
Integrated  system  design  leads  to  the  inclusion of certain  features 
in the  assembly  language  for  the  convenience of compilers,  and  others 
for  the  convenience of program  segmentation. 

This  paper  discusses  motivation  for  the  inclusion of these  features, 
and  traces  their  influence  upon  the  internal  structure of the  assembly 
program. 

Design of an integrated  programming 
and operating system 
Part 11: The assembly program 
and its language 

by R. B. Talmadge 

modular design In the  past few years) programming methods in general use have 
of programs tended to emphasize modularity of program design; not only for 

large, complex programs, but even for those of relatively modest 
size. A common method for achieving modularity has been to 
divide the program into (relocatable) segments, because: 

Coding and checkout of the individual segments can proceed 
in parallel, thereby considerably reducing the  time between 
analysis of the problem and  availability of a running program. 
Modifications to  the program, which are usually confined to 
a few segments, can be  accomplished without  the necessity 
of reassembling the entire program. 
Duplication of effort can be  minimized by  taking  advantage 
of libraries of previously checked-out subroutines. 
Different programming techniques can be  used for the various 
segments, thus allowing the exploitation of the strong points 
of a  particular language or processor. 

However, it has generally not been  possible to realize all these 
advantages.  Programs created by FORTRAN 11 and COMMERCIAL 

TRANSLATOR, for example, are so incompatible in deck format, 
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interprogram reference facilities, and loading technique that a 
combination of the two is operationally impractical. Even com- 
patible programs, such as  are produced by FORTRAN 11 and FAP, 

have had  rather limited reference facilities. Moreover, methods 
have not been available to  treat programs as independent  during 
checkout, and  dependent  during normal execution, without re- 
quiring  substantive changes. 

To overcome these difficulties, the 7090/94 IBJOB processor 
has assumed program segmentation as a fundamental  operating 
principle. Basic compatability is obtained  by using IBMAP as  the 
common assembler, so that  the source language origin of any 
segment is indistinguishable to  the loader (Figure 1). Conse- 
sequently, the assembler receives a  substantial  part of its  input 
from non-human programmers; that is, from the IBFTC and IBCBC 
compilers. Its output is binary-symbolic information which is 
to be loaded by IBLDR, employing rather sophisticated relocation 
and reference techniques. The assembly language, and  the  struc- 
ture of the assembler itself, have been decidedly influenced by 
these circumstances. 

The first part of this  paper is a discussion of some of the more 
distinctive  features of the assembly language. Motivation  for 
their inclusion is covered, and  a few examples of usage are given. 
The second part is an examination of the influence of these features 
on the mechanization for the assembler. 

In addition,  there  are two appendices. The first supplies some 
details of the assembly language, in order to help the reader un- 
familiar with IBMAP understand the examples. And,  for the reader 
interested  in technique, the second appendix exhibits some de- 
tails of the mechanization by means of an example. 

The assembly language 

Designation of a program, or part of a program, as a “control 
section” permits the loader to identify the section with one in 
another program, giving the effect of independent  relocatability 
to the section, and providing the mechanism by which references 
are made between separately assembled segments of the same 
program. 

By definition, a control section consists of any combination of 
instructions or data occupying a contiguous block of memory in 
the assembled code,  which  is declared to be a control section by 
means of the CONTRL or ENTRY operations. (In  the  latter case, 
the length of the block is zero.) For such a block, the assembler 
places an external reference label, chosen by  the programmer, 
into a control dictionary, together with information enabling the 
loader to determine the base and  length of the section. All refer- 
ences in  the program to symbols within the section are given a 
special relocation code in  terms of this control dictionary  entry. 

Now, when the program is loaded, either  by itself or as  a 
segment of a larger program, the loader examines the  control 
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dictionaries of all segments  for  duplicate  external reference labels. 
(Control  cards  permit  any label to  be changed prior to  this 
examination.) If duplicate  labels  are  found, one of the sections, 
as indicated by  the programmer, is selected to  appear  in  the 
final program, and  the  others  are deleted.  Whatever the choice, all 
references i n  the body of every  segment to  a given section are 
trailslated by the loader to  the final location of the section, while 
other references are  adjusted  to account  for any deletions. 

This technique  introduces  a uniform relocatable  method of 
handling  all  interprogram  communication. The provision of direct 
references by  the loader  is  particularly useful because: 

The program  may  be  written  without  taking into  account  the 
final disposition of any control  section. In  effect, the assembly 
need only allow for the possibil i ty of external reference, without 
forcing the actuality.' 
Data requires no special treatment.  The COMMON statements 
of FORTRAN, for example, translate directly into control sec- 
tions,  irrespective of the number or order of the blocks in  any 
segment. 

Furthermore, since sections which are to be identified need 
not  have  the same  internal  structure,  and so may  perform  quite 
different  functions,  control  sections offer a convenient  method of 
attacking  the general  problem of parallel coding and checkout. 
To illustrate,  suppose we have  a simple program structured  as  in 
Figure 2. The program  is  written in  two  parts, corresponding to  
Phase I and  Phase 11-possibly in different source languages- 
which are  separately  assembled. 

The first part is written  with  three  control  sections: 
Section I (labelled S), which does the  input conversion (Phase I). 
Section 2 (labelled D), which is  the storage  area for the con- 

Section 3 (labelled T ) ,  which causes display of the converted data. 
verted  data. 

The second part  is  written  with  two control  sections: 

Section 5 .  

and displays  results. 

Sections 2 and 4 have been given the same label, as have 
Sections 3 and 5 (recall that  in  the final program, the loader will 
accept  only one control  section  with a given  label). 

The  two assemblies may be loaded and checked out  as  the 
separate self-contained programs  indicated in  Figure 3. Section 3 
supplies the required references as well as a means for checking 
the basic  Phase I program.  Similarly,  Section 4 provides references 
to  the  output of Phase I and a predetermined input sufficient to  
check the Phase I1 computations.  When  each  program is fully 
operational,  simple control-card instructions to  the loader will 

Section 4 (labelled D), within which is assembled test  data  for 

Section 5 (labelled T), which does the  actual computing  (Phase 11) 
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cause  decks to  be loaded and combined as a single program, con- 
sisting of Sections 1, 2, and 5. And, since direct references are 
supplied  by the loader, not a single instruction need be changed 
in  either  assembly. 

If, as is  often the case, it is known that a section of code has 
bccn previously assernblcd, proper referencing can be obtained 
without  including  a  real  control  section (that is, an explicitly de- 
fined one)  in the assembly. Refcrcnce to a symbol which is  not 
contained  in the body of a program  results  in the creation of a 
virtual control section by  the assembler. For such a section, the 
loader will expect to find another program  with  a real control 
section corresponding to  thc  virtual referencc. If no such  section 
is  found in  any program on the  input file, the system  library 
(IBLIB) will be  automatically  searched  for  the  required reference. 
If still not  found,  the symbol  cannot  be defined for this load, and 
execution  is  suppressed. 

Thus use of a library  subroutine,  a  routine on thc  input file, 
or alternate use of both  types,  to perform some function  presents 
no extra difficulties. For instance,  suppose that Section 3 of the 
previous examplc existed on the  subroutine  library. If the section 
were left out of the first assembly, and no special instructions given 
to  the loader,  execution of t,he Phase I program by itself would 
use the library version of Section 3 ;  but execution of the combined 
program would use Section 5. 

Physical  segmentation is not  the only method of achieving 
modularity,  nor  is it always the  most desirable. Often, tl better 
approach is to write the segments  separately, but assemble them 
together. An example of this  is a COBOL program in which the 
segments are  to process common data. Because the compiler 
requires data description in order to generate  corrcet  instructions, 
and because these  descriptions are likely to  be  voluminous, 
separate  compilations  might well require a substantial  amount 
of extra processing timc,  both for the programmcr and  the compiler. 

In  order to  distinguish  hetween sections of code generated 
by  different  programmers, assemblers have,  in the  past, used 
various  naming  conventions. In  one method, called heading, a 
single character  is prefixed to  a  symbol to distinguish it from an 
otherwise  identical one elsewhere in  the program. The special 
nature of this device is unsuited to complicated program structure. 
Consequently, commercial languages  have  introduced  a  much 
more powerful method. 

If we consider commercial applications,  with their compli- 
cated,  repetitive, data descriptions, me see that  the reflection of 
the  data  structure  by  means of symbols is a powerful mnemonic 
aid. For example,  in  a  program which processes master  and  detail 
records, whose structurc (symbolizcd by  indentation)  might well be 

?If:\?; 
XUMl3El(. 
IMTE 

virtual references 

qualification 
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and 
DETAIL 

MAN 
NUMBER 
RATE, 

references to employee number  in  the  form 

MASTER MAN NUMBER 
DETAIL MAN NUMBER 

prove  extremely  convenient. 
It is clear that  this same type of symbol qualification (so- 

called by analogy  with  adjectival qualification of nouns)  is useful 
in  the assembly  language. Accordingly, by means of the QUAL 
and ENDQ operations, any section of code may be  declared to 
be qualified by  any  symbol;  further,  the qualifiers may be  nested 
to  any  depth. It is possible, then,  to use meaningfully the symbol 

MASTEIt$MAN$NUMBER 
in IBMAP. (The $ is used to connect qualifiers since blanks  are 
not allowed in  the variable field.) 

In  most  assembly  programs, the  appearance of a  symbol in 
deferred symbol the location field immediately defines the value of the symbol. 
definition Expressions used to  define symbols a t  location  counter discon- 

tinuities, or in  terms of other symbols, can consist only of constants 
and previously defined symbols. Consequently,  care must  be 
exercised in  the physical sequence of the program statement  to 
insure that: 

Storage  allocation and  data definition statements  are placed 

Dependent  statements which arise  from  distinct parts of the 
so as  not  to interfere  with the flow of the program. 

program  fall  in the correct  order. 

These  restrictions  are  handled  without  serious difficulty by a 
human programmer : storage  allocation and symbol definition 
statements, wherever they arise logically in  the  program,  are 
merely collected on separate coding sheets,  arranged  in the proper 
order, and  manually  inserted a t  some convenient  point. The 
equivalent process in a compiler is not so simple. A substantial 
amount of compiling effort is  required to build  tables,  analyze 
the  storage assignment  situation, and  save  the generated  in- 
structions  for  insertion  into  the  proper place in  the program. 
However, with IBMAP, all  restrictions on  the  order of symbol 
definition have been removed.  And  this, coupled with the use of 
independent  location  counters to  collect data  and instructions 
which are logically sequential but physically  remote, permits 
simpler and  faster compiling procedures. In  a FORTRAN program, 
for example, which contained the  scattered  statements 

DIMENSION A( 10) 
EQUIVALENCE (A(5),B) 
DIMENSION B(5) 
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in  any order, the  instructions 
USE A 

A BSS 10 
USE PREVIOUS 

a t  the first dimension statement, 

USE B 
B BSS 5 

USE PREVIOUS 

a t  the second, and 

BEGIN B,A+4 

at the equivalence statement, insure proper storage allocation 
without requiring much deliberation by  the compiler. 

the value of a symbol must be made in the first pass. For example, definition 
since any operation is  allowed within the scope of a DUP, the 
duplicate sequence must be expanded immediately in order to 
determine the  actual number of instructions generated. Hence, 
a symbol which appears  in the variable field  expression determining 
the scope of the operation must he assigned some value in  the 
first pass. 

In a conventional assembler, this presents no problem, since 
the function representing this normal location counter or equiv- 
alence definition is available. In IBMAP, however, with deferred 
definition, it is necessary to provide another function. The method 
adopted was to create a special class of symbols which are assigned 
an immediate value by a pseudo-operation called SET. 

The distinction between symbols defined in SET terms (im- 
mediate symbols) and  ordinary symbols can be summarized: 

There  are several applications for which a choice based on immediate symbol 

Normal dejinition (DFN) SET Definit ion (S-value) 

Value depends on location Value independent of lo- 
counter symbols or equiv- cation counter. 
alences (EQU) involving such 
symbols and constants. 

locatable, or complex ac- 
cording to structure. 
Is global, depending upon Is local, and may be altered 
entire complex of symbol at  any time. 
relationships. May  not be 
altered. 

Is treated  as  constant, re- Always a  constant. 

Has no value until  after Has same (local) value in 
definition pass. all  passes. 
May be formed from any Qualification not  permitted 
legitimate combination of in defining  expressions. 
symbols, qualified or not. 
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Thus,  although the sequence 

DUP A,3 
A EQU 5 

is not effective, the intended result can be obtained with 
A SET 5 

DUP A,3. 

While the function defined by SET is completely independent 
of this location definition function, and properly applies only to 
immediate symbols, its usefulness has been increased by extending 
its interpretation to include ordinary symbols. By definition, the 
S-value of an ordinary symbol is zero if it has  not  yet appeared 
in the location field, and one if it has. The effect of this  interpreta- 
tion is to provide the  ability to test  the physical sequence of 
ordinary symbols. 

The  evaluation procedure, then, is uniform and unambiguous. 
In any  situation involving a decision in the first pass, the s-value 
of a symbol is used. In  the second pass, the S-value is used for 
immediate symbols; and definition, in the usual sense, for ordinary 
symbols. 

The assembler 

conventional two- The customary procedure of a traditional two-pass assembler 
pass assembler can be  briefly summarized as follows: 

The first pass defines locations to be  assigned to  the symbols 
used by the programmer. Definition is accomplished by keeping 
a counter, called the location  counter, which is increased by 
one for every instruction encountered or generated, or by 
more than one for certain pseudo-operations. Information is 
retained in a dictionary which has  two  parts: The name 
table, in which is kept  the  external form of the symbol; and 
the internal  dictionary, in which the definition is recorded, 
as well as other information of interest, such as relocation 
structure. The dictionary is built  up linearly: an  entry is 
made only  when a symbol is encountered in the location field. 
Except for equivalence operations, the definition is the current 
value of the location counter. 
The only instructions fully processed in the first pass are those 
pseudo-operations which  affect the location counter. Since 
there  are usually few of these, the linear ordering of the 
dictionary is tolerable. In the second pass, however, every 
symbol must be found; hence between passes the dictionary 
is sorted alphabetically so that  the relatively efficient binary 
search technique may be used. 
The second pass reprocesses all instructions  and accomplishes 
the  actual assembly. The identical BCD card images are used, 
except that, in order to avoid backspacing the  input  tape, 
they  are  taken from an intermediate  tape (or tapes) created 
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during the first pass. Almost all  the real work of the assembly 
occurs in  this second pass. 

An assembler with deferred symbol definition cannot use the pseudo-operation 
same technique. Observe that the  information contained in  the dictionary 
sequence : 

ORG A 
A EQU B 
B EQU 50 

must  be scanned twice, in  the  order given, before it can be deter- 
mined that  the initial origin is 50. If, then,  the assembler is to 
operate a t  a reasonable speed, the original source cannot be used 
for this  scan.  Instead, it is necessary to construct  a pseudo- 
operation  dictionary during the first pass which contains  all the 
essential information  in  the  variable field of any pseudo-operation 
which may affect a location counter. Since the size of this  table 
is necessarily limited,  and it may be scanned many times, the 
information is encoded in  binary form (internal text), compact 
yet amenable to rapid scanning. 

text follows naturally. Since a  substantial  portion of the assembler text 
input is compiler generated for which assembly without listing is 
the normal mode, use of internal  text will produce a  substantially 
faster second pass for two reasons: 

There is a  drastic reduction in  the length of the intermediate 

Less time is necessary to process a given instruction. 

The decision to replace all external  information by the same use of internal 

tapes. 

On the  other  hand,  any instruction which is to be listed must 
carry along the original form as well as  the  internal  text (since 
this is stripped of all commentary). However, the increased length 
of the  intermediate  tape is counterbalanced by  the increase in 
processing speed; so that  the second pass in the  list mode is about 
the same speed as a conventional assembler. 

for the dictionary  structure. Text production in  the first pass structure 
requires the immediate replacement of a BCD symbol by  an 
internal identifier at every  appearance of the symbol, whether 
in  the location field or in the variable field. Hence, to avoid time- 
consuming searches, the name table is formed non-sequentially 
by a simple scattering rule which permits rapid placement and 
retrieval of any symbol. 

Contrariwise, there  are  strong reasons for building the  internal 
dictionary in linear order: 

Consider the control section defined by 

The decision to use internal  text  has non-trivial implications dictionary 

X CONTRL A,B 

By definition, all symbols processed between A and B lie in 
the control section X. Now, since the final loading location 
of the section mag be determined by another  program, the 



relocatable text for 
CLA C+2 

where C in  the section (say A+5) is to be represented as 
CLA C(X)+7 

where C(X) is the control dictionary reference for the section X. 
It is  thus necessary to reproduce the  actual sequence in which 
symbols occur in  the program. If the internal  dictionary is 
scattered,  a  “physical  order” chain must be kept  in each entry. 
Similarly, the exact structure of qualification nesting must be 
reproducible a t  all points. A scattered  internal  dictionary would 
require a ‘(qualification order” chain in every entry. However, 
if entries are made sequentially,  a simple test  for  the limits of 
a qualification section suffices. 

Thus, a sequential  internal  dictionary conserves space in core. 
Of course, not all is pure gain. Because qualification cannot  be 
determined  during  the first pass, the  internal  text  must reference 
name table  entries. Hence, some space is required for a reference 
table which correlates name table  entries  with  their  internal 
dictionary correspondent. 

We see, therefore, that  the significant differences between the 
basis of structural structure of the IBMAP assemblcr and  other assemblers in  the 
differences 704/709/7094 family with almost identical languages’ can be 

traced precisely to those differences in symbol definition and 
symbol reference facilities discussed earlier: deferred symbol defi- 
nition, control sections, and qualification. 

Appendix I: Some details of the IBMAP language 

Every  statement  in  the IBMAP language is of the form 

SYMBOL  OPN  VARIABLE.FIELD. 

The usage of the symbol, SYMBOL, in  the first field (the location 
field), and  the meaning of the variable field, depend upon the 
operation code, OPN. The VARIABLE.FIELD may  be composed of 
subfields, separated  by commas, and is always terminated  by 
a blank. 

For machine operations, SYMBOL is the location symbol at- 
tached to .the instruction; VAR1ABLE.FIELD is of the general form 

ADDRESS,TAG,DECREMENT. 
For pseudo-operations, there  are  a  variety of constructions. The 
following table  lists all that are used in this  paper. 

The operation In  IBMAP language  means 

X CONTRL A,B The control section whose external 
label is X begins at   the location 
assigned to  the symbol A, and extends 
up  to  (but  not including) the location 
assigned to  the symbol B. 
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The operation In IBMAP language  means 

X ENTRY 

QUAL 

ENDQ 

USE 

S BSS 

S BES 

BEGIN 

S EQU 

DUP 

A SET 

S DEC 

A 

Q 

The location assigned to  the symbol A 
is an external reference point governed 
by  the control  section whose external 
label is X. (This is equivalent to  a 
CONTRL A,A.) 

Begin name qualification under the 
symbol Q. 

Q End name qualification under the 
symbol Q. 

A 

E 

E 

Switch to location  counter A. If the 
word PREVIOUS  appears,  the  switch 
is to the location  counter in use just 
prior to  the  current one. 

Reserve E cells; that is increase the 
current location  counter by  the de- 
finition value of the expression E. 
The symbol S refers to  the first of 
these cells. 

Same as BSS, except that  the symbol 
S refers to  the first cell following the 
reserved group. 

A,E The  initial value of location  counter 
A is the  same a~ the definition value 
of the expression E. 

E The symbol S is equivalent t,o the 
expression E with respect to  substitu- 
tion in  any context. 

E1,E2  Duplicate the next S(E1)  statements 
S(E2) times, where S(E) is the  SYalue 
of the expreesion E. 

E Set  the S-value of the symbol A equal 
to  the S-value of the expression E. 
No equivalence between A and E is 
implied. 

L1, L2, . , LN  Convert  the  literal subfields L1, 
L2, . . . , LN from decimal to  binary 
and  store  in successive locations. The 
symbol S refers to  the first of these 
locations. 

Appendix 11: Symbol definition in IBMAP 

We describe here an unusual feature of the assembler mechaniza- 
tion: the process  used to define symbols. Details will  be illustrated 
with reference to  the sample program of Tables A1 and A2. 

Table A1 shows a program written for an assembler without 
multiple location counters or deferred symbol definition. Table A2 
exhibits the same program written in IBMAP language. In  the 
program of Table A2, the three groups of instructions which 
are indicated in  Table A1 have been  assigned to different loca- 
tion counters, and  the physical sequence has been altered, so 
that group two  appears before group one. Note that this alteration 
of sequence has caused the variable field of the BES to be un- 
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Table A2 Sample  program in IBMAP form 

DeJinition Location  Instruction  Remarks 

4 
4 

10 

0 
0 
2 
3 

10 
3 

USE 
TItA 

BEGIS 

USE 
s DEC 

CLA 
R ST0 

Y 
USE 
HTIt  

N EQ U 

Start  with  Group 2 under 
control of  1oc:Ltion 
counter 1,. 

Note  that definition of  BE8 
length, N, aud of attached 
symbol Z is dcfcrred. 

Initial definition for third 
location counter (could 
appear  anywhcrc  in pro- 
gram). 

Switch to main  (blank) location 
counter and assemble in- 
structions of Group I .  

Third location  counter now used. 

Defines N, which is length of 
previous BES (could appear 
anywhere in program). 

Table A3 shows the internal  dictionary.  Except  for the blank 
counter  entry, which is initialized,  entries are  made sequentially 
for  each  symbol  encountered  in  the  location field, and for  each 
location  counter.  Symbol  entries are one word of the  form 

6/A,l2/SC,3/0,15/N~r;T 
where A is an adjective code describing the  type of entry (1 for 
an ordinary  symbol), SC is the number of instructions  between 
this  entry  and  the previous one (the  separation  count),  and 
NEXT is the location of the  nest  entry in the location  counter 
chain.  Location  counter  entries are  two words: the first corre- 
sponds to  an ordinary  entry for the  initial value o f  the  counter 
(its  adjective code is 4); the second, in slightly  different format, 
corresponds to  the final value. 

Thus,  in  Table A3, obscrve that  the  entry for W a t  location 
D+6 has a  separation  count of 3, since there  are  three  instructions 
between it and  the previous entry for the symbol x, and  that  it 
chains to  the  entry  at location D+l.  The  latter, which is the second 
entry for the blank  counter,  has  a  sep:mtion  count of I ,  repre- 
senting the last  instruction of its scopc 

ST0 Z-1 

and  is chained, in turn,  to  the first word of location  counter L. 
Entries  in  the pseudo-operation  dictionary  (Table A4) are 

always two words, plus the  internal  text necessary to describe 
the variable field. Although  in  slightly  different format,  the first 
word is similar to an internal  dictionary  entry; that is, it con- 
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tains the separation count and the location counter chain. The 
second  word contains the  actual  pseudooperation code, split 
between  prefix and tag, and a chain address to  the next pseudo- 
operation. As we shall see, this second  chain  is essential to  the 
definition  process. 

Observe that Tables A3 and A4 reproduce the definition 
structure of the program. Starting at  the first word of the  entry 
for the blank location counter and tracing the location counter 
chains (the separation count at  the first word of a location counter 
entry is always zero), we arrive at  the following: 
Chain I Entry Separation Next 

location Corresponds to count entry 

Table A3 Internal dictionary after first  pass 

Start of blank  ctr 0 D  +5 
X 0 D +6 
W 3  D+1 
End of blank  ctr 1 D+2 
Start of counter  L 0 P 
BES N 1 D +4 
Z 0 D  +3 
End of counter L, 0 
and of chain 
consisting of blank 
ctr followed by 
ctr L 

Entry Table 
for location Content Explanation 

Blank 
location 
counter. 

Location 
counter 
L. 

Z 

X 

W 

Location 
counter 
M. 

Y 

N 

D 

D +2 

D +3 

D +4 

D+5 

D  +6 

D +7 

D +9 

D+10 

3/0,15/1,18/D+2 

6/4,15/D+7,15/P 

3/0,15/0,18/0 

6/1,12/0,18/D+3 

6/1,12/0,18/D+6 

6/1,12/3,18/D$l 

6/4,15/0,15/D+9 

6/1,12/0,18/D+8 

6/1,30/0 

6 /4 This is a location  counter entry 
15/D+2 Next location  counter a t  D+2. 
15/D+5 First  entry in this chain at D+5. 

3 /o No BEGIN for this  counter. 
15/1 Last separation count is 1. 
18/D+2 This counter hooks to counter  L 

Similar to blank  location  counter 

6/1 This is an ordinary  entry. 
12/0 Separation count is zero. 
18/D+3 Next  entry  in chain a t  D+3. 

Similar to  entry for Z. 

Similar to  entry for Z. 

6 /4 
15/0 

This is location  counter entry. 
It is the  last counter. 

15/D+Q First  entry in chain a t  D+9. 

311 There is a BEGIN for this counter. 
15/1 Last  separation count is 1. 
18/0 The chain ends here. 

Similar to  entry for Z 

6/1 
30/1 

Ordinary entry. 
No chain enters or leaves. 
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Chain I1 Entry  Separation  Next 
location  Corresponds to count  entry 

p+3 BEGIN M, Z 0 D+7 
D +7 Start of ctr M 0 D +9 
D +9 Y 0 D +8 
D +8 End of counter M 1 

Note that: 

4 Entries  under  the  blank  counter  and  the L, counter form a 
continuous chain. This is a consequence of the sequence rules 
prescribed for initializing counters  without a BEGIN. 

4 Counter M, which has  a BEGIN, forms a  separate chain. 
4 The  entry  at location D+10 for the symbol N is isolated from 

the location counter chains, as is the EQU entry a t  location 
P+6. However, the pseudo-operation chain word of the EQU 
entry (location ~ + 7 )  references N. 

Also note that if we consider Chain I1 as an extension of 
Chain I, then  the sequence is precisely the same as  that of the 
unscrambled program of Table A l .  

Table A4 Pseudo-operation  dictionary  after first pass 

Entry  Table 
for Location  Content Explanation 
.~ 

BES P 

p+2 

BEGIN P+3 

P+4 

P+5 

EQU P+6 

P+7 

P+81 P+Q 
P+10 
P+11 

3/1,15/1,3/0,15/D+4 

Text word describing variable 

3/1,15/0,3/0,15/D+7 
field (N). 

3/3,15/0,3/0,15/P+7 

Text word describing variable 
field (Z) .  

3/1,15/0,3/0,15/0 

Text words describing variable 
field (W - Z ). 

36/0 
36/0 

3 /1 This is first word of entry. 
15/1 Separation count iA 1. 

15/D+4 Next chain entry a t  D+4. 
3 /o Counter chain has not been followed. 

3/4,3/1 This is a BES. 
15/0 Not used. 
15/P+4 Second word of next pseudo-op 

a t  location P+4. 

3/1 This is first word of entry. 
15/0 No separation  count. 

15/D+7 The counter is at D+7. 
3/3,3/0 This is a BEGIN. 
15/0 Not used. 
15/P+7 Second word of next pseudo-op a t  

3 10 Counter chain has  not been followed. 

P +7. 

3/1 This is first word of entry. 
15/0,3/0 Not used for this  entry. 
15/0 
3/5,3/0 This is an EQU. 

No chain enters or leaves. 

15/D+10 Attached symbol is a t  D+lO. 
15/P+11 Second word of next pseudo-op at  

P+ l l .  

End of pseudo-operation dictionary. 
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to define each item  until  thc BES x is reached. At  this point we 
have 

Entry  Location ctr 
location Item  Definition  value 

D blank ctr 0 0 
D+5 S 0 0 
D+6 W 3  3 
D+1 end blank ctr 4 4 
D+2 start  ctr L 4 4 
P BES N 5 - 

as  the items defined in  the dictionary. Since we have  encountered 
a pseudo-operation (denoted by  the presence of a I in the prefix 
of the word), we proceed to  Step 2 of the algorithm. 

As it happens, the BES is the next pseudo-operation. Its 
variable field cannot  be  evaluated because the EQU entry has 
not been processed, so that  the dictionary entry for N is not 
defined. Similarly, the BEGIN is  bypassed, since Z is  not  yet 
defined. 

Table A5 Dictionaries after first definition sweep 

Location  Content  Remarks 

3/I115/5,3/7,15/D+4 Location  counter  value of 5 
3/7 is available. 

3/4,15/0,3/1,15/P+4 BES  still  not defined. 

3/1,15/0,3/0,15/D+7 BEGIN  not 
3/3,15/0,3/0,15/P+7 processed. 

3/5,15/0,3/0,15/3 3/5 EQU is defined and  its 
15/31 value is 3. 

3/5,15/Df10,3/0,15/P+ll Processing of this  entry complete 

6/44,15/0,15/0 First value of blank counter 

3/4,15/1,18/4 3/4 Final value is 4. 
defined as 0. 

18/4 

15/41 counter  L is 4. 
6/44,15/0,15/4 6/44 First value of location 

3/0,15/0,18/0 Final value not  yet defined. 

6/1,12/0,18/D+3 Entry for Z not  yet defined. 

6/41,12/0,18/0 6/41 X defined a8 0. 

6/41,12/3,18/3 W defined rn 3. 

6/4,15/0,15/D+9 
3/1,15/1,18/0 

6/1,12/0,18/D+8 Entry for Y not  yet defined. 

18/01 

Neither word of entry for 
counter M yet defined. 

6/41,30/3 Value of N defined as 3 !$:) from pseudo-op entry 
evaluation. 
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Table A6 Dictionaries after  second (final) definition sweep 

Location Content Remarks 

P 
P+1 

3/5,15/4,3/7,15/D+4 
3/4,15/3,3/7,15/P+4 

3/5,15/7,3/7,15/D+7 
3/3,15/7,3/7,15/P+7 

3/5,15/0,3/0,15/3 
3/5,15/D+10/3/0,15/P+Sl 

6/44,15/0,15/0 
3/4,15/1,18/4 
6/44,15/0,15/4 
3/4,15/0,18/10 
6/41,12/0,18/10 
6/41,12/0,18/0 
6/41,12/3,18/3 
6/44,15/0,15/10 
3/5,15/1,18/11 
6/41,12/0,18/10 
6/41,30/3 

BES defined as 3, and location 
counter path  taken  to define Z 
and final value of counter L. 

BEGIN defined as 7, and location 
counter path  taken. 

Previously defined EQU 
not reprocessed. 

Initial blank  counter is 0. 
Final  blank counter 4. 
Initial L counter  is 4. 
Final L counter is 10. 
Z defined aa location 10. 
X defined as location 0. 
W defined as location 3. 
Initial M counter  location  is 10. 
Final M counter  location is SI. 
Y defined as location 10. 
N defined as 3. 

As i t e m  are defined, the definition 
replaces the location  counter  chain 
in  the address of the word, and  the 
sign  is set negative. 

We  now proceed to  the EQU and define N since W and X are 
defined. Since there is no location counter chain, and  no more 
pseudo-operations, we arrive a t  Step 3, and  the  situation a t  the 
end of the first sweep (Table A5) is that 

The BES is not defined. This  prevents definition of the end 
of Chain I; that is, z and  the  last  entry for location counter L. 
The BEGIN is not defined. This  prevents definition of the 
entire  Chain 11. 

Definition is complete a t  the end of the second sweep. For, 
with N defined, and  with the location-counter value known, the 
BES is evaluated  and  the definition of Chain I extended to  com- 
pletion. In  the process, Z is defined. Hence, the BEGIN can be 
evaluated, which  allows Chain I1 to be defined completely. 

The fully defined dictionary is exhibited in Table A6. 
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FOOTNOTES 

1. If external references are indirect,  as  with  a FAP subroutine, different 
coding may be necessary for a program referencing external data  than for 
one referencing internal  data. 

2. Such as SAP, gAP, FAP, and BEFAP. Readers  familiar  with the SCAT as- 
semblers of the sos system will recognize the contribution  made to  IBMAP. 
Faced with the problem of deferred symbol definition, the solution was: first 
pass production of internal  text (SQUOZE), a pseudo-operation dictionary 
(the footnotes), and a scattered name table. However, the form of text 
and  the  structure of the  internal dictionary were chosen primarily to  
satisfy  output requirements of the assembler, rather  than by internal 
processing considerations. 
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