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This  paper presents instruction and data 
cache miss rates for the SPEC95" benchmark 
suite. We have simulated the instruction and 
data traffic resulting from 500 million 
instructions of  each  of the 18 programs. 
Simulation results show that only a few of the 
applications place more than modest demands 
on the memory system.  This  was noticed 
for  instruction caches,  where  only  a few 
workloads required more than a 32Kb cache to 
achieve miss rates of less than one miss every 
1000 instructions. We also analyze two 
prefetching algorithms using the SPEC95 
workload: next-sequential prefetching and 
shadow-directory prefetching. Each 
prefetching algorithm is evaluated using three 
performance metrics: coverage,  accuracy,  and 
traffic. Variations in each prefetching algorithm 
involve the use of a confirmation mechanism 
that receives feedback information about the 
quality of each prefetch. With confirmation, the 
prefetching algorithm is able to enhance the 
accuracy of prefetching decisions. The results 

show that shadow-directory prefetching 
averages miss coverage about ten percent 
higher than next-sequential prefetching when 
used in prefetching instructions (about 60 
percent coverage for next-sequential 
prefetching versus 70 percent for shadow- 
directory prefetching).  The prefetching 
accuracy for  both algorithms is more than 
90 percent  when  a confirmation mechanism is 
used. In general, data prefetching is shown to 
be less accurate and to provide less coverage 
than instruction prefetching. Shadow-directory 
prefetching averaged about a 40 percent miss 
coverage  versus  a 25 percent miss coverage 
for next-sequential prefetching. Prefetching 
accuracy is over 70 percent when confirmation 
is applied. 

1. Introduction 
We examine the memory referencing  behavior of the 
Standard  Performance  Evaluation  Corporation  CPU 
benchmark  suite  (SPEC95**) [l] for a large  set of cache 
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Table 1 SPEC95  benchmark  programs.* 

Floating-point benchmarks: CFP95 

Application Description 

10l.tomcatv 
102.swim 
103.su2cor 
104.hydro2d 

107.mgrid 
1lO.applu 
125.turb3d 

14l.apsi 

145.fPPPP 
146.wave5 

A mesh-generation  program 
Shallow-water model with  513 X 513  grid 
Quantum physics; Monte  Carlo  simulation 
Astrophysics;  hydrodynamical Navier-Stokes 

Multigrid  solver in 3D  potential field 
Parabolic/elliptic partial  differential  equations 
Simulates isotropic, homogeneous  turbulence 

Solver regarding  temperature, wind,  velocity, 

Quantum chemistry 
Plasma physics; electromagnetic  particle 

equations 

in a cube 

and  distribution of pollutants 

simulation 

Integer benchmarks: CINT95 

Application Description 

099.go 
124.m88ksim 

126.gcc 
129.compress 
130.li 
132.ijpeg 
134.perl 

147.vortex 

Artificial  intelligence; plays the  game of “Go” 
Motorola 88K chip simulator; runs test 

New version of Gcc;  builds SPARC  code 
Compresses  and  decompresses file in memory 
LISP  interpreter 
Graphic  compression  and  decompression 
Manipulates strings (anagrams)  and  prime 

numbers in Per1 
A database  program 

program 

*Adapted from http:llwww.specbench.org. 

memory organizations.  The  SPEC**  benchmarks  are 
popular  for  comparing  the  performance of workstations. 
They  attempt  to  measure  processor  and  memory system 
performance  under  different  compiler  optimization 
strategies.  In  this study we focus on the memory  system 
behavior with the goal of identifying the  programs  and 
cache  organizations  that may pose  performance  problems. 

The  SPEC95  CPU  benchmarks  are divided into two 
groups:  floating-point  (CFP95)  and  integer  (CINT95).  The 
CFP95  group reflects  “numeric-scientific applications,” 
while the  CINT95  group is  “system or commercial.” 
SPEC  has  tried  to  isolate  the  parts of the  application  that 
are  CPU-intensive  and involve little  operating system 
overhead  or  other  I/O.  The individual benchmarks  are 
summarized in Table 1. The  trace  lengths  are  described in 
Table 2. 

Related  work 
In  addition  to describing  a simple  variant of next- 
sequential  prefetching,  this  paper  studies a more 
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Table 2 Trace  characteristics (all numbers in millions). 

Benchmark Instructions Memory Loads Stores 
references 

099.go 524 218 165 53 
124.m88ksim 524 181 126 55 
126.gcc 426 159 105 53 
129.compress 524 200 139 61 
130.li 524 240 144 95 
132.ijpeg 524 166 114 52 
134.perl 524 248 149 98 
147.vortex 524 255 157 97 
10l.tomcatv 524 205 144 60 
102.swim 5 24  212 141  71 
103.su2cor 524 234 160 74 
104.hydro2d 524 195 143 52 
107.mgrid 524 246 188  58 
1lO.applu 524 212 146 66 
125.turb3d 524 247 135 112 
14l.apsi 524 218 136 81 

146.wave5 524 213 170  102 
145.fPPPP 524 295 211 83 

described in  a patent by Pomerene  et al. [ 2 ] .  The  shadow- 
directory  prefetching  algorithm is described in Section 4. 

common  form of prefetching [3]. In Section 4, we describe 
trade-offs  one  faces when implementing a particular kind 
of next-sequential  prefetching. 

Gee  et al. carried  out a  similar study [4] for  the  early 
release of the  SPEC  benchmarks,  the so-called SPEC89**. 
Their work focused on the miss ratios  and  does  not 
include  an analysis of prefetching.  In  our work, we 
attempt  to  use  the  metric of misses  per instruction (MPI) 
rather  than miss ratios. A cache miss ratio is the  number 
of loads  or  stores  that  result in cache misses compared  to 
the  total  number of memory operations. On the  other 
hand,  the  number of misses per  instruction reflects the 
memory  bandwidth  that  must  be  supported  for  each 
instruction.  MPI is useful  for  another  reason. To obtain 
the  memory  component of cycles per  instruction  (CPI), 
one  need only multiply  misses per  instruction by the 
average  number of memory cycles to service  a cache miss. 
Our  graphs actually use “misses per 1000 instructions,” a 
scaling that allows us to work with convenient  integers 
when describing miss rates.  We  use  the  abbreviation 
MPlOOOI to  denote misses per 1000 instructions. 

Compilers  can also be  relied  upon  to  insert  prefetch 
instructions  into  the  programs  to  prefetch  data  or  even 
other  instructions [5-121. In  general,  the  compiler 
algorithms  attempt  to  predict which of the  program 
memory references will cause  cache misses. For  those 
memory references,  prefetch  instructions  are  inserted. As 
part of this  study, we have  identified the  loads  and  stores 
in the  SPEC95  benchmarks  that  are  responsible  for misses 

Next-sequential  prefetching is a very simple and 
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in the  programs.  These  data  can  be used to  tune  compiler 
prefetching  algorithms by pointing  out  opportunities  for 
additional  prefetching  and  areas  where no prefetching is 
necessary. 

Methodology 
Each of the  18  benchmarks was compiled using Version 
3.1 of the IBM CSet  compiler  running on  AIX* 3.2.5. The 
only optimization  option  used was 03.   The benchmarks 
were  run using the  reference  inputs.  The  compiler 
benchmark, Gcc, is the only exception. For Gcc, only one 
of the  reference  inputs was run  through  the  compiler  and 
simulated. 

We used an  internal  tracing  tool  to  capture  the  memory 
references.  To  help avoid initialization behavior of the 
programs, we skipped  the  references  at  the beginning of 
each execution. For 14 of the  benchmarks, using  this  tool, 
we skipped  the first billion instructions in the  program  and 
traced  the next 500 million instructions.  For Gcc,  since it 
only ran  for  about 500 million instructions, we skipped 
only 100 million references. Only  nonprivileged references 
were  captured. 

To  help  validate  our  segment  traces,  we  examined  the 
hot-blocks in the execution  profiles. (Hot-blocks  are  the 
top  ten blocks, which account  for  most of the  instructions 
in the execution.) The  hot-block execution  profile for  the 
500 million instructions  matches very closely the  hot-block 
execution profile for  the full runs of the workloads. 

For  the  three  remaining  programs,  the  hot-block profile 
from  the 500 million instructions  (after  the  one billion 
that  were  skipped)  did  not  match  the hot-block  profile of 
the full run.  For  these  three (Su2cor, MSSksim, and 
Compress), we took  ten uniformly spaced  contiguous 
samples of 50 million  instructions. The  execution profiles 
for  the  sampled  traces  matched  those of the full  profiles. 

Overview of this paper 
In Section 2 we describe  the differing instruction  and  data 
cache miss rates  for  the  benchmarks.  We show how the 
largest  portion of the memory  system references  are 
biased  toward  the  data  cache miss traffic. In  Section 2,  we 
also  examine the  trade-offs involved for  splitting  the first 
level of instruction  and  data  caches  into two separate 
caches  or using one unified cache of the  same  total 
capacity. 

In  Section 3, we define three  metrics  that  are used to 
evaluate  prefetching algorithms:  coverage,  accuracy, and 
traffic. In  Section 4, we describe two prefetching 
algorithms:  next-sequential  and  shadow-directory 
prefetching.  Simulation  results  are  presented in Section 5 .  
Several graphs  are shown describing  the  coverage, 
accuracy, and traffic for  each  prefetching  algorithm. 
Finally, our  conclusions  and  future work are  presented in 
Section 6. 

Table 3 Cache organizations for the basic study. 

Capacity (Kb) 8, 16,  32,  64,  128,  256, 512 

Bytesper line 32,  64,  128,  256 
Policy LRU write-back write-allocate 

L I  Associativity 1, 2, 4, 8 

2. Cache  behavior of SPEC95 
In Table 3 we show the basic cache  organizations 
simulated  for  this  paper. 

Throughout  this  paper we refer  to  cache  organizations 
using the following notation: capacity/associativity/line size. 
Cache capacity is in kilobytes; cache  line  size  (or block 
size) is measured in bytes. For example,  a  32Kb cache 
with four-way  set-associativity and 128-byte cache  lines 
would be  described as 32141128. When we vary capacity, 
we denote it  with an asterisk: */4/128 describes  the 
collection of four-way  set-associative caches with 128-byte 
lines but  differing  capacity. 

Instruction cache 
In  this  section we examine the miss rates  for  an 
instruction  cache  as  cache capacity,  associativity, and  line 
size are varied. 

Varying capacity 
The  SPEC95  benchmarks  were  compiled  for  the  POWER 
Architecture*, which is modeled in the  compiler as  having 
a  32Kb instruction  cache. As a result,  the  compiler  unrolls 
loops  and  eliminates  subroutine-call  overhead  for small 
functions with this  cache capacity in mind.  For  the 
CINTY5 instruction  references, a 32Kb eight-way set- 
associative instruction  cache with 32-byte lines  produces, 
on average,  fewer than  one miss per 1000 instructions. For 
the CFPY5 instruction  references, a  64Kb cache is 
required  to  reach  such minimal miss rates.  At 32Kb, there 
are approximately three misses per 1000 instructions. 
Basically, the  compiler  does a good  job of reaching 
minimal miss ratios  for  the  intended  instruction cache. 

Figure 1 shows the  instruction  cache miss rates  for 
several  one-way  set-associative caches with 32-byte  lines. 
The Y-axis on these  graphs is in  a log scale and  represents 
the  number of misses per 1000 instructions  for  an 
application on a particular  cache.  Each curve on the  graph 
represents a particular  cache capacity in the  range  from 
8 Kb to 512 Kb. Large  vertical  distances  between curves 
indicate  that  the  larger  cache  (represented by the lower 
curve)  captured a significantly larger  piece of the working 
set. Similar graphs  are used to  describe  the  variation of 
other  parameters  and  to  examine  the  data cache. 

For *I1132 caches,  the  benchmarks with the  largest 
instruction miss rates  are Li, Gcc, Go,  Perl, MSSksim, 267 
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Fpppp, and Vortex. Most of these  required  at  least a 
32Kb cache  to have  fewer than  ten misses per 1000 
instructions. However, even with the  smallest 8/1/32 
caches,  the  cache miss rate  never  exceeded 100 misses per 
1000 instructions-one miss every ten  instructions. 

Most applications  dropped down to  one miss every 
100000 to  one million instructions  when  run  on a  512Kb 
instruction  cache,  Gcc  and  Vortex  are  the  exceptions  here. 
Even with  a  512Kb instruction  cache,  these two programs 
generated miss rates of approximately  one  per 1000 and 
one  per 5000 instructions, respectively. The  use of a four- 
way set-associative cache significantly reduces  the miss 
rate  for  Vortex but not  for Gcc. 

Varying  associativity 
Figure 2 shows the  cache family 32/*/32; in the figure, 
each curve on  the  graph  represents a particular 
associativity. By looking for  the  large  vertical gaps, we can 
see which benchmarks  benefit by increasing  associativity. 
However, increasing associativity does  not always reduce 
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miss rates; in some cases,  it can  lead  to  increases in the 
miss rate  for  an  application. Usually this is a problem only 
when  the  cache  lines  are long compared  to  the  total  cache 
capacity. For  example, in Figure 1, Applu  and Hydro2d 
displayed very small increases in miss ratio as the  cache 
associativity  was increased  from one-way to eight-way. For 
these two applications,  the  increased associativity and  the 
resulting  decrease in number of congruence classes (sets) 
caused  cached  data  to displace one  another.  With  more 
congruence classes, data  are  more  isolated  from  one 
another,  and  better  replacement decisions can  often  be 
made. 

For  the 32/*/32  caches,  a two-way cache  resulted in 
significant gains over  the  direct-mapped  alternative. Li 
experienced a reduction in miss rate by three  orders of 
magnitude when  a  four-way cache was used  (in  place of a 
two-way cache). Wave5 also showed large gains with a 
four-way  cache. All of the  benchmarks  other  than Gcc, 
Go, and  Vortex have  fewer than  one miss per 1000 
instructions with  a  four-way cache.  With  the four-way 
caches, all benchmarks except Vortex  generate  fewer  than 
ten misses per 1000 instructions.  Vortex  generated  the 
most  misses for  the 32/*/32 caches,  approximately 25 per 
1000 (one in 40 instructions). 

Varying line size 
Figures 3(a) and 3(b) respectively show the  cache families 
32/1/* and 32141%. Each curve on the  graphs  represents 
a different  line size.  As  with the associativity graphs, 
increasing line size can  result in increased miss rates when 
there  are  not  enough  cache  congruence classes. Figure 
3(b) shows such  anomalies  for Li, Tomcatv, MSSksim, and 
Perl.  For  these  four  benchmarks,  as  the  line size increased 
and  the capacity and associativity were  held  constant,  the 
miss rate  increased.  It is well known that miss ratio can 
increase as line size  increases; our  experiments show  many 
instances of such behavior. 

The effects of line size are  not as dramatic as those  for 
increasing  capacity or associativity of the  instruction 
cache. For  the one-way caches, it is generally good to 
increase  the  line size. For  the four-way caches,  the  four 
programs  mentioned above do  not benefit from  the 
longest  line size-256 bytes. With  the  exception of 
Tomcatv, however, Li, M88ksim, and  Perl  benefited  from 
64-byte lines  (compared  to 32-byte lines)  and Li  benefited 
only slightly from 128-byte  lines. These  effects  are 
produced by reducing  the  number of congruence classes  in 
the  more set-associative  caches. For  the  direct-mapped 
caches, increasing line size appears  to  be beneficial; for 
the  more associative caches,  the long lines  are generally 
beneficial and only rarely harmful. However,  any harmful 
effects  produced by increasing line size should  not 
outweigh the  benefits delivered to  the  other applications. 
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Instruction  cache miss rate as  cache line size is vaned from 32 I bytes  to 256 bytes;  32Kb caches, (a)  one-way  and (b) four-way set- 1 associative. 

Data cache 
In  the previous section we analyzed the  instruction miss 
rates  for  the  SPEC95  benchmarks.  In  this  section we carry 
out similar  analysis for  the  data  references.  In  contrast 
to  the  instruction  side,  the  data  side  poses  more of a 
challenge  to  the memory  system  when the  caches  are 
small. 

Valying capacity 
Figures 4(a) and 4(b) respectively  show the miss rates  for 
the  cache families */1/32 and */4/32. The  data  side clearly 
has  higher miss rates  than  the  instruction side.  Wave5, 
Tomcatv,  and Swim generated  the  most  data misses-more 
than  one every ten instructions-with the  8Kb  and 16Kb 
caches  for  both  the one-way and four-way  caches.  A 32Kb 269 
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cache is required  to  reduce  the miss rates  for  these 
applications  to less than  one miss every ten  instructions 
(100 MP1000I). 

Another  difference  from  the  instruction  side is that 
many of the  benchmarks have miss rates in the 10-100- 
MPlOOOI range  even with 128Kb caches (one-way). For 
some,  the miss rate  does  not  drop below 10 MPlOOOI even 
when  512Kb caches  are  used.  In  general,  such behavior is 
caused by either very large working sets or a touch-the- 
data-once  pattern in the  data  references of the  trace.  The 
touch-the-data-once  pattern would be  expected  during 
program  initialization. However, since  the first billion 
instructions  are  skipped  for all of the  programs except 
Gcc, and since the execution  profiles from  the  traces 
matched  the profiles from  the full  executions, we felt  that 

ljpe fppp gcc vort mgri turb swim su2c tomc 
perl m88k li go camp appl apsi hydr wave 

One-way -” Two-way - *-’ Four-way -0- Eight-way 4- 

this  behavior is not necessarily caused by programs 
initializing data  structures  before  the  “real  work”  starts. 
Since we know which instructions  are  responsible  for  the to eight-way; 32Kb caches, 32-byte lines. 
misses  in the  executions, we can  correlate  this  information 
with the  application  source  to verify our hypothesis. This 
remains as future  work. 

Varying  associativity 
Figure 5 shows a  family of 32/*/32  data caches. The 
associativity is varied from one-way (direct-mapped)  to 
eight-way set-associative. The  graph shows that  increasing 
associativity can have large effects on  the miss rates  for 
certain  benchmarks.  For example, M88ksim, Fpppp,  Perl, 
Go, Li, Vortex,  and  Gcc  experienced  large  reductions in 
miss rate with the two-way cache  compared to the  direct- 
mapped cache. For the workloads  with the  larger miss 
rates  (Applu, Swim, Su2cor, Hydro2d,  Tomcatv,  and 
WaveS), the  increased associativity is of little benefit. 

Figure 5 also  presents  one anomaly where  increased 
associativity slightly increases  the miss rate  for  Compress. 
The two-way set-associative cache  has a slightly larger miss 
rate  than  the one-way cache.  However,  the four-way and 
eight-way caches improve upon  both  the one-way and two- 

m88k fppp ijpe go turb mgri appl su2.c tomc 
perl gcc li vort camp apsi swim hydr  wave 

32 bytes “c 64 bytes -*- 128 bytes -0- 256 bytes 4- 

way cache miss rates.  Here,  the benefits of four- or eight- “̂ _ll-_.lll._. ._ ..... . 

way associativity made  up  for  the  decrease in the  number 
of congruence classes (cache capacity is held  constant). 

The  graph in Figure 5 also  shows the diminishing 
returns  from four-way and eight-way caches  compared  to 
two-way set-associative  caches. This is observed in  many of 
the  graphs  that we have examined. However, Per1 is the 
exception. A large  drop in miss rate still occurs  for  the 
eight-way cache,  but it  can be  argued  that  the miss rate is 
so low already with a  four-way cache  that any further 
reductions  enabled by the eight-way cache would be of 
little benefit. 

Data cache miss rate as cache line size is varied from 32 byte 
256 bytes (32Kb caches, four-way set-associative). 

line size is varied in  a  family of 32/4/* caches. The  line 
sizes are 32, 64, 128, and 256 bytes,  with each  represented 
by a separate  curve.  This  graph is very different  from 
Figure 3, which  showed  a more  uniform  reduction in miss 
rate as line size is increased.  Here, in Figure 6, we see 
that  as  line size increases,  the miss rate  often 

Varying  line  size Decreases  (Ijpeg, Li, Mgrid, Applu,  Hydro2d); 
Longer  cache  lines  help  applications with good  spatial Increases  (Perl,  Fpppp, Go, Vortex,  Tomcatv); 
locality. Figure 6 presents  the  data  cache miss rates as the Is  relatively unchanged. 271 
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Table 4 Cumulative percent of all data misses caused by 
the top ten instructions causing data misses. 

Benchmark  Cumulative  percent 
of data  misses 

li 88.84 
turb3d 54.40 
ijpeg 47.15 
fPPPP 44.67 
mgrid 32.01 
perl 30.02 
apsi 24.51 
swim  23.22 

hydro2d 20.71 
vortex 13.51 

aPPlu  22.20 

go 12.89 
gcc  5.56 

Table 5 Number of load or store instructions required to 
account for 90 percent of all the data-miss traffic in each 
program. 

Benchmark Number of Cumulative  percent 
instructions of data  misses 

gcc  983 + 56.30 
go 760+ 84.68 
li 11 90.06 
ijpeg 38  90.43 
turb3d 46 90.10 
fPPPP  47  90.16 
swim 57 90.18 
mgrid 66 90.09 
perl 66 90.02 
apsi 112  90.21 

hydro2d 228  90.04 
vortex 1233 90.00 

aPPlu 194 90.04 

Note: Since we kept  track of only those  instructions  responsible  for at least 500 
misses, and since Gcc and Go are so “Rat,”  those !mo did not reach 90 percent. 

For many of those  applications  the  increase  (or  decrease) 
in miss rate is quite  large.  The  benefits of increased  line 
size are  larger  than  the  effects of increased associativity. 
This  graph suggests that  the  larger 256-byte lines might be 
useful for  aggregate  reductions in miss rate  on a 32Kb 
four-way  cache. It would not  help  all of the workloads, but 
it  does  help  some significantly. To verify this hypothesis, 
one would need  to  look  at  the  increased  memory 
bandwidth  requirements  and  bus  queuing  effects  that 
would result  from  transferring  longer  cache  lines  into  the 
primary  cache. 

Stride in the data misses 
We  measured  the  stride in the  cache misses  in two ways. 

272 One we call lust-miss, or  casual  stride,  and  the  other is 
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called stride with respect to an instruction. In  measuring 
casual  stride,  cache misses are  watched as  they occur,  and 
the  difference in their  address is recorded  as  the  program 
executes. Stride with respect  to a particular  instruction is 
somewhat  different.  In  this case, stride is calculated  based 
on the  last  cache miss caused by the  same  load  or  store 
instruction when  it executed previously. One key 
difference  between  the two kinds of stride is that  the 
stride with respect  to  instruction  can  be  (and very often is) 
zero  cache lines. This would happen if a cache  line  were 
displaced from  the  cache in the  time  between two accesses 
by the  same  instruction. 

Casual  stride would be  the  sort of stride covered by a 
simple next-sequential  prefetcher.  Stride  with  respect  to 
instruction is useful for analyzing more  sophisticated 
table-based  prefetchers, which use  instruction  information 
in an  attempt  to refine their guess of the  stride in the 
reference  pattern. 

We now analyze the  stride in the  data  references with 
respect  to  instructions  for  the  SPEC95  benchmark  suite  as 
a whole  when  run  with 32/4/32  primary data  caches.  We 
compiled  histograms of the  frequency of each  stride.  The 
stride is measured in cache lines. 

As we increase  cache  line size, the  dominant  (most 
frequent)  strides  shift.  For 32-byte lines (Figure 7), stride 1 
is most frequent  (43 percent)-these are  next-sequential 
misses by the  recurrences of the  same  instruction.  Stride 3 
accounts  for  the next most  frequent  stride with ten 
percent.  Strides 6 (four  percent), 2 (three  percent), 256 
(three  percent),  and 0 (three  percent) follow. For 64-byte 
cache  lines (figure not  shown),  stride 1 is still dominant 
with  43 percent,  but now stride 0 is second,  accounting  for 
14  percent of all strided  cache misses. Stride 3 still 
accounts  for  ten  percent of the misses. With 256-byte 
cache  lines (figure not  shown),  Stride 0 is dominant  with 
44 percent,  and  stride 1 accounts  for only 15 percent.  We 
see  that  as  cache  line size increases,  next-sequentiality 
drops off and  second misses to  the  same  cache  line 
become  more  frequent.  This  behavior is caused by what 
we call congruence-class starvation; that is, there  are  not 
enough  sets in the  long-line  caches  compared  to  caches of 
the  same capacity with  shorter lines. 

Number of instructions causing data misses 
Tables 4 and 5 show which instructions  contribute  the 
most misses  in the  benchmarks.  These  data  are collected 
from a 32/4/32 data  cache.  Table 4  shows the  percent of 
all data misses contributed by the  top  ten  load  or  store 
instructions causing data misses. To  measure  the tail of 
the  distribution of instructions,  Table 5  shows the  number 
of instructions  required  to  reach 90 percent  of all data 
misses. In  our  simulator, we report only the  instructions 
for which more  than 500 misses occurred.  Consequently, 
we see  in  Table 5 that  the  “long flat tails” of Gcc  and  Go 
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do  not  reach 90 percent when one  considers only the 
instructions causing more  than 500 misses. Gcc  and Go 
appear  to have  many instructions  responsible  for a few 
misses,  in sharp  contrast  to  programs such  as  Li or Ijpeg, 
where 11 and 38 instructions respectively contribute  over 
90 percent of the misses. 

Comparing  instruction  and  data miss rates 
To  better distinguish the  applications with more 
instruction  or  more  data traffic, we directly compare  the 
instruction  and  data miss rates  for  the  SPEC95 
benchmarks. Figure 8 shows the  ratio of data misses to 
instruction misses on equal-size  primary  caches. The  ratio 
is plotted using  a log scale, and a horizontal  line is drawn 
where  the  data  and  instruction miss rates  are  equal.  The 
figure shows the  ratio  for  each  benchmark  and  for 
*/4/32  caches. Each curve represents a different  cache 
capacity: 32Kb, 64Kb, and 128Kb. 

Figure 8  shows that most of the  benchmarks have at 
least 100 times  more  data-miss traffic than  instruction- 
miss traffic. At  one  extreme,  Tomcatv, Swim, and 
Compress  can have 100000  times  more  data-miss traffic 
than  instruction-miss traffic. At  the  other  extreme,  the 
32Kb caches  Vortex, Gcc, Perl,  and Go can have more 
instruction-miss  traffic than  data-miss traffic from  their 
primary caches. 

Split vs. unijied  caches 
Figure 9 compares  the miss rates of split and unified 
primary  caches. In  the figure the split instruction  and  data 
caches  are half the size of the unified  primary  cache. The 
four curves represent 

Data-miss  rate  from a 16/4/32 cache  (“data  16”). 
Instruction-miss  rate  from a 16/4/32 cache  (“instr  16”). 
Sum of the  previous two lines (“split  16/16”). 
Miss rate  from a  unified 32/4/32 cache  (“unified 32”). 

We  see  that  the unified cache occasionally reduces  the 
aggregate miss rate  delivered  to  the L2. For Swim, Wave5, 
and  Tomcatv,  the  extra capacity of the unified cache 
significantly reduces  the miss rate (70, 41, and  54  percent, 
respectively). Since  those  three have very little  instruction- 
miss traffic, the gains are purely from  accommodating  the 
larger working set of the  data. 

Fpppp  behaves differently.  Since the  applications  are 
compiled  and  optimized  for 32Kb  primary instruction 
caches,  Fpppp  has a very large  instruction miss rate with 
the 16Kb primary caches. In this case,  the unified cache 
outperforms  the split  caches because of its very large, 
frequently  executed  inner basic  block that  contains 4138 
32-byte instructions-a little  over 16Kb. For  the  cases we 
have examined  (beyond what is presented  here),  the 
unified cache  outperforms  the split caches only 

Stride (in cache lines) 

’ caches  in SPEC95. 

1 

32Kb-e- 64Kb- 4- ’ 128Kb* 

1 Ratio of data-miss rates to instruction-miss rates for */4/32 caches. 

occasionally when  there is significant  traffic from  both  the 
instructions  and  the  data. 

Perl is the only application  where  the unified cache  has 
a larger miss rate  than  the  separate half-size instruction 
and  data caches. However,  even  this  difference is small: 
about  one miss per 1000 instructions.  In  general,  the 
unified caches  perform as well as the split caches or, as in 
the  several  caches  mentioned above,  much better. 273 
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3. Prefetching  terminology 
In this section, we discuss three  fundamental  aspects of 
memory  hierarchy  prefetching:  coverage, accuracy, and 
traffic. They measure, respectively, the  number of misses 
removed by the  prefetching  algorithm,  the quality of the 
prefetching decision, and  the  amount of extra  bandwidth 
required of the memory  system to  support  prefetching. 
The goal in prefetching is to have high coverage, high 
accuracy, and minimal extra traffic. Prefetching traffic 
can  be simply subdivided into two categories: "good" 
prefetches  and "bad" prefetches: 

Prefs = PrefHits + PrefBad 

The  good  prefetches  are  used by the  program  before  they 
are  displaced  from  the  buffer  or  cache in which they  are 
held. The  bad  prefetches  are  not  used by the  program 
before they are displaced. There  are finer  subdivisions 
based on the  latency  covered by the  prefetches,  but they 
are  not  important  at  this  time. 

M. J. CHARNEY AND T. R. PUZAK 

Accuracy is a measure of the skill of the  prefetching 
mechanism in  choosing what  to  prefetch: 

Acc = Pref,,,s/Prefs = PrefHi,s/(PrefHi,s + PrefBad) . 

Coverage is a measure of the  number of misses that 
are accurately prefetched.  BaseCaseMisses  are misses 
that would  have occurred with no prefetching.  When 
(imperfectly)  prefetching  into  the  cache, new cache misses 
are  produced  because  prefetched  data displace other live 
cached  data: 

Cov = Pref,,s/BaseCaseMisses 

= (Acc  X Prefs)lBaseCaseMisses. 

Coverage  and accuracy are in the  range (0, 1). 
Theoretically, however, coverage  can exceed 1 with this 
definition, for  the following reasons.  The  prefetches  (good 
or  bad) which are  automatically  placed  into  the  cache 
can displace live data  from  the  cache,  creating  more 
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opportunities  for  prefetching.  With  these  extra, or 
“redundant,”  opportunities  for  prefetching,  there may be 
more  prefetch  hits  than base case misses. This  does  not 
occur  in  practice.  Consider  this example: A program 
references only one line, A. In a normal  execution it 
would  have one  cache miss. Now consider a prefetching 
algorithm  that  could  prefetch B, displacing A, and  then 
prefetch A (displacing B) before  the  processor  refers  to it 
again. When  the  processor  references A, it will have  a 
prefetch hit. The  prefetcher  prefetches B and  then A in 
sequence as before.  When  the  processor  references A 
again,  that will be a second  prefetch hit  in  a program  that 
originally only had  one miss. In  this  unusual case, 
coverage exceeds 1. Here it is equal  to 2. 

ResidueMisses  are  those  that  remain  after  prefetching 
because of imperfect coverage of all cache misses. These 
are  the  ones  the  prefetcher missed: 

ExtraTraffic = (Prefs + ResidueMisses)lBaseCaseMisses. 
Extra traffic is always greater  than  or  equal  to 1. 

4. Prefetching  algorithms 
In  this  section we describe two prefetching algorithms, 
next-sequential  prefetching  (NSP)  and shadow-directory 
prefetching  (SDP),  and a process  that avoids  unnecessary 
prefetches. (A prefetch is unnecessary if it is not used by 
the  processor while  in the  cache.) 

Next-sequential  prefetching 
In NSP, whenever  line L is referenced  an  attempt is made 
to  prefetch  line L + 1. Many designers find NSP an 
attractive  prefetching  algorithm  because of its simplicity. 
A prefetch of line L + 1 is initiated  on  the basis of an 
access to  line L.  NSP relies  on  the  spatial  and  temporal 
locality properties of a program  to  predict which line  to 
prefetch.  These two properties  account  for much of the 
success of caches in attempting  to  contain  those  portions 
of a program  requested by a processor.  The effectiveness 
of NSP depends on the cache  size and, in particular,  the 
line size  used  in the  cache. Typically, smaller  cache  line 
sizes result in better NSP performance.  For example, 
consider NSP  when applied  to  instruction  prefetching. If 
an  instruction-fetched  line  does  not  contain a taken 
branch,  the  next-sequential  line  must  be  referenced. Also, 
most branches  are  short  forward  jumps in  a program.  This 
short  forward  jump is frequently  contained in the original 
line or the  next-sequential  line. 

Shadow-directory  prefetching 
In SDP, a  history of the  referencing  pattern of a  processor 
is recorded in  a table  and a prefetch is attempted 
whenever it is determined  that  the  referencing  pattern is 
repeating.  For  example,  consider Figure 10. The figure 
shows  a two-level memory  system  consisting of a cache 

DirecloIy Cache mays 

Diredory entry 

Shadow-directory prefetching. 

and  directory  at level one (Ll) backed up by a second- 
level cache (L2) and directory. Typically the L2 cache is 
several times  larger  than  the L1 cache.  Each  directory 
entry  for  the L2 identifies  a line  currently  contained  in  the 
L2, and  the L2 directory  represents a  history of the  lines 
that  were in the L1. Now, let  each  directory  entry in the 
L2 contain a second  address, a  shadow address.  Let  the 
shadow address identify the  line  that was referenced  after 
the  line identified by the  directory  entry was referenced. 
Thus,  each  directory  entry in the L2 contains a pair of 
addresses  that  represent a  parent-successor (follower) 
sequence of references  made by the  processor.  The  parent 
address identifies the  line normally contained in the L2, 
while the  shadow  address identifies  a  following address  to 
the  parent  address  and  represents a  logical choice  for a 
prefetch  candidate. By integrating  the  prefetch  address 
into  the  structure of the L2, SDP  relies  on  the L2 to 
maintain a  history of lines  that were  in the L1 at  an 
earlier  point in time,  and would still be in the L1 if it 
were  larger.  The effectiveness of SDP  depends  upon  the 
persistence of the  referencing  pattern as captured by the 
L2. In  those  applications  where  the L2 can  contain a large 
portion of an application’s  working set,  and if the 
referencing  pattern of the  application is repetitive,  SDP 
should  be  able  to  prefetch L1 misses so that  the miss ratio 
of the L1 approaches  that of the L2. 

An immediate  advantage of SDP  over  NSP is that it can 
prefetch  lines  that  are  not  just  next-sequential  referencing 
patterns.  For  example,  consider a sequence of six cache 
misses L ,  L + 1, L + 3, L + 6,  L + 7, L + 8. If the 
sequence is repeated,  NSP  can  prefetch only lines L + 1, 
L + 7, and L + 8, whereas  SDP can prefetch all of the 
misses. Recall  that NSP can  prefetch  line L + 1 only if 
line L is referenced. However, the  advantage of SDP 275 
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prefetching  over NSP is not  without  cost. NSP can  be 
implemented with  relatively little  hardware  cost,  whereas 
SDP requires  each  directory  entry  in  the L2 to  contain a 
second  address, a prefetch  address. Also, SDP must see a 
reference  pattern  repeated  before it can  accurately 
generate  prefetches,  whereas NSP can successfully 
prefetch  unseen or first-time-referenced  information  when 
the  referencing  pattern is next-sequential in nature. 

Prefetch buffers 
Besides determining which line  to  prefetch, a prefetch 
algorithm must decide  where  to  put  the  prefetch  and  the 
frequency with which a prefetch  can  be  attempted.  We 
consider two prefetch  placement policies  in this  paper: 
prefetch  into  the  cache,  and  prefetch  into buffers. 

When  prefetching  into  the  cache,  the  replacement 
algorithm  chooses  the  least-recently-used (LRU) line in  a 
cache  congruence class and overwrites  it  with the 
prefetched  line. LRU is used  as the  replacement policy for 
all prefetching  experiments in this  paper.  The  prefetched 
line is then given the newest or  most-recently-used (MRU) 
status of all the  lines in the  congruence class. When 
prefetching  into buffers, each  prefetch is  initially 
transferred  to a buffer.  When a cache miss occurs,  the 
buffers  are  searched  to  see  whether  the miss was 
prefetched. If the miss was prefetched,  the  line is 
transferred  from  the  buffer  to  the  cache,  and  the  buffer is 
marked  free  and available for  another  prefetch.  The 
number of prefetch  buffers  studied in this  paper  varies 
among 1, 2, 4, and 8. If there  are  no  free  buffers when  a 
prefetch  occurs,  the  buffer  containing  the  oldest 
prefetched  line is chosen  for  replacement,  and  the  current 
prefetch overwrites the existing line in the  prefetch  buffer. 
LRU is the  replacement policy used  to  select a prefetch 
buffer. 

The  prefetch  buffers  can  be  implemented in the  same 
technology as  the  cache  and  placed  near  the cache. Thus, 
an access that is found in the  prefetch  buffer  can  be 
satisfied  in approximately  the  same  amount of time as  a 
cache hit. There  are  several  advantages  to having lines 
sent  to a buffer  and  not  loaded directly into  the  cache. 

First,  prefetches  are a  guess or  prediction  that a line 
will be  used by the  processor. If a prefetched  line is 
copied directly into  the  cache, a line  already in the  cache 
must usually be  discarded. If the  prefetched  line is not 
used while in the  cache,  the  cache  has  been  contaminated 
with a  useless  line, thus wasting valuable  cache  space.  The 
prefetch  buffer  acts as  a filter  for all prefetches  and allows 
only the  prefetched  lines  that  are  used by the  processor  to 
be  placed  into  the  cache. Typically a  small number of 
buffers  are  required  to  keep  lines  that  are  not used by 

276 the  processor  from  entering  the  cache. 

Second, if the  prefetched  line is copied  into  the  cache, 
the  replacement  algorithm  must  choose a line  currently in 
the  cache  to be overwritten by the  prefetched  line. If the 
replaced  line is re-referenced  before  the  prefetched  line is 
referenced,  an  additional  cache miss occurs;  that is, the 
line  just  discarded  from  the  cache  must  be re-accessed 
before  the  cache  request  can  be satisfied. 

Third, if the  prefetched  line is transferred directly into 
the  cache,  normal  references  made by the  processor may 
be  blocked  during  the  line  transfer cycles. 

cache  are simplicity and cost. Transferring  prefetches 
directly into  the  cache is simpler  to  implement  than 
transferring  them  to a buffer. Also, prefetch  buffers 
consume  valuable  chip  area,  and any  value  would be lost 
if they  adversely  influence the critical cycle time of the 
processor. 

The  frequency with which a prefetch is attempted is an 
important design parameter in any prefetching  algorithm 
because  each  prefetch  attempt  requires a directory  lookup 
to  see  whether  the  line is already in the  cache or prefetch 
buffers (if used).  Prefetching  too  frequently  can  saturate 
the  cache  directory  and delay  necessary cache accesses. 
Conversely, an  infrequent  prefetching policy can  reduce 
the miss coverage that would otherwise  be  obtainable by 
more aggressive prefetching schemes. For example, 
prefetching on every cache  reference  can  double  the 
directory traffic, while prefetching  on only cache misses 
has  an  upper  bound of removing  only 50 percent of 
misses. For  the  prefetching  studies in this  paper, a 
prefetch is attempted on each MRU change within  a cache 
congruence class. An MRU change  occurs  whenever a line 
other  than  the  most-recently-used  line in  a cache  set is 
referenced.  It is noted  that all cache misses are MRU 
changes. Prefetching on MRU changes  removes  most of 
the  unnecessary  directory traffic associated with 
prefetching  on every reference while still  providing ample 
prefetching  opportunity  to  reduce  the  number of overall 
misses. 

The  advantages of transferring  prefetches directly to  the 

Confirmation 
A technique known  as confirmation is used  to  improve  the 
accuracy of each  prefetching  scheme [2]. Confirmation 
improves the accuracy of a prefetching  algorithm by 
keeping  track of what  has  been  prefetched  and  what  has 
been used, and  tries  to avoid  making not-used  prefetches 
in the  future.  For  example, Figure 11 shows  next- 
sequential  prefetching with confirmation  using  a memory 
hierarchy consisting of an L1, an L2, and a  single prefetch 
buffer. 

A confirmation  bit is added  to  each  directory  entry in 
the L2 indicating  whether  the  line was used (1) or  not- 
used (0) when it was last  prefetched.  Assume  that  the 
confirmation bit is initially set  to 1 for  each  line  that 
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enters  the L2. This initial setting is arbitrary,  but will bias 
the  prefetching mechanism to  prefetch on first-time 
references. Now consider NSP and a referencing  sequence 
of three lines L ,  L + I ,  and L + 4, each causing  a cache 
miss; let  each  generate a prefetch  request  for  the L1. 
Ignoring  startup  effect, we assume  that  lines L ,  L + 1, 
and L + 4 are  all  in  the L2 with their  confirmation  bit  set 
to 1 and  that  the  prefetch  buffer is empty.  The  reference 
to  line L generates a prefetch  request  for  line L + 1. The 
L2  directory is then  searched  for  line L + 1 and its 
confirmation bit  examined. If the  confirmation  bit is 1, line 
L + 1 is prefetched. If the  bit is 0, line L + 1 is not 
prefetched.  Assume  that  the  confirmation  bit is 1 and  that 
the  line is prefetched  to  the  prefetch  buffer. 

The  reference  to  line L + 1 causes a cache miss that 
hits  in the  prefetch buffer. Line L + 1 is then  transferred 
to  the  cache,  and  the  prefetch  buffer is marked  free.  The 
reference  to  line L + 1 also causes a prefetch  for  line 
L + 2.  Assuming that  line L + 2 is in the  L2  and  its 
confirmation  bit is 1, it is prefetched  and  sent  to  the 
prefetch  buffer. 

The  reference  to  line L + 4 misses in both  the  cache 
and  prefetch  buffer  and  generates a prefetch  request  for 
line L + 5. The  confirmation bit for  line L + 5 is 
examined,  and it is prefetched. However, when L + 5 is 
prefetched,  the  prefetch  buffer is not  free.  Line L + 2 is 
still in the  prefetch  buffer  and  not-used.  The confirmation 
mechanism  recognizes  this  condition  and notifies the L2 
that  line L + 2 was not-used when last  prefetched.  The 
confirmation  bit  for  line L + 2 is then  reset  to  zero. 

If line L + 5 is not-used by the  processor, it is 
eventually overwritten by the next prefetch.  This  causes its 
confirmation  bit to  be  set  to 0 and  inhibits  further 
prefetching of this line. Thus, for  the sequence of L,  L + I ,  
and L + 4, three  lines were prefetched ( L  + I ,  L + 2, 
and L + 5) ,  but only one  line was used ( L  + I ) .  

repeated, only line L + 1 is prefetched.  Lines L + 2 and 
L + 5 are  not  prefetched  because  their  confirmation  bits 
are  set  to 0. 

Once a line in the  L2  has  its  confirmation bit set  to 0, 
it can  be  reset  to 1. The  confirmation  mechanism  coupled 
with next-sequential  prefetching  monitors  the  referencing 
pattern  sent  to  the L2. Each  pair of consecutive references 
are  compared  to  determine  whether they represent a 
sequential  referencing  pattern. If one is detected,  the 
confirmation  bit  for  that  pair of references is examined 
and  reset  to 1 if it is currently 0. 

and  becomes L ,  L + 1, L + 2, L + 4, the  reference  to 
line L + 2 following the  reference  to  line L + 1 is 
detected  as a sequential  referencing  pattern.  The 
confirmation bit  for  line L + 2 is then  examined  and, if 0, 

If the  sequence of lines L ,  L + 1, and L + 4 is 

For  example, if the  previous  referencing  pattern  changes 

(;;;( Prefetch request Cache IPrefetchismde  if confinnation 

Confirmation bit 
l=used Directory ii , mys , L, 
0 = not used 

bit = 1. 

1 Next-sequential  prefetching  with  confirmation. 

reset  to 1. This allows future  references of line L + 1 to 
prefetch  line L + 2. 

Implementing a confirmation  mechanism with SDP 
requires slightly more  hardware  than  described  for NSP. 
As before, a confirmation  bit is added  to  each shadow 
address saved  in the L2 to  indicate  whether  the  line 
identified by the shadow address was used (1) or not-used 
(0) when last  prefetched.  Recall  that a prefetch of the 
shadow address is attempted in SDP whenever  the  parent 
address is referenced.  However, when  a prefetch is made, 
the  prefetch  address  (shadow  address) is  saved along with 
the  parent  address in the  prefetch buffers. The  shadow 
address identifies the  line  that was prefetched,  and  the 
parent  address identifies the  L2  entry  that  caused  the 
prefetch.  This  address is needed  to notify the  L2  whenever 
it is detected  that a prefetch was made  and  not-used.  The 
confirmation  mechanism  then  uses  the  parent  address  to 
locate  the L2 entry  that  caused  the  prefetch,  and  the 
confirmation bit for  the shadow address is set  to 0, 
inhibiting  future  prefetches  until  it is reset  to 1. 

A slight modification to  the  prefetching  algorithm 
occurs  when  there  are no prefetch buffers. Here 
prefetches  are  sent directly to  the  cache. A used bit is 
added  to  each  line in the L1 directory  indicating  whether 
the  line was used or not-used while in the  cache. A 1 
indicates  that  the  line was used,  and a 0 indicates  not- 
used.  The  used  bit assists the  confirmation  algorithm  and 
helps  to  initiate  prefetch  attempts. All prefetches  are 
loaded  into  the  cache with their used  bit set  to 0. The bit 
is set  to 1 whenever  the  line is referenced by the 
processor.  Demand misses are  loaded  into  the  cache with 
their used  bit set  to 1. A miss is  a demand miss if it is not 
a prefetch miss. These misses represent  the  normal 
requests  generated by the  processor while  executing  a 
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program. A prefetch is attempted  whenever a reference 
causes  an  MRU  change or it is detected  that  the  processor 
has  made a reference  to a line with  a used  bit  set  to 0. 
Here  the  line was prefetched  and  used by the  processor 
for  the first time. If the  prefetching  algorithm  uses a 
confirmation  mechanism  to  eliminate  not-used  prefetches, 
the  prefetch  algorithm  must  reset  the  appropriate 
confirmation  bit  whenever  it is detected  that a line is 
chosen  for  replacement  and  its used bit is still 0. This 
occurs  when a prefetch is made  into  the  cache  and  the 
line  gets  replaced  from  the  cache  before  it is  used. 

5. Simulation  results 
The effectiveness of each  prefetching  algorithm was 
evaluated  against  the  SPEC  benchmark  suite.  We begin by 
showing graphs  for  coverage, accuracy, and traffic for NSP 
and  SDP  with  and  without  confirmation  for  an  8Kb  cache. 
Separate  graphs  for  instruction  and  data  prefetching  are 
shown and analyzed  in detail.  We  end  this  section by 
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16Kb, and 32Kb caches  that  are one-way and four-way set- 
associative. 

Instruction prefetching 
Comparisons  between NSP and  SDP  for  instruction 
prefetching  are shown  in Figure 12. The size for  each 
cache is SKb, one-way  set-associative,  with  a  32-byte line 
size. No  confirmation  mechanism was used,  and  the 
number of prefetch  buffers  varied  from  zero  to  eight. 
Zero  prefetching  buffers  indicates  that we are placing 
each  prefetched  line directly into  the  cache.  The  SPEC 
floating-point  applications  are listed  first (leftmost 
workloads in the  graph), followed by the  SPEC  integer 
applications.  We  found  that  SDP  averages a miss coverage 
about  ten  percent  higher  than NSP for  instruction 
prefetching  when  coverage is averaged  over all of the 
SPEC  applications,  about 60 percent  for NSP  versus 70 
percent  for  SDP.  Some  interesting  features of the two 
graphs  include  the following: 

The  increased  prefetching  coverage  for  SDP is produced 
by the ability to  prefetch  jumps or branches in the 
instruction  stream.  Recall  that NSP cannot  prefetch 
jumps in the  instruction  stream  that  go beyond the next 
sequential  line. 

prefetching  into  prefetch buffers. This is possible when 
the  prefetching accuracy  is  high. For example, NSP 
averaged a prefetching accuracy of about 75 percent, 
while SDP  averaged  an amazingly high accuracy of more 
than 90 percent.  With high prefetching accuracy, the 
need  for  prefetch  buffers is  diminished because  each 
line  prefetched  into a buffer eventually ends  up in the 
cache. 
The  variation in coverage  for  prefetching  into  the  cache 

Prefetching  into  the  cache generally outperformed 

or into  prefetch  buffers is generally smaller  for  SDP 
than NSP. By being  able  to  prefetch  taken-branch misses 
and  next-sequential misses, SDP  remembers  the miss 
order  more  accurately  than NSP. This effect  also 
accounts  for  SDP's  higher accuracy. 
NSP was able  to  prefetch very few misses for  Su2cor 
because  it  had relatively few instruction misses (see 
Figure l), and most of its misses were  caused by two 
taken  branches  fetching  lines  into  the  same  set of the 
cache. Each  branch  target would displace  the  other 
branch's  line  and  cause  another miss. These misses are 
not  prefetchable with  NSP because  the  previous  line was 
not  referenced. 

Data prefetching 
Miss coverage  for  SDP  and NSP prefetching  data is shown 
in Figure 13. When  prefetching  data,  both  SDP  and NSP 
had a lower miss  coverage than was observed  for 
instruction  prefetching.  The  average  prefetch miss 
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coverage  for  SDP was only 32  percent versus 20 percent 
for NSP. The  graphs  contain many interesting  features 
that show  when  a prefetching  algorithm is working well or 
poorly. Some  interesting  features of the two prefetching 
algorithms  are  the following: 

Prefetching  into  the  cache is no  longer  the  best strategy. 
For NSP, prefetching  into  the  cache was the worst 
prefetching policy for  Tomcatv  and Swim and  inferior  to 
eight  prefetch  buffers  for  Hydro2d, Mgrid, Turb3d, 
Wave.5, and M88ksim. Two factors  contributed  to this 
result.  First,  the  prefetching accuracy for NSP was much 
lower for  data  prefetching  than  for  instruction 
prefetching,  approximately 30 percent when averaged 
over  all of  the workloads. Prefetching a line  that will not 
be used  still requires  that a line  be  discarded  from  the 
cache. (The accuracy graphs  for NSP and  SDP  are 
discussed below.) Second,  for a prefetching  algorithm  to 
be successful,  it must  decide  not only which line  to 
prefetch,  but also which line  to discard from  the cache. 
If a line is discarded  before its last use,  a new miss can 
result when the  line is referenced  again. Any miss 
reduction  caused by prefetching a line might be offset by 
an  additional miss caused by discarding  the wrong line 
from  the  cache.  The  prefetching  algorithm must  discard 
a dead  line  from  the  cache  for  each  prefetch. A line is 
dead if it will be  discarded  from  the  cache  before it will 
be  re-referenced  without  considering  prefetching effects. 
Prefetching  into a direct-mapped  cache  can  produce 
additional misses caused by displacing lines  too  soon 
from  the cache. 
When varying the  number of prefetch  buffers  from  zero 
to  eight, sensitivity in prefetching  coverage is much 
higher  than was observed  for  instruction  prefetching. 
For  example, when NSP was applied  to  the  Hydro2d 
workload,  the  prefetch coverage varied  from  three 
percent with one  prefetch  buffer  to over 80 percent 
coverage  with eight  prefetch buffers. When only one 
prefetch  buffer is used,  the  order in which lines  are 
prefetched is extremely important. A prefetch must be 
used before  the next line is prefetched in order  for it to 
be successful. When  the  number of prefetch  buffers is 
increased  to  eight,  the  time  between  prefetching a line 
and using it is not  as critical as with one  prefetch buffer. 
With eight prefetch buffers,  a prefetch  can exist in the 
prefetch  buffers  for a  much longer  time  before it is used 
by the  processor.  The  same effect is seen  for  SDP,  but 
to a lesser  degree. 

relatively low (ten  percent  or less), regardless of the 
number of prefetch  buffers used. These two applications 
lack  a next-sequential miss pattern  and yield poor 
prefetching results. SDP  improved  the miss coverage  to 
20-40 percent  for  these  applications. 

Miss coverage for NSP on  Compress  and Go was 
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1 

Figure 14 shows the  prefetching accuracy for NSP and 
SDP  corresponding  to  the  data-prefetching  graphs shown 
in the previous  figure. 

depending  on  the  application  and  number of prefetch 
buffers used. For  example,  the  prefetching accuracy of 
Hydro2d  varied  from  near  zero  percent  for  one  prefetch 
buffer  to nearly 100 percent  for eight prefetch buffers, 
while Compress  and Go had  an accuracy of ten  percent or 
less for all buffer policies. The  large  variation in 
prefetching accuracy of Hydro2d indicates  that  several 
different blocks of  data  are  being  prefetched 
simultaneously,  and  that several buffers  are  needed  to 
hold these  prefetch  lines  before  their  use by the  processor. 
The low prefetching accuracy for  Compress  and Go shows 
that few misses are  next-sequential in nature.  This  can 
also  be  seen in Figure  12,  where  the miss coverage was 
low. 

It is  also  possible for  the  prefetching accuracy to  be 
high and still  have  a low miss coverage.  For  example, NSP 
for  the  Tomcatv  workload  had a prefetching accuracy of 

The  prefetching accuracy of NSP varied widely 
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Data-prefetching  accuracy (8/1/32 cache): (a) next-sequential 
prefetching; (b) shadow-directory  prefetching. 

60 percent with eight  prefetch  buffers, while the 
prefetching coverage was only 20 percent.  This  can  occur 
when most of the  prefetch  attempts  are  already in the 
cache  and  the  majority of the misses are  to  lines  that  are 
not  next-sequential  to  the previously  accessed lines.  Other 
workloads  where accuracy exceeded  coverage  are  Ijpeg (60 
to 40 percent)  and M88ksim (60 to 20 percent). 

The  prefetching accuracy for  SDP was higher  than  that 
achieved for NSP because  it  can  prefetch across breaks in 
the miss pattern.  For  example,  consider a miss sequence 
of line L followed by line L + 2. SDP  can  accurately 
prefetch L + 2 after  line L is referenced,  whereas NSP 
makes  an  incorrect  prefetch  attempt  to  line L + 1. 

Using  SDP,  the  average  prefetching accuracy was 60 
percent  (over all workloads); however,  seven workloads 
achieved greater  than 90 percent accuracy  with  eight 
prefetch buffers: Hydro2d,  Mgrid,  Applu,  Fpppp, 
M88ksim, Perl,  and Vortex. In  fact, all but  one  had a 50 
percent  or  higher  prefetching accuracy for  eight  prefetch 
buffers,  the exception being  Su2cor with  a 40 percent 
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Data-prefetching miss coverage  with  confirmation (8/1/32 cache): 
(a)  next-sequential  prefetching; (b) shadow-directory  prefetching. 

and still  have  a low prefetching coverage. For  example, 
Fpppp  and M88ksim had nearly 100 percent  prefetching 
accuracy  with four  or  eight  prefetch  buffers, while the 
miss coverage was only 30 to 40 percent.  This is  possible 
when a cache  line  has  more  than  one  unique miss- 
follower. For  example,  consider  that  line L is followed 
by line L + 4 in one  reference  sequence;  later,  line L is 
followed by line L + 2. SDP  remembers  an  L-to-L + 4 
parent-follower pair.  The  SDP  prefetching  mechanism 
modeled in this  paper  can only remember  one  unique 
follower per  line;  lines having multiple  followers  were  not 
allowed. If a line  has two or  more  different miss-followers, 
only one of the  lines is prefetchable. By modifying the 
shadow-directory  to  record  multiple miss-followers per 
parent  address, it is possible for  SDP  to  attempt two or 
more  prefetches  when  an MRU change is detected. 

Confirmation  in  data  prefetching 
The next set of graphs shows the  effectiveness of 
confirmation  to  improve  prefetch accuracy and  effects  on 
miss coverage. Figure 15 shows prefetching  coverage,  and 
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Data-prefetching accuracy with confirmation (8/1/32 cache): (a) 
next-sequential prefetching; (b) shadow-directory prefetching. 

Data-prefetching traffic without confirmation (8/1/32 cache): (a) 
next-sequential prefetching; (b) shadow-directory prefetching. 

Figure 16 shows prefetching accuracy for NSP and SDP 
with  confirmation  when prefetching  data.  The  cache 
modeled is the  same size  as above,  8Kb by one-way set- 
associative, with a  32-byte line size. 

The figures  show that  the miss coverage for NSP 
dropped only slightly. For  example,  the overall miss 
coverage is now 16 versus 20 percent  without 
confirmation.  However,  the  prefetching accuracy has 
improved significantly. The  average  prefetching accuracy 
for NSP is now 70 versus 30 percent  (from  Figure 14). 
Confirmation  can  remove unnecessary or  not-used 
prefetches  from  a  prefetch algorithm to a significant extent. 

Similar improvements in prefetching accuracy were 
observed  for  SDP with confirmation, with only a modest 
drop in prefetching coverage. The  overall miss coverage is 
now 28 versus 32  percent without confirmation,  and  the 
prefetch accuracy is now 75 percent when averaged over 
all of the workloads.  Only two workloads have  a 
prefetching accuracy of less than 80 percent with  eight 
prefetch  buffers (Swim and  Turb3d). 

We  note  that it  is  still  possible to have  a very high 
prefetching accuracy and low miss coverage. A prefetching 
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mechanism  can  attempt very few prefetches, all of which 
are  correct,  and have little if any overall  effect  on  the miss 
coverage. It is important  for a confirmation  process to  
eliminate any incorrect  prefetches  without removing those 
prefetches  that  are  correct most of the time. 

The next set of graphs shows the  bus traffic ratio of 
each  prefetching  algorithm. Figure 17 shows the bus traffic 
for NSP and  SDP  prefetching  data without confirmation 
for  an 8/1/32 cache. Figure 18 shows the bus  traffic when 
confirmation is used. 

The traffic ratio  for NSP without  confirmation  varied 
from 1.0 to 1.9, with an  average of 1.5. A bus traffic ratio 
of 1.5 means  that  the  prefetching  algorithm  generated 50 
percent  more bus traffic than  the  normal bus traffic 
associated  with a cache  that is processing base  case 
misses  without prefetching.  Most of the  extra bus 
traffic is due  to  incorrect or not-used  prefetches. 
Confirmation  removed most of the  extra traffic for NSP. 
With  confirmation,  the  average  bus traffic ratio fell to 
1.07, where only  seven percent  more traffic is generated 
by prefetching over the  normal miss traffic without 
prefetching. 
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Data-prefetching  traffic with confirmation (8/1/32 cache): (a) next- 
sequential prefetching; @) shadow-directory prefetching. 

When reviewing the  results  from  the  coverage, accuracy, 
and traffic graphs, we see  that  three  applications did 
particularly well with  NSP and confirmation: Hydro2d, 
Mgrid,  and  Applu.  When  prefetching  into  the  cache  or 
when  eight prefetch  buffers  were  used,  each  application 
prefetched 60 percent  or  more of the misses  with  less than 
five percent  more  bus traffic. 

Similar results  were  obtained  for  SDP.  Here  the  average 
bus traffic ratio was 1.3  without  confirmation  and 1.09 
with confirmation. 

Equivalent  caches 
It is useful to  compare  the  caches  modeled in the  previous 
graphs  to  caches,  without  prefetching,  that  produced  an 
equivalent miss ratio. Figure 19 compares  the miss ratios 
of caches  without  prefetching  to  the miss ratios  of  four 
SPEC  applications with prefetching:  (a)  Vortex  and  (b) 
Gcc with instruction  prefetching,  and  (c)  Compress  and 
(d) Wave5  with data  prefetching. 

In  each  graph  an 8/1/32 cache was modeled  and  the 
282 miss ratio  plotted (in  misses per 1000 instructions)  for 
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NSP and SDP, with and  without  confirmation.  Each 
horizontal  line  represents  the miss ratio  for a cache 
without prefetching.  The  legend identifies each  cache 
modeled.  The  graph clearly  shows the  effect on 
performance of varying the  number of prefetch  buffers. 
For  example,  the miss ratio  for  Vortex using  NSP with 
confirmation was approximately 27 misses per 1000 
instructions  when  prefetching  into  the  cache  (zero 
buffers); it increased  to 30 misses per 1000 instructions 
with one  prefetch  buffer,  and  improved to nearly 27 
misses per 1000 instructions with eight  prefetch buffers. 
These effects can  also  be  seen in Figure 12, where  the 
coverage for  prefetching  into  the  cache was better  than 
the  coverage achieved with one  prefetch  buffer  and nearly 
the  same  as with eight prefetch  buffers. 

For Vortex using NSP, prefetching into  the cache was the 
best policy; adding prefetch  buffers  reduced  performance. 
With only one prefetch  buffer, several prefetches  were 
overwritten by the next prefetch  before they could be used 
by the processor. Increasing the number of prefetch buffers 
to eight increased the  amount of time between prefetching  of 
a line and its availability for use by the processor. However, 
if the accuracy of each  prefetch is high, placing the  line 
directly into  the cache allows the largest amount of time 
between its prefetch and eventual use. 

The miss ratios  for  Vortex using SDP  were much flatter 
when plotted  against  the  number of prefetch buffers. SDP 
with confirmation  had a miss ratio of approximately 16 
misses per 1000 instructions,  regardless of the  number of 
prefetch buffers, and  about 15 misses per 1000 instructions 
without confirmation. Generally, a  flat  miss-ratio  curve is 
the  result of a high accuracy, even  when  prefetching  into 
one  prefetch buffer. 

The miss ratios  for  four  caches  without  prefetching  are 
shown ranging in size from 32Kb, two-way set-associative 
with a 32-byte line (32/2/32) to 64Kb,  one-way set- 
associative with a  32-byte line (64/1/32). The figure  shows 
that  NSP was able  to  reduce  the miss ratio of an 8Kb, 
one-way cache  to approximately  a  32Kb, two-way set- 
associative cache  without  prefetching.  In  fact, NSP without 
confirmation  and  prefetching  into  the  cache was slightly 
better  than  the 32Kb, two-way set-associative cache.  This 
represents a factor of 4  in cache size performance. 

slightly better  than a 64Kb, one-way  set-associative cache, 
a factor of 8 in cache size performance. 

We  see similar results in the  graph  for Gcc. NSP 
without  confirmation  achieved  a miss ratio of 
approximately 22  misses per 1000 instructions  when 
prefetching  into  the  cache,  then grew to  about 27 misses 
per 1000 instructions with one  prefetch  buffer,  and nearly 
returned  to 22  misses per 1000 instructions with eight 
prefetch buffers. Comparing  the miss ratios of the 8Kb 
cache using  NSP to a cache  without  prefetching, we see a 

Similarly, SDP was able  to achieve  a miss ratio of 
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Equivalent cache miss ratios for prefetching and nonprefetching caches: (a) Vortex  with instruction prefetching; (b) Gcc with instruction 
prefetchmg; (c) Compress with data prefetching; (d) Wave5 with data prefetching. 

cache doubling. Each  point lies between a  16Kb, two-way 
set-associative cache  and a  16Kb,  eight-way  set-associative 
cache,  regardless of the  number of prefetch buffers. 

The  results  for  SDP show  a factor of 4 improvement 
compared  to  caches  with  equivalent miss ratios.  The 8Kb 
cache, with and  without  confirmation, achieved  a miss 
ratio  better  than  the 32Kb, one-way cache. 

The  equivalent  cache  graphs  for Wave5 and  Compress 
with data  prefetching  are analyzed  next.  NSP  showed very 
little improvement when applied  to  Compress;  the miss 
ratio  for  the 8Kb,  one-way  set-associative cache was only 
slightly improved  over a cache of the  same size without 
prefetching.  This is expected  because of the low miss 
coverage  for  Compress shown  in Figure 13. 

SDP  did show  a miss ratio  reduction  when  applied  to 
Compress.  Figure  19(c) shows that  the  equivalent  cache 
miss ratios  range in  size from 8/8/32 to 32/2/32. 

both NSP and  SDP. Typically, the  order of miss-ratio 
reduction is from NSP with confirmation, then NSP without 
confirmation, to  SDP with confirmation, to  SDP without 
confirmation. Equivalent  cache miss ratios vary from 8Kb, 
four-way set-associative to 32Kb, one-way set-associative. 

of the  equivalent  cache  graphs.  It is important  to know 
the  cache size needed  (without  prefetching)  to  produce 
a miss ratio  equal  to  the miss ratio achieved  with 
prefetching,  but it is not necessarily correct  to  assume 

The Wave5 application shows  a  miss-ratio reduction  for 

We must  now add a word of caution  regarding  the  use 
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that  each  cache  can achieve equal  performance.  The 
performance of a  memory system can be obtained by 
multiplying  a miss rate (misses per  instruction) by a miss 
penalty (cycles per miss). A prefetching  algorithm can 
initiate  the  fetch of a miss earlier  than  the  processor, 
but may not  be  able  to  eliminate all of the delay 
(penalty)  associated with the miss. To fully evaluate  the 
performance of a prefetching  algorithm, we must also 
know the timeliness of each  prefetch.  That is, we must 
know the cycles of delay associated with each  prefetch. If 
the  prefetch is started  far  enough in time  ahead of the 
miss, it is possible to avoid all of the  penalty  associated 
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or two cycles ahead of the miss, there may  still be  an 
appreciable  amount of delay associated with the  prefetch. 
To accurately  evaluate  this delay, we must have  a more 
detailed  model of the  processor  and  the memory  system. 
This is clearly  beyond the  scope  and  intent of this paper. 

Average coverage, accuracy, and  traffic 
We  conclude  this  section by showing  in Figure 20 the 
average coverage,  accuracy, and bus-traffic ratios  for 8Kb, 
16Kb, and 32Kb caches  that  are one-way and four-way set- 
associative. The figure shows that  instruction  prefetching 
coverage  varies from 60 to 70 percent  for  the one-way set- 
associative caches  to 70 to 80 percent  for  the four-way set- 
associative cache. Typically, SDP is ten percent higher than 
NSP. The accuracy for instruction  prefetching  varied  from 
80 to 90 percent for  the one-way caches and from 50 to 90 
percent for  the four-way caches. Typically, confirmation, 
when applied to NSP or  SDP, is able to produce  prefetching 
accuracy of 90 percent or higher for all cache configurations. 
The bus-traffic ratio, for instruction prefetching, ranged  from 
1.2 to 1.05 for all cache configurations except NSP without 
confirmation in a four-way set-associative cache. Here  the 
graph is cropped at 1.6, with the traffic ratio continuing to 
more than 3.5. The bus-traffic ratio is large  for two reasons. 
First, several of the  SPEC applications fit into the L1 cache 
and have very few instruction misses. Second, the prefetching 
accuracy is low, approximately 45 percent. These two effects 
combine to produce  a high bus-traffic ratio. If an application 
fits in the cache, every prefetch is unnecessary or incorrect. 
A prefetching strategy such as NSP without confirmation 
attempts  to  prefetch  the  next-sequential  line  after every 
taken  branch.  The  majority of these  prefetches  are  not- 
used, since the working set of the  application is already in 
the cache. Each  prefetch eventually ages  out of the  cache 
and is not used. When  confirmation is added  to NSP, 
these  prefetches  are  eliminated  and  the bus-traffic ratio 
is reduced. Clearly, implementing a prefetching  scheme 
such  as  NSP without  confirmation (which always tries  to 
prefetch  the follower address) is very dangerous, since  it is 
doubtful  that  the  bus linking different levels in a memory 
hierarchy  could  handle  the  additional  memory traffic due 
to prefetching over the  normal  bus traffic that exists to 
process  base-case misses. 

percent  for a  one-way  set-associative cache  and  from 
25 to 40 percent  for  the four-way  set-associative  caches. 
Typically, SDP  produces a 10 to 15 percent  higher miss 
coverage than NSP. Data  prefetching accuracy varied  from 
30 percent  (for NSP and  SDP  without  confirmation)  to 
more  than 70 percent.  The bus-traffic ratio  for  the  one- 
way set-associative caches  varied  from 1.5 (for NSP 
without  confirmation)  to approximately 1.1 (NSP  and  SDP 
with confirmation). For the four-way  set-associative 
caches,  the bus-traffic ratio  ranged  from 1.3 to 1.1, with 
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the exception being NSP without confirmation. Here  the 
bus-traffic ratio climbs to  more  than 3 and is again 
cropped  at 1.6. Again low accuracy, combined with a few 
SPEC  applications fitting into  the  cache,  accounts  for  the 
high traffic ratios. 

6. Conclusions 
One of the goals  in the  creation of SPEC95  as a 
replacement  for  SPEC92** was to  increase  the  demands 
placed  on  the  memory system. This  paper shows that only 
a few of the  applications  place  more  than  modest  demands 
on  the  memory system. This is especially true  for 
instruction  caches  where only  a few applications  required 
more  than a  32Kb cache to achieve miss rates of less than 
one  per 1000 instructions. 

This  paper first analyzed the  cache miss rates  of  the 
SPEC95  benchmarks on a large family of cache 
configurations. The  largest  reductions in cache miss rate 
are  the result of increasing cache capacity. For several 
applications, increasing  associativity and  line size helped. 
The effects of increased  line size are  more  uniform  for  the 
instruction caches. The effects of increasing  associativity 
and  line size are generally not as great  as  those  from 
increasing cache capacity. For most benchmarks, a  small 
number of instructions  are  responsible  for  the majority of 
the  data  cache misses. 

Second,  this  paper analyzed  two prefetching  algorithms 
using the  SPEC95  benchmark  suite.  Shadow-directory 
prefetching  generally  results in ten  percent  better miss 
coverage  than  next-sequential  prefetching  for  instruction 
caches. On the  data caches, shadow-directory  prefetching 
generally results  in 15 percent  better miss coverage than 
next-sequential  prefetching. 

Confirmation significantly increased  prefetching 
accuracy for  both NSP and  SDP while only slightly 
reducing miss coverage. For  instruction  prefetching, 
prefetching accuracy was generally 90 percent or more  for 
NSP and  SDP when  confirmation was employed. Data- 
prefetching accuracy was approximately 70 percent or 
better when confirmation was used with NSP and  SDP. 

When  prefetching accuracy is high, the  extra  prefetching 
traffic generated by prefetching must be low. Generally 
prefetching with confirmation produced less than  ten 
percent  extra miss traffic. When  prefetching accuracy is 
high, there is no  need  for  prefetching buffers. This is 
especially true for instruction  caches.  In  several  cases, 
prefetching  into  the cache is the best strategy  for 
instruction  prefetching. 

This  paper  has  presented a  limited view of the many 
cache  simulations  we have run to analyze the memory 
system behavior of the  SPEC95  benchmark  suite.  Future 
work remains  to analyze the  instructions causing the  more 
problematic  data  cache misses and  attempt  to  characterize 
and possibly reduce or remove  them. 
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