  We  further assume 
that  in solving for the unknowns along the  jth row, only three 
rows of data  are needed;  namely, the ( j  - l)st,  jth  and ( j  + 1)st 
rows.2 

The most efficient method of arranging the internal flow of 
data depends  upon the characteristics of the computer. To il- 
lustrate  the problem, we present  three  alternative  methods. 
Method 1 is  efficient on a machine  having  only  one  index  register, 
but allowing address modification. Method 2 leads  to a program 
suitable  for a computer,  such as  the 7094, that  has  at least  three 
index  registers. Method 3 can be used  on a machine that provides 
for  rapid  movement of blocks of data internally. 

I n  Method 1, the program  requires 51 locations with ad- 
dresses A, B, C, D, F, for  storing the coefficients ai i ,  b i i ,  cij, d i i ,  
and f i j ,  and 3 ( 1  + 1)  locations with addresses UM, U, UP for 
storing the unknowns u i ,  uii, and u i ,  j + l  as shown in  Figure 4. 
As soon as a row is  computed, the addresses of the instructions 
involving the function  values  are modified. The row just computed 
becomes the ( j  - 1)st row for the next  calculation. The previous 
( j  + 1)st row is  computed  next,  and the new row read  in  is the 
new (j + 1)st row. Thus  the addresses are modified as follows: 
U becomes UM, UP becomes U, and UM becomes UP. Once this 
is done, the next row of coefficients is read  in  over the old ones, 
and  the  next row of function  values is read  into  the locations 
now labeled UP. 

In  Method 2, 151 locations are  set aside with base  addresses 
~ A, B, C, D, F, and 3 ( 1  4- 2) locations  with  base  address U to be 

used for  storing the coefficients ai;, bi ;, c i i ,  d i i ,  f i j ,  and  the un- 
knowns uii, as illustrated  by  Figure 5 .  New data  are read in  over 
data no longer needed, and index registers are used to avoid inter- 
nal  data movement. To illustrate  this procedure, let Uj represent I the vector of unknowns  in the  jth row, i.e., 
ui = ( U 0 j ,   U l i ,  - - * , U I + l J  

and assume that Uj-l, Uj, and Uj+l  are  stored  in  three consecutive 
blocks as shown in Figure 6 .  Index Register 1 is loaded with  the 
base  address of Ui-l, Index  Register 2 with that of Uj, and  Index 
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Figure 7 Storage  when computing 
U J + ~  by method 2 

UP I I 

rnodifications 

Figure 8 Storage  when computing 
U J + I  by method 3 

UM u, 
U u,,, 

254 

Register 3 with  that of Ui+l .  As points along the  jth row are 
computed,  they  are  written  in auxiliary  storage. As shown  in 
Figure 7, Ui+z is read in over Ui-l, which is no  longer needed, 
and U,+l is computed. The initial  contents of the  three index 
registers are  rotated; i.e., Index  Register 1 is  now used for the 
base  address of Uj, Index  Register 2 for that of Ui+l,  while Index 
Register 3 must  be loaded with  the base  address of Ui+a. The 
coefficients are  treated as the unknowns,  except that  they need 
not  be  written  in auxiliary  storage. 

In  Method 3, storage  assignment is the same  as  in  Method 1. 
The three rows of unknowns Ui-l, Ui, and Ui+l  occupy the  same 
locations.  When the computation of a row is completed, Ui-l 
is written in auxiliary  storage, and Ui and Ui+l are moved into 
the blocks previously  containing Uidl and Uj, respectively. The 
new row, Uit2, of data is  read  into  the block previously  containing 
Ui+l. These  procedures are summarized as follows: 

ui "-f U,p1 
Ui+l + ui Internal move 

Ujtz + Ui+l  Read  in  from auxiIiary storage 

A t  the end of each  it,eration, three rows of unknowns are  written 
in  auxiliary  storage. 

When  computing Ui, the storage  assignments of the unknowns 
are  as shown in  Figure 6; when  computing Ui+l ,  the assignments 
are  as shown in  Figure 8. 

Unless the computer  has small  storage  capacity or the  number 
of elements in a row is very large, it is  normally possible to  store 
more than  three rows of the unknown  function  and  one row of 
coefficients a t  one  time.  Then  the  data flow must be modified. 

In  general,  a  computer  holds k rows of coefficients and k + 2 
rows of unknowns if 

( k  + 2 ) ( 1  + 2) + k s l  + 11 < J d  

that is, 

A B  - T, - 2(1  + a) 
< -  ( s t -  1 ) 1 + 2  

One should choose k as  a  divisor of J .  
Methods 1 and 2 are modified so that  after  the rows 2 to IC + 1 

have been computed  and rows 1 to k written  in auxiliary  storage, 
rows k + 1 and k + 2 of the unknown  function  are moved into 
rows 1 and 2, and  the  next k rows are  read  into rows 3 to k + 2 
of the blocks. The next k rows of coefficients simply  replace 
the old ones. 

With  these modifications, Methods 1 and 2 are now essentially 
identical  since  a single index  register suffices to scan all arrays. 
This index  register is initially set  to correspond to  the first in- 
terior  point of the first  interior row. It is subsequently  stepped 
by  one word until  the  last  interior  point of the row is processed. 
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Before continuing with  the calculation of the next row, the index 
register must be  appropriately  changed to skip  over the boundary 
points.  This procedure is repeated  until  the  entire block is ex- 
hausted. I n  order to  make indexing  uniform  for  unknowns and 
coefficients, i t  is  assumed that a row of coefficients also consists 
of I + 2 elements,  although the two  (arbitrary) values at   the 
vertical  boundaries are  actually never used in the calculations. 
Under the modified procedure,  limitations  are given by 

(IC + 2)(I + 2 )  + ks(I + 2) + L < M (4) 

that is, by 

In modified Method 3, after  the  computation of any row is 
finished, all blocks should be moved up  by one row. An additional 
row should be  read  into  the  vacated  areas  until  the  last rows 
have been transmitted  to main  memory. 

Although we have  presentcd three  methods  in  detail, it  must additional 
not be  assumed that these  are  the only three available. For considerations 
example, using a  computer  with  four index registers, Mcthod 2 
would require the same  number of locations  as Methods 1 and 3. 
Other  schemes  involving,  for  instance,  indirect  addressing could 
be  devised. The most efficient method  depends  upon the char- 
acteristics of the computer. However, we feel that  the comparison 
of computers  based  upon the schemes selected is valid  for  a wide 
class of partial differential  equations. 

Whichever  method is used, there is a cost fa,ctor  associated 
with  setting  up  the  next line of computation. I n  Method 1 this 
cost  factor  is  based  on  address modification, in  Method 2 the 
cost relates to  the proper  setting of index registers, and  in  Method 3 
the cost is in  the  internal moving of data. 

Kernel programs for SYSTEM/~BO 

' Consider the internal data flow of modified Method 2 for a  5-point short 
star difference scheme. Equations 4 and 5 must be modified for arithmetic 
SYSTEM/36O, since  each  memory  location  holds  one byte consisting 
of 8 bits,  and 4 bytes  constitute one Thus we have 

4(k + 2)(I + 2)  + 20k(I + 2)  + I, < n// (6) 

and 

Addresses A, B, C, I>, F refer to  the first  element  in the cor- 
responding block; Ubl is the address of uoo and U that of uol. 
Whatever the size of the mesh and  the memory, six registers are 
allocated to hold the base  addresses of the instruction set  and 
the six arrays.  Symbols no, Itl, 112, etc.,  are used to designate 



Table 1 Registers for modified method 2 short arithmetic 
-~ ~ 

Register* Contents Comments 

R15 

R14 
R13 
R12 
R11 
RlO 
RO 
R6 
R7 
R9 
E4 
E6 

Addresses of instructions, 
constants, and ao1 

Address of bot 
Address of c01 
Address of dol 
Address of fol 
Address of uoo 
4 To increment R2 
8 To skip boundary points 
4[(k--l)(I+2)+11 To test the  end of a block 

EPSLON To test convergence 
ALPHA  Extrapolation  parameter 

4(1+2) To test  the inner loop 

* R: General register E: Floating-point register 

general  registers and EO, E2, etc.  floating-point  registers which 
need not coincide with the register  bearing the  same  number 
(e.g., RO need not correspond with  General Register 0). 

At  the beginning of the program,  assume the registers to be 
loaded as shown  in Table 1. 

In   the  kernel  program for S Y S T E M / ~ ~ O  short  arithmetic (Ap- 
pendix l), we use the symbols UM for the (j - 1)st row and U 
for the  jth row;  storage  allocation  for  these  quantities is illustrated 
in  Figure 4. Instructions executed with  the  same frequency are 
grouped  together  in  anticipation of their use in  the  derivation 
of timing  formulas.  Excluded  from  timing  considerations are 
instructions  executed  only  once  per  iteration, since a kernel pro- 
gram, by definition,  contains  only  those  segments of a program 
which contribute significantly to  the overall  timing.  Some of 
these  instructions  are,  however,  included  in the program to pre- 
serve  continuity. 

If we consider the  internal  data flow using long arithmetic 
long and a 5-point star difference scheme, Equations 6 and 7 become, 
arithmetic because of the double-word length, 

8(k + 2)(1 + 2) + 40k(I + 2) + L < M 

and 

M - L - 16(1 2) 
< 48(1 + 2) 

At  the beginning of the program, the general  registers  shown 
in  Table 2 are loaded  differently  from the corresponding  ones 
in  short  arithmetic. 

Appendix 2 lists  those  instruction  groups for Iong arithmetic 
which differ from the ones  in  Appendix 1 for short  arithmetic. 
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a new last row for  each block is read  in.  Writing  should  start. 
simultaneously with  the  computing of the second row. When 
the whole block is moved up a row, reading into  the  last row 
should begin. 

Whichever  method  is used, it is clear that if more than one 
channel is attached  to a computer, the coefficients should be 
distributed  in  the  best way  among  input/output devices belonging 
to  the different  channels. The two sets of unknowns uii should 
be  transmitted  through  two different channels to  take  advantage 
of simultaneous  reading  and  writing. 

Timing of operations 
computation Here we first derive  separate  timing formulas  for  computation 
timing and  input/output  operations  and  then  an expression for deter- 

mining the  total  time necessary for  one iteration assuming  overlap 
between  computation  and  input/output. 

Let TA be the execution time for instructions in Group A 
(Groups A, and A2) for both  the S Y S T E M / ~ ~ O  and  the 7094; these 
instructions  evaluate u?:', assuming  a  5-point star difference 
scheme. 

Let 5";; be  the  computing  time for any  additional  point, i.e., 
T;; is the execution time for the following instructions. 

SYSTEM/360 short  arithmetic: 
LE 
ME 
AER 

7094 single precision: 
LDQ 
F M P  
FAD 
ST0 

Let T ,  be the computing  time  for  testing successive iterations 
performed by  instructions  in  Group B. 

Instructions  in  Groups A and B constitute  the  innermost 
loop. Group A is executed once for  each  interior  point. On the  other 
hand,  Group B is not always  performed  for  every  interior  point 
of the mesh since alu::' - u'ti( 5 E is true for  every i, j only  in 
the  last  iteration. One may,  therefore, assume that  this  test occurs 
only half the time. 

Let T ,  be the execution  time of instructions  required  to  set 
up  the next row of computation, i.e. Group C. Note  that T c  
depends  upon the method chosen for  internal data flow. 

Let T ,  be the time  for  initializing the MOVE sequence and, for 
SYSTEM/360 only, for moving the last  words of a block (Groups Dl 
and DZ). 

Let T ,  be  the time  for moving the  last  two rows of a block 
into first  positions  (Group E). 

If we denote the computing  time  for  one  interation  by T ,  
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where 

P =  I[ SYSTEM/~BO long arithmetic 

(The bracketed  symbol  represents  the  “integer”  portion of the 
quantity contained  therein.) 

In  these  timing  considerations,  variable coefficients as well 
as initial guesses for the solution are assumed to be  available 
in  auxiliary  storage. There is, of course, a certain  amount of 
computing  time  involved in calculating the coefficients and 
writing  them,  say,  on  tape.  Since  this is done  only  once per 
problem, the generating  time is not included  in the overall  timing. 
In  addition,  any  instructions carried out   a t  most  once  per iteration 
are also excluded from the timing  formulas  since  their  execution 
time is negligible. The first  instruction  in  Group Dl (BCT in the 
SYSTEM/360 and TNX in the 7094 programs) also falls into  this 
category when performed  for the  last  time  in  any  iteration since 
it is executed J / k  times,  whereas the remaining  instructions 
in  Groups Dl and Dz are executed  only J/lc - 1 times as indicated 
in  Equation 9. 

In  the 7094 programs, the  last  instruction  in  Group A, (a TXI 
instruction)  is performed J times less frequently  than  the re- 
mainder of the instructions  in the same  group. To compensate 
for  this, another TXI instruction, the first  instruction  listed  after 

~ Group C, has been excluded from the timing of Group C. It should 

1 be observed that  this TXI, and  the preceding three  instructions 
in Group C in  the 7094 program (CLA, SUB and STO), are executed 

1 only J - J / k  times rather  than J times as indicated in  Equa- 
tion 9. However, J / k  is, in general, a comparatively  small  number, 
and  this simplification has been made  to  obtain a uniform  timing 
formula. 

The computing  time T ,  (Equation 9) does not include  time I/O 
* required to read  information into  main memory or to  write  it time 
I into auxiliary  storage. If we now define 
i 

T ,  Total  data transmission  time 
T,  Total access time for positioning  a given read/write 

T ,  Total  time for input/output  operations 
then 

mechanism 

(10) 
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The  total access time, To, varies  according to  the  input/output 
device  used. The  total transmission  time, T,, is the transmission 
time of one  word  multiplied by a factor, that depends  upon the 
size of the problem and  upon  the  number of channels  available. 
The  total transmission  time is calculated  by  using the following 
equation : 

where 

t Time  to  read  or  write  one word 
I Number of channels 

Figure 9 layout of data Formulas  for  calculating TB are given later  in  this  paper. 
transmission It should  be  pointed out  that  the number of rows of unknowns 

UNKNOWNS WRITE COEFFICIENTS read  in  and  written  out  within  the  same block are  not always 
equal, as shown  in  Figure 9. The rectangles  represent  records 

K which consist of the number of rows shown. At  the beginning 
of each  iteration, k + 2 rows of unknowns are  read  in  and k rows 
are  written  out; whereas at   the end of each  iteration, k rows 
are  read  and k + 2 rows are  written. For interior blocks, the 
number of rows read  and  written is k.  To allow the proper  number 

K { !I-z K{ !:-2 0 K of rows to  be  written  in one  iteration  and  read  in  the next, the 
records must be of appropriate  length. I n  particular, we write 
2J/k  - 1 records  per  iteration. The first  record  consists of k rows, 
the next 2J/k  - 3 records  contain alternately 2 and k - 2 rows, 
and  the  last record  contains k rows. Thus, we first  read  two  records 
of unknowns in  order  to  obtain k + 2 rows, and  write  out one 
record of k rows. For  the  next J / k  - 2 times, we both  read  and 
write  two  records consisting of k rows in  each record. At  the end { iyz ‘6 1- 2 O K  of the iteration, the  last record with k rows is read  in  and  two 
records, one  containing  two rows and  the  other containing k rows, 
are  written  out. Finally, the  total  time required  for  computing 
one  iteration  in a buffered computer is 

READ  READ 

K + Z  

FIRST BLOCK 

INTERIOR BLOCKS 

I where y is the overlap  factor, i.e., the percentage of input/output 
time  available  for  computation. 

We now describe the use of tapes  as auxiliary  storage for the 
tape coefficients and unknown  functions.  A  minimum  number6 of three 
access data  tapes is necessary for the previously described methods: 
time one tape for the coefficients (TC1) and  two  tapes  for  the unknowns 

(TU1 and TU2). Their  activity  during  two consecutive  iterations, 
n and n + 1, is given in  Table 3. I n  this case, computation  is 
delayed while the  tapes  are rewinding 

Rewind time  can  be overlapped with  computation  by using 
six tapes:  two  tapes for the coefficients (TC1 and TC2) and  four 
tapes  for  the unknowns (TU1, TU2,  TU3, and TU4). The six-tape 
activity is given in  Table 4. 
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Table 3 Activity of three tapes 

Iteration Operations 

n Read T C l  
Read TU1 
Write TU2 
Rewind all three tapes 

n + l  Read TCl  
Read TU2 
Write TU1 
Rewind all three taues 

Thus  far we have assumed that all of the s sets of coefficients 
are  stored  on  the  same  tape.  This, of course, need not be so, and as 
many  as s different tapes  may be  available  for this  purpose. 

Using two  sets of tapes  to eliminate  rewind  time,  and keeping 
in  mind that  there  are J/lc records of coefficients or 2J/lc - 1 
records of unknowns  on a set of two tapes (see Figure 9), total 
access time will be 

where a, is the  start  time  from  the load  point,  and a, is the record- 
gap access time. 

If the number of tape  units available  per  channel does not 
allow the doubling of tapes, the timing  formulas  have to  be 
altered  accordingly; i.e., backspace  times have  to be  added, and 
half of the  start times from the load  point  have  to be  replaced 
by record-gap  times. 

Consider now disk  storage  for  input/output operations. Each disk 
disk has  “tracks,” i.e., concentric circles on which information access 
is stored. All tracks of the same  radius  on a disk  storage  unit t ime 
are vertically aligned and  form a “cylinder.”  Information is read 
or written  with  the help of a comb-like access arm  with a  read/ 
write  head  for  each  recording  surface that can  be  adjusted to 
read  from or write on any of the  cylindew6 

Since the access mechanism  consists of one  read/write  head 
for each  track of a cylinder, no  mechanical  motion of the  arm 
is necessary when reading  or  writing  data records which extend 
over  several tracks on the same  cylinder.  Therefore, it is ad- 
vantageous to store data on  consecutive tracks of an accessed 
cylinder rather  than on adjacent  tracks of a disk  surface. I 



Table 4 Activity of  six tapes 

Iteration Blocks Operations 

n 1 to [g] Read TC1 
Read TU1 
Write TU2 
Rewind TCl, TUI,  TU2 

n + l  

Write TU4 
Rewind TC2, TU3,  TU4 

1 t,o [-] Read T C l  
Read TU2 
Write TU1 
Rewind TCl, TU2,  TU1 

J 
Read TC2 
Read TU4 
Write TU3 
Rewind TC2, TU4, TU3 

A single disk unit  has, in general, adequate  storage  capacity 
for both unknowns and coefficients. The number of cylinders 
required to  store  them depends upon the  type of disk unit  and 
the size of the problem. To minimize the motion of the access 
mechanism, storage should be allocated on  adjacent cylinders. 
To keep the timing formulas simple, we assume that a cylinder 
holds an integral  number of blocks of coefficients or unknowns. 

Because of the continuous rotation of the disks, the search 
for the beginning of a record on a  track  takes  an  average  rotational 
delay  time which must  be  added to  the  lateral access time re- 
quired to locate the addressed cylinder. 

Since several arms  may be in motion simultaneously, the 
lateral access time may be reduced if several disk units (or one 
disk unit equipped with several access mechanisms) are available 
even though  they are  attached  to  the same channel. The avail- 
ability of several channels permits  simultaneous data transmission 
and, therefore, tends to minimize rotational  delay  time. When 
the number of channels is 2 5 I 5 s + 1, the  data should be 
distributed  in  the most economic way. I n  any case, u : ~  and u::' 
should be transmitted  through different channels, while the CO- 

efficients should be divided in  an optimal  manner. In  the case 



Using the  notation  introduced in Equation 10, we define 

TB = T B ~  + T,, 
where 

T,, Total  lateral access time  (time  required  for the lateral move- 
ment of the  arm between  cylinders) 

T,, Total  rotational delay  time  (time  required  for the read/write 
head to reach the desired  record on  the selected  cylinder) 

These  times  may  be  calculated as follows: 

z = 1  and 6 2 3 

a, + (C, - l)az 2 5 I 5 s + 1 and 6 2 2 

l > s + 2 a n d 6 > 1  

where 

a, Time for the access mechanism to move  between  non-adjacent 

a, Time  for  the access mechanism to move  between adjacent 

C, Number of cylinders to  store all  unknowns 
6 Number of access mechanisms  per  channel 
d Average  rotational  delay  time 

cylinders 

cylinders 

If the number of elements in a block exceeds the  storage 
capacity of a  cylinder, the timing  formulas must  be  altered 
accordingly; i.e., for  each cylinder-crossing within  a block, terms 
(J/lc)a2 and ( J / k )d  may  have  to be  added to  the right-hand 
sides of Equations  12  and 13, respectively. 

For the first iteration (or on  restart),  the  initial  movement 
of the access mechanism may  require more time  than for sub- 
sequent  iterations. Since this  happens only  once per problem, i t  
need not be  included in the timing  formulas. 

Drum  storage is available  as auxiliary  storage for S Y S T E M / ~ ~ O .  

A drum  with a read/write  head for each track is equivalent to 
one  cylinder of a  disk unit;  there is a  rotational  delay  prior  to 
a read or write  operation, but no other access time.' 
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In the following discussion, we assume one drum  unit per 
channel since one drum usually has sufficient capacity to store 
all data,  and no speed is gained by using two or more drums 
on the same channel. If the problem is so large that more than 
one drum per channel is needed, each drum should hold an integral 
number of blocks. Considerations regarding several channels are 
the same as for disks. 

Using the notation of Equations 10, 12, and 13, for drums 
TB, = 0, C,, = 1, so that TB = TBa and 

Summary 
The procedure described in  this paper gives insight  into the eco- 
nomic use of computing devices when large blocks of data can be 
transmitted at  the same time. It also demonstrates that com- 
puting time can be reduced by an appropriate  plan  for  distribu- 
ting  data among main memory and  various input/output devices. 

Frequently-used applications in certain scientific areas may 
emphasize special features of computers that  are  not particularly 
important  in  the procedure we have chosen. For example, in 
solving partial differential equations by  alternating direction 
methods, data cannot easily be read or written  in blocks, and 
thus  the use of a computer with very large main storage even 
though part of it may  have relatively slow  access  would  be pre- 
ferable to other  input/output devices. Although disks offer direct 
access,  seek time would considerably slow  down data transmission. 

Throughout  this paper, it is assumed that only one kind of 
input/output equipment is available. In  reality,  this is very 
rarely the case. For example, one could  consider using two types 
of devices for data transmission and  then develop timing formulas 
for such a configuration. Many such combinations are possible, 
and  the timing equations become more complicated accordingly. 

Thus, the widely used and comparatively simple problem 
chosen for this paper yields rather  elaborate timing formulas. 
For a computer other than  the ones discussed, parts of the pro- 
cedure may  have  to be modified in order to  take  advantage of 
any special feature offered.  However, the overall approach es- 
sentially remains the same. 
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Appendix 1 Kernel program for SYSTEM/360 short arithmetic 

G O U P  Instructions 

Initializes R8 once per iteration L RS, BLOCK 
by loading it with J / k  (the num- READ 
ber of blocks to be processed in 
one  iteration).  Initializes R1 and 
R2 once per block; sets R1 to 41 Read  in uyi, coefficients 
to  test  the end of the first row, 
and  sets R2 to 4 for addressing 
u11. 

LM R1, R2, FIRST 

Comments 

Set R8 to J / k  

Set R1 and  R2  to 41 and 4 

~~~ ~ 

A1 Computes u:;" from INNERL LE 
Equation 2 and a(uT;+l - u : ~ ) .  ME 

LE 
ME 
AER 
LE 
ME 
AER 

LE 
M E  
AER 

AE 
SE 
MER 

NOPl BC 
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Appendix 1 Continued 

Group Instructions Comments 

B Compares 01 l u ~ ~ + l  - u:il with E ,  LPER  2 ,0  O1 (U*P" - u;il 
to  test  the absolute  error. CER  2,4 

1 1  

Compare a \UT:+' - u:il 
with e 

next  instrnction 
BC 12, CONT If 01 IuTY+' - u : ~ I  5 E ,  skip 

After an unsuccessful test,  the 
program  is changed t,o skip  the 
entire testing procedure. 

Af Computes u:f' from Equation3, 
and  tests  to see whether the cur- 
rent row is finished. 

C Tests  to see if the  last row of the 
block is completed, and incre- 
ments  the row counter. 

01 NOPl+l ,  X'FO' If 01 l ~ T ; * l  - u:il > e ,  
stop testing 

AB Rl,  R9 Set R1 for next row 
BXLE R2, R6,  INNERL Set  R2 for next row 

WRITE 

Write  out u::' 

Dl Tests  to see if the  last block has  BCT R8, NEXTIT If last block has been proc- 
been processed, and initializes essed, start next iteration 
R3, R4, and R5. L R3, TWOROS 8(1 + 2) 

L  R4, ADRUM Address of uoo 
L R5, LASTRO Address of UO.k+l 

E Moves the  last two rows of un- MOVE  MVC O(256, R4), O(R5) {Move 64 words to  top 
knowns to  the beginning of the A R4, TWO56 Increment addresses for 
block, unless the last block has A R5, TWO56 MVC instruction by 256 
been processed. This is accom- S R3, TWO56 8(1 + 2) - 256 
plished by successive transfers < 
of 64 words, the maximum per- > 
mitted  by  the MVC instruc- BC 2, MOVE Repeat if more than 64 
tion. This  part of the program words remain 
assumes I > 30. 

C R3, TWO56 8(1 + 2) - 256 = 256 

Dz Completes the  transfer  to  the  MVC 0, (REM,  R4), O(R5) Move  remaining words to 
beginning of the block for top 
words in excess of  a  multiple of BC 15, READ  Return  to read sequence 
64 and  returns to the read se- 
quence. 
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Appendix 2 Modifications in  kernal  program for SYSTEMI360 long  arithmetic 

Group Znstructions Comments 

LM R1, R2, FIRST Set R1 and R2 to 81 and 8 

INNERL  LD 
MD 
LD 
MD 
ADR 
LD 
bl D 
ADR 
LD 
MD 
ADR 

AD 
SD 
M D R 

NOPl BC 

B LPDR 2 , 0  0I lu:y+' - Ulil 
CDR 2 , 4  Compare 01 ]uf:+' - ulil with E 

BC 12, CONT If a I U ? ? + ~  - ulil 5 E skip next 
instruction 

CONT AD 0, U(R2) 
STD 
BXLE R2, RO, INNERL Set R2 for next element 

cY(u:y+' - U l i )  + 
0, U ( W  u;; 1 

BCT R8, NEXT IT If last block has been processed, 
start next iteration 

L R3, TWOROS 16 (1+2) 
L R4, ADRUM Address of uoo 
L R5, LASTRO Address of uo ,k+l 

MOVE MVC O(256, R4), O(R5) Move 32  words to top 
A R4, TWO56 
A R5,  TWO56 instruction by 256 
S R3, TWO56 16(Z+2) - 256 

C R3, TWO56 16(1+2) - 256 = 256 < 
< 

.( Increment addresses for MVC 

BC 2, MOVE Repeat if more than 32 words 
remain 
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Appendix 3 Kernel program  for 7094 single precision 

Group Instructions Comments 

LXD BLOCK, 4 J l k  
READ 

Read  in u:~,  coefficients 

LXD FIRST, 2 
CLA ENDFR 
STD CONT 

k(Z + 2) - 2 
k(Z + 2) - (Z + 1) 
TXL2, 2, k(Z + 2) - ( I  4- 1) 

A1 INNER LDQ U-(1+3), 2 Pick up u:?;, 
FMP A, 2 Multiply by aij 
FAD F, 2 Add in j t i  
ST0 ERASE 

FMP B, 2 Multiply by bii 
FAD ERASE 
ST0 ERASE 

FMP C, 2 Multiply by c i i  
FAD ERASE 
ST0 ERASE 
LDQ U, 2 Pick  up u: , +' 

FMP D, 2 Multiply by d i i  
FAD ERASE UT,!'+' in AC 

LRS 35 
FMP ALPHA a(uTr+l - u?.) L J  = u:;' - u1. 1 1  

ST0 ERASE 

LDQ U-(1+1), 2 Pick  up u:+ 1, 

LDQ U-2(1+2),  2 Pick  up 

FSB U-(Z+2),  2 @,!'+1 - u?. *I 

FAD U-(1+2), 2 Add uli 
ST0 U-(Z+2),  2 .lt' 

TRA CLA ERASE 

B SSP a (UT;+' - uYil 
CAS EPSLN 

TRA CLA a lu::+' - UYjl > € 

TRA TXLl a 1@,!'+1 - u?.l I 1  = 

AZ CONT TXL TXL2, 2, k(1+2)-(z+1) Test for end of row 
TXI  INNER, 2, -1 Increment for next i 

CLA  CLA SKIP  TEA CONT 
ST0 TRA Stop testing 
TRA CONT 

C TXL2 TXL WRITE, 2 , l  Test for completion of block 
CLA CONT 
SUB  ROW z+2 
ST0 CONT TXL2,2, (k-l)(1+2)-(Z+l) 
TXI  INNER, 2, -3 Increment for next j 
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Appendix 3 Continued 

Qroup Instructions Comments 

WRITE 

Write out ulr' 

D* TNX NEXT, 4 , l  If last block has been processed, 
start next iteration 

LXD TWORO, 1 
" 

E MOVE  CLA U+1,1  U 0 k  

ST0 U--k(I+2)+1,  1 uoo 
TIX MOVE, 1,l Increment for next i 

D2 TRA READ Return to read sequence 

Appendix 4 Modifications in  kernal  program  for 7094 double precision 

Group Instructions Commenb 

LXD FIRST 2[k(Z+2)"21 
CLA ENDFR 2[h(Z+2)"(Z+l)I 
STD CONT TXLS, 2, S[k(Z+2)-(1+1)] 

INNER DLD U-2(1+3),  2 Pick  up u:?;, 
DFMP A, 2 Multiply by aii 
DFAD F, 2 Add in fii 
DST ERASE 

DFMP B, 2 Multiply by bii 
DFAD ERASE 
DST ERASE 

DFMP C, 2 blultiply by c i j  
DFAD ERASE 
DST ERASE 
DLD U, 2 Pick up 
DFMP D, 2 Multiply by di i  
DFAD ERASE 

DFMP ALPHA 
DST ERASE 

DLD U-2(1+1),  2 Pick up u:,~, 

DLD U-4(1+2), 2 Pick  up u ~ ~ ~ - l  

$n+ 1 

DFSB U-2(1+2), 2 
UT 1 

.:;+I - u:i 
a(u;;+' - U Y l )  = u:;' - u:i 

DFAD U-2(1+2),  2 Add uYi 
DST U-2(1+2),  2 .;; 1 

TRA DLD ERASE 
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