
Integrated system design leads to the inclusion of certain features
in the assembly language for the convenience of compilers, and others
for the convenience of program segmentation.

This paper discusses motivation for the inclusion of these features,
and traces their influence upon the internal structure of the assembly
program.

Design of an integrated programming
and operating system
Part 11: The assembly program
and its language

by R. B. Talmadge

modular design In the past few years) programming methods in general use have
of programs tended to emphasize modularity of program design; not only for

large, complex programs, but even for those of relatively modest
size. A common method for achieving modularity has been to
divide the program into (relocatable) segments, because:

Coding and checkout of the individual segments can proceed
in parallel, thereby considerably reducing the time between
analysis of the problem and availability of a running program.
Modifications to the program, which are usually confined to
a few segments, can be accomplished without the necessity
of reassembling the entire program.
Duplication of effort can be minimized by taking advantage
of libraries of previously checked-out subroutines.
Different programming techniques can be used for the various
segments, thus allowing the exploitation of the strong points
of a particular language or processor.

However, it has generally not been possible to realize all these
advantages. Programs created by FORTRAN 11 and COMMERCIAL

TRANSLATOR, for example, are so incompatible in deck format,

162 IBM SYSTEMS JOURNAL * JUNE 1963

interprogram reference facilities, and loading technique that a
combination of the two is operationally impractical. Even com-
patible programs, such as are produced by FORTRAN 11 and FAP,

have had rather limited reference facilities. Moreover, methods
have not been available to treat programs as independent during
checkout, and dependent during normal execution, without re-
quiring substantive changes.

To overcome these difficulties, the 7090/94 IBJOB processor
has assumed program segmentation as a fundamental operating
principle. Basic compatability is obtained by using IBMAP as the
common assembler, so that the source language origin of any
segment is indistinguishable to the loader (Figure 1). Conse-
sequently, the assembler receives a substantial part of its input
from non-human programmers; that is, from the IBFTC and IBCBC
compilers. Its output is binary-symbolic information which is
to be loaded by IBLDR, employing rather sophisticated relocation
and reference techniques. The assembly language, and the struc-
ture of the assembler itself, have been decidedly influenced by
these circumstances.

The first part of this paper is a discussion of some of the more
distinctive features of the assembly language. Motivation for
their inclusion is covered, and a few examples of usage are given.
The second part is an examination of the influence of these features
on the mechanization for the assembler.

In addition, there are two appendices. The first supplies some
details of the assembly language, in order to help the reader un-
familiar with IBMAP understand the examples. And, for the reader
interested in technique, the second appendix exhibits some de-
tails of the mechanization by means of an example.

The assembly language

Designation of a program, or part of a program, as a “control
section” permits the loader to identify the section with one in
another program, giving the effect of independent relocatability
to the section, and providing the mechanism by which references
are made between separately assembled segments of the same
program.

By definition, a control section consists of any combination of
instructions or data occupying a contiguous block of memory in
the assembled code, which is declared to be a control section by
means of the CONTRL or ENTRY operations. (In the latter case,
the length of the block is zero.) For such a block, the assembler
places an external reference label, chosen by the programmer,
into a control dictionary, together with information enabling the
loader to determine the base and length of the section. All refer-
ences in the program to symbols within the section are given a
special relocation code in terms of this control dictionary entry.

Now, when the program is loaded, either by itself or as a
segment of a larger program, the loader examines the control

ASSEMBLY PROGRAM A N D ITS LANGUAGE

Figure 2

P
CONVERT INPUT DATA TO BINARY

PHASE I I WITH APPROPRIATE SCALE FACTORS I
CONVERTED

I
!

I PHASE II
COMPUTE FUNCTIONS OF CONVERTED

DATA I
RESULTS
PRINTED

Figure 3

Q
PHASE I

CONVERT DATA

FOR OUTWT OF
STORAGE AREA

CTR. SEC. 2 (D)

STORAGE AREA
CONTAINING

FOR PHASE II
CTR. SEC. 4 (D)

FIRST PROGRAM - - - - -
SECOND PROGRAM * * . *

FINAL PROGRAM -
164

dictionaries of all segments for duplicate external reference labels.
(Control cards permit any label to be changed prior to this
examination.) If duplicate labels are found, one of the sections,
as indicated by the programmer, is selected to appear in the
final program, and the others are deleted. Whatever the choice, all
references i n the body of every segment to a given section are
trailslated by the loader to the final location of the section, while
other references are adjusted to account for any deletions.

This technique introduces a uniform relocatable method of
handling all interprogram communication. The provision of direct
references by the loader is particularly useful because:

The program may be written without taking into account the
final disposition of any control section. In effect, the assembly
need only allow for the possibil i ty of external reference, without
forcing the actuality.'
Data requires no special treatment. The COMMON statements
of FORTRAN, for example, translate directly into control sec-
tions, irrespective of the number or order of the blocks in any
segment.

Furthermore, since sections which are to be identified need
not have the same internal structure, and so may perform quite
different functions, control sections offer a convenient method of
attacking the general problem of parallel coding and checkout.
To illustrate, suppose we have a simple program structured as in
Figure 2. The program is written in two parts, corresponding to
Phase I and Phase 11-possibly in different source languages-
which are separately assembled.

The first part is written with three control sections:
Section I (labelled S), which does the input conversion (Phase I).
Section 2 (labelled D), which is the storage area for the con-

Section 3 (labelled T) , which causes display of the converted data.
verted data.

The second part is written with two control sections:

Section 5 .

and displays results.

Sections 2 and 4 have been given the same label, as have
Sections 3 and 5 (recall that in the final program, the loader will
accept only one control section with a given label).

The two assemblies may be loaded and checked out as the
separate self-contained programs indicated in Figure 3. Section 3
supplies the required references as well as a means for checking
the basic Phase I program. Similarly, Section 4 provides references
to the output of Phase I and a predetermined input sufficient to
check the Phase I1 computations. When each program is fully
operational, simple control-card instructions to the loader will

Section 4 (labelled D), within which is assembled test data for

Section 5 (labelled T), which does the actual computing (Phase 11)

R. B. TALMADGE

cause decks to be loaded and combined as a single program, con-
sisting of Sections 1, 2, and 5. And, since direct references are
supplied by the loader, not a single instruction need be changed
in either assembly.

If, as is often the case, it is known that a section of code has
bccn previously assernblcd, proper referencing can be obtained
without including a real control section (that is, an explicitly de-
fined one) in the assembly. Refcrcnce to a symbol which is not
contained in the body of a program results in the creation of a
virtual control section by the assembler. For such a section, the
loader will expect to find another program with a real control
section corresponding to thc virtual referencc. If no such section
is found in any program on the input file, the system library
(IBLIB) will be automatically searched for the required reference.
If still not found, the symbol cannot be defined for this load, and
execution is suppressed.

Thus use of a library subroutine, a routine on thc input file,
or alternate use of both types, to perform some function presents
no extra difficulties. For instance, suppose that Section 3 of the
previous examplc existed on the subroutine library. If the section
were left out of the first assembly, and no special instructions given
to the loader, execution of t,he Phase I program by itself would
use the library version of Section 3 ; but execution of the combined
program would use Section 5.

Physical segmentation is not the only method of achieving
modularity, nor is it always the most desirable. Often, tl better
approach is to write the segments separately, but assemble them
together. An example of this is a COBOL program in which the
segments are to process common data. Because the compiler
requires data description in order to generate corrcet instructions,
and because these descriptions are likely to be voluminous,
separate compilations might well require a substantial amount
of extra processing timc, both for the programmcr and the compiler.

In order to distinguish hetween sections of code generated
by different programmers, assemblers have, in the past, used
various naming conventions. In one method, called heading, a
single character is prefixed to a symbol to distinguish it from an
otherwise identical one elsewhere in the program. The special
nature of this device is unsuited to complicated program structure.
Consequently, commercial languages have introduced a much
more powerful method.

If we consider commercial applications, with their compli-
cated, repetitive, data descriptions, me see that the reflection of
the data structure by means of symbols is a powerful mnemonic
aid. For example, in a program which processes master and detail
records, whose structurc (symbolizcd by indentation) might well be

?If:\?;
XUMl3El(.
IMTE

virtual references

qualification

ASSEMBLY PROGRAM A N D ITS LANGUAGE 165

and
DETAIL

MAN
NUMBER
RATE,

references to employee number in the form

MASTER MAN NUMBER
DETAIL MAN NUMBER

prove extremely convenient.
It is clear that this same type of symbol qualification (so-

called by analogy with adjectival qualification of nouns) is useful
in the assembly language. Accordingly, by means of the QUAL
and ENDQ operations, any section of code may be declared to
be qualified by any symbol; further, the qualifiers may be nested
to any depth. It is possible, then, to use meaningfully the symbol

MASTEItMANNUMBER
in IBMAP. (The $ is used to connect qualifiers since blanks are
not allowed in the variable field.)

In most assembly programs, the appearance of a symbol in
deferred symbol the location field immediately defines the value of the symbol.
definition Expressions used to define symbols a t location counter discon-

tinuities, or in terms of other symbols, can consist only of constants
and previously defined symbols. Consequently, care must be
exercised in the physical sequence of the program statement to
insure that:

Storage allocation and data definition statements are placed

Dependent statements which arise from distinct parts of the
so as not to interfere with the flow of the program.

program fall in the correct order.

These restrictions are handled without serious difficulty by a
human programmer : storage allocation and symbol definition
statements, wherever they arise logically in the program, are
merely collected on separate coding sheets, arranged in the proper
order, and manually inserted a t some convenient point. The
equivalent process in a compiler is not so simple. A substantial
amount of compiling effort is required to build tables, analyze
the storage assignment situation, and save the generated in-
structions for insertion into the proper place in the program.
However, with IBMAP, all restrictions on the order of symbol
definition have been removed. And this, coupled with the use of
independent location counters to collect data and instructions
which are logically sequential but physically remote, permits
simpler and faster compiling procedures. In a FORTRAN program,
for example, which contained the scattered statements

DIMENSION A(10)
EQUIVALENCE (A(5),B)
DIMENSION B(5)

166 R. B. TALMADGE

in any order, the instructions
USE A

A BSS 10
USE PREVIOUS

a t the first dimension statement,

USE B
B BSS 5

USE PREVIOUS

a t the second, and

BEGIN B,A+4

at the equivalence statement, insure proper storage allocation
without requiring much deliberation by the compiler.

the value of a symbol must be made in the first pass. For example, definition
since any operation is allowed within the scope of a DUP, the
duplicate sequence must be expanded immediately in order to
determine the actual number of instructions generated. Hence,
a symbol which appears in the variable field expression determining
the scope of the operation must he assigned some value in the
first pass.

In a conventional assembler, this presents no problem, since
the function representing this normal location counter or equiv-
alence definition is available. In IBMAP, however, with deferred
definition, it is necessary to provide another function. The method
adopted was to create a special class of symbols which are assigned
an immediate value by a pseudo-operation called SET.

The distinction between symbols defined in SET terms (im-
mediate symbols) and ordinary symbols can be summarized:

There are several applications for which a choice based on immediate symbol

Normal dejinition (DFN) SET Definit ion (S-value)

Value depends on location Value independent of lo-
counter symbols or equiv- cation counter.
alences (EQU) involving such
symbols and constants.

locatable, or complex ac-
cording to structure.
Is global, depending upon Is local, and may be altered
entire complex of symbol at any time.
relationships. May not be
altered.

Is treated as constant, re- Always a constant.

Has no value until after Has same (local) value in
definition pass. all passes.
May be formed from any Qualification not permitted
legitimate combination of in defining expressions.
symbols, qualified or not.

ASSEMBLY PROGRAM A N D ITS LANGUAGE 167

Thus, although the sequence

DUP A,3
A EQU 5

is not effective, the intended result can be obtained with
A SET 5

DUP A,3.

While the function defined by SET is completely independent
of this location definition function, and properly applies only to
immediate symbols, its usefulness has been increased by extending
its interpretation to include ordinary symbols. By definition, the
S-value of an ordinary symbol is zero if it has not yet appeared
in the location field, and one if it has. The effect of this interpreta-
tion is to provide the ability to test the physical sequence of
ordinary symbols.

The evaluation procedure, then, is uniform and unambiguous.
In any situation involving a decision in the first pass, the s-value
of a symbol is used. In the second pass, the S-value is used for
immediate symbols; and definition, in the usual sense, for ordinary
symbols.

The assembler

conventional two- The customary procedure of a traditional two-pass assembler
pass assembler can be briefly summarized as follows:

The first pass defines locations to be assigned to the symbols
used by the programmer. Definition is accomplished by keeping
a counter, called the location counter, which is increased by
one for every instruction encountered or generated, or by
more than one for certain pseudo-operations. Information is
retained in a dictionary which has two parts: The name
table, in which is kept the external form of the symbol; and
the internal dictionary, in which the definition is recorded,
as well as other information of interest, such as relocation
structure. The dictionary is built up linearly: an entry is
made only when a symbol is encountered in the location field.
Except for equivalence operations, the definition is the current
value of the location counter.
The only instructions fully processed in the first pass are those
pseudo-operations which affect the location counter. Since
there are usually few of these, the linear ordering of the
dictionary is tolerable. In the second pass, however, every
symbol must be found; hence between passes the dictionary
is sorted alphabetically so that the relatively efficient binary
search technique may be used.
The second pass reprocesses all instructions and accomplishes
the actual assembly. The identical BCD card images are used,
except that, in order to avoid backspacing the input tape,
they are taken from an intermediate tape (or tapes) created

168 R. B. TALMADGE

during the first pass. Almost all the real work of the assembly
occurs in this second pass.

An assembler with deferred symbol definition cannot use the pseudo-operation
same technique. Observe that the information contained in the dictionary
sequence :

ORG A
A EQU B
B EQU 50

must be scanned twice, in the order given, before it can be deter-
mined that the initial origin is 50. If, then, the assembler is to
operate a t a reasonable speed, the original source cannot be used
for this scan. Instead, it is necessary to construct a pseudo-
operation dictionary during the first pass which contains all the
essential information in the variable field of any pseudo-operation
which may affect a location counter. Since the size of this table
is necessarily limited, and it may be scanned many times, the
information is encoded in binary form (internal text), compact
yet amenable to rapid scanning.

text follows naturally. Since a substantial portion of the assembler text
input is compiler generated for which assembly without listing is
the normal mode, use of internal text will produce a substantially
faster second pass for two reasons:

There is a drastic reduction in the length of the intermediate

Less time is necessary to process a given instruction.

The decision to replace all external information by the same use of internal

tapes.

On the other hand, any instruction which is to be listed must
carry along the original form as well as the internal text (since
this is stripped of all commentary). However, the increased length
of the intermediate tape is counterbalanced by the increase in
processing speed; so that the second pass in the list mode is about
the same speed as a conventional assembler.

for the dictionary structure. Text production in the first pass structure
requires the immediate replacement of a BCD symbol by an
internal identifier at every appearance of the symbol, whether
in the location field or in the variable field. Hence, to avoid time-
consuming searches, the name table is formed non-sequentially
by a simple scattering rule which permits rapid placement and
retrieval of any symbol.

Contrariwise, there are strong reasons for building the internal
dictionary in linear order:

Consider the control section defined by

The decision to use internal text has non-trivial implications dictionary

X CONTRL A,B

By definition, all symbols processed between A and B lie in
the control section X. Now, since the final loading location
of the section mag be determined by another program, the

relocatable text for
CLA C+2

where C in the section (say A+5) is to be represented as
CLA C(X)+7

where C(X) is the control dictionary reference for the section X.
It is thus necessary to reproduce the actual sequence in which
symbols occur in the program. If the internal dictionary is
scattered, a “physical order” chain must be kept in each entry.
Similarly, the exact structure of qualification nesting must be
reproducible a t all points. A scattered internal dictionary would
require a ‘(qualification order” chain in every entry. However,
if entries are made sequentially, a simple test for the limits of
a qualification section suffices.

Thus, a sequential internal dictionary conserves space in core.
Of course, not all is pure gain. Because qualification cannot be
determined during the first pass, the internal text must reference
name table entries. Hence, some space is required for a reference
table which correlates name table entries with their internal
dictionary correspondent.

We see, therefore, that the significant differences between the
basis of structural structure of the IBMAP assemblcr and other assemblers in the
differences 704/709/7094 family with almost identical languages’ can be

traced precisely to those differences in symbol definition and
symbol reference facilities discussed earlier: deferred symbol defi-
nition, control sections, and qualification.

Appendix I: Some details of the IBMAP language

Every statement in the IBMAP language is of the form

SYMBOL OPN VARIABLE.FIELD.

The usage of the symbol, SYMBOL, in the first field (the location
field), and the meaning of the variable field, depend upon the
operation code, OPN. The VARIABLE.FIELD may be composed of
subfields, separated by commas, and is always terminated by
a blank.

For machine operations, SYMBOL is the location symbol at-
tached to .the instruction; VAR1ABLE.FIELD is of the general form

ADDRESS,TAG,DECREMENT.
For pseudo-operations, there are a variety of constructions. The
following table lists all that are used in this paper.

The operation In IBMAP language means

X CONTRL A,B The control section whose external
label is X begins at the location
assigned to the symbol A, and extends
up to (but not including) the location
assigned to the symbol B.

170 R. B. TALMADGE

The operation In IBMAP language means

X ENTRY

QUAL

ENDQ

USE

S BSS

S BES

BEGIN

S EQU

DUP

A SET

S DEC

A

Q

The location assigned to the symbol A
is an external reference point governed
by the control section whose external
label is X. (This is equivalent to a
CONTRL A,A.)

Begin name qualification under the
symbol Q.

Q End name qualification under the
symbol Q.

A

E

E

Switch to location counter A. If the
word PREVIOUS appears, the switch
is to the location counter in use just
prior to the current one.

Reserve E cells; that is increase the
current location counter by the de-
finition value of the expression E.
The symbol S refers to the first of
these cells.

Same as BSS, except that the symbol
S refers to the first cell following the
reserved group.

A,E The initial value of location counter
A is the same a~ the definition value
of the expression E.

E The symbol S is equivalent t,o the
expression E with respect to substitu-
tion in any context.

E1,E2 Duplicate the next S(E1) statements
S(E2) times, where S(E) is the SYalue
of the expreesion E.

E Set the S-value of the symbol A equal
to the S-value of the expression E.
No equivalence between A and E is
implied.

L1, L2, . , LN Convert the literal subfields L1,
L2, . . . , LN from decimal to binary
and store in successive locations. The
symbol S refers to the first of these
locations.

Appendix 11: Symbol definition in IBMAP

We describe here an unusual feature of the assembler mechaniza-
tion: the process used to define symbols. Details will be illustrated
with reference to the sample program of Tables A1 and A2.

Table A1 shows a program written for an assembler without
multiple location counters or deferred symbol definition. Table A2
exhibits the same program written in IBMAP language. In the
program of Table A2, the three groups of instructions which
are indicated in Table A1 have been assigned to different loca-
tion counters, and the physical sequence has been altered, so
that group two appears before group one. Note that this alteration
of sequence has caused the variable field of the BES to be un-

ASSEMBLY P R O G R A M A N D ITS L A N G U A G E 171

Table A2 Sample program in IBMAP form

DeJinition Location Instruction Remarks

4
4

10

0
0
2
3

10
3

USE
TItA

BEGIS

USE
s DEC

CLA
R ST0

Y
USE
HTIt

N EQ U

Start with Group 2 under
control of 1oc:Ltion
counter 1,.

Note that definition of BE8
length, N, aud of attached
symbol Z is dcfcrred.

Initial definition for third
location counter (could
appear anywhcrc in pro-
gram).

Switch to main (blank) location
counter and assemble in-
structions of Group I .

Third location counter now used.

Defines N, which is length of
previous BES (could appear
anywhere in program).

Table A3 shows the internal dictionary. Except for the blank
counter entry, which is initialized, entries are made sequentially
for each symbol encountered in the location field, and for each
location counter. Symbol entries are one word of the form

6/A,l2/SC,3/0,15/N~r;T
where A is an adjective code describing the type of entry (1 for
an ordinary symbol), SC is the number of instructions between
this entry and the previous one (the separation count), and
NEXT is the location of the nest entry in the location counter
chain. Location counter entries are two words: the first corre-
sponds to an ordinary entry for the initial value o f the counter
(its adjective code is 4); the second, in slightly different format,
corresponds to the final value.

Thus, in Table A3, obscrve that the entry for W a t location
D+6 has a separation count of 3, since there are three instructions
between it and the previous entry for the symbol x, and that it
chains to the entry at location D+l. The latter, which is the second
entry for the blank counter, has a sep:mtion count of I , repre-
senting the last instruction of its scopc

ST0 Z-1

and is chained, in turn, to the first word of location counter L.
Entries in the pseudo-operation dictionary (Table A4) are

always two words, plus the internal text necessary to describe
the variable field. Although in slightly different format, the first
word is similar to an internal dictionary entry; that is, it con-

~. ASSEMBLY I’ROGRARI A N D ITS L A N G U A G E 173

tains the separation count and the location counter chain. The
second word contains the actual pseudooperation code, split
between prefix and tag, and a chain address to the next pseudo-
operation. As we shall see, this second chain is essential to the
definition process.

Observe that Tables A3 and A4 reproduce the definition
structure of the program. Starting at the first word of the entry
for the blank location counter and tracing the location counter
chains (the separation count at the first word of a location counter
entry is always zero), we arrive at the following:
Chain I Entry Separation Next

location Corresponds to count entry

Table A3 Internal dictionary after first pass

Start of blank ctr 0 D +5
X 0 D +6
W 3 D+1
End of blank ctr 1 D+2
Start of counter L 0 P
BES N 1 D +4
Z 0 D +3
End of counter L, 0
and of chain
consisting of blank
ctr followed by
ctr L

Entry Table
for location Content Explanation

Blank
location
counter.

Location
counter
L.

Z

X

W

Location
counter
M.

Y

N

D

D +2

D +3

D +4

D+5

D +6

D +7

D +9

D+10

3/0,15/1,18/D+2

6/4,15/D+7,15/P

3/0,15/0,18/0

6/1,12/0,18/D+3

6/1,12/0,18/D+6

6/1,12/3,18/D$l

6/4,15/0,15/D+9

6/1,12/0,18/D+8

6/1,30/0

6 /4 This is a location counter entry
15/D+2 Next location counter a t D+2.
15/D+5 First entry in this chain at D+5.

3 /o No BEGIN for this counter.
15/1 Last separation count is 1.
18/D+2 This counter hooks to counter L

Similar to blank location counter

6/1 This is an ordinary entry.
12/0 Separation count is zero.
18/D+3 Next entry in chain a t D+3.

Similar to entry for Z.

Similar to entry for Z.

6 /4
15/0

This is location counter entry.
It is the last counter.

15/D+Q First entry in chain a t D+9.

311 There is a BEGIN for this counter.
15/1 Last separation count is 1.
18/0 The chain ends here.

Similar to entry for Z

6/1
30/1

Ordinary entry.
No chain enters or leaves.

174 R. B. TALMADGE

Chain I1 Entry Separation Next
location Corresponds to count entry

p+3 BEGIN M, Z 0 D+7
D +7 Start of ctr M 0 D +9
D +9 Y 0 D +8
D +8 End of counter M 1

Note that:

4 Entries under the blank counter and the L, counter form a
continuous chain. This is a consequence of the sequence rules
prescribed for initializing counters without a BEGIN.

4 Counter M, which has a BEGIN, forms a separate chain.
4 The entry at location D+10 for the symbol N is isolated from

the location counter chains, as is the EQU entry a t location
P+6. However, the pseudo-operation chain word of the EQU
entry (location ~ + 7) references N.

Also note that if we consider Chain I1 as an extension of
Chain I, then the sequence is precisely the same as that of the
unscrambled program of Table A l .

Table A4 Pseudo-operation dictionary after first pass

Entry Table
for Location Content Explanation
.~

BES P

p+2

BEGIN P+3

P+4

P+5

EQU P+6

P+7

P+81 P+Q
P+10
P+11

3/1,15/1,3/0,15/D+4

Text word describing variable

3/1,15/0,3/0,15/D+7
field (N).

3/3,15/0,3/0,15/P+7

Text word describing variable
field (Z) .

3/1,15/0,3/0,15/0

Text words describing variable
field (W - Z).

36/0
36/0

3 /1 This is first word of entry.
15/1 Separation count iA 1.

15/D+4 Next chain entry a t D+4.
3 /o Counter chain has not been followed.

3/4,3/1 This is a BES.
15/0 Not used.
15/P+4 Second word of next pseudo-op

a t location P+4.

3/1 This is first word of entry.
15/0 No separation count.

15/D+7 The counter is at D+7.
3/3,3/0 This is a BEGIN.
15/0 Not used.
15/P+7 Second word of next pseudo-op a t

3 10 Counter chain has not been followed.

P +7.

3/1 This is first word of entry.
15/0,3/0 Not used for this entry.
15/0
3/5,3/0 This is an EQU.

No chain enters or leaves.

15/D+10 Attached symbol is a t D+lO.
15/P+11 Second word of next pseudo-op at

P+ l l .

End of pseudo-operation dictionary.

ASSEMBLY PROGRAM AND ITS LANGUAGE 175

to define each item until thc BES x is reached. At this point we
have

Entry Location ctr
location Item Definition value

D blank ctr 0 0
D+5 S 0 0
D+6 W 3 3
D+1 end blank ctr 4 4
D+2 start ctr L 4 4
P BES N 5 -

as the items defined in the dictionary. Since we have encountered
a pseudo-operation (denoted by the presence of a I in the prefix
of the word), we proceed to Step 2 of the algorithm.

As it happens, the BES is the next pseudo-operation. Its
variable field cannot be evaluated because the EQU entry has
not been processed, so that the dictionary entry for N is not
defined. Similarly, the BEGIN is bypassed, since Z is not yet
defined.

Table A5 Dictionaries after first definition sweep

Location Content Remarks

3/I115/5,3/7,15/D+4 Location counter value of 5
3/7 is available.

3/4,15/0,3/1,15/P+4 BES still not defined.

3/1,15/0,3/0,15/D+7 BEGIN not
3/3,15/0,3/0,15/P+7 processed.

3/5,15/0,3/0,15/3 3/5 EQU is defined and its
15/31 value is 3.

3/5,15/Df10,3/0,15/P+ll Processing of this entry complete

6/44,15/0,15/0 First value of blank counter

3/4,15/1,18/4 3/4 Final value is 4.
defined as 0.

18/4

15/41 counter L is 4.
6/44,15/0,15/4 6/44 First value of location

3/0,15/0,18/0 Final value not yet defined.

6/1,12/0,18/D+3 Entry for Z not yet defined.

6/41,12/0,18/0 6/41 X defined a8 0.

6/41,12/3,18/3 W defined rn 3.

6/4,15/0,15/D+9
3/1,15/1,18/0

6/1,12/0,18/D+8 Entry for Y not yet defined.

18/01

Neither word of entry for
counter M yet defined.

6/41,30/3 Value of N defined as 3 !$:) from pseudo-op entry
evaluation.

ASSEMBLY PROGRAM AND ITS LANGUAGE 177

Table A6 Dictionaries after second (final) definition sweep

Location Content Remarks

P
P+1

3/5,15/4,3/7,15/D+4
3/4,15/3,3/7,15/P+4

3/5,15/7,3/7,15/D+7
3/3,15/7,3/7,15/P+7

3/5,15/0,3/0,15/3
3/5,15/D+10/3/0,15/P+Sl

6/44,15/0,15/0
3/4,15/1,18/4
6/44,15/0,15/4
3/4,15/0,18/10
6/41,12/0,18/10
6/41,12/0,18/0
6/41,12/3,18/3
6/44,15/0,15/10
3/5,15/1,18/11
6/41,12/0,18/10
6/41,30/3

BES defined as 3, and location
counter path taken to define Z
and final value of counter L.

BEGIN defined as 7, and location
counter path taken.

Previously defined EQU
not reprocessed.

Initial blank counter is 0.
Final blank counter 4.
Initial L counter is 4.
Final L counter is 10.
Z defined aa location 10.
X defined as location 0.
W defined as location 3.
Initial M counter location is 10.
Final M counter location is SI.
Y defined as location 10.
N defined as 3.

As i t e m are defined, the definition
replaces the location counter chain
in the address of the word, and the
sign is set negative.

We now proceed to the EQU and define N since W and X are
defined. Since there is no location counter chain, and no more
pseudo-operations, we arrive a t Step 3, and the situation a t the
end of the first sweep (Table A5) is that

The BES is not defined. This prevents definition of the end
of Chain I; that is, z and the last entry for location counter L.
The BEGIN is not defined. This prevents definition of the
entire Chain 11.

Definition is complete a t the end of the second sweep. For,
with N defined, and with the location-counter value known, the
BES is evaluated and the definition of Chain I extended to com-
pletion. In the process, Z is defined. Hence, the BEGIN can be
evaluated, which allows Chain I1 to be defined completely.

The fully defined dictionary is exhibited in Table A6.

ACKNOWLEDGMENT

The author wishes to express his appreciation for the work of
R. A. Rock and C. M. Wimberley who programmed a large part
of the assembler, and contributed many valuable ideas to the
design.

178 R. B. TALMADGE

FOOTNOTES

1. If external references are indirect, as with a FAP subroutine, different
coding may be necessary for a program referencing external data than for
one referencing internal data.

2. Such as SAP, gAP, FAP, and BEFAP. Readers familiar with the SCAT as-
semblers of the sos system will recognize the contribution made to IBMAP.
Faced with the problem of deferred symbol definition, the solution was: first
pass production of internal text (SQUOZE), a pseudo-operation dictionary
(the footnotes), and a scattered name table. However, the form of text
and the structure of the internal dictionary were chosen primarily to
satisfy output requirements of the assembler, rather than by internal
processing considerations.

ASSEMBLY PROGRAM A N D ITS LANGUAGE 179

