
Prefetching
and memory
system
behavior
of the SPEC95
benchmark

I . sulte

This paper presents instruction and data
cache miss rates for the SPEC95" benchmark
suite. We have simulated the instruction and
data traffic resulting from 500 million
instructions of each of the 18 programs.
Simulation results show that only a few of the
applications place more than modest demands
on the memory system. This was noticed
for instruction caches, where only a few
workloads required more than a 32Kb cache to
achieve miss rates of less than one miss every
1000 instructions. We also analyze two
prefetching algorithms using the SPEC95
workload: next-sequential prefetching and
shadow-directory prefetching. Each
prefetching algorithm is evaluated using three
performance metrics: coverage, accuracy, and
traffic. Variations in each prefetching algorithm
involve the use of a confirmation mechanism
that receives feedback information about the
quality of each prefetch. With confirmation, the
prefetching algorithm is able to enhance the
accuracy of prefetching decisions. The results

show that shadow-directory prefetching
averages miss coverage about ten percent
higher than next-sequential prefetching when
used in prefetching instructions (about 60
percent coverage for next-sequential
prefetching versus 70 percent for shadow-
directory prefetching). The prefetching
accuracy for both algorithms is more than
90 percent when a confirmation mechanism is
used. In general, data prefetching is shown to
be less accurate and to provide less coverage
than instruction prefetching. Shadow-directory
prefetching averaged about a 40 percent miss
coverage versus a 25 percent miss coverage
for next-sequential prefetching. Prefetching
accuracy is over 70 percent when confirmation
is applied.

1. Introduction
We examine the memory referencing behavior of the
Standard Performance Evaluation Corporation CPU
benchmark suite (SPEC95**) [l] for a large set of cache

Wopyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and 1BM copyright notice are included on the first page. The title and abstract, but no other portions,

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 01997 IBM

IBM J . RES, DEVELOP. VOL. 41 NO, 3 MAY 1997 M. J . CHARNEY AND T. R. PUZAK

by M. J. Charney
T. R. Puzak

265

Table 1 SPEC95 benchmark programs.*

Floating-point benchmarks: CFP95

Application Description

10l.tomcatv
102.swim
103.su2cor
104.hydro2d

107.mgrid
1lO.applu
125.turb3d

14l.apsi

145.fPPPP
146.wave5

A mesh-generation program
Shallow-water model with 513 X 513 grid
Quantum physics; Monte Carlo simulation
Astrophysics; hydrodynamical Navier-Stokes

Multigrid solver in 3D potential field
Parabolic/elliptic partial differential equations
Simulates isotropic, homogeneous turbulence

Solver regarding temperature, wind, velocity,

Quantum chemistry
Plasma physics; electromagnetic particle

equations

in a cube

and distribution of pollutants

simulation

Integer benchmarks: CINT95

Application Description

099.go
124.m88ksim

126.gcc
129.compress
130.li
132.ijpeg
134.perl

147.vortex

Artificial intelligence; plays the game of “Go”
Motorola 88K chip simulator; runs test

New version of Gcc; builds SPARC code
Compresses and decompresses file in memory
LISP interpreter
Graphic compression and decompression
Manipulates strings (anagrams) and prime

numbers in Per1
A database program

program

*Adapted from http:llwww.specbench.org.

memory organizations. The SPEC** benchmarks are
popular for comparing the performance of workstations.
They attempt to measure processor and memory system
performance under different compiler optimization
strategies. In this study we focus on the memory system
behavior with the goal of identifying the programs and
cache organizations that may pose performance problems.

The SPEC95 CPU benchmarks are divided into two
groups: floating-point (CFP95) and integer (CINT95). The
CFP95 group reflects “numeric-scientific applications,”
while the CINT95 group is “system or commercial.”
SPEC has tried to isolate the parts of the application that
are CPU-intensive and involve little operating system
overhead or other I/O. The individual benchmarks are
summarized in Table 1. The trace lengths are described in
Table 2.

Related work
In addition to describing a simple variant of next-
sequential prefetching, this paper studies a more

266 sophisticated shadow-directory prefetching algorithm

M. J. CHARNEY AND T. R. PUZAK

Table 2 Trace characteristics (all numbers in millions).

Benchmark Instructions Memory Loads Stores
references

099.go 524 218 165 53
124.m88ksim 524 181 126 55
126.gcc 426 159 105 53
129.compress 524 200 139 61
130.li 524 240 144 95
132.ijpeg 524 166 114 52
134.perl 524 248 149 98
147.vortex 524 255 157 97
10l.tomcatv 524 205 144 60
102.swim 5 24 212 141 71
103.su2cor 524 234 160 74
104.hydro2d 524 195 143 52
107.mgrid 524 246 188 58
1lO.applu 524 212 146 66
125.turb3d 524 247 135 112
14l.apsi 524 218 136 81

146.wave5 524 213 170 102
145.fPPPP 524 295 211 83

described in a patent by Pomerene et al. [2] . The shadow-
directory prefetching algorithm is described in Section 4.

common form of prefetching [3]. In Section 4, we describe
trade-offs one faces when implementing a particular kind
of next-sequential prefetching.

Gee et al. carried out a similar study [4] for the early
release of the SPEC benchmarks, the so-called SPEC89**.
Their work focused on the miss ratios and does not
include an analysis of prefetching. In our work, we
attempt to use the metric of misses per instruction (MPI)
rather than miss ratios. A cache miss ratio is the number
of loads or stores that result in cache misses compared to
the total number of memory operations. On the other
hand, the number of misses per instruction reflects the
memory bandwidth that must be supported for each
instruction. MPI is useful for another reason. To obtain
the memory component of cycles per instruction (CPI),
one need only multiply misses per instruction by the
average number of memory cycles to service a cache miss.
Our graphs actually use “misses per 1000 instructions,” a
scaling that allows us to work with convenient integers
when describing miss rates. We use the abbreviation
MPlOOOI to denote misses per 1000 instructions.

Compilers can also be relied upon to insert prefetch
instructions into the programs to prefetch data or even
other instructions [5-121. In general, the compiler
algorithms attempt to predict which of the program
memory references will cause cache misses. For those
memory references, prefetch instructions are inserted. As
part of this study, we have identified the loads and stores
in the SPEC95 benchmarks that are responsible for misses

Next-sequential prefetching is a very simple and

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

in the programs. These data can be used to tune compiler
prefetching algorithms by pointing out opportunities for
additional prefetching and areas where no prefetching is
necessary.

Methodology
Each of the 18 benchmarks was compiled using Version
3.1 of the IBM CSet compiler running on AIX* 3.2.5. The
only optimization option used was 03. The benchmarks
were run using the reference inputs. The compiler
benchmark, Gcc, is the only exception. For Gcc, only one
of the reference inputs was run through the compiler and
simulated.

We used an internal tracing tool to capture the memory
references. To help avoid initialization behavior of the
programs, we skipped the references at the beginning of
each execution. For 14 of the benchmarks, using this tool,
we skipped the first billion instructions in the program and
traced the next 500 million instructions. For Gcc, since it
only ran for about 500 million instructions, we skipped
only 100 million references. Only nonprivileged references
were captured.

To help validate our segment traces, we examined the
hot-blocks in the execution profiles. (Hot-blocks are the
top ten blocks, which account for most of the instructions
in the execution.) The hot-block execution profile for the
500 million instructions matches very closely the hot-block
execution profile for the full runs of the workloads.

For the three remaining programs, the hot-block profile
from the 500 million instructions (after the one billion
that were skipped) did not match the hot-block profile of
the full run. For these three (Su2cor, MSSksim, and
Compress), we took ten uniformly spaced contiguous
samples of 50 million instructions. The execution profiles
for the sampled traces matched those of the full profiles.

Overview of this paper
In Section 2 we describe the differing instruction and data
cache miss rates for the benchmarks. We show how the
largest portion of the memory system references are
biased toward the data cache miss traffic. In Section 2, we
also examine the trade-offs involved for splitting the first
level of instruction and data caches into two separate
caches or using one unified cache of the same total
capacity.

In Section 3, we define three metrics that are used to
evaluate prefetching algorithms: coverage, accuracy, and
traffic. In Section 4, we describe two prefetching
algorithms: next-sequential and shadow-directory
prefetching. Simulation results are presented in Section 5 .
Several graphs are shown describing the coverage,
accuracy, and traffic for each prefetching algorithm.
Finally, our conclusions and future work are presented in
Section 6.

Table 3 Cache organizations for the basic study.

Capacity (Kb) 8, 16, 32, 64, 128, 256, 512

Bytesper line 32, 64, 128, 256
Policy LRU write-back write-allocate

L I Associativity 1, 2, 4, 8

2. Cache behavior of SPEC95
In Table 3 we show the basic cache organizations
simulated for this paper.

Throughout this paper we refer to cache organizations
using the following notation: capacity/associativity/line size.
Cache capacity is in kilobytes; cache line size (or block
size) is measured in bytes. For example, a 32Kb cache
with four-way set-associativity and 128-byte cache lines
would be described as 32141128. When we vary capacity,
we denote it with an asterisk: */4/128 describes the
collection of four-way set-associative caches with 128-byte
lines but differing capacity.

Instruction cache
In this section we examine the miss rates for an
instruction cache as cache capacity, associativity, and line
size are varied.

Varying capacity
The SPEC95 benchmarks were compiled for the POWER
Architecture*, which is modeled in the compiler as having
a 32Kb instruction cache. As a result, the compiler unrolls
loops and eliminates subroutine-call overhead for small
functions with this cache capacity in mind. For the
CINTY5 instruction references, a 32Kb eight-way set-
associative instruction cache with 32-byte lines produces,
on average, fewer than one miss per 1000 instructions. For
the CFPY5 instruction references, a 64Kb cache is
required to reach such minimal miss rates. At 32Kb, there
are approximately three misses per 1000 instructions.
Basically, the compiler does a good job of reaching
minimal miss ratios for the intended instruction cache.

Figure 1 shows the instruction cache miss rates for
several one-way set-associative caches with 32-byte lines.
The Y-axis on these graphs is in a log scale and represents
the number of misses per 1000 instructions for an
application on a particular cache. Each curve on the graph
represents a particular cache capacity in the range from
8 Kb to 512 Kb. Large vertical distances between curves
indicate that the larger cache (represented by the lower
curve) captured a significantly larger piece of the working
set. Similar graphs are used to describe the variation of
other parameters and to examine the data cache.

For *I1132 caches, the benchmarks with the largest
instruction miss rates are Li, Gcc, Go, Perl, MSSksim, 267

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

J'
0

I

4 1
I

I
I

- ..
comp swim appl hydr mgri turb su2c ijpe wave tomc apsi li gcc go perl m88k fppp vort

8Kb "t-
16Kb - - - X - - -

32Kb - +-
64Kb - -B -

1 Instruction cache miss rate as cache capacity is varied from 8Kb to 5 12Kb (one-way set-associative, 32-byte lines)

f=
comp su2c hydr mgri wave tomc li perl fppp

swim appl turb ijpe apsi m88k go gcc von

One-way "C Two-way - < - . Four-way -.- Eight-way 4-

268

Fpppp, and Vortex. Most of these required at least a
32Kb cache to have fewer than ten misses per 1000
instructions. However, even with the smallest 8/1/32
caches, the cache miss rate never exceeded 100 misses per
1000 instructions-one miss every ten instructions.

Most applications dropped down to one miss every
100000 to one million instructions when run on a 512Kb
instruction cache, Gcc and Vortex are the exceptions here.
Even with a 512Kb instruction cache, these two programs
generated miss rates of approximately one per 1000 and
one per 5000 instructions, respectively. The use of a four-
way set-associative cache significantly reduces the miss
rate for Vortex but not for Gcc.

Varying associativity
Figure 2 shows the cache family 32/*/32; in the figure,
each curve on the graph represents a particular
associativity. By looking for the large vertical gaps, we can
see which benchmarks benefit by increasing associativity.
However, increasing associativity does not always reduce

M. J. CHARNEY AND T. R. PUZAK IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997

miss rates; in some cases, it can lead to increases in the
miss rate for an application. Usually this is a problem only
when the cache lines are long compared to the total cache
capacity. For example, in Figure 1, Applu and Hydro2d
displayed very small increases in miss ratio as the cache
associativity was increased from one-way to eight-way. For
these two applications, the increased associativity and the
resulting decrease in number of congruence classes (sets)
caused cached data to displace one another. With more
congruence classes, data are more isolated from one
another, and better replacement decisions can often be
made.

For the 32/*/32 caches, a two-way cache resulted in
significant gains over the direct-mapped alternative. Li
experienced a reduction in miss rate by three orders of
magnitude when a four-way cache was used (in place of a
two-way cache). Wave5 also showed large gains with a
four-way cache. All of the benchmarks other than Gcc,
Go, and Vortex have fewer than one miss per 1000
instructions with a four-way cache. With the four-way
caches, all benchmarks except Vortex generate fewer than
ten misses per 1000 instructions. Vortex generated the
most misses for the 32/*/32 caches, approximately 25 per
1000 (one in 40 instructions).

Varying line size
Figures 3(a) and 3(b) respectively show the cache families
32/1/* and 32141%. Each curve on the graphs represents
a different line size. As with the associativity graphs,
increasing line size can result in increased miss rates when
there are not enough cache congruence classes. Figure
3(b) shows such anomalies for Li, Tomcatv, MSSksim, and
Perl. For these four benchmarks, as the line size increased
and the capacity and associativity were held constant, the
miss rate increased. It is well known that miss ratio can
increase as line size increases; our experiments show many
instances of such behavior.

The effects of line size are not as dramatic as those for
increasing capacity or associativity of the instruction
cache. For the one-way caches, it is generally good to
increase the line size. For the four-way caches, the four
programs mentioned above do not benefit from the
longest line size-256 bytes. With the exception of
Tomcatv, however, Li, M88ksim, and Perl benefited from
64-byte lines (compared to 32-byte lines) and Li benefited
only slightly from 128-byte lines. These effects are
produced by reducing the number of congruence classes in
the more set-associative caches. For the direct-mapped
caches, increasing line size appears to be beneficial; for
the more associative caches, the long lines are generally
beneficial and only rarely harmful. However, any harmful
effects produced by increasing line size should not
outweigh the benefits delivered to the other applications.

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 19Yi

1u- t

1 0 - 5 t " " " " " " " "
comp su2c hydr mgri wave tomc li perl fppr

swim appl turb ijpe apsi m88k go gcc

32 bytes + 64 bytes - *-. 128 bytes -0- 512 bytes "Q

(4
1 n2

comp turb appl li ijpe apsi m88k perl gcc
swim su2c wave hydr mgri tomc fppp go

32 bytes + 64 bytes - *-. 128 bytes -0- 512 bytes -(I

(b)

Instruction cache miss rate as cache line size is vaned from 32 I bytes to 256 bytes; 32Kb caches, (a) one-way and (b) four-way set- 1 associative.

Data cache
In the previous section we analyzed the instruction miss
rates for the SPEC95 benchmarks. In this section we carry
out similar analysis for the data references. In contrast
to the instruction side, the data side poses more of a
challenge to the memory system when the caches are
small.

Valying capacity
Figures 4(a) and 4(b) respectively show the miss rates for
the cache families */1/32 and */4/32. The data side clearly
has higher miss rates than the instruction side. Wave5,
Tomcatv, and Swim generated the most data misses-more
than one every ten instructions-with the 8Kb and 16Kb
caches for both the one-way and four-way caches. A 32Kb 269

M. I . CHARNEY AND T. R. PUZAK

1

+ 8Kb

4 6 - 32Kb

4 64Kb

+ 128Kb

-0 . 2S6Kb

-e. 512Kb

270

M. J. CHARNEY AND T. R. PUZAK IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

cache is required to reduce the miss rates for these
applications to less than one miss every ten instructions
(100 MP1000I).

Another difference from the instruction side is that
many of the benchmarks have miss rates in the 10-100-
MPlOOOI range even with 128Kb caches (one-way). For
some, the miss rate does not drop below 10 MPlOOOI even
when 512Kb caches are used. In general, such behavior is
caused by either very large working sets or a touch-the-
data-once pattern in the data references of the trace. The
touch-the-data-once pattern would be expected during
program initialization. However, since the first billion
instructions are skipped for all of the programs except
Gcc, and since the execution profiles from the traces
matched the profiles from the full executions, we felt that

ljpe fppp gcc vort mgri turb swim su2c tomc
perl m88k li go camp appl apsi hydr wave

One-way -” Two-way - *-’ Four-way -0- Eight-way 4-

this behavior is not necessarily caused by programs
initializing data structures before the “real work” starts.
Since we know which instructions are responsible for the to eight-way; 32Kb caches, 32-byte lines.
misses in the executions, we can correlate this information
with the application source to verify our hypothesis. This
remains as future work.

Varying associativity
Figure 5 shows a family of 32/*/32 data caches. The
associativity is varied from one-way (direct-mapped) to
eight-way set-associative. The graph shows that increasing
associativity can have large effects on the miss rates for
certain benchmarks. For example, M88ksim, Fpppp, Perl,
Go, Li, Vortex, and Gcc experienced large reductions in
miss rate with the two-way cache compared to the direct-
mapped cache. For the workloads with the larger miss
rates (Applu, Swim, Su2cor, Hydro2d, Tomcatv, and
WaveS), the increased associativity is of little benefit.

Figure 5 also presents one anomaly where increased
associativity slightly increases the miss rate for Compress.
The two-way set-associative cache has a slightly larger miss
rate than the one-way cache. However, the four-way and
eight-way caches improve upon both the one-way and two-

m88k fppp ijpe go turb mgri appl su2.c tomc
perl gcc li vort camp apsi swim hydr wave

32 bytes “c 64 bytes -*- 128 bytes -0- 256 bytes 4-

way cache miss rates. Here, the benefits of four- or eight- “̂ _ll-_.lll._. ._

way associativity made up for the decrease in the number
of congruence classes (cache capacity is held constant).

The graph in Figure 5 also shows the diminishing
returns from four-way and eight-way caches compared to
two-way set-associative caches. This is observed in many of
the graphs that we have examined. However, Per1 is the
exception. A large drop in miss rate still occurs for the
eight-way cache, but it can be argued that the miss rate is
so low already with a four-way cache that any further
reductions enabled by the eight-way cache would be of
little benefit.

Data cache miss rate as cache line size is varied from 32 byte
256 bytes (32Kb caches, four-way set-associative).

line size is varied in a family of 32/4/* caches. The line
sizes are 32, 64, 128, and 256 bytes, with each represented
by a separate curve. This graph is very different from
Figure 3, which showed a more uniform reduction in miss
rate as line size is increased. Here, in Figure 6, we see
that as line size increases, the miss rate often

Varying line size Decreases (Ijpeg, Li, Mgrid, Applu, Hydro2d);
Longer cache lines help applications with good spatial Increases (Perl, Fpppp, Go, Vortex, Tomcatv);
locality. Figure 6 presents the data cache miss rates as the Is relatively unchanged. 271

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

Table 4 Cumulative percent of all data misses caused by
the top ten instructions causing data misses.

Benchmark Cumulative percent
of data misses

li 88.84
turb3d 54.40
ijpeg 47.15
fPPPP 44.67
mgrid 32.01
perl 30.02
apsi 24.51
swim 23.22

hydro2d 20.71
vortex 13.51

aPPlu 22.20

go 12.89
gcc 5.56

Table 5 Number of load or store instructions required to
account for 90 percent of all the data-miss traffic in each
program.

Benchmark Number of Cumulative percent
instructions of data misses

gcc 983 + 56.30
go 760+ 84.68
li 11 90.06
ijpeg 38 90.43
turb3d 46 90.10
fPPPP 47 90.16
swim 57 90.18
mgrid 66 90.09
perl 66 90.02
apsi 112 90.21

hydro2d 228 90.04
vortex 1233 90.00

aPPlu 194 90.04

Note: Since we kept track of only those instructions responsible for at least 500
misses, and since Gcc and Go are so “Rat,” those !mo did not reach 90 percent.

For many of those applications the increase (or decrease)
in miss rate is quite large. The benefits of increased line
size are larger than the effects of increased associativity.
This graph suggests that the larger 256-byte lines might be
useful for aggregate reductions in miss rate on a 32Kb
four-way cache. It would not help all of the workloads, but
it does help some significantly. To verify this hypothesis,
one would need to look at the increased memory
bandwidth requirements and bus queuing effects that
would result from transferring longer cache lines into the
primary cache.

Stride in the data misses
We measured the stride in the cache misses in two ways.

272 One we call lust-miss, or casual stride, and the other is

M. J. CHARNEY AND T. R. PUZAK

called stride with respect to an instruction. In measuring
casual stride, cache misses are watched as they occur, and
the difference in their address is recorded as the program
executes. Stride with respect to a particular instruction is
somewhat different. In this case, stride is calculated based
on the last cache miss caused by the same load or store
instruction when it executed previously. One key
difference between the two kinds of stride is that the
stride with respect to instruction can be (and very often is)
zero cache lines. This would happen if a cache line were
displaced from the cache in the time between two accesses
by the same instruction.

Casual stride would be the sort of stride covered by a
simple next-sequential prefetcher. Stride with respect to
instruction is useful for analyzing more sophisticated
table-based prefetchers, which use instruction information
in an attempt to refine their guess of the stride in the
reference pattern.

We now analyze the stride in the data references with
respect to instructions for the SPEC95 benchmark suite as
a whole when run with 32/4/32 primary data caches. We
compiled histograms of the frequency of each stride. The
stride is measured in cache lines.

As we increase cache line size, the dominant (most
frequent) strides shift. For 32-byte lines (Figure 7), stride 1
is most frequent (43 percent)-these are next-sequential
misses by the recurrences of the same instruction. Stride 3
accounts for the next most frequent stride with ten
percent. Strides 6 (four percent), 2 (three percent), 256
(three percent), and 0 (three percent) follow. For 64-byte
cache lines (figure not shown), stride 1 is still dominant
with 43 percent, but now stride 0 is second, accounting for
14 percent of all strided cache misses. Stride 3 still
accounts for ten percent of the misses. With 256-byte
cache lines (figure not shown), Stride 0 is dominant with
44 percent, and stride 1 accounts for only 15 percent. We
see that as cache line size increases, next-sequentiality
drops off and second misses to the same cache line
become more frequent. This behavior is caused by what
we call congruence-class starvation; that is, there are not
enough sets in the long-line caches compared to caches of
the same capacity with shorter lines.

Number of instructions causing data misses
Tables 4 and 5 show which instructions contribute the
most misses in the benchmarks. These data are collected
from a 32/4/32 data cache. Table 4 shows the percent of
all data misses contributed by the top ten load or store
instructions causing data misses. To measure the tail of
the distribution of instructions, Table 5 shows the number
of instructions required to reach 90 percent of all data
misses. In our simulator, we report only the instructions
for which more than 500 misses occurred. Consequently,
we see in Table 5 that the “long flat tails” of Gcc and Go

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

do not reach 90 percent when one considers only the
instructions causing more than 500 misses. Gcc and Go
appear to have many instructions responsible for a few
misses, in sharp contrast to programs such as Li or Ijpeg,
where 11 and 38 instructions respectively contribute over
90 percent of the misses.

Comparing instruction and data miss rates
To better distinguish the applications with more
instruction or more data traffic, we directly compare the
instruction and data miss rates for the SPEC95
benchmarks. Figure 8 shows the ratio of data misses to
instruction misses on equal-size primary caches. The ratio
is plotted using a log scale, and a horizontal line is drawn
where the data and instruction miss rates are equal. The
figure shows the ratio for each benchmark and for
*/4/32 caches. Each curve represents a different cache
capacity: 32Kb, 64Kb, and 128Kb.

Figure 8 shows that most of the benchmarks have at
least 100 times more data-miss traffic than instruction-
miss traffic. At one extreme, Tomcatv, Swim, and
Compress can have 100000 times more data-miss traffic
than instruction-miss traffic. At the other extreme, the
32Kb caches Vortex, Gcc, Perl, and Go can have more
instruction-miss traffic than data-miss traffic from their
primary caches.

Split vs. unijied caches
Figure 9 compares the miss rates of split and unified
primary caches. In the figure the split instruction and data
caches are half the size of the unified primary cache. The
four curves represent

Data-miss rate from a 16/4/32 cache (“data 16”).
Instruction-miss rate from a 16/4/32 cache (“instr 16”).
Sum of the previous two lines (“split 16/16”).
Miss rate from a unified 32/4/32 cache (“unified 32”).

We see that the unified cache occasionally reduces the
aggregate miss rate delivered to the L2. For Swim, Wave5,
and Tomcatv, the extra capacity of the unified cache
significantly reduces the miss rate (70, 41, and 54 percent,
respectively). Since those three have very little instruction-
miss traffic, the gains are purely from accommodating the
larger working set of the data.

Fpppp behaves differently. Since the applications are
compiled and optimized for 32Kb primary instruction
caches, Fpppp has a very large instruction miss rate with
the 16Kb primary caches. In this case, the unified cache
outperforms the split caches because of its very large,
frequently executed inner basic block that contains 4138
32-byte instructions-a little over 16Kb. For the cases we
have examined (beyond what is presented here), the
unified cache outperforms the split caches only

Stride (in cache lines)

’ caches in SPEC95.

1

32Kb-e- 64Kb- 4- ’ 128Kb*

1 Ratio of data-miss rates to instruction-miss rates for */4/32 caches.

occasionally when there is significant traffic from both the
instructions and the data.

Perl is the only application where the unified cache has
a larger miss rate than the separate half-size instruction
and data caches. However, even this difference is small:
about one miss per 1000 instructions. In general, the
unified caches perform as well as the split caches or, as in
the several caches mentioned above, much better. 273

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

274

160

140

120

8 100

2
.*

.B x 80
2
c

v)

m

2 60

40

"" @ "" Data 16

"0" Instr 16

- e - Split16116

-8- Unified 32

Comparison of split 16/4/32 caches to unified 32/4/32 primary cache.

3. Prefetching terminology
In this section, we discuss three fundamental aspects of
memory hierarchy prefetching: coverage, accuracy, and
traffic. They measure, respectively, the number of misses
removed by the prefetching algorithm, the quality of the
prefetching decision, and the amount of extra bandwidth
required of the memory system to support prefetching.
The goal in prefetching is to have high coverage, high
accuracy, and minimal extra traffic. Prefetching traffic
can be simply subdivided into two categories: "good"
prefetches and "bad" prefetches:

Prefs = PrefHits + PrefBad

The good prefetches are used by the program before they
are displaced from the buffer or cache in which they are
held. The bad prefetches are not used by the program
before they are displaced. There are finer subdivisions
based on the latency covered by the prefetches, but they
are not important at this time.

M. J. CHARNEY AND T. R. PUZAK

Accuracy is a measure of the skill of the prefetching
mechanism in choosing what to prefetch:

Acc = Pref,,,s/Prefs = PrefHi,s/(PrefHi,s + PrefBad) .

Coverage is a measure of the number of misses that
are accurately prefetched. BaseCaseMisses are misses
that would have occurred with no prefetching. When
(imperfectly) prefetching into the cache, new cache misses
are produced because prefetched data displace other live
cached data:

Cov = Pref,,s/BaseCaseMisses

= (Acc X Prefs)lBaseCaseMisses.

Coverage and accuracy are in the range (0, 1).
Theoretically, however, coverage can exceed 1 with this
definition, for the following reasons. The prefetches (good
or bad) which are automatically placed into the cache
can displace live data from the cache, creating more

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

opportunities for prefetching. With these extra, or
“redundant,” opportunities for prefetching, there may be
more prefetch hits than base case misses. This does not
occur in practice. Consider this example: A program
references only one line, A. In a normal execution it
would have one cache miss. Now consider a prefetching
algorithm that could prefetch B, displacing A, and then
prefetch A (displacing B) before the processor refers to it
again. When the processor references A, it will have a
prefetch hit. The prefetcher prefetches B and then A in
sequence as before. When the processor references A
again, that will be a second prefetch hit in a program that
originally only had one miss. In this unusual case,
coverage exceeds 1. Here it is equal to 2.

ResidueMisses are those that remain after prefetching
because of imperfect coverage of all cache misses. These
are the ones the prefetcher missed:

ExtraTraffic = (Prefs + ResidueMisses)lBaseCaseMisses.
Extra traffic is always greater than or equal to 1.

4. Prefetching algorithms
In this section we describe two prefetching algorithms,
next-sequential prefetching (NSP) and shadow-directory
prefetching (SDP), and a process that avoids unnecessary
prefetches. (A prefetch is unnecessary if it is not used by
the processor while in the cache.)

Next-sequential prefetching
In NSP, whenever line L is referenced an attempt is made
to prefetch line L + 1. Many designers find NSP an
attractive prefetching algorithm because of its simplicity.
A prefetch of line L + 1 is initiated on the basis of an
access to line L. NSP relies on the spatial and temporal
locality properties of a program to predict which line to
prefetch. These two properties account for much of the
success of caches in attempting to contain those portions
of a program requested by a processor. The effectiveness
of NSP depends on the cache size and, in particular, the
line size used in the cache. Typically, smaller cache line
sizes result in better NSP performance. For example,
consider NSP when applied to instruction prefetching. If
an instruction-fetched line does not contain a taken
branch, the next-sequential line must be referenced. Also,
most branches are short forward jumps in a program. This
short forward jump is frequently contained in the original
line or the next-sequential line.

Shadow-directory prefetching
In SDP, a history of the referencing pattern of a processor
is recorded in a table and a prefetch is attempted
whenever it is determined that the referencing pattern is
repeating. For example, consider Figure 10. The figure
shows a two-level memory system consisting of a cache

DirecloIy Cache mays

Diredory entry

Shadow-directory prefetching.

and directory at level one (Ll) backed up by a second-
level cache (L2) and directory. Typically the L2 cache is
several times larger than the L1 cache. Each directory
entry for the L2 identifies a line currently contained in the
L2, and the L2 directory represents a history of the lines
that were in the L1. Now, let each directory entry in the
L2 contain a second address, a shadow address. Let the
shadow address identify the line that was referenced after
the line identified by the directory entry was referenced.
Thus, each directory entry in the L2 contains a pair of
addresses that represent a parent-successor (follower)
sequence of references made by the processor. The parent
address identifies the line normally contained in the L2,
while the shadow address identifies a following address to
the parent address and represents a logical choice for a
prefetch candidate. By integrating the prefetch address
into the structure of the L2, SDP relies on the L2 to
maintain a history of lines that were in the L1 at an
earlier point in time, and would still be in the L1 if it
were larger. The effectiveness of SDP depends upon the
persistence of the referencing pattern as captured by the
L2. In those applications where the L2 can contain a large
portion of an application’s working set, and if the
referencing pattern of the application is repetitive, SDP
should be able to prefetch L1 misses so that the miss ratio
of the L1 approaches that of the L2.

An immediate advantage of SDP over NSP is that it can
prefetch lines that are not just next-sequential referencing
patterns. For example, consider a sequence of six cache
misses L , L + 1, L + 3, L + 6, L + 7, L + 8. If the
sequence is repeated, NSP can prefetch only lines L + 1,
L + 7, and L + 8, whereas SDP can prefetch all of the
misses. Recall that NSP can prefetch line L + 1 only if
line L is referenced. However, the advantage of SDP 275

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. 1. CHARNEY AND T. R. PUZAK

prefetching over NSP is not without cost. NSP can be
implemented with relatively little hardware cost, whereas
SDP requires each directory entry in the L2 to contain a
second address, a prefetch address. Also, SDP must see a
reference pattern repeated before it can accurately
generate prefetches, whereas NSP can successfully
prefetch unseen or first-time-referenced information when
the referencing pattern is next-sequential in nature.

Prefetch buffers
Besides determining which line to prefetch, a prefetch
algorithm must decide where to put the prefetch and the
frequency with which a prefetch can be attempted. We
consider two prefetch placement policies in this paper:
prefetch into the cache, and prefetch into buffers.

When prefetching into the cache, the replacement
algorithm chooses the least-recently-used (LRU) line in a
cache congruence class and overwrites it with the
prefetched line. LRU is used as the replacement policy for
all prefetching experiments in this paper. The prefetched
line is then given the newest or most-recently-used (MRU)
status of all the lines in the congruence class. When
prefetching into buffers, each prefetch is initially
transferred to a buffer. When a cache miss occurs, the
buffers are searched to see whether the miss was
prefetched. If the miss was prefetched, the line is
transferred from the buffer to the cache, and the buffer is
marked free and available for another prefetch. The
number of prefetch buffers studied in this paper varies
among 1, 2, 4, and 8. If there are no free buffers when a
prefetch occurs, the buffer containing the oldest
prefetched line is chosen for replacement, and the current
prefetch overwrites the existing line in the prefetch buffer.
LRU is the replacement policy used to select a prefetch
buffer.

The prefetch buffers can be implemented in the same
technology as the cache and placed near the cache. Thus,
an access that is found in the prefetch buffer can be
satisfied in approximately the same amount of time as a
cache hit. There are several advantages to having lines
sent to a buffer and not loaded directly into the cache.

First, prefetches are a guess or prediction that a line
will be used by the processor. If a prefetched line is
copied directly into the cache, a line already in the cache
must usually be discarded. If the prefetched line is not
used while in the cache, the cache has been contaminated
with a useless line, thus wasting valuable cache space. The
prefetch buffer acts as a filter for all prefetches and allows
only the prefetched lines that are used by the processor to
be placed into the cache. Typically a small number of
buffers are required to keep lines that are not used by

276 the processor from entering the cache.

Second, if the prefetched line is copied into the cache,
the replacement algorithm must choose a line currently in
the cache to be overwritten by the prefetched line. If the
replaced line is re-referenced before the prefetched line is
referenced, an additional cache miss occurs; that is, the
line just discarded from the cache must be re-accessed
before the cache request can be satisfied.

Third, if the prefetched line is transferred directly into
the cache, normal references made by the processor may
be blocked during the line transfer cycles.

cache are simplicity and cost. Transferring prefetches
directly into the cache is simpler to implement than
transferring them to a buffer. Also, prefetch buffers
consume valuable chip area, and any value would be lost
if they adversely influence the critical cycle time of the
processor.

The frequency with which a prefetch is attempted is an
important design parameter in any prefetching algorithm
because each prefetch attempt requires a directory lookup
to see whether the line is already in the cache or prefetch
buffers (if used). Prefetching too frequently can saturate
the cache directory and delay necessary cache accesses.
Conversely, an infrequent prefetching policy can reduce
the miss coverage that would otherwise be obtainable by
more aggressive prefetching schemes. For example,
prefetching on every cache reference can double the
directory traffic, while prefetching on only cache misses
has an upper bound of removing only 50 percent of
misses. For the prefetching studies in this paper, a
prefetch is attempted on each MRU change within a cache
congruence class. An MRU change occurs whenever a line
other than the most-recently-used line in a cache set is
referenced. It is noted that all cache misses are MRU
changes. Prefetching on MRU changes removes most of
the unnecessary directory traffic associated with
prefetching on every reference while still providing ample
prefetching opportunity to reduce the number of overall
misses.

The advantages of transferring prefetches directly to the

Confirmation
A technique known as confirmation is used to improve the
accuracy of each prefetching scheme [2]. Confirmation
improves the accuracy of a prefetching algorithm by
keeping track of what has been prefetched and what has
been used, and tries to avoid making not-used prefetches
in the future. For example, Figure 11 shows next-
sequential prefetching with confirmation using a memory
hierarchy consisting of an L1, an L2, and a single prefetch
buffer.

A confirmation bit is added to each directory entry in
the L2 indicating whether the line was used (1) or not-
used (0) when it was last prefetched. Assume that the
confirmation bit is initially set to 1 for each line that

M. J. CHARNEY AND T. R. PUZAK IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

enters the L2. This initial setting is arbitrary, but will bias
the prefetching mechanism to prefetch on first-time
references. Now consider NSP and a referencing sequence
of three lines L , L + I , and L + 4, each causing a cache
miss; let each generate a prefetch request for the L1.
Ignoring startup effect, we assume that lines L , L + 1,
and L + 4 are all in the L2 with their confirmation bit set
to 1 and that the prefetch buffer is empty. The reference
to line L generates a prefetch request for line L + 1. The
L2 directory is then searched for line L + 1 and its
confirmation bit examined. If the confirmation bit is 1, line
L + 1 is prefetched. If the bit is 0, line L + 1 is not
prefetched. Assume that the confirmation bit is 1 and that
the line is prefetched to the prefetch buffer.

The reference to line L + 1 causes a cache miss that
hits in the prefetch buffer. Line L + 1 is then transferred
to the cache, and the prefetch buffer is marked free. The
reference to line L + 1 also causes a prefetch for line
L + 2. Assuming that line L + 2 is in the L2 and its
confirmation bit is 1, it is prefetched and sent to the
prefetch buffer.

The reference to line L + 4 misses in both the cache
and prefetch buffer and generates a prefetch request for
line L + 5. The confirmation bit for line L + 5 is
examined, and it is prefetched. However, when L + 5 is
prefetched, the prefetch buffer is not free. Line L + 2 is
still in the prefetch buffer and not-used. The confirmation
mechanism recognizes this condition and notifies the L2
that line L + 2 was not-used when last prefetched. The
confirmation bit for line L + 2 is then reset to zero.

If line L + 5 is not-used by the processor, it is
eventually overwritten by the next prefetch. This causes its
confirmation bit to be set to 0 and inhibits further
prefetching of this line. Thus, for the sequence of L, L + I ,
and L + 4, three lines were prefetched (L + I , L + 2,
and L + 5) , but only one line was used (L + I) .

repeated, only line L + 1 is prefetched. Lines L + 2 and
L + 5 are not prefetched because their confirmation bits
are set to 0.

Once a line in the L2 has its confirmation bit set to 0,
it can be reset to 1. The confirmation mechanism coupled
with next-sequential prefetching monitors the referencing
pattern sent to the L2. Each pair of consecutive references
are compared to determine whether they represent a
sequential referencing pattern. If one is detected, the
confirmation bit for that pair of references is examined
and reset to 1 if it is currently 0.

and becomes L , L + 1, L + 2, L + 4, the reference to
line L + 2 following the reference to line L + 1 is
detected as a sequential referencing pattern. The
confirmation bit for line L + 2 is then examined and, if 0,

If the sequence of lines L , L + 1, and L + 4 is

For example, if the previous referencing pattern changes

(;;;(Prefetch request Cache IPrefetchismde if confinnation

Confirmation bit
l=used Directory ii , mys , L,
0 = not used

bit = 1.

1 Next-sequential prefetching with confirmation.

reset to 1. This allows future references of line L + 1 to
prefetch line L + 2.

Implementing a confirmation mechanism with SDP
requires slightly more hardware than described for NSP.
As before, a confirmation bit is added to each shadow
address saved in the L2 to indicate whether the line
identified by the shadow address was used (1) or not-used
(0) when last prefetched. Recall that a prefetch of the
shadow address is attempted in SDP whenever the parent
address is referenced. However, when a prefetch is made,
the prefetch address (shadow address) is saved along with
the parent address in the prefetch buffers. The shadow
address identifies the line that was prefetched, and the
parent address identifies the L2 entry that caused the
prefetch. This address is needed to notify the L2 whenever
it is detected that a prefetch was made and not-used. The
confirmation mechanism then uses the parent address to
locate the L2 entry that caused the prefetch, and the
confirmation bit for the shadow address is set to 0,
inhibiting future prefetches until it is reset to 1.

A slight modification to the prefetching algorithm
occurs when there are no prefetch buffers. Here
prefetches are sent directly to the cache. A used bit is
added to each line in the L1 directory indicating whether
the line was used or not-used while in the cache. A 1
indicates that the line was used, and a 0 indicates not-
used. The used bit assists the confirmation algorithm and
helps to initiate prefetch attempts. All prefetches are
loaded into the cache with their used bit set to 0. The bit
is set to 1 whenever the line is referenced by the
processor. Demand misses are loaded into the cache with
their used bit set to 1. A miss is a demand miss if it is not
a prefetch miss. These misses represent the normal
requests generated by the processor while executing a

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

~" ". 2 bufs
- + - 4 bufs
+ 8 bufs

tomc su2c mgri turb fppp go gcc li perl
swim hydr appl apsi wave m88k comp ijpe vort

Benchmarks

(a)
1 .oo

0.80

& 0.60
E
? 6 0.40

0.20

- 0 bufs

"A- 8 bufs

tomc s 3 c mgri turb fppp go gcc li perl
swim hydr appl apsi wave m88k comp ijpe vort

Benchmarks

(b)

Miss coverage for instruction prefetching (8/1/32 cache): (a) next-
sequential prefetching; @) shadow-directory prefetching.

program. A prefetch is attempted whenever a reference
causes an MRU change or it is detected that the processor
has made a reference to a line with a used bit set to 0.
Here the line was prefetched and used by the processor
for the first time. If the prefetching algorithm uses a
confirmation mechanism to eliminate not-used prefetches,
the prefetch algorithm must reset the appropriate
confirmation bit whenever it is detected that a line is
chosen for replacement and its used bit is still 0. This
occurs when a prefetch is made into the cache and the
line gets replaced from the cache before it is used.

5. Simulation results
The effectiveness of each prefetching algorithm was
evaluated against the SPEC benchmark suite. We begin by
showing graphs for coverage, accuracy, and traffic for NSP
and SDP with and without confirmation for an 8Kb cache.
Separate graphs for instruction and data prefetching are
shown and analyzed in detail. We end this section by

278 showing average performance characteristics for SKb,

16Kb, and 32Kb caches that are one-way and four-way set-
associative.

Instruction prefetching
Comparisons between NSP and SDP for instruction
prefetching are shown in Figure 12. The size for each
cache is SKb, one-way set-associative, with a 32-byte line
size. No confirmation mechanism was used, and the
number of prefetch buffers varied from zero to eight.
Zero prefetching buffers indicates that we are placing
each prefetched line directly into the cache. The SPEC
floating-point applications are listed first (leftmost
workloads in the graph), followed by the SPEC integer
applications. We found that SDP averages a miss coverage
about ten percent higher than NSP for instruction
prefetching when coverage is averaged over all of the
SPEC applications, about 60 percent for NSP versus 70
percent for SDP. Some interesting features of the two
graphs include the following:

The increased prefetching coverage for SDP is produced
by the ability to prefetch jumps or branches in the
instruction stream. Recall that NSP cannot prefetch
jumps in the instruction stream that go beyond the next
sequential line.

prefetching into prefetch buffers. This is possible when
the prefetching accuracy is high. For example, NSP
averaged a prefetching accuracy of about 75 percent,
while SDP averaged an amazingly high accuracy of more
than 90 percent. With high prefetching accuracy, the
need for prefetch buffers is diminished because each
line prefetched into a buffer eventually ends up in the
cache.
The variation in coverage for prefetching into the cache

Prefetching into the cache generally outperformed

or into prefetch buffers is generally smaller for SDP
than NSP. By being able to prefetch taken-branch misses
and next-sequential misses, SDP remembers the miss
order more accurately than NSP. This effect also
accounts for SDP's higher accuracy.
NSP was able to prefetch very few misses for Su2cor
because it had relatively few instruction misses (see
Figure l), and most of its misses were caused by two
taken branches fetching lines into the same set of the
cache. Each branch target would displace the other
branch's line and cause another miss. These misses are
not prefetchable with NSP because the previous line was
not referenced.

Data prefetching
Miss coverage for SDP and NSP prefetching data is shown
in Figure 13. When prefetching data, both SDP and NSP
had a lower miss coverage than was observed for
instruction prefetching. The average prefetch miss

M. J. CHARNEY AND T. R. PUZAK IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1991

coverage for SDP was only 32 percent versus 20 percent
for NSP. The graphs contain many interesting features
that show when a prefetching algorithm is working well or
poorly. Some interesting features of the two prefetching
algorithms are the following:

Prefetching into the cache is no longer the best strategy.
For NSP, prefetching into the cache was the worst
prefetching policy for Tomcatv and Swim and inferior to
eight prefetch buffers for Hydro2d, Mgrid, Turb3d,
Wave.5, and M88ksim. Two factors contributed to this
result. First, the prefetching accuracy for NSP was much
lower for data prefetching than for instruction
prefetching, approximately 30 percent when averaged
over all of the workloads. Prefetching a line that will not
be used still requires that a line be discarded from the
cache. (The accuracy graphs for NSP and SDP are
discussed below.) Second, for a prefetching algorithm to
be successful, it must decide not only which line to
prefetch, but also which line to discard from the cache.
If a line is discarded before its last use, a new miss can
result when the line is referenced again. Any miss
reduction caused by prefetching a line might be offset by
an additional miss caused by discarding the wrong line
from the cache. The prefetching algorithm must discard
a dead line from the cache for each prefetch. A line is
dead if it will be discarded from the cache before it will
be re-referenced without considering prefetching effects.
Prefetching into a direct-mapped cache can produce
additional misses caused by displacing lines too soon
from the cache.
When varying the number of prefetch buffers from zero
to eight, sensitivity in prefetching coverage is much
higher than was observed for instruction prefetching.
For example, when NSP was applied to the Hydro2d
workload, the prefetch coverage varied from three
percent with one prefetch buffer to over 80 percent
coverage with eight prefetch buffers. When only one
prefetch buffer is used, the order in which lines are
prefetched is extremely important. A prefetch must be
used before the next line is prefetched in order for it to
be successful. When the number of prefetch buffers is
increased to eight, the time between prefetching a line
and using it is not as critical as with one prefetch buffer.
With eight prefetch buffers, a prefetch can exist in the
prefetch buffers for a much longer time before it is used
by the processor. The same effect is seen for SDP, but
to a lesser degree.

relatively low (ten percent or less), regardless of the
number of prefetch buffers used. These two applications
lack a next-sequential miss pattern and yield poor
prefetching results. SDP improved the miss coverage to
20-40 percent for these applications.

Miss coverage for NSP on Compress and Go was

1 .00

0.80

& 0.60
2
% 6 0.40

0.20

0.00
tomc su2c mgri turb fppp go gcc li perl

swim hydr appl apsi wave m88k camp ijpe vort

Benchmarks

(a)

tomc su2c mgri turh fppp go gcc li perl
swim hydr appl apsl wave m88k comp ijpe vort

Benchmarks
(b)

Miss coverage for data prefetching (8/1/32 cache): (a) next-
sequential prefetching; (b) shadow-directory prefetching.

.

1

Figure 14 shows the prefetching accuracy for NSP and
SDP corresponding to the data-prefetching graphs shown
in the previous figure.

depending on the application and number of prefetch
buffers used. For example, the prefetching accuracy of
Hydro2d varied from near zero percent for one prefetch
buffer to nearly 100 percent for eight prefetch buffers,
while Compress and Go had an accuracy of ten percent or
less for all buffer policies. The large variation in
prefetching accuracy of Hydro2d indicates that several
different blocks of data are being prefetched
simultaneously, and that several buffers are needed to
hold these prefetch lines before their use by the processor.
The low prefetching accuracy for Compress and Go shows
that few misses are next-sequential in nature. This can
also be seen in Figure 12, where the miss coverage was
low.

It is also possible for the prefetching accuracy to be
high and still have a low miss coverage. For example, NSP
for the Tomcatv workload had a prefetching accuracy of

The prefetching accuracy of NSP varied widely

279

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

tome su2c mgri turb fppp go gcc li perl
swim hydr appl apsi wave m88k comp ijpe vort

Benchmarks

(a)

."c Obufs - + - 4bufs

tomc su2c mgri turb fppp go gcc li per1
swim hydr appl apsi wave m88k comp ijpe vort

Benchmarks

(b)

Data-prefetching accuracy (8/1/32 cache): (a) next-sequential
prefetching; (b) shadow-directory prefetching.

60 percent with eight prefetch buffers, while the
prefetching coverage was only 20 percent. This can occur
when most of the prefetch attempts are already in the
cache and the majority of the misses are to lines that are
not next-sequential to the previously accessed lines. Other
workloads where accuracy exceeded coverage are Ijpeg (60
to 40 percent) and M88ksim (60 to 20 percent).

The prefetching accuracy for SDP was higher than that
achieved for NSP because it can prefetch across breaks in
the miss pattern. For example, consider a miss sequence
of line L followed by line L + 2. SDP can accurately
prefetch L + 2 after line L is referenced, whereas NSP
makes an incorrect prefetch attempt to line L + 1.

Using SDP, the average prefetching accuracy was 60
percent (over all workloads); however, seven workloads
achieved greater than 90 percent accuracy with eight
prefetch buffers: Hydro2d, Mgrid, Applu, Fpppp,
M88ksim, Perl, and Vortex. In fact, all but one had a 50
percent or higher prefetching accuracy for eight prefetch
buffers, the exception being Su2cor with a 40 percent

280 accuracy. SDP can also have a high prefetching accuracy

M. J. CHARNEY AND T. R. PUZAK

0.80 -" 0 bufs

& 0.60
d - + - 4 bufs z 8 0.40 + 8 bufs

0.20

0.00
tomc su2c mgri turb fppp go gcc li per1

swim hydr appl apsi wave m88k comp ijpe vort
Benchmarks

(a)

tomc su2c mgri turb fppp go gcc li perl
swim hydr appl apsi wave m88k comp ijpe vort

Benchmarks
(b)

Data-prefetching miss coverage with confirmation (8/1/32 cache):
(a) next-sequential prefetching; (b) shadow-directory prefetching.

and still have a low prefetching coverage. For example,
Fpppp and M88ksim had nearly 100 percent prefetching
accuracy with four or eight prefetch buffers, while the
miss coverage was only 30 to 40 percent. This is possible
when a cache line has more than one unique miss-
follower. For example, consider that line L is followed
by line L + 4 in one reference sequence; later, line L is
followed by line L + 2. SDP remembers an L-to-L + 4
parent-follower pair. The SDP prefetching mechanism
modeled in this paper can only remember one unique
follower per line; lines having multiple followers were not
allowed. If a line has two or more different miss-followers,
only one of the lines is prefetchable. By modifying the
shadow-directory to record multiple miss-followers per
parent address, it is possible for SDP to attempt two or
more prefetches when an MRU change is detected.

Confirmation in data prefetching
The next set of graphs shows the effectiveness of
confirmation to improve prefetch accuracy and effects on
miss coverage. Figure 15 shows prefetching coverage, and

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

- * - 4 bufs
-" 8 bufs

0.0of" " " " " " " " I
tomc su2c mgn turb fppp go gcc li perl

swim hydr appl apsi wave m88k comp ijpe vort
Benchmarks

(a)

- 0 bufs

.. 2 bufs
- + - 4 bufs
+ 8 bufs

tomc su2c mgri turb fppp go gcc li perl
swim by& appl apsi wave m88k comp ijpe vort

Benchmarks
(b)

3.00

2.60

0 2.20

1.80

%
- * - 4 bufs

8 bufs

1.40

1 .oo
tomc su2c mgri turb fppp go gcc li perl

swim hydr appl apsi wave m88k comp qpe vort
Benchmarks

(a)

_I."" I
"-c 0 bufs

1 bufs
2 bufs

- * - 4bufs

"*"
.. ij-

8 1.80 -8- 8 bufs

1.40

1.00
tomc su2c mgri turb fppp go gcc li perl

swim hydr appl apsi wave m88k comp ijpe vort
Benchmarks

(b)

Data-prefetching accuracy with confirmation (8/1/32 cache): (a)
next-sequential prefetching; (b) shadow-directory prefetching.

Data-prefetching traffic without confirmation (8/1/32 cache): (a)
next-sequential prefetching; (b) shadow-directory prefetching.

Figure 16 shows prefetching accuracy for NSP and SDP
with confirmation when prefetching data. The cache
modeled is the same size as above, 8Kb by one-way set-
associative, with a 32-byte line size.

The figures show that the miss coverage for NSP
dropped only slightly. For example, the overall miss
coverage is now 16 versus 20 percent without
confirmation. However, the prefetching accuracy has
improved significantly. The average prefetching accuracy
for NSP is now 70 versus 30 percent (from Figure 14).
Confirmation can remove unnecessary or not-used
prefetches from a prefetch algorithm to a significant extent.

Similar improvements in prefetching accuracy were
observed for SDP with confirmation, with only a modest
drop in prefetching coverage. The overall miss coverage is
now 28 versus 32 percent without confirmation, and the
prefetch accuracy is now 75 percent when averaged over
all of the workloads. Only two workloads have a
prefetching accuracy of less than 80 percent with eight
prefetch buffers (Swim and Turb3d).

We note that it is still possible to have a very high
prefetching accuracy and low miss coverage. A prefetching

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

mechanism can attempt very few prefetches, all of which
are correct, and have little if any overall effect on the miss
coverage. It is important for a confirmation process to
eliminate any incorrect prefetches without removing those
prefetches that are correct most of the time.

The next set of graphs shows the bus traffic ratio of
each prefetching algorithm. Figure 17 shows the bus traffic
for NSP and SDP prefetching data without confirmation
for an 8/1/32 cache. Figure 18 shows the bus traffic when
confirmation is used.

The traffic ratio for NSP without confirmation varied
from 1.0 to 1.9, with an average of 1.5. A bus traffic ratio
of 1.5 means that the prefetching algorithm generated 50
percent more bus traffic than the normal bus traffic
associated with a cache that is processing base case
misses without prefetching. Most of the extra bus
traffic is due to incorrect or not-used prefetches.
Confirmation removed most of the extra traffic for NSP.
With confirmation, the average bus traffic ratio fell to
1.07, where only seven percent more traffic is generated
by prefetching over the normal miss traffic without
prefetching.

M. I. CHARNEY AND T . R. PUZAK

3.00 I
2.60 .

0 2.20
E e

'

1.80 ,

-" 0 bufs
1 bufs

- .+ - 4bufs
-A- 8 bufs

""-
.-, .e- 2 b&

swim hydr -appl apsi wave m88k comp ijpe- vort
". -

Benchmarks

(a)

2.60

0 2.20
B
8 1.80

-+- 0 bufs
--+- 1 bufs

2 bufs
- * - 4 bufs

8 bufs

.I .a,."

1.40

1 .oo
tomc su2c mgri turb fppp go gcc li per1

swim hydr appl apsi wave m88k comp ijpe vort
Benchmarks

cb)

Data-prefetching traffic with confirmation (8/1/32 cache): (a) next-
sequential prefetching; @) shadow-directory prefetching.

When reviewing the results from the coverage, accuracy,
and traffic graphs, we see that three applications did
particularly well with NSP and confirmation: Hydro2d,
Mgrid, and Applu. When prefetching into the cache or
when eight prefetch buffers were used, each application
prefetched 60 percent or more of the misses with less than
five percent more bus traffic.

Similar results were obtained for SDP. Here the average
bus traffic ratio was 1.3 without confirmation and 1.09
with confirmation.

Equivalent caches
It is useful to compare the caches modeled in the previous
graphs to caches, without prefetching, that produced an
equivalent miss ratio. Figure 19 compares the miss ratios
of caches without prefetching to the miss ratios of four
SPEC applications with prefetching: (a) Vortex and (b)
Gcc with instruction prefetching, and (c) Compress and
(d) Wave5 with data prefetching.

In each graph an 8/1/32 cache was modeled and the
282 miss ratio plotted (in misses per 1000 instructions) for

M. J. CHARNEY AND T. R. PUZAK

NSP and SDP, with and without confirmation. Each
horizontal line represents the miss ratio for a cache
without prefetching. The legend identifies each cache
modeled. The graph clearly shows the effect on
performance of varying the number of prefetch buffers.
For example, the miss ratio for Vortex using NSP with
confirmation was approximately 27 misses per 1000
instructions when prefetching into the cache (zero
buffers); it increased to 30 misses per 1000 instructions
with one prefetch buffer, and improved to nearly 27
misses per 1000 instructions with eight prefetch buffers.
These effects can also be seen in Figure 12, where the
coverage for prefetching into the cache was better than
the coverage achieved with one prefetch buffer and nearly
the same as with eight prefetch buffers.

For Vortex using NSP, prefetching into the cache was the
best policy; adding prefetch buffers reduced performance.
With only one prefetch buffer, several prefetches were
overwritten by the next prefetch before they could be used
by the processor. Increasing the number of prefetch buffers
to eight increased the amount of time between prefetching of
a line and its availability for use by the processor. However,
if the accuracy of each prefetch is high, placing the line
directly into the cache allows the largest amount of time
between its prefetch and eventual use.

The miss ratios for Vortex using SDP were much flatter
when plotted against the number of prefetch buffers. SDP
with confirmation had a miss ratio of approximately 16
misses per 1000 instructions, regardless of the number of
prefetch buffers, and about 15 misses per 1000 instructions
without confirmation. Generally, a flat miss-ratio curve is
the result of a high accuracy, even when prefetching into
one prefetch buffer.

The miss ratios for four caches without prefetching are
shown ranging in size from 32Kb, two-way set-associative
with a 32-byte line (32/2/32) to 64Kb, one-way set-
associative with a 32-byte line (64/1/32). The figure shows
that NSP was able to reduce the miss ratio of an 8Kb,
one-way cache to approximately a 32Kb, two-way set-
associative cache without prefetching. In fact, NSP without
confirmation and prefetching into the cache was slightly
better than the 32Kb, two-way set-associative cache. This
represents a factor of 4 in cache size performance.

slightly better than a 64Kb, one-way set-associative cache,
a factor of 8 in cache size performance.

We see similar results in the graph for Gcc. NSP
without confirmation achieved a miss ratio of
approximately 22 misses per 1000 instructions when
prefetching into the cache, then grew to about 27 misses
per 1000 instructions with one prefetch buffer, and nearly
returned to 22 misses per 1000 instructions with eight
prefetch buffers. Comparing the miss ratios of the 8Kb
cache using NSP to a cache without prefetching, we see a

Similarly, SDP was able to achieve a miss ratio of

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

30.79 8/1/32 ns+C

'i: 27.14
32/2/32

3218132

64/1/32 2 16.20 811132 shdw+C

12.55
0 1 2 4 8

Number of prefetch buffers

16/2/32

16/4/32 811132 ns+C
811132 ns

22
I ..I...__ ~.. 1618132I ..___.I_. I _I __...l.._.__~_lll__.~

32/1/32

18 - - 811132 shdw+C - -
t 9 " "

I4 - " 811132 sfdw
_ .

0 1 2 4 8
Number of prefetch buffers

- 32/2/32 - 3218132 - ns+C 811132 + shdw 811132 - 1612132 .'I---.- 1618132 - ns+C 811132 + shdw 811132
3214132 - 64/1/32 4 ns 811132 4 shdw+C 8/1/32 - 16/4/32 - 32/1/32 -B- ns 8/1/32 -&- shdw+C 8/1/32

(a) @)

z - I 812132 4
8- 5 37.17
0
v)

32.80

28 41 ". .
0 1 2 4 8

Number of prefetch buffers

- 811132 - 3212132 -x- ns+C 811132
-.-... 161132 - 3211132 -a- ns 811132
- 812132 - 814132 + shdw 811132
- 16/2/32 - 818132 4 shdw+C 811132

(c)

I
0 1 2 4 8

Number of prefetch buffers

-811132 - 1611132 + ns+C 811132
- 814132 - - - - 818132 * ns 811132
- 1612132 - 1618132 '+- shdw 811132 - 1614132 __ 32/1/32 -E+ shdw+C 811132

(d)

Equivalent cache miss ratios for prefetching and nonprefetching caches: (a) Vortex with instruction prefetching; (b) Gcc with instruction
prefetchmg; (c) Compress with data prefetching; (d) Wave5 with data prefetching.

cache doubling. Each point lies between a 16Kb, two-way
set-associative cache and a 16Kb, eight-way set-associative
cache, regardless of the number of prefetch buffers.

The results for SDP show a factor of 4 improvement
compared to caches with equivalent miss ratios. The 8Kb
cache, with and without confirmation, achieved a miss
ratio better than the 32Kb, one-way cache.

The equivalent cache graphs for Wave5 and Compress
with data prefetching are analyzed next. NSP showed very
little improvement when applied to Compress; the miss
ratio for the 8Kb, one-way set-associative cache was only
slightly improved over a cache of the same size without
prefetching. This is expected because of the low miss
coverage for Compress shown in Figure 13.

SDP did show a miss ratio reduction when applied to
Compress. Figure 19(c) shows that the equivalent cache
miss ratios range in size from 8/8/32 to 32/2/32.

both NSP and SDP. Typically, the order of miss-ratio
reduction is from NSP with confirmation, then NSP without
confirmation, to SDP with confirmation, to SDP without
confirmation. Equivalent cache miss ratios vary from 8Kb,
four-way set-associative to 32Kb, one-way set-associative.

of the equivalent cache graphs. It is important to know
the cache size needed (without prefetching) to produce
a miss ratio equal to the miss ratio achieved with
prefetching, but it is not necessarily correct to assume

The Wave5 application shows a miss-ratio reduction for

We must now add a word of caution regarding the use

283

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997 M. J. CHARNEY AND T. R. PUZAK

1.60 1 I

0.00 I I I I I I I I
Ilns Yshad Ilns+C Ilshad+C Dlns Dlshad Dlns+C Dlshad+C

- + ~ Traf 8/1/32 +- Cov 811132 - + - Acc 8/1/32
-&- Traf 16/1/32 4 Cov 16/1/32 -A- Acc 16/1/32
-0- Traf3211132 -4Cov3211132 -e-Acc3211132

(a)

Vns Ilshad Ilns+C I/shad+C Dlns Dishad Dlns+C D/shad+C

-+- Traf 8/4/32 " Cov 8/4/32 - +- Acc 814132
- A - Traf 1614132 -4- Cov 1614132 - A - Acc 16/4/32
~ 0 - Traf 3214132 4 Cov 3214132 - Q - Acc 3214132

(b)

i I Average coverage, accuracy, and traffic for next-sequential
refetching and shadow-directory prefetching: (a) one-way; (b)

four-way.

that each cache can achieve equal performance. The
performance of a memory system can be obtained by
multiplying a miss rate (misses per instruction) by a miss
penalty (cycles per miss). A prefetching algorithm can
initiate the fetch of a miss earlier than the processor,
but may not be able to eliminate all of the delay
(penalty) associated with the miss. To fully evaluate the
performance of a prefetching algorithm, we must also
know the timeliness of each prefetch. That is, we must
know the cycles of delay associated with each prefetch. If
the prefetch is started far enough in time ahead of the
miss, it is possible to avoid all of the penalty associated

284 with the miss. However, if the prefetch is started only one

M. J. CHARNEY AND T. R. PUZAK

or two cycles ahead of the miss, there may still be an
appreciable amount of delay associated with the prefetch.
To accurately evaluate this delay, we must have a more
detailed model of the processor and the memory system.
This is clearly beyond the scope and intent of this paper.

Average coverage, accuracy, and traffic
We conclude this section by showing in Figure 20 the
average coverage, accuracy, and bus-traffic ratios for 8Kb,
16Kb, and 32Kb caches that are one-way and four-way set-
associative. The figure shows that instruction prefetching
coverage varies from 60 to 70 percent for the one-way set-
associative caches to 70 to 80 percent for the four-way set-
associative cache. Typically, SDP is ten percent higher than
NSP. The accuracy for instruction prefetching varied from
80 to 90 percent for the one-way caches and from 50 to 90
percent for the four-way caches. Typically, confirmation,
when applied to NSP or SDP, is able to produce prefetching
accuracy of 90 percent or higher for all cache configurations.
The bus-traffic ratio, for instruction prefetching, ranged from
1.2 to 1.05 for all cache configurations except NSP without
confirmation in a four-way set-associative cache. Here the
graph is cropped at 1.6, with the traffic ratio continuing to
more than 3.5. The bus-traffic ratio is large for two reasons.
First, several of the SPEC applications fit into the L1 cache
and have very few instruction misses. Second, the prefetching
accuracy is low, approximately 45 percent. These two effects
combine to produce a high bus-traffic ratio. If an application
fits in the cache, every prefetch is unnecessary or incorrect.
A prefetching strategy such as NSP without confirmation
attempts to prefetch the next-sequential line after every
taken branch. The majority of these prefetches are not-
used, since the working set of the application is already in
the cache. Each prefetch eventually ages out of the cache
and is not used. When confirmation is added to NSP,
these prefetches are eliminated and the bus-traffic ratio
is reduced. Clearly, implementing a prefetching scheme
such as NSP without confirmation (which always tries to
prefetch the follower address) is very dangerous, since it is
doubtful that the bus linking different levels in a memory
hierarchy could handle the additional memory traffic due
to prefetching over the normal bus traffic that exists to
process base-case misses.

percent for a one-way set-associative cache and from
25 to 40 percent for the four-way set-associative caches.
Typically, SDP produces a 10 to 15 percent higher miss
coverage than NSP. Data prefetching accuracy varied from
30 percent (for NSP and SDP without confirmation) to
more than 70 percent. The bus-traffic ratio for the one-
way set-associative caches varied from 1.5 (for NSP
without confirmation) to approximately 1.1 (NSP and SDP
with confirmation). For the four-way set-associative
caches, the bus-traffic ratio ranged from 1.3 to 1.1, with

Miss coverage for data prefetching varies from 20 to 35

IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

the exception being NSP without confirmation. Here the
bus-traffic ratio climbs to more than 3 and is again
cropped at 1.6. Again low accuracy, combined with a few
SPEC applications fitting into the cache, accounts for the
high traffic ratios.

6. Conclusions
One of the goals in the creation of SPEC95 as a
replacement for SPEC92** was to increase the demands
placed on the memory system. This paper shows that only
a few of the applications place more than modest demands
on the memory system. This is especially true for
instruction caches where only a few applications required
more than a 32Kb cache to achieve miss rates of less than
one per 1000 instructions.

This paper first analyzed the cache miss rates of the
SPEC95 benchmarks on a large family of cache
configurations. The largest reductions in cache miss rate
are the result of increasing cache capacity. For several
applications, increasing associativity and line size helped.
The effects of increased line size are more uniform for the
instruction caches. The effects of increasing associativity
and line size are generally not as great as those from
increasing cache capacity. For most benchmarks, a small
number of instructions are responsible for the majority of
the data cache misses.

Second, this paper analyzed two prefetching algorithms
using the SPEC95 benchmark suite. Shadow-directory
prefetching generally results in ten percent better miss
coverage than next-sequential prefetching for instruction
caches. On the data caches, shadow-directory prefetching
generally results in 15 percent better miss coverage than
next-sequential prefetching.

Confirmation significantly increased prefetching
accuracy for both NSP and SDP while only slightly
reducing miss coverage. For instruction prefetching,
prefetching accuracy was generally 90 percent or more for
NSP and SDP when confirmation was employed. Data-
prefetching accuracy was approximately 70 percent or
better when confirmation was used with NSP and SDP.

When prefetching accuracy is high, the extra prefetching
traffic generated by prefetching must be low. Generally
prefetching with confirmation produced less than ten
percent extra miss traffic. When prefetching accuracy is
high, there is no need for prefetching buffers. This is
especially true for instruction caches. In several cases,
prefetching into the cache is the best strategy for
instruction prefetching.

This paper has presented a limited view of the many
cache simulations we have run to analyze the memory
system behavior of the SPEC95 benchmark suite. Future
work remains to analyze the instructions causing the more
problematic data cache misses and attempt to characterize
and possibly reduce or remove them.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Acknowledgments
We thank Dan Prener, Christos Georgiou, and Eric
Kronstadt for supporting this study, Ravi Nair for his
program xtrace and related tracing software, Pradip Bose
for his work in setting up the PAID’96 conference,
Timothy Dinger and his group for providing
supercomputer time, and the anonymous reviewers for
offering many valuable suggestions.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard
Performance Evaluation Corporation.

References
1. SPEC; Standard Performance Evaluation Corporation,

2. J. Pomerene, T. Puzak, R. Rechtschaffen, and F.
http:llwww.specbench.org, 1996.

Sparacio, “Prefetching System for a Cache Having a
Second Directory for Sequentially Accessed Blocks,” U.S.
Patent 4,807,110, February 1989.

3. A. J. Smith, “Cache Memories,” ACM Computing Surv. 14,
No. 3, 473-530 (September 1982).

4. Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos,
and Alan Jay Smith, “Cache Performance of the SPEC
Benchmark Suite,” Technical Report 1049, Computer
Sciences Department, University of Wisconsin, September
1991.

5. A. Porterfield, “Software Methods for Improvement on
Cache Performance on Supercomputer Applications,”
Ph.D. thesis, Rice University, Houston, TX, May 1989.

6. A. Klaiber and H. Levy, “An Architecture for Software-
Controlled Data Prefetching,” Proceedings of the 18th
Annual International Symposium on Computer Architecture,
1991, pp. 43-53.

7. D. Callahan, K. Kennedy, and A. Porterfield, “Software
Prefetching,” Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1991, pp. 40-52.

8. T. Mowry and A. Gupta, “Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory
Multiprocessors,’’ J . Parallel & Distributed Computing 12,
87-106 (June 1991).

Evaluation of a Compiler Algorithm for Prefetching,”
presented at the Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1992.

10. T. C. Mowry, “Tolerating Latency Through Software-
Controlled Data Prefetching,” Ph.D. thesis, Department
of Electrical Engineering, Stanford University, March
1994.

11. Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel,
and Robert R. Roediger, “SPAID: Software Prefetching
in Pointer- and Call-Intensive Environments,” Proceedings
of the 28th Annual International Symposium on
Microarchitecture, November 1995, pp. 231-236.

12. Z. Zhang and J. Torrellas, “Speeding Up Irregular
Applications in Shared-Memory Multiprocessors: Memory
Binding and Group Prefetching,” Proceedings of the 22nd
Annual International Symposium on Computer Architecture,

9. T. Mowry, M. Lam, and A. Gupta, “Design and

1995, pp. 188-199.

Received August 8, 1996; accepted for publication
February 7, 1997

M. J. CHARNEY AND T. R. PUZAK

Mark J. Charney IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (charney@watson.ibm.com). Dr. Charney received his
B.S. from Princeton University in 1990 and his Ph.D. from
Cornel1 University in 1995. He now works as a Research Staff
Member at the IBM Thomas J. Watson Research Center in
Yorktown Heights, New York. His current research interests
are cache memories, prefetching, and simulation.

Thomas R. Puzak IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (puzak@watson.ibm.com). Dr. Puzak received a
B.S. and M.S. in mathematics from the University of
Pittsburgh and a Ph.D. in electrical and computer engineering
from the University of Massachusetts. Since joining IBM in
1970, he has spent nearly twenty years working as a Research
Staff Member. Dr. Puzak’s areas of interest include processor
design, concentrating in cache and pipeline performance.
While at IBM he has received Outstanding Achievement and
Innovation Awards and holds several patents in high-end
processor design.

AND T. R. PUZAK IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

