This paper outlines a systematic method of designing a data
processing tape system utilizing currently available types of equip-
ment.

Primary effort was devoted to obtaining a procedure which would
approach an “optimal” system design.

The method presented is an iterative procedure which tends to
focus special attention on the critical system functions and the
critical relations between functions.

Sequential data processing design

by V. P. Turnburke, Jr.

This paper considers the problem of designing a data processing
system having a computer equipped with magnetic tape as its
principal component. Thus, it is assumed that the system’s files
are amenable to magnetic tape storage and sequential processing.

In view of the difficulty in formulating a consistent and com-
prehensive set of design objectives, it is appropriate to emphasize
that the initial formulation be subjected to close scrutiny before
beginning the actual system design. Even though the objectives
may be subject to modification as the design evolves, they should
be detailed as completely and accurately as possible at the outset.
In addition to functional and economic objectives, those relating
to special considerations (e.g., particular requirements such as
optical scanning, compatibility with other systems, system
backup, cutover schedule, future modifications, ete.) should also
be included.

The basic design steps will be outlined in the order in which
they are normally undertaken (some overlapping is possible as
will be evident). Since each step depends upon earlier steps, at
various points it will become apparent that the revision of earlier
steps is mandatory or desirable. Thus, the design procedure in-
volves trial and error and has the “iterative” character suggested
by Figure 1. Obviously, one cannot guarantee ‘“convergence” to
an optimal design. The degree of success will depend largely on
the judgment and experience of the systems engineer.

If the system involved random-access memory rather than

IBM SYSTEMS JOURNAL * MARCH 1963

Figure 1

——A

method

37

DESIGN
STEPS




computer run
segmentation

file
definition

38

magnetic tape, essentially the same steps would be applicable,
although requiring the evaluation of different parameters.

The first step in designing the system is to determine the
individual computer runs. Most applications can be divided by
function (e.g., input conversion and editing, sorting, master file
updating, and output editing and conversion) as a first segmenta-
tion.

The division into runs implies a particular configuration which
should be consistent with the restrictions imposed by other sys-
tem needs, such as the minimal requirements for the program-
ming packages to be used, in particular the compiler for the
language selected. The selection of the number of components
should be economic: for example, one less input-output unit may
permit one less control unit.

The segmentation should reflect the requirements for convert-
ing source media to magnetic tape and magnetic tape to punched
card or printed output. Volumes must be considered in determin-
ing whether to econvert on-line or by means of a supporting off-
line system. This decision may also be affected by special input-
output needs (e.g., magnetic ink character recognition of input
documents, ete.).

A preliminary run organization chart can now be drawn to
show the flow of information through the system and the inter-
action of runs through common files. This chart will serve in
clarifying the scope of the application and the relative magni-
tudes of the runs.

Segmentation is perhaps the most eritical design step since,
in addition to its effect on the equipment configuration, the divi-
sion into computer runs and the consequent interrelation of the
runs will influence the total processing time. At several times la-
ter in the study, as more information is developed, it may be nec-
essary to review the initial division for possible improvements.

Each file must be defined in some detail. The source and the
destinations on each file need to be established, and any result-
ing restrictions of file format, such as block size limitations and
compatibility requirements have to be identified. Record formats
for each file must be defined suitably for both core storage
(word size and extra control characters) and magnetic tape
(extra control characters and suppression of leading blanks and
zeros). The average record length of each file can then be cal-
culated both for tape (in characters and/or digits) and for core
storage (in words). Once the record formats are established, the
approximate tape passing time for each file can be calculated
based on the file volume, the anticipated recording density and
a tentative record blocking factor. The approximate number of
reels of magnetic tape necessary to hold each file should also be
determined at this time.

Each run can be deseribed in terms of input-output require-
ments. This establishes the overall configuration requirements
for the runs as defined by the segmentation. Usually the runs are

V. P. TURNBURKE, JR.




defined in descending order of importance, with priority being
given to the run which will have the greatest impact upon total
running time,

If the computer configuration includes two or more tape chan-
nels, the first step for each run is to assign each file used in that
run to a channel. The assignments are to be made so that total
tape time on the channel with the greatest load is as nearly as
possible equal to the sum of the tape times (for all files used
in the run) divided by the number of channels.

Usually input files are assigned to one set of channels and
output files to another set, but this is by no means necessary. In
addition, assignments are usually made with the restriction that
each channel will have the same number of tape units, since this
is the optimum arrangement for sorting. If this results in a serious
conflict, however, it can usually be resolved by adding a tape
switching device to the configuration.

As tape files are assigned to channels, special input-output
requirements should also be noted. Any file which is contained
on more than one reel of magnetic tape should have an alternate
tape unit, or else processing must stop while each reel is rewound
and changed. The latter choice may be best if the total applica-
tion requires less than one shift of computer time. If an alternate
tape unit is desired, it may be assigned solely to this file or shared
with other files. In the case of smaller runs, the decisions made
concerning alternate tape units may be influenced by the number
of tape units required by other more complex runs.

Detailed consideration should be given to exception and error
routines. Errors detected in the run may have to be collected
on a separate tape unit; or they may be combined with other
tape output records and isolated in a later run; or punched,
printed or typed on-line. The longer runs will require a check-
point and restart procedure. Checkpoint records must either be
assigned to a special tape unit or written on one of the other out-
put files. In the latter case the tape time required by the check-
point records must be added to the total tape passing time of the
file.

When the number of tape units required by each run has been
established and when tape files have been assigned to channels,
a first effort can be made to improve the design. Those runs
requiring the most tape units should be examined in an attempt
to reduce the number of tape units used. Input files should be
traced back to their sources to see whether they can be combined
during a previous run into a single file, and output files should
be traced to their destinations to see whether they can be com-
bined during the main run and separated in a subsequent run.

Small runs should be examined to determine whether they
can be combined to reduce the number of setups necessary. Large
runs should be examined to determine whether they can be split
into smaller runs, decreasing the size of the configuration re-
quired. If any of these steps are taken, the prior steps of cal-

SEQUENTIAL DATA PROCESSING DESIGN

channel
assignment

error and
exception
routines

adjustment
of runs

39



detailing
the runs

timing
estimate

storage
estimate

40

culating file passing time and of assignment of tape files to tape
channels must be repeated for the affected files and runs.

When this initial optimization process has been' completed,
each run must be laid out in detail. The first step is the calcula-
tion of internal processing time and program storage require-
ments. One element of each which is easily isolated is the Input
Output Control System (10cs) requirement. Both the processing
time required and the core storage needed are defined in pub-
lished manuals as functions of the number of files and the num-
ber of tape channels used by the run.

Calculating the balance of the internal processing time which
will be required by the program is usually the most difficult
problem in designing the system.

Benchmark programming is an accurate method of estimating
transaction processing time. It is especially useful if the majority
of transactions are of a single type. Note that benchmark pro-
gramming does not require writing a program which can be
keypunched, compiled and demonstrated. There is no need, for
example, to consider which conditional branch instruction follows
a compare instruction, since they all require the same time and
one or the other will work. Exception routines need not be pro-
grammed, only the compares to find the active master record,
the record moves if any, and the actual master testing and up-
dating routines.

A less accurate approach is to determine the number of macro
instructions needed to process a transaction—the moves, com-
pares, adds, tests, etc.—to arrive at an instruction mix for the par-
ticular computer. While not as accurate as benchmark program-
ming, this approach at least provides a different mix for each
run based on the work which is actually to be done in that run.

Finally, it may be possible to estimate processing time by
making a time study of the same run already in operation on
the same computer and adjusting the result for differences in
record volumes.

Generally, the simple formulas sometimes used for calculat-
ing “average” instruction times and “average” numbers of in-
structions should be avoided because of their inherent inaccuracy.

A special factor, which must be considered as a part of in-
ternal processing time, is core-tape interference, This is the
processing time used for the transfer of data between core storage
and the input-output devices during which the core storage unit
is interlocked. It is a function of the total number of words of
data read and written during the run and of the computer’s de-
sign, and is additive to internal processing time.

Program storage requirements include several elements in
addition to 1008 requirements which can be defined rather easily.
If a supervisory program is to be used, its storage requirements
can be allocated based on information from published manuals.
An area is usually reserved for the load program which is sup-
plied by the compiler. Storage used by the computer, such as

V. P. TURNBURKE, JR.




index words, interrupt words, ete., can be allocated if not already
accounted for as part of the load program.

Each file used in the run should be examined to determine
whether it should be processed in the input or output area or
in a work area. Generally this decision is based on a comparison
of the speed of internal data movement to the indexing or address
modification time multiplied by the expected number of references
to be made to the record. If work areas are to be used, storage
should be allocated for them.

If tables of significant size will be needed for reference dur-
ing the computer run, the format of each table should be estab-
lished and appropriate storage areas set aside.

The most difficult assessment relates to the storage necessary
for program instructions and constants. Again, benchmark pro-
gramming will provide the best approximation. If a benchmark
program has been written to determine internal processing time,
it can also be used to estimate program storage by allocating
the same amount of storage for each transaction routine required,
being sure to adjust the result for error routines and for any
transactions more complex than those used in the benchmark
program. Alternatively, an existing program written for a simi-
lar application might be examined to determine program storage
requirements.

Program storage is required for initialization, modifications
to the 10cs, and other miscellaneous routines. These routines
should be examined to see whether they need be retained in stor-
age at all times, used once and then overlaid by other instructions
or data, or maintained on a program tape and read into stor-
age only as required. If necessary, storage should be set aside for
these routines.

Additional storage must be allocated to hold program con-
stants, messages, etc. The larger ones, such as printed report
headings, can be detailed, and the remainder estimated.

When all of the above storage needs are added together and
subtracted from the total, the storage available for input and
output areas is known. The number of input-output areas required
for each file can be established, based on the system’s buffering,
the relationships between files (e.g., master file input and out-
put) and the options available in the computer’s 10cs.

Blocking factors must now be established for each tape file,
based on the available core storage and the number of input-
output areas used. Block sizes are optimized when the tape pass-
ing time on the channel with the heaviest load is minimized. Since
the optimum block size for one run is not necessarily optimum
for other runs using the same file, it is best to optimize block sizes
in the longest run first and carry these sizes as restrictions for
succeeding runs. During the initial iteration of the design process,
blocking factors should be optimized without reference to process
time. If any run is severely process limited, an attempt should
be made to reduce process time.

SEQUENTIAL DATA PROCESSING DESIGN

blocking
factors

41



reviewing
the machine
configuration

timing
the runs

42

Each of the preceding steps identified certain components so
that the configuration is now finalized. This configuration should
be reviewed relative to the original objectives. The number and
type of magnetic tape units, number of tape channels, size of
core storage, and the choice of special features (e.g., process over-
lap, print storage, high-low-equal compare, etc.) should be ex-
amined. Also, the choice between on-line eard equipment and
an off-line supporting system should be re-examined. If the
design objectives have not been attained, the design process to
this point must be reiterated until satisfactory results are ob-
tained (or until the problem is found to be without solution).

If the design so far is consistent with objectives, each run
must be timed. Utility runs, such as sorts and merges, are timed
from published timing formulas. For other runs, tape passing
time and internal processing time (including core-tape interfer-
ence time) must be combined, based on the buffer characteristics
of the system. If the system is unbuffered, run time is the sum
of tape passing time and internal processing time. For a buffered
system, if all internal processing can be overlapped with tape
processing, run time is the tape passing time for the channel with
the heaviest load. Otherwise, non-overlapped processing time must
be added to the latter.

Thus, for buffered systems the non-overlapped internal proe-
essing time must be computed. The processing time available per
block within tape passing time is in most cases approximately
equal to the tape passing time for the channel with the heaviest
load divided by the number of master file tape blocks to be
processed by the run. For each block, the number of hits (N)
that can be processed during tape passing is found by dividing
the processing time available per block by the average processing
time per transaction (and truncating).

Estimates of non-overlapped processing time obtained by
using an average number of hits for each block of the file will
usually be highly inaccurate. Computation should be based on
the particular distribution of activity.

Taking into account the particular distribution of activity
across the master file, for each block the probability of N + J
hits within the block, denoted by P(N -+ J), is computed for
J = 1...K, where K is the largest integer giving rise to a sig-
nificant probability. The non-overlapped processing time for
the block, T, may be found from

T, = 33 POV + DI + = DT,)] M

where

T,(1) is the non-overlapped processing time generated by the
first hit in excess of N, and

T,{(J), for 1< J = K, is equal to average transaction process-
ing time.

V. P. TURNBURKE, JR.




The total non-overlapped processing time can be found by sum-
ming the non-overlapped processing time for each block.

Consider the case of an even distribution of activity across
the master file in which the probability of a hit against each
record may be assumed to be the same. We will further assume,
as is typically the case, that the file contains a large number of
blocks. (This type of distribution may reasonably represent the
activity in certain master files—updating names and addresses,
for example.) We may regard each record of a block as involved
in an independent binomial experiment with success and failure
denoting a hit and no hit, respectively. Thus, for the entire block,
the probability of exactly X hits, if found from the standard
formula,!

G!

PX) = ¢ oW/ VX1 — w/v)e* @)

where,

(# is the number of records in each block,

W is the number of transactions in the transaction file,

V is the number of records in the master file and

W/V is the probability of a hit against an individual record.

Now, values for the P(N -+ J) can be found from Eq. (2)
and inserted in Eq. (1) to permit evaluation of T'. Since the
value of T, will be the same for each block, to find the total non-
overlapped processing time, T, we need only multiply by the num-
ber of blocks (V/G) and thus

T = (V/QT,. 3

Observe that in the above, despite the assumption of an even
distribution, it would be undesirable to have based the compu-
tation on the average of (W/V)@ hits per block. The allowance
for individual variation from the average that was actually
included in the above computation will give a more accurate
result which will usually be significantly different from that
obtained by ignoring the variation.

Distributions of the type discussed in the previous paragraph
are unlikely in general and a careful analysis of the distribu-
tion should be made. Many kinds of master file runs will be
found to have a skew distribution. For example, in an inventory
master file, 80% of the activity may occur against 20% of the
master records, with hundreds of transactions hitting the most
active master file record. Accurate timing of such runs requires
that the true distribution of activity be determined and considered
in the run timing process. The summation of the sums formed by
Eq. (2) will still hold. But the computation of P(X) will vary
with the block location relative to the distribution of activity.
In addition, allowance must be made for multiple hits against a
single record. To keep the computation manageable, it will be
desirable to divide the entire set of blocks into appropriate sub-

SEQUENTIAL DATA PROCESSING DESIGN

43



time and cost
schedules

optimizing
the design

44

sets and base computation on a “representative” block chosen
from each subset. If an excessive amount of non-overlapped proe-
ess time results, it indicates that a different system design should
be sought, one that. considers the skew distribution of activity
as a parameter of the design.

All run times should next be adjusted for system efliciency.
Non-productive time should be added to cover run setup, end
of job and any non-overlapped intermediate tape rewinds. The
evaluation of setup time should consider whether input files gen-
erated by a previous run can remain mounted and the extent to
which files required by this run can be mounted on idle alternate
tape units during the final minutes of processing of the previous
run,

When all run time calculations have been completed, the time
for each run must be weighted by its frequency to determine
monthly run time. The associated costs are calculated and, if
consistent with the original objectives, each run should be sched-
uled by day to assure that no conflict exists between the time an
output file is prepared by one run and the time the next run
using that file is scheduled to start. The schedule should also
consider time elements which are not charged as operating time,
but which do affect the total number of hours the system must
operate, and therefore affect deadline objectives, personnel costs,
ete. Such elements may include setup and idle time. The schedule
should verify that peak work loads can actually be accomplished
by the system within the required time limits.

The results shown by the cost and operational time schedules
should be compared against the original objectives to determine
whether the system meets the original design criteria. If one or
more of the design objectives are not met, reiteration of certain
design steps is clearly necessary. Even if the design criteria are
met, it is usually desirable to reiterate in order to find the system
which will be most economic for the application—in other words,
to optimize the design.

The first step in optimization is to examine the overall sys-
tems design. Assuming that total running time is not so large or
so small that a different computer system should be chosen, the
most profitable area to examine is that of run segmentation.
There are three major approaches to altering the design which
offer the possibility of radical changes in cost and running time.
The first of these is combining runs. Run combination is effective
when the original design results in extra shift computer usage.
It may add components to the configuration, depending on the
parameters of the runs which are combined. A savings will occur
only if the runs being combined use one or more common files,
or if a process limited run and a tape limited run can be com-
bined on a buffered system.

The second approach is that of partitioning runs. This is effec-
tive when application time is well within prime shift time, and
when one or two runs require more components than the others.

V. P, TURNBURKE, JR.



Partitioning will add to running time if one or more files must
be processed through both runs, unless the run being partitioned
is heavily process limited on a buffered system. Reducing the sys-
tem configuration, however, will usually reduce total cost.

The third approach to optimizing the segmentation of runs
is to completely alter the basic system design. The information
concerning the scope of the application which was obtained from
the initial iteration of the design process allows more objective
judgments to be made of each part of the application. Trivial
parts of the application should be examined to determine whether
they can be done more cheaply manually, in a supporting punched
card installation or on a peripheral system. Conversely, it may
become apparent that major applications not previously consid-
ered can be added with little or no difficulty because the files
already described contain the information needed by the new
applications. Finally, it may now be obvious that random access
provides a better approach than magnetic tape file processing.

After the overall system design has been improved, each indi-
vidual run must be optimized in turn. In general, the longest
computer runs should be examined first, since they offer the
greatest potential savings. The techniques which can be used to
optimize file maintenance runs on buffered systems depend upon
whether the run is process limited or tape limited. If the run is
process limited, throughput will be increased by reducing process
time, if necessary at the expense of tape time. There are three
general areas worthy of investigation in optimizing a process
limited run. If a previous or a subsequent run is tape limited, it
may be possible to move part of the processing to the tape limited
run, decreasing the time for the main run without increasing
time in the other run. Zero balancing fields in an input transac-
tion and editing fields of an output transaction for printing are
obvious examples of process time which can be moved from one
run to another without affecting system logic.

It may be also possible to combine all or part of a master
file which is processed in a given tape limited run with another
master file, reducing or eliminating the given run without pro-
portionately increasing the other. Finally, fields which are re-
quired in different formats at different points in the process may
be carried in both formats on the master file to avoid the need
for editing. This is more useful for information fields such as
name, part number, ete., than for numeric fields which are con-
stantly updated.

If the run to be optimized is tape limited, essentially opposite
approaches can be used to improve it. It may be possible to add
units of processing to this run, relieving some other run which
is process limited. It may be possible to move master file fields
to another, process limited run, perhaps even setting up a second
master file for the purpose. Name and address records, for exam-
ple, might be kept in a special name and address file and ex-
tracted on a peripheral system as output documents are being

SEQUENTIAL DATA PROCESSING DESIGN

individual
run design

45



Figure 2

MASTER
FILE

extraction
method

UPDATED!
MASTER
FILE

SEARCH »| EXTRACT
RECORDS RUN

(UPDATED
TP\ ACTIVE
N\ &ee

i

I NEXT DAy
|
L_{UPDATED

ACTIVE
REC

OTHER
OUTPUTS

Figure 3

INACTIVE
MASTER
FILE

OTHER
OUTPUT:

ACTIVE
MASTER
REC

ACTIVE
MASTER J
REC

FILE
MAINTENANCE
RUN

FILE
MAINTENANCE
RUN

TRANS-
ACTIONS
INPUT

'CHANGE'

I
NEXT DAY |

i
I
CHANGEN _ |
o TAPE
QUTPUT,

TRANS-
ACTIONS
INPUT,

split-file
approach

46

printed. The master file may be compacted by coding informa-
tion fields, especially yes-no indieators, in binary. Some master
file fields may be completely eliminated, and recreated by pro-
gramming. If, for example, Gross Pay — Deductions = Net Pay,
only two of the three fields need appear on the master file.

If master file tape time contributes excessively to the tape
limited characteristic of the run, the effect of additional core
storage on master file blocking and tape time should be consid-
ered. Alternatively, an extraction or a change-tape technique may
reduce total job time. An extract run, which may be done either
on the main computer or on a peripheral system, searches the
master file and extracts the active records for processing, simul-
taneously filing back the previous day’s updated master records
(Figure 2).

Search records might be either on cards or on tape, and need
include only the desired control field. Since the extract program
is simple, storage is available to allow a very high blocking of
the master file. If the ratio of active master records to total
master records is very low, the decrease in master file tape time
will more than compensate for the extra reading and writing of
active records.

There are many possible variations of the extraction approach,
involving schemes which avoid updating the master file daily.
One of the most common of these is the change-tape technique
(Figure 3).

This arrangement is particularly effective when there is a
skew distribution of activity against the master, e.g., when 90%
of the transactions hit 10% of the master file items. Essentially,
the master file is divided into active and inactive segments, the
active segment being called the change-tape. The inactive segment
is read only. When a hit occurs on an inactive master file record,
it is updated and put in the change-tape. Thus the change-tape
content grows, at a rate dependent on the skewness of the activity
distribution. As the size of the change-tape approaches one-half
the size of the inactive master file, the design begins to lose its
effectiveness and a special run is required to move the updated
inactive master records from the change-tape back to the inactive
master file. This technique is particularly effective on unbuffered
or single channel buffered systems.

Since the change-tape approach adds a file to the file mainte-
nance run, it reduces the allowable blocking for each file. If this is
critical, the change-tape approach can be used in an extraction run.

If the activity ratio in a master file run is low but each hit
requires extensive processing, or if hits tend to occur in bunches
that create a process limited situation, run time may be reduced
by either a split-file or a queuing approach. In the split-file ap-
proach, the master file is divided into upper and lower halves
(or thirds, quarters, or even tenths). Transactions must be organ-
ized similarly, if necessary on separate tape units. All parts of
the file are processed concurrently, so that when activity occurs

V. P. TURNBURKE, JR.



on one part, the other parts of the master file can be searched
for the next active record while the first hit is being processed. The
split-file method is effective only in a buffered system, and increases
the number of channel and/or tape units required for the run.

Queuing is particularly applicable when the activity is very
low but each hit requires extensive processing. Such a run may
require nearly as much time on a buffered system as on an un-
buffered system. Consider for example, a run designed for a buf-
fered system using two input areas. If a hit requires 200 milli-
seconds of process time while an input area can be filled by 40
milliseconds of tape time, then each hit will result in 160 milli-
seconds of non-overlapped process time, and two hits against the
same block will cause 360 milliseconds of non-overlapped process
time. This non-overlapped process time occurs because there is
only one empty input area at the time of the hit. If the number
of input areas is increased to allow a queue of unprocessed data
to form when a hit occurs, the non-overlapped process time is de-
creased. In the above example, if six input areas were used, five
of them could be filled with a queue when a hit occurred and
non-overlapped process time would drop to zero on one hit, and to
200 milliseconds on two hits. Depending upon the parameters of
the job, it may be possible to achieve a similar result without
using additional core storage by decreasing tape blocking. In the
same example, dividing the original core storage into six input
areas instead of two would decrease blocking by a factor of three
and increase tape time by about 20%. 1f non-overlapped process
time were 30% or more of total run time, however, run time
would decrease. Note too, that the lower blocking factor will re-
duce the probability of more than one hit per block.

If the last iteration of the design resulted in extra shift usage,
then additional core storage, tape channels and tape units should
be considered. The addition of components will generally have
its greatest impact on sorting times, so the sorts should be re-
evaluated first. On the other hand, if the previous design was well
within one shift it may be possible to remove components from
the system, increasing running time but reducing total cost. Here
too the greatest impact will be on sorting times, though other runs
probably will have to be redesigned for the smaller configuration.

Careful consideration must be given to the frequency with
which runs are performed. If the application includes weekly
runs, it is usually more efficient to perform a single preliminary
sort or merge. If, however, the weekly runs cause an excessive
end-of-week load, the scheduling problem may be alleviated by
sorting daily and providing for five inputs to the following run,
merging internally rather than within a special run. The pos-
sibility of dividing a weekly file maintenance run into five daily
runs, each processing one-fifth of the file, should be evaluated as
an alternate approach.

There are several ways to optimize sorting times and costs.
Each sort should be timed for the next lower order of merge, for

SEQUENTIAL DATA PROCESSING DESIGN

queuing
method

scheduling and
system size

sorting

47



concluding

remarks

48

a higher order of merge will not improve running time unless
it decreases the number of merging passes required. If Phase I of
a sort is process limited, it is possible to reduce the length of the
strings produced by Phase I, reducing processing time. This will
increase the number of strings generated by Phase I but will not
appreciably affect Phase II time until the number of strings
becomes large enough to force an additional Phase II pass. In
most utility sort programs the control card can be used to reduce
the storage available for sort areas in Phase I, thereby reducing
the string length.

Large volume sorts always suggest the possibility of writing
a special sort program rather than relying on utility sorts. Program-
ming of specialized sorts has been greatly simplified by the avail-
ability of 10cs subroutines, for most sorting techniques are essen-
tially input-output problems. Digital sorting is an obvious
approach for a specialized sort if the records have short numeric
control fields. It may be similarly effective if there is an inherent
bias to the control fields which allows some form of block sorting
which takes advantage of the skewed distribution of digits in
each control field position or groups of positions.

Sort time may also be decreased by ordering each group on
the sort input tape in the previous run and bypassing Phase I
of the sort run altogether. This approach may reduce sort run-
ning time even if an additional Phase II pass is required, because
a Phase II pass is usually faster than a Phase I pass. It is espe-
cially effective if a high degree of order already exists in the file
to be sorted.

Of course, there are a myriad of additional approaches in
addition to those itemized above. When all promising alternatives
have been evaluated, it is useful to look at the overall system
design and ask the following questions:

1. Have all objectives been attained?

2. What are its strong points? weak points?

3. Where is the time and cost concentrated?

4, Is there a radically different approach that should be ex-
amined?

If the answers to all these questions are satisfactory, the
system may still not be the very best possible, but it should be
a good solution to the design problem.

ACKNOWLEDGMENT

The author wishes to express appreciation to his colleagues, F. 8.
Beckman, J. Svigals, and P. T. Woitach for their generous assist-
ance.

FOOTNOTE

1. This formula is derived and tabulated in the standard statistical texts.
See for example, Mosteller, Rourke and Thomas, Probability with Statis-
tical Applications, Addison-Wesley Publishing Co., 1961.

V. P. TURNBURKE, JR.



