
Properties
of delay-cost

by P. A. Franaszek
R. D. Nelson

scheduling
in time-sharing
systems

We consider properties of time-sharing
schedulers with operations based on an
economic measure termed the delay cost, and
relate these to scheduling policies such as
those used in VM and MVS. One of these
policies, deadline scheduling, is shown to be
potentially unstable. We develop delay-cost
schedulers that meet similar performance
objectives under quasi-equilibrium conditions
but which are stable under rapidly varying
loads.

1. Introduction
The purpose of a scheduler in a time-sharing system is to
allocate resources to jobs in order to conform to priority
objectives while maintaining efficient system operation.
These dual goals sometimes result in conditions that
require exceptional handling. For example, in some
systems, jobs are scheduled according to a priority
scheme, provided that certain system resources are not
overutilized. To maintain efficient operation, however,
might require scheduling a lower-priority job before one
of higher priority if the memory requirements of the high-
priority job are so large as to cause thrashing. Issues
associated with efficient operation often depend on the
specific system architecture, such as the structures of main

memory and of I/O subsystems. Additionally, the way
priorities are assigned to jobs also varies from system
to system. Generally, however, scheduling algorithms
for time-sharing systems are intended to be easily
implementable and to have features that provide flexible
system control.

We consider here a scheduling paradigm, initially
proposed by Greenberger 111, called delay cost. This
approach defines an economic measure by which the
system is charged for holding jobs. Associated with each
job class is a delay-cost function of time, which determines
the cost charged to the system on the basis of the total
time each job of that class has been held in the system.
The aim of the scheduler is to minimize the total cost
charged. A good heuristic for minimizing the cost (which
we rederive below) is simply to schedule that job whose
ratio of marginal delay cost to required system resources
is highest. We call this heuristic the delay-cost-ratio
algorithm. An analogy can be drawn here between a set
of jobs to be processed by the computer system and a set
of loans that must be repaid. The job scheduled in this
analogy corresponds to the loan that has the highest
interest rate.

Throughout the paper, we make the simplifying
assumption that once execution of a job has started on a
given processor, it is serviced on that processor until
completion. In some systems, a scheduled job is allocated

OCopyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

portion of this paper must be obtained from the Editor. i295
~l8-8646/S0/$3.00 Q 1995 IBH

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

some number of cycles on a processor and may go through
multiple rounds of scheduling. For example, in the IBM
VM/HPO operating system (virtual machine with high-
performance option), a job is initially considered to be
in class 1. If it does not complete execution with the
resources granted to jobs in this class, it is reclassified and
scheduled as a job in class 2. Subsequently, the job may
go through multiple scheduling phases. For such a system,
the sequence of tasks presented to the scheduler may not
correspond to the sequence of submitted jobs, since jobs
may change class during execution or be scheduled more
than once. In our model, we assume that when a job
enters a new round of scheduling and execution, it is as.
a new job of possibly different class. That is, we are
considering the scheduling of the work units or tasks that
are normally seen by a scheduler in an operating system.

framework for specifying a scheduler objective function,
which one can then attempt to minimize via appropriate
scheduling algorithms. Most schedulers used in practice
have no such explicit objective, using instead such notions
as deadlines or service rates, which are implicit in the
scheduling algorithms. A disadvantage of this latter
approach is the difficulty in extending it to systems with
characteristics other than those originally envisioned.
We show here that appropriate delay-cost functions and
optimization algorithms can yield, under steady-state
conditions, performance analogous to that obtained from
techniques based on deadlines or rates of service, while
avoiding potential pitfalls such as instabilities under
varying loads.

We should mention that a scheduler for a large time-
sharing system is a complex program with features not
considered here, including subroutines based on estimates
of working sets and 1/0 requirements for executing tasks.
The results here do not cover the overall design but
instead concentrate on an important aspect, namely the
algorithms used to determine the order of execution as a
function of system load, and properties of the delay-cost
measure that make it suitable as a basis of design.

The following is a synopsis of the paper. Section 2
considers the issue of a scheduler objective function,
and derives the delay-cost form. Section 3 considers the
problem of formulating scheduling algorithms to minimize
the total delay cost. A variety of approaches are
described, the first of which is similar to that obtained by
Greenberger, corresponding to the loan-repayment analogy
mentioned above. Other approaches considered include
two that correspond to those used in the IBM MVS and
VM operating systems. We describe how schedulers in
these systems may be regarded as heuristics for minimizing
some implied delay cost for tasks being scheduled. In
Section 4, we concentrate on the form of deadline
scheduling utilized in the VM/HPO operating system. We

The delay-cost paradigm provides a convenient

296

P. A. FRANASZEK AND R. D. NELSON

show that the deadline form is potentially unstable under
rapidly varying loads. This problem can be avoided by
determining the delay-cost function implicit in the
scheduler, then using a different scheduling heuristic to
minimize this cost. We derive a set of delay-cost curves
that correspond to the implied goal of the scheduler and
then validate the results through simulation. We are
interested here in what happens under various dynamic
conditions, and we investigate the behavior of the deadline
algorithm and its corresponding delay-cost analogue for a
particular sequence of jobs. The results indicate that the
two forms have essentially equivalent performance under
steady-state conditions, but the delay-cost form avoids
instabilities under rapidly varying loads. In Section 5,
we state our conclusions, and the Appendix contains
derivations of various properties of optimal delay-cost
schedulers.

2. Schedulers and objective functions
This section considers some scheduler properties and
discusses a framework for scheduling based on what we
term the delay cost. This framework yields heuristics that
operate by assigning a delay-dependent priority to the jobs
in the system and scheduling the highest-priority job. The
difference between this and the usual approach to assigning
priorities is that the priorities here are quantities derived
from a cost formula.

Preliminaly assumptions
The workloads assumed in this paper are broadly
characterized by the property that the times of job
arrivals and their work requirements can be specified only
probabilistically. As mentioned above, each job presented
to the system may be scheduled more than once as it
consumes processing time and other resources. Certain of
the analytical results in this paper are obtained under the
assumption that it is adequate to characterize the rounds of
scheduling as being statistically independent; that is, that
the load can be approximated by a sequence of jobs with
independent arrivals, each of which leaves the system after
a single round of execution. We also assume that jobs
assigned to a processor complete their processing in the
order in which they are scheduled. In an actual system, a
job’s execution may be interrupted by events such as page
faults or time-slice expiration. We ignore this, as our
model jobs are assumed to run to completion without
preemption. Under moderate to heavy load conditions,
where the satisfactory operation of the scheduler is most
critical, the time a job spends in service is small with
respect to the total time it spends in the system, so that
interruptions such as page faults do not greatly affect
overall response times.

having the following properties:
We further restrict our attention to scheduling policies

IBM J. RES. DEVELOP. \ IOL. 39 NO. 3 MAY 1 L995

1. Scheduling decisions are causal, i.e., based upon only
the current state of the system and knowledge of the
past.

2. The policy is work-conserving; i.e., no processor is idle
if there are jobs waiting for service.

3. The policy is time-stationary and deterministic; i.e., any
time the system is in the same state with an identical
set of jobs to be scheduled, the scheduler makes the
same job selections.

Scheduling policies found in current computer systems
such as VM [2] and MVS’ generally satisfy these
properties. An in-depth treatment of such scheduling
policies for Poisson arrival streams can be found in [3],
and issues concerning the synthesis of schedulers to meet
certain objectives are discussed in [4] and [SI.

Delay-cost scheduling
One way of stating an objective for the scheduler is to
define a function, termed the objective function, which
maps scheduling policies to real numbers. We say that one
policy is better than another if it achieves a lower value for
this function for the same sequence of jobs. As is shown
below, it is not possible in general to construct a policy
that is optimal, i.e., which minimizes the value of this
function for all job sequences. Thus, it is usually necessary
to employ a heuristic. Each such heuristic may operate
as though enforcing a different set of time-dependent
priorities, sometimes with substantially different results
(e.g., lack of stability). This suggests that an objective
function is desirable for reasons of both generality and
flexibility. In light of the desirability of having such
functions, it is surprising to find that their specification
is missing from the definition of many schedulers (for
additional discussion of this point, see the conclusion
in [6] and Chapter 3.7 of [7]).

We now provide some definitions. Let J = {1,2, * , N }
be the sequence of jobs to be processed, where job j
arrives at time t,, and i > j implies that t i > t,. Let t,! be
the time at which job j is scheduled, and let e, be the time
it leaves. The set of times for a set of jobs Jk is then a
schedule for this set. Letx, = e, - t,! be the service time
of job j . We denote its expectation by X, and assume that this
is dependent only on the job’s class. At time t , for t > t j ,
the amount of time spent in the system by job j , denoted
T j (t) , is min[(t - t ,), (e, - t,)]. The response time for
job j is given by = e, - t,. We denote the scheduler
objective function by F(J , t) , a real-valued function of
time t . The waiting time for a job is ej - xj - t,.

We restrict our attention to functions F (J , t) that are
dependent only on the response times for jobs in J which

1 OSIVS MVS Resource Measurement Facility (RMF) Reference and User’s Guide,
IBM Data Processing Division, White Plains, NY (no longer in print).

enter the system before time t . We refer to F(J , t) as the
cost incurred by a schedule at time t . We further require
the following:

1. The function F(J , , t) is defined for any subset J, of J
[so that, for example, F(J , t) can be used to evaluate
the effect of a schedule on any class of jobs].

2. If J , , J , , . , J , are disjoint subsets of J , where
U:=, J, = J , then F (J , t) can be determined from
the set {F(J j , t) } , i = 1, 2 , , n.

The latter requirement ensures that the overall cost of a
schedule for a group of users can be determined from their
individual costs. We assume

F(J, t) = F(J,, t) 5 F(J,, t) 5 * - * 5 F(J,, 0 , (1)

where 5 is a commutative and distributive operator, either
addition or multiplication. These two operators are
equivalent via the use of logarithms, and here we take
this operator to be addition. Without loss of generality,
we assume F (j , t) 2 0, where F (j , t) is the cost of an
individual job. Since jobs that have not arrived by time t
have no effect on the objective function, and jobs have no
further effect once finished, F (j , t) = 0 for t 5 t,, and
F (j , t) = F (j , v) for t , v such that e, s t s v . We also
assume that F (j , t) , fort, < t < e j , is differentiable in t ,
and generally require that the incremental amount added
to the objective function for any job j increase with the
amount of time this job spends in the system. This implies
that @(j , t) / & > 0, for t, e t < e, (we use > 0 rather
than 2 0 to ensure first-come/first-served in class). The
assumption that F(j , t) is differentiable allows us to
represent it as an integral of some function; moreover, it is
clear from the above properties that the value of F(j , t)
changes only while job j is in the system. Thus, we can
write F (j , t) as

where C(-) is a nonnegative function termed the delay-cost
function [l]. We note here that C(y) dy can be interpreted
as the incremental cost charged to the system for holding
job j longer than y units of time (seconds). Using Equation
(1) allows us to write the total cost charged to the system
for processing jobs in set J as

”

j € J J O

where F (J) = Iimt+ F(J , t) . We can rewrite Equation (3)
to account for different job classes by extending our
definitions. Suppose there are K distinct job classes and
that the set of jobs from J that belong to class k is given 297

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

by Jk. Let tj ,k, ej,k, and Tj,k(t) be the arrival, exit, and total
amount of time spent in the system at time t for the jth job
of the kth class. The response time for the jth job of the
kth class is given by Tj,k = lim,_m q.,k(t) . Equation (3) is
then written as

jobs of the same class have service demands given by a
class-dependent distribution that does not vary with time.
The value of the objective function for this case is given
bY

where Ck(.) is the delay-cost function for the kth class.
The form of Equation (4) has been suggested or used

previously (see for example [l , 8, 91). The purpose of the
above derivation is to expose the assumptions on which it
is based. As discussed below, these assumptions do not
always hold in practice.

(4) is that F(.) can be applied to any subsequence in the
job stream, hence that jobs are essentially independent.
Examples of cases in which this is not true include sets of
jobs that must be scheduled together because the overall
cost is related to the time required for the full set to
complete, and systems with constraints on the percentage
of work to be granted to a given subclass of jobs. We do
not discuss this issue further here, but merely mention that
the delay-cost measure can often be adapted to obtain
reasonably good schedules. An example is discussed in
the subsection on rate-of-work schedulers.

The goal of the system is to minimize the value F (J)
given by Equation (4), i.e., to minimize the total cost
charged to the system for processing the jobs in J . This
minimization is performed over all possible ways to
schedule jobs in J , subject to the constraint that no job is
scheduled before its arrival. If the arrival times and service
times were known in advance, one could hypothetically
minimize F (J) by evaluating all possible ways of
scheduling jobs and selecting one with a minimal cost. In
a real system, of course, the arrival and service times of
jobs are not typically known in advance and may not even
be known probabilistically.

We denote the value of the objective function when policy
S is applied to the jobs in J as F S (J , t) . It is clear that
the choice of a scheduling policy influences the finishing
times of the jobs; thus, in general, F S (J , t) f F S ' (J , t)
for two different scheduling policies S and S'. To enable
a selection among different scheduling policies, by
definition of F , we say that policy S is better than policy
S' at time t if F , (J , t) F , ' (J , t) . ~n optimal policy for
objective function F at time t is a policy S* that satisfies
F,'(J, t) = min, P (J , t) . AII optimal policy for
objective function F is an optimal policy at time t in
the limit as t + OD, providing such a limit exists.

A primary assumption used in the derivation of Equation

Suppose job arrivals and service demands are not known
298 in advance but are modeled by random variables, where

P . A. FRANASZEK AND R. D. NELSON

(5)

where q:k = e,tk - ti,k is the time spent in system for the
jth job of the kth class when scheduling policy S is used.

3. Heuristics
This section discusses some heuristic approaches to
minimizing the delay-cost measure F (J) . These include
techniques loosely modeled on algorithms encountered in
M V S ' and VM [2]. When considering these, one should
understand that the analysis is aimed at obtaining an
improved understanding of a class of algorithms rather
than of any specific scheduler implemented in an operating
system.

We begin by considering examples of delay-cost
functions and how these affect scheduling decisions.
Techniques for delay-cost reduction are then examined.
These include a) the delay-cost-ratio (DCR) algorithm,
b) rate-of-work schedulers, related to the approach used
in M V S , and c) deadline scheduling, a variant of which
appears in some VM systems.

Delay-cost functions
We now consider some specific examples of delay-cost
functions e,(.).

1. Class-dependent constant Here the delay-cost function
is a class-dependent constant; thus, the cost charged
to the system is directly proportional to the response
times of jobs. This form was used by Klimov [8, 91 and
further studied in [lo]. Although the above cost function
is convenient for analysis, it has the drawback that
simple cost-minimization algorithms may not yield
generally desirable properties such as first-come/
first-served (FCFS) within class. A consequence is
that individual jobs may never receive any service.

2. Class-dependent linear Here the cost charged
increases as the square of the response times. It is
shown below that algorithms employed in some
deadline schedulers, such as the one found in VM, can
be regarded as heuristics that minimize delay costs of
this form. If the DCR scheduling algorithm (described in
the following subsection) is used, the delay-cost ratios
Ck(*)/Zk are then linear functions. An analysis of the
mean response times for linear delay-cost functions
when F(j, t j) = 0 was derived in [ll] and further
considered in [12]. Bounds on the mean response time

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

for nonzero intercepts were derived as special cases in
[13], and an exact, closed-form expression for heavy
traffic is given in [14]. We use the latter results in
Section 4 while discussing deadline scheduling in further
detail.

3. Arbitrary increasingfunction A delay-cost function of
this form may be viewed as producing the criterion used
in some rate-of-work schedulers (e.g., MVS, as shown
below). A nonlinear, bounded cost function can be used
to ensure properties such as the exclusion of a job class
once the system load reaches a given level. Bounds on
the mean response time for related priority schemes
(e.g., priorities given by concave functions) can be
found in [13] and [15].

In the following, we restrict our attention to delay-cost
functions that are increasing with time and unbounded.
This implies that it becomes incrementally more expensive
for the system to keep a job the longer it stays, which
guarantees that, if the system is not overutilized, every
job is eventually processed. Jobs of the same class are
assumed to have similar service times, so it is not
surprising that an optimal delay-cost scheduler schedules
jobs within a class in an FCFS manner. Intuitively, this
follows from the fact that an optimal algorithm would
always select the most expensive job to receive processing
first. This property (Proposition 1) of optimal delay-cost
schedulers is proved in the Appendix.

A delay-cost heuristic
Let y, be the time spent in the system for the oldest class-k
job, From the FCFS property, we know that only the
oldest job from each class must be examined in making
scheduling decisions. Suppose that one of the next two
jobs to be scheduled is from class k and the other from
class k ' , and attempt to determine which class to select
first. Let y, and y,, be respectively the residence times for
the two jobs that are the oldest (i.e., have the longest
residence times) in the two classes. Then, the class-k job
should be scheduled first if

where E,x x denotes the expectation. Ifi?, andXk,, are
sufficiently small with respect toy, and y,, , and if C(*)
varies sufficiently slowly, Equation (6) implies that the
oldest member of class k should be scheduled ahead of
that ink' if C,(yk)/Z, > C,,(y,,)/Z,, (see [l] for a different
derivation; this has also been termed the pC rule [7]). In

k' k ')

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

the Appendix, we provide a formal proof for this property
(Proposition 2), which we call pairwise optimality. This
suggests the following heuristic: Schedule the oldest job
of class k if it has the maximal value of Ck(yk)/Zk. Note
that this policy satisfies FCFS within class. We call this
the delay-cost-ratio (DCR) algorithm, and the value of
C,(yk)/Z, is called the DCR value of the oldest class-k job.
In the analogy of loan repayment and delay cost, Ck(yk)
corresponds to the amount of money charged per unit of
time during which the loan is outstanding. We assume
that this amount increases with time. The value of f ,
corresponds to the amount of the loan owed, and C,(y,)/i?,
to the current interest rate. The DCR algorithm suggests
simply repaying the loan with the highest interest rate (see
[16] for a discussion of bounds for the delay cost). We
note that the DCR algorithm depends upon only the first
moment of service time for the different classes of jobs.
This is a result of a heavy-traffic limit that is used in
establishing Proposition 2. For lighter loads, however,
higher moments of the class service-time distribution could
be included in the heuristic, as is shown in Equation (Al).

Proposition 3 in the Appendix shows that under heavy
traffic, Poisson arrivals, and linear delay-cost functions,
the DCR algorithm satisfies C,(F,)/Z, = p, where T, is
the mean response time for class k, and p is a constant
that measures the load of the system. One expects this
relationship to hold approximately under less restrictive
conditions, since the DCR algorithm tends to minimize the
maximal value of C,(y,)/Z, and thus tends to establish a
common value for C,(F,)/Z,. The value of p plays a
crucial role in delay-cost scheduling and is the main
mechanism we use in establishing a mapping between
delay-cost scheduling and other policies, such as deadline
scheduling.

Before ending this subsection, we make a few comments
about the delay-cost heuristic. The first is that differentiation
between job classes manifests itself in two ways. One is in
the specification of the delay-cost functions by the system
implementers. The other is on the basis of the average
service requirements of the different classes; here, as the
heuristic implies, large jobs are penalized in relationship to
small jobs. This follows from the fact that in the attempt to
minimize the total delay cost of the jobs in the system, it
would often be the case that several shorter jobs could be
completely serviced during the time needed to finish the
execution of a larger job. One can interpret the DCR value
as being a cost rate, i.e., cost per unit work. Thus, the
DCR algorithm schedules the job having the highest cost
rate. An alternative interpretation of the DCR value is
that of aprice for processor cycles. A job willing to pay
a higher price is thus more desirable for execution.

In terms of implementation, the heuristic suggests that
one keep a queue for each class of jobs. Scheduling
decisions can then be made by calculating the DCR for the

P. A. FRANASZEK AND R. D. NELSON

199

300

lEme in system

Graphical representation of a deadline scheduler.
" "" . .. - I."_."I. ~

job at the head of each queue and selecting the one with
the maximal value. Jobs not at the head need not be
inspected. As a final remark, we note that the value of /?
defined above is a measure of the load of the system. The
load seen by a class-k job that has been in the system for
y, seconds is given by C,(y,)/Z, = Pk. Decisions made by
DCR schedulers then can be viewed as scheduling that
job corresponding to the highest perceived load. This
observation is used in the following two subsections when
establishing a correspondence between DCR schedulers
and rate-of-work and deadline schedulers.

Rate-of-work schedulers
Some schedulers (the one in M V S is an example) operate
by allocating processor time to members of each job class
at a rate that is a function of system load. The schedulers
determine which job should receive the next time slice,
and a job that fails to complete execution during its time
slice must be scheduled again. More precisely, the
schedulers attempt to give processing to all members of
job class k at a rate R,(z) , for k = 1, 2, * * , K , where
z is a parameter that represents the system load. These
functions R,(z) are strictly decreasing with z over the
interval 0 I z 5 zk < m and identically equal to 0 for
z > zk, where the z, are class-dependent values. Thus, the
value of z, represents the load past which a given job class
is denied service. Suppose job i (of class k) is currently
receiving processing at a rate of vi . This corresponds to
a load value of zi = RL1(vi). [Let R;'(v), for u > 0,

P. A. FRANASZEK AND R. D. NELSON

denote the inverse of R,(.) , and define Rkl(0) = zk.] The
scheduler then chooses the job that corresponds to the
maximal zi over all jobs in the system. At any time, there
is a value z* that is the load of the system. This is
analogous to the value of /? previously defined for DCR
schedulers. Let mk be the number of class-k jobs in the
system at a given time, and let the total rate of work that
can be supplied by the system be given by P. The
parameter z* is then defined to be the value of z that
satisfies

K

Rk(z)mk = P,
k = l

where R,(z) is the average value of Rk(z) over class k.
The above is similar to the operation of the DCR delay-

cost heuristic described above, in that both operate by
scheduling the job corresponding to the highest perceived
load. There is a difference, however, between practical
implementations of the schedulers: In the DCR case, each
job is viewed as being scheduled only once, whereas in the
rate-of-work scheduler, jobs may be scheduled many
times. The two approaches may be brought into closer
correspondence by assuming the viewpoint that upon
expiration of its time slice, a job reenters as a "new" job.
Upon reentering the system or at initiation, the job is
assigned a rate of work (for reentering jobs, this could be
the rate just after finishing the previous processing slice)
which then changes over time. Let v i (t) be the rate of
job i at time t . Roughly speaking, a corresponding DCR
scheduler is characterized by the following delay-cost
functions:

C,(t) = XkR;'[vi(t)] k = 1, 2, , K. (7)

Deadline schedulers
The deadline schedulers (DSs) considered here operate by
assigning a parameter, termed a deadline, to each new job
as it enters the system. This parameter, which is generally
a function of the job class and system state, is then used
to order the jobs waiting for execution. The deadline is
sometimes viewed heuristically as the time by which a
job should complete its processing. In the absence of
exceptional conditions, such as memory thrashing, jobs
are scheduled according to their deadlines, which are
unchanged once assigned. A DS of this form is included
in a current version of Vh4 [2] .

A typical function used for the deadline is given by

ti + EH, 1 5 k I K , (8)

where tj is the time of job arrival; E, termed the expansion
factor, is a function of the response times of the job
classes (there are three classes in some versions of VM);
and H, is a class-dependent constant. A job of class k

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

entering the system at time tj is given the deadline
specified by (8) and placed in the system queue in
increasing deadline order. Jobs in the queue are then
selected in that order for execution whenever their
working sets fit into memory. In VM, jobs entering the
system are initially assigned to Class 1 for some limited
amount of processing and are then rescheduled as Class 2
(and eventually as Class 3).

In the following, we consider the class of a job when
determining its deadline and assume that H , increases with
k. The function IE is a linear weighting of the current
average class response times, which are typically
determined by measuring job departures over some
interval (this is further discussed in Section 4).
Specifically, suppose the current class-k mean response
time is Fk; then, the expansion factor is calculated as
follows:

where the ak are constants that determine the weights
given to each class, and FJXk is the expansion of the class-k
response time due to other jobs in the system. That is, if
only one job were present, Fkl.fk would equal one. We call
the value EH, a threshold value, and we denote it by ak.
As mentioned above, in deadline scheduling, a queue of
jobs is maintained in increasing deadline order. Thus, a
job’s deadline determines its relative response time.
Roughly speaking, the response time of a job is
proportional to its deadline, for a given value of the
expansion factor.

We now provide an intuitive argument that deadline
scheduling can be viewed as a heuristic for minimizing
the total delay cost for a particular form of delay-cost
function. To show this, it is convenient to view deadline
scheduling in terms of priority scheduling. Once a job is
placed in the queue, its position relative to other jobs
already in the queue is not changed. Each job approaches
its deadline at a constant rate of one second per second
elapsed. Differentiation between different classes of
jobs with respect to allocating processing arises only
from differences in their initial queue placement,
which is determined by the initial deadline calculation.
A scheduling decision consists of scheduling that job
with min[a, - (t - t i)] , where k is the class of job i.
For the case in which ak - (t - t i) > 0, this schedules
the job closest to its deadline.

Figure 1 shows how this operation might be represented
graphically in a system under constant load. The solid lines
{ -[a , - (t - 9 1) correspond to the same fixed load,
which implies the value of E and values of a,. In this
example, job 3 (a class-2 job) has just entered the system
at coordinates (0, -a2) and will progress upward to the

t ”)

T i e in system

Deadline scheduling viewed as priority scheduling.

right toward its deadline (a2 , 0) at a rate of one second per
second elapsed. Job 1 (a class-3 job) entered the system
e, seconds ago, and job 2 (another class-3 job) entered t;
seconds ago. Since az 5 a3, class-2 jobs are initially
placed higher than those of class 3. All move up to the
right at the same constant rate. The job at the top of the
queue (the next job to be scheduled) is the highest one-
job 1-followed by job 3 and then job 2.

In terms of priority scheduling, the above suggests that
the priority of a job of any class increases linearly in time
with unit slope, and that differences between classes are
determined by an initial value. Scheduling decisions,
viewed in this manner, consist of scheduling the job with
the highest priority.

might be viewed in terms of priorities. Let the initial
priority, or ofset , for a class-k job be denoted uk . An
arriving class-k job can then be thought of as having
an initial priority of u k , which increases at a unit rate.
Scheduling decisions consist of selecting the job having
the highest priority value, which, in a deadline scheduler, is
the job closest to its deadline. It is convenient to shift the
linear priority curves so that the lowest class starts out
with a value of zero. Then the relationship between the
threshold values of the DS and the offset values for the
priority scheduler can be expressed as uk = aK - a,
for 1 5 k 5 K , where K is the lowest-priority class.

This view of deadline scheduling is not complete,
however, in that it ignores the effect of changes in the
system load that modify the deadline calculation and thus,
equivalently, modify the initial priority values. The effect
of a decrease in the value of the expansion factor IE is

In Figure 2, we show how the above description of a DS

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

shown by the dotted lines in Figures 1 and 2. Here, the
decrease in the threshold values cyk for the DS corresponds
to an increase in the offsets uk for the equivalent priority
scheduler. The manner by which deadlines change as a
function of the load of the system leads to an interesting
correspondence between deadline scheduling and DCR
scheduling, which we now address. First, however, we
note that the form of DS implied by Equation (8) is
potentially unstable and may lead to anomalous behavior.
We analyze these behavioral characteristics and establish
the relationship between DSs and DCR schedulers in
greater detail in Section 4.

We now show that if the deadline computation is given
by Equation (8), then, for slowly varying loads, scheduling
decisions are approximately equivalent to a DCR
minimization with linear delay-cost functions. As
Equation (8) implies, deadlines calculated by the system
change proportionately with E, where the constants of
proportionality are given by the values Hk. This implies that,
for each class of jobs, the mean waiting time (ej - xj - ti)
changes with approximately the same constant of
proportionality. A result of Proposition 3 in the Appendix
is that under heavy traffic conditions, with Poisson arrivals,
Ck(Fk)/fk = p for all classes, where p is a measure of
the load of the system and is thus analogous to E in the
deadline calculation. If we suppose that C,(t) , the delay-
cost function for class k , equals skt (constants sk are the
factors in the linear delay-cost functions), then as /3 varies
slowly, the mean response times of the classes change
proportionately to f J s k in a DCR scheduler. Thus,
equating f k / s k and Hk yields a DCR scheduler with mean
response times similar to those obtained by the DS. In
Section 4, we make these statements mathematically
precise.

the deadline computation is of the form of Equation (8),
a delay-cost-based scheduler may be constructed whose
decisions are similar to those of a DS under slowly varying
loads but which, we later show, avoids the instabilities
associated with deadline scheduling under rapidly changing
loads. Here the formulation of an objective function for the
scheduler permits the consideration of schedulers which
have similar overall properties, but which are superior
under some circumstances.

A principal result from the above observation is that if

4. Delay-cost version of a deadline scheduler
This section provides an analysis of the performance and
behavior of DSs. The results show that although these
schedulers can work well under conditions of slowly
varying load, they can exhibit anomalous behavior and
instabilities when attempting to adapt to rapidly changing
conditions. The following subsection contains a description
of how this behavior can occur and formalizes the
correspondence between DSs and DCR schedulers that 302

P. A. FRANASZEK AND R. D. NELSON

was outlined above. The equations obtained were then
used to drive a simulation to compare the performance of
these two schedulers. This simulation demonstrated that
anomalous behavior and instabilities are, in fact, found
in DSs but, notably, are missing from the equivalent
DCR scheduler. Finally, this section concludes with
modifications to a DS that may achieve similar
performance objectives but have the advantage of
stability and lack of anomalous behavior.

Stability
A scheduler provides a means of controlling a system in
order to obtain favorable characteristics for a variety of
loads. As in any control system, stability is a key issue. A
scheduler is a nonlinear system, so there are a variety of
ways of defining stability (Reference [17] notes at least 28
definitions in use). One way of indicating a lack of stability
is to show that there exist a system state and an input
that produce undesirable oscillations. We later show by
simulation that such oscillations can occur. Another way
of demonstrating instability is via the presence of positive
feedback in the control policy at equilibrium points, so that
perturbations are not self-correcting. We show that there
are instances of positive feedback in DSs. First, however,
we discuss properties of DSs that lead to such potential
instabilities.

As noted above, once a job is placed in the queue by the
scheduler, its position relative to other jobs already in the
system remains unchanged. Other important properties
related to stability are that a) the expansion factor at any
given time is a function of the response times for jobs that
completed service over a previous time interval that
we term the samplingperiod, and b) the value of the
expansion factor can undergo rapid change.

We now consider some qualitative aspects of DS
behavior. Suppose that there are two classes of jobs,
corresponding to edit and batch jobs, with edit jobs having
substantially smaller service times than batch jobs and
requiring shorter response times. Properties that would be
expected to hold in a good scheduler, but which can be
violated under rapidly varying loads for a DS include the
following:

1. FCFS within classes.
(This fairness criterion might be violated under
conditions of decreasing load. For example, if the
expansion factor is decreased, an arriving job may be
assigned a smaller deadline and thus may be placed
ahead of jobs in its class already in the queue.)

2. Edit jobs have smaller response times than batch jobs.
(This might be violated under either increasing or
decreasing load conditions. Consider a batch job that
has just been placed in the queue and suppose that the
expansion factor increases by a large amount. It might

IBM J. RES. I IEVELOP. VOL. 39 NO. 3 MAY 1995

then be the case that a newly arriving edit job, having a
larger deadline, is placed after it in the queue. The edit
job is scheduled after the batch job and thus has a
longer response time. This phenomenon might also
occur under decreasing load conditions if the expansion
factor undergoes a sufficiently large decrease.)
Under increasing load, edit jobs get a larger proportion
of the CPU resources.
(One way to see how this can be violated is to suppose
that there are many edit and batch jobs in the queue.
It follows from the way jobs are scheduled that the
density of edit jobs is higher toward the head of the
queue and that the density of batch jobs is greater
toward the queue’s tail. Another way to view this
situation is that, in the steady state, edit jobs are
assumed to have a smaller wait for processing than do
batch jobs; i.e., they are given smaller deadlines. Thus
they tend, upon entry, to be placed in the queue ahead
of many batch jobs. Now suppose that the expansion
factor increases because of an increased system load.
Then newly arriving edit jobs might, as outlined above,
be placed behind batch jobs already in the queue. Since
jobs already in the queue do not change their relative
positions, edit jobs toward the head of the queue are
the first to receive processing and leave the system.
Newly arriving edit jobs, however, do not replace those
that finish execution; thus, there is a period during
which the density of edit jobs toward the head of
the queue decreases. The CPU, during this period,
processes an increased density of batch jobs; thus, the
proportion of CPU time allocated to edit jobs decreases.
The result is a substantial increase in delay for the
newly arrived edit jobs.) ’

Derivation of the correspondence
Section 3 discussed the correspondence between deadline
scheduling and delay-cost minimization. We now make
these arguments precise by deriving a corresponding
DCR version of a DS. In the following subsection, we
compare the performance of these two schedulers through
simulation. As previously mentioned, the most notable
result arising from this correspondence is a stable form
of an analogous DS. Our procedure for deriving the
correspondence is to obtain the delay-cost analogies of
the quantities E and Hk given in Equation (8), and then to
demonstrate how these values change under conditions
of varying load. We first describe our notation and
assumptions.

a Poisson point process with an average rate of A,. The
service time for each class is assumed to be generally
distributed with a mean of Zk, and the processor utilization
due to the kth class, denoted by pk, equals A k X k . We
define

For a given class k , we assume that arrivals come from

‘OL. 39 NO. 3 MAY 1995

Wo = 2 AkE[x;]/2.
k = l

The delay-cost function for the kth class is given by
Ck(t) = skt, where s1 z s2 2 2 sK, and we denote
the value of the offsets for the DS by uk, where
u, z u2 2 * * z uK = 0. Finally, we let Tk be the
mean response time for jobs of class k .

We now cite two results that are needed to create the
correspondence. The first is called the conservation law
[4, 181, which states that

-

and holds for all scheduling disciplines that have Poisson
arrivals, are work-conserving, and service jobs
nonpreemptively. The second result concerns the
mean class-k response time for a DS under the above
assumptions and with a heavy load. This heavy-traffic
response time was derived in [14] and is discussed here
only briefly. As mentioned above, scheduling decisions are
made on the basis of priorities that increase with unit slope
(the expansion factor is assumed to be a constant, since
the arrival rates are fixed). It is further assumed that the
load is sufficiently high that
W k 2 u 1 k = 1,2;.*,K, (11)
where Wk is the random variable representing the waiting
time of the kth class. Then,

(12)
To lend intuition to this equation, we note that

Wo/(l - p) + Zk is the mean response time that would be
obtained for class-k jobs if FCFS scheduling were used
[19]. The remaining two terms represent an adjustment of
response time of the kth class due to priority scheduling.
We write them as

K

j=l

To explain this sum, we tag an arrival at time to of a
class2 job in a three-class system. Since by assumption
W, 2 u l , any class-1 jobs arriving in the interval
(to, to + u1 - u,) receive service before the tagged job.
Since each class-1 job requires an average of Zl seconds
of work, and the jobs arrive at a rate of A,, the expected

P. A. FRANASZEK AND R. D. NELSON

Arrival rate of jobs in the simulations, as a function of time.

304

amount of class-1 work that arrives during this interval is
given by p l (u , - u 2) 2 0, which is the first term of the
sum. The second term, p1(u2 - uJ, is 0. The third term,
p3(u3 - u2) I 0, represents the amount of class-3 work
already in the system at time to that receives service after
the tagged job. Since these jobs do not delay the tagged job,
this amount of work contributes negatively to its response
time in relation to FCFS scheduling.

We now proceed to establish the correspondence. We
again use results obtained under conditions of heavy traffic
and assume Poisson arrivals. Thus, the correspondence
holds only approximately for Poisson arrivals and light to
moderate load conditions, and becomes more precise as
the load increases. Let 7, and rk denote the expected
class response times for the DCR scheduler and DS,
respectively. The cost function C(-) for the DCR
scheduler is linear, with slope sk and zero offsets, and the
deadline curves are linear with slope 1 and offsets uk. In
determining the deadline at a particular instant, one must
specify values for E, the expansion factor, and Hk. As
shown in Section 3, for a given value of E, the values of
Hk determine values for the offsets uk used in the DS.
Our procedure consists of first establishing for a DCR
scheduler a value that is analogous to the expansion factor
E. This value, as shown in Section 3, is given by p. This
determines values for the mean response time, Fk, for
a DCR scheduler. These values can then be used in
Equation (12) to determine values of uk that would cause a
DS to achieve Vk = T,. The last step in establishing the
correspondence consists of showing how the values of uk
change with changing load conditions and of specifying
how to measure E. We now present these derivations.

1. Derivation of p.
Proposition 3 of the Appendix indicates that, under
heavy load, there exists a p such that a DCR scheduler
with delay-cost equations given by C,(t) = s,t has
mean response times that satisfy

Use of this in the conservation law, Equation (lo), yields

P =
K

k=l

2. Calculation of u,.
Using p from Equation (13) allows us to write
?=, = pfkJsk , k = 1, 2, * , K . Given these mean
response times, we can set pk = 7, by using the linear
equations (12) to solve for the offsets u k . For a given
load, this yields a DS that has mean response times
equal to what one would find in a DCR scheduler
under heavy traffic.

3. Changing uk and p.
We now show how values of the offsets are modified to
account for changing load conditions. First, note that
substituting from Equation (13) into (9) yields

Suppose now that the DCR scheduler load increases to
p', where p' = yp. It thus follows from Equation (13)
that ?=; = yTk; Le., the expected response times also
increase by a factor of y for a DCR scheduler.

To show that the DCR scheduler and the DS have
equivalent stationary response times, we first observe
from Proposition 3 in the Appendix that

5 = u - Uk' (16)

where U is a class-independent constant. From the
matching of expected class response times of the DCR
scheduler and DSs in step 2 above, we have that
U = uk + @,Is, We now ascertain for what values
of u; we obtain V; = ?;. To answer this, observe that
if r; = F;, Equation (15) implies that the expansion
factor changes by a factor of y, i.e., that E' = YE,
which implies that the offsets of the DS also change
by a factor of y (i.e., that u; = E'H, = yu,). This,
however, implies that U' = u; + /3 ' fk lsk = yU. Thus,
Equation (16) shows that the expected class response
time for the DS is p; = U' - u; = ypk. This, as in
the DCR scheduler, also increases by a factor of y.

I

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

30000 35000 40000 45000 50000
Tme (s)

(C)

Class-1 response times during steady state, from simulation: (a) deadline scheduler with sampling period At = 100 s; (b) deadline scheduler 1 with At = 1000 s; (c) delay-cost-ratio scheduler.

Since the values of u; needed to obtain p; = T; are
exactly those used by the DS, we conclude that the DS
acts in a manner that matches the expected response of
a DCR scheduler with linear slopes.

The correspondence is thus specified. We now compare
the performance of these two schedulers via simulation.

Comparison by simulation
This section presents simulation results that compare
the performance of a DS and its corresponding DCR
scheduler. We use the procedure presented above to
establish the corresponding schedulers. Experiments are
described that compare the performance obtained from
DSs with their corresponding DCR schedulers. Each
experiment consisted of processing the same arrival stream
of jobs, starting from an initially empty system. Two
different DSs were simulated. These differ only in the

duration of the sampling period used in calculating the
deadline, At, and correspond to an underdamped
scheduler (A t = 100 s) and a moderately damped
scheduler (A t = 1000 s) . The third simulation is that
of a DCR scheduler.

We first provide the input parameters used to drive the
simulations. Three classes of jobs were assumed, with
delay-cost curves given by C,(t) = s,t, where s1 = 100,
s2 = 10, and sj = 1. The average service requirements
were set toXl = 1 s , X2 = 7 s, and%, = 8 s. For any
arrival rate of jobs, we set the fraction of arrivals of
jobs in the three classes to be 60%, 17%, and 23%,
respectively. This corresponds to a relative system
utilization of approximately 1 2 3 for the three classes.
The arrival rate during the simulations, shown in
Figure 3, was nonstationary. The system utilization was
0.95 for 0 I t 5 15000,0.80 for 15500 < t 5 20OO0, and
0.50 for 20500 < t 5 50000. The average utilization

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

class-2 response times, from simulation: (a)-(c) as in Figure 4.

306

over the entire interval 0 5 t I 50000 was 0.68. Note
that there are high impulses of traffic over the intervals
15000 I t I 15500 and 20000 I t < 20500.

We now present the simulation results, which indicate
that the DS and the corresponding DCR scheduler make
similar scheduling decisions under conditions of steady
state and constant load. This lends support to the
equations used to derive the corresponding schedulers. We
first note that the system was not in steady state over the
interval 0 I t I 20500. This follows from the fact that
over this interval, the arrival rate varied with time and
that the system started from an initially empty state.
Empirically, we found that the system reached steady state
at time 30000. We present results of the simulation over
this interval to confirm that the deadline and DCR
schedulers are analogous.

time of departure of each class-1 job over the interval
Figure 4 shows the response time as a function of the

30000 I t I 50000. The system is in steady state, and the
load is constant. The deadline calculations for both DSs
are thus similar and yield similar scheduling decisions.
Figure 4(c) shows the response for class-1 jobs for the
DCR scheduler. A comparison with Figures 4(a) and 4(b)
demonstrates that, for class-1 jobs, the DCR scheduler
makes scheduling decisions similar to those made by the
DSs. The corresponding response times of class-2 and
class-3 jobs are shown in Figures 5 and 6, respectively,
and demonstrate that scheduling decisions for these job
classes are similar for the different schedulers. (Note
that Figures 4, 5, and 6 have different vertical scales.)

Next, in Figure 7, we plot the threshold values of class-1
jobs (the values of EH,) as a function of time, for each DS
experiment. The underdamped deadline scheduler exhibits
the oscillations that were anticipated above.

To see how the oscillations in the threshold calculation
influence the response times of jobs in the system, we

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

c

B 60

i40
2 20

0
30000 35 000 40000 45000 50000

plot, as a function of the time the job left the system, the
response times for the different classes of jobs. Figure 8
shows the response time for class-1 jobs for each of the
schedulers. (Note that Figure 4 presents some of the same
data, for the interval 30000 I t 5 50000, but with a
different vertical scale.) Observe that in both deadline
schedulers there are sudden increases in the response time
near the points t = 15000 and 20000, because of the
increased traffic. Intuitively, we realize that the impulses
of traffic at these points drastically increase the thresholds
and cause newly arriving class-1 jobs to be placed behind
already existing class-2 and class-3 jobs in the queue.
These class-1 jobs suffer long delays. The DCR scheduler
adapts to the changing load without degrading the response
times of class-1 jobs. The total delay cost for processing
all of the jobs is given by 2.39 X lo9, 3.12 X lo9, and
1.01 X lo9 for the underdamped DS, moderately damped
DS, and DCR scheduler, respectively. Thus, the total delay

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

cost is smallest for the DCR scheduler and largest for the
moderately damped DS. Increasing the damping in the DS
reduces undesirable oscillations but increases the total
delay cost, since the scheduler cannot react as quickly to
load variations.

We now concentrate on the interval (15000, 24000).
Figure 9 shows large oscillations in the response times of
class-2 jobs over this interval for both DSs. In contrast,
the DCR scheduler adapts to the changing load conditions
by increasing the response times of class-2 jobs in a more
gradual manner.

dramatically in Figure 10, which shows the statistics for
class3 jobs. Once again, in the DCR scheduler, class-3
job response times increase in a gradual manner. The
interaction of the threshold and the response time
of the jobs in the system can be seen by inspecting
the response times of class3 jobs over the interval

The oscillations in response time are seen most

P. A. FRANASZEK AND R. D. NELSON

308

f Threshold values for deadline schedulers, during entire simulation: (a) At = 100 s; (b) At = 1000 s.

22000 I t I 23500. The high peaks over the interval
23000 I t I 23500 are from jobs that were placed
far back in the queue because of the increase in traffic
over the interval 15000 I t I 15500. Peaks over the
interval 22000 I t 5 22500 are from jobs that entered
the system after the threshold increase due to increased
traffic over 20000 s t I 20500. Finally, the very low
response times shown over the interval 22000 I- t I 23500
are from those class-3 jobs that entered the system
during the low-threshold period after time 22000. As
this example shows, different jobs from a single job
class, present in the system at one time, can have very
different views of the load, since their positions in
the queue reflect measured response times at their
times of entry. The measured response time may have
little relation to the response time actually experienced
by a job.

5. Conclusions and future work
We have considered issues associated with the use
of objective functions in the design of time-sharing
schedulers. Assumptions underlying the delay-cost form
have been made explicit, and we have shown that
algorithms of the form used in some versions of VM
and MVS, for example, can be viewed as heuristics for
minimizing some form of this measure. Properties of
optimal schedules for the delay-cost objective have been
derived. The case of deadline schedulers has been treated
in detail, and it has been shown that such schedulers have
a potential stability problem when subjected to rapidly
varying loads. Here, the implied delay-cost goal can be
used to obtain algorithms that behave similarly under
steady-state conditions, but that avoid instability.

An experimental delay-cost version of a VM scheduler
has been implemented and used on a 3090 multiprocessor

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

500 -
3 400-

.j 300-

4 1 0 0 -
B m -

0 1-
0 10000 20000 30000 40000 50000

system at the IBM Thomas J. Watson Research Center.’
Its main feature is the replacement of deadline-based
algorithms with a delay-cost heuristic that uses a table-
lookup computation based on the DCR algorithm. The
remainder of the scheduler code, e.g., that used to
estimate working sets, was not changed. Any piecewise-
linear curve can be used as a delay-cost function: for
example, a curve obtained from an interactive tool [20]
that permits an installation manager to specify the number
of job classes as well as requirements related to mean class
service times. Experience gained with this system suggests
that delay-cost-based scheduling is readily implementable,
runs efficiently, and permits convenient specification of
performance goals.

2 The delay-cost version of the VM scheduler mentioned above was written by
William Jerome and Gerald Spivak of the IBM Thomas .I. Watson Research Center,
Yorktown Heights, NY.

The advantages of using a performance objective such as
the delay cost include ease in specifying system goals and
the possibility of considering a variety of scheduling
algorithms in order, for example, to achieve stability under
rapidly changing loads. Also of interest is the case of
multiple processors in a system in which jobs have
processor affinities. The latter problem is the subject
of continuing work.

Appendix
This appendix provides justification for the properties of
optimal delay-cost schedulers presented in Section 2. We
restrict our attention to delay-cost functions that are
increasing functions of time for all classes. This implies
that it becomes incrementally more expensive for the
system to keep a job the longer it stays in the system.
We begin by presenting our definitions and assumptions. $09

IBM 1. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

31 0

Class-2 response times, from simulation, for 15000 5 t 5 24000: (a)-(c) as in Figure 8.

Assumptions and definitions
A busy period begins when work arrives at an idle
processor and ends when the processor again becomes
idle. Since we consider only work-conserving policies, the
busy periods for all policies are identical. We consider
only ergodic systems; thus, busy periods are assumed to
be finite with probability 1. If S* is an optimal scheduling
policy, then

~ " (4 = min ~'(4,

where FS(J) is given by Equation (5), and J is the
sequence of jobs served during the busy period.

We use the following notation throughout this appendix:
We assume that J is the set of jobs served in a given busy
period and that job j , j E J , has arrival and service times
given by tj and xi, respectively. The service times for all
classes are assumed to have finite moments of all orders.

(All
S

We let t be the current time and assume that the delay-
cost functions are increasing and unbounded, and can be
represented by finite-degree polynomials. For job i of
class k;we let Di(t) be the delay-cost-ratio value (DCR)
evaluated at time t , given byDi(t) = C,(t - ti),Ek if t 2 ti
and equal to 0 otherwise. The algorithm that schedules
the job having the maximal DCR value is called the DCR
algorithm. We say that job i dominates job j from time t*
if Di(t) > Dj(t) for all t 2 t * . Finally, we assume that
scheduling policy S is an optimal policy.

Properties of optimal delay-cost schedulers

Proposition 1
For each class, policy S* executes the jobs in FCFS order.

Proof Let jobs i and i' be of class k and such that ti < ti,.
Let be the service time for the jth scheduled class-k

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

Class-3 response times, from simulation, for 15000 5 I 5 24000: (a)-(c) as in Figure 8.

job. We assume that S* schedules jobs within each class in
an FCFS order, thus scheduling job i before i’. To show
that this is optimal, define a policy Sf that schedules jobs
exactly as does S * , except that it interchanges jobs i and
i f . Suppose that job i is thejth class-k job scheduled by
S* at time t , and that job i’ is the j’th, j’ > j, class-k job,
scheduled at time t + xj,, + z, where z 5 0. Policy Sf
thus schedules job i f at time t and job i at time t + x . + z.
The difference in the total costs for these two policles is
given by

”k

is increasing, and have the same distribution,
and ti e ti,. Thus, Fs’ (J) > F S ’ (J) , so that FCFS is
optimal.

proposition.
We now establish a lemma that is used in the next

Lemma 1
Suppose that Sf makes scheduling decisions identical to
those of S’ except as follows: S* schedules job i of class k
immediately before i f of class k ‘ , and S‘ schedules job i’

f-f,tX,, ktZtX, , , k immediately before i . We have
Fs’(J) - F”(J) = E(x. x,)[‘k(Y) dY

f,k’ 1’. k
r-titx,,

f - 1 t t

-I I r-r,,tx,, k t Z t X f . , F”(J) - FS’(J) = E(f,+jzl) [6’.[I-r::: ‘kf(Y) dY

C,(Y) @ 7 (A2)
“f,.tX,., k

where the limits represent differences in residence times.
The expectation of Equation (A2) is positive, since C, (y) 31 1

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON
I

31 2

where 8'' is an indicator random variable that is equal to 1
if S* schedules job i immediately before i f at a time t , for
t > {ti, t i , } , and

t = E.;.,
j € J y

where J,S* is the set of jobs scheduled by S* before job i .

Proof We can write F"(J) - F"(J) = F"(J - {i, i t })
- P ' (J - { i , i'}) + ~ " ({ i , i ' }) - F''({i, i'}). BY
definition, S* and S' are such that the execution times
of all jobs in J - { i , i ' } are identical. Consequently,
&'''(.I - { i , i ' }) = &'''(.I - { i , i ' }) . The proof
then follows, since Equation (A3) is the value of
~ " ({ i , i')) - F S ' ({ i , i t }) . I

Proposition 2 (Painvise optimality)
Suppose that jobs i and i f are the oldest jobs of their
respective classes, k and k ' . Furthermore, suppose that
these are the next two jobs that are scheduled by S * .
Then, for any E > 0, there exists a t* sych that if
t > t* > max{tl, t i , } and D i (t) 2 (1 + &,,(t), then
S* schedules job i first.

Proof Consider a policy S' that makes decisions identical
to S except that, under the conditions of the proposition, it
reverses the order of jobs i and i ' . If S schedules i first, it
follows from the lemma that Proposition 2 can be restated
as

In (A4) we have explicitly written the expectation in terms
of the random variables xi and xi,. For Equation (A4) to be
satisfied, it is sufficient, for any fixed values of t , t i , and ti,
satisfymg the conditions of the proposition, that the
following expression is satisfied:

We rewrite (A5) using the identities

and

This implies that
r 1

r I 1.

The interchange of summation and expectation in (A6)
follows from the fact that the polynomials C, and C,, are
of finite order; thus, each summation has a finite number
of nonzero terms. We can write (A6) in the form

where

r 1

and Gi(t) is defined analogously. Since we assume all
moments of the service time to be finite and the delay-
cost functions to be polynomials of finite degree, both
G l (t) and Gi,(t) approach 0 as t m. Thus, for any
E > 0, there exists a t* such that if t > t * , then
[l + G,,(t)]/[l + G i (t)] 5 1 + E . Using this in Equation
(A7), with the assumption that D i (t) 2 (1 + &)Di,(t) ,
implies that (A7), and thus (A5), is satisfied. This
implies, however, that (A4) is satisfied, thus that S
schedules i first.

Proposition 2 shows that for sufficiently high load, S will
never schedule a job with a lower DCR value before a job
with a higher DCR value. It does not imply, however, that
the DCR algorithm is necessarily optimal. As a counter-
example, consider the case in which job i of class k and
job i' of class k' are the oldest jobs of their respective
classes and that Di(t) < Di,(t) . Furthermore, assume that
job i' does not dominate job i from time t , and assume
that D,(t + E) >> Di,(t + E) , where E is a small number
greater than 0. If these two jobs were to be executed
sequentially, Proposition 2 implies that i' would be
scheduled next. Suppose, however, that a batch of class-k
jobs arrives within E seconds of job i . These jobs have
DCR values close to D,(t) , and after E seconds, the DCR
values for these jobs are all much greater than the DCR
value of job i f . It is easy to check that, for this case, it

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995

is optimal to schedule several class-k jobs before finally
scheduling i t . In such a schedule, at no time will like jobs
be scheduled out of DCR order, but it is not necessarily
the case that the job with the highest DCR value is the
next to be scheduled.

The next proposition establishes a relationship between
the mean class waiting times when jobs are scheduled
according to a time-dependent priority scheduler for which
the priorities are given by linear functions of the time in
the system. Specifically, a job of class k that has been in
the system t seconds has a current priority value given
by a linear functionp,(t), for t z 0. We assume that
p , (t) 2 p, (t) 2 2 p,(t) for t z 0, that arrival rates
are Poisson and class-dependent, and that service times
are class-dependent, generally-distributed random variables
with finite mean. The total utilization of the system is
denoted by p .

Proposition 3
In the limit of heavy traffic, as p + 1, the following
equation is satisfied by all job classes:

where p (p) is an increasing function of p. Proposition 3 is
proved in [14]. Note that for linear delay-cost curves with
zero offsets, i.e., C,(t) = s,t, the proposition shows that
the DCR algorithm satisfies Ck(Tk)E, = p in heavy load.

Acknowledgment
The authors thank Stephen Lavenberg and Joseph
Hellerstein for their insightful criticisms of this work and
for their careful reading of the manuscript.

References
1. M. Greenberger, “The Priority Problem and Computer

Time Sharing,” Manage. Sci. 12, No. 11, 888-906 (July
1966).

2, ZBM Virtual MachinelSystem Product High Performance
Option, Program Number 5664-173, 5664-167, 1983.

3. E. Gelenbe and I. Mitrani, Analysis and Synthesis of
Computer Systems, Academic Press, Inc., New York,
1980.

4. E. G. Cofiinan and I. Mitrani, “A Characterization of
Waiting Time Performance Realizable by Single-Server
Queues,” Oper. Res. 28, No. 3, 810-821 (1980).

5. I. Mitrani and J. H. Hine, “Complete Parameterized
Families of Job Scheduling Strategies,” Acta Inform. 8,

I

61-73 (1977).
- .

6. R. W. Wolff. “Time Sharing with Priorities.” SL4M.J. ~ ~~

Appl. Math. ’19, 566-574 (1570).
7. L. Kleinrock, Queueing Systems Volume 2: Computer

Applications, John Wiley, Inc., New York, 1975.
8. G. P. Klimov, “Time Sharing Service Systems. I,” Theor.

B o b . & Appl. XIX, No. 3, 532-551 (1974).
9. G. P. Klimov, “Time Sharing Service Systems. 11,”

Theor. Prob. & Appl. XXIII, No. 2, 314-321 (1978).
10. Z. Rosberg, “Process Scheduling in a Computer System,”

ZEEE Trans. Computers (2-34, No. 7, 633-644 (1985).
11. L. Kleinrock, “A Delay Dependent Queue Discipline,”

Nav. Res. Log. Quart. 9, 31-36 (1962).

12. L. Kleinrock and R. P. Finkelstein, “Time Dependent
Priority Queues,” Oper. Res. 15, 104-116 (1967).

13. A. Netterman and I. Adiri, “A Dynamic Priority Queue
with General Concave Priority Functions,” Oper. Res. 27,
1088-1100 (1979).

14. R. Nelson, “Heavy Traffic Response Times for a Priority
Queue with Linear Priorities,” Oper. Res. 38,560-563
(1990).

Priority Queues with General, Linearly Increasing Priority
Function,” Oper. Res. 33, 1278-1298 (1985).

16. P. Franaszek and R. Nelson, “Bounds for Scheduling
Timeshared Parallel Processors,” Research Report
RC-16314, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, September 1990.

17. J. E. Gibson, Nonlinear Automatic Control, McGraw-Hill
Book Co., Inc., New York, 1963.

18. L. Kleinrock, “A Conservation Law for a Wide Class of
Queueing Disciplines,” Nav. Res. Log. Quart. 12, 181-192
(1965).

19. L. Kleinrock, Queueing Systems Volume 1: Theory, John
Wiley, Inc., New York, 1975.

20. P. Franaszek and R. Nelson, “A Tool for Creating Delay
Cost Curves for a DCR Scheduler,” Research Report
RC-14184, IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y , November 1988.

15. U. Bagchi and R. Sullivan, “Dynamic, Non-Preemptive

April 22, 1994
Received February 15, 1993; accepted for publication

Peter A, Franaszek ZBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights,
New York 10598 (PAF at paf@watson. ibm. corn).
Dr. Franaszek is manager of Systems Theory and Analysis in
the Computer Sciences Department at the Thomas J. Watson
Research Center. He received an Sc.B. degree from Brown
University in 1962, and M.A. and Ph.D. degrees from
Princeton University in 1964 and 1965, respectively. Dr.
Franaszek’s interests include analytical and design issues in
computer system organization, algorithms, and communication
networks and coding. He has received IBM Outstanding
Innovation Awards for his work in the areas of algorithms,
interconnection networks, concurrency control theory, and
constrained coding. Dr. Franaszek was also the recipient of
two IBM Corporate Awards for his work in the latter area. In
1991, he was elected to the IBM Academy of Technology. He
was named the recipient of the 1989 Emanuel R. Piori Award
of the Institute of Electrical and Electronics Engineers for his
contribution to the theory and practice of digital recording
codes. During the academic year 1973-1974 he was on
sabbatical leave from the Thomas J. Watson Research Center
to Stanford University as a Consulting Associate Professor of
Computer Science and Electrical Engineering. Prior to joining
IBM in 1968, he was a member of the technical staff at Bell
Telephone Laboratories. Dr. Franaszek is a member of Tau
Beta Pi and Sigma Xi, and a Fellow of the IEEE. 3 3 1

IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 P. A. FRANASZEK AND R. D. NELSON

Randolph D. Nelson OTA Limited Partnership, One
Manhattanville Road, Purchase, New York 10577
(melson@oc.corn). Dr. Nelson received his Ph.D. from UCLA
in 1982 and joined the IBM Thomas J. Watson Research
Center in Yorktown Heights in the Systems Analysis
Department in the same year. His initial research interests at
the lab included applied probability and computer-performance
modeling. From 1988 to 1993, he managed the performance
modeling methodology group, an analytic research group
engaged in basic research into new theoretical results and
applications of probability, stochastic processes, and
simulation. During 1993 he spent a sabbatical at the IBM
Retirement Fund and used analytical techniques to create
option-trading strategies. After leaving IBM in 1994, he joined
OTA Limited Partnership, a hedge fund, as Vice President of
Investment Research. His current work is concerned with
mathematical techniques as they apply to financial trading
strategies.

31 4

P. A. FRANASZEK AND R. D. NELSON IBM J. RES. DEVELOP. VOL. 39 NO. 3 MAY 1995 I

