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Some recent findings in the area of wafer
cleaning and thin oxide properties are
presented in this paper. Results are shown for
a practical implementation of a simplified
cleaning concept that combines excellent
performance in terms of metal and particle
removal with low chemical and DI-water
consumption. The effect of organic
contamination on ultrathin gate-oxide integrity
is illustrated, and the feasibility of using
ozonated DI water as an organic removal step
is discussed. Metal outplating from HF and
HF/HCl solutions is investigated. Also, the
final rinsing step is critically evaluated. It is
demonstrated that Si surface roughness
without the presence of metal contaminants
does not degrade gate-oxide integrity. Finally,
some critical remarks on the reliability
measurements for ultrathin gate oxides are
given; it is shown that erroneous conclusions
can be drawn from constant-current charge-
to-breakdown measurements.

Introduction
Cleaning is the most frequently repeated step in IC
production. The RCA clean, developed in 1965, still forms

the basis for most front-end wet cleans. Over the last
few years considerable research effort has been directed
toward the development of novel cleaning techniques that
are more cost-effective and have a lower environmental
impact. The scientific progress made in this area over the
last few years is enormous, and at the present time it is
fair to state that advances are made through scientific
understanding, rather than random experiments or just
“pure luck.” One of the most critical cleaning steps is the
pre-oxidation cleaning, especially for ultrathin oxide
growth. Some critical issues on the technology and
reliability of the ultrathin gate insulators that have
recently attracted attention are the effect of organic
contamination and Si surface roughness on the gate-oxide
integrity and the validity of constant-current charge-to-
breakdown measurements as a reliability test. These issues
are discussed in more detail in this paper.

Wet-cleaning roadmap
The RCA clean [1], developed in 1965, still forms the
basis for most front-end wet cleans. A typical RCA-type
cleaning sequence starts with an SPM step (H2SO4/H2O2)
followed by a dip in diluted HF. The SC1 step
(NH4OH/H2O2/H2O) removes particles, while the SC2 step
(HCl/H2O2/H2O) removes metal. Despite increasingly
stringent process demands and orders-of-magnitude
improvements in analytical techniques, cleanliness of
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chemicals, and DI water, the basic cleaning recipes have
remained unchanged since the first introduction of this
cleaning technology. Since environmental concerns and
cost-effectiveness were not a major issue 30 years ago,
the RCA cleaning procedure is far from optimal in these
respects. Recently much research effort has been directed
toward understanding the cleaning chemistries and
techniques.

Important chemical savings can be obtained in an RCA-
type cleaning sequence by using diluted chemistries for
both the SC1 and SC2 mixtures. In the SC2 mixture the
H2O2 can be left out completely, since it has been shown
that strongly diluted HCl mixtures are as effective in the
removal of metals as the standard SC2 solution [2]. An
added benefit of using diluted HCl is that at low HCl
concentrations particles do not deposit, as has also been
observed experimentally [3]. This is because the isoelectric
point for silicon and silicon dioxide is between pH 2 and
2.5 [4]. At a pH above the isoelectric point, the wafer
surface has a net negative charge, while below it the
wafer surface has a net positive charge. For most particles
in liquid solutions at pH values greater than 2–2.5, an
electrostatic repulsion barrier between the particles in the
solution and the surface is formed. This barrier impedes
particle deposition from the solution onto the wafer
surface during immersion. Below pH 2, the wafer surface
is positively charged, while many of the particles remain
negatively charged, removing the repulsion barrier and
resulting in particle deposition while the wafers are
submerged.

To further lower the chemical consumption during wet
wafer cleaning, some simplified cleaning strategies can be
used, such as the IMEC clean [5]. The basic concept is
summarized in Figure 1. In the first step of the IMEC

clean, the organic contamination is removed and a thin
chemical oxide is grown. In the second step, the chemical
oxide is removed, simultaneously removing particle and
metal contamination. An additional third step can be
added before final rinsing and drying to make the Si
surface hydrophilic to allow for easier drying without
the generation of drying spots or “watermarks.” In the
Marangoni dryer, the drying is performed by a strong
natural force (i.e., the Marangoni effect) in cold DI
water, and the wafer is rendered completely dry without
evaporation of water or condensation of IPA [6, 7]. Some
specific aspects of the various steps are discussed in more
detail in the following sections.

Organic contamination removal
In the first step of the IMEC clean, organic contamination
is removed. A sufficiently thick chemical oxide must be
grown to obtain high particle-removal efficiencies in the
second step of the cleaning sequence [5]. Traditional
cleaning sequences use sulfuric-acid-based mixtures (such
as H2SO4/O3) for this purpose, but from an environmental
perspective the use of ozonated DI water would be
preferable. The use of ozonated DI water further reduces
chemical consumption and (even more important)
DI-water consumption, since the difficult rinse step after
the sulfuric acid bath [8] is avoided. Ozone has been used
exhaustively in the field of waste treatment and drinking
water sterilization because of its strong oxidizing power.
When ozone is dissolved in water, its self-decomposition is
accelerated. Although an exact mechanism is not known, it
is believed that the decomposition of ozone leads to the
generation of OH* radicals, which are thought to play an
important role in decomposing organic material [9, 10]. A
potential drawback of ozonated water is the relatively low
solubility of ozone in water, which is about 20 ppm at
room temperature [11]. The cleaning efficiency of
ozonated DI water was evaluated using HMDS
(hexamethyldisilazane)-contaminated wafers.

The organic compound HMDS is used in IC processing
as a photoresist primer. It reacts with the surface silanol
groups as follows:

2Si–O 2H 1 1 (CH3)3Si–NH–Si(CH3)3 3

2Si–O–Si(CH3)3 1 NH3 . (1)

This reaction is highly selective and converts all
silanol groups, leaving a monolayer coverage of TMS
(trimethylsiloxane). After the necessary processes are
completed, the residue of this compound should also be
removed. It is, therefore, a good test material for
evaluating the organic removal efficiency of various
cleaning solutions. Using time-of-flight SIMS (ToF-
SIMS) measurements, it was observed that an SPM
(H2SO4/H2O2) or SOM (H2SO4/O3) treatment can be
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successfully applied for removing organic contamination,
more particularly the HMDS residues [12]. The full
removal of HMDS using ozonated DI water (Figure 2)
is more difficult. At room temperature, high ozone
concentrations can be obtained in the solution, but the
reaction rate is relatively slow, causing an incomplete
removal of the HMDS within the experimental time. At
elevated temperature the reaction rate is enhanced, but
the solubility of the ozone is lower. Temperature is the
most important parameter for HMDS removal, but at any
temperature, the ozone concentration correlates linearly
with the cleaning efficiency. Also, a mild pH effect can be
observed at any temperature. Careful optimization of the
various parameters of the ozonated DI-water process is
therefore needed to obtain a high organic removal
efficiency [13].

Metal outplating from HF solutions
The second step of the IMEC clean removes the chemical
oxide, simultaneously removing the particle and metal
contamination. The mixture and dipping time must be
optimized to provide a maximum particle-removal
efficiency and low metal-contamination level with only
a small amount of thermal oxide loss.1 It is known that
trace amounts of noble-metal ions, such as Ag, Au, and
especially Cu, that are present in the HF solution can
deposit on the Si surface [14, 15]. It has been reported
that in the early stages of copper deposition, the
formation of metal nuclei on the wafer surface is the
dominating process. After this nucleation period, the
metallic copper nuclei grow in size [16]. This deposition
process is an electrochemical process that involves mobile
charge carriers. Therefore, the silicon semiconductor
properties and illumination conditions play an important
role in it, especially for Cu [17]. When the wafers are
immersed in darkness, the copper surface concentration
increases only very weakly with time. Under illumination,
however, a strong increase in the copper surface
concentration is observed after about 15 s immersion. The
p-type and n-type Si wafers show an identical behavior
[17]. From these results it can be concluded that copper
deposition from dilute aqueous HF solutions on Si
surfaces is limited by the minority carrier concentration
at the wafer surface [17].

Chloride ions are often present as contaminants in HF.
Their addition to the Cu-contaminated HF solution
drastically changes the outplating of Cu (Figure 3). The
large effect of the illumination condition disappears and a
strong dependence on the HCl concentration is observed
[18]. The addition of chloride can suppress the effect of
illumination. Small amounts of chloride increase the
copper deposition owing to the catalyzing effect of the

chloride ions on the Cu21/Cu1 reaction. Large amounts
of added chloride suppress the copper deposition by the
formation of soluble higher cuprous chloride complexes.
The optimized HF/HCl mixture provides protection
against metal outplating from the solution, and in
combination with an optimized in situ monitoring
technology [19] it allows the useful bath lifetime to be
significantly prolonged, thereby dramatically lowering the
HF waste. The bath lifetime can be extended even further
by using point-of-use purification [20].1 M. Meuris, I. Cornelissen, and M. Heyns, internal IMEC report, 1995.
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Reoxidation and final rinsing
An additional third step can be added to the cleaning
sequence in order to make the Si surface hydrophilic. This
allows for easier drying without the generation of drying
spots or watermarks. Optimized ozonated mixtures, such
as diluted HCl/O3 (or dHCl/O3), can be used to make the
Si surface hydrophilic at low pH values in order to avoid
the reintroduction of metal contamination. Advanced
CMOS technologies require the growth of very thin gate
insulators with precise thickness control. Therefore, the
effect on the oxide thickness control of the presence of
the chemical oxide prior to oxidation was investigated
in more detail. It was found that the presence of a thin
chemical oxide (estimated thickness 0.6 to 0.8 nm) on
the Si surface prior to oxidation does not significantly
influence the final oxide thickness or the thickness
variation over the wafer when a clustered oxidation and
poly-Si deposition process is used [21]. In this cluster the
ambient during loading and heating can be very well
controlled. On wafers which received a wet HF dip
immediately before loading, a thin thermal oxide of about
1.17 nm is grown during ramp-up to 6508C in diluted
oxygen, while on an SC2-last wafer, an oxide thickness
of 1.21 nm is measured after this treatment. A 30-min
oxidation at 8008C in 10% diluted oxygen on an HF-last
and an SC2-last wafer resulted in an average oxide
thickness of 2.34 nm and 2.42 nm, respectively, with a

thickness uniformity (3s variation over the wafer) of
0.03 nm. A similar oxidation procedure using a standard
nonclustered furnace resulted in an average oxide
thickness of 2.96 nm with a 3s variation of 0.21 nm. This
illustrates the importance of having good control of the
ambient conditions during loading and ramping. In terms
of electrical performance and defect density, no significant
differences were found between the HF-last and SC2-last
samples, provided that the metal and particle contamination
after these cleaning procedures was sufficiently low.

The final surface concentration of metals after cleaning,
particularly of Ca, is strongly determined by the final
rinsing [22, 23]. The behavior of metal surface deposition
during final rinsing was therefore studied in more detail
using a designed experiment [24]. The wafers were dried
immediately by pulling them out of the rinsing solution
into an IPA vapor. The variables investigated included the
concentration of added HNO3, the temperature, the rinse
time, and the final clean applied prior to rinsing. Calcium
shows a pronounced tendency to deposit on the wafer
surface. This is especially important in view of the strong
effect of Ca contamination on the gate-oxide integrity
[25]. The dominant experimental effect was the reduction
of the Ca surface concentration with increasing
concentration of HNO3 added to the rinse water. The
second most important effect is the reduction of the Ca
surface concentration if the final clean is changed from
SC1 to SC2. Because of the carry-over layer [26], this
effect is more than likely due to the same mechanism
as the HNO3 spiking, i.e., the change in pH of the
solution. This reveals a potential pitfall for the
implementation of dilute chemistries without sufficient
understanding. Indeed, if a concentrated SC2 solution
is replaced with a very dilute HCl treatment prior to
the final rinse, the initial pH during the final rinse is
accordingly higher. This in turn results in increased metal
deposition on the wafer surface due to a faster ion
exchange at the chemical oxide surface. It was found that
with increasing rinse time the metal surface concentration
increases, indicating the existence of transport-limited
surface deposition in the experiments. This may also
reveal a practical pitfall for extended rinse cycles and
illustrates that, especially for rinsing after dilute HCl
treatments, the rinse times should be kept as short as
possible. An increase in the temperature was found to
result in a lower Ca surface concentration.

Figure 4 shows the surface deposition for different metals
calculated from the competitive adsorption model as a
function of the concentration of HNO3 spiking [27, 28].
The Ca surface concentration indeed shows a very
strong pH dependence. In this figure, the upper limit
imposed by diffusive transport is indicated. In agreement
with the time dependence mentioned above, one can see
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that the higher values obtained in the experimental range
are indeed limited by diffusion transport. Therefore, the
equilibrium concentration of Ca may even be higher than
that given by the fit model.

IMEC-clean results
The IMEC clean was implemented in an automated wet
bench, and its performance was compared to that of an
optimized RCA clean, using a hot SC1 bath. The IMEC-
clean recipe used during the tests is summarized in
Table 1. The most striking overall result is that very
low final metal-contamination levels were consistently
obtained with this clean. Typical results revealed metal-
contamination levels below the detection limit of the
vapor-phase decomposition– droplet surface etching–total
reflectance X-ray fluorescence (VPD–DSE–TXRF)
technique, which is lower than 109 atoms/cm2 for most
metals of interest. These results were obtained using
standard 1-ppb-grade chemicals. Also, low final metal-
contamination levels were observed on intentionally
contaminated wafers. This is shown in Table 2 for wafers
contaminated with Ca, Fe, Cu, and Zn from an SC1-type
solution and subsequently cleaned with either an IMEC
clean or a modified RCA cleaning sequence containing a
hot SC1 step.

Particle-removal efficiency was tested in detail by using
intentionally contaminated wafers. Various types of
particles (Si3N4, Al2O3, SiO2) were tested on various
substrate types (silicon, TEOS oxide, thermal oxide,
nitride). Initial particle counts varied between 1500 and

2500 particles per wafer, with average particle sizes
between 0.15 mm and 0.3 mm. The most difficult case is
the removal of nitride particles from a nitride surface.
In that case a relatively important statistical spread was
found on the particle-removal efficiency, which varied
between 80 and 100%. For all other combinations, very
high particle-removal efficiencies in the range of 98 –100%
were obtained. About 3.2 nm of thermal oxide was
removed during the IMEC clean, which is comparable
to the etching in typical RCA cleaning sequences using
heated SC1 solutions.

Capacitor structures with poly-Si gates and gate-oxide
thicknesses varying from 1.5 to 10 nm were fabricated in
order to investigate gate-oxide integrity after the IMEC
clean and the modified RCA clean. The oxidations were
performed in a clustered batch furnace. No Cl-containing
species that could mask the effects of low levels of
contamination were used in the oxidation ambient. The
wafers were 6 in. in size, and the largest capacitor area
available was 16 mm2. This gives a lower limit for the
defect densities that can be observed with sufficient
statistical significance of approximately 0.1 defect/cm2.
The defect densities measured at 12 MV/cm in a ramp
breakdown test were for both cleans consistently below or
close to this detection limit, and no statistically significant
difference could be observed between the two cleaning
methods over a number of runs for various oxide
thicknesses. More detailed measurements of the charge
to breakdown confirmed these results. This illustrates
that the IMEC clean can be used as a cost-effective

Table 1 Typical implementation of the IMEC clean concept in an automated wet bench.

Step 1 H2SO4/O3 908C 5 min
Three quick dump rinses (QDR,
hot/cold)

608C/208C 8 min

or Step 1* O3/DI water Optimized conditions

Step 2 dHF (0.5%) /dHCl (0.5M) 228C 2 min

Step 3 Final rinse 1 O3/HCl (megasonic energy) 208C 10 min

Drying Marangoni drying (with HCl spiking) 208C 8 min

Total cleaning time 32 min

Table 2 Final metal contamination on intentionally contaminated wafers after either an IMEC clean or an optimized RCA
cleaning sequence (SPM– dHF– hot SC1–SC2–rinse/dry).

Contaminant Metal concentration on the wafer (1010 atoms/cm2)

Ca Fe Cu Zn

Initial concentration 154.4 5.6 4.4 1.8
Modified RCA clean ,0.26 0.2 0.4 0.2
IMEC clean ,0.26 0.1 ,0.07 0.08
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replacement for the RCA clean, with the advantage of a
much lower chemical consumption and lower footprint of
the cleaning tool [29].

Organic contamination
So far, the impact of organic residue contaminants on IC
processing is poorly understood, because a variety of
contaminants exist (e.g., human skin oils, clean-room air,
pump oil, silicone vacuum grease, photoresist, cleaning
solvents), and each has a different degree of impact on
IC manufacturing. A potential problem is the presence
of organic films on wafer surfaces, preventing cleaning
solutions from reaching the surface. Therefore, removal of
organic contamination is often the first step in cleaning.
Recently organic contamination was also identified as a
possible origin of a degraded gate-oxide quality [30 –32].
Organic pickup during IC processing is hard to avoid.
Transport of wafers in plastic boxes results in potential
organic contamination. Various process steps can be
clustered in vacuum tools, but Si surfaces handled
in a vacuum environment are vulnerable to organic
contamination.

To investigate the effect of organic contamination
and the methods to remove it, three types of organic
contamination were used: chemically bound to the surface
(HMDS priming); physically adsorbed from exposure to an
antistatic polypropylene wafer box; or storage in a vacuum
cluster [33]. An overview of the different experimental
conditions is given in Table 3. All wafers received a
standard RCA clean followed by an HF dip (2 min in
1% HF) and a 5-min overflow rinse and Marangoni
drying. Reference wafers (condition A) were processed
with minimal delay time between cleaning, oxidation, and poly-
Si deposition. The impact of organics prior to oxidation
was evaluated after prolonged storage in a vacuum
cluster (condition C). For the other conditions, organic
contamination was applied after oxidation but prior to
poly-Si deposition. The time between cleaning and
oxidation was kept minimal, and a 5-nm dry oxide was
grown. To simulate the effect of larger amounts of
organic contamination, some wafers were primed with
hexamethyldisiloxane (HMDS), which reacts chemically
with surface silanol groups (condition E). It was checked

that neither particle nor metal contamination increased
during the storage. It should be stressed, however, that the
5-nm gate-oxide ramp-up and oxidation conditions were
selected to enhance the detrimental effects of adsorbed
organic contamination, since the temperature ramp-up
from vacuum to atmospheric pressure is performed in a
low-oxygen-containing ambient.

The result of charge-to-breakdown (QBD) measurements
on the various wafers is shown in Figure 5. Three wafers
were tested for each condition. The QBD measurements
show no difference in the intrinsic oxide breakdown part
of the distribution, but the extrinsic tail is influenced by
the different treatments. Storing the wafers in a box
between oxidation and poly-Si deposition (condition B)
has no important negative effect on the oxide yield. A
significant negative effect is observed when the wafers are
stored in a vacuum prior to processing (condition C). This
negative effect is strongly enhanced owing to the low
oxygen content during ramp-up used in this experiment.
Poly-Si deposition occurs in a nonoxidizing ambient, thus
significantly enhancing the effect of vacuum exposure
(condition D). In addition, the strong detrimental effect
of the HMDS layer on the oxide yield and reliability
(condition E) confirms that the presence of organic
contamination is likely responsible for the extrinsic defects
in the thin oxide layer. In general, it can be concluded
that vacuum exposure before oxidation is less detrimental
to the integrity of the 5-nm oxide than exposure after
oxidation, and good control of the SiO2/poly-Si interface
is needed.

Effect of Si surface roughness on gate-oxide
integrity
Si surface roughness has received much attention over the
last few years as a possible cause of gate-oxide defects.
When an HF-treated Si surface is heated in an ultraclean
Ar ambient, the Si microroughness is increased by thermal
etching, which was believed to be detrimental for the thin-
gate-oxide breakdown [34]. However, the reduced gate-
oxide integrity can also be attributed to the presence of
organic contamination on the Si wafer and the formation
of SiC on the Si surface at high temperatures [35]. It was
recently reported that as far as yield loss is concerned,

Table 3 Overview of the experimental conditions used to study the effect of organic contamination and wafer storage
during poly-Si/SiO2/Si stack formation on gate-oxide integrity.

Condition Treatment

A Minimum time between cleaning, oxidation, and poly-Si deposition
B Wafers 72 hours in box between oxidation and poly-Si deposition
C Wafers 62 hours in cluster between cleaning and oxidation
D Wafers 48 hours in cluster between oxidation and poly-Si deposition
E HMDS monolayer on oxide before poly-Si deposition
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silicon surface roughness for very thin oxides (,6 nm)
appears to be negligible [36 –39], at least at moderate
levels of surface roughening. The use of BHF etching to
generate an increased Si surface roughness from 0.2 to
0.6 nm rms [40] or etching in dilute ammonia to generate
roughness levels up to 9 nm [41] showed no significant
effect of the roughness on the breakdown or reliability of
thin thermal oxide layers under conditions in which an
IMEC clean was used to eliminate the effect of metal
contamination and avoid effects of chemical
preconditioning.

In view of these results, the SC1 yield loss due to
local roughening, as reported previously [42, 43], and
the relationship among Si surface roughness, metal
contamination, and oxide defects were reevaluated. It has
been observed [42, 43] that immersion of hydrophobic
wafers into a metal-contaminated SC1 bath (vigorous
decomposition of the peroxide) has a direct impact on
silicon surface microroughness (small spikes on wafer
surface), denoted as clustered light-point defects (LPDs).
This observation was explained from a micromasking
effect through small oxygen bubbles sticking on the
initially hydrophobic surface and thus shielding the surface
from the etching action of the SC1 chemistry (with the
observed spikes believed to be silicon). Additionally, it was
demonstrated that a correlation exists between the spike
patterns and resulting breakdown (EBD) data, with an
additional SC2 clean being unable to recover the metal-
contaminated SC1-induced yield loss [42, 43].

After an initial HF-last clean, wafers were treated in
SC1 solutions (1/1/5 at 708C) spiked with varying amounts
of iron (i.e., blank, 0.1 ppb, and 1 ppb), resulting in wafer-
surface iron levels between low 1010 atoms/cm2 for blank
SC1 solutions and a few times 1012 atoms/cm2 for the
1-ppb iron-spiked solution. Subsequently, wafers were
treated in a dHF/dHCl bath (diluted HF/diluted HCl), a
dHCl bath, or an SC2 solution, all at room temperature.
The dHF/dHCl treatment could successfully reduce the
iron concentration to levels below the detection limit of
VPD–DSE–TXRF (less than 109 atoms/cm2), while the
dHCl and SC2 clean left a measurable iron content behind
(in the range of 1010–1011 atoms/cm2). The wafers were
finally treated in a clean SC1 solution in order to exclude
the influence of surface conditions on gate-oxide integrity,
and oxides with a thickness of 5 nm were grown at 8008C
in a dry O2 ambient.

Immersion of the hydrophobic wafers into an (iron-
catalyzed) decomposing SC1 solution resulted in the
formation of clustered LPDs, as evidenced by light-
scattering plots. Figure 6 depicts an atomic force microscopy
(AFM) plot that shows the shape of typical roughness found
on spots with clustered LPDs. After a dHF/dHCl cleaning
sequence, the clustered LPDs remained visible on the wafer
surface. The results indicated that the overall surface

roughness as determined with light-scattering techniques is
not affected by the SC1 iron content in the range studied.
It can be seen from Figure 6 that the clustered LPDs are
typically ring-shaped (3–8 mm in diameter, 2–5 nm deep),
while a steep rim (3–8 nm high) is observed on one side of
almost every ring. This rim is formed at the lower side of the
ring with respect to the orientation of the wafers in the SC1
bath [44, 45]. It has been proposed that this rim is formed by
the deposition of the reaction products of the Si etching,
which are transported by gravitation to one side of the etch
region [44].

Results on gate-oxide integrity are shown in Figure 7.
Considering the condition with clean SC1 as the reference
condition, it can be seen that the wafers treated in the
0.1-ppb-Fe-contaminated SC1, with SC1-related LPDs and
iron contamination at the sub-1011-atoms/cm2 levels, have
a reduced yield. A treatment in 1-ppb-contaminated
SC1, resulting in an iron concentration of about 1.1012

atoms/cm2, causes a complete yield kill of all capacitors.
Worth noting, however, is the effect of a subsequent
dHF/dHCl cleaning step. This treatment reduced the iron
concentration to 109-atoms/cm2 levels and recovered
within statistical variation nearly all yield loss induced by
the iron-contaminated SC1 treatment, while evidence for
clustered LPDs remained clearly visible. Combination of
the particle, roughness, and metal data with the capacitor
yield information allows us to conclude that capacitor
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yield loss is correlated primarily to the surface iron
concentration present after iron-contaminated SC1
treatments, and less to the presence of so-called clustered
LPDs as observed by light scattering. Therefore, it is
believed that in this case the SC1-induced yield loss
is probably due not to the observed silicon surface
roughening, but rather to locally high levels of iron
contamination which become built in to the SC1-grown
chemical oxide.

Reliability measurements on thin oxide layers
The constant-current stress charge-to-breakdown test
(CCS–QBD) tool is widely used to evaluate the influence of
various processing conditions on the reliability of MOS
structures. In such studies it is always assumed that
variations of the median value of QBD are entirely ascribed
to the variations of processing conditions. However, for
decreasing oxide thickness, QBD becomes a stronger
function of nontechnological parameters such as test
structure area, stress current, and polarity. The impact of
this observation on the validity of CCS–QBD measurements

for the quantification of the reliability of different MOS
processes was studied in detail [46].

It was observed that there is an increasing area
dependence of QBD when the oxide becomes thinner. This
is a purely statistical effect, due to a decrease of the
Weibull slope b with decreasing oxide thickness [47, 48]:
The slope of QBD vs. area is inversely proportional to the
Weibull slope b. This decrease in Weibull slope is related
to a drop in the critical oxide trap density at breakdown
for thinner oxides [47]. Another consequence of the QBD

area dependence becomes visible when the Weibull
slope of the QBD distribution depends on the processing
conditions, e.g., where conventional oxides were compared
with oxides grown in N2O. Depending on the capacitor
area used for the test, either an improvement or a
degradation of the reliability could be observed for
N2O oxides. This is shown in Figure 8, where the QBD

distributions of a conventional oxide are compared to
those of an oxide grown in pure N2O (tox 5 7 nm) for two
capacitor areas. Focusing on distributions C and D, one
could conclude that the nitridation improves the oxide
reliability. However, from distributions A and B, measured
on the same wafers but on a different capacitor area, one
could conclude the opposite. This is because the nitridation
of the oxide decreases Dot,crit and thus reduces the Weibull
slope b [49]. This drop in b explains the enhancement of
the area dependence for the nitrided oxides.
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It was also found that, depending on the stress
conditions, certain processing steps, such as
postimplantation anneals, could either improve or degrade
the QBD value. However, if the data from Figure 8 are
plotted as a function of the gate voltage, a single curve,
independent of the processing conditions, is obtained.
This is shown in Figure 9, where the data for various
postimplantation anneals are plotted, together with data
for other processing conditions, such as amorphous and
poly-Si gates [50, 51], and for two stress polarities. It
becomes obvious that these variations have no influence
on reliability. This is because injected electrons travel
ballistically through ultrathin oxides; their energy at the
anode is determined by the total applied voltage instead
of the oxide field [52–54]. As a consequence, the electron
energy released at the anode, which is believed to be
related to the oxide trap-generation rate, then depends
directly on the applied gate voltage. Therefore, the
observed differences in QBD are due to the processing-
induced differences of the gate voltage required to obtain
a fixed stress current density.

Conclusions
Some recent developments in the area of cleaning and
thin gate-oxide technology were discussed in this paper.
It was shown that the IMEC clean combines an excellent
performance and process robustness with a low chemical
and DI-water consumption and high throughput. Some
relevant aspects of this cleaning concept were discussed in
more detail. Ozonated DI water can be used to remove
organic contamination, but a careful optimization of the
process conditions is needed to enhance the efficiency of

this process. The dilute HF step can be optimized by the
addition of HCl to avoid Cu outplating. The effect of the
final rinse on the metal surface contamination is often
unjustly neglected. Especially for Ca, this step is very
important, and rinsing at reduced pH provides lower final
contamination levels. The effect of organic contamination
and Si surface roughness on the gate-oxide integrity was
investigated. Organic contamination is especially damaging
when it is deposited on the wafer after the thin oxide
growth, prior to the poly-Si deposition. No significant
effect of Si surface roughness on gate-oxide integrity was
observed when sufficient care was taken to avoid metal
contamination. Finally, it was demonstrated that constant-
current charge-to-breakdown measurements can lead to
erroneous conclusions in assessing the reliability of thin
oxide layers.
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