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We present a novel way to produce dense linear algebra
factorization algorithms. The current state-of-the-art
(SOA) dense linear algebra algorithms have a performance
inefficiency, and thus they give suboptimal performance for
most LAPACK factorizations. We show that using standard
Fortran and C two-dimensional arrays is the main source of
this inefficiency. For the other standard format (packed one-
dimensional arrays for symmetric and/or triangular matrices),
the situation is much worse. We show how to correct these
performance inefficiencies by using new data structures (NDS)
along with so-called kernel routines. The NDS generalize the
current storage layouts for both standard formats. We use the
concept of Equivalence and Elementary Matrices along with
coordinate (linear) transformations to prove that our method
works for an entire class of dense linear algebra algorithms.
Also, we use the Algorithms and Architecture approach to
explain why our new method gives higher efficiency. The
simplest forms of the new factorization algorithms are a direct
generalization of the commonly used LINPACK algorithms.
On IBM platforms they can be generated from simple,
textbook-type codes by the XLF Fortran compiler. On the
IBM POWER3 processor, our implementation of Cholesky
factorization achieves 92% of peak performance, whereas
conventional SOA full-format LAPACK DPOTRF achieves
77% of peak performance. All programming for our NDS can
be accomplished in standard Fortran through the use of three-
and four-dimensional arrays. Thus, no new compiler support
is necessary. Finally, we describe block hybrid formats (BHF).
BHF allow one to use no additional storage over conventional
(full and packed) matrix storage. This means that new
algorithms based on BHF can be used as a backward-compatible
replacement for LAPACK or LINPACK algorithms.

1. Introduction
The Basic Linear Algebra Subroutines (BLAS) were
introduced to make the algorithms of dense linear algebra
(DLA) performance portable [1–3]. Starting with

LINPACK [4] and progressing to LAPACK [5], the level
1, 2, and 3 BLAS were introduced. The different BLAS levels
are distinguished by the number of nested “do loops” required
to perform the indicated computation. Almost all of the
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floating-point operations of DLA algorithms are
performed through the use of BLAS calls. If performance
were equal to operation count, performance would be
truly portable. However, with today’s deep memory
hierarchies, this is no longer the case. To understand
the performance inefficiency of LAPACK algorithms,
it suffices to discuss the level 3 BLAS, DGEMM (Double
precision GEneral Matrix Matrix). All LAPACK codes are
written in terms of level 1, 2, and 3 BLAS, and DGEMM is
the most important BLAS (see Section 2). The DGEMM

interface definition requires that its matrix operands be
stored as Fortran (column-major) or C (row-major) two-
dimensional arrays. We refer to these storage schemes
as standard two-dimensional arrays.

Design principles for producing a high-performance
level 3 DGEMM BLAS are given in [6 –9]. A key design
principle for DGEMM is to partition its matrix operands into
submatrices and then call an L1 kernel routine multiple
times on its submatrix operands. Here L i stands for level
i cache. L i is not to be confused with level i BLAS. By
“kernel” routine, we mean a routine that performs matrix-
multiply-type operations on matrix operands that are
contiguous and of a form and size that permits optimal
use of the L1 cache. Another key design principle is to
change the data format of the submatrix operands so that
each call to the L1 kernel can operate at or near the peak
Million FLoating-point OPerations per Second, or
MFLOPS, rate. The “optimal” data format for the L1
kernel routine is, essentially, the NDS advocated in this
paper. This format change and the subsequent change
back to standard data format is a cause of the performance
inefficiency in DGEMM implementations. Any LAPACK
factorization routine of a matrix, A, calls DGEMM multiple
times, with all of its operands being submatrices of A. For
each call, data copy is done; the principal inefficiency is
therefore multiplied by this number of calls. However, this
inefficiency can be removed by adopting the NDS and by
creating a substitute for DGEMM, e.g., its L1 kernel routine,
which does not require the aforementioned data copy.

In [10, 11], recursive blocked data formats were
introduced as a replacement for standard Fortran or C
array storage. One of the key insights was that storing a
matrix as a collection of submatrices (e.g., square blocks
of size NB) led to very high performance on today’s RISC-
type processors. We demonstrated that recursion (i.e.,
divide and conquer) should be used to order these blocks
in storage. This storage arrangement leads to L2, L3, and
memory blocking automatically. However, the ordering of
the blocks is nonlinear, and tables are needed to properly
address these blocks. A simpler way to order the blocks is
standard Fortran or C order; i.e., store the blocks either
in column-major or row-major order. The main benefit of
the simpler data layout is that addressing of an arbitrary

element a(i, j) of matrix A can easily be handled by a
compiler and/or a programmer. We call the NDS simple
if the ordering of the blocks follows the standard data
structure order.

For level 3 algorithms, the basis of the IBM Engineering
and Scientific Subroutine Library (ESSL) [12] is a set of
kernel routines that achieve peak performance when the
underlying arrays fit into L1 cache [6, 12]. If one were to
adopt these new, simple NDS, BLAS and LAPACK-type
algorithms become almost trivial to write. Also, the
combination of using the NDS with kernel routines is
general, and for matrix factorization it helps to overcome
the current performance problems introduced by having a
nonuniform, deep memory hierarchy. We use the Algorithms
and Architecture approach [6] to elucidate what we mean.
The results are based on the eight points below. Points 1
to 3 are commonly accepted architecture facts about many
of today’s processors. Points 4 to 6 are facts about dense
linear algebra algorithms that are easily demonstrated or
proven. Points 7 and 8 are an obvious conclusion based
on the Algorithms and Architecture approach.

1. Floating-point arithmetic cannot be done unless the
operands involved reside in the registers of the
floating-point unit.

2. Standard two-dimensional Fortran and C arrays do
not always map well into the L1 cache.
(a) The best case occurs when the array is

contiguous and properly aligned.
(b) At least a three-way set-associative cache is

required when a matrix multiply operation is
being performed.

3. For peak performance, all matrix operands must be
used multiple times when they enter the L1 cache.
(a) This ensures that the initial cost of bringing an

operand into cache is amortized by its level 3
multiple reuse.

(b) Multiple reuse of all operands can occur only if
all matrix operands map well into the L1 cache.

4. Each scalar a(i, j) factorization algorithm has a square
submatrix counterpart A(I�I�NB-1,J�J�NB-1)

algorithm (the LAPACK library [13]).
5. Some submatrix representations are both contiguous

and fit into the L1 cache.
6. Dense matrix factorization is a level 3 computation.

(a) Dense matrix factorization, in the context of
point 4, is a series of submatrix computations.

(b) Every submatrix computation (executing any
kernel routine) is a level 3 computation,
performed in the L1 cache.

(c) A level 3 L1 computation is one in which each
matrix operand is used multiple times.

From points 1– 6, we conclude points 7 and 8:

F. G. GUSTAVSON IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

32



7. Map the input Fortran or C array (matrix A) to a set
of contiguous submatrices, each fitting into the L1 cache.
(a) For portability (using BHF), perform the inverse

map after applying point 8 (below).
8. Apply the appropriate submatrix algorithm.

In the block submatrix codes of the LAPACK library, input
matrices are in standard or packed formats, so point 5 does
not hold for LAPACK algorithms. (See the subsection on
performance inefficiencies of LAPACK factorization
algorithms and p. 739 of [10] for more details.) Point 5
does hold for the NDS described here. Assuming that
both points 5 and 6 hold, we see that point 3 holds for
every execution of the kernel routines that make up the
factorization algorithm. This implies that near-peak
performance will be achieved. Point 7 is pure overhead for
the new algorithms, and adopting the new data formats
eliminates this overhead. By doing only point 8 we see
that we can obtain near-peak performance, because every
subcomputation of point 8 is a point 6(b) computation.

We now discuss the use of kernel routines in concert
with NDS. Take any standard linear algebra factorization
code, say Gaussian elimination with partial pivoting or the
QR factorization of an M by N matrix, A. By “standard”
we mean, loosely speaking, an element-wise matrix
algorithmic description, in the spirit of the algorithms
presented in [13]. These are often referred to as “vanilla”
or pseudo codes. It is quite easy to derive the block
equivalent code from the standard code. In the standard
code, a floating-point operation is usually a fused multiply–
add (FMA), (c � c � ab), whose block equivalent is a
call to a DGEMM kernel. Similar analogies exist; e.g., for
b � b/a or b � b � a, we have a call to either a DTRSM or
a DTRMM kernel. In the simple block equivalent codes we
are led to one of the variants of IJK order [14]. For these
types of new algorithms, the level 3 BLAS become simply
calls to kernel routines. It is important to note that no
data copying is being done. Also, performance portability
is ensured, since different platforms would produce
specific implementations of these kernel routines instead
of the current level 3 BLAS.

One type of kernel routine that deserves special
mention is the factor kernel. Neither LAPACK nor the
research literature treats factor kernels in sufficient depth.
For example, the factor part of LAPACK level 3 factor
routines (those named with the suffix TRF) are level 2
routines; they are named with the suffix TF2, and they call
level 2 BLAS repetitively. On the other hand, ESSL [6],
and more recently [10, 11, 15], where recursion is used,
have produced level 3 factor routines that employ level 3
factor kernels to yield level 3 factor components.

The above three paragraphs indicate that new algorithms
can be obtained from simple DLA codes if one first
introduces the simple NDS. One way to do this would

be to ask the user to input his data in standard Fortran or
C order with some additional storage appended below his
standard array. Then the standard Fortran or C array
could be transformed, in place, to the NDS, column-
major, square block format. Next, the block equivalent
of the standard code (with calls to standard ESSL-type
kernels) could be performed on the transformed NDS.
The performance should be superb. For example, on a
200-MHz IBM POWER3 with a peak performance of 800
MFLOPS, the performance of Cholesky factorization at
order N � 200 is more than 720 MFLOPS, reaching 735
MFLOPS at N � 500. This measurement did not include
the cost of transforming the data to square blocked
packed format. Using conventional full-format LAPACK
DPOTRF with ESSL BLAS, performance reaches 600
MFLOPS at N � 600 and achieves a peak of only 620
MFLOPS. Similar performance results are obtained for
general and symmetric indefinite matrix factorization.

Besides full storage, there is packed storage, which is
used for symmetric/triangular arrays. The disadvantage of
full storage when used for symmetric/triangular arrays is
that it uses twice the memory, but its advantage is that it
allows the usage of level 3 and level 2 BLAS calls. This
dramatically speeds up the computation. Since one can
use only level 1 and packed level 2 BLAS with packed
storage, performance suffers drastically on RISC and other
systems. Thus, many users choose higher performance and
pay the penalty of using twice the storage. Nonetheless,
there are problems where a full-format array will not fit
in memory, and then packed format is the appropriate
choice. Using the NDS instead of the standard packed
format, we describe new algorithms that save “half”
the storage of full format for symmetric matrices and
outperform the current block-based level 3 LAPACK
algorithms done on full-format symmetric matrices. We
present new algorithms and performance results for
Cholesky and symmetric indefinite factorization.

The simple NDS described in the above five paragraphs
are not compatible with the existing standard data formats
(i.e., the storage layout for a two-dimensional array).
There is great resistance to changing data formats that
have been used for a long time, and this is especially so
for major programming languages such as Fortran and C.
Also, libraries for dense linear algebra (e.g., LAPACK,
LINPACK, and ESSL) all support packed-format
symmetric/triangular arrays. Again, the simple NDS are
not compatible. A compelling reason for this resistance
is portability: If one changes the input layout used by a
library subroutine/function, existing software which calls
that library subroutine/function will not be operational.
Therefore, we introduce modifications to our simple NDS:
block hybrid format (BHF), which uses no additional
storage over the standard data formats of dense linear
algebra. In BHF we store the triangular part of a
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trapezoidal matrix in packed format and the rectangular
part as a general matrix (full format). In most cases, using
BHF solves the portability replacement problem, since a
new routine would then accept standard formats, convert
them to BHF, compute on BHF, and convert BHF back
to the standard formats.

In Section 2 we describe some basic algorithmic and
architectural results as a rationale for the work we are
presenting. In Section 3 we describe both simple square
blocked full formats and simple square blocked full hybrid
formats for dense matrix arrays. We describe an algorithm
for Gaussian elimination with partial pivoting for the
first type of storage. We then give performance results
on an IBM POWER3 processor for the hybrid format and
compare them with the LAPACK DGETRF algorithm. This
latter algorithm is a backward-compatible replacement for
the LAPACK DGETRF routine. In Section 4 we describe
column-major, square blocked packed formats for symmetric/
triangular arrays and show that they generalize both the
standard packed and full arrays used by dense linear algebra
algorithms. We also describe a BHF version of this simple
NDS. For both types of NDS we describe an associated
Cholesky factorization algorithm. Also, performance
results on an IBM POWER3 processor for both
algorithms and LAPACKs DPOTRF/DPPTRF are compared.
The BHF algorithm is a backward-compatible replacement
for the LAPACK DPPTRF routine. In Section 5 we
describe a new storage layout for symmetric indefinite
factorization and describe new algorithms that use it. They
combine the advantages of both LAPACK algorithms for
this problem: Their factorization performance is better
than that of the LAPACK full storage layout algorithms,
and their memory requirement is only slightly greater than
that of the LAPACK packed storage algorithms. Our new
algorithms, called DBSSV, DBSTRF, and DBSTRS, are now
part of ESSL [12]. Sections 6 to 8 (on vectors, recursion,
and BLAS) briefly describe how the NDS affect or are
affected by these three subjects. In Section 9 we briefly
describe kernel routines for IBM platforms. In Section 10
we give a summary and present our conclusions.

2. Rationale and underlying foundations of our
approach
We describe some basic DLA algorithmic and architectural
results as a rationale for why the combination of NDS
and kernel routines works so well. The idea is to
elucidate, somewhat, the Algorithms and Architecture
approach [6]. We see that for DLA algorithms, an
architecture with an FMA instruction has a significant
advantage over one using a floating-point multiply
followed by a floating-point add. First, we describe
the linear transformation approach to producing DLA
algorithms and use it as a foundation for producing their
high-performance implementations as follows. Every

simple DLA code has an associated block (submatrix)
algorithm. This latter code consists entirely of level 3 L1
kernel routine calls. Each call of every L1 kernel routine
runs at or near the peak performance rate when the NDS
are used. In fact, the main part of each level 3 L1 kernel
routine consists of performing a series of independent
FMAs. Second, we reintroduce operation counts as an
accurate measure of algorithm performance. This metric
becomes meaningful again largely because of the manner
in which our new data structures interact with the memory
hierarchy. We demonstrate this by considering the
example of Cholesky factorization. The entire algorithm
consists of level 3 L1 kernel routine calls in which no data
copy occurs when NDS are used. For each call, operation
count is a good performance indicator of the pertinent
level 3 L1 kernel. Thus, under these conditions, operation
count is a good performance indicator for the entire
Cholesky factorization. Next, we clarify three aspects of
the LAPACK design that cause it to have performance
inefficiencies. And finally, we show that the combination
of NDS and kernel routines corrects all performance
inefficiencies attributed to the LAPACK design.

The linear (coordinate) transformation approach
for producing DLA algorithms
The LAPACK library is a collection of about 500 DLA
algorithms. In this section we attempt to describe all of
these DLA algorithms by using a single central idea from
linear algebra, namely the combined use of elementary
matrices and linear transformations to produce a DLA
algorithm. We state two theorems, without proof, as a
means of indicating how we think the combination of NDS
and kernel routines can be put on a rigorous foundation
for all DLA algorithms. In fact, the same argument could
be used for LAPACK and its use of level 3 BLAS. As an
illustration of the first theorem, we demonstrate how
two different LAPACK DLA factorization algorithms
(DLAFA), DQRTRF and DGETRF, relate to this general
approach. Next, we break the multiplication of an
elementary matrix by a general matrix into its component
parts and show that the FMA is a fundamental
computational unit and, hence, an excellent choice for
realization in a computer architecture. Then a discussion
about the first theorem leads to the conclusion that
DLAFA are little more than a repeated application
of general matrix multiplication, DGEMM, on various
submatrices of the matrix, A, that is being factored. The
second theorem states that the way we now do matrix
multiplication [6 –9] subject to a cache hierarchy is optimal
to within the constants in the big-O and � notations. This
means that our current implementation practice is on a
sound theoretical footing.

For a set of linear equations Ax � b, there are two
points of view. The more popular view is to select an
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algorithm, say Gaussian elimination with partial pivoting,
and use it to compute x. The other view, which we adopt
here, is to perform a series of linear transformations
on both A and b so that the problem, in the new
coordinate system, becomes simpler to solve. Both
points of view have their merits. We use the second
because it demonstrates some reasons why the Algorithms
and Architecture approach [6] is so effective. Briefly, the
Algorithms and Architecture approach states that the key
to performance is to understand the interaction of the
algorithm and the architecture. Furthermore, a significant
improvement in performance can be obtained by matching
the algorithm to the architecture, and vice versa. In any
case, it is a very cost-effective way of providing a given
level of performance.

The fundamental reason or idea behind the coordinate
transformation approach is the concept of Equivalence
and Elementary Matrices. In [16], pp. 170 –173, matrices
and row equivalence are discussed. In particular,
elementary row operations of three types are cited on
p. 172. The most important operation is the addition of
any multiple of one row to any other row of a matrix. For
another treatment, see Chapter 6, Elementary Operations
and the concept of Equivalence, in [17].

Closely related to elementary operations (there are both
row and column types) are elementary matrices E, which
are a rank-one modification of the identity matrix I:
E � I � �uvT , where u and v are vectors and � is
a scalar. We have the following.

Theorem
Let Ax � b represent an m by n linear system of
equations. Let T represent an elementary operation or
an elementary matrix. Let A1x � b1 represent the m by n
linear system of equations after applying T to both sides
of Ax � b, i.e., A1 � TA and b1 � Tb. Then the solution
properties of both systems are the same.

Note that a more general form of an elementary
operation can be considered a linear transformation.

Corollary
Let Ti , 1 � i � k, represent k linear transformations
where each Ti is elementary. Let T � TkTk�1 . . . T1 be
their product. Then Ax � b and Cx � d, where C � TA
and d � Tb have the same solution properties.

As an example, we relate this second approach to
the first approach of Gaussian elimination with partial
pivoting, i.e., LU � PA. We get C � U and the k � n
linear transformations Ti � Li (or k �  n/NB when a
blocked method is used). A second example would be
A � QR factorization, where C � R and the Ti would
be elementary householder matrices or the compact
WY representation [15, 18]. We remark that Section 2,
pp. 939 –942 of [19] shows that the product of n Li to

produce L requires no additional work; i.e., L is obtained
via concatenation of the n Li . This is not the case with
elementary householder matrices; see Section 2, pp.
606 – 615 of [15].

We now examine a single elementary column operation.
Let the two columns be represented by vectors x and y
and the scalar multiple by �; then this operation is the
level 1 BLAS DAXPY operation y � y � �x. Note that
DAXPY is a series of multiply-add operations. In fact, the
dot-product xTy operation, another pervasive operation, is
also a series of multiply–add operations. For dense linear
algebra, we can conclude that multiplies and additions
occur equally often and almost always in multiply–add
pairs. Hence, from the architecture point of view, the
use of the FMA instruction, D�B�A�C, is a natural
choice for dense linear algebra. We mention that the
FMA instruction costs slightly more than the multiply
instruction, and that doing a multiply and an add separately
costs about 1.7 times more than an FMA1 , 2 [20].

Next we claim that matrix multiplication is pervasive in
the algorithms of dense linear algebra; for example, see
[13] and the LAPACK library. Let R and S be linear
transformations with a common set of basis vectors.
Let T � S(R) be the composition of the two linear
transformations where we want T to be linear. This
restriction (i.e., that T be linear, on the basis for T, in
terms of the common set of basis vectors) can be viewed
as defining matrix multiplication. In fact, in the 1840s
Cayley first described a matrix as a rectangular two-
dimensional array. According to Meyer [21], Cayley
also defined matrix multiplication as the result of the
composition of two linear coordinate transformations. We
take the same view here. Our dual points of view let us
describe dense linear algebra algorithms as a series of
coordinate transformations with the aim of finding a set
of basis vectors where the matrix A is now represented
as upper-triangular. And for each such composition of
transformations to be linear, we must perform matrix
multiplication. For more details, see Chapter 8, pp. 209–
214 of [16]. We also note that matrix multiplication is
by definition a series of parallel dot-product operations
and hence just a series of FMAs, which can be done
independently.

We have just seen why matrix multiplication shows up
repeatedly in, say, LAPACK algorithms. In fact, the level
3 BLAS, DGEMM, is considered the most important level 3
BLAS. Our next point relates to the current block-based
(submatrix) matrix multiplication used by most DGEMM
implementations. These implementations are optimal in
the following sense.

1 B. M. Fleisher, private communication, IBM Research Division, Yorktown
Heights, NY, September 2001.
2 R. K. Montoye, private communication, IBM Research Division, Austin, TX,
September 2001.
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Theorem
Any algorithm that computes ai,kbk, j for all 1 � i, j, k � n
must transfer between memory and an M word cache
�(n 3/�M) words if M � n 2/5. See [22].

The current block-based algorithms transfer O(n 3/�M)
words. The point here is that we need not search for
better ways to perform matrix multiplication via DGEMM

implementation, since our current algorithms achieve
the lower bound complexity measure. Also, practical
experimental evidence (e.g., the ESSL DGEMM achieves
better than 90% of peak performance) tells us the same
thing in a very concrete way.

We end this section with brief remarks about blocking.
The general idea of blocking is to get information to high-
speed storage and use it multiple times to amortize the
cost in performance of moving the data. In doing so, we
satisfy points 1 and 3 of the Introduction. We briefly
mention the translation lookaside buffer (TLB), cache,
and register blocking. The TLB contains a finite set of
pages which are known as the current working set of the
computation. If the computation addresses only memory
in the TLB, there is no penalty. Otherwise, a TLB miss
occurs, resulting in a large performance penalty; see [6].
Cache blocking reduces traffic between the memory and
cache. Analogously, register blocking reduces traffic
between cache and the registers of the CPU. Cache
and register blocking are further discussed in [6].

Operation counts measure kernel routine
performance
From the 1960s to the 1980s it was common practice to
use operation counts as a measure of the performance
of dense linear algebra algorithms, or, more generally,
floating-point computations. This was valid because the
memory hierarchy was uniform. In fact, it was during this
time that the FLOP (floating-point operation) and the
MFLOPS (million floating-point operations per second)
became measures of floating-point computations. The
MFLOPS, still widely used today, is now employed
primarily as a measure of peak performance, since
the memory hierarchies are no longer uniform.

Our introduction of new data structures, along with
their use by kernel routines, brings operation counts
back as an indicator of peak L1 cache performance
because L1 cache can be considered a uniform memory
hierarchy under the assumptions of points 1 to 6 in the
Introduction. Another reason for their introduction here
is to further emphasize our point that the FMA is indeed
the key floating-point instruction of dense linear algebra.
Also, by considering level 3 BLAS and factor kernels, we
concretely demonstrate the pervasiveness of matrix
multiplication. To illustrate, we consider the three level 3
BLAS—DGEMM, DTRSM, DSYRK—as well as the level 3
Cholesky factor kernel, DPOFU. Given m by n matrix C, k by

m matrix A, and k by n matrix B, DGEMM (C � C � ATB)
clearly requires 2mnk FLOPs, consisting entirely of mnk
FMAs. Given m by n matrix B and m by m triangular
matrix A, the FLOP count of DTRSM (B � A�1B) is m 2n.
This FLOP count consists of mn reciprocal multiplies
and m(m � 1)n/ 2 FMAs. Given m by m triangular
matrix C and n by m matrix A, the FLOP count of
DSYRK (C � C � ATA) is m(m � 1)n. This FLOP
count consists entirely of m(m � 1)n/ 2 FMAs. Clearly
then, these three important level 3 BLAS consist almost
entirely of FMAs. Finally, consider our level 3 Cholesky
kernel routine of order n. Its FLOP count is n square
roots, n divides, n(n � 1)/ 2 reciprocal multiplies, and
n(n 2 � 1)/6 FMAs. Again, Cholesky factorization consists
mainly of FMAs, as our transformational point of view
suggests. Now, for clarity and convenience, let N � nNB.
Using point 4 of the Introduction, Cholesky factorization
consists of n calls to DPOFU, n(n � 1)/ 2 calls each to
DTRSM and DSYRK, and n(n � 1)(n � 2)/6 calls to
DGEMM. Using our new data structures, each of these
kernel routines will execute at a near-uniform rate
because all of their matrix operands map well into L1
cache (see points 1 to 6 of the Introduction). Thus, the
N by N Cholesky factorization problem, occupying space
in a nonuniform deep memory hierarchy, can be effectively
mapped onto a set of submatrices and then executed as a
series of n�n(n�1)�n(n�1)(n�2)/6�n(n�1)(n�2)/6
kernel routine calls, where each kernel routine call will
execute at a uniform near-peak rate in L1 cache.

Description of four kernel routines
In the previous section, we gave operation counts for
DGEMM, DTRSM, DSYRK, and Cholesky factorization. Let A
be a general matrix of order N with a leading dimension
LDA � N, i.e., A � A(0�LDA � 1, 0�N � 1). We use
colon notation; see [13]. Note that in Fortran, ai, j is stored
in location i � j � LDA of the array A holding matrix A. We
now describe calling sequences of four kernel routines that
can be used as building blocks for the above four routines.
We refer to general matrices A, B, C, U stored in arrays
A, B, C, U with associated leading dimensions LDA, LDB,
LDC, LDU.

● DATB4 (M,N,K,A,LDA,B,LDB,C,LDC) computes
C � C � ATB, where A is k by m, B is k by n, and
C is m by n.

● DSLVL4 (B,LDB,M,U,LDU,N) computes B � BU�T ,
where U is order n upper triangular and B is m by n.

● DTATA4 (M,N,A,LDA,U,LDU) computes U � U � ATA,
where U is order m symmetric stored in full upper
format and A is n by m.

● DPOFU4 (A,LDA,N,INFO) computes U, where UTU � A,
A is order n symmetric positive definite, stored in full
upper format, and A 4 U.
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We comment briefly. When the dimensions of the
operand are all one, the first kernel computes
c � c � a � b, the second computes b 4 b/a, the third
computes u � u � a 2 , and the fourth calculates u 4 �a.
These four operations are the scalar counterparts of the
four level 3 kernels listed above. These four level 3 L1
kernels perform at or near peak only when their operands
are represented in the NDS format.

Performance inefficiencies of LAPACK factorization
algorithms
A basis for LAPACK was to cast its DLAFA in terms of
level 3 BLAS. In the early 1990s this was an excellent
strategy because most processors had only a single cache
level, L1. For IBM POWER1 and POWER2 processors,
the latency to memory was less than 20 cycles.
Additionally, POWER2 featured QUAD load and store
operations; it had exceptional memory bandwidth. This
was evidenced by the fact that, on the POWER2, ESSL
general matrix factorization, Cholesky factorization, and
DGEMM achieved 90%, 92%, and 96% of the peak rate of
the machine for n � 1000. In those days operation count
and the level 3 BLAS concepts were still reasonable
guides for portability performance. Nonetheless, in
producing level 3 BLAS that gave smooth high
performance, it was still necessary to employ data copy
for the L1 kernel routines. Today, with deep memory
hierarchies, operation count and the use of BLAS are
no longer a reliable performance guide for LAPACK
algorithms. In this section, we give three reasons why
this is so.

The first reason has to do with LAPACK packed
routines. With packed storage one can use only level 1
and packed level 2 BLAS, and performance consequently
suffers drastically on RISC systems. A typical reduction
from level 3 is about a factor of 3. The BLAS Technical
Forum [23] recommended packed level 3 BLAS to correct
this inefficiency, while we recommended the adoption of
NDS instead of producing a new set of packed level 3
BLAS.3

The second reason has to do with the LAPACK choice
to make the factorization part of level 3 DLAFA into
level 2 computations. The performance inefficiency
incurred by this choice can be very great. An example
of this occurs in general or QR matrix factorization
when the input matrix is tall and narrow, since the entire
factorization then becomes level 2. Note that recursion
can generally be used to produce level-3-type factorization
routines (see Sections 7 and 9).

The third reason was briefly outlined in the
Introduction; we continue that description now. A BLAS

routine has no knowledge about how it is being used
by a calling routine. However, a LAPACK DLAFA of
matrix A and its calls to the BLAS are related. Level 3
BLAS were proposed, in part, to support DLAFA, so an
implicit relationship exists between level 3 BLAS and their
use by LAPACK routines. In fact, every DLAFA calls
the level 3 BLAS several times. Each of these multiple
BLAS calls has every one of its matrix operands equal to
submatrices of the matrix A that the DLAFA is trying to
factor. Can one exploit this relationship? An answer lies in
examining what the current BLAS do: They try to exploit
architectural design characteristics while maintaining the
functionality of the BLAS. In a given level 3 BLAS call,
its data operands are copied to a new data format so that
repeated calls to the L1 kernel routines of the BLAS will
all run at or near their potential peak rate. Since the
level 3 BLAS are called by DLAFA multiple times,
data copying occurs multiple times. However, all of
these matrix operands are related because they are all
submatrices of the matrix, A, being factored. Now, the
manner in which one can exploit this relationship becomes
clear: Change the data format of the matrices that are
input to the level 3 BLAS routines from standard format
to a format conformal to that used by the level 3 BLAS
kernel routines and thereby eliminate the need for all
repetitive data copying. This new data format is, in fact,
the NDS that we are advocating in this paper.

Mathematical dimension theory can be used to shed
some light on the subject of this section, and we briefly
mention it here. Every object has a unique dimension.
The laws of science and engineering relate to two- and
three-dimensional objects. Note that linear algebra is
repetitively used to solve the problems of engineering
and science via computer modeling and simulation. The
standard storage layouts for multidimensional arrays are
one-dimensional. The dimension, d, of an object is the
number of parameters necessary to describe any small, �,
neighborhood of the object. A fundamental theorem of
dimension theory states that it is impossible to maintain
closeness between points in a neighborhood unless the two
objects have the same dimension. In the present context
we are dealing with matrices, which are two-dimensional
objects. However, they are stored in the computer as one-
dimensional objects. By applying this theorem, we can see
that matrix elements cannot be ordered to be uniformly
close together. The standard formats keep either the row
or the column dimension close, but the other dimension,
column or row, is necessarily far apart. A space-filling
curve helps to ameliorate this 1D to 2D problem because
one can order 2D blocks in a recursive (divide and
conquer) manner. In [10, 11] we do just that and claim
that we have a heuristic for automatically blocking all
levels of the memory hierarchy. Now return to the

3 F. G. Gustavson, notes on blocked packed format and square blocked format for
symmetric/triangular arrays, September 1999.
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individual submatrices of our NDS. Even though these
contiguous submatrices are stored in the same standard
one-dimensional manner, these two-dimensional
submatrices fit nicely into L1 cache. Any data that
remains in the L1 behaves as if it were in a random-access
memory, and the floating-point execution proceeds at the
same high rate as long as all floating-point operations are
independent. Fortunately, for DLA algorithms and matrix
multiplication in particular, this is the case.

Correcting the LAPACK program inefficiencies
One should use BHF versions of the NDS so that any
new DLA code produced will be a backward-compatible
replacement for its corresponding LINPACK and/or

LAPACK code. We write a DLA code as the block
(submatrix) counterpart of its standard code. This is easily
done. Now we cover the three inefficiencies of the preceding
section for this code. First, the NDS for packed arrays are
in a format used by the level 3 L1 BLAS kernel routines.
Hence, the new code will consist entirely of a series of level 3
L1 kernel routine calls, and its performance will be better
than that of a conventional packed LAPACK code, since
these packed codes cannot use level 3 BLAS. Second,
level 3 factor kernels are building blocks for producing
level 3 implementations of LAPACK TF2 routines.
As such, their use produces codes that almost always
outperform any LAPACK level 2 implementation. Third,
LAPACK full-format routine DPOTRF requires repetitive
data copying when it calls level 3 BLAS. Using the NDS
avoids all data copying.

To demonstrate our approach in more detail, the
following sections contain some text and figures originally
presented at the Working Conference on the Architecture
of Scientific Software, October 2– 4, 2000, in Ottawa,
Canada, and published in the conference proceedings [24].
This material is reproduced by permission of the
publisher.

3. Square blocked full and hybrid formats for
general matrices
These new data formats are best described by an example.
Let A be an M � 11 by N � 10 matrix with LDA � 12. In
Fortran this matrix would be stored as shown in Figure 1;
the number in location (i, j) is the storage position of a(i, j)
in A. Note that locations (12i, i � 1, 10) are indicated
by an asterisk. These locations of array A are required
storage. However, they are neither used nor needed.
Nonetheless, a library writer is not allowed to alter their
contents. In the rest of Section 3 and Sections 4 and 5,
an asterisk will have the same meaning.

Let NB � 4 be the block size and suppose A is stored in
column-major block order. Here m1 � n1 � 3 and A is
a 3 by 3 block matrix. Each square block is NB by NB

and contains a submatrix of A. In the new data format,
A would be stored as in Figure 2.

Now suppose a user inputs his matrix A in standard
Fortran or C order with some additional space directly
below A in the array holding A. For example, in Figure 1
the minimum storage for A is LDA � n � 120 doublewords.
If the user supplied ns � 144 elements (extra storage for
� NB2

� m1 � n1 � LDA � n � 24 doublewords directly
below A), one could transform Fortran storage order to
the new square blocked full column order. Once this data
transformation is completed, one could execute the block
equivalent of a standard vanilla code with calls made to
standard kernel routines.

Figure 1

Standard Fortran column-major storage order.
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Figure 2

New square blocked full column-major order.
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Square blocked full data format Gaussian
elimination
We briefly describe this procedure for a right-looking
Gaussian elimination with partial pivoting. In the vanilla
version (NB � 1 here), the outer loop is on j � 0,
N � 1, and for each j one finds the pivot in column j and
swaps it with a(j,j). Then a(j�1�M-1,j) is scaled by
the reciprocal of the pivot to form column j of L. Next,
columns k � j � 1, N � 1 are processed in two steps.
Let k be a generic column. First, a swap of row j and the
pivot row is made. Second, a DAXPY update is performed:
a(j�1�M-1,k)�a(j�1�M-1,k)-a(j�1�M-1,j)�a(j,k).
For the blocked version, refer to Figure 3. In the blocked
version, the outer loop is on bj � 0, n1 � 1, and for each
bj one factors a block column L�U � P�A(j�M-1,j�N-1)

by calling kernel routine RGETF3. Then columns j � nb
to N � 1 are processed in three block steps of size ks.
Let k�k�ks-1 be the generic block column. First,
there is a forward pivot step. This is accomplished by
calling a blocked version of the LAPACK routine,
DLASWP, called DLASWPB. Next, there is a DTRSM

computation whose first four parameters are 'L ' , 'L ' ,
'N ' , 'U ' , done by the kernel routine DLLNU4. Finally,
there is a DGEMM update whose first two parameters are
'N ' , 'N ' , which is done by a series of calls to kernel
routine DAB4. After completion of the k block loop there
is a back pivot step. As just mentioned, there are three
kernel routines in the block equivalent (see Figure 3).
They are a factor panel kernel of size m by n where
n � NB called RGETF3, a DTRSM kernel called DLLNU4,
and a DGEMM kernel called DAB4. We mention that the
factor kernel has the same functionality as the LAPACK
DGETF2 routine. However, RGETF3 is a level 3 routine,
done recursively, as indicated by the suffix 3 and the
prefix R. Note that the vanilla routine, actually the
LINPACK routine DGEFA, does not have a back pivot
step, so the blocked version does extra work, some of
which could be avoided.

We now turn to the way in which DGEFB might be
packaged as a subroutine in standard Fortran. Following
LAPACK conventions, we suggest using the input
format of DGETRF(M,N,A,LDA,IPIV,INFO). The new
routine would have a nearly identical calling sequence:
DBGTRF(M,N,A,LDA,IPIV,NSINFO). The new input
parameter is NS � n�LDA, and it is combined with the
LAPACK output only parameter, INFO; hence, the name
NSINFO. If NSINFO is not sufficiently large, DBGTRF just
returns by placing in �NSINFO the amount of storage
necessary to apply the new block algorithm. If NSINFO
is sufficiently large, the input matrix is rearranged into
square blocked format, and then DBGTRF is executed
using the new block algorithm. Like the LAPACK LWORK

parameter, the value returned in �NSINFO will be the

value used by DBGTRF for good level 3 performance,
namely m1�n1�NB2.

Square blocked full hybrid data formats for matrices
Let A be m by n, where LDA � m; i.e., A is stored in
column-major order. Assume m � n (a similar result
holds for n � m). Let n1 �  n/NB and n2 � n � NB �

n1 � NB. Partition the column space of A into n1 � 1
pieces of size NB and a leftover piece of size n2 � NB.
This new format represents A as a set of n1 � 1
rectangles of size m � NB and a last one of size m � n2.
We partition the row space of A into m1 � 1 pieces of
size NB and a leftover piece of size m2 � NB. Here
m1 �  m/NB and m2 � m � NB � m1 � NB. Matrix A
is an m1 by n1 block matrix. Each block has a TRANS

parameter; i.e., it can be stored in column- or row-
major order. In each of the n1 rectangles, the last
LDA � m rows are stored last. For the original A
we assume LDA � m. In Figure 4 we depict the matrix,
A, that is associated with Figure 1.

When LDA �� m, our algorithms will suffer because the
useful information in the array A, representing matrix A,
is mn, while the unused (unnecessary) information is
(LDA � m)n. Performing the in-place data transformation
requires O(LDAn) operations, so the ratio of overhead
to useful work is LDA/m � 1. For example, if we set
LDA � 1100 in Figure 4, this ratio is 99; i.e., there are
99 wasted operations for every useful one. The main
advantage of using square blocked full hybrid data
format is that it makes those dense linear algorithms
which use it a high-performance replacement for
LAPACK routines. Further, if LDA �� m, we can still
apply the original algorithm. Finally, we mention that
a buffer of size M 	 NB is required to do the in-place
data transformation. This is accomplished by allocating
the buffer at the start of processing and freeing it at
the end. This is certainly allowable, since many LAPACK
and BLAS algorithms routinely use extra space of this size.

A matching BLAS 3 LU � PA algorithm
It is almost as easy to code this algorithm as the DGEFB

algorithm of Figure 3. However, because of lack of space,
we do not include the code for this format.

Programming notes for square blocked full formats
As mentioned in the Introduction, one addresses the block
coordinates (I, J) and the local coordinates (i, j) within
that block. So, by using three- or four-dimensional Fortran
or C arrays, one can program for these formats. In Figure
3, we use a three-dimensional array; we handle the block
(I, J) addressing implicitly as 1D addressing in the third
dimension. See Section 7 for a discussion regarding the
handling of blocks that are stored recursively. The main
programming difficulties arise in coding the factor kernel
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Figure 3

Subroutine DGEFB.
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routines. For example, Gaussian elimination with partial
pivoting requires working with a column of blocks.
Thus, local offsets in a square block are required; see
Section 6. Because of this, the number of parameters,
and generalization to algorithms for distributed memory
processors, we predict that descriptors will eventually
be used.

Performance for LU � PA
We have examined several variants of solving LU � PA;
e.g., left- and right-looking and recursive variants. Also,
we have experimented with several variants of the new
data structures. Here we show performance results on
a 200-MHz IBM POWER3 processor with a peak
computational rate of 800 MFLOPS. The peak rate is four
times the cycle time; there are two FPUs, and each cycle
produces two FLOPS from each FPU. Results are for full
hybrid block format. The performance timings include the
cost of data transformation from standard format to BHF.
We do not do the data transformation immediately. This
is because Fortran storage (column-major order) is
ideally suited for the factor part of the algorithm. After
factorization it pays to do a data transformation. Not
included here are the results of algorithm DGEFB. We
remark that these results are similar. Figure 5 shows two
plots in which the block LINPACK algorithm is compared
with the LAPACK algorithm DGETRF. Note that the x-axis
is log-scale; we let n and m of (m, 100) range from 100 to
2000. For square matrices [Figure 5(a)] the new code is
90% to 10% faster than DGETRF as n ranges from 100
to 2000. Note that, for very large n, these codes are
dominated by ESSL DGEMM code. Figure 5(b) shows tall,
thin matrices; i.e., n is held fixed at size 100. Here, the
new code is nearly twice as fast as DGETRF for all m
values. Note that DGETRF has suboptimal performance
because a large part of its factorization time is spent in
level 2 DGETF2 (see the subsection on performance
inefficiencies of LAPACK factorization algorithms).

4. Square blocked packed formats for
symmetric/triangular arrays
These new formats are a generalization of packed format
for triangular arrays. They are also a generalization of full
format for triangular arrays. The main benefit of the new
formats is that they allow for level 3 performance while
using about half the storage of the full-array cases. In
packed format, the elements of a triangular matrix would
be stored as shown in Figure 6; the number in location
(i, j) is the storage position of a(i, j) in A.

For square blocked packed formats there are two
parameters, NB and TRANS, where, typically, n � NB. For
this format, we first choose a block size, NB, and then we
lay out the data in squares of size NB. Each square block
can be in row-major order (TRANS � 'T ') or column-

major order (TRANS � 'N '). This format supports uplo
� 'U ' or 'L ' . For uplo � 'L ' , the first vertical stripe
is n by NB and it consists of n1 square blocks where

Figure 4

Full hybrid block column-major storage order.
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Performance for LU � PA: (a) m � n; (b) 100 < m < 2000, n � 100.
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n1 �  n/NB . It holds the first trapezoidal n by NB part
of L. The next stripe has n1 � 1 square blocks, and it holds
the next trapezoidal n � NB by NB part of L, and so on,
until the last stripe consisting of the last leftover triangle is
reached. There are n1(n1 � 1)/2 square blocks in all.

An example of square blocked lower packed (SBLP)
format with TRANS � 'T ' is given in Figure 7. Here n � 10,
NB � 4, and TRANS � 'T ' , and the numbers represent
the position within the array where a(i, j) is stored. Note
the missing numbers (e.g., 2, 3, 4, 7, 8, and 12) which
correspond to the upper right corner of the first stripe.
This square blocked lower packed array consists of
six square block arrays. The first three blocks hold
submatrices that are 4 by 4, 4 by 4, and 2 by 4. The next
two blocks hold submatrices that are 4 by 4 and 2 by 4.
The last square block holds a 2 by 2 submatrix. Note the
padding, which is done for ease of addressing. Addressing
this set of six square blocks as a composite block array is
straightforward.

An example of square blocked upper packed format
(TRANS � 'N ') is given in Figure 8. The square blocked
upper packed array consists of six square block arrays.
The first block holds a 4 by 4 submatrix. The next two
blocks hold 4 by 4 block submatrices. The last three blocks
hold 4 by 2, 4 by 2, and 2 by 2 submatrices. Each block is
in column-major order. Note the padding, which is done
for ease of addressing. Addressing this set of six square
blocks as a composite block array is straightforward.

Here is another important point. With extra storage
appended directly below a standard packed array, denoted
here by AP, one can move to these new data formats
without allocating additional storage. For the examples
above, AP requires 55 storage elements. If there are
96 � 55 � 41 free locations below AP, one can move the
packed array downward into the blocked packed array by
starting at the end of AP and moving the square blocks in
a block column into a buffer of size n1�NB2 either in row-
major or column-major order. The entire buffer can then
be copied back over the vacated block column.

The main innovation in using the square blocked
packed format is to see that one can translate, verbatim,
a standard packed factorization algorithm into a square
blocked packed algorithm by replacing each reference to
an i, j element with a reference to its corresponding
square block submatrix. This is an application of point 4
in the Introduction. Because of the storage layout, the
beginning of each block is easily located. Also key is that
this format supports level 3 BLAS. Hence, old, packed
code is easily converted into square blocked packed level
3 code. In a nutshell, “standard packed” addressing is
used so that the library writer/user can handle his own
addressing in a Fortran or C environment.

We now turn to full-format storage. We continue
the example with N � 10 and LDA � 12. Simply set
NB � LDA � 12 and one obtains full format; i.e., square
blocked packed format gives a single block triangle
which happens to be full format (see Figure 9).

In Figure 9 we ignore the last LDA � n columns of the
square blocked array. Here is an interesting observation.

Figure 6

Packed-format arrays: (a) Lower packed; (b) upper packed.
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Square blocked lower packed format.
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The unused storage, of size n � (LDA � LDA � n � 1)/ 2,
consists of n fragmented vectors of sizes LDA � n�LDA � 1�1.
As before, colon notation is used [13]. These vectors
are interspersed with 1� n �1 vectors of the symmetric
matrix A. For uplo � 'U ' , the symmetric matrix consists
of ten vectors of sizes 1 to 10 in steps of 1 (55 elements
total). The unused storage consists of ten vectors of sizes
11 to 2 in steps of �1 (65 elements total). If this fragmented
storage is not used, one can convert full format to square
blocked packed format, thereby freeing up a contiguous
block of storage.

A Cholesky factorization algorithm for square
blocked packed format
We now turn to programming dense linear algebra algorithms
in the new formats. As an example, Figure 10 gives code for
DPSTRF (PS stands for positive definite symmetric) where
the data is stored in the lower triangular part of the full
array (uplo � 'L '). This produces the lower Cholesky
factor for the positive definite symmetric A, where A is
in square blocked packed lower transposed format.
Algorithm DPSTRF is a simple right-looking algorithm, as
the code illustrates. One can let NB � 1, and then each
level 3 square block kernel call becomes a corresponding
scalar operation on an i, j element. For NB � 1, this
routine is a variant of the LINPACK routine, DPPFA.
Routine DPOFU4 is an ESSL factor kernel. The
corresponding scalar operation is square root. In ESSL
[12] all level 3 BLAS and factorization routines use kernel
routines. For example, in ESSL DGEMM, a blocking routine
is called to partition the matrix operands, A and B, into
submatrices (matrix blocks), and then calls are made to
kernel routines that operate on the blocks. Data copying
of the operands to the kernel routines is decided on by
the ESSL DGEMM blocking routine. This data copying is
done so that the kernel routines uniformly perform
at a high rate of execution. [See point 2(a) of the
Introduction.] We remark that data copying is sometimes
done by the ESSL DGEMM routine; see the subsection
on performance inefficiencies of LAPACK factorization
algorithms and p. 739 of [10] for more details. In DPSTRF

we can call the kernel routine, DATB4, directly, thereby
avoiding data copying, since NB was selected for good L1
cache behavior. The routine DSLVL4 is a DTRSM kernel
routine, and routine DTATA4 is a DSYRK kernel routine.
The suffix 4 on each kernel routine indicates that 4 by 4
register blocking (loop unrolling by 4) is being used.
(Calling sequences for these four routines were given in
Section 2.) These kernels have no clean-up code, so when
the order of A is not a multiple of 4, we pad the leftover
blocks (up to 3 rows and columns with zeros and up to
three diagonals with ones). Thus, the code works for
any matrix order, and the kernel routines, which are
programmed in Fortran, are short and of very high

Figure 8

Square blocked upper packed format.
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Figure 9

Square blocked packed formats when NB � n: (a) uplo � 'L'; (b) 
uplo � 'U'.
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Figure 10

DPSTRF subroutine.
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performance. Note that routine DPSTRF is just one
example of the general schema presented in Points 7
and 8 of the Introduction.

Before closing this section, we wish to suggest a way to
package this data storage in LAPACK. We continue with
the current routine for Cholesky factorization, uplo � 'L ';
a similar procedure would be followed for uplo � 'U '.
Define a new LAPACK routine, called subroutine DPSTRF

(UPLO, N, AP, NSINFO). Input parameters UPLO, N, AP have
the same meaning as the corresponding parameters of
LAPACK routine DPPTRF and hence need no description.
The new input parameter, NS, stands for the storage the user
inputs for AP; NS � n(n � 1)/2, hence the name NSINFO.
On output, NSINFO plays the role of the LAPACK output
only parameter INFO. If NS is not sufficiently large, DPSTRF
just returns in �NSINFO the amount of storage necessary for
good level 3 performance. Like the LWORK parameter, the
value returned in �NSINFO will be the value used by DPSTRF
for good level 3 performance. If NS is sufficiently large,
the input storage is rearranged into square block format
and then DPSTRF is executed, giving level 3 performance.

An example that describes the algorithm DPSTRF

Let NB � 88. This is a good block size for the IBM
POWER3 L1 cache, which holds 8192 double-precision
words. The DGEMM kernel, DATB4, whose functionality was
described in Section 2, places all of A, four columns of B,
and a 4 by 4 submatrix of C into L1 cache during a
computing instance. This requires 7744 � 352 � 16 � 8112
doublewords. On most IBM RS/6000* platforms, only the
A matrix fully occupies L1 cache. Additionally, four
columns of the B matrix and four lines of the C matrix
are required. All three matrices, A, B, and C, are not
required to occupy L1 cache. Thus, mk � 4k � 4LS
should be less than some large fraction of the size of L1.
Here LS stands for line size, which is 16 doublewords for
POWER3. Note that Automatically Tuned Linear Algebra
Software (ATLAS) uses a very similar L1 cache-blocking
strategy (p. 18 of [8]).

Let N � 250. Routine DPSTRF requires N to be a
multiple of 4. Thus, N will become 252 by padding two extra
rows and columns of an identity matrix to A. A conversion
routine called DLPTUP [lower packed to upper (square
block) padded] converts a lower packed format array to
square blocked lower format with padding of up to three
extra rows and columns to make N a multiple of 4. The size
of the block array will be 3, so A will look like Figure 7,
where now NB�88 and n2�76. Note that rows 75 and 76
of blocks 3 and 5 will be padded with zeros, and rows 77 to
88 of these blocks will consist of unused space. Block 6
will contain a lower triangular matrix of order 76 stored by
row, where the last two rows are rows of an identity matrix.

Note that we store our submatrices in SBLP format with
the TRANS parameter � 'T ' . This is because we emulate

factoring A in full upper format, since we want all of our
calls in the four kernel routines to do their dot products
stride one. A proof that this is correct is given on pp. 826
and 828 of [25] for recursive packed format. Now we are
ready to follow algorithm DPSTRF. We know that we will
factor a 3 by 3 block matrix consisting of six submatrices
each residing in a subarray of size NB2 � NB2. These
subarrays reside in memory locations 1 � NB2i,
0 � i � 6 � 1, 7775, 15 489, 23 233, 30 977, and 38 721.
Again see Figure 7 and adjust the starting positions of the
blocks by 88 � 88 � 7744 instead of 4 � 4 � 16. In what
follows we identify each of the six submatrices by their
starting position in the global array that holds them. Now,
according to the subsection on the linear transformation
approach for producing DLA algorithms, there are three
calls to DPOFU4, three calls each to DSLVL4 and DTATA4,
and a single call to DATB4. Algorithm DPSTRF is a right-
looking algorithm [14]. The outer block j loop factors and
scales a trapezoidal panel and then uses the factored block
column to update the remaining block columns to its right.
There are three passes through the outer block j loop,
sufficient to give the calling parameters of the ten kernel
routine calls. Knowing their values makes it easy to follow
the program flow of the example. For block pass one
(j � 1, jj � 1), there are one factor call, two scale
calls, and three update calls:

CALL DPOFU4 (A(1),NB,NB,INFO),

CALL DSLVL4 (A(7775),NB,NB, A(1),NB,NB),

CALL DSLVL4 (A(15489),NB,76, A(1),NB,NB),

CALL DTATA4 (NB,NB,A(7775),NB, A(23233),NB),

CALL DATB4 (NB,76,NB,A(7775),NB,

A(15489),NB,A(30977),NB),

CALL DTATA4 (76,NB,A(15489),NB,

A(38721),NB).

For block pass two (j � 89, jj � 23233), there are
one factor call, one scale call, and a single update call:

CALL DPOFU4(A(23233),NB,NB,INFO),

CALL DSLVL4(A(30977),NB,76, A(23233),NB,NB),

CALL DTATA4(76,NB,A(30977),NB, A(38721),NB).

For block pass three (j � 177, jj � 38721), there
is a single factor call:

CALL DPOFU4 (A(38721),NB,76,INFO).

Note that in the above ten calls all LDAs were NB, so we
were obeying point 2(a) of the Introduction.

Performance and overhead of the example
The purpose of this section is to quantify how Algorithm
DPSTRF spends its execution time. The results provide a
verification of the subsection on the linear transformation
approach for producing DLA algorithms and also show
very small overhead. We first state the performance in
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MFLOPS of the ten subroutine calls (in the subsection on
an example describing DPSTRF) in the order of the calls.
They are u � 609, 715, 711, 749, 775, 750, 609, 711, 750, and
582. The peak MFLOP rate is 800, and all measurements
made here were by way of the wall clock. The DGEMM and
DSYRK rates of 775 and 750 are very good. The DPOFU

rates of 609 and 582 are also lower than they should be.
Again, there are multiplies done by the FMA unit, and
each multiply equals only one, not two, FLOPS. Also,
DPOFU performs divides and square roots. On the
POWER3, these instructions consume 18 and 27 cycles,
respectively, for a total of 45 cycles. In 45 cycles, the same
chip can perform 90 FMAs or 180 FLOPS. Yet, we count
each divide and square root as only one FLOP. The ten
subroutine calls consume v � 231 132, 681 472, 588 544,
689 216, 1 117 088, 514 976, 231 132, 588 544, 514 976, and
149 302, for a total of 5 366 382 FLOPS. This is the
Cholesky FLOP count for an order N � 252 matrix. (See
the subsection on the linear transformation approach for
producing DLA algorithms, where the various FLOP-
count formulas are given.) The FLOP count for N � 250
is 5 239 875. The execution time of DPSTRF was 0.007518
seconds. The MFLOPS rate is 697. However, we really did
an N � 252 size problem. The MFLOPS rate for that
problem is 714. Now we compute the MFLOPS rate
assuming no overhead for DPSTRF. We take the dot
product of the two size-ten vectors u � v to get
3 847 004 572. We then divide by 5 366 382 FLOPs to get
the no-overhead MFLOPS rate, which is 716.87. Hence,
execution time at this rate is 0.007486 seconds. Thus, the
difference is 0.000032 seconds, and the overhead is
therefore 32/7518, or 0.43%.

Block hybrid formats of symmetric/triangular arrays
These new formats are a combination of traditional
packed and full arrays. They retain the main benefit of the

new formats presented in the previous section: They allow
for level 3 performance while using exactly the same
storage as the packed routines. Since no extra storage is
required, these routines become backward-compatible
replacements of the existing LAPACK packed routines.
Their parameters are NB and TRANS. In block hybrid
format (BHF), we first choose a block size NB and then
lay out the data in trapezoidal swaths. For uplo � both
'U ' and 'L ' , there is also the parameter TRANS. For an
example, see Figure 11, in which n � 10, NB � 4, uplo �

'L ' , and TRANS � 'T ' . In general, the first trapezoidal
swath has base n2 and sides n and n � n2 � 1. It consists
of a packed triangle of size n2 and a rectangle consisting
of n1 � 1 blocks, where n1 �  n/NB and n2 � n � NB

� n1 � NB. The remaining n1 � 1 trapezoidal swaths
have full base width of size NB. Now each trapezoid with
base h and sides (b, b � h � 1) consists of a packed
triangle of size nt � h(h � 1)/ 2 and an appended
rectangle of size b � h by h. The trapezoid contains
ntr � h(2b � h � 1)/2 points, the rectangle nr � h(b � h)
points, and the triangle nt points. Since ntr � nr � nt, no
extra storage is required to store a trapezoid as a packed
triangle and an appended rectangle. Each triangle and
rectangle can be stored either in row- or column-major
order (TRANS � 'N ' or 'T '). Note that the LDA of the
rectangles (set of “squares”) is either NB or n2. There
appear to be four packed triangles because we have four
cases ( 'L ' , 'N '), ( 'L ' , 'T '), ( 'U ' , 'N '), ( 'U ' , 'T ').
However, the layouts for packed ( 'L ', 'N ') and ( 'U ', 'T ')
formats are identical, as are the layouts for packed
( 'U ' , 'N ') and ( 'L ' , 'T ') formats. In the former case,
we have the traditional lower packed format; in the latter,
the traditional upper packed format. Now turn again to
Figure 11. There are three trapezoidal swaths. In the first
swath of size n2 � 2, there is an upper packed triangle of
order 2 and a rectangle consisting of two “squares” each
of size 4 by 2 stored in row-major order (TRANS � 'T ').
The remaining two trapezoidal swaths, two and three,
are each trapezoidal swaths of size NB � 4. The second
trapezoid consists of an upper packed triangle of order 4
and a rectangle consisting of a single square of size 4. The
last trapezoid consists of an upper packed triangle of
order 4 and a rectangle consisting of no squares.

A matching BLAS 3 Cholesky factorization algorithm
The LINPACK and LAPACK algorithms for DPPFA
and DPPTRF are left-looking when uplo � 'U ' . The
LAPACK algorithm for DPPTRF is right-looking when
uplo � 'L ' . LINPACK does not have a Cholesky
algorithm when uplo � 'L ' . However, these algorithms
are not suited for our BLAS 3 implementation of
Cholesky using BHF. We describe only the uplo � 'L '

Figure 11

Blocked hybrid lower packed format.
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algorithm here. We choose to mimic the uplo � 'U '
algorithm of LAPACK DPOTRF. This algorithm could be
called hybrid since it has both right- and left-looking
characteristics. It is better to choose the uplo � 'U '
algorithm because all DGEMM computations become
'T ' , 'N ' instead of 'N ' , 'T ' (see [25] for details).

There are stronger reasons to choose the hybrid
algorithm. First, we choose it because each block triangle
is updated, factored, and does all of its scalings in the
outer j loop of our block hybrid Cholesky (BHC) algorithm,
which we now describe briefly.4 There are n1 �  n/NB
passes through the outer j loop. To be able to use only
BLAS 3, we need each blocked packed triangle to be
in full format. We use a buffer T of size NB2 to copy a
packed triangle to full format in T. At the beginning
of a pass through the j loop, we start a K loop that
calls DSYRK and DGEMM to update T and the rectangle
(consisting of a set of squares � inner i loop) below T.
Next, T is factored by kernel routine DPOFU. After
factoring T, DTRSM is called to scale the rectangle (set of
squares � middle i loop) beneath T. The pass through the
j loop ends by copying full T back to packed format. Note
here that the corresponding DPPFA/DPPTRF algorithm would
copy each T back and forth multiple times. The use of
DSYRK is a kernel routine call. For DGEMM and DTRSM,
there are two and one rectangles, respectively, each
consisting of a set of squares. Hence, a single call (on two
and one rectangles) requires no data copying within the
calls. Alternatively, one could call the DGEMM and DTRSM

kernels several times, once for each square in the
rectangle set.

Another reason to choose the hybrid algorithm has to
do with how its matrix operands enter L1 cache. Consider
the kernel routine DPOFU and suppose the triangle T has
order n. Let j be the outer loop variable. During the jth
pass of the loop, a rectangle of size j(n � 1 � j) is
accessed. A triangle above the rectangle of size j( j � 1)/ 2
is no longer needed, and another triangle to the right of
the rectangle of size (n � j)(n � j � 1)/ 2 has yet to be
accessed. Note that these three figures have exactly
n(n � 1)/2 points. Now the rectangle has maximal area
n2/4 when j � n/ 2. However, using either the right- or
left-looking algorithm leads to a maximal area of size
n 2/ 2.

Now let us briefly look at the overhead of BHC. The
major cost is the copying of n1 packed triangles of size
NB to and from full format. The overhead of calling the
kernel routines is a very minor cost. First, the kernel
routines require no error checking, as they are internal
routines. There are n1(n1 � 1)/ 2 submatrices and

n1(n1 � 1)(n1 � 2)/6 calls to kernel routines. These calls
consist of n1 calls to DPOFU, n1(n1 � 1)/ 2 calls each to
DSYRK and DTRSM, and n1(n1 � 1)(n1 � 2)/6 calls to
DGEMM. Let us use an example to illustrate why the
overhead is tiny. Assume that n � 1000 and NB � 100,
which is reasonable on IBM POWER3 machines. Now,
n1 � 10, and so there are 220 kernel calls. Let M �

1 000 000. Each DGEMM call consumes 2M FLOPs, each
DSYRK and DTRSM call consumes about M FLOPs, and
each DPOFU call consumes approximately M/3 FLOPs.
Now 10(M/3) � 90M � 240M � 1000(M/3), which is
about the FLOP count of Cholesky factorization when
n � 1000. Clearly, the calling overhead is tiny, and so
the overhead cost of BHC is the cost of copying packed
triangles to full triangles and back (a total of 50 500 matrix
elements). Of course, we have not included the cost of
Point 7 from the Introduction. This cost consists of
moving, in-place, n(n � 1)/ 2 � 500 500 matrix
elements.

In this section, we have discussed a fully portable
replacement for LINPACK DPPFA and LAPACK DPPTRF.
As stated in the previous section and in the Introduction,
the new algorithm is a direct translation of a vanilla point
algorithm in which each scalar operation is replaced
by a level 3 kernel operation that runs at nearly peak
performance. We used only existing level 3 BLAS
(actually, only the kernel routine parts of the level 3
BLAS were required) and the kernel routine DPOFU.

Programming notes for square blocked packed formats
As in ordinary packed formats, the implementor of a
packed-format library code explicitly handles his own
addressing; e.g., AP (IJ) points at a(i, j) in the packed
array AP representing the symmetric/triangular array A.
We do the same thing for square blocked packed format
and BHF; for example, see Figure 10, in which AP is
dimensioned AP(�).

Performance for Cholesky factorization
Figure 12 shows performance (MFLOPS) versus matrix
order n. Note that the x-axis is log scale; we let n range
from 10 to 2000. In the comparison of square blocked
packed Cholesky and DPOTRF, we do not include the cost
of transforming the data format. This is perhaps unfair;
nonetheless, we did it to demonstrate the limits of
possible performance. Note that DPSTRF shows some
choppy behavior, especially when n is small. The matrix
orders where this occurs are not multiples of 4. For
example, when n � 70, the performance is about the same
as when n � 60. This is because DPSTRF is solving an
order n � 72 problem, while the MFLOPS calculation
is being done for n � 70. However, the kernel routines
are much simpler when there is no fixup code. Note that

4 For full details, see B. S. Andersen, J. A. Gunnels, F. G. Gustavson, J. K. Reid,
and J. Wasniewski, “A Fully Portable High Performance Minimal Storage Hybrid
Format Cholesky Algorithm”; to be submitted to ACM Transactions on
Mathematical Software.
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DPSTRF is always faster than DPOTRF by as much as a
factor of 4 when n � 60 and at least 15% for n � 2000.

In the comparison of BHC and LAPACK shown in
Figure 12(b), there are four curves: 1) BHC, 2) BHC �

data transformation, 3) DPOTRF, and 4) DPPTRF. For
small n we do not use the data transformation. In fact, we
wrote a packed-format Cholesky factorization kernel for
uplo � 'L ' when n is small. Note that the L1 cache on
POWER3 holds 8192 doublewords and that this factor
kernel peaks at 620 MFLOPS for n � 160. In this
subsection we have shown that n 2/4 is the effective
cache size, and thus n � 180. Note that the initial data
transformation does cost something. The actual crossover
happened at n � 230. For n � 230, curves 1 and 2
are identical. For n � 230, it pays to use the data
transformation, and curves 1 and 2 separate. A fair
comparison would be curve 2 versus curve 4. Curve 2 is,
on the average, three times faster than curve 4. Now we
address the unfair comparison of curve 2 versus curve 3.
Curve 2 is much faster than curve 3 for small n (up to
four times faster) and more than 10% faster for large n.

5. Lower packed blocked overlapped format
for symmetric indefinite factorization
In this section we consider the solution of a linear system,
Ax � b, where A is symmetric indefinite. The most
popular algorithm for the solution of this problem uses
the Bunch–Kaufman pivoting [13, §4.4] and [26, §10.4.2]
for the LDLT decomposition of a matrix, A. There are
two types of subroutines in LAPACK which use this
method. In the first, the matrix is stored in a two-
dimensional array (Figure 9). As previously mentioned,
conserving memory is sometimes an important issue.
Clearly, full storage uses almost twice the necessary
memory. Packed storage (Figure 6) is the second type of
storage scheme. With this storage format, a one-dimensional
array is used to store only the essential part of the matrix.

We introduce lower packed blocked (LPB) storage as
another generalization of packed storage. In LPB format,
the columns of the matrix are divided into blocks which
are stored successively in memory. Several successive
columns of the matrix are kept inside each block as if they
were in full storage. The result of this storage is that it
allows the use of level 3 BLAS. Of course, this format
requires slightly more memory than the packed format.
However, for problems of practical interest, the memory
overhead is only about 5%. Thus, the new storage scheme
combines the two advantages of the storage formats used
in LAPACK: the smaller memory size of the LAPACK
DSPSV and the superior performance of the LAPACK
DSYSV [27].

This new storage layout is another generalization of
both packed and full format. In fact, we modify this
new format slightly to produce lower packed blocked
overlapped (LPBO) format. This was done in order to
handle efficiently the 1 	 1 or 2 	 2 blocks that occur
during symmetric indefinite factorization.

A generalization of the traditional symmetric
formats
Let 1 � NB � N, where NB is the block size. Let N1 �

 N/NB and N2 � N � NB � N1 � NB. The new LPB
format partitions the N columns of A into (N1 � 1) block
columns, each consisting of NB successive columns of A,
and a last block consisting of N2 columns. The LDA of
block i is LDA � (i � 1)NB. An example of LPB format
with NB � 4 is given in Figure 13(a). Note that when
NB � N, one gets full format [see Figure 9(a)], whereas
when NB � 1 and LDA � N, one gets lower packed format.
Hence, the LPB format generalizes both traditional formats.

A very brief description of symmetric indefinite
factorization
First note that a block factorization stage produces

PAP T
� LDL T

� WL T
� LW T; W � LD,

Figure 12

Performance for Cholesky factorization as a function of matrix 
order: (a) Square blocked packed Cholesky and DPOTRF; (b) BHC, 
BHC and data transformation, DPOTRF, and DPPTRF.
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where P is a permutation matrix, L is unit lower
triangular, and D is a block diagonal consisting of 1 	 1
or 2 	 2 blocks. More detailed descriptions can be found
in [13, §4.4] and [26, §10.4.2]. Our algorithm produces
results identical to those of the LAPACK _SYTRF routine.

A modification of LPB format called lower packed
blocked overlapped format (LPBO)
Symmetric indefinite factorization produces either 1 	 1
or 2 	 2 pivot blocks in an arbitrary order, depending
on the numerical values of A. The LPB data format does
not allow for the efficient handling of either kind of pivot
block when they occur at the boundary between blocks of
columns. To overcome this inefficiency, we introduce the
LPBO format. To obtain the new LPBO format [see
Figure 13(b)], we introduce, at the end of the first N1�1

block columns, an extra NB storage locations as padding.
We now illustrate how this padding allows us to

efficiently handle a block factorization and its level 3
update. The problem arises when we factor column j and
j is a multiple of NB. If column j starts a 1 	 1 pivot, there
will be NB or NB�1 columns in the factor block. If column
j starts a 2 	 2 pivot, there will be NB�1 or NB columns
in the factor block. This means that the first update block
will have NB or NB-1 columns. To illustrate, let j � NB � 4.
Column j starts either a 1 	 1 or a 2 	 2 pivot block.
Let us first assume case 2; i.e., the pivot block is 2 	 2.
We update columns 6�9 of block 2 and block 3 with
columns 1�5, consisting of block 1 and column 1 of block
2. The updates are

A
6�9, 6�9� � A
6�9, 6�9� 	 W
6�9, 1�5� � L T
6�9, 1�5�

and

A
10�10, 10�10� � A
10�10, 10�10�

	 W
10�10, 1�5� � L T
6�9, 1�5�.

In case 1, we need to update blocks 2 and 3 with block
1. This is the easier case. The updates are

A
5�8, 5�8� � A
5�8, 5�8� 	 W
5�8, 1�4� � L T
5�8, 1�4�

and

A
9�10, 5�8� � A
9�10, 5�8�

	 W
9�10, 1�4� � L T
5�8, 1�4�.

In either case it should be clear from studying the
LPBO storage layout that both of the above block
computations are laid out in full storage format.
Therefore, level 3 BLAS can be applied. Also, in both
cases above, we must update the last block, either
A(10�10, 10�10) or A(9�10, 9�10). Again, it should
be clear how this can be done using LPBO format.

The total memory we need for LPBO storage is exactly

S
LPBO

� A
LPBO

� WORK,

where

A
LPBO

� A
N1

� (LDA � N � N2) � N2,

A
N1

� (N1 � 1) � (LDA � NB � NB) � (N1 � 1)

� (N1 � 2)/2 � NB2,

N1 � (N � NB � 1)/NB,

N2 � N � NB � N1 � NB,

WORK � (LDW � 1) � NB,

LDW � LDA.

Here, WORK plays the same role as the WORK array in
the LAPACK _SYTRF routine. WORK holds the W matrix,
where W � LD. Note that for large N, A

LPBO
is only

slightly greater than the size required for packed storage.

New LAPACK algorithms for symmetric indefinite
factorization in ESSL
We have packaged our algorithms in ESSL. We now
discuss the issues of exact replacement and migration

Figure 13

Lower packed and lower packed block overlapped format when 
NB � 4: (a)  LPB format; (b) LPBO format.
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of these routines for LAPACK as they relate to these
algorithms. Our algorithms are called DBSSV, DBSTRF,
and DBSTRS. They provide the same functionality as the
LAPACK algorithms DSPSV, DSPTRF, and DSPTRS,
respectively. In fact, the calling sequences of DBSSV,
DBSTRF, and DBSTRS are identical to those of DSPSV,
DSPTRF, and DSPTRS. Thus, it suffices to describe
DBSTRF: SUBROUTINE DBSTRF (UPLO, N, AP,

IPIV, NSINFO). The first four arguments of DBSTRF
have meanings identical to those of the first four
arguments of DSPTRF. The fifth and last argument of
DSPTRF is the output-only argument, INFO. For DBSTRF,
NSINFO is both an input and an output argument. Hence,
the differences between the two algorithms are BS
(blocked symmetric) versus SP (symmetric packed) storage
and NSINFO being both an input and an output variable,
whereas INFO is output only.

Overview of DBSTRF and DBSTRS

Let NT�N(N�1)/2 be the size of array AP. DBSTRF
accepts lower or upper packed format AP (exactly
like DSPTRF), depending on the value of UPLO. After
argument checking, DBSTRF computes NSO, the size of
the LPBO format array plus the size of the W buffer.
The W buffer is used by both DBSTRF and DSYTRF. If
NSINFO�NSO, NSINFO is set to -NSO and no computation
is done. Otherwise DBSTRF moves, in place, packed
AP(1�NT) to LBPO format. Then DBSTRF performs a
level 3 Bunch–Kaufman pivoting on APBO � AP(1�NSO).
DBSTRS and DSPTRS have identical calling sequences:

SUBROUTINE DBSTRS (UPLO, N, NRHS, AP, IPIV,

B, LDB, INFO).

The only difference between DBSTRS and DSPTRS is
the name (BS instead of SP) and the data format of AP.
Depending on N, AP is either in packed format or in
LPBO format. Note that DBSTRS is called only if DBSTRF
successfully completes the factorization of AP. The
crossover value that determines whether to employ
packed format or LPBO format is decided by the
routine DBSTRF.

Migration and portability considerations
We designed our subroutines DBSTRF and DBSTRS to
minimize the effort required to migrate existing codes that
call DSPTRF and DSPTRS. Changes are indeed minimal.
For each call to DSPTRF and DSPTRS, one must change
SP to BS. Also, DBSTRF requires that the size of the array,
AP, be input in argument NSINFO. If necessary, one can
use the return of -NSO, in NSINFO, to allocate additional
storage.

Innovations leading to program efficiencies
Using the Algorithms and Architecture approach,
we describe five innovations regarding our symmetric
indefinite factorization algorithms that use LPBO format.
These are briefly described in the five subsections which
follow.

Intermediate back pivoting
A difference between LINPACK and LAPACK is that
LAPACK usually uses full back pivoting, whereas
LINPACK does not use back pivoting. For DBSTRF, we
have introduced intermediate or block back pivoting.
Intermediate pivoting saves pivoting operations and has
almost the same effect on efficiency (speed) as does full
back pivoting. In the context of using LPBO storage, this
is especially true. Block back pivoting is necessary for a
level 3 factorization and is also sufficient to achieve level
3 performance for multiple solve.

LPBO format allows for a level 3 multiple solve
We remark that the LAPACK DSYTRS algorithm is not a
level 3 implementation. A 2 	 2 pivot apparently causes
a storage problem with full format. However, the LPBO
format does not have this problem. To see why this is so,
consider a 2 	 2 pivot block, D, and its associated block
of L:

D � �a b
b c� , L � �1 0

0 1� .

In LAPACK, A(2, 1) cannot simultaneously hold both b
and zero, and A(1, 2) is forbidden storage. However,
with LPBO format, we are free to use both A(2, 1) and
A(1, 2) (see the # symbols in Figure 13(b) that illustrate
LPBO format). Thus, we represent D (UPLO � 'L ') as

D � �a b
0 c� .

In any case, the LAPACK full DSYTRS code uses
LINPACK-type pivoting and hence is not a level 3
implementation.

WLT is more efficient than LWT

The level 3 part of DSYTRF and DBSTRF is the update
computation A 4 A � LDLT . A buffer or work array
W is used to compute W � LD. Now WLT � LWT as
D � DT . LAPACK computes A 4 A � LWT as opposed
to A 4 A � WLT . The reason WLT is to be preferred
over LWT (at least on IBM platforms and platforms using
ATLAS [8]) is that (during DGEMM) the left operand
matrix (W in this case) fills the L1 cache. If LWT were
used, L would fill the L1 cache. Now, the size of W is
under the control of the algorithm implementor, since he
sets its LDW, whereas L is an input array. Thus, WLT is to
be preferred over LWT .
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The workspace size of W can be NB2 and not N � NB

During the factor part of DBSTRF, we need only compute
the diagonal block of L and not the entire panel of L.
However, we must store W on top of A since the buffer
size is only NB2. This means that the benefit mentioned in
the preceding subsection might be lost. When factorization
is complete, we overwrite the diagonal part of W with L
from the buffer. Also, during update A 4 A � WLT we
can update a block panel at a time. Again, we need only
compute a square block of L to do this. After a block
panel of A is updated, the square L block created in the
buffer is copied over the corresponding part of W which is
occupying the storage of A.

The UPLO � 'U ' case
Using a stride of 1 gives the best performance. The UPLO

� 'L ' case uses stride 1 for the most part. Stride LDA can
be very costly, especially on IBM processors. This very
costly case occurs when UPLO � 'U ' and one factors A in
the usual “top-down, left-right” manner. However, one can
just as well factor A “bottom-up, right-left.” When this is
done, the UPLO � 'U ' case “converts to” the UPLO � 'L '
case. Both LINPACK and LAPACK almost follow this
strategy. Our reason to nearly follow them is based on
performance (we have not seen this reasoning for doing
so presented in the literature).

Performance
We tested our algorithms on three recent IBM platforms:
POWER3, POWER2, and PowerPC 604e. In each of the
following figures we compare our new BS routines to the
LAPACK SY routines. All plots measure MFLOPS versus
matrix order, which runs from 10 to 1000 in steps of 10.

In Figure 14(a) we consider factorization, performed
on a 200-MHz POWER3. Initially both programs have
identical performance because the algorithms are
identical. There is a crossover point at which DBSTRF

switches from packed to LPBO format. The first big drop
(caused by program loading) in Figure 14(a) is where this
crossover occurs. It can be seen that DBSTRF outperforms
DSYTRF by up to approximately 40%, and this includes the
cost of converting from packed to LPBO format. Also,
note that for N � 300 there are three dips in the
DSYTRF performance (see the subsection on the relative
efficiencies of WLT and LWT for an explanation). In
Figure 14(b), we compare DBSTRS to DSYTRS for multiple
and single right-hand sides. Here we see the dramatic
improvement of using intermediate block factorization
format over using LINPACK factorization format.
Figure 15(a) shows factorization performance on an IBM
160-MHz POWER2 machine. The new features to note
in this graph are the large performance dips that occur
for the DSYTRF algorithm. These dips occur when the
LDA of A (chosen here to equal N) does not produce

a good data mapping into the four-way set-associative
L1 cache. Note that DBSTRF does not have these dips
because we set LDW � LDA so as to produce a good
L1 data mapping. In Figure 15(b), we did not choose
LDB � N, because doing so might have produced similar
dips. Figure 16(a) shows factorization performance on a
332-MHz PowerPC 604e machine. Compared to POWER3
and POWER2, this machine evinces poor floating-point
performance. Figure 16(b) shows how good level 3
performance can be in comparison to the level 2.5
performance of DSYTRS (about a factor of 5).

6. Vectors
The purpose of this section is to briefly show how
vectors could be handled by the NDS and kernel routine
combination. Vectors generalize as follows. Each vector
is a collection of subvectors. The subvectors have the
same format as Fortran 77 vectors: X(0�NB�1�INCX).
The “stride” between two subvectors (either constant or
variable) has to be determined. This vital information

Figure 14

Performance on IBM POWER3: (a) Factorization; (b) multiple and 
single solver.
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becomes part of the definition of the vector as a collection
of subvectors.

7. Recursion
It is not the purpose of this paper to cover how recursion
interacts with linear algebra algorithms. Its purpose is to
indicate that recursion can be very useful. Recursion
helps improve the performance of dense linear algebra
algorithms in at least two ways. First, it provides for
automatic variable blocking; see [10, 11, 28 –30]. Hence, it
provides a heuristic to block for the various higher levels
of the memory hierarchy (L2, L3, main memory, disk
memory). This paper describes block-based data structures
stored in the conventional column-major or row-major
order manner. However, recursion provides or requires a
new way to store the blocks. To be able to do that, we can
address the blocks through the use of integer tables. Since
each of the blocks contains NB2 elements, the number of
blocks will be relatively small. This means that the
additional storage for the tables will be tiny.

The second way that recursion helps is more theoretical.
It provides for new algorithms. For example, in [14], the
IJK way of producing variants of a given linear algebra
algorithm was described. Now, recursion introduces
another way. In particular, we have mentioned factor
kernels in this paper and the fact that many libraries (e.g.,
LAPACK) produce only level 2 implementations of these
algorithms. By using recursion, these kernel routines (e.g.,
LAPACK ___TF2 routines) are automatically converted
to level 3 routines. In fact, instead of LAPACK having
both ___TRF and ___TF2 routines, a single routine will
now suffice.

8. How the BLAS change
The main thing to note is that data copying is removed
when one adopts the NDS as an input/output format.
A new set of BLAS, namely factor kernels, must be
defined. However, these new BLAS become simpler
to write, since there is no data copying nor data allocation
to be considered. Only a blocking routine is required to

Figure 15

Performance on IBM POWER2: (a) Factorization; (b) multiple and 
single solver.
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Performance on IBM PowerPC 604e (332 MHz): (a) Factorization; 
(b) multiple and single solver.
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schedule the various kernel routine calls. This blocking
routine should take into account the underlying memory
system consisting of L2 cache, L3 cache, and main
memory. Using the recursion heuristic of Section 7,
it is possible to write platform-independent BLAS.
Nonetheless, the L1 kernels are platform-dependent.

As a generalization, one could envision extending
the BLAS concept to dense linear algebra algorithms
themselves. For example, consider Cholesky factorization,
which is described in Section 4, where two different
algorithms, DPSTRF and the current LAPACK blocking
algorithm, are given for Cholesky factorization. These
algorithms are differentiated by the manner in which they
block the operands. Hence, making a choice between
them, we could produce a “Cholesky BLAS” algorithm.
This is the approach used in producing algorithms for
the ESSL library [12].

9. Kernel routines
A kernel routine for a level 3 BLAS or for a factorization
routine is the piece of code that performs the floating-
point operations. Vanilla codes for these routines are
simple scalar codes consisting of three nested loops and
are found in some textbooks. For example, the 'N ' , 'N '
case of vanilla DGEMM has a statement T � T � A(i, k)

�B(k, j) in the inner, k, loop and initially T � C(i, j),
etc. For the 'T ', 'N ' case, the inner loop statement
is T � T � A(k, i)�B(k, j), etc. We would name
these codes DAB and DATB. We use the convention that
the suffix 4 means that the outer j, i loops are both
unrolled by 4. Hence, 16 independent dot products,
instead of one, are being done by the high-performance
production versions of these vanilla codes. Thus, DAB4
and DATB4 used in Figures 3 and 10 are the suffix-4
codes briefly described above. Currently, they are being
implemented by hand. However, in principle, the kernel
routines can be produced automatically by a compiler
and/or preprocessor for IBM POWER3 processors.
Further details are given in [6], pp. 569 and 570. Note,
however, that we now use 4 by 4 unrolling instead of the
4 by 2 unrolling in [6]. The other kernel routines, DLLNU4
in Figure 3 and DPOFU4, DSLVL4, and DTATA4 in Figure 10,
are implemented in a similar fashion. Routines DLLNU4
and DSLVL4 are DTRSM kernel routines. DTATA4
is a DSYRK kernel, and DPOFU4 is a Cholesky factor
kernel. As we saw in the subsection on operation counts
as a measure of kernel routine performance, almost all
of the operations performed by these four routines are
FMAs. And by the principle of linear superposition we
can rearrange the computations in all of these routines by
unrolling their two outer loops by 4. Thus, for the most
part, the inner loop consists of the same computation of
16 independent dot-products that was described above. In
summary, we have further demonstrated the pervasiveness

of matrix multiplication in dense linear algebra algorithms.
Only the factor kernel routine, RGETR3, of Section 3 is
more complex. It involves a combination of recursion and
kernel routines along with logic to handle the partial
pivoting aspects.

10. Summary and conclusions
This paper has described several novel data formats for
dense linear algebra and some simple, novel algorithms
that utilize these new data structures. The paper relies on
a heuristic that is the key factor governing performance on
processors with deep memory hierarchies, namely blocking
or tiling. To be able to use this heuristic, we have made
use of the following simple fact from linear algebra: Some
point algorithms have a submatrix block formulation.
Using the principle of Equivalence, we have shown that a
combination of NDS and kernel routines is general and
can be applied to a whole class of DLA algorithms. This
result is true for Cholesky and symmetric indefinite
factorization and for LU factorization with partial
pivoting. For all three DLAFA algorithmic examples,
we have presented performance results experimentally
verifying that the current SOA LAPACK algorithms have
performance inefficiencies. The combination of NDS
and kernel routines overcomes all of these performance
inefficiencies. We have presented performance results for
these same three DLAFA, using NDS and kernel routines,
demonstrating that they usually perform much better than
their LAPACK counterparts.
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