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We  consider  properties of time-sharing 
schedulers  with  operations  based  on  an 
economic  measure  termed  the delay cost, and 
relate  these to scheduling  policies  such  as 
those  used in VM and MVS. One of these 
policies,  deadline  scheduling,  is  shown to be 
potentially  unstable.  We  develop  delay-cost 
schedulers  that  meet  similar  performance 
objectives  under  quasi-equilibrium  conditions 
but  which  are  stable  under  rapidly  varying 
loads. 

1. Introduction 
The purpose of a scheduler in  a time-sharing system is to 
allocate resources to jobs in order to conform to priority 
objectives while  maintaining  efficient system operation. 
These dual goals sometimes result in conditions that 
require exceptional handling. For example, in some 
systems, jobs  are scheduled according to a priority 
scheme, provided that certain system resources are not 
overutilized. To maintain  efficient operation, however, 
might require scheduling a lower-priority job before one 
of higher priority if the memory requirements of the high- 
priority job are so large as to cause thrashing. Issues 
associated with efficient operation often depend on the 
specific system architecture, such as the structures of  main 

memory and of I/O subsystems. Additionally, the way 
priorities are assigned to jobs also varies from system 
to system. Generally, however, scheduling algorithms 
for time-sharing systems are intended to be easily 
implementable and to have features that provide flexible 
system control. 

We consider here a scheduling paradigm,  initially 
proposed by Greenberger 111, called delay cost. This 
approach defines  an economic measure by which the 
system is charged for holding jobs. Associated with each 
job class is  a delay-cost function of time, which determines 
the cost charged to the system on the basis of the total 
time each job of that class has been held in the system. 
The aim  of the scheduler is to minimize the total cost 
charged. A  good heuristic for minimizing the cost (which 
we rederive below)  is simply to schedule that job whose 
ratio of marginal delay cost to required system resources 
is  highest.  We call this heuristic the delay-cost-ratio 
algorithm. An analogy can be drawn here between a set 
of jobs to be processed by the computer system and  a set 
of loans that must be repaid. The job scheduled in this 
analogy corresponds to the loan that has the highest 
interest rate. 

Throughout the paper, we make the simplifying 
assumption that once execution of a job has started on  a 
given processor, it is serviced on that processor until 
completion. In some systems, a scheduled job is allocated 
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some number of cycles on a processor and  may  go  through 
multiple rounds of scheduling. For example, in the IBM 
VM/HPO operating system (virtual machine  with  high- 
performance option), a job is initially considered to be 
in class 1. If it does not complete execution with the 
resources granted to jobs in this class, it is reclassified and 
scheduled as a job in class 2. Subsequently, the job may 
go  through  multiple scheduling phases. For such a system, 
the sequence of tasks presented to the scheduler may  not 
correspond to the sequence of submitted jobs, since jobs 
may change class during execution or be scheduled more 
than once. In our model,  we assume that when a job 
enters a new round of scheduling and execution, it  is as. 
a new job of possibly different class. That is,  we are 
considering the scheduling of the work units or tasks that 
are normally seen by a scheduler in  an operating system. 

framework for specifying a scheduler objective function, 
which one can then attempt to minimize via appropriate 
scheduling algorithms.  Most schedulers used in practice 
have no such explicit objective, using instead such notions 
as deadlines or service rates, which are implicit in the 
scheduling algorithms. A disadvantage of this latter 
approach is the difficulty  in extending it to systems with 
characteristics other than those originally envisioned. 
We show here that appropriate delay-cost functions and 
optimization algorithms can yield,  under steady-state 
conditions, performance analogous to that obtained from 
techniques based on deadlines or rates of service, while 
avoiding potential pitfalls such as instabilities under 
varying loads. 

We should mention that a scheduler for a large  time- 
sharing system is a complex program  with features not 
considered here, including subroutines based on estimates 
of working sets and 1/0 requirements for executing tasks. 
The results here do not cover the overall design but 
instead concentrate on an important aspect, namely the 
algorithms used to determine the order of execution as a 
function of system load,  and properties of the delay-cost 
measure that make  it suitable as a basis of design. 

The following is a synopsis of the paper. Section 2 
considers the issue of a scheduler objective function, 
and derives the delay-cost form. Section 3 considers the 
problem of formulating scheduling algorithms to minimize 
the total delay cost. A variety of approaches are 
described, the first of which is similar to that obtained by 
Greenberger, corresponding to the loan-repayment analogy 
mentioned above. Other approaches considered include 
two that correspond to those used in the IBM MVS and 
VM operating systems. We describe how schedulers in 
these systems may  be regarded as heuristics for minimizing 
some implied delay cost for tasks being scheduled. In 
Section 4, we concentrate on the form of deadline 
scheduling utilized in the VM/HPO operating system. We 
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show that the deadline form is potentially unstable under 
rapidly varying loads. This problem can be  avoided by 
determining the delay-cost function implicit in the 
scheduler, then using a different scheduling heuristic to 
minimize this cost. We derive a set of delay-cost curves 
that correspond to the implied  goal of the scheduler and 
then validate the results through  simulation. We are 
interested here in what happens under various dynamic 
conditions, and we investigate the behavior of the deadline 
algorithm  and its corresponding delay-cost analogue for a 
particular sequence of jobs. The results indicate that the 
two forms have essentially equivalent performance under 
steady-state conditions, but the delay-cost form avoids 
instabilities under rapidly varying loads. In Section 5, 
we state our conclusions, and the Appendix contains 
derivations of various properties of optimal delay-cost 
schedulers. 

2. Schedulers  and  objective  functions 
This section considers some scheduler properties and 
discusses a framework for scheduling based on what we 
term the delay cost. This framework yields heuristics that 
operate by assigning a delay-dependent priority to the jobs 
in the system and scheduling the highest-priority job. The 
difference between this and the usual approach to assigning 
priorities is that the priorities here are quantities derived 
from a cost formula. 

Preliminaly assumptions 
The workloads assumed in this paper are broadly 
characterized by the property that the times of job 
arrivals and their work requirements can be specified only 
probabilistically. As mentioned above, each job presented 
to the system may  be scheduled more than once as it 
consumes processing time  and other resources. Certain of 
the analytical results in this paper are obtained under the 
assumption that it  is adequate to characterize the rounds of 
scheduling as being statistically independent; that is, that 
the load can be approximated by a sequence of jobs with 
independent arrivals, each of which leaves the system after 
a single round of execution. We also assume that jobs 
assigned to a processor complete their processing in the 
order in  which they are scheduled. In  an actual system, a 
job’s execution may be interrupted by events such as page 
faults or time-slice expiration. We ignore this, as our 
model jobs are assumed to run to completion without 
preemption. Under moderate to heavy load conditions, 
where the satisfactory operation of the scheduler is  most 
critical, the time a job spends in service is  small  with 
respect to the total time  it spends in the system, so that 
interruptions such as page faults do not greatly affect 
overall response times. 

having the following properties: 
We further restrict our attention to scheduling policies 

IBM J. RES. DEVELOP. \ IOL. 39 NO. 3 MAY 1 L995 



1. Scheduling decisions are causal, i.e., based upon  only 
the current state of the system and  knowledge of the 
past. 

2. The policy is work-conserving; i.e., no processor is idle 
if there are jobs waiting for service. 

3. The policy  is time-stationary and deterministic; i.e., any 
time the system is  in the same state with an identical 
set of jobs to be scheduled, the scheduler makes the 
same job selections. 

Scheduling policies found in current computer systems 
such as VM [2] and MVS’ generally satisfy these 
properties. An in-depth treatment of such scheduling 
policies for Poisson arrival streams can be found in [3], 
and issues concerning the synthesis of schedulers to meet 
certain objectives are discussed in [4] and [SI. 

Delay-cost  scheduling 
One way of stating an objective for the scheduler is to 
define a function, termed the objective function, which 
maps scheduling policies to real numbers. We say that one 
policy is better than another if  it achieves a lower value for 
this function for the same sequence of jobs. As is shown 
below, it  is not possible in general to construct a policy 
that is optimal, i.e., which minimizes the value of this 
function for all job sequences. Thus, it  is usually necessary 
to employ a heuristic. Each such heuristic may operate 
as though enforcing a different set of time-dependent 
priorities, sometimes with substantially different results 
(e.g., lack of stability). This suggests that an objective 
function is desirable for reasons of both generality and 
flexibility.  In  light of the desirability of having such 
functions, it is surprising to find that their  specification 
is  missing  from the definition of many schedulers (for 
additional discussion of this point, see the conclusion 
in [6] and Chapter 3.7 of [7]). 

We  now provide  some  definitions. Let J = {1,2, * , N }  
be the sequence of jobs to be processed, where job j 
arrives at time t,, and i > j implies that t i  > t,. Let t,! be 
the time  at which job j is scheduled, and let e, be the time 
it leaves. The  set of times for a set of jobs Jk is then a 
schedule for this set. Letx, = e, - t,! be the service  time 
of job j .  We denote its expectation by X, and  assume  that  this 
is dependent only on the job’s class. At time t ,  for t > t j ,  
the amount of time spent in the system by job j ,  denoted 
T j ( t ) ,  is min[(t - t ,),  (e, - t,)]. The response  time for 
job j is  given by = e, - t,. We denote the scheduler 
objective function by F(J ,  t ) ,  a real-valued function of 
time t .  The waiting  time for a job is ej - xj - t,. 

We restrict our attention to functions F ( J ,  t )  that are 
dependent only on the response times for jobs in J which 

1 OSIVS MVS Resource Measurement Facility (RMF) Reference and User’s Guide, 
IBM Data Processing Division, White Plains, NY (no longer  in  print). 

enter the system before time t .  We refer to F( J ,  t )  as the 
cost incurred by a schedule at time t .  We further require 
the following: 

1. The function F( J , ,  t )  is  defined  for any subset J, of J 
[so that, for example, F( J ,  t )  can be used to evaluate 
the effect of a schedule on any class of jobs]. 

2.  If J , ,  J , ,  . , J ,  are disjoint subsets of J ,  where 
U:=, J,  = J ,  then F ( J ,  t )  can be determined from 
the set {F(J j ,  t ) } ,  i = 1, 2 ,  , n. 

The latter requirement ensures that the overall cost of a 
schedule for a group of users can be determined from their 
individual costs. We assume 

F(J,  t )  = F(J,, t )  5 F(J,, t )  5 * - * 5 F(J,, 0 ,  (1) 

where 5 is a commutative and distributive operator, either 
addition or multiplication. These two operators are 
equivalent via the use of logarithms, and here we take 
this operator to be addition. Without loss of generality, 
we assume F ( j ,  t )  2 0, where F ( j ,  t )  is the cost of an 
individual job. Since jobs that have not arrived by time t 
have no  effect  on the objective function, and jobs have no 
further effect once finished, F ( j ,  t )  = 0 for t 5 t,, and 
F ( j ,  t )  = F ( j ,  v )  for t ,  v such that e, s t s v .  We also 
assume that F ( j ,  t ) ,  fort, < t < e j ,  is  differentiable in t ,  
and generally require that the incremental amount added 
to the objective function for any job j increase with the 
amount of time this job spends in the system. This  implies 
that @(j ,  t ) / &  > 0, for t, e t < e, (we use > 0 rather 
than 2 0 to ensure first-come/first-served in class). The 
assumption that F(j ,  t )  is differentiable  allows us to 
represent it as an integral of some function; moreover, it is 
clear from the above properties that the value of F(j ,  t )  
changes only  while job j is in the system. Thus, we can 
write F ( j ,  t )  as 

where C(-) is a nonnegative function termed the delay-cost 
function [l]. We note here that C(y)  dy can be interpreted 
as the incremental cost charged to the system for  holding 
job j longer than y units of time (seconds). Using Equation 
(1) allows  us to write the total cost charged to the system 
for processing jobs in set J as 

” 

j € J  J O  

where F ( J )  = Iimt+ F( J ,  t ) .  We can rewrite Equation (3) 
to account for different job classes by extending our 
definitions. Suppose there are K distinct job classes and 
that the set of jobs from J that belong to class k is given 297 
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by Jk. Let tj ,k,  ej,k, and Tj,k(t) be the arrival, exit, and total 
amount of time spent in the system at  time t for the jth job 
of the  kth class. The response time for the jth  job of the 
kth class is given by Tj,k = lim,_m q.,k(t) .  Equation (3) is 
then written as 

jobs of the same class have service demands given by a 
class-dependent distribution that does not vary with  time. 
The value of the objective function for this case is given 
bY 

where Ck(.) is the delay-cost function for the kth class. 
The form of Equation (4) has been suggested or used 

previously (see for example [ l ,  8, 91). The purpose of the 
above derivation is to expose the assumptions on which it 
is based. As discussed below, these assumptions do not 
always hold  in practice. 

(4) is that F(.)  can be  applied to any subsequence in the 
job stream, hence that jobs are essentially independent. 
Examples of cases in which this is not true include sets of 
jobs that must be scheduled together because the overall 
cost is related to the time required for the full set to 
complete, and systems with constraints on the percentage 
of work to be granted to a given subclass of jobs. We do 
not discuss this issue further here, but merely mention that 
the delay-cost measure can often be adapted to obtain 
reasonably good schedules. An example is discussed in 
the subsection on rate-of-work schedulers. 

The goal of the system is to minimize the value F ( J )  
given by Equation (4), i.e., to minimize the total cost 
charged to the system for processing the jobs in J .  This 
minimization is performed over all possible ways to 
schedule jobs in J ,  subject to the constraint that no job is 
scheduled before its arrival. If the arrival times and service 
times were known  in advance, one could hypothetically 
minimize F ( J )  by evaluating all possible ways of 
scheduling jobs and selecting one with a minimal cost. In 
a real system, of course, the arrival and service times of 
jobs are not typically known in advance and  may  not even 
be known probabilistically. 

We denote the value of the objective  function  when  policy 
S is applied to the  jobs in J as F S ( J ,  t ) .  It is clear that 
the choice of a scheduling policy influences the finishing 
times of the jobs; thus, in general, F S ( J ,  t )  f F S ' ( J ,  t )  
for two different scheduling policies S and S'. To enable 
a selection among  different scheduling policies, by 
definition of F ,  we say that policy S is better than policy 
S' at time t if F , ( J ,  t )  F , ' (J ,  t ) .  ~n optimal policy for 
objective function F at time t is a policy S* that satisfies 
F,'(J, t )  = min, P ( J ,  t ) .  AII optimal policy for 
objective function F is  an optimal policy at time t in 
the limit as t + OD, providing such a limit exists. 

A primary assumption used in the derivation of Equation 

Suppose job arrivals and service demands are not  known 
298 in advance but are modeled by random variables, where 
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(5) 

where q:k = e,tk - ti,k is the time spent in system for the 
jth job of the kth class when scheduling policy S is used. 

3. Heuristics 
This section discusses some heuristic approaches to 
minimizing the delay-cost measure F ( J ) .  These include 
techniques loosely modeled  on algorithms encountered in 
M V S '  and VM [2]. When considering these, one should 
understand that the analysis is aimed at obtaining an 
improved understanding of a class of algorithms rather 
than of any specific scheduler implemented in an operating 
system. 

We  begin by considering examples of delay-cost 
functions and how these affect scheduling decisions. 
Techniques for delay-cost reduction are then examined. 
These include a) the delay-cost-ratio (DCR)  algorithm, 
b) rate-of-work schedulers, related to the approach used 
in M V S ,  and c) deadline scheduling, a variant of which 
appears in some VM systems. 

Delay-cost functions 
We  now consider some specific examples of delay-cost 
functions e,(.). 

1. Class-dependent constant Here the delay-cost function 
is a class-dependent constant; thus, the cost charged 
to the system is directly proportional to the response 
times of jobs. This form was used by Klimov [8, 91 and 
further studied in [lo]. Although the above cost function 
is convenient for analysis, it has the drawback that 
simple cost-minimization algorithms  may  not  yield 
generally desirable properties such as first-come/ 
first-served (FCFS) within class. A consequence is 
that individual jobs may never receive any service. 

2. Class-dependent linear Here the cost charged 
increases as the square of the response times. It is 
shown below that algorithms employed in some 
deadline schedulers, such as the one found  in VM, can 
be regarded as heuristics that minimize delay costs of 
this form. If the DCR scheduling algorithm (described in 
the following subsection) is used, the delay-cost ratios 
Ck(*)/Zk are then linear functions. An analysis of the 
mean response times for linear delay-cost functions 
when F(j, t j )  = 0 was derived in [ll] and further 
considered in [12]. Bounds on the mean response time 
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for nonzero intercepts were derived as special cases in 
[13], and  an exact, closed-form expression for heavy 
traffic  is  given in [14]. We use the latter results in 
Section 4 while discussing deadline scheduling in further 
detail. 

3. Arbitrary increasingfunction A delay-cost function of 
this form  may be viewed as producing the criterion used 
in some rate-of-work schedulers (e.g., MVS, as shown 
below). A nonlinear, bounded cost function can be  used 
to ensure properties such as the exclusion of a job class 
once the system load reaches a given  level. Bounds on 
the mean response time for related priority schemes 
(e.g., priorities given by concave functions) can be 
found in [13] and [15]. 

In the following,  we restrict our attention to delay-cost 
functions that are increasing with time  and unbounded. 
This implies that it becomes incrementally more expensive 
for the system to keep a job the longer  it stays, which 
guarantees that, if the system is not overutilized, every 
job is eventually processed. Jobs of the same class are 
assumed to have similar service times, so it  is  not 
surprising that an optimal delay-cost scheduler schedules 
jobs within a class in an FCFS manner. Intuitively, this 
follows  from the fact that an optimal algorithm  would 
always select the most expensive job to receive processing 
first. This property (Proposition 1) of optimal delay-cost 
schedulers is proved in the Appendix. 

A delay-cost heuristic 
Let y,  be the time spent in the system for the oldest  class-k 
job, From the FCFS property, we  know that only the 
oldest job from each class must be examined in making 
scheduling decisions. Suppose that one of the next two 
jobs to be scheduled is  from class k and the other from 
class k ' ,  and attempt to determine which class to select 
first. Let y, and y,, be respectively the residence times for 
the two jobs that are the oldest (i.e., have the longest 
residence times) in the two classes. Then, the class-k job 
should be scheduled first if 

where E,x x denotes the expectation. Ifi?, andXk,, are 
sufficiently  small with respect toy, and y,, , and if C(* )  
varies sufficiently  slowly, Equation (6) implies that the 
oldest member of class k should be scheduled ahead of 
that ink'  if C,(yk)/Z, > C,,(y,,)/Z,, (see [l] for a different 
derivation; this has also been termed the pC rule [7]). In 

k' k ' )  
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the Appendix, we provide a formal  proof for this property 
(Proposition 2), which  we  call pairwise optimality. This 
suggests the following heuristic: Schedule the oldest job 
of class k if it has the maximal value of Ck(yk)/Zk. Note 
that this policy satisfies FCFS within class. We  call this 
the delay-cost-ratio (DCR)  algorithm,  and the value of 
C,(yk)/Z, is  called the DCR value of the oldest class-k job. 
In the analogy of loan repayment and delay cost, Ck(yk) 
corresponds to the amount of money charged per unit of 
time  during which the loan is outstanding. We assume 
that this amount increases with  time. The value of f ,  
corresponds to the amount of the loan owed, and C,(y,)/i?, 
to the current interest rate. The DCR algorithm suggests 
simply repaying the loan  with the highest interest rate (see 
[16] for a discussion of bounds for the delay cost). We 
note that the DCR algorithm depends upon only the first 
moment of service time for the different classes of jobs. 
This is a result of a heavy-traffic limit that is used in 
establishing Proposition 2. For lighter loads, however, 
higher moments of the class service-time distribution could 
be  included  in the heuristic, as is shown in Equation (Al). 

Proposition 3 in the Appendix shows that under heavy 
traffic, Poisson arrivals, and linear delay-cost functions, 
the DCR algorithm satisfies C,(F,)/Z, = p, where T,  is 
the mean response time  for class k, and p is a constant 
that measures the load of the system. One expects this 
relationship to hold approximately under less restrictive 
conditions, since the DCR algorithm tends to minimize the 
maximal value of C,(y,)/Z, and thus tends to establish a 
common value for C,(F,)/Z,. The value of p plays a 
crucial role  in delay-cost scheduling and is the main 
mechanism we use in establishing a mapping between 
delay-cost scheduling and other policies, such as deadline 
scheduling. 

Before ending this subsection, we  make a few comments 
about the delay-cost heuristic. The first is that differentiation 
between job classes manifests itself  in two ways. One is in 
the specification of the delay-cost functions by the system 
implementers. The other is on the basis of the average 
service requirements of the different classes; here, as the 
heuristic implies,  large jobs  are penalized in relationship to 
small jobs. This follows  from the fact that in the attempt to 
minimize the total delay cost of the jobs in the system, it 
would often be the case that several shorter jobs could be 
completely serviced during the time needed to finish the 
execution of a larger job. One can interpret the DCR value 
as being a cost rate, i.e., cost per unit work. Thus, the 
DCR algorithm schedules the  job having the highest cost 
rate. An alternative interpretation of the DCR value is 
that of aprice for processor cycles. A job willing to pay 
a higher price is thus more desirable for execution. 

In terms of implementation, the heuristic suggests that 
one keep a queue for each class of jobs. Scheduling 
decisions can  then be made by calculating the DCR for the 

P. A. FRANASZEK AND R. D. NELSON 

199 



300 

lEme in system 

Graphical  representation of a deadline scheduler. 
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job at the head of each queue and selecting the one with 
the maximal value. Jobs not at the head  need  not be 
inspected. As a final remark, we note that the value of /? 
defined above is a measure of the load of the system. The 
load seen by a class-k job that has been in the system for 
y, seconds is given by C,(y,)/Z, = Pk.  Decisions made by 
DCR schedulers then can be viewed as scheduling that 
job corresponding to the highest perceived load. This 
observation is used in the following two subsections when 
establishing a correspondence between DCR schedulers 
and rate-of-work and deadline schedulers. 

Rate-of-work schedulers 
Some schedulers (the one in M V S  is  an example) operate 
by allocating processor time to members of each job class 
at a rate that is a function of system load. The schedulers 
determine which job should receive the next time slice, 
and a job that fails to complete execution during its time 
slice must  be scheduled again.  More precisely, the 
schedulers attempt to give processing to all members of 
job class k at a rate R,(z ) ,  for k = 1, 2,  * * , K ,  where 
z is a parameter that represents the system load. These 
functions R,(z) are strictly decreasing with z over the 
interval 0 I z 5 zk < m and identically equal to 0 for 
z > zk, where the z, are class-dependent values. Thus, the 
value of z, represents the load past which a given job class 
is denied service. Suppose job i (of class k) is currently 
receiving processing at a rate of vi .  This corresponds to 
a load value of zi = RL1(vi). [Let R;'(v), for u > 0, 
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denote the inverse of R,(.) ,  and define Rkl(0) = zk.] The 
scheduler then chooses the job that corresponds to the 
maximal zi over all jobs in the system. At any time, there 
is a value z* that is the load of the system. This is 
analogous to the value of /? previously defined  for  DCR 
schedulers. Let mk be the number of class-k jobs in the 
system at a given  time,  and let the total rate of work that 
can be supplied by the system be  given by P. The 
parameter z* is then defined to be the value of z that 
satisfies 

K 

Rk(z)mk = P, 
k = l  

where R,(z) is the average value of Rk(z)  over class k. 
The above is similar to the operation of the DCR delay- 

cost heuristic described above, in that both operate by 
scheduling the job corresponding to the highest perceived 
load. There is a difference, however, between practical 
implementations of the schedulers: In the DCR case, each 
job is viewed as being scheduled only once, whereas in the 
rate-of-work scheduler, jobs may be scheduled many 
times. The two approaches may be brought into closer 
correspondence by assuming the viewpoint that upon 
expiration of its time slice, a job reenters as a "new" job. 
Upon reentering the system or at initiation, the job is 
assigned a rate of work (for reentering jobs, this could be 
the rate just after finishing the previous processing slice) 
which then changes over time. Let v i ( t )  be the rate of 
job i at time t .  Roughly speaking, a corresponding DCR 
scheduler is characterized by the following delay-cost 
functions: 

C,(t) = XkR;'[vi(t)] k = 1, 2,  , K.  (7) 

Deadline schedulers 
The deadline schedulers (DSs) considered here operate by 
assigning a parameter, termed a deadline, to each new job 
as it enters the system. This parameter, which is generally 
a function of the job class and system state, is then used 
to order the jobs waiting for execution. The deadline is 
sometimes viewed heuristically as the time by which a 
job should complete its processing. In the absence of 
exceptional conditions, such as memory thrashing, jobs 
are scheduled according to their deadlines, which are 
unchanged once assigned. A DS of this form is included 
in a current version of Vh4 [ 2 ] .  

A typical function used for the deadline is  given  by 

ti + EH, 1 5 k I K ,  (8) 

where tj  is the time of job arrival; E, termed the expansion 
factor, is a function of the response times of the job 
classes (there are three classes in some versions of VM); 
and H, is a class-dependent constant. A job of class k 
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entering the system at time tj  is  given the deadline 
specified  by (8) and placed in the system queue in 
increasing deadline order.  Jobs in the queue are then 
selected in that order for execution whenever their 
working sets fit into memory. In VM, jobs entering the 
system are initially assigned to Class 1 for some limited 
amount of processing and are then rescheduled as Class 2 
(and eventually as Class 3). 

In the following, we consider the class of a job when 
determining its deadline and assume that H ,  increases with 
k. The function IE is a linear weighting of the current 
average class response times, which are typically 
determined by  measuring job departures over some 
interval (this is further discussed in Section 4). 
Specifically, suppose the current class-k mean response 
time  is Fk; then, the expansion factor is calculated as 
follows: 

where the ak are constants that determine the weights 
given to each class, and FJXk is the expansion of the class-k 
response time due to other jobs in the system. That is, if 
only one job were present, Fkl.fk would equal one. We call 
the value EH, a threshold value, and we denote it by ak. 
As mentioned above, in deadline scheduling, a queue of 
jobs is maintained  in increasing deadline order. Thus, a 
job’s deadline determines its relative response time. 
Roughly speaking, the response time of a job is 
proportional to its deadline, for a given value of the 
expansion factor. 

We  now provide an intuitive argument that deadline 
scheduling can be viewed as a heuristic for minimizing 
the total delay cost for a particular form of delay-cost 
function. To show this, it  is convenient to view deadline 
scheduling in terms of priority scheduling. Once a job is 
placed in the queue, its position relative to other  jobs 
already in the queue is not changed. Each job approaches 
its deadline at a constant rate of one second per second 
elapsed. Differentiation between different classes of 
jobs with respect to allocating processing arises only 
from differences in their initial queue placement, 
which  is determined by the initial deadline calculation. 
A scheduling decision consists of scheduling that job 
with min[a, - ( t  - t i ) ] ,  where k is the class of job i. 
For the case in  which ak - ( t  - t i )  > 0, this schedules 
the job closest to its deadline. 

Figure 1 shows how this operation might be represented 
graphically in a system under constant load. The solid lines 
{ -[a ,  - ( t  - 9 1 )  correspond to the same  fixed load, 
which  implies the value of E and values of a,. In this 
example, job 3 (a class-2 job) has just entered the system 
at coordinates (0, -a2 )  and will progress upward to the 

t ” )  

T i e  in system 

Deadline  scheduling  viewed as priority scheduling. 

right toward its deadline (a2 ,  0) at a rate of one second per 
second elapsed. Job 1 (a class-3 job) entered the system 
e, seconds ago, and job 2 (another class-3 job) entered t; 
seconds ago. Since az 5 a3, class-2 jobs are initially 
placed  higher than those of class 3.  All move up to the 
right at  the same constant rate.  The job  at the  top of the 
queue (the next job  to be scheduled) is the highest one- 
job 1-followed  by job 3 and then job 2. 

In terms of priority scheduling, the above suggests that 
the priority of a job of any class increases linearly in  time 
with  unit slope, and that differences between classes are 
determined by  an  initial value. Scheduling decisions, 
viewed in this manner, consist of scheduling the job with 
the highest priority. 

might be viewed  in terms of priorities. Let the initial 
priority, or ofset ,  for a class-k job be denoted uk .  An 
arriving  class-k job can then be thought of as having 
an  initial priority of u k ,  which increases at a unit rate. 
Scheduling decisions consist of selecting the job having 
the  highest  priority  value,  which,  in a deadline  scheduler, is 
the job closest to its deadline. It is convenient to shift the 
linear priority curves so that the lowest class starts out 
with a value of zero. Then the relationship between the 
threshold values of the DS and the offset values for the 
priority scheduler can be expressed as uk = aK - a, 
for 1 5 k 5 K ,  where K is the lowest-priority class. 

This view  of deadline scheduling is not complete, 
however, in that it ignores the effect of changes in the 
system load that modify the deadline calculation and thus, 
equivalently, modify the initial priority values. The effect 
of a decrease in the value of the expansion factor IE is 

In Figure 2, we show how the above description of a DS 
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shown by the dotted lines in Figures 1 and 2. Here, the 
decrease in the threshold values cyk for the DS corresponds 
to an increase in the offsets uk for the equivalent priority 
scheduler. The manner by which deadlines change as a 
function of the load of the system leads to an interesting 
correspondence between deadline scheduling and DCR 
scheduling, which we  now address. First, however, we 
note that the form of DS  implied by Equation (8) is 
potentially unstable and may  lead to anomalous behavior. 
We analyze these behavioral characteristics and establish 
the relationship between DSs and DCR schedulers in 
greater detail in Section 4. 

We  now show that if the deadline computation is given 
by Equation (8), then, for slowly varying loads, scheduling 
decisions are approximately equivalent to a DCR 
minimization  with linear delay-cost functions. As 
Equation (8) implies, deadlines calculated by the system 
change proportionately with E, where  the  constants of 
proportionality are given by the values Hk. This  implies  that, 
for  each class of jobs, the  mean  waiting  time (ej - xj - ti) 
changes with approximately the same constant of 
proportionality. A result of Proposition 3 in the Appendix 
is  that  under  heavy  traffic  conditions,  with  Poisson  arrivals, 
Ck(Fk)/fk = p for all classes,  where p is a measure of 
the load  of the system  and  is thus analogous to E in  the 
deadline calculation. If we suppose that C,(t) ,  the delay- 
cost function for class k ,  equals skt (constants sk are the 
factors in the linear delay-cost functions), then as /3 varies 
slowly, the mean response times of the classes change 
proportionately to f J s k  in a DCR scheduler. Thus, 
equating f k / s k  and Hk yields a DCR scheduler with  mean 
response times similar to those obtained by the DS.  In 
Section 4, we make these statements mathematically 
precise. 

the deadline computation is of the form of Equation (8), 
a delay-cost-based scheduler may be constructed whose 
decisions are similar to those of a DS under slowly varying 
loads but which, we later show, avoids the instabilities 
associated with deadline scheduling under rapidly changing 
loads. Here the formulation of an objective function for the 
scheduler permits the consideration of schedulers which 
have similar overall properties, but which are superior 
under some circumstances. 

A principal result from the above observation is that if 

4. Delay-cost  version of a  deadline  scheduler 
This section provides an analysis of the performance and 
behavior of DSs. The results show that although these 
schedulers can work well under conditions of slowly 
varying load, they can exhibit anomalous behavior and 
instabilities when attempting to adapt to rapidly changing 
conditions. The following subsection contains a description 
of how this behavior can occur and formalizes the 
correspondence between DSs and DCR schedulers that 302 
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was outlined above. The equations obtained were then 
used to drive a simulation to compare the performance of 
these two schedulers. This simulation demonstrated that 
anomalous behavior and instabilities are, in fact, found 
in  DSs but, notably, are missing  from the equivalent 
DCR scheduler. Finally, this section concludes with 
modifications to a DS that may achieve similar 
performance objectives but have the advantage of 
stability and lack of anomalous behavior. 

Stability 
A scheduler provides a means of controlling a system in 
order to obtain favorable characteristics for a variety of 
loads. As in any control system, stability is a key issue. A 
scheduler is a nonlinear system, so there are a variety of 
ways of  defining stability (Reference [17] notes at least 28 
definitions  in  use).  One way of indicating a lack of stability 
is to show that there exist a system state and  an  input 
that produce undesirable oscillations. We later show by 
simulation that such oscillations can occur. Another way 
of demonstrating instability is via the presence of positive 
feedback in the control policy at equilibrium points, so that 
perturbations are not self-correcting. We show that there 
are instances of positive feedback in DSs. First, however, 
we discuss properties of DSs that lead to such potential 
instabilities. 

As noted above, once a job is placed  in the queue by the 
scheduler, its position relative to other jobs already in the 
system remains unchanged. Other important properties 
related to stability are that a) the expansion factor at any 
given  time  is a function of the response times for jobs that 
completed service over a previous time interval that 
we  term the samplingperiod, and b) the value of the 
expansion factor can undergo rapid change. 

We  now consider some qualitative aspects of  DS 
behavior. Suppose that there  are two classes of jobs, 
corresponding to edit and batch jobs, with  edit jobs having 
substantially smaller service times than batch jobs and 
requiring shorter response times. Properties that would be 
expected to hold  in a good scheduler, but  which  can be 
violated under rapidly varying loads for a DS include the 
following: 

1. FCFS  within classes. 
(This fairness criterion might  be violated under 
conditions of decreasing load. For example, if the 
expansion factor is decreased, an  arriving job may be 
assigned a smaller deadline and thus may be placed 
ahead of jobs in its class already in the queue.) 

2. Edit jobs have  smaller  response  times  than  batch jobs. 
(This  might be violated under either increasing or 
decreasing load conditions. Consider a batch job that 
has just been placed in the queue and suppose that the 
expansion factor increases by a large amount. It might 
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then be the case that a newly arriving edit job, having a 
larger deadline, is placed after it in the queue. The edit 
job is scheduled after the batch job and thus has a 
longer response time. This phenomenon might also 
occur under decreasing load conditions if the expansion 
factor undergoes a sufficiently  large decrease.) 
Under  increasing  load, edit jobs get a larger  proportion 
of the CPU resources. 
(One way to see how this can be violated is to suppose 
that there are many edit and batch jobs in the queue. 
It follows  from the way jobs are scheduled that the 
density of edit jobs is higher toward the head of the 
queue and that the density of batch jobs is greater 
toward the queue’s  tail. Another way to view this 
situation is that, in the steady  state, edit jobs are 
assumed to have a smaller wait for processing than do 
batch jobs; i.e., they are given  smaller deadlines. Thus 
they tend, upon entry, to be placed in the queue ahead 
of many batch jobs. Now suppose that the expansion 
factor increases because of an increased system load. 
Then newly arriving edit jobs might, as outlined above, 
be placed behind batch jobs already in the queue. Since 
jobs already in the queue do not change their relative 
positions, edit jobs toward the head of the queue are 
the first to receive processing and leave the system. 
Newly arriving edit jobs, however, do not replace those 
that finish execution; thus, there is a period during 
which the density of edit jobs toward the head of 
the queue decreases. The CPU, during this period, 
processes an increased density of batch jobs; thus, the 
proportion of CPU time allocated to edit jobs decreases. 
The result is a substantial increase in delay for the 
newly arrived edit jobs.) ’ 

Derivation of the  correspondence 
Section 3 discussed the correspondence between deadline 
scheduling and delay-cost minimization.  We  now  make 
these arguments precise by deriving a corresponding 
DCR version of a DS.  In the following subsection, we 
compare the performance of these two schedulers through 
simulation. As previously mentioned, the most notable 
result arising  from this correspondence is a stable form 
of an analogous DS. Our procedure for deriving the 
correspondence is to obtain the delay-cost analogies of 
the quantities E and Hk given  in Equation (8), and then to 
demonstrate how these values change under conditions 
of varying load. We first describe our notation and 
assumptions. 

a Poisson point process with an average rate of A,. The 
service time for each class is assumed to be generally 
distributed with a mean  of Zk, and the processor utilization 
due to the kth class, denoted by pk, equals A k X k .  We 
define 

For a given class k ,  we assume that arrivals come from 

‘OL. 39 NO. 3 MAY 1995 

Wo = 2 AkE[x;]/2. 
k = l  

The delay-cost function for the kth class is  given by 
Ck(t) = skt,  where s1 z s2 2 2 sK,  and we denote 
the value of the offsets for the DS by uk, where 
u,  z u2 2 * * z uK = 0. Finally, we  let Tk be the 
mean response time for jobs of class k .  

We  now cite two results that are needed to create the 
correspondence. The  first  is  called the conservation law 
[4, 181, which states that 

- 

and holds for all scheduling disciplines that have Poisson 
arrivals, are work-conserving, and service jobs 
nonpreemptively. The second result concerns the 
mean  class-k response time for a DS under the above 
assumptions and  with a heavy load. This heavy-traffic 
response time was derived in [14] and is discussed here 
only briefly. As mentioned above, scheduling decisions are 
made on the basis of priorities that increase with unit slope 
(the expansion factor is assumed to be a constant, since 
the arrival rates are fixed). It is further assumed that the 
load  is  sufficiently high that 
W k 2 u 1  k =  1,2;.*,K, (11) 
where Wk is the random variable representing the waiting 
time of the kth class. Then, 

(12) 
To lend intuition to this equation, we note that 

Wo/(l - p) + Zk is the mean response time that would be 
obtained for class-k jobs if FCFS scheduling were used 
[19]. The remaining two terms represent an adjustment of 
response time of the kth class due to priority scheduling. 
We write them as 

K 

j=l  

To explain this sum, we tag  an arrival at time to  of a 
class2 job in a three-class system. Since by assumption 
W, 2 u l ,  any class-1 jobs arriving in the interval 
(to,  to + u1 - u,) receive service before the tagged job. 
Since each class-1 job requires an average of Zl seconds 
of work, and the jobs arrive at a rate of A,, the expected 
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Arrival rate of jobs in the simulations, as a function of time. 
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amount of class-1 work that arrives during this interval is 
given by p l ( u ,  - u 2 )  2 0, which is the first  term of the 
sum. The second term, p1(u2 - uJ,  is 0. The third term, 
p3(u3 - u2)  I 0, represents the amount of class-3 work 
already in the system at time to that receives service after 
the tagged job.  Since these jobs do not  delay the tagged job, 
this amount of work contributes negatively to its response 
time in relation to FCFS scheduling. 

We  now proceed to establish the correspondence. We 
again  use results obtained under conditions of heavy traffic 
and assume Poisson arrivals. Thus, the correspondence 
holds only approximately for Poisson arrivals and  light to 
moderate load conditions, and becomes more precise as 
the load increases. Let 7, and rk denote the expected 
class response times  for the DCR scheduler and  DS, 
respectively. The cost function C(-) for the DCR 
scheduler is linear, with slope sk and zero offsets, and the 
deadline curves are linear with slope 1 and offsets uk.  In 
determining the deadline at a particular instant, one must 
specify values for E, the expansion factor, and Hk. As 
shown in Section 3, for a given value of E, the values of 
Hk determine values for the offsets uk used in the DS. 
Our procedure consists of first establishing for a DCR 
scheduler a value that is analogous to the expansion factor 
E. This value, as shown in Section 3,  is  given by p. This 
determines values for the mean response time, Fk,  for 
a DCR scheduler. These values can then be used in 
Equation (12) to determine values of uk that would cause a 
DS to achieve Vk = T,. The last step in establishing the 
correspondence consists of showing  how the values of uk 
change with changing  load conditions and of specifying 
how to measure E. We  now present these derivations. 

1. Derivation of p. 
Proposition 3 of the Appendix indicates that, under 
heavy load, there exists a p such that a DCR scheduler 
with delay-cost equations given by C,(t) = s,t has 
mean response times that satisfy 

Use of this in the conservation law, Equation (lo), yields 

P =  
K 

k=l 

2. Calculation of u,. 
Using p from Equation (13)  allows us to write 
?=, = pfkJsk ,  k = 1, 2, * , K .  Given these mean 
response times, we can set pk = 7, by using the linear 
equations (12) to solve for the offsets u k .  For a given 
load, this yields a DS that has mean response times 
equal to what one would find in a DCR scheduler 
under heavy traffic. 

3. Changing uk and p. 
We  now show how values of the offsets are modified to 
account for changing  load conditions. First, note that 
substituting from Equation (13) into (9) yields 

Suppose now that the DCR scheduler load increases to 
p', where p' = yp. It thus follows  from Equation (13) 
that ?=; = yTk; Le., the expected response times also 
increase by a factor of y for a DCR scheduler. 

To show that the DCR scheduler and the DS have 
equivalent stationary response times,  we  first observe 
from Proposition 3 in the Appendix that 

5 = u -  Uk' (16) 

where U is a class-independent constant. From the 
matching of expected class response times of the DCR 
scheduler and DSs in step 2 above, we have that 
U = uk + @,Is, We  now ascertain for what values 
of u; we obtain V; = ?;. To answer this, observe that 
if r; = F;, Equation (15)  implies that the expansion 
factor changes by a factor of y, i.e., that E' = YE, 
which  implies that the offsets of the DS also change 
by a factor of y (i.e., that u;  = E'H, = yu,). This, 
however, implies that U' = u; + /3 ' fk lsk = yU.  Thus, 
Equation (16) shows that the expected class response 
time for the DS is p; = U' - u; = ypk. This, as in 
the DCR scheduler, also increases by a factor of y.  

I 
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Class-1 response times during  steady  state,  from  simulation: (a) deadline  scheduler  with  sampling  period At = 100 s; (b) deadline  scheduler 1 with At = 1000 s; (c) delay-cost-ratio  scheduler. 

Since the values of u; needed to obtain p; = T; are 
exactly those used by the DS, we conclude that the DS 
acts in a manner that matches the expected response of 
a DCR scheduler with linear slopes. 

The correspondence is thus specified. We now compare 
the performance of these two schedulers via simulation. 

Comparison by simulation 
This section presents simulation results that compare 
the performance of a DS and its corresponding DCR 
scheduler. We use the procedure presented above to 
establish the corresponding schedulers. Experiments are 
described that compare the performance obtained from 
DSs with their corresponding DCR schedulers. Each 
experiment consisted of processing the same arrival stream 
of jobs, starting from an initially empty system. Two 
different DSs were simulated. These differ only in the 

duration of the sampling period used in calculating the 
deadline, At, and correspond to an underdamped 
scheduler ( A t  = 100 s)  and a moderately damped 
scheduler ( A t  = 1000 s ) .  The third simulation is that 
of a DCR scheduler. 

We first provide the input parameters used to drive the 
simulations. Three classes of jobs were assumed, with 
delay-cost curves given by C,( t )  = s,t, where s1 = 100, 
s2 = 10, and sj = 1. The average service requirements 
were set toXl = 1 s ,  X2 = 7 s, and%, = 8 s. For any 
arrival rate of jobs, we set the fraction of arrivals of 
jobs in the three classes to be  60%, 17%, and 23%, 
respectively. This corresponds to a relative system 
utilization of approximately 1 2 3  for the three classes. 
The arrival rate during the simulations, shown in 
Figure 3, was nonstationary. The system utilization was 
0.95 for 0 I t 5 15000,0.80 for 15500 < t 5 20OO0, and 
0.50 for 20500 < t 5 50000. The average utilization 
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class-2 response  times, from  simulation: (a)-(c) as  in Figure 4. 
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over the entire interval 0 5 t I 50000 was 0.68. Note 
that there are high impulses of traffic over the intervals 
15000 I t I 15500 and 20000 I t < 20500. 

We  now present the simulation results, which indicate 
that the DS and the corresponding DCR scheduler make 
similar scheduling decisions under conditions of steady 
state and constant load. This lends support to the 
equations used to derive the corresponding schedulers. We 
first note that the system was not in steady state over the 
interval 0 I t I 20500. This follows  from the fact that 
over this interval, the arrival rate varied with time  and 
that the system started from  an  initially empty state. 
Empirically, we  found that the system reached steady  state 
at time  30000.  We present results of the simulation over 
this interval to confirm that the deadline and DCR 
schedulers are analogous. 

time of departure of each class-1 job over the interval 
Figure 4 shows the response time as a function of the 

30000 I t I 50000. The system is in steady  state, and the 
load  is constant. The deadline calculations for both DSs 
are thus similar and yield similar scheduling decisions. 
Figure  4(c) shows the response for class-1 jobs for the 
DCR scheduler. A comparison with Figures 4(a) and  4(b) 
demonstrates that, for class-1 jobs, the DCR scheduler 
makes scheduling decisions similar to those made by the 
DSs. The corresponding response times of class-2 and 
class-3 jobs  are shown in Figures 5 and 6, respectively, 
and demonstrate that scheduling decisions for these job 
classes are similar  for the different schedulers. (Note 
that Figures 4, 5, and 6 have different vertical scales.) 

Next, in Figure 7, we plot the threshold values of class-1 
jobs (the values of EH,) as a function of time,  for each DS 
experiment. The underdamped deadline scheduler exhibits 
the oscillations that were anticipated above. 

To  see how the oscillations in the threshold calculation 
influence the response times of jobs in the system, we 
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plot, as a function of the time the job left the system, the 
response times for the different classes of jobs. Figure 8 
shows the response time for class-1 jobs for each of the 
schedulers. (Note that Figure 4 presents some of the same 
data, for the interval 30000 I t 5 50000, but with a 
different vertical scale.) Observe that in both deadline 
schedulers there are sudden increases in the response time 
near the points t = 15000  and  20000, because of the 
increased traffic. Intuitively, we realize that the impulses 
of traffic at these points drastically increase the thresholds 
and cause newly  arriving class-1 jobs to be placed  behind 
already existing class-2 and class-3 jobs in the queue. 
These class-1 jobs suffer  long delays. The DCR scheduler 
adapts to the changing  load without degrading the response 
times of class-1 jobs. The total delay cost for processing 
all  of the jobs is  given by 2.39 X lo9, 3.12 X lo9, and 
1.01 X lo9 for the underdamped DS, moderately damped 
DS, and DCR scheduler,  respectively.  Thus,  the  total  delay 
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cost is smallest for the DCR scheduler and largest for the 
moderately damped DS. Increasing the damping in the DS 
reduces undesirable oscillations but increases the total 
delay cost, since the scheduler cannot react as quickly to 
load variations. 

We  now concentrate on the interval (15000,  24000). 
Figure 9 shows large oscillations in the response times of 
class-2 jobs over this interval for both DSs. In contrast, 
the DCR scheduler adapts to the changing  load conditions 
by increasing the response times of class-2 jobs in a more 
gradual manner. 

dramatically in Figure 10, which shows the statistics for 
class3 jobs. Once again, in the DCR scheduler, class-3 
job response times increase in a gradual manner. The 
interaction of the threshold and the response time 
of the jobs in the system can be seen by inspecting 
the response times of class3 jobs over the interval 

The oscillations in response time are seen most 
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f Threshold  values  for  deadline  schedulers,  during  entire  simulation:  (a) At = 100 s; (b) At = 1000 s. 

22000 I t I 23500.  The  high peaks over the interval 
23000 I t I 23500 are from jobs that were placed 
far back in the queue because of the increase in  traffic 
over the interval 15000 I t I 15500. Peaks over the 
interval 22000 I t 5 22500 are from jobs that entered 
the system after the threshold increase due to increased 
traffic over 20000 s t I 20500. Finally, the very low 
response  times  shown over the interval 22000 I- t I 23500 
are from those class-3 jobs that entered the system 
during the low-threshold period after time  22000. As 
this example shows, different jobs from a single job 
class, present in the system at one time, can have very 
different views of the load, since their positions in 
the queue reflect measured response times at their 
times of entry. The measured response time  may have 
little relation to the response time actually experienced 
by a job. 

5. Conclusions and future  work 
We have considered issues associated with the use 
of objective functions in the design of time-sharing 
schedulers. Assumptions underlying the delay-cost form 
have been made explicit, and we have shown that 
algorithms of the form used in some versions of  VM 
and  MVS, for example, can be  viewed as heuristics for 
minimizing some form of this measure. Properties of 
optimal schedules for the delay-cost objective have been 
derived. The case of deadline schedulers has been treated 
in detail, and it has been shown that such schedulers have 
a potential stability problem  when subjected to rapidly 
varying loads. Here, the implied delay-cost goal  can be 
used to obtain algorithms that behave similarly  under 
steady-state conditions, but that avoid instability. 

An experimental delay-cost version of a VM scheduler 
has been  implemented  and  used on a 3090 multiprocessor 
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system at the IBM  Thomas J. Watson Research Center.’ 
Its main feature is the replacement of deadline-based 
algorithms with a delay-cost heuristic that uses a table- 
lookup computation based on the DCR algorithm. The 
remainder of the scheduler code, e.g., that used to 
estimate working sets, was not changed. Any piecewise- 
linear curve can be used as a delay-cost function: for 
example, a curve obtained from  an interactive tool [20] 
that permits an installation manager to specify the number 
of job classes as well as requirements related to mean class 
service times. Experience gained with this system suggests 
that delay-cost-based scheduling is readily implementable, 
runs efficiently, and permits convenient specification of 
performance goals. 

2 The delay-cost version of the VM scheduler mentioned above was written by 
William Jerome and  Gerald Spivak of the  IBM Thomas .I. Watson Research Center, 
Yorktown Heights, NY. 

The advantages of using a performance objective such as 
the delay cost include ease in specifying system goals and 
the possibility of considering a variety of scheduling 
algorithms in order, for example, to achieve stability under 
rapidly changing loads. Also of interest is the case of 
multiple processors in a system in which jobs have 
processor affinities.  The latter problem is the subject 
of continuing work. 

Appendix 
This appendix provides justification for the properties of 
optimal delay-cost schedulers presented in Section 2. We 
restrict our attention to delay-cost functions that are 
increasing functions of time for all classes. This implies 
that it becomes incrementally more expensive for the 
system to keep a job the longer  it stays in the system. 
We  begin  by presenting our definitions  and assumptions. $09 
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Class-2 response times, from  simulation, for 15000 5 t 5 24000: (a)-(c)  as in  Figure 8. 

Assumptions and  definitions 
A busy period begins  when work arrives at an  idle 
processor and ends when the processor again becomes 
idle. Since we consider only work-conserving policies, the 
busy periods for all policies are identical. We consider 
only ergodic systems; thus, busy periods are assumed to 
be finite  with probability 1. If S* is an optimal scheduling 
policy, then 

~ " ( 4  = min ~'(4, 

where FS(  J )  is  given by Equation (5), and J is the 
sequence of jobs served during the busy period. 

We use the following notation throughout this appendix: 
We assume that J is the set of jobs served in a given busy 
period and that job j ,  j E J ,  has arrival and service times 
given by tj and xi, respectively. The service times for all 
classes are assumed to have finite moments of  all orders. 

(All 
S 

We let t be the current time  and assume that the delay- 
cost functions are increasing and unbounded, and can be 
represented by finite-degree polynomials. For job i of 
class k;we let Di(t)  be the delay-cost-ratio value (DCR) 
evaluated at time t ,  given byDi(t) = C,(t - ti),Ek if t 2 ti 
and equal to 0 otherwise. The algorithm that schedules 
the job having the maximal DCR value is  called the DCR 
algorithm. We say that job i dominates job j from  time t* 
if Di(t)  > Dj(t)  for all t 2 t * .  Finally, we assume that 
scheduling policy S is an optimal policy. 

Properties of  optimal delay-cost schedulers 

Proposition 1 
For each class, policy S* executes the jobs in FCFS order. 

Proof Let jobs i and i' be of class k and such that ti < ti,. 
Let be the service time for the jth scheduled class-k 
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Class-3 response times, from  simulation,  for 15000 5 I 5 24000: (a)-(c) as in Figure 8. 

job. We assume that S* schedules jobs within each class in 
an FCFS order, thus scheduling job i before i’. To show 
that this is optimal, define a policy Sf  that schedules jobs 
exactly as does S * ,  except that it interchanges jobs i and 
i f .  Suppose that job i is thejth class-k job scheduled by 
S* at time t ,  and that job i’ is the j’th, j’ > j, class-k job, 
scheduled at time t + xj,, + z, where z 5 0. Policy Sf  
thus schedules job i f  at time t and job i at  time t + x .  + z. 
The difference  in the total costs for these two policles is 
given by 

”k 

is increasing, and have the same distribution, 
and ti e ti,. Thus, Fs’ (J )  > F S ’ ( J ) ,  so that FCFS is 
optimal. 

proposition. 
We  now establish a lemma that is used in the next 

Lemma 1 
Suppose that Sf  makes scheduling decisions identical to 
those of S’ except as follows: S* schedules job i of class k 
immediately before i f  of class k ‘ ,  and S‘ schedules job i’ 

f-f,tX,, ktZtX, , ,  k immediately before i .  We have 
Fs’(J) - F”(J) = E(x. x,  )[ ‘k(Y) dY 

f,k’ 1’. k 
r-titx,, 

f - 1 t  t 

-I I r-r,,tx,, k t Z t X f . ,  F”(J) - FS’(J)  = E(f,+jzl)  [ 6’.[ I-r::: ‘kf(Y) dY 

C,(Y) @ 7 (A2) 
“f,.tX,., k 

where the limits represent differences in residence times. 
The expectation of Equation (A2) is positive, since C, (y )  31 1 
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where 8'' is  an indicator random variable that is equal to 1 
if S* schedules job i immediately before i f  at a time t ,  for 
t > {ti, t i , } ,  and 

t =  E.;., 
j €  J y  

where J,S* is the set of jobs scheduled by S* before job i .  

Proof We can write F"(J)  - F"(J)  = F"(J - {i, i t } )  
- P ' ( J  - { i ,  i'}) + ~ " ( { i ,   i ' } )  - F''({i, i'}). BY 
definition, S* and S' are such that the execution times 
of  all jobs in J - { i ,   i ' }  are identical. Consequently, 
&'''(.I - { i ,   i ' } )  = &'''(.I - { i ,   i ' } ) .  The  proof 
then follows, since Equation (A3) is the value of 
~ " ( { i ,  i')) - F S ' ( { i ,   i t } ) .  I 

Proposition 2 (Painvise  optimality) 
Suppose that jobs i and i f  are the oldest jobs of their 
respective classes, k and k ' .  Furthermore, suppose that 
these are the next two jobs that are scheduled by S * .  
Then, for any E > 0, there exists a t* sych that if 
t > t* > max{tl, t i , }  and D i ( t )  2 (1 + &,,(t), then 
S* schedules job i first. 

Proof Consider a policy S' that makes decisions identical 
to S except that, under the conditions of the proposition, it 
reverses the order of jobs i and i ' .  If S schedules i first, it 
follows  from the lemma that Proposition 2 can be restated 
as 

In (A4) we have explicitly written the expectation in terms 
of the random variables xi and xi,. For Equation (A4) to be 
satisfied, it is sufficient, for any fixed values of t ,  t i ,  and ti, 
satisfymg the conditions of the proposition, that the 
following expression is satisfied: 

We rewrite (A5) using the identities 

and 

This implies that 
r 1 

r I 1. 

The interchange of summation and expectation in (A6) 
follows  from the fact that the polynomials C,  and C,, are 
of finite order; thus, each summation has a finite  number 
of nonzero terms. We can write (A6) in the form 

where 

r 1 

and Gi(t)  is  defined  analogously. Since we assume all 
moments of the service time to be finite  and the delay- 
cost functions to be polynomials of finite degree, both 
G l ( t )  and Gi,(t) approach 0 as t m. Thus, for any 
E > 0, there exists a t* such that if t > t * ,  then 
[l + G,,(t)]/[l + G i ( t ) ]  5 1 + E .  Using this in Equation 
(A7), with the assumption that D i ( t )  2 (1 + &)Di,( t ) ,  
implies that (A7), and thus (A5), is satisfied. This 
implies, however, that (A4) is satisfied, thus that S 
schedules i first. 

Proposition 2 shows that for sufficiently high load, S will 
never schedule a job with a lower DCR value before a job 
with a higher DCR value. It  does not  imply, however, that 
the DCR algorithm is necessarily optimal. As a counter- 
example, consider the  case in which job i of class k and 
job i' of class k' are the oldest jobs of their respective 
classes and that Di( t )  < Di,(t) .  Furthermore, assume that 
job i' does not dominate job i from  time t ,  and assume 
that D,(t + E )  >> Di,(t + E ) ,  where E is a small  number 
greater than 0. If these two jobs were to be executed 
sequentially, Proposition 2 implies that i' would  be 
scheduled next. Suppose, however, that a batch of class-k 
jobs arrives within E seconds of job i .  These jobs have 
DCR values close to D,( t ) ,  and after E seconds, the DCR 
values for these jobs are all  much greater than the DCR 
value of job i f .  It is easy to check that, for this case, it 
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is optimal to schedule several class-k jobs  before finally 
scheduling i t .  In such a schedule,  at no time will like jobs 
be  scheduled  out of DCR order,  but it is  not  necessarily 
the  case  that  the  job  with  the highest DCR value is the 
next  to  be  scheduled. 

The next  proposition establishes a relationship  between 
the  mean  class waiting times when jobs  are  scheduled 
according  to a time-dependent priority scheduler for which 
the priorities are given by linear functions of the  time in 
the  system. Specifically, a job of class k that  has  been in 
the  system t seconds  has a current priority value given 
by a linear functionp,(t), for t z 0. We assume  that 
p , ( t )  2 p, ( t )  2 2 p,(t)  for t z 0, that arrival rates 
are Poisson and class-dependent, and that  service times 
are class-dependent,  generally-distributed random  variables 
with finite mean. The total  utilization of the  system is 
denoted  by p .  

Proposition  3 
In the limit of heavy traffic, as p + 1, the following 
equation is satisfied by all job  classes: 

where p ( p )  is an increasing function of p. Proposition 3 is 
proved in [14]. Note  that for linear  delay-cost curves  with 
zero offsets, i.e., C,(t)  = s,t, the proposition shows  that 
the  DCR algorithm  satisfies Ck(Tk)E,  = p in heavy load. 
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