
NStrace:
A bus-driven
instruction
trace tool
for PowerPC
microprocessors

by P. A. Sandon
Y.-C. Liao
T. E. Cook
D. M. Schultz
P. Martin-de-Nicolas

NStrace is a bus-driven hardware trace facility
developed for the PowerPC@ family of
superscalar RlSC microprocessors. It uses a
recording of activity on a target processor's
bus to infer the sequence of instructions
executed during that recording period. NStrace
is distinguished from related approaches by
its use of an architecture-level simulator to
generate the instruction sequence from the
bus recording. The generated trace represents
the behavior of the processor as it executes at
normal speed while interacting normally with
its run-time environment. Furthermore, details
of the processor state that are not generally
available to other trace mechanisms can be
provided by the architectural simulation. There
are two main components to the process of
generating bus-driven instruction traces: bus
capture and trace generation. Bus capture is
triggered by a call to a system program that
puts a particular address on the bus, then
establishes the initial state of the processor by
a combination of writing out register values
and invalidating caches. A logic analyzer
records the bus activity, and from this a file of

bus transactions is produced. Trace
generation proceeds by driving a processor
simulator with these bus transactions and
recording the sequence of instructions that
results. The processor simulator is an
elaboration of that developed for the PowerPC
Visual Simulator. We have successfully
generated instruction traces for a mix of utility
programs and real applications on several
microprocessor platforms running several
operating systems. The capacity of the bus
recording hardware is two million transactions,
yielding instruction traces with lengths of the
order of one hundred million instructions. This
trace facility has been used for a number of
studies covering a range of performance
issues involving software, hardware, and their
interactions.

1, Introduction
An instruction trace is a listing of the instructions
executed by a processor while an application or system
program is running. Such traces can be used to drive
performance models and to extract statistics on a variety

"Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems, Permission to republish any other

portion of this paper must he obtained from the Editor.

0018-8646/97/$5.00 Q 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. A. SANDON ET AL.

of measures associated with system behavior. Dynamic
usage of instruction types and other fields, address
translation and memory reference patterns, and branch
behavior and basic block sizes are among the many
subjects of trace analysis. The extracted statistics reflect
the behavior of the particular combination of architecture,
implementation, system software, and application program
from which the trace was collected, and so can be used to
guide design decisions by developers of all of these
components.

Instruction traces may be obtained in various ways.
While simulated traces can be generated by executing a
target program on a software model of the processor,
instruction traces from real systems are created in one of
two ways. Software traces are typically generated by
instrumenting the target program with traps or exceptions,
so that the operating system can monitor the instruction
sequence during program execution. Hardware traces are
generated by connecting external circuitry to the system
under test to record activity while the target program
executes. We discuss the trade-offs involved in choosing a
trace methodology in the next section.

We have developed a bus-based hardware trace facility
for the PowerPC' family of superscalar reduced-
instruction-set microprocessors. When the processor's bus
activity is passively recorded for some period of time that
includes execution of the application of interest, the
program executes at speed while interacting normally with
its run-time environment. The bus recording is then used
to drive a processor simulator that generates the complete
sequence of instructions (including kernel, library, and
user code) executed during the recorded period.

The trace tool, called NStrace, was developed for
processors using the PowerPC 60X system interface. We
have traced several systems that use the PowerPC 604*
processor [l], including both reference platforms and
commercial systems, in both uniprocessor and
multiprocessor configurations. We have traced systems
running AIX*, Windows NT", and MacOS** operating
systems. We have generated traces with lengths of the
order of one hundred million instructions on applications
ranging from AIX utilities to multimedia programs to
Java* * benchmarks.

The process of generating bus-driven instruction traces
comprises two operations, bus recording and processor
simulation. After a brief review of related work in Section
2, we provide in Sections 3 and 4 an overview and selected
details for the recording and simulation operations. In
Section 5, we present some sample trace data, describe
some tools we have developed for working with the data,
and discuss the use of these tools and data in performing
several performance studies. In the final section, we

332 summarize the characteristics of the NStrace tool.

P. A. SANDON ET AL

2. Related work
Trace data sets vary according to the particular system
variables recorded, the type of software traced, and the
trace environment. System variables that may be recorded
include instructions, instruction addresses, data, data
addresses, memory management state, bus transactions,
and others. The software traced may be kernel, driver,
library, or user code. The trace environment may include a
variety of software and hardware instrumentation used to
make the system variables of interest observable.

Depending on the characteristics of the trace data
set, it can be used for one or more of a wide range of
performance analysis and optimization studies of both
hardware and software. Instruction traces, for example,
are used for various processor performance studies
such as degree of parallelism for superscalar [2] and
multithreaded [3] processors, branch prediction strategies
[4], and evaluation of novel [5] or alternative [6]
implementation mechanisms that address latency,
bandwidth, or throughput problems. Address traces are
used for studies of the memory system, in particular for
comparing the performance characteristics of alternative
cache configurations (see for example Reference [7]).
Bus traces have been used to study table-lookaside
buffer (TLB) design trade-offs [8] and performance
characteristics of the bus itself, including utilization,
transaction-type run lengths, and inter-request timing
statistics [9]. Other uses for trace data include program
visualization for debugging [lo] and optimization through
code restructuring [Ill.

specific to a particular type of analysis. In a study of I/O
prefetching and caching algorithms, for example, file block
read requests were traced [12]. In another study, a set of
page table events were traced to analyze the performance
of a hardware page table manager [13].

One way to generate trace data is to use an instruction
set simulator that loads the executable for the application
to be traced, then records the sequence of instructions
executed as simulation proceeds. Examples of instruction
set simulators are Shade [14] for SPARC processors and
PVS 1151 for PowerPC processors. The drawback of
simulated traces is that they trace only the application
code and are insensitive to many of the details of the run-
time processing environment, including interactions with
the operating system, I/O, and other processes.

A major distinction among approaches to generating
trace data from real systems is whether they are software-
based or hardware-based. While bus tracing is always
hardware-based, address and instruction tracing may be
either hardware- or software-based. Software-based tracing
involves instrumenting the code to be traced such that
whenever a significant event occurs during execution, a

Some trace tools record system variables that are

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

record of the event is stored. Significant events may
include the execution of an instruction, a memory access,
or a discontinuity in the program counter.

One recently developed software-based trace tool is
IDtrace [16], which uses late code modification [17] to
instrument the executable to be traced. IDtrace can
generate instruction or address traces, and so is useful for
a variety of tasks including studies of cache behavior,
branch prediction, and code profiling. Another software
trace tool specifically designed for capturing long address
traces is described in [18]. Long address traces are
particularly important to studies of secondary cache
behavior, since such large caches reach steady state only

Software-based tracing has the advantage of low cost.
Often the system under test performs the function of trace
capture and storage itself. The disadvantage of software-
based tracing is that the tracing mechanism interferes with
normal operation, yielding trace data that may not
accurately characterize the target system. For example, a
program instrumented for a full execution trace using
IDtrace is an order of magnitude larger and an order of
magnitude slower to execute than the original [16]. In
addition, such instrumentation is often performed only on
application code, so that the characteristics of operating
system code are not captured or analyzed. Both [8] and
[19] provide data on how ignoring the characteristics of
the operating system can bias performance analysis, and
presumably the resulting design decisions.

Maintaining the normal run-time environment is
particularly important for timing-driven applications. For
example, display of video data encoded in the Motion
Picture Experts Group (MPEG) format requires real-time
response characteristics from the processor. If execution
of an MPEG player is slowed down, the application will
spend more of its time in the frame drop code, which is
what will then be traced. Similarly, a soft modem
application, when slowed down, will appear to spend a
disproportionate amount of its time handling circuit drop.
In multiprocessor environments, timing changes in one
processor can completely change the characteristics of the
interactions among processors. The software-based
MPtrace tool [20] minimized the amount of data recorded
during tracing for just this reason.

Hardware-based tracing involves the use of special
hardware that is attached to the system under test to
record significant events. Hardware-based tracing has the
advantage of being less intrusive than software-based
approaches. Once tracing begins, the system executes in its
normal run-time environment for the entire trace, or for
relatively long periods between interruptions for trace
maintenance. For many applications, where interactions
between the user code and system code, or between the
processor and the I/O system, are significant, this

slowly.

IBM .I. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

nonintrusive aspect of hardware-based approaches will
yield traces that more closely reflect normal system
behavior than do software-based ones.

Several hardware-based tracing systems have been
developed for capturing bus traces. In one case, these
traces of bus transactions are used to characterize the
cache behavior in a multiprocessor system [19]. In
another, bus traces are used to compare the performance
of alternative software-managed TLBs [8]. In this second
case, the tracing approach is actually a hybrid, using
software instrumentation to put marker instructions at
selected points in the operating system code, and using a
hardware monitor to detect and record these marker
instructions. A different approach is that of MacDEBIT,
which is a hardware trace tool that uses a target-host
pair of identical systems to collect bus traces for bus
performance studies [9].

Hardware tracing methods for capturing instruction
traces are few because of the difficulty of inferring an
instruction stream from variables that can be directly
measured. One approach is to disable the on-chip L1
cache, monitor bus transactions, extract the instruction
fetch stream, and then attempt to reconstruct the stream
of instructions actually executed [21]. Not only does this
represent a significantly invasive technique, but the
reconstruction can be done only approximately.
Furthermore, the amount of information that such a trace
can provide is far less than that available in the NStrace
approach.

The NStrace tool described in this paper produces
instruction, data, address, and bus traces. It is a hardware-
based approach that provides noninvasive capture of the
system variables from which an instruction trace is
generated. Since it records and then simulates the
processor activity as it occurs over the course of the entire
recording period, it traces user code as well as kernel and
library code. The NStrace tool processes snooping activity
on the bus, and so is capable of tracing the activity of one
processor in a multiprocessing environment. The use of
bus activity to generate instruction execution activity
provides a synchronized view of the behavior of the system
both inside and outside the processor. In addition, the use
of the processor simulator to produce the trace provides
access to a wide range of architectural details not
generally available in other tracing approaches. For
example, since address translation is simulated, statistics
on different translation mechanisms and TLB efficiency
are available, as are both effective and real addresses. The
following sections describe the recording and simulation
phases of NStrace in more detail.

3. Bus recording
The input to the NStrace simulator is the sequence of
processor bus transactions that occur during execution of 333

P. A. SANDON ET AL.

the target application. The current bus recording facilities
have been developed for the PowerPC 60X system
interface used by the PowerPC 601*, 603*, and 604
families of processors. The goal of the bus recording
process is to capture the bus signals for the longest
possible period while achieving 100% signal accuracy and
including all activity that is relevant to the subsequent
simulation phase. In this section we briefly describe the
60X bus, how data are acquired, processor initialization
at the time of trace initiation, and the contents of the
resulting transaction trace.

The 60X bus
The PowerPC 60X system interface consists of two
decoupled synchronous buses-one for address operations
and one for data operations. The address bus includes a
32-bit address, and the data bus includes 64 bits of data.
The separate controls of the two buses allow address and
data operations to be combined in a variety of ways,
providing a range of complexity and performance design
points for systems developers. In addition to bus
arbitration, a set of bus control signals support cache and
TLB coherency, atomic memory operations, direct-store
I/O operations, and L2 cache. A more complete
description of the bus can be found in [22].

To drive the NStrace simulator, bus transactions must
be discriminated according to which master initiated the
transfer, the transfer format, and the transaction type.
Transactions initiated by the target processor (the one
whose instruction sequence is to be generated) are
recognized by the assertion of bus grant to the target
processor during transaction initiation. Transaction format
and type are determined by the set of attribute signals
that accompany any valid address on the bus.

only, single-beat, and burst. Address-only transactions do
not use the data bus, transferring only control information
using the address- and transfer-type signals. Address-only
transactions are used to support memory coherency and
synchrony between processor and I/O. Single-beat
transactions are used to transfer from 1 to 8 bytes of data
to and from 1/0 or noncacheable areas of memory. Burst
transactions transfer 32 bytes of data in four beats
between processor cache and memory.

Bus transactions occur in one of three formats: address-

Data acquisition
While access to processor bus signals varies from system
to system, a typical configuration for the NStrace
hardware is the following. For a system in which the CPU
is mounted on a daughtercard that fits into a connector on
the motherboard, we use an interposer card between the
motherboard connector and the daughtercard to bring out
the bus signals. We have developed a data acquisition and
compression (DAAC) card to take these bus signals as 334

P. A. SANDON ET AL.

inputs, process them according to the 60X bus protocol,
and produce as output a record for each significant
transaction that appears on the bus. Significant
transactions are those that affect the subsequent processor
simulation. These include all transactions initiated by the
target processor, as well as all other transactions that
affect the target processor state, primarily snoop hits.
These transaction records are then captured in a logic
analyzer. The combination of a relatively large logic
analyzer memory (100 MB in the fully configured
Tektronix DAS 9200) and compression of signals by the
DAAC card yields a typical recording time of about one
second, corresponding to an instruction trace of around
100 million instructions.

Once bus capture is complete, the signal data are
uploaded to a workstation. Since we have used several
logic analyzers, and configured each in several different
ways, it is necessary to convert these signal data to a
standard format for the simulator. Our txn format
contains one record per transaction. Each record contains
a time stamp (the bus cycle relative to the start of
recording at which the transfer start signal appeared), the
address, and the transaction type. For single-beat and
burst transactions, the record also contains the data. A
sample sequence from a txn file is presented in Section 5.

Trace initiation
The process of translating a bus recording into an
instruction trace involves simulating the processor’s
execution of the application. For this simulation to be
valid, the state of the simulated processor must match that
of the real processor at the time the simulation begins.
The initiation of bus recording, therefore, involves two
steps: achieving a known processor state, and signaling the
bus capture hardware to begin recording.

For the 604 simulator, described in the next section, the
state of the processor that must be controlled to predict
its subsequent behavior comprises the contents of the two
caches, the contents of the two TLBs, and the values of
the architected registers. Initiation of the trace process
involves a combination of reading out the current state of
the processor and changing that state to a known state.
The procedure we use is first to disable and invalidate
the caches, then to trigger the recording by placing a
distinctive address on the bus, then to store all of the
register values, then to invalidate the TLBs. Storing the
register values forces them out onto the bus where they
can be recorded, since the caches are disabled. At the end
of this procedure, the caches are enabled so that normal
processing resumes.

This procedure is implemented as a device driver that
can be called asynchronously while the application to be
traced is running. Alternatively, a call to the device driver

IBM J. RES. DEVELOP. 1 IOL. 41 NO. 3 MAY 1997

can be compiled into the application to initiate tracing at
a particular point.

4. Trace generation
Once a bus recording is taken, the next step is to generate
from it the sequence of instructions executed by the
processor during this period. The approach we have taken
is to simulate the processor at the architectural level,
using the bus transactions to update the processor state
when necessary, and otherwise letting instruction
execution proceed according to the current state of the
simulated processor. Our simulator is based on the
PowerPC Visual Simulator (PVS) [15]. After a brief
overview of that simulator, we describe the bus-driven
simulation approach and then discuss some of the issues
involved in making an architecture-level simulator handle
implementation-level details in order to produce an
accurate instruction trace.

PowerPC Visual Simulator
PVS is an architecture-level simulator for the PowerPC
family of processors. PVS simulates sequential execution
of instructions in program order, ignoring the
implementation-specific details involving issue and
execution pipelines, caches, and bus latencies. PVS traces
the execution of a single application by taking an
executable file as input, building a memory image from
that file, and then simulating the execution of the
application.

The PVS implementation is fairly complete in its
support for the major architectural features of the
PowerPC. It also implements some of the processor-
dependent features. Among the facilities supported are
address translation, instruction execution, exception
handling, caches, and reservations. The simulator also
includes facilities for single-step instruction execution, for
setting checkpoints and breakpoints, for displaying
memory and register contents, for modifying memory
and register values, for assembling and disassembling
instructions, and for tracing instruction execution.

In order to use the PVS simulator for our bus-driven
approach, we enhanced the simulator in a number of ways.
The main deficiency of the simulator for our purposes was
that since it used an “internal” model of memory, it
largely lacked the concept of a bus interface unit (BIU).
Therefore, our efforts in modifying the simulator were in
two main areas. First, all functional units that could
generate bus activity were modified to make appropriate
calls to a bus interface unit. Second, a bus interface unit
was implemented that provides access to the transaction
file. We discuss below some of the issues involved in
enhancing the simulator to perform correctly in the
absence of complete processor state information.

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Bus-driven processor simulation
The bus-driven simulator is straightforward in concept.
First, the processor state of the simulator is initialized,
using the transactions recorded during trace initiation.
Recall that during initiation the data cache is disabled
while register values are written to some memory location.
This causes a predictable stream of transactions to appear
on the bus, from which the processor register values can
be extracted. Since all details of the initiation procedure
are known, the transactions corresponding to execution of
this procedure can be accounted for without simulating
them. The simulator state is initialized to the state of the
processor at the end of initiation, and the stream of
transactions that follow those corresponding to initiation
drive the subsequent simulation. Once the processor is
initialized, it begins to execute from that state.

The address of the first instruction is in the next
instruction address (NIA) register. To execute the first
instruction, the simulator first attempts to translate its
address. Since the TLB starts out empty, a miss occurs,
causing a read access to the cache. Since the data cache
starts out empty, a miss occurs, causing a read transaction
on the bus. The BIU model matches this simulated
transaction with a recorded one from the transaction file
and returns the corresponding data to the cache. The
cache then satisfies the read from the TLB, and the
requested page table entry (PTE) is available to the
translator. The table walk continues until the required
PTE is found, and then the instruction address is
translated.

The real instruction address is now used to fetch the
first instruction from the cache, but encounters a miss,
generating an instruction fetch transaction. The BIU
matches this fetch to one in the transaction file and
returns the data to the instruction cache. The cache then
returns the addressed instruction to be decoded. If the
instruction requires a memory access, a similar sequence
of events occurs to translate the data address and then
load or store the data. For a load that misses in the cache,
a read transaction is generated. For a store that misses
in the cache, a read-with-intent-to-modify (RWITM)
transaction is normally generated.

match a simulated transaction with a recorded one.
Normally this occurs when the stream of recorded
transactions has been exhausted, and the simulation
terminates. Of course, as the simulation proceeds, the
caches and TLBs are warming up, so fewer accesses result
in bus activity than occur initially. The output of the
simulator is a trace containing the sequence of instructions
executed during the recording period, along with
corresponding instruction addresses, data, data addresses,
bus timing, and translation information. A sample

This general procedure continues until the BIU cannot

P. A. SANDON ET AL.

sequence from an instruction trace file is presented in
Section 5.

Handling asynchronous events
On first consideration, it may appear that this simple
concept is even trivial. After all, given the initial state of a
finite-state machine and the sequence of inputs to that
machine for some period of time, one can exactly
reconstruct the state trajectory during that period.
However, to simulate the entire processor state requires a
gate-level simulator which can execute only thousands of
instructions per hour. This is not sufficient for the millions
of instructions needed to conduct performance analysis.
The alternative is to simulate at the architecture level.
This leaves much of the state of the target processor
hidden, and turns the task of generating instruction traces
from bus recordings into a significant challenge. One
effect of this hidden state is that asynchronous events are
more difficult to synchronize with instruction execution.
We describe here a sampling of the problems resulting
from asynchronous behavior and unmodeled processor
state that require special consideration in the simulator.

An obvious asynchronous event is an external interrupt.
Identification of when, with respect to instruction
execution, the interrupt occurred is deterministic given the
full processor state. However, it is problematic to precisely
identify the last instruction executed before the interrupt
was taken in the simulator. We address this problem by
recording the external interrupt signal at the processor.
The timing correspondence between simulator activity and
bus activity established by the BIU transaction-matching
process is then used to inject the external interrupt into
the simulator at the time it occurred in the target
processor.

internally in the processor, occurs asynchronously to
instruction execution. While in this case there is no
external signal to indicate that the decrementer exception
is pending, we can use the decrementer register modeled
in the simulator to temporally localize the exception event.
The trick in this case is to keep the decrementer register
up to date using the bus cycle of recorded transactions as
they are matched.

Two implementation mechanisms that cause the bus
transaction sequence to vary from that expected by the
simulator are instruction prefetching and out-of-order
execution of instructions. When a branch occurs prior
to execution of a line of prefetched instructions, the
simulator will have no reason to call for the corresponding
cache line. In order to keep the actual and simulated
caches synchronized, including the LRU status of each
line, these prefetched cache lines are forced into the
simulator if they are not requested in a timely manner.

336 A more subtle issue involves access to the TLB when

Similarly, the decrementer exception, which is generated

P. A. SANDON ET AL

translating instruction addresses for prefetching. Since the
state of the TLB replacement bits is difficult to manage in
this case, transactions associated with accessing the page
table must be detected and specially managed so that
PTEs persist in the simulator.

In the case of out-of-order processing of instructions
(the simulator executes in strictly program order), there
are instances when bus activity is affected. One example is
that a load occurring after a store in program order may
begin execution in the processor before the store. If both
instructions reference the same missing cache line, the
load miss in the target processor will generate a read
transaction on the bus, while the store miss in the
simulator will generate an RWITM transaction to be
matched. In other cases, such differences between the
processor and simulator lead to missing transactions in the
recording. These various cases must be detected and
accommodated in the BIU.

Yet another class of asynchronous activity is bus
snooping. In order to maintain coherence among different
copies of data in memory, the processor compares bus
addresses to the addresses held in its cache, and modifies
the coherency state or writes back data to main memory
as needed to satisfy requests from other bus masters. This
snooping behavior is asynchronous to instruction execution
in the processor, and so must be handled explicitly in such
a way that the simulator performs the same processing
sequence as the target processor.

Among the cases where such special processing of
snoop transactions is critical in obtaining the correct
sequence of instructions is one involving synchronization.
Consider the case in which two processors in a symmetric
multiprocessor environment are using a semaphore to
obtain exclusive access to some resource. The semaphore
is implemented in the PowerPC architecture using the
Load and Reserve (e.g., Iwarx) and Store Conditional
(e.g., stwcx.) pair of synchronization instructions. The lwam
instruction sets a reservation bit in the processor, and the
stwcx. performs a store only if this bit is still set. A store
access to the semaphore address by another processor, as
would occur if it successfully executed a stwcx., generates
a bus transaction that is snooped by the target processor
and causes the reservation bit to be reset. To correctly
simulate the synchronization sequence, a snoop
transaction on the bus must be processed in proper order
with respect to the stwcx. instruction being executed in the
processor. We have implemented an algorithm in the
simulator to process this sequence, and have observed it
working correctly in our multiprocessor recordings.

5. Trace analysis
In addition to the bus capture facility and the NStrace
simulator, we have developed several tools and analysis
programs to aid in processing our instruction traces for

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

performance studies. In this section we first describe in
general terms several ways in which the trace data can be
put to use, and then discuss three specific studies that we
have performed using trace data generated by NStrace.

Trace-driven simulation
Like traces obtained by other methods, our traces contain
address and instruction streams that can be used to drive
other tools. These include simulators for memory
hierarchy studies, processor timers for microarchitectural
analysis, and system models for performance studies on
alternative platform configurations. Similarly, we can take
advantage of existing trace analysis packages that have
been developed to extract various statistics that are
commonly used to characterize system behavior. Packages
that we have used include statistics on frequency of
execution and size of subroutines, first- and second-order
instruction frequency, branch behavior, and memory
references by segment and page. While there is an
ongoing effort to standardize trace data formats, it is
currently necessary to convert between trace formats to
allow tools and data to be intermixed.

Unlike most other traces, ours also contain translation,
timing, bus, and data information that can be used to
analyze aspects of hardware and software behavior that
are beyond the scope of many trace data sets. We describe
some examples later in this section.

Qualitative analysis
The binary transaction file for a bus recording contains
100 megabytes of data, while the corresponding instruction
trace typically comprises around two gigabytes of data. We
have developed two tools for looking at these data sets,
one to get the big picture and one to see the details.

the transaction and instruction trace files, sampling these
statistics at regular intervals to produce a report of how
these statistics change with time over the course of the
entire trace (or some other period of interest). The
statistics extracted include transaction frequencies by class
[the classes are fetch (instruction), read (data), RWITM,
write, snoop, and other], instruction frequencies by class
(the classes are ALU, load, store, float, control, and
branch), instructions per cycle (IPC), percentage of time
in system mode, occurrences of exceptions, and reference
counts for highly referenced instruction and data pages.
Figure l (a) shows a plot of transaction frequencies, and
Figure l (b) shows the corresponding plot of instruction
frequencies extracted using opstat.

These plots have been quite useful in identifying the
activity within and outside the processor at a millisecond
level of detail. Note that since both the transaction and
instruction traces contain bus cycle information, they can
be aligned to show the corresponding activity on the bus

The opstat program extracts several basic statistics from

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1991

and in the processor. Also note that this level of detail
clearly shows the periodic nature of the application being
traced-an MPEG player. Finally, note that the particular
distribution of instruction or transaction class frequencies
is characteristic of each processing phase of the
application. In Figure l(a) we can distinctly see two major
phases, which turn out to be the computation and display
components of processing for each frame of MPEG
playback. In Figure l(b) we see that the computation
component has two distinct phases, one with nearly 70%
ALU instructions, the other with only 50% ALU
instructions. In Figure 2, which is a similar plot of
instruction frequencies from a different recording, we can
see the three phases of the MPEG player, interspersed
with activity that is unlike any in the first recording. This
second recording was made with two applications running,
the MPEG player and a synthetic application that
exercises the bus. This signature aspect of the distribution
of these class frequencies has allowed us to determine
when a particular application is in a particular phase of
processing, as well as when a particular application is
running at all.

Once the general structure of the recording has been
established, a more detailed view of a particular period of
interest can be had using the corresponding bus cycle
number to index into the trace data itself using the Browse
tool. This data browser displays a sequence of either
instruction or transaction records. It supports an indexed
search for a bus cycle number, and a sequential search for
values in other record fields.

For example, around cycle two million in Figure 1,
there is a brief dip in a number of the statistics, including
the IPC value. Figure 3(a) shows a screen of transaction
records from the browser for this time in the recording.
For each bus transaction, the display shows, from left to
right, the bus cycle number (number of bus cycles from
the beginning of the recording until the transfer start for
this transaction), the transaction type, the transaction
address, and the transaction data. Note that there are
three address-only transactions in this particular sequence
(eieio, sync, and Iwam) and that all data transactions
are bursts.

Figure 3(b) shows a corresponding screen of instruction
records as displayed by the browser. From left to right,
each record contains the transaction type(s) of any
transactions associated with this instruction, the
corresponding bus cycle number, the instruction address,
the instruction machine code and mnemonic, the data
address, and the data. The addresses are displayed somewhat
cryptically, but contain the cacheability and protection bits,
the effective page, the real page, and the page offset. Only
the offset is displayed when the instruction addresses are
sequential.

P. A. SANDON ET AL.

338

100.00

90.00

80.00

70.00
h

60.00 6 s
5 50.00

." E
B 40.00

5
30.00

20.00

10.00

0.00 I I I I I I I I

0.00 1 .oo 2.00 3.00 4.00 5 .oo 6.00 7.0(
BUS cycles X

80.00 I
h

70.00 -
G
8

&
-

.- 8 50.00
2

60.00

-

- 40.00 -

30.00 -

20.00 -

10.00 -

Fetch

Read

Rwitm

Write

Snoop

Other
-

,oad

Store

:loat

lontrol

Branch

System

[PC

L_.

I__ -

0.00 I I I I I I I I

0.00 1 .oo 2.00 3.00 4.00 5.00 6.00 7.00
BUS cycles X

(b)

P. A. SANDON ET AL.
IBM J. RES. DEVELOP, VOL. 41 NO. 3 MAY 1997

ILU.UU r

110.00

100.00

90.00

80.00 t
h

E 70.00

t
E

.; 50.00 -

2 40.00 -
s

30.00 -

20.00 -

10.00 -

0.00 -

0.00 0.50 1 .oo 1.50 2.00 2.50 3.00 3.50 4.00 4.50
Bus cycles X

ALU

Load

Store

Float

Control

Branch

System

IPC

Percent of instructions in each of six classes versus bus cycles when both an MPEG player and a utility application are executing. IPC and
system mode plots are included at the top, as in Figure l(b).

It is clear from Figure 3 that the processor has
suspended the application and is in system mode. By
scanning through more of the trace in this vicinity, one
finds that a timer interrupt is being serviced here, and the
application resumes after some system maintenance
functions are performed.

Quantitative analysis
We have used the opstat and Browse tools to help in
verifying that we have captured what we expected to
capture in the trace, and to narrow the scope of analysis
to a particular region of interest. Within this region, we
can extract a variety of features and measures to identify
performance problems or otherwise characterize system
behavior. Among the features we have examined are
frequencies of occurrence of specific addresses or
instruction types, memory segment usage, page table
reads, bus data rates, address patterns associated with
peripheral component interconnect (PCI) devices, and
occurrences of system calls by type. We briefly describe three

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

studies in which combinations of these and similar features
were used to analyze the overall behavior of the system.

We measured the frame rates of an MPEG playback
application for several combinations of operating system
version, graphics device, and display mode. Some
variations in frame rates, such as that across %bit, 16-bit,
and full-color modes, were expected. However, for three
different configurations of 8-bit display mode, the frame
rates were 30, 22, and 8 frames per second. We traced the
application in these three configurations and found that
the variations were due to the way in which the different
graphics device drivers managed the frame buffer on the
adapter. In the first case, the values for 4 pixels at a time
are packed into a 4-byte word and written to the PC1
card. In the second case, this packing is not done. Since
the PC1 address range is defined as noncacheable, each
byte is sent individually over the bus to the adapter. In the
third case, the value of the previous frame, which is used
in the computation of the current frame, is obtained from
the frame buffer on the adapter. It is read back one byte

P. A. SANDON ET AL.

339

340

1999323 FetchB 00106920 80DF0014 40980014 7F861840 80630014 80140000 40BD0020
1999345 ReadE 000DlB40 8000073C 00888394 00000000 OOB28394 0OOM)OOO 010FD394
1999367 FetchB 00106940 93850004 9OBFOOl8 48000090 93840000 7F042800 80840004
1999389 Wrt-KillE 0023CE80 00000020 EC95BEA8 80106754 80178602 EC95BEA4 8023CEDO
1999424 R e a 0 0088FE98 00000007 84390360 00000000 00000000 00000000 00280007
1999445 FetchB 001069D8 80010068 887F0024 809F001C 807F0018 90640000 9BBF0024
1999472 R e d B 0088FEAO 8017BDE8 8017BDE8 00000001 00000000 00000000 00000000
1999502 FetchB 00106960 907F0018 9OBFOOlC 93850000 93830004 907B0004 807DEOOC
1999534 FetchB 00106980 809DEOlO 80780004 409EFFE4 7F832000 809B0004 807F0014
1999561 FetchB 001069AO 80810038 807F0010 409D0014 7F832040 809B0004 807F0014
1999590 Fetch3 001069EO 83810070 8361006C 83C10078 83A10074 7C0803A6 83E1007C
1999617 FetchB 00106100 93ClFFF8 7C0802A6 9001FFF4 93ElFFFC 90410040 9421FFBO
1999626 FetchB 00133D20 88610040 60000000 60000000 480067D5 80010060 7FC3F378
1999655 Eieio 00010007
1999657 FetchE 0011BD80 987FOOBl 7FC3F378 38630080 807F0050 480168Al 889FO069
1999686 Sync 01COFD66
1999693 FetchB 00113DAO 413A0010 2F030000 4BFEAF7D 807F0050 887FOOB1 60000000
1999720 FetchB OOllBDCO 4BFEAF65 80710050 807F0094 60000000 419A0014 2F030000
1999743 Luarx 0089AE6C
1999755 FetchB OOllBDEO 805FOOBC 98640000 48000008 807F00A4 801FOOCO 805FOOBC

1999721
1999721
1999723
1999724
1999726
1999727
1999729
1999730
1999731
1999731
1999732

L 1999743
1999744
1999745
1999746
1999747
1999747
1999748
1999748
1999749

dc4 4bf eaf65
23-80106.00106 d28 7c0802a6

d2c 93alfff4
d30 93clf f f 8
d34 93elf f f c
d38 9001fff0
d3c 9421ffb0
d40 7c7dlb78
d44 Bbddf f e8
d48 7f c3f 378
d4c 48013fad

23-8011a.0011a cf8 7ca01828
cf c 3885f f f f
dOO 7c80192d
do4 40a2f f f 4
do8 7~832378
doc 4e800020

d64 7c631b79
d58 408200d4

23-80106.00106 d50 60000000

(a) Sample transaction records from the same txn file used in Figure l(a). (b) Sample instruction records corresponding to the transaction
records shown in (a).

at a time, which again yields single-byte bus transactions operating systems. The main purpose of the study was to
and degraded performance. characterize the sequences of data patterns seen by each

general-purpose register (GPR) usage for two different access of each GPR. Figure 4 shows plots of the relative
In another study, we looked at the characteristics of register. At the same time, we measured the frequency of

P. A. SANDON ET AL. IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997

20.00 -
h

E 18.00
6

-

16.00 ' 14.00

-
rn

-
-2 - 12.00 -

10.00

8.00

6.00

-

-

-

4.00

2.00

0.00

-

-

-

/

I I I I I I I I

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Register number

J

~ - " " - " ~ "

1 Percentage of GPR load instructions for individual registers versus register number.

frequency of usage of the 32 GPRs for four different
applications running on three different operating systems.
Among the interesting aspects of these data is the fact
that the statistics are similar for the first and fourth
applications, despite the fact that they correspond to
quite different applications on two different operating
systems.

We can quantify the register usage in these four cases
by measuring how much they vary from the case in which
all registers are equally used. The entropy of the register
frequencies is an appropriate indicator of the flatness of
the distribution. For 32 registers, equal usage will yield an
entropy of 5. The entropies of the four applications shown
in Figure 4 appear in Table 1. The corresponding powers
of two, also shown in Table 1, represent the effective
number of registers in use by the application. Low register
usage, such as that in application 2, indicates that better
register management is a potential source for performance
improvement.

Table 1 GPR entropy and effective register set size.

Application Entropy Effective number of registers

1 3.92 15
2 2.95 8
3 4.52 23
4 3.57 12

Another performance issue that we have examined is
that of the Java virtual machine (JVM) running certain
benchmarks. There are a number of potential bottlenecks
in the process of interpreting Java programs, one of them
being the execution of the byte codes (that is, the virtual
machine instructions) themselves. While analysis of the
interpretation of individual byte codes can be done
statically, dynamic analysis is needed to identify which
byte codes are used most frequently. Trace analysis of
byte codes is somewhat more problematic than analysis of 341

, IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. A. SANDON ET AL.

Table 2 Percentage of most frequent byte codes in ray trace.

Byte code Percentage

dload 23.096
dmul 12.693
dadd 7.879

i2d 6.666
dstore 6.454

dsub 2.843
aaload 2.407
iaload 2.406

Idc2-w-quick 1.533
aload-0 1.322

ior 1.320
if-icmplt 1.318

iinc 1.314
isub 1.310

Idc-quick 1.207
getfield-quick 0.990

iconst-0 0.874
dconst-0 0.767

invokestatic-quick 0.660
ifge 0.660

ish1 0.660
ddiv 0.660

bipush 0.660
dconst-1 0.660

dcmpg 0.660

Table 3 Percentage of most frequent byte-code pairs in
ray trace.

First byte code Second byte code Frequency

dload dmul 11.265
dload dload 6.783
dmul dadd 5.249

i2d dload 3.610
dmul dload 3.397
dadd dload 3.386

dstore dload 2.736
dload dadd 2.300
dsub dstore 2.183

i2d dstore 1.746
dadd dstore 1.427

i2d dsub 1.310
isub i2d 1.310

iaload isub 1.310
getfield-quick i2d 0.990

aload-0 getfield-quick 0.990
if-icmplt ldc-quick 0.877

Idc2-w-quick dload 0.873
dmul dsub 0.873
dload dconst-0 0.767

Idc2-w-quick dmul 0.660

ddiv dstore 0.660
dsub ldc2-w-quick 0.660
dadd aload-0 0.660

ish1 0.660

dcmpg ifge 0.660

bipush
342

P. A. SANDON ET AL.

Table 4 Percentage of byte codes at various JVM stack
depths in ray trace.

Stack depth Percentage Cumulative

0 15.348 15.348
1 5.275 20.623
2 36.217 56.841
3 7.880 64.721
4 19.817 84.538
5 2.311 86.849
6 9.967 96.815
7 0.660 97.476
8 1.864 99.340
9 0.000 99.340

10 0.660 100.000

native instructions, because the byte codes themselves are
data. Since our trace contains data, we can easily extract
byte-code information from the trace. Table 2 presents the
frequencies of the most commonly occurring byte codes in a
particular segment of the public-domain ray-trace benchmark.
Table 3 presents the frequencies of the most commonly
occurring pairs of byte codes in that same segment.

Another aspect of the JVM that is of interest is its data
handling. The JVM is a stack-based architecture. It is
useful in dealing with a stack to characterize the depth of
the stack over time. This will have implications both for
real hardware implementations and for virtual machine
implementations of the architecture. Table 4 shows the
percent of time that the stack is a particular depth for the
same segment of the ray-trace benchmark as in previous
tables. Note the relatively larger numbers for the even-
numbered depths. This is due to the use of double-
precision arithmetic throughout the application, each
variable using up two positions when stored in the stack.

While we have touched here only on the analysis that
has been done with these particular trace data sets, these
examples highlight several aspects of the overall
functionality of the NStrace toolset.

Concluding remarks
Hardware-based approaches to trace generation are
generally acknowledged as yielding high-quality traces, but
are commonly criticized for their cost. The NStrace tool
described in this paper fits both of these characterizations.
NStrace requires a logic analyzer and supporting hardware
to access the processor pin signals. In order to get bus
recordings that yield sufficiently long traces (up to 100
million instructions), we use additional data acquisition
and compression hardware along with deep logic analyzer
memory. The result of this investment is an ability to
generate traces having the following characteristics.

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997

The trace data very accurately reflect the characteristics
of the system under normal operation. This is due both to
the noninvasive nature of the recording and to the use of
the bus-driven simulation. By passively recording the bus
signals, normal timing relations among the processor and
other system components are maintained. Since the
simulator continually synchronizes with the bus recording,
any divergence between the behavior of the simulated
processor and that of the target processor quickly becomes
apparent.

processor throughout the recording period. This includes
execution of kernel code, of driver and library code, and
of user code. These traces can therefore be used to
characterize and analyze the behavior of both system and
application code, and their interactions.

The trace data contain bus timing information that
allows the internal state information, such as the
instruction sequence, to be aligned with external state
information, such as bus transactions. This is useful in
analyzing potential bottlenecks in uniprocessor systems
and provides the mechanism for generating traces in
multiprocessor systems, or more generally whenever
snooping may occur.

Finally, the trace is rich, in the sense that it contains
more information than other trace generation approaches.
This richness is due to the use of the architectural
simulator used to generate the trace from the bus
recording. Since the simulator models most details of the
architecture, it has access to a wide range of system
variables. For example, while a typical instruction trace
might include the instruction and the effective instruction
address, the NStrace trace data set includes both effective
and real addresses of both instructions and data, along
with the instruction, the data (for both memory accesses
and for register operations), cacheability and protection
information, and bus timing.

system code and has been used with several operating
systems and system environments. As we described in the
previous section, these traces have proven useful in
performing a variety of performance and functional
studies, some of which would be difficult or impossible to
do with other tracing methods.

The trace data reflect the behavior of the target

NStrace generates rich, accurate traces of both user and

Acknowledgments
The authors wish to thank the other members of the
NStrace team for their contributions to the project:
Marina Davidovich, Christy Johnson, Kathy McGroddy,
Ethan Rowe, and Dave Russell. We would particularly like
to thank Dr. Ron Black and Tom Wilson for their support
in making this effort possible.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft
Corporation, Apple Computer, Inc., or Sun Microsystems, Inc.

References
PowerPC 604 User’s Manual, Order No. MPR604UMU-01,
IBM Corporation, 1994; available through IBM branch
offices.
R. A. Kamin, G. B. Adams, and P. K. Dubey, “Dynamic
Trace Analysis for Analytic Modeling of Superscalar
Performance,” Performance Eval. 19, No. 2-3, 259-276
(March 1994).
R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu, “Evaluation of Multithreaded
Uniprocessors for Commercial Application
Environments,” Proceedings of the 23rd International
Symposium on Computer Architecture, Philadelphia, PA,
May 1996, pp. 203-212.
J. K. F. Lee and A. J. Smith, “Branch Prediction
Strategies and Branch Target Buffer Design,” Computer
17, No. 1, 6-22 (January 1984).
C.-P. Wen, “Improving Instruction Supply Efficiency in
Superscalar Architectures Using Instruction Trace
Buffers,” Proceedings of the 1992 ACMISIGAPP
Symposium on Applied Computing, Kansas City, MO,
March 1992, pp. 28-36.
A. Poursepanj, “The PowerPC Performance Modelling
Methodology,” Commun. ACM 37, No. 6, 47-55 (June 1994).
A. J. Smith, “Cache Memories,” Computing Surv. 14,
No. 3, 473-529 (September 1982).
D. Nagle, R. Uhlig, T. Stanley, T. Mudge, S. Sechrest, and
R. Brown, “Design Tradeoffs for Software-Managed
TLBs,” Proceedings of the 20th International Symposium on
Computer Architecture, San Diego, May 1993, pp. 27-38.
T. Adams, “A Measurement Study of Memory
Transaction Characteristics on a PowerPC-Based
Macintosh,” Proceedings of COMPCON ’96, San Francisco,

D. Kimelman, B. Rosenburg, and T. Roth,
“Strata-Various: Multi-Layer Visualization of Dynamics in
Software System Behavior,” Proceedings of IEEE
Visualization ’94, October 1994, pp. 172-178.
R. R. Heisch, “Trace-Directed Program Restructuring for
AIX Executables,” IBM J. Res. Develop. 38, No. 5 ,
595-603 (September 1994).
T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad,
P. Cao, E. W. Felten, G. A. Gibson, A. R. Karlin, and K.
Li, “A Trace-Driven Comparison of Algorithms for
Parallel Prefetching and Caching,” Technical Report
UWCSE 96-09-01, University of Washington, Seattle, 1996.
M. VandenBrink, “Performance Implications of the
PowerPC Architecture’s Hashed Page Table,” Proceedings
of the IEEE International Performance, Computing and
Communications Conference, Phoenix, AZ, February 1997,

R. F. Cmelik and D. Keppel, “Shade: A Fast Instruction-
Set Simulator for Execution Profiling,” Technical Report
UWCSE 93-06-06, University of Washington, Seattle, 1993.
PowerPC Visual Simulator Users Guide, Order No.
87GA0201, IBM Corporation, 1993; available through
IBM branch offices.
J. Pierce and T. Mudge, “IDtrace-A Tracing Tool for
i486 Simulation,’’ Technical Report CSE-TR-203-94,
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, 1994.

1996, pp. 100-110.

pp. 315-320.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

343

P. A. SANDON ET AL. IBM J. RES. 1 3EVELOP. \ {OL. 41 NO. 3 F dAY 1 997

17. D. W. Wall, “Systems for Late Code Modification,”
Research Report 9213, Digital Western Research
Laboratory, Palo Alto, CA, wrl-techreports@pa,dec.com
(May 1992).

18. J. B. Chen, D. W. Wall, and A. Borg, “Software Methods
for System Address Tracing: Implementation and
Validation,” Research Report 9416, Digital Western
Research Laboratory, Palo Alto, CA,
wrl-techreports@pa.dec.com (September 1994).

19. J. Torrellas, A. Gupta, and J. Hennessy, “Characterizing
the Caching and Synchronization Performance of a
Multiprocessor Operating System,” Proceedings of
ASPLOS V , Cambridge, MA, October 1992, pp. 162-174.

20. S. Eggers, D. Keppel, E. Koldinger, and H. Levy,
“Techniques for Efficient Inline Tracing on a Shared-
Memory Multiprocessor,” Proceedings of the 1990 ACM
Sigmetrics Conference on Measurement and Modeling of
Computer Systems, Boulder, CO, May 1990, pp. 37-47.

21. S. McMahon, “The Capture, Characterization and
Performance Analysis of Macintosh Traces,” Proceedings
of COMPCON ’96, San Francisco, 1996, pp. 94-99.

“Designing the PowerPC 60X Bus,” ZEEE Micro 14,
No. 5 , 42-51 (October 1994).

22. M. S. Allen, M. Alexander, C. Wright, and J. Chang,

Received August 8, 1996; accepted for publication
April 30, 1997

344

P. A. SANDON ET AL.

Peter A. Sandon ZBM Microelectronics Division, Burlington
faciliq, Essex Junction, Vermont 05452 (sandon@btv.ibm.com).
Dr. Sandon is a Senior Engineer in the PowerPC Performance
Engineering Department. He received the B.S. degree in
electrical engineering from Cornell University, the M.S.
degree in electrical engineering from the University of
California at Berkeley, and the Ph.D. degree in computer
science from the University of Wisconsin. His current
interests are in microprocessor performance measurement
and analysis.

Yu-Chung Liao ZBM Microelectronics Division, 11400 Burnet
Road, Austin, Texas 78758 (ycl@vnet.ibm.corn). Dr. Liao
is Manager of the PowerPC Performance Engineering
Department. He received the Ph.D. degree in mathematics
from Brown University in 1982. The focus of his current work
is on performance analysis and software technology for
PowerPC microprocessors.

Thomas E. Cook IBM Microelectronics Division, Burlington
facili8, Essex Junction, Vermont 05452 (tomcook@btv.ibm.com).
Mr. Cook is an Advisory Programmer in the PowerPC
Performance Engineering Department. He received the
B.S. degree in computer science from Clarkson University.
For the past ten years, Mr. Cook has worked for IBM
developing operating system and networking software.
Currently, he works on improving the performance of
software and hardware for PowerPC platforms.

David M. Schultz ZBM AS1400 Division, 3605 Highway 52
N., Rochester, Minnesota 55901 (dschultz@vnet.ibm.com).
Mr. Schultz is a Staff Engineer in the AS1400 Processor
Verification Department. He received the B.S. degree in
computer science from the University of Wisconsin at Stout.
Mr. Schultz has worked in tool development, processor
performance, and processor verification groups since joining
IBM. His interests are in processor, operating system, and
compiler development.

Pedro Martin-de-Nicolas IBM Microelectronics
Division, 11400 Burnet Road, Austin, Texas 78758
(pedrom@austin.ibm.com). Mr. Martin-de-Nicolas is an
Advisory Programmer in the PowerPC Performance
Engineering Department. He received the B.S.E.E. degree
from Rice University in 1987. Prior to joining IBM in 1990,
Mr. Martin-de-Nicolas worked for NCR designing computer
peripheral chips. His interests are in designing and analyzing
both hardware and software for high performance.

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1991

