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NStrace is a  bus-driven  hardware trace facility 
developed for the PowerPC@ family of 
superscalar  RlSC  microprocessors. It uses a 
recording of activity on  a target processor's 
bus to infer the sequence  of instructions 
executed  during that recording period.  NStrace 
is distinguished from related  approaches  by 
its use  of  an  architecture-level  simulator to 
generate  the instruction sequence from the 
bus  recording.  The  generated trace represents 
the  behavior of the  processor as it executes at 
normal  speed  while interacting normally with 
its run-time environment.  Furthermore,  details 
of the processor  state that are not generally 
available to other  trace  mechanisms  can  be 
provided  by  the architectural simulation.  There 
are two main  components to the process of 
generating  bus-driven instruction traces:  bus 
capture  and trace generation.  Bus  capture is 
triggered by  a call to a system  program that 
puts a particular address on the bus,  then 
establishes the initial state  of the processor  by 
a  combination of writing out register  values 
and  invalidating caches. A logic analyzer 
records  the  bus  activity,  and from this a file of 

bus  transactions is produced.  Trace 
generation  proceeds  by  driving  a  processor 
simulator with these  bus  transactions  and 
recording the  sequence  of instructions that 
results.  The  processor  simulator is an 
elaboration of that developed for the PowerPC 
Visual  Simulator. We have  successfully 
generated instruction traces for a  mix  of utility 
programs  and real applications on several 
microprocessor platforms running  several 
operating  systems.  The  capacity  of the bus 
recording hardware is two million transactions, 
yielding instruction traces with lengths of the 
order  of  one  hundred million instructions.  This 
trace facility has  been  used for a  number  of 
studies  covering  a  range  of  performance 
issues  involving  software,  hardware,  and  their 
interactions. 

1, Introduction 
An instruction trace is a listing of the instructions 
executed by a processor while an application or system 
program is running. Such traces can be used to drive 
performance models and to extract statistics on a variety 
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of measures  associated with system  behavior. Dynamic 
usage of instruction types and  other fields, address 
translation  and  memory  reference  patterns,  and  branch 
behavior  and basic  block  sizes are  among  the many 
subjects of trace analysis. The  extracted statistics  reflect 
the  behavior of the  particular  combination of architecture, 
implementation, system software,  and  application  program 
from which the  trace was collected,  and so can  be used to 
guide design  decisions by developers of all of these 
components. 

Instruction  traces may be  obtained in various ways. 
While simulated traces  can  be  generated by executing  a 
target  program  on a software  model of the  processor, 
instruction  traces  from  real systems are  created in one of 
two ways. Software traces  are typically generated by 
instrumenting  the  target  program with traps  or  exceptions, 
so that  the  operating system can  monitor  the  instruction 
sequence  during  program  execution. Hardware traces  are 
generated by connecting  external circuitry to  the system 
under  test to record activity while the  target  program 
executes.  We discuss the  trade-offs involved  in choosing a 
trace  methodology in the next section. 

We have developed a bus-based  hardware  trace facility 
for  the PowerPC' family of superscalar  reduced- 
instruction-set  microprocessors.  When  the processor's  bus 
activity is passively recorded  for  some  period of time  that 
includes  execution of the  application of interest,  the 
program  executes  at  speed while interacting normally  with 
its  run-time  environment.  The  bus  recording is then  used 
to drive  a processor  simulator  that  generates  the  complete 
sequence of instructions (including kernel, library, and 
user  code)  executed  during  the  recorded  period. 

The  trace  tool, called NStrace, was developed  for 
processors using the  PowerPC 60X  system interface.  We 
have traced  several systems that  use  the  PowerPC 604* 
processor [l], including both  reference  platforms  and 
commercial systems, in  both  uniprocessor  and 
multiprocessor configurations. We have traced systems 
running AIX*, Windows NT", and  MacOS**  operating 
systems. We have generated  traces  with  lengths of the 
order of one  hundred million instructions  on  applications 
ranging from AIX utilities  to  multimedia  programs  to 
Java* * benchmarks. 

The  process of generating bus-driven instruction  traces 
comprises two operations,  bus  recording  and  processor 
simulation.  After a  brief review of related  work in Section 
2, we provide  in  Sections 3 and 4 an overview and  selected 
details  for  the  recording  and  simulation  operations.  In 
Section 5, we present  some  sample  trace  data,  describe 
some  tools we have developed  for working  with the  data, 
and discuss the  use of these  tools  and  data in performing 
several  performance  studies.  In  the final section, we 
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2. Related work 
Trace  data  sets vary according to the  particular system 
variables  recorded,  the  type of software traced,  and  the 
trace  environment. System variables  that may be  recorded 
include  instructions,  instruction  addresses,  data,  data 
addresses,  memory  management  state,  bus  transactions, 
and  others.  The  software  traced may be  kernel,  driver, 
library, or  user  code.  The  trace  environment may include a 
variety of software  and  hardware  instrumentation  used to 
make  the system  variables of interest  observable. 

Depending on the  characteristics of the  trace  data 
set, it can  be used for  one  or  more of a  wide range of 
performance analysis and  optimization  studies of both 
hardware  and software. Instruction  traces,  for example, 
are used for  various  processor  performance  studies 
such  as degree of parallelism  for  superscalar [2] and 
multithreaded [3] processors,  branch  prediction  strategies 
[4], and  evaluation of novel [5] or  alternative [6] 
implementation  mechanisms  that  address latency, 
bandwidth,  or  throughput  problems.  Address  traces  are 
used  for  studies of the memory  system,  in particular  for 
comparing  the  performance  characteristics of alternative 
cache  configurations  (see for example  Reference [7]). 
Bus traces have been  used  to  study  table-lookaside 
buffer (TLB) design trade-offs [8] and  performance 
characteristics of the  bus itself,  including utilization, 
transaction-type  run lengths, and  inter-request timing 
statistics [9]. Other uses for  trace  data  include  program 
visualization for debugging [lo] and  optimization  through 
code  restructuring [Ill. 

specific to a particular  type of analysis. In a study of I/O 
prefetching  and  caching  algorithms,  for example, file block 
read  requests  were  traced [12]. In  another study,  a set of 
page  table  events  were  traced  to analyze the  performance 
of a hardware  page  table  manager [13]. 

One way to  generate  trace  data is to  use  an  instruction 
set  simulator  that  loads  the  executable  for  the  application 
to  be  traced,  then  records  the  sequence of instructions 
executed as simulation  proceeds.  Examples of instruction 
set  simulators  are  Shade [14] for  SPARC  processors  and 
PVS 1151 for PowerPC processors. The  drawback of 
simulated  traces is that  they  trace only the  application 
code  and  are insensitive to many of the  details of the  run- 
time processing environment,  including  interactions  with 
the  operating system, I/O, and  other  processes. 

A major  distinction  among  approaches to generating 
trace  data  from  real systems is whether  they  are  software- 
based  or  hardware-based. While bus  tracing is always 
hardware-based,  address  and  instruction  tracing may be 
either  hardware- or software-based.  Software-based  tracing 
involves instrumenting  the  code  to  be  traced  such  that 
whenever a  significant event  occurs  during  execution, a 

Some  trace  tools  record system variables  that  are 
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record of the  event is stored. Significant events may 
include  the  execution of an  instruction, a  memory  access, 
or a  discontinuity  in the  program  counter. 

One  recently  developed  software-based  trace  tool is 
IDtrace [16], which uses late  code modification [17] to 
instrument  the  executable  to  be  traced.  IDtrace  can 
generate  instruction  or  address  traces,  and so is useful for 
a  variety of tasks including studies of cache  behavior, 
branch  prediction,  and  code profiling. Another  software 
trace  tool specifically designed for  capturing  long  address 
traces is described  in [18]. Long address  traces  are 
particularly  important  to  studies of secondary  cache 
behavior,  since such large  caches  reach  steady  state only 

Software-based tracing has  the  advantage of low cost. 
Often  the system under  test  performs  the  function of trace 
capture  and  storage itself. The  disadvantage of software- 
based  tracing is that  the  tracing mechanism interferes with 
normal  operation, yielding trace  data  that may not 
accurately  characterize  the  target system. For example,  a 
program  instrumented  for a  full  execution trace using 
IDtrace is an  order of magnitude  larger  and  an  order of 
magnitude slower to  execute  than  the original [16]. In 
addition, such instrumentation is often  performed only on 
application  code, so that  the  characteristics of operating 
system code  are  not  captured  or analyzed. Both [8] and 
[19] provide  data on how ignoring  the  characteristics of 
the  operating system  can bias  performance analysis, and 
presumably the resulting  design  decisions. 

Maintaining  the  normal  run-time  environment is 
particularly  important  for timing-driven applications.  For 
example,  display of video data  encoded in the  Motion 
Picture  Experts  Group  (MPEG)  format  requires  real-time 
response  characteristics  from  the  processor. If execution 
of an  MPEG  player is slowed down, the  application will 
spend  more of its  time in the  frame  drop  code, which is 
what will then  be  traced. Similarly,  a  soft modem 
application, when  slowed  down, will appear  to  spend a 
disproportionate  amount of its  time  handling circuit drop. 
In  multiprocessor  environments, timing changes in one 
processor  can  completely  change  the  characteristics of the 
interactions  among  processors.  The  software-based 
MPtrace  tool [20] minimized the  amount of data  recorded 
during  tracing  for  just this reason. 

Hardware-based  tracing involves the  use of special 
hardware  that is attached  to  the system under  test  to 
record significant events.  Hardware-based  tracing has the 
advantage of being less  intrusive than  software-based 
approaches.  Once  tracing begins, the system executes in its 
normal  run-time  environment  for  the  entire  trace,  or  for 
relatively long  periods  between  interruptions  for  trace 
maintenance.  For many applications,  where  interactions 
between  the  user  code  and system code, or between  the 
processor  and  the  I/O system, are significant,  this 
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IBM .I. RES.  DEVELOP. VOL. 41 NO. 3 MAY 1997 

nonintrusive  aspect of hardware-based  approaches will 
yield traces  that  more closely reflect normal system 
behavior  than  do  software-based  ones. 

Several hardware-based  tracing systems  have been 
developed  for  capturing  bus traces. In one  case,  these 
traces of bus  transactions  are used to  characterize  the 
cache  behavior  in a multiprocessor system [19]. In 
another,  bus  traces  are used to  compare  the  performance 
of alternative  software-managed TLBs [8]. In this second 
case, the  tracing  approach is actually  a  hybrid, using 
software  instrumentation  to  put  marker  instructions  at 
selected  points in the  operating system code,  and using  a 
hardware  monitor  to  detect  and  record  these  marker 
instructions. A different  approach is that of MacDEBIT, 
which is a hardware  trace  tool  that  uses a target-host 
pair of identical systems to collect bus traces  for  bus 
performance  studies [9]. 

Hardware  tracing  methods  for  capturing  instruction 
traces  are few because of the difficulty of inferring  an 
instruction  stream  from  variables  that  can  be directly 
measured.  One  approach is to  disable  the  on-chip  L1 
cache,  monitor  bus  transactions,  extract  the  instruction 
fetch  stream,  and  then  attempt  to  reconstruct  the  stream 
of instructions actually executed [21]. Not only does  this 
represent a significantly invasive technique,  but  the 
reconstruction  can  be  done only  approximately. 
Furthermore,  the  amount of information  that such  a trace 
can provide is far less than  that available in the  NStrace 
approach. 

The  NStrace  tool  described in  this paper  produces 
instruction,  data,  address,  and  bus  traces.  It is a hardware- 
based  approach  that provides  noninvasive capture of the 
system variables  from which an  instruction  trace is 
generated. Since  it records  and  then  simulates  the 
processor activity as it occurs  over  the  course of the  entire 
recording  period, it traces  user  code as well as  kernel  and 
library code.  The  NStrace  tool  processes  snooping activity 
on the bus, and so is capable of tracing  the activity of one 
processor in a  multiprocessing environment.  The  use of 
bus activity to  generate  instruction execution activity 
provides  a  synchronized view of the  behavior of the system 
both inside and  outside  the  processor. In addition,  the  use 
of the  processor  simulator  to  produce  the  trace provides 
access to a  wide range of architectural  details  not 
generally  available  in other  tracing  approaches.  For 
example,  since address  translation is simulated, statistics 
on  different  translation mechanisms and  TLB efficiency 
are available,  as are  both effective and  real  addresses.  The 
following sections  describe  the  recording  and  simulation 
phases of NStrace in more  detail. 

3. Bus recording 
The  input  to  the  NStrace  simulator is the  sequence of 
processor  bus  transactions  that  occur  during  execution of 333 
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the  target  application.  The  current  bus  recording facilities 
have been  developed  for  the  PowerPC  60X system 
interface  used by the  PowerPC 601*,  603*, and 604 
families of processors.  The  goal of the  bus  recording 
process is to  capture  the  bus signals for  the longest 
possible period while  achieving 100% signal  accuracy and 
including all activity that is relevant  to  the  subsequent 
simulation  phase. In this  section  we briefly describe  the 
60X bus, how data  are  acquired,  processor initialization 
at  the  time of trace  initiation,  and  the  contents of the 
resulting  transaction  trace. 

The 60X bus 
The  PowerPC 60X  system interface consists of two 
decoupled  synchronous buses-one for  address  operations 
and  one  for  data  operations.  The  address  bus  includes a 
32-bit address,  and  the  data  bus  includes  64  bits of data. 
The  separate  controls of the two  buses allow address  and 
data  operations  to  be  combined in  a  variety of ways, 
providing  a range of complexity and  performance design 
points  for systems developers.  In  addition  to  bus 
arbitration, a set of bus  control signals support  cache  and 
TLB  coherency,  atomic memory operations,  direct-store 
I/O operations,  and  L2  cache. A more  complete 
description of the  bus  can  be  found in [22]. 

To drive the  NStrace  simulator,  bus  transactions must 
be  discriminated  according  to which master  initiated  the 
transfer,  the  transfer  format,  and  the  transaction type. 
Transactions  initiated by the  target  processor  (the  one 
whose instruction  sequence is to  be  generated)  are 
recognized by the  assertion of bus  grant  to  the  target 
processor  during  transaction  initiation.  Transaction  format 
and  type  are  determined by the  set of attribute signals 
that  accompany any valid address  on  the bus. 

only, single-beat,  and  burst.  Address-only  transactions  do 
not  use  the  data bus, transferring only control  information 
using the  address-  and  transfer-type signals.  Address-only 
transactions  are  used  to  support  memory  coherency  and 
synchrony between  processor  and I/O. Single-beat 
transactions  are  used  to  transfer  from 1 to 8 bytes of  data 
to  and  from  1/0  or  noncacheable  areas of memory. Burst 
transactions  transfer  32 bytes of data in four  beats 
between  processor  cache  and  memory. 

Bus  transactions  occur in one of three  formats:  address- 

Data acquisition 
While access to  processor  bus signals  varies from system 
to system,  a  typical  configuration for  the  NStrace 
hardware is the following. For a  system  in which the  CPU 
is mounted  on a daughtercard  that fits into a connector  on 
the  motherboard, we use  an  interposer  card  between  the 
motherboard  connector  and  the  daughtercard  to  bring  out 
the  bus signals. We have developed a data  acquisition  and 
compression  (DAAC)  card  to  take  these  bus signals  as 334 
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inputs,  process  them  according  to  the 60X bus  protocol, 
and  produce  as  output a record  for  each significant 
transaction  that  appears  on  the bus.  Significant 
transactions  are  those  that affect the  subsequent  processor 
simulation.  These  include all transactions  initiated by the 
target  processor,  as well as all other  transactions  that 
affect the  target  processor  state, primarily snoop hits. 
These  transaction  records  are  then  captured  in a logic 
analyzer. The  combination of a  relatively large logic 
analyzer memory (100 MB in the fully configured 
Tektronix  DAS 9200) and  compression of signals by the 
DAAC  card yields  a  typical recording  time of about  one 
second,  corresponding  to  an  instruction  trace of around 
100 million instructions. 

Once  bus  capture is complete,  the signal data  are 
uploaded  to a workstation. Since we have  used several 
logic analyzers, and configured each in several  different 
ways, it  is  necessary to  convert  these signal data  to a 
standard  format  for  the  simulator.  Our txn format 
contains  one  record  per  transaction.  Each  record  contains 
a time  stamp  (the  bus cycle relative  to  the  start  of 
recording  at which the  transfer  start signal appeared),  the 
address,  and  the  transaction type. For single-beat and 
burst  transactions,  the  record also contains  the  data. A 
sample  sequence  from a txn file is presented in Section 5. 

Trace initiation 
The  process of translating a bus recording  into  an 
instruction  trace involves simulating  the processor’s 
execution of the  application.  For  this  simulation  to  be 
valid, the  state of the  simulated  processor  must  match  that 
of the  real  processor  at  the  time  the  simulation begins. 
The  initiation of bus  recording,  therefore, involves two 
steps:  achieving  a  known processor  state,  and signaling the 
bus  capture  hardware  to  begin  recording. 

For  the 604 simulator,  described in the next section,  the 
state of the  processor  that  must  be  controlled  to  predict 
its subsequent  behavior  comprises  the  contents of the two 
caches,  the  contents of the two TLBs,  and  the values of 
the  architected registers. Initiation of the  trace  process 
involves a combination of reading  out  the  current  state of 
the  processor  and  changing  that  state  to a  known state. 
The  procedure  we  use is first to  disable  and  invalidate 
the  caches,  then  to  trigger  the  recording by placing  a 
distinctive address on the bus, then  to  store all of the 
register  values,  then  to  invalidate  the TLBs. Storing  the 
register values forces  them  out  onto  the  bus  where  they 
can  be  recorded, since the  caches  are  disabled.  At  the  end 
of this  procedure,  the  caches  are  enabled so that  normal 
processing resumes. 

This  procedure is implemented  as a  device driver  that 
can  be  called asynchronously  while the  application  to  be 
traced is running.  Alternatively, a  call to  the device driver 
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can  be compiled into  the  application  to  initiate  tracing  at 
a particular  point. 

4. Trace  generation 
Once a  bus recording is taken,  the next step is to  generate 
from  it  the  sequence of instructions  executed by the 
processor  during this period.  The  approach we have taken 
is to simulate  the  processor  at  the  architectural level, 
using the bus transactions  to  update  the  processor  state 
when  necessary, and  otherwise  letting  instruction 
execution  proceed  according  to  the  current  state of the 
simulated  processor.  Our  simulator is based on the 
PowerPC Visual Simulator  (PVS) [15]. After a  brief 
overview of that  simulator, we describe  the bus-driven 
simulation  approach  and  then discuss some of the issues 
involved in making an  architecture-level  simulator  handle 
implementation-level  details in order  to  produce  an 
accurate  instruction  trace. 

PowerPC Visual Simulator 
PVS is an  architecture-level  simulator  for  the  PowerPC 
family of processors.  PVS  simulates  sequential execution 
of instructions in program  order, ignoring the 
implementation-specific  details involving issue and 
execution  pipelines, caches, and  bus  latencies.  PVS  traces 
the execution of a  single application by taking  an 
executable file as  input, building  a  memory  image from 
that file, and  then simulating the execution of the 
application. 

The  PVS  implementation is fairly complete in  its 
support  for  the  major  architectural  features of the 
PowerPC.  It  also  implements  some of the  processor- 
dependent  features.  Among  the facilities supported  are 
address  translation,  instruction  execution,  exception 
handling, caches, and  reservations.  The  simulator also 
includes facilities for  single-step  instruction  execution,  for 
setting  checkpoints  and  breakpoints,  for displaying 
memory  and  register  contents,  for modifying memory 
and  register values, for assembling and disassembling 
instructions,  and  for tracing instruction execution. 

In order  to  use  the  PVS  simulator  for our bus-driven 
approach, we enhanced  the  simulator in  a number of ways. 
The  main deficiency of the  simulator  for  our  purposes was 
that since  it used  an  “internal”  model of memory, it 
largely lacked  the  concept of a bus  interface  unit (BIU). 
Therefore,  our  efforts in  modifying the  simulator  were in 
two main  areas.  First, all functional units that  could 
generate  bus activity were modified to  make  appropriate 
calls to a bus  interface unit. Second, a bus  interface unit 
was implemented  that provides  access to  the  transaction 
file. We discuss  below some of the issues involved in 
enhancing  the  simulator  to  perform  correctly in the 
absence of complete  processor  state  information. 
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Bus-driven processor simulation 
The bus-driven simulator is straightforward in concept. 
First,  the  processor  state of the  simulator is initialized, 
using the  transactions  recorded  during  trace  initiation. 
Recall  that  during  initiation  the  data  cache is disabled 
while register values are  written  to  some memory location. 
This causes  a predictable  stream of transactions  to  appear 
on the bus, from which the  processor  register values  can 
be  extracted. Since  all details of the  initiation  procedure 
are known, the  transactions  corresponding  to execution of 
this procedure  can  be  accounted  for  without  simulating 
them.  The  simulator  state is initialized to  the  state of the 
processor  at  the  end of initiation,  and  the  stream of 
transactions  that follow those  corresponding  to  initiation 
drive the  subsequent  simulation.  Once  the  processor is 
initialized,  it  begins to  execute  from  that  state. 

The  address of the first instruction is in the next 
instruction  address (NIA) register. To execute  the first 
instruction,  the  simulator first attempts  to  translate its 
address.  Since  the TLB starts  out  empty, a miss occurs, 
causing  a read access to  the  cache. Since the  data  cache 
starts  out  empty, a miss occurs, causing  a read  transaction 
on the bus. The BIU model  matches  this  simulated 
transaction with a recorded  one  from  the  transaction file 
and  returns  the  corresponding  data  to  the  cache.  The 
cache  then satisfies the  read  from  the  TLB,  and  the 
requested  page  table  entry  (PTE) is available to  the 
translator.  The  table walk continues  until  the  required 
PTE is found,  and  then  the  instruction  address is 
translated. 

The  real  instruction  address is now used to  fetch  the 
first instruction  from  the  cache,  but  encounters a miss, 
generating  an  instruction  fetch  transaction.  The BIU 
matches this fetch  to  one in the  transaction file and 
returns  the  data  to  the  instruction cache. The  cache  then 
returns  the  addressed  instruction  to  be  decoded. If the 
instruction  requires a  memory  access,  a  similar sequence 
of events  occurs  to  translate  the  data  address  and  then 
load or store  the  data.  For a load  that misses in  the  cache, 
a read  transaction is generated. For a store  that misses 
in the  cache, a read-with-intent-to-modify (RWITM) 
transaction is normally generated. 

match a simulated  transaction with  a recorded  one. 
Normally  this occurs when the  stream of recorded 
transactions  has  been  exhausted,  and  the  simulation 
terminates. Of course, as the  simulation  proceeds,  the 
caches  and  TLBs  are warming up, so fewer  accesses result 
in bus activity than  occur initially. The  output of the 
simulator is a trace  containing  the  sequence of instructions 
executed  during  the  recording  period,  along  with 
corresponding  instruction  addresses,  data,  data  addresses, 
bus timing, and  translation  information. A sample 

This  general  procedure  continues  until  the BIU cannot 
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sequence  from  an  instruction  trace file is presented in 
Section 5. 

Handling asynchronous  events 
On first consideration, it  may appear  that  this  simple 
concept is even trivial. After all, given the initial state of a 
finite-state  machine  and  the  sequence of inputs  to  that 
machine  for  some  period of time, one  can exactly 
reconstruct  the  state  trajectory  during  that  period. 
However, to simulate  the  entire  processor  state  requires a 
gate-level simulator which can  execute only thousands of 
instructions  per  hour.  This is not sufficient for  the millions 
of instructions  needed  to  conduct  performance analysis. 
The  alternative is to  simulate  at  the  architecture level. 
This leaves  much of the  state of the  target  processor 
hidden,  and  turns  the task of generating  instruction  traces 
from  bus  recordings  into a  significant challenge.  One 
effect of this  hidden  state is that  asynchronous  events  are 
more difficult to  synchronize  with  instruction  execution. 
We  describe  here a sampling of the  problems  resulting 
from  asynchronous  behavior  and  unmodeled  processor 
state  that  require special consideration in the  simulator. 

An obvious asynchronous  event is an  external  interrupt. 
Identification of when, with respect  to  instruction 
execution,  the  interrupt  occurred is deterministic given the 
full processor  state.  However, it is problematic  to precisely 
identify the  last  instruction  executed  before  the  interrupt 
was taken in the  simulator.  We  address  this  problem by 
recording  the  external  interrupt signal at  the  processor. 
The timing correspondence  between  simulator activity and 
bus activity established by the  BIU  transaction-matching 
process is then used to inject the  external  interrupt  into 
the  simulator  at  the  time  it  occurred in the  target 
processor. 

internally in the  processor,  occurs asynchronously to 
instruction  execution. While  in  this case  there is no 
external signal to  indicate  that  the  decrementer exception 
is pending, we can  use  the  decrementer  register  modeled 
in the  simulator  to  temporally  localize  the exception event. 
The trick  in this  case is to  keep  the  decrementer  register 
up  to  date using the  bus cycle of recorded  transactions  as 
they  are  matched. 

Two implementation  mechanisms  that  cause  the  bus 
transaction  sequence  to vary from  that  expected by the 
simulator  are  instruction  prefetching  and  out-of-order 
execution of instructions.  When a branch  occurs  prior 
to execution of a line of prefetched  instructions,  the 
simulator will have no  reason  to call for  the  corresponding 
cache line. In  order  to  keep  the  actual  and  simulated 
caches synchronized,  including the  LRU  status of each 
line,  these  prefetched  cache  lines  are  forced  into  the 
simulator if they  are  not  requested in a  timely manner. 

336 A more  subtle issue involves access to  the  TLB when 

Similarly, the  decrementer exception, which is generated 
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translating  instruction  addresses  for  prefetching. Since the 
state of the  TLB  replacement bits is difficult to  manage in 
this case, transactions  associated with  accessing the  page 
table  must  be  detected  and specially managed so that 
PTEs  persist in the  simulator. 

In  the  case of out-of-order processing of instructions 
(the  simulator  executes in  strictly program  order),  there 
are  instances  when  bus activity is affected.  One  example is 
that a load  occurring  after a store in program  order may 
begin execution in the  processor  before  the  store. If both 
instructions  reference  the  same missing cache line, the 
load miss in the  target  processor will generate a read 
transaction on the bus, while the  store miss in the 
simulator will generate  an  RWITM  transaction  to  be 
matched.  In  other cases,  such differences  between  the 
processor  and  simulator  lead  to missing transactions in the 
recording.  These  various  cases must be  detected  and 
accommodated in the BIU. 

Yet  another class of asynchronous activity is bus 
snooping.  In  order  to  maintain  coherence  among  different 
copies of data in  memory, the  processor  compares  bus 
addresses  to  the  addresses  held in  its cache,  and modifies 
the  coherency  state  or writes back  data  to  main  memory 
as  needed  to satisfy requests  from  other  bus  masters.  This 
snooping  behavior is asynchronous  to  instruction  execution 
in the  processor,  and so must  be  handled explicitly in  such 
a way that  the  simulator  performs  the  same processing 
sequence as the  target  processor. 

Among  the  cases  where  such special  processing of 
snoop  transactions is critical in obtaining  the  correct 
sequence of instructions is one involving synchronization. 
Consider  the  case  in which two processors in a symmetric 
multiprocessor  environment  are using  a semaphore  to 
obtain exclusive access to  some  resource.  The  semaphore 
is implemented in the  PowerPC  architecture using the 
Load  and  Reserve (e.g., Iwarx) and  Store  Conditional 
(e.g., stwcx.) pair of synchronization instructions. The lwam 
instruction  sets a reservation bit  in the  processor,  and  the 
stwcx. performs a store only if this bit is still set. A store 
access to  the  semaphore  address by another  processor, as 
would occur if it successfully executed a stwcx., generates 
a bus  transaction  that is snooped by the  target  processor 
and  causes  the  reservation  bit  to  be  reset.  To  correctly 
simulate  the  synchronization  sequence, a snoop 
transaction on the  bus  must  be  processed in proper  order 
with respect  to  the stwcx. instruction  being  executed in the 
processor.  We have implemented  an  algorithm in the 
simulator  to  process  this  sequence,  and have observed it 
working correctly in our  multiprocessor recordings. 

5. Trace analysis 
In  addition  to  the  bus  capture facility and  the  NStrace 
simulator, we have  developed  several  tools  and analysis 
programs  to  aid in processing our instruction  traces  for 
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performance  studies. In this  section we first describe  in 
general  terms several ways in which the  trace  data can be 
put  to use, and  then discuss three specific studies  that we 
have performed using trace  data  generated by NStrace. 

Trace-driven simulation 
Like  traces  obtained by other  methods,  our  traces  contain 
address  and  instruction  streams  that  can  be used to drive 
other tools. These  include  simulators  for memory 
hierarchy  studies,  processor  timers  for  microarchitectural 
analysis, and system models  for  performance  studies on 
alternative  platform configurations.  Similarly, we can  take 
advantage of existing trace analysis packages  that have 
been  developed to  extract  various  statistics  that  are 
commonly  used to  characterize system behavior.  Packages 
that we have  used include statistics on  frequency of 
execution  and size of subroutines, first- and  second-order 
instruction  frequency,  branch  behavior,  and  memory 
references by segment  and  page. While there is an 
ongoing  effort  to  standardize  trace  data  formats, it is 
currently necessary to  convert  between  trace  formats  to 
allow tools  and  data  to  be  intermixed. 

Unlike most other  traces,  ours also contain  translation, 
timing,  bus, and  data  information  that  can  be  used  to 
analyze aspects of hardware  and  software  behavior  that 
are beyond the  scope of many trace  data  sets.  We  describe 
some examples later  in  this  section. 

Qualitative analysis 
The  binary  transaction file for a bus  recording  contains 
100 megabytes of data, while the  corresponding  instruction 
trace typically comprises  around two gigabytes of data.  We 
have developed two tools  for looking at  these  data  sets, 
one  to  get  the big picture  and  one  to  see  the  details. 

the  transaction  and  instruction  trace files, sampling these 
statistics  at  regular  intervals  to  produce a report of how 
these  statistics  change with time over the  course of the 
entire  trace (or some  other  period of interest).  The 
statistics  extracted  include  transaction  frequencies by class 
[the classes are  fetch  (instruction),  read  (data),  RWITM, 
write, snoop,  and  other],  instruction  frequencies by class 
(the classes are  ALU,  load,  store, float, control,  and 
branch),  instructions  per cycle (IPC),  percentage of time 
in  system mode,  occurrences of exceptions, and  reference 
counts  for highly referenced  instruction  and  data pages. 
Figure l (a)  shows  a plot of transaction  frequencies,  and 
Figure l (b)  shows the  corresponding plot of instruction 
frequencies  extracted using opstat. 

These  plots have been  quite useful  in  identifying the 
activity within and  outside  the  processor  at a  millisecond 
level of detail.  Note  that since both  the  transaction  and 
instruction  traces  contain  bus cycle information, they can 
be  aligned  to show the  corresponding activity on the  bus 

The opstat program  extracts  several basic  statistics from 
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and in the  processor.  Also  note  that  this level of detail 
clearly  shows the  periodic  nature of the  application  being 
traced-an MPEG player.  Finally, note  that  the  particular 
distribution of instruction  or  transaction class frequencies 
is characteristic of each  processing  phase of the 
application.  In  Figure  l(a) we can distinctly see two major 
phases, which turn  out  to  be  the  computation  and display 
components of processing for each  frame of MPEG 
playback. In Figure  l(b) we see  that  the  computation 
component  has two distinct  phases,  one with nearly 70% 
ALU  instructions,  the  other with only 50% ALU 
instructions.  In Figure 2, which  is  a  similar plot of 
instruction  frequencies  from a different  recording, we can 
see  the  three  phases of the  MPEG player, interspersed 
with activity that is unlike any in the first recording.  This 
second  recording was made with two applications  running, 
the  MPEG  player  and a synthetic  application  that 
exercises the bus. This signature aspect of the  distribution 
of these class frequencies  has allowed us to  determine 
when a particular  application is  in  a particular  phase of 
processing,  as well as when  a particular  application is 
running  at all. 

Once  the  general  structure of the  recording  has  been 
established, a more  detailed view of a particular  period of 
interest  can  be  had using the  corresponding  bus cycle 
number  to  index  into  the  trace  data itself using the Browse 
tool.  This  data browser  displays  a sequence of either 
instruction  or  transaction  records.  It  supports  an indexed 
search  for a bus cycle number,  and a sequential  search  for 
values in other  record fields. 

For example, around cycle two million  in Figure  1, 
there is a  brief dip in  a number of the statistics,  including 
the  IPC value. Figure 3(a) shows  a screen of transaction 
records  from  the browser for  this  time in the  recording. 
For  each  bus  transaction,  the display shows, from  left  to 
right,  the  bus cycle number  (number of bus cycles from 
the beginning of the  recording  until  the  transfer  start  for 
this transaction),  the  transaction type, the  transaction 
address,  and  the  transaction  data.  Note  that  there  are 
three address-only transactions  in this particular  sequence 
(eieio, sync, and Iwam) and  that all data  transactions 
are bursts. 

Figure 3(b) shows  a corresponding  screen of instruction 
records as  displayed by the  browser.  From  left  to right, 
each  record  contains  the  transaction  type(s) of any 
transactions  associated with this instruction,  the 
corresponding  bus cycle number,  the  instruction  address, 
the  instruction  machine  code  and  mnemonic,  the  data 
address, and  the  data.  The addresses are displayed somewhat 
cryptically, but  contain the cacheability and protection bits, 
the effective page, the real page, and  the page offset. Only 
the offset is displayed when the instruction  addresses are 
sequential. 
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Percent of instructions in each of six classes versus bus cycles when both an MPEG player  and  a utility application are executing. IPC  and 
system mode plots are included at the top, as in Figure l(b). 

It is clear  from  Figure 3 that  the  processor  has 
suspended  the  application  and is in  system mode. By 
scanning  through  more of the  trace in this vicinity, one 
finds that a timer  interrupt is being serviced here,  and  the 
application  resumes  after  some system maintenance 
functions  are  performed. 

Quantitative analysis 
We have  used the  opstat  and Browse tools  to  help in 
verifying that we have captured  what we expected  to 
capture in the  trace,  and  to  narrow  the  scope of analysis 
to a particular  region of interest.  Within  this  region, we 
can  extract a  variety of features  and  measures  to identify 
performance  problems or otherwise  characterize system 
behavior.  Among  the  features we have examined  are 
frequencies of occurrence of specific addresses or 
instruction types, memory  segment  usage,  page  table 
reads,  bus  data  rates,  address  patterns  associated with 
peripheral  component  interconnect (PCI) devices, and 
occurrences of system calls by type. We briefly describe three 
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studies in which combinations of these and similar features 
were used to analyze the overall behavior of the system. 

We  measured  the  frame  rates of an MPEG playback 
application  for  several  combinations of operating system 
version, graphics device, and display mode.  Some 
variations in frame  rates, such  as that  across %bit,  16-bit, 
and full-color modes,  were  expected.  However,  for  three 
different  configurations of 8-bit  display mode,  the  frame 
rates  were 30, 22, and 8 frames  per  second.  We  traced  the 
application in these  three  configurations  and  found  that 
the  variations  were  due  to  the way in which the  different 
graphics device drivers  managed  the  frame  buffer  on  the 
adapter. In the first case,  the values for 4 pixels at a time 
are  packed  into a  4-byte word  and  written  to  the PC1 
card. In the  second case, this packing is not  done. Since 
the PC1 address  range is  defined as  noncacheable,  each 
byte is sent individually over  the  bus  to  the  adapter.  In  the 
third  case,  the  value of the previous frame, which is used 
in the  computation of the  current  frame, is obtained  from 
the  frame  buffer  on  the  adapter.  It is read  back  one byte 
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1999323 FetchB 00106920 80DF0014  40980014 7F861840  80630014  80140000 40BD0020 
1999345 ReadE 000DlB40  8000073C 00888394 00000000 OOB28394 0OOM)OOO 010FD394 
1999367 FetchB 00106940  93850004 9OBFOOl8 48000090  93840000  7F042800 80840004 
1999389 Wrt-KillE 0023CE80 00000020 EC95BEA8 80106754  80178602 EC95BEA4  8023CEDO 
1999424 R e a 0  0088FE98 00000007  84390360 00000000 00000000  00000000 00280007 
1999445 FetchB 001069D8 80010068  887F0024  809F001C  807F0018 90640000 9BBF0024 
1999472 R e d B  0088FEAO  8017BDE8  8017BDE8 00000001 00000000 00000000 00000000 
1999502 FetchB 00106960  907F0018 9OBFOOlC 93850000  93830004  907B0004 807DEOOC 
1999534 FetchB 00106980 809DEOlO 80780004 409EFFE4  7F832000  809B0004 807F0014 
1999561 FetchB 001069AO 80810038  807F0010  409D0014  7F832040  809B0004  807F0014 
1999590 Fetch3 001069EO 83810070 8361006C  83C10078  83A10074  7C0803A6  83E1007C 
1999617 FetchB 00106100  93ClFFF8 7C0802A6  9001FFF4  93ElFFFC 90410040 9421FFBO 
1999626 FetchB 00133D20 88610040  60000000 60000000 480067D5 80010060 7FC3F378 
1999655 Eieio 00010007 
1999657 FetchE 0011BD80  987FOOBl  7FC3F378 38630080  807F0050  480168Al 889FO069 
1999686  Sync 01COFD66 
1999693 FetchB 00113DAO  413A0010  2F030000  4BFEAF7D  807F0050  887FOOB1 60000000 
1999720 FetchB OOllBDCO 4BFEAF65 80710050  807F0094  60000000 419A0014  2F030000 
1999743 Luarx 0089AE6C 
1999755 FetchB OOllBDEO 805FOOBC 98640000  48000008 807F00A4  801FOOCO  805FOOBC 

1999721 
1999721 
1999723 
1999724 
1999726 
1999727 
1999729 
1999730 
1999731 
1999731 
1999732 

L 1999743 
1999744 
1999745 
1999746 
1999747 
1999747 
1999748 
1999748 
1999749 

dc4 4bf eaf65 
23-80106.00106 d28 7c0802a6 

d2c 93alfff4 
d30 93clf f f 8 
d34 93elf f f c 
d38 9001fff0 
d3c 9421ffb0 
d40 7c7dlb78 
d44 Bbddf f e8 
d48 7f c3f 378 
d4c 48013fad 

23-8011a.0011a cf8 7ca01828 
cf c 3885f  f  f  f 
dOO 7c80192d 
do4 40a2f f f 4 
do8 7~832378 
doc 4e800020 

d64 7c631b79 
d58 408200d4 

23-80106.00106 d50 60000000 

(a)  Sample transaction records from  the same txn file used in  Figure  l(a). (b) Sample instruction records corresponding to the transaction 
records shown in (a). 

at a time, which again  yields  single-byte bus transactions operating systems. The  main  purpose of the  study was to 
and  degraded  performance. characterize  the  sequences of data  patterns  seen by each 

general-purpose  register (GPR) usage  for two different access of each GPR. Figure 4 shows plots of the  relative 
In another study, we looked  at  the  characteristics of register.  At  the  same  time, we measured  the  frequency of 
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frequency of usage of the 32 GPRs for  four  different 
applications  running  on  three  different  operating systems. 
Among  the  interesting  aspects of these  data is the  fact 
that  the statistics are similar for  the first and  fourth 
applications,  despite  the  fact  that they correspond  to 
quite  different  applications  on two different  operating 
systems. 

We  can  quantify  the  register  usage in these  four cases 
by measuring how much they vary from  the  case in which 
all registers  are equally  used. The  entropy of the  register 
frequencies is an  appropriate  indicator of the flatness of 
the  distribution.  For 32 registers,  equal  usage will yield an 
entropy of 5. The  entropies of the  four  applications shown 
in Figure 4 appear in Table 1. The  corresponding powers 
of two, also  shown  in Table 1, represent  the effective 
number of registers in  use by the  application. Low register 
usage,  such as  that in application 2, indicates  that  better 
register  management is a potential  source  for  performance 
improvement. 

Table 1 GPR entropy and effective  register  set  size. 

Application  Entropy  Effective  number of registers 

1 3.92 15 
2 2.95 8 
3 4.52 23 
4 3.57 12 

Another  performance issue that we have examined is 
that of the  Java  virtual  machine  (JVM)  running  certain 
benchmarks.  There  are a number of potential  bottlenecks 
in the  process of interpreting  Java  programs,  one of them 
being  the  execution of the byte codes  (that is, the  virtual 
machine  instructions) themselves.  While analysis of the 
interpretation of individual  byte codes  can  be  done 
statically,  dynamic analysis is needed  to identify which 
byte codes  are  used most frequently.  Trace analysis of 
byte codes is somewhat  more  problematic  than analysis of 341 

, IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. A.  SANDON ET AL. 



Table 2 Percentage of most frequent byte codes in  ray trace. 

Byte  code  Percentage 

dload 23.096 
dmul 12.693 
dadd 7.879 

i2d 6.666 
dstore 6.454 

dsub 2.843 
aaload 2.407 
iaload 2.406 

Idc2-w-quick 1.533 
aload-0 1.322 

ior 1.320 
if-icmplt 1.318 

iinc 1.314 
isub 1.310 

Idc-quick  1.207 
getfield-quick 0.990 

iconst-0 0.874 
dconst-0 0.767 

invokestatic-quick 0.660 
ifge 0.660 

ish1 0.660 
ddiv 0.660 

bipush 0.660 
dconst-1 0.660 

dcmpg 0.660 

Table 3 Percentage of most frequent byte-code  pairs in 
ray trace. 

First byte  code  Second  byte  code  Frequency 

dload dmul 11.265 
dload  dload 6.783 
dmul dadd 5.249 

i2d dload 3.610 
dmul  dload 3.397 
dadd dload 3.386 

dstore dload 2.736 
dload dadd 2.300 
dsub dstore 2.183 

i2d dstore 1.746 
dadd dstore 1.427 

i2d dsub 1.310 
isub i2d 1.310 

iaload isub 1.310 
getfield-quick i2d 0.990 

aload-0 getfield-quick 0.990 
if-icmplt ldc-quick 0.877 

Idc2-w-quick dload 0.873 
dmul dsub 0.873 
dload dconst-0 0.767 

Idc2-w-quick dmul 0.660 

ddiv dstore 0.660 
dsub ldc2-w-quick  0.660 
dadd aload-0 0.660 

ish1  0.660 

dcmpg ifge 0.660 

bipush 
342 
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Table 4 Percentage of byte codes  at various JVM stack 
depths in ray trace. 

Stack  depth  Percentage  Cumulative 

0 15.348 15.348 
1 5.275 20.623 
2 36.217 56.841 
3 7.880 64.721 
4 19.817 84.538 
5 2.311 86.849 
6 9.967 96.815 
7 0.660 97.476 
8 1.864 99.340 
9 0.000 99.340 

10 0.660 100.000 

native  instructions,  because  the byte codes  themselves  are 
data. Since our  trace  contains  data, we can easily extract 
byte-code  information  from  the  trace. Table 2 presents  the 
frequencies of the most commonly occurring byte codes  in  a 
particular  segment of the public-domain ray-trace benchmark. 
Table 3 presents the frequencies of the most commonly 
occurring pairs of byte codes in that  same segment. 

Another  aspect of the JVM that is of interest is its  data 
handling.  The JVM is a stack-based  architecture.  It is 
useful  in dealing with  a stack  to  characterize  the  depth of 
the  stack  over  time.  This will have implications  both  for 
real  hardware  implementations  and  for  virtual  machine 
implementations of the  architecture. Table 4 shows the 
percent of time  that  the  stack is a particular  depth  for  the 
same  segment of the  ray-trace  benchmark  as in previous 
tables. Note  the relatively larger  numbers  for  the  even- 
numbered  depths.  This is due  to  the  use of double- 
precision arithmetic  throughout  the  application,  each 
variable using up two positions when stored in the  stack. 

While we have touched  here only on  the analysis that 
has  been  done with these  particular  trace  data  sets,  these 
examples  highlight several  aspects of the overall 
functionality of the  NStrace  toolset. 

Concluding remarks 
Hardware-based  approaches  to  trace  generation  are 
generally acknowledged  as yielding  high-quality traces,  but 
are commonly  criticized for  their cost. The  NStrace  tool 
described in this  paper fits both of these  characterizations. 
NStrace  requires a  logic  analyzer and  supporting  hardware 
to access the  processor  pin signals. In  order  to  get  bus 
recordings  that yield sufficiently long  traces  (up  to 100 
million instructions), we use  additional  data acquisition 
and  compression  hardware  along with deep logic  analyzer 
memory. The  result of this  investment is an ability to 
generate  traces having the following characteristics. 

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997 



The  trace  data very accurately  reflect the  characteristics 
of the system under  normal  operation.  This is due  both  to 
the noninvasive nature of the  recording  and  to  the  use of 
the bus-driven simulation. By passively recording  the  bus 
signals, normal timing relations  among  the  processor  and 
other system components  are  maintained. Since the 
simulator  continually synchronizes with the  bus  recording, 
any divergence  between  the  behavior of the  simulated 
processor  and  that of the  target  processor quickly becomes 
apparent. 

processor  throughout  the  recording  period.  This  includes 
execution of kernel  code, of driver  and  library  code,  and 
of user code. These  traces  can  therefore  be  used  to 
characterize  and analyze the  behavior of both system and 
application  code,  and  their  interactions. 

The  trace  data  contain  bus timing information  that 
allows the  internal  state  information, such  as the 
instruction  sequence,  to  be  aligned with external  state 
information,  such  as  bus  transactions.  This is useful in 
analyzing potential  bottlenecks in uniprocessor systems 
and provides the  mechanism  for  generating  traces in 
multiprocessor systems, or more generally whenever 
snooping may occur. 

Finally, the  trace is rich,  in the  sense  that it contains 
more  information  than  other  trace  generation  approaches. 
This  richness is due  to  the  use of the  architectural 
simulator  used  to  generate  the  trace  from  the  bus 
recording. Since the  simulator  models most details of the 
architecture, it has access to a  wide range of system 
variables. For  example, while a  typical instruction  trace 
might include  the  instruction  and  the effective instruction 
address,  the  NStrace  trace  data  set  includes  both effective 
and  real  addresses of both  instructions  and  data, along 
with the  instruction,  the  data  (for  both  memory accesses 
and  for  register  operations), cacheability and  protection 
information,  and  bus timing. 

system code  and  has  been  used with several  operating 
systems and system environments. As we described in the 
previous section,  these  traces have proven useful  in 
performing a  variety of performance  and  functional 
studies,  some of which would be difficult or impossible to 
do with other  tracing  methods. 

The  trace  data reflect the  behavior of the  target 

NStrace  generates rich, accurate  traces of both  user  and 
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