Integrated system design leads to the inclusion of certain features
in the assembly language for the convenience of compilers, and others
for the convenience of program segmentation.

This paper discusses motivation for the inclusion of these features,
and traces their influence upon the internal structure of the assembly
program.

Design of an integrated programming
and operating system

Part II: The assembly program

and its language

modular design
of programs

by R. B. Talmadge

In the past few years, programming methods in general use have
tended to emphasize modularity of program design; not only for
large, complex programs, but even for those of relatively modest
size. A common method for achieving modularity has been to
divide the program into (relocatable) segments, because:

e Coding and checkout of the individual segments can proceed
in parallel, thereby considerably reducing the time between
analysis of the problem and availability of a running program.
Modifications to the program, which are usually confined to
a few segments, can be accomplished without the necessity
of reassembling the entire program.

Duplication of effort can be minimized by taking advantage
of libraries of previously checked-out subroutines.

Different programming techniques can be used for the various
segments, thus allowing the exploitation of the strong points
of a particular language or processor.

However, it has generally not been possible to realize all these
advantages. Programs created by FORTRAN 1I and COMMERCIAL
TRANSLATOR, for example, are so incompatible in deck format,

IBM SYSTEMS JOURNAL * JUNE 1963

interprogram reference facilities, and loading technique that a
combination of the two is operationally impractical. Even com-
patible programs, such as are produced by FORTRAN 1T and FaP,
have had rather limited reference facilities. Moreover, methods
have not been available to treat programs as independent during
checkout, and dependent during normal execution, without re-
quiring substantive changes.

To overcome these difficulties, the 7090/94 1BJOB processor
has assumed program segmentation as a fundamental operating
principle. Basic compatability is obtained by using 1BMAP as the
common assembler, so that the source language origin of any
segment is indistinguishable to the loader (Figure 1). Conse-
sequently, the assembler receives a substantial part of its input
from non-human programmers; that is, from the 1BFTC and 1BCBC
compilers. Its output is binary-symbolic information which is
to be loaded by 1BLDR, employing rather sophisticated relocation
and reference techniques. The assembly language, and the struc-
ture of the assembler itself, have been decidedly influenced by
these eircumstances.

The first part of this paper is a discussion of some of the more
distinctive features of the assembly language. Motivation for
their inclusion is covered, and a few examples of usage are given.
The second part is an examination of the influence of these features
on the mechanization for the assembler.

In addition, there are two appendices. The first supplies some
details of the assembly language, in order to help the reader un-
familiar with 1BMAP understand the examples. And, for the reader
interested in technique, the second appendix exhibits some de-
tails of the mechanization by means of an example.

The assembly language

Designation of a program, or part of a program, as a ‘“‘control
section” permits the loader to identify the section with one in
another program, giving the effect of independent relocatability
to the section, and providing the mechanism by which references
are made between separately assembled segments of the same
program.

By definition, a control section consists of any combination of
instruetions or data occupying a contiguous block of memory in
the assembled code, which is declared to be a control section by
means of the CONTRL or ENTRY operations. (In the latter case,
the length of the block is zero.) For such a block, the assembler
places an external reference label, chosen by the programmer,
into a control dictionary, together with information enabling the
loader to determine the base and length of the section. All refer-
ences in the program to symbols within the section are given a
special relocation code in terms of this control dictionary entry.

Now, when the program is loaded, either by itself or as a
segment of a larger program, the loader examines the control

ASSEMBLY PROGRAM AND ITS LANGUAGE

Figure 1 Common assembly

|

|

CcoBOL
PROGRAM

FORTRAN [

|

PROGRA

ASSEMBLY

RELOCATABLE
BINARY

< IBLOR >

content of paper

control sections

Figure 2

: PHASE |
CONVERT INPUT DATA TO BINARY
WITH APPROPRIATE SCALE FACTORS

i
1
{
CONVERTED
DATA
!
]
P

PHASE H
COMPUTE FUNCTIONS OF CONVERTED
DATA

PRINTED
RESULTS

Figure 3

CONVERT DATA
™\ CTR. SEC. 1 (S)
|
1
!
1
I

STORAGE AREA
FoR QUTPT OF CONTAINING

CTR. SEC. 2 (D)

TEST DATA
FOR PHASE !

CTR. SEC. 4 (D)

PHASE |

TL—T

D!SPI.AY OUT OI\T;G?’E l;I\ND
DISPLAY RESULTS,
CTR. SEC 3 (T) CTR. SEC. 5 (T)

I

]

1

I @
FIRST PROGRAM

SECOND PROGRAM
FINAL PROGRAM

dictionaries of all segments for duplicate external reference labels.
(Control cards permit any label to be changed prior to this
examination.) If duplicate labels are found, one of the sections,
as indicated by the programmer, is selected to appear in the
final program, and the others are deleted. Whatever the choice, all
references in the body of every segment to a given section are
translated by the loader to the final location of the section, while
other references are adjusted to account for any deletions.

This technique introduces a uniform relocatable method of
handling all interprogram communication. The provision of direct
references by the loader is particularly useful because:

e The program may be written without taking into account the

final disposition of any control section. In effect, the assembly
need only allow for the possibility of external reference, without
forcing the actuality.!
Data requires no special treatment. The COMMON statements
of FOorRTRAN, for example, translate directly into control sec-
tions, irrespective of the number or order of the blocks in any
segment.

Furthermore, since sections which are to be identified need
not have the same internal structure, and so may perform quite
different functions, control sections offer a convenient method of
attacking the general problem of parallel coding and checkout.
To illustrate, suppose we have a simple program structured as in
Figure 2. The program is written in two parts, corresponding to
Phase I and Phase II—possibly in different source languages—
which are separately assembled.

The first part is written with three control sections:
Section 1 (labelled S), which does the input conversion (Phase I).
Section 2 (labelled D), which is the storage area for the con-
verted data.
Section 8 (labelled T), which causes display of the converted data.

The second part is written with two control sections:

Section 4 (labelled D), within which is assembled test data for
Section 5.

Section 5 (labelled T), which does the actual computing (Phase II)
and displays results.

Sections 2 and 4 have been given the same label, as have
Sections 3 and 5 (recall that in the final program, the loader will
accept only one control section with a given label).

The two assemblies may be loaded and checked out as the
separate self-contained programs indicated in Figure 3. Section 3
supplies the required references as well as a means for checking
the basic Phase I program. Similarly, Section 4 provides references
to the output of Phase I and a predetermined input sufficient to
check the Phase 1T computations. When each program is fully
operational, simple control-card instructions to the loader will

R. B, TALMADGE

causc decks to be loaded and combined as a single program, con-
sisting of Sections 1, 2, and 5. And, since dircct references are
supplied by the loader, not a single instruction need be changed
in either assembly.

If, as is often the case, it is known that a section of code has
been previously assembled, proper refercnecing ecan be obtained
without including a real control section (that is, an explicitly de-
fined one) in the assembly. Reference to a symbol which is not
contained in the body of a program results in the creation of a
virtual control section by the assembler. I'or such a section, the
loader will expect to find another program with a real control
section corresponding to the virtual reference. If no such section
is found in any program on the input file, the system library
(1eL1B) will be automatically searched for the required reference.
If still not found, the symbol cannot be defined for this load, and
execution is suppressed.

Thus use of a library subroutine, a routine on the input file,
or alternate use of both types, to perform some function presents
no extra difficulties. Ior instance, suppose that Section 3 of the
previous example existed on the subroutine library. If the section
were left out of the first assembly, and no special instructions given
to the loader, execution of the Phase I program by itself would
use the library version of Section 3; but execution of the combined
program would use Scction 5.

Physical segmentation is not the only method of achieving
modularity, nor is it always the most desirable. Often, a better
approach is to write the segments separately, but assemble them
together. An example of this is a coBoL program in which the
segments are to process common data. Because the compiler
requires data description in order to generate correct instructions,
and because these descriptions are likely to be voluminous,
separate compilations might well require a substantial amount
of extra processing time, both for the programmer and the compiler.

In order to distinguish between scctions of code generated
by different programmers, assemblers have, in the past, used
various naming conventions. In one method, called heading, a
single character is prefixed to a symbol to distinguish it from an
otherwise identical one elsewhere in the program. The special
nature of this device is unsuited to complicated program structure.
Consequently, commercial languages have introduced a much
more powerful method.

If we consider commercial applications, with their compli-
cated, repetitive, data descriptions, we see that the reflection of
the data structure by means of symbols is a powerful mnemonie
aid. For example, in a program which processes master and detail
records, whose structure (symbolized by indentation) might well be
MASTER

MAN

NUMBER

RATE

ASSEMBLY PROGRAM AND ITS LANGUAGE

virtual references

qualification

deferred symbol

definition

166

and

DETAIL
MAN
NUMBER
RATE,

references to employee number in the form

MASTER MAN NUMBER
DETAIL MAN NUMBER

prove extremely convenient.

It is clear that this same type of symbol qualification (so-
called by analogy with adjectival qualification of nouns) is useful
in the assembly language. Accordingly, by means of the QUAL
and ENDQ operations, any section of code may be declared to
be qualified by any symbol; further, the qualifiers may be nested
to any depth. It is possible, then, to use meaningfully the symbol

MASTER$MANSNUMBER

in 1BMaP. (The § is used to connect qualifiers since blanks are
not allowed in the variable field.)

In most assembly programs, the appearance of a symbol in
the location field immediately defines the value of the symbol.
Expressions used to define symbols at location counter discon-
tinuities, or in terms of other symbols, can consist only of constants
and previously defined symbols. Consequently, care must be
exercised in the physical sequence of the program statement to
insure that:

e Storage allocation and data definition statements are placed
s0 as not to interfere with the flow of the program.
Dependent statements which arise from distinet parts of the
program fall in the correct order.

These restrictions are handled without serious difficulty by a
human programmer: storage allocation and symbol definition
statements, wherever they arise logically in the program, are
merely collected on separate coding sheets, arranged in the proper
order, and manually inserted at some convenient point. The
equivalent process in a compiler is not so simple. A substantial
amount of compiling effort is required to build tables, analyze
the storage assignment situation, and save the generated in-
structions for insertion into the proper place in the program.
However, with 1BmaP, all restrictions on the order of symbol
definition have been removed. And this, coupled with the use of
independent location counters to collect data and instructions
which are logically sequential but physically remote, permits
simpler and faster compiling procedures. In a FORTRAN program,
for example, which contained the scattered statements

DIMENSION A(10)

EQUIVALENCE (A(5),B)
DIMENSION B(5)

R. B. TALMADGE

in any order, the instructions

USE A
A BSS 10
USE PREVIOUS

at the first dimension statement,

USE B
B BSS 5
USE PREVIOUS

at the second, and

BEGIN B,A-+4

at the equivalence statement, insure proper storage allocation
without requiring much deliberation by the compiler.

There are several applications for which a choice based on
the value of a symbol must be made in the first pass. For example,
since any operation is allowed within the scope of a DUP, the
duplicate sequence must be expanded immediately in order to
determine the actual number of instructions generated. Hence,
a symbol which appears in the variable field expression determining
the scope of the operation must be assigned some value in the
first pass.

In a conventional assembler, this presents no problem, since
the function representing this normal location counter or equiv-
alence definition is available. In 1BMAP, however, with deferred
definition, it is necessary to provide another function. The method
adopted was to create a special clags of symbols which are assigned
an immediate value by a pseudo-operation called SET.

The distinction between symbols defined in SET terms (im-
mediate symbols) and ordinary symbols can be summarized:

Normal definition (DFN) SET Definition (S-value)

¢ Value depends on location e Value independent of lo-
counter symbols or equiv- cation counter.
alences (EQU) involving such
symbols and constants.
Is treated as constant, re- Always a constant.
locatable, or complex ac-
cording to structure.

Is global, depending upon Is local, and may be altered
entire complex of symbol at any time.

relationships. May not be

altered.

Has no value until after Has same (local) value in
definition pass. all passes.

May be formed from any Qualification not permitted
legitimate combination of in defining expressions.
symbols, qualified or not.

ASSEMBLY PROGRAM AND ITS LANGUAGE

immediate symbaol
definition

167

conventional two-
pass assembler

168

Thus, although the sequence

A EQU 5
DUP A3

is not effective, the intended result can be obtained with

A SET 5
DUP A,3.

While the function defined by SET is completely independent
of this location definition function, and properly applies only to
immediate symbols, its usefulness has been increased by extending
its interpretation to include ordinary symbols. By definition, the
S-value of an ordinary symbol is zero if it has not yet appeared
in the location field, and one if it has. The effect of this interpreta-
tion is to provide the ability to test the physical sequence of
ordinary symbols.

The evaluation procedure, then, is uniform and unambiguous.
In any situation involving a decision in the first pass, the S-value
of a symbol is used. In the second pass, the S-value is used for
immediate symbols; and definition, in the usual sense, for ordinary
symbols.

The assembler

The customary procedure of a traditional two-pass assembler
can be briefly summarized as follows:

& The first pass defines locations to be assigned to the symbols
used by the programmer. Definition is accomplished by keeping
a counter, called the location counter, which is increased by
one for every instruction encountered or generated, or by
more than one for certain pseudo-operations. Information is
retained in a dictionary which has two parts: The name
lable, in which is kept the external form of the symbol; and
the nternal dictionary, in which the definition is recorded,
as well as other information of interest, such as relocation
structure. The dictionary is built up linearly: an entry is
made ounly when a symbol is encountered in the location field.
Except for equivalence operations, the definition is the current
value of the location counter.

The only instructions fully processed in the first pass are those
pseudo-operations which affect the location counter. Since
there are usually few of these, the linear ordering of the
dictionary is tolerable. In the second pass, however, every
symbol must be found; hence between passes the dictionary
is sorted alphabetically so that the relatively efficient binary
search technique may be used.

The second pass reprocesses all instructions and accomplishes
the actual assembly. The identical BCD card images are used,
except that, in order to avoid backspacing the input tape,
they are taken from an intermediate tape (or tapes) created

R. B. TALMADGE

during the first pass. Almost all the real work of the assembly
occurs in this second pass.

An assembler with deferred symbol definition cannot use the
same technique. Observe that the information contained in the
sequence:

ORG A
A EQU B
B EQU 50
must be scanned twice, in the order given, before it can be deter-
mined that the initial origin is 50. If, then, the assembler is to
operate at a reasonable speed, the original source cannot be used
for this scan. Instead, it is necessary to construct a pseudo-
operation dictionary during the first pass which contains all the
essential information in the variable field of any pseudo-operation
which may affect a location counter. Since the size of this table
is necessarily limited, and it may be scanned many times, the
information is encoded in binary form (internal text), compact
yet amenable to rapid seanning.

The decision to replace all external information by the same
text follows naturally. Since a substantial portion of the assembler
input is compiler generated for which assembly without listing is
the normal mode, use of internal text will produce a substantially
faster second pass for two reasons:

e There is a drastic reduction in the length of the intermediate
tapes.
Less time is necessary to process a given instruction.

On the other hand, any instruction which is to be listed must
carry along the original form as well as the internal text (since
this is stripped of all commentary). However, the increased length
of the intermediate tape is counterbalanced by the increase in
processing speed; so that the second pass in the list mode is about
the same speed as a conventional assembler.

The decision to use internal text has non-trivial implications
for the dictionary structure. Text production in the first pass
requires the immediate replacement of a BCD symbol by an
internal identifier at every appearance of the symbol, whether
in the location field or in the variable field. Hence, to avoid time-
consuming searches, the name table is formed non-sequentially
by a simple scattering rule which permits rapid placement and
retrieval of any symbol.

Contrariwise, there are strong reasons for building the internal
dictionary in linear order:

o Consider the control section defined by
X CONTRL A,B

By definition, all symbols processed between A and B lie in
the control section X. Now, since the final loading location
of the section may be determined by another program, the

ASSEMBLY PROGRAM AND ITS LANGUAGE

pseudo-operation
dictionary

use of internal
text

dictionary -
structure

basis of structural

differences

170

relocatable text for
CLA C+2

where C in the section (say A+5) is to be represented as
CLA C(X)+7

where C(X) is the control dictionary reference for the section X.
It is thus necessary to reproduce the actual sequence in which
symbols occur in the program. If the internal dictionary is
scattered, a ‘“physical order’’ chain must be kept in each entry.
Similarly, the exact structure of qualification nesting must be
reproducible at all points. A scattered internal dictionary would
require a “qualification order” chain in every entry. However,
if entries are made sequentially, a simple test for the limits of
a qualification section suffices.

Thus, a sequential internal dictionary conserves space in core.
Of course, not all is pure gain. Because qualification cannot be
determined during the first pass, the internal text must reference
name table entries. Hence, some space is required for a reference
table which correlates name table entries with their internal
dictionary correspondent.

We see, therefore, that the significant differences between the
structure of the 1BMAP assembler and other assemblers in the
704/709/7094 family with almost identical languages’ can be
traced precisely to those differences in symbol definition and
symbol reference facilities discussed earlier: deferred symbol defi-
nition, control sections, and qualification.

Appendix I: Some details of the 1BMAP language
Every statement in the 1BMAP language is of the form

SYMBOL OPN VARIABLE.FIELD.

The usage of the symbol, SYMBOL, in the first field (the location
field), and the meaning of the variable field, depend upon the
operation code, OPN. The VARIABLE.FIELD may be composed of
subfields, separated by commas, and is always terminated by
a blank.

For machine operations, SYMBOL is the location symbol at-
tached to the instruction; VARIABLE.FIELD is of the general form

ADDRESS, TAG, DECREMENT.

For pseudo-operations, there are a variety of constructions. The
following table lists all that are used in this paper.

The operation In IBM AP language means

X CONTRL AB The control section whose external
label i8 X begins at the location
assigned to the symbol A, and extends
up to (but not including) the location
assigned to the symbol B.

R. B. TALMADGE

The operation In IBM AP language means

X ENTRY The location assigned to the symbol A
is an external reference point governed
by the control section whose external
label is X. (This is equivalent to a
CONTRL AAL)

Begin name qualification under the
symbol Q.

End name qualification under the
symbol Q.

Switch to location counter A. If the
word PREVIOUS appears, the switch
is to the location counter in use just
prior to the current one.

Reserve E cells; that is increase the
current location counter by the de-
finition value of the expression E.
The symbol S refers to the first of
these cells.

Same as BSS, except that the symbol
S refers to the first cell following the
reserved group.

The initial value of location counter
A is the same as the definition value
of the expression E.

The symbol S is equivalent to the
expression E with respect to substitu-
tion in any context.

Duplicate the next S(E1) statements
S(E2) times, where S(E) is the S-value
of the expression E.

Set the S-value of the symbol A equal
to the S-value of the expression E.
No equivalence between A and E is
implied.

Convert the literal subfields L1,
L2, --- , LN from decimal to binary
and store in successive locations. The
symbol S refers to the first of these
locations.

Appendix II: Symbol definition in IBMAP

We describe here an unusual feature of the assembler mechaniza-
tion: the process used to define symbols. Details will be illustrated
with reference to the sample program of Tables Al and A2.

Table Al shows a program written for an assembler without
multiple location counters or deferred symbol definition. Table A2
exhibits the same program written in 1BMAP language. In the
program of Table A2, the three groups of instructions which
are indicated in Table Al have been assigned to different loca-
tion counters, and the physical sequence has been altered, so
that group two appears before group one. Note that this alteration
of sequence has caused the variable field of the BES to be un-

ASSEMBLY PROGRAM AND ITS LANGUAGE

172

Table A1 Sequential form of sample program

Definition Location Instruction Remarks

Group 1:
1,2 Assembled under blank
X location counter, initial
Z—1 value of 0.

W—-X Fquivalence type definition

Group 2:
Y Assembled under location
N counter L, whose initial
value is determined by final
value of blank counter.

Group 3:

Assembled under location
counter M, whose initial
value is assigned by the
BEGIN as equal to that of
the symbol Z.

defined when first encountered, thus forcing deferred definition.

Nevertheless, the two programs assemble the same for the

following reasons:

1.

The blank location counter, which controls Group 1, is con-
sidered primary by the assembler. Since it has no BEGIN, its
initial value is taken to be zero.

Location counter L, which controls Group 2, also has no
BEGIN, hence its initial value starts immediately after that

of the previous counter. Since counter L is mentioned before
counter M, this is the blank counter. Hence, the first instruction
of Group 2

TRAY
is assembled at the location immediately following
STO Z-1

the last instruction of Group 1.
Group 3, under control of location counter M, is initialized
by the BEGIN to start at the same location as symbol Z.

The method by which the symbols of the program of Table A2

are assigned the same values as those of Table Al (as shown in
the column marked Definition) depends upon the construction
in the first pass of the dictionaries illustrated in Tables A3 and A4.
For convenience of written representation, the variable field
nature of these table entries is shown as a form of VFD (without
writing the VFD itself) according to the usual conventions: the
number to the left of a slash represents the length of the subfield
in bits; the expression to the right of a slash indicates the content
of the field.

R. B. TALMADGE

Table A2 Sample program in IBMAP form

Defintlion Location Instruciion Remarks

4 USE L Start with Group 2 under
4 TRA Y control of location
counter L.

BES N Note that definition of BIZS
length, N, and of attached
symbol 7 is deferred.

BEGIN M,7 Initial definition for third
location counter (could
appear anywhere in pro-
gram).

Switch to main (blank) location
counter and assemble in-
structions of Group 1.

Third location counter now used.
Defines N, which is length of

previous BIS (could appear
anywhere in program).

Table A3 shows the internal dictionary. Except for the blank
counter entry, which is initialized, entries are made sequentially
for each symbol encountered in the location field, and for each
location counter. Symbol entries are one word of the form

6/A,12/8C,3/0,15/NEXT

where A is an adjective code describing the type of entry (1 for
an ordinary symbol), SC is the number of instructions between
this entry and the previous one (the separation count), and
NEXT is the location of the next entry in the location counter
chain. Location counter cntries are two words: the first corre-
sponds to an ordinary entry for the initial value of the counter
(its adjective code is 4); the second, in slightly different format,
corresponds to the final value.

Thus, in Table A3, observe that the entry for W at location
D+6 has a separation count of 3, since there are three instructions
between it and the previous entry for the symbol X, and that it
chains to the entry at location D4-1. The latter, which is the second
entry for the blank counter, has a separation count of 1, repre-
senting the last instruction of its scope

STO Z-1
and is chained, in turn, to the first word of location counter L.
Entries in the pseudo-operation dictionary (Table A4) are
always two words, plus the internal text necessary to describe
the variable field. Although in slightly different format, the first
word is similar to an internal dictionary entry; that is, it con-

ASSEMBLY PROGRAM AND ITS LANGUAGE

tains the separation count and the location counter chain. The
second word contains the actual pseudo-operation code, split
between prefix and tag, and a chain address to the next pseudo-
operation. As we shall see, this second chain is essential to the
definition process.

Observe that Tables A3 and A4 reproduce the definition
structure of the program. Starting at the first word of the entry
for the blank location counter and tracing the location counter
chains (the separation count at the first word of a location counter
entry is always zero), we arrive at the following:

Chain I Entry Separation Next
location Corresponds lo count entry

D Start of blank ctr

D+5 X

D46 w

D+1 End of blank ctr

D42 Start of counter L

P BES N

D+4 Z

D+3 End of counter L,
and of chain
consisting of blank
ctr followed by
ctr L

D+5
D+6
D+1
D42
P

D+4
D+3

COHORWOO

Table A3 Internal dictionary after first pass

Entry Table
for location Content Ezxplanation

Blank D 6/4,15/D+2,15/D+5 6/4 This is a location counter entry
location 15/D+2 Next location counter at D+2.
counter. 15/D+5 First entry in this chain at D+5.

3/0,15/1,18/D+2 3/0 No BEGIN for this counter.
15/1 Last separation count is 1.
18/D+2 This counter hooks to counter L

Location 6/4,15/D4-7,15/P Similar to blank location counter

counter

L. 3/0,15/0,18/0

Z 6/1,12/0,18/D 43 6/1 This is an ordinary entry.
12/0 Separation count is zero.
18/D+3 Next entry in chain at D43.

X 6/1,12/0,18/D+6 Similar to entry for Z.
w 6/1,12/3,18/D+1 Similar to entry for Z.

Location 6/4,15/0,15/D+9 6/4 This is location counter entry.
counter 15/0 It is the last counter.
M. 15/D+9 First entry in chain at D-+9.

3/1,15/1,18/0 3/1 There is a BEGIN for this counter.
15/1 Last separation count is 1.
18/0 The chain ends here.

6/1,12/0,18/D+-8 Similar to entry for Z

6/1,30/0 6/1 Ordinary entry.
30/1 No chain enters or leaves.

174 R. B. TALMADGE

Chain II Entry Separation
location Corresponds lo count

P43 BEGIN M, Z
D47 Start of ctr M
D+9 Y

D48 End of counter M

Note that:

Entries under the blank counter and the L counter form a
continuous chain. This is a consequence of the sequence rules
prescribed for initializing counters without a BEGIN.

Counter M, which has a BEGIN, forms a separate chain.

The entry at location D410 for the symbol N is isolated from
the location counter chains, as is the EQU entry at location
P+6. However, the pseudo-operation chain word of the EQU
entry (location P+7) references N.

Also note that if we consider Chain Il as an extension of
Chain I, then the sequence is precisely the same as that of the
unscrambled program of Table Al.

Table A4 Pseudo-operation dictionary after first pass

Entry Table
for Location Content Ezxplanation

BES P 3/1,15/1,3/0,15/D+4 3/1 This is first word of entry.
15/1 Separation count is 1.
3/0 Counter chain has not been followed.
15/D+4 Next chain entry at D4,

3/4,15/0,3/1,15/P+4 3/4,3/1 This is a BES.
15/0 Not used.
15/P+4 Second word of next pseudo-op
at location P4+4.
Text word describing variable
field (N).

3/1,15/0,3/0,15/D +7 3/1 This is first word of entry.
15/0 No separation count.
3/0 Counter chain has not been followed.
15/D+7 The counter is at D+7.

3/3,15/0,3/0,15/P+7 3/3,3/0 This is a BEGIN.
15/0 Not used.
15/P+7 Second word of next pseudo-op at
P+7.
Text word describing variable
field (Z).

3/1,15/0,3/0,15/0 3/1 This is first word of entry.
15/0,3/0 Not used for this entry.
15/0 No chain enters or leaves.

3/5,15/D+10,3/0,15/P+11 3/5,3/0 This is an EQU.
15/D+10 Attached symbol is at D+10.
15/P+11 Second word of next pseudo-op at

P4-11.
Text words describing variable
field (W —2).

36/0 End of pseudo-operation dictionary.
36/0

ASSEMBLY PROGRAM AND ITS LANGUAGE

If we add to the pseudo-operation dictionary a hypothetical
first entry

BEGIN ,0
for the blank counter (since it does not have a BEGIN), we see
that all chains start in the pseudo-operation dictionary at some
BEGIN entry. Then, if we start at any defined pseudo-operation
entry and trace the location eounter chain, definition can be lost
only at another pseudo-operation. These simple observations form
the basis for the following definitron algorithm:

Step 1.

Starting at the initial entry of the pseudo-operation dictionary,
we attempt to evaluate the variable field. (The dummy BEGIN
is over-ridden if a blank counter BEGIN appears in the program.
In this case, the first pseudo-operation may not be definable.)
If it can be evaluated, and if the location counter value is known,
the location-counter chain is followed: entries in the chain are
defined by adding the separation count to the value of the previous
entry. This process is terminated if the chain ends or if another
pseudo-operation is encountered. In the latter case, the location-
counter value is recorded in the first word of the entry.

Step 2.

If the variable field could not be evaluated or if the chain trace
has been terminated, we use the second word of the entry to
locate the next pseudo-operation and process it in the same way.

Step 3.

Eventually, we must sweep through all entries in the pseudo-
operation dictionary. There are then two possibilities:

a) All entries have been defined; in this case the entire dictionary
must be defined.

b) An entry is not defined. In this case, we return to reprocess
the pseudo-operation dictionary, ignoring any previously de-
fined pseudo-operations for which the location-counter path
has been followed.

Step 4.

We must then terminate in one of two ways: Either by Step 3a,
which gives complete definition, or by arriving at Step 3b without
having defined a single pseudo-operation on the sweep. In the
latter case, there must be some logical inconsistency in the pro-
gram; for example, a circular definition such as

A EQU B

ORG A
B CLA 14

Tables A5 and A6 show this process carried out for the sample
program. Starting with the dummy BEGIN for the blank counter,
Step 1 of the definition algorithm applies, and Chain I is traced

R. B. TALMADGE

to define each item until the BES N is reached. At this point we

have

Entry

location Item

Location ctr

Definition value

D blank ctr
D+5 X

D-+6 w

D41 end blank ctr
D42 start ctr L

P BES N

l R Woo

as the items defined in the dictionary. Since we have encountered
a pseudo-operation (denoted by the presence of a 1 in the prefix
of the word), we proceed to Step 2 of the algorithm.

As it happens, the BES is the next pseudo-operation. Its
variable field cannot be evaluated because the EQU entry has
not been processed, so that the dictionary entry for N is not
defined. Similarly, the BEGIN is bypassed, since Z is not yet

defined.

Table A5 Dictionaries after first definition sweep

Location Content

Remarks

P 3/1,15/5,3/7,15/D +4

3/4,15/0,3/1,15/P44

3/1,15/0,3/0,15/D+7
3/3,15/0,3/0,15/P+7

3/5,15/0,3/0,15/3

3/5,15/D+10,3/0,15/P+11
6/44,15/0,15/0

3/4,15/1,18/4

6/44,15/0,15/4
3/0,15/0,18/0
6/1,12/0,18/D+3
6/41,12/0,18/0

6/41,12/3,18/3

6/4,15/0,15/D+9
3/1,15/1,18/0

6/1,12/0,18/D+8
6/41,30/3

Location counter value of 5
ig available.

a

BES still not defined.

BEGIN not
processed.

3/5 EQU is defined and its
15/3 value is 3.

Processing of this entry complete

6/44
15/0
3/4

18/4

6/44| First value of location
15/4 counter L is 4.
Final value not yet defined.

First value of blank counter
defined as 0.
Final value is 4.

Entry for Z not yet defined.

6/41| X defined as 0.
18/0
W defined as 3.

Neither word of entry for
counter M yet defined.

Entry for Y not yet defined.

6/41] Value of N defined as 3
30/3 from pseudo-op entry
evaluation.

ASSEMBLY PROGRAM AND ITS LANGUAGE

178

Table A6 Dictionaries after second (final) definition sweep

Location Content Remarks

P 3/5,15/4,3/7,15/D+4 BES defined as 3, and location
P+1 3/4,15/3,3/7,15/P+4 counter path taken to define Z
and final value of counter L.

P43 3/5,15/7,3/7,15/D+7 BEGIN defined as 7, and location
P4 3/3,15/7,3/7,15/P+7 counter path taken.

P+6 3/515/0,3/0,15/3 Previously defined EQU
P47 3/5,15/D+410/3/0,15/P+11 not reprocessed.

D 6/44,15/0,15/0 Initial blank counter is 0.
D+1 3/4,15/1,18/4 Final blank counter 4.

D+2 6/44,15/0,15/4 Initial L counter is 4.

D43 3/4,15/0,18/10 Final L counter is 10.

D4 6/41,12/0,18/10 Z defined as location 10.

D+5 6/41,12/0,18 /0 X defined as location 0.

D+6 6/41,12/3,18/3 W defined as location 3.

D+7 6/44,15/0,15/10 Initial M counter location is 10.
D48 3/5,15/1,18/11 Final M counter location is 11.
D49 6/41,12/0,18/10 Y defined as location 10.
D410 6/41,30/3 N defined as 3.

As items are defined, the definition
replaces the location counter chain
in the address of the word, and the
sign is set negative.

We now proceed to the EQU and define N since W and X are
defined. Since there is no location counter chain, and no more
pseudo-operations, we arrive at Step 3, and the situation at the
end of the first sweep (Table A5) is that

¢ The BES is not defined. This prevents definition of the end
of Chain I; that is, Z and the last entry for location counter L.
The BEGIN is not defined. This prevents definition of the
entire Chain II.

Definition is complete at the end of the second sweep. For,
with N defined, and with the location-counter value known, the
BES is evaluated and the definition of Chain I extended to com-
pletion. In the process, Z is defined. Hence, the BEGIN can be
evaluated, which allows Chain II to be defined completely.

The fully defined dictionary is exhibited in Table A6.

ACKNOWLEDGMENT

The author wishes to express his appreciation for the work of
R. A. Rock and C. M. Wimberley who programmed a large part
of the assembler, and contributed many valuable ideas to the
design.

R. B. TALMADGE

FOOTNOTES

1. If external references are indirect, as with a Fap subroutine, different
coding may be necessary for a program referencing external data than for
one referencing internal data.

. Such a8 sap, 9ap, FaP, and BEFAP. Readers familiar with the scar as-
semblers of the sos system will recognize the contribution made to 1BMAP.
Faced with the problem of deferred symbol definition, the solution was: first
pass production of internal text (sqQuoze), a pseudo-operation dictionary
(the footnotes), and a scattered name table. However, the form of text
and the structure of the internal dictionary were chosen primarily to
satisfy output requirements of the assembler, rather than by internal
processing considerations.

ASSEMBLY PROGRAM AND ITS LANGUAGE 179

