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The  problem of metastability  in  electronic 
circuits  with  negative  differential  resistance, 
originally  pioneered  by  Landauer  in 1962, is 
reconsidered  from  the  viewpoint of a 
Fokker-Planck  modeling  for  nonlinear  shot  noise 
(master  equation). A novel  Fokker-Planck 
approximation  scheme is  presented  that 
describes  correctly  the  deterministic  flow  and 
the  long-time  dynamics  of  the  master  equation. 
It  is  demonstrated  that  the  conventional  scheme 
of a  truncated  Kramers-Moyal  expansion at the 
second  order  overestimates  the  transition  rates 
in  leading  exponential  order.  In  order  to  obtain 
the  correct  relative  stability,  the  novel  scheme 
uses  a  diffusion  coefficient  which  incorporates 
information  about  global  nonlinear  fluctuations 
characterized by  the  whole  set  of all higher- 
order  Kramers-Moyal  transport  coefficients. 

1. Introduction 
The study  of  dissipative elements which are  able  to hold 
information, or, more generally, the role of relative stability 
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in systems which continuously  dissipate energy, was 
pioneered and influenced by Rolf  Landauer. The school 
around Stratonovich [ 11 (i.e., Stratonovich and coworkers 
such as V. I. Tikhonov  and P. I. Kuznetsov) and 
independently Landauer [2] were the first to describe first- or 
second-order-type  transitions in driven nonequilibrium 
systems. In his paper entitled “Fluctuations  in Bistable 
Tunnel Diode  Circuits” [2], Landauer discusses distribution 
functions  and  jump rates of metastable  states  far from 
thermal equilibrium. The results  of this  paper clearly 
demonstrate  that questions about relative stability in driven 
systems far from equilibrium cannot be answered by an 
appeal to  the deterministic flow or local stability criteria. The 
random force in this bistable system which drives the system 
away from locally stable  states depends  upon  the state 
variable itself; thus  the noise variation  along the whole 
escape path matters  in evaluating the relative stability of a 
metastable  state. 

The problem of metastability in  stationary 
nonequilibrium systems determines  the physical behavior in 
a variety of systems including  optical bistability [3], chemical 
systems [4], and biology [5]. In this  work we take a new look 
at  the  dynamics of  Landauer’s bistable tunnel diode  model 
(see also [6]). We focus on a Fokker-Planck approximation 
to  the exact master equation  dynamics, a problem which has 
been tackled previously. van Kampen [7]  has introduced  the 
system size expansion, which results in a local description 
around  the deterministic law of the  master  equation 
dynamics in terms of a “linear”  Fokker-Planck equation [7] 119 
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3 Static  current-voltage  characteristic I ( V )  of a  tunnel  diode.  For 1 driving currents Idr (dashed line) between I, and I, there exist two 
t stable stationary states at V, and 4, and one unstable state at y .  
$ 

with a  linear  drift and a  state-independent diffusion 
coefficient. Thus, this approximation  cannot describe large 
nonlinear fluctuations and global features such  as  the relative 
stability between neighboring  metastable states. A global 
Fokker-Planck approximation  can be obtained by truncating 
the Kramers-Moyal expansion  of the master equation after 
the second term [2, 41. This is, in fact, the most widely used 
approximation scheme.  However, as  Landauer  had already 
noted  in 1962 [2], the  stationary  dynamics of this 
conventional approximation  scheme does not reproduce the 
correct  state-continuous version of the exact master equation 
solution. A novel Fokker-Planck approximation  to a  master 
equation  dynamics obeying  detailed  balance which 
supersedes the  conventional scheme  has  been put forward 
recently [S-lo]. This latter method is based on  nonlinear 
transport theory for master equations [S, 91; in particular, 
the Fokker-Planck coefficients become  state-dependent 
functions, and,  more  importantly, they encompass 
information  about all higher-order  Kramers-Moyal 
moments. 

The paper is organized as follows. In Section  2 the 
current-voltage characteristic of a tunnel  diode is discussed, 
using phenomenological laws for the elementary current 
components.  Taking  into  account  the  shot noise due  to  the 
quantization of the charge, we arrive  in  Section 3 at a 
birth-death master  equation for the charge on  the  diode 
capacitance. The exact stationary distribution  and  the 
asymptotic form for large system sizes are also presented  in 
this  section.  Moreover, we introduce  the Kramers-Moyal 

expansion and cast the deterministic law into a generalized 
Onsager form. In Section 4 we present the  conventional 
Fokker-Planck approximation scheme. We compare  the 
stationary  probability obtained  from  the  master  equation 
with that of the  truncated Kramers-Moyal Fokker-Planck 
equation. In Section 5 we apply the novel Fokker-Planck 
approximation scheme and evaluate the  transition rates. The 
results of the different Fokker-Planck approximations  are 
compared with those of the master equation. 

2. Current-voltage  characteristic of a tunnel 
diode 
Usually electrical circuits  have  a current-voltage 
characteristic with positive slope, corresponding to a positive 
differential resistance. Some highly doped  semiconductor 
devices, however, have regions in  the characteristic with a 
negative differential resistance. One of  these semiconductor 
devices is the well-known tunnel diode. The negative 
differential resistance of the  tunnel  diode device is due  to a 
tunneling  current  from  the valence band of the n-doped 
region to  the  conducting  band of the p-doped region. Figure 
1 shows  a typical current-voltage  characteristic  for  a tunnel 
diode,  driven by a current source Idr. For I ,  > I > I ,  there  are 
two  stable voltages V,  and V,. The voltage V3 is unstable. 
For I + I,- and I -+ I,+ the stable  states V,  and V,, 
respectively, lose their  stability, and switching  occurs to  the 
other stable  state. The  tunnel  diode is  a  driven system which 
exhibits  a discontinuous  nonequilibrium phase  transition 
between a low-voltage state V,  and a high-voltage state V,. 
The  current  through  the  tunnel  diode is broken  up  into two 
terms 

with the  “Zener”  current I, being due  to valence electrons 
tunneling  into  the  conduction band. The “Esaki” current I ,  
is due  to  conduction electrons tunneling  into  the valence 
band plus the  thermal diffusion current of  electrons. A 
particular  model  for  these currents is [ 1 11 

I,(v) = -I,exp(-JV), 

I,(v) = I,exp[-KV(V - Po)] + S,[exp(TV) - 11, ( 2 )  

where the  parameters I,, J,  K, T, So, and Po are parameters 
to fit the measured  current-voltage  characteristic. The  Zener 
current is  charging the  diode capacitance and therefore  has 
the opposite sign from  the discharging Esaki current. TO end 
up with a  description which does  not  depend  on  the system 
size a (= area of the  diode p-n interface), we introduce  the 
intensive quantities 

_“  

C n = V- e!? 

and 
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Here n is the electron excess density  per unit charge e and j 
is the  current density. The current-voltage characteristic 
now reads 

j(n) = -joexp(-Jn) + joexp[-Kn(n - no)] 

+ so[exP(Tn) - 1 1 ,  (4) 

with new parameters j,, J ,  K, so, T, and n,. 

3. Tunnel  diode  with  noise:  Master  equation 
We take  the discrete nature of the charge into  account  and 
describe the  state of the  tunnel  diode system driven by a 
constant  current source I,, by the  number N of excess unit 
charges on the  diode capacitance C. The voltage across the 
diode is then given by V = eN/C. The capacitance  is  charged 
by the  sum of the driving current I,, and  the  Zener  current 
I=, and discharged by the Esaki current I,. We  assume  that 
all contributions consist of uncorrelated  transfers of single 
electrons. Then we obtain a  birth-and-death process 
described by the  master  equation [ 2 ] ,  

R N ,  t )  = W+(N - I)P(N - 1, t )  

+ W-(N + l )P(N + 1 ,  t )  

- [W+(N)  + W - ( N ) ] P ( N ,  t )  

N = 0, + 1 ,  +2, . . ., ( 5 )  

where W + ( N )  is the transition  rate from  the state N to 
N + 1, and W - ( N )  is the transition rate  from state N to 
N -  1, i.e., 

W+(N)  = e [I.j,(N) - lZ(N)l> 
1 

W - ( N )  = - Ie(N).  I 
e ( 6 )  

Because the  master  equation represents  a  one-dimensional 
stochastic process with natural boundaries,  detailed  balance 
is valid, Le., 

W-(N + l)Pst(N + 1 )  = W+(N)P, , (N) (7) 

The stationary distribution PSI is thus given by 

PS,(N) = 2 exp[-4(N)I 
1 

(8) 

(where Z denotes  the normalization), with the potential 

Next we want to derive  a continuous description of the 
above  discrete process. With the scaling relation 

W*(N)  = Qy*(n), (10) 

the intensive  density n [Equation (3)] and its  probability 
p,(n) are given by 

N 
R ’  

n = -  PI@) = QP,(N). 

The Kramers-Moyal expansion  of the  master  equation (5) 
thus reads 

The Kramers-Moyal moments Ap(n) are simply given by 

A”@) = Y+@) + (-l)”Y-(n),  (13) 

and  the transition  rates ~ ‘ ( n )  and -y-(n) are  connected  to  the 
current densities 

r+(n) = jdr + joexp(-h), 

-y-(n) = joexp[-Kn(n - no)] + so[exp(Tn) - 1 1 .  

To evaluate the  stationary  distribution  function  for  the 
density n, we insert Equations (10) and ( 1  1 )  into  the exact 
stationary distribution  [Equations (8) and (9)] and replace 
the  summation over the discrete variable N with an 
integration  over the density n. Including the  “start”  and 
“end”  points of the  summation No and N - 1 symmetrically, 
Le., No + No - %; N - 1 + N - %, one  obtains  the result 

and  the first-order correction I$,@) is 

Detailed  balance in  Equation (7) now implies the following 
relationship between the drift and higher-order moments [8]: 

Inserting Equation ( 15) into ( 18), one finds in  the limit 
R + m for  the deterministic flow the Onsager form, i.e., 

ri = A1(n) = -L(n)xo(n), 

with the generalized thermodynamic force 

x o ( 4  = - - lnr-(n) - lny+(n). an 
The positive transport coefficient L(n) is given by 

I ”  1 
2 ”=o ( u  + l)! 

L(n) = - c - A.+*(n)[x,(n)l’ 

To  guarantee  the stability of the deterministic flow 
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A,(n)  = y'(n) - r-(n), A,(n) = y'(n) + y-(n). (24) 

The stationary  probability  is readily found by quadratures 

I .6 
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The  current density-electron excess density characteristic of a tunnel 1 diode (4). The parameter values used arej,, = I ,  K = 0.005, J = I .  
k so = 0.01, no = 10, and T = 0.07. The two driving currents used # in the  explicit  calculations are indicated by arrows at .jdr = 0.15. d g jdr = 0.5. 

[Equation (1 9)] we note  that $Jo(n) is  a Liapunov  function, 
Le., with Equation (19) 

d dn 
dt ; 4o = xo(n) - = -xo(n)Wdxo(n) < 0. (22) 

The  function $,(n) is bounded  from below because the 
distribution  function pst(n) [Equation ( 1  5)] is normalized. In 
higher-dimensional  systems the existence of  such  a Liapunov 
function  can also be shown [8]; however, the corresponding 
derivation  for the semipositive transport matrix L(n)  is 
nontrivial [8]. The  transport  equation ( I  9) is the starting 
point for  a novel Fokker-Planck approximation originally 
put forward in References [9, IO]. First, however, let us 
consider the  conventional Fokker-Planck  modeling. Clearly, 
such  a  Fokker-Planck  modeling (or  approximation) is 
preferred because it is analytically more tractable than  the 
master equation (infinite-order  partial differential equation). 

4. Conventional  Fokker-Planck  model 
For large system size Q the discreteness of the one-step 
process is of minor  importance,  and we might approximate 
the discrete process by a state-continuous process. The 
conventional scheme to  approximate  the discrete process by 
a  Fokker-Planck equation is to  truncate  the Kramers-Moyal 
expansion [Equation (12)] after the second term, i.e., 

where 

with the Fokker-Planck potential 

Here  one notices that  the Fokker-Planck potential Go@) 
[Equation (26)] does not agree with the  asymptotic potential 
40(n) [Equation (16)] even in the leading order. However, the 
positions of the  extrema, as well as the  curvature  at  the 
extrema,  coincide  in both potentials. The difference in  the 
generalized thermodynamic force is given by 

e Comparison of the potentials 
In Figure 2 the characteristic  of the  tunnel diode [Equation 
(4)] is depicted  for the  parameter  valuesj, = 1, K = 0.005, 
J = 1, so = 0.01, no = 10, and T = 0.07. This current-voltage 
shape agrees with experimental  measured tunnel-diode 
characteristics [ 1 11. In Figures 3(a) and 3(b) the 
corresponding asymptotic potential $JO(n) [Equation (16)] of 
the master equation is compared  to  the potential Go(n) 
[Equation (26)] of the Kramers-Moyal  Fokker-Planck 
equation for the driving current jdr = 0.15 (a), and for 
jdr = 0.5 (b). The potentials both have minima  at  the 
operating point (i.e., the intersection of the current-voltage 
characteristic and  the driving current jdr = const.) of the 
diode  that corresponds to a positive differential resistance. 
The relative maximum of the potential  corresponds to  the 
unstable state  at V = V3. A simple  shift of the whole 
potential is not relevant, as  it  can always be  compensated in 
terms of a  renormalization  for the probability. Differences in 
shape, however, impact  the  bamer heights. For example, the 
bamer height for forward transitions of the Fokker-Planck 
modeling differs by = 17%  for jdr = 0.15, and differs by -2% 
forjdr = 0.5, respectively, relative to  the  master  equation 
value. In Figure 3(c) we compare  the  thermodynamic force 
of the  master  equation process with the force duk  to  the 
conventional Fokker-Planck approximation  at  the driving 
current density&, = 0.5. 

5. Novel  Fokker-Planck  approximation 
The  conventional Fokker-Planck approximation  does  not 
coincide with the  continuum limit of Equations (8) and (9) 
of the stationary  probability  of the  master  equation,  and  this 
difference does  not vanish in  the limit R + w. The correct 
stationary  probability is also  influenced by the higher-order 
Kramers-Moyal moments  [Equation (1 3)] which thus  must 
be accounted for. We observe that for any Fokker-Planck 
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modeling  having the correct asymptotic stationary 
probability [Equation (15)], the drift and diffusion 
coefficients must be related by 

A",(n) = -; A",(n)xo(n) + o(n-'). (28) 

Since the deterministic law is recovered only if we use 
[see Equation ( 19)] 

A",(n) = -L(n)xo(n) + o(n"), (29) 

it follows that 

A,(n) = 2L(n) + o(n"). 

Hence, apart  from  terms of higher order  in R-l, the diffusion 
coefficient 

A",(n) = 2L(n) (31) 

is fixed by the stationary  probability [Equation (1 5)] and  the 
Onsager transport law [Equation ( 1  9)]. On  the basis of the 
thermodynamic potential  for the  stationary probability in 
Equation (16), we obtain, in terms of the first two leading 
contributions @,(n) and &,(n) in  Equations (15) and (31), the 
novel Fokker-Planck approximation [9, lo] 

with 

If  we compare  Equations (32) with the  conventional 
Fokker-Planck approximation  in  Equations (23) and (24), 
we note  that  the new Fokker-Planck coefficients are related 
to  the  conventional coefficients by 

(33) 

and 

m 1  
r=] (r + I)! 

A,@) = A,(n) + 2 - A,+,(n)[xo(n)l'. (34) 

In particular, the state-dependent diffusion in  Equation (34) 
explicitly involves the higher-order Kramers-Moyal 
transport coefficients AJn), n > 2. The difference 
d,(n) - A,(n), being proportional  to powers of the 
thermodynamic force ,yo, is plotted  in Figure 4. Interestingly 
enough,  for any birth-and-death process this difference of 
state-dependent diffusion coefficients is always negative 
semidejnite. The difference equals  zero precisely at  the 
deterministic steady states only. Thus  the  conventional 
Fokker-Planck approximation everywhere overestimates the 
actual physical noise strength D(n); i.e., ([(n, t)[(n, s)) E 
D(n)a(t - s). Using Equations (34) and (13), this result 
follows due  to  the inequality 
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(a)  Comparison between the two thermodynamic  potentials  for  a 
driving current densityj,, = 0.15. Solid line: master equation result 
(16); broken line: Kramers-Moyal Fokker-Planck approximation 
(26). (b) Comparison between the two thermodynamic potentials for 
a  driving  current density jdr = 0.5, lying approximately halfway 
betweenj,  andj,. Solid line: master equation result (16); broken line: 
conventional  Fokker-Planck  approximation (26). (c)   The 
thermodynamic force Xo(n) = &&,/an, (20), for the master equation 
dynamics  (solid  line)  compared  with  the  thermodynamic  force 
ac$dan, (27), of the corresponding Kramers-Moyal Fokker-Planck 
approximation (brokenline).  Thedrivingcurrent density isjdr = 0.5. 
Note that at the steady states  the  two  forces  agree in value [i.e., 
Xo(nl)  = xo(n,) = xo(n,) = 01 and slope; thus the curvatures of the 
two potentials agree at the extrema points. 
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The difference between the state-dependent diffusion coefficients 
A,(n) -A,(n) ,  (34), of the two Fokker-Planck approximations. The 
driving current density is jdr = 0.5; this implies for the diffusion 
coefficient at the unstable state n = n3 = 18.1 an absolute value of 
A2(n) = A2(n)  = I .  

2-  x -  1 
In x 

s x + l   x > o ,  (35) 

with x = y+(n)/y-(n) > 0. 

between the  coherent  dynamics described by the drift 
motion  and  the diffusive motion which permits  the system 
to leave states  of local stability. In particular, a state that is 
favored in the presence  of  state-independent noise can 
become less favored in  the presence  of  state-dependent noise 
(e&, the noise amplitude might  become  considerably 
suppressed as a function of the state variable). Thus, correct 
relative stability is strongly impacted by the detailed noise 
variation  along the escape route. We now  evaluate the 
transition  rates between the low-voltage state VI (left 
potential well in Figure 2) and  the state  of high voltage V2 
(right potential well in Figure 2), or vice versa. 

The probability distribution  then results in a competition 

Transition rates 
For a discrete process with nearest-neighbor transitions only, 
the  mean first passage time T(n,,  n,) to get from  the stable 
steady state n = n, to  the unstable bamer  top n = n3 is 
explicitly given by [ IO]  

"3 1 
T(n13 n,) = T+ = Q dY y+( y)ps,( Y )  $' dZP,,(Z). (36) 

Because &n) is strongly peaked, we obtain, with a steepest 
descent approximation  to  Equation (36), 
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Because a random walker can  at n = n3 either proceed into 
the next well  (Le., n = n2) or fall back toward n = n,, the 
forward transition  rate r+ equals 

r+-"- 1 1  - 
2T+ 27~ - T + ( 4  J@;(n,)l a n , )  I 

. exP(-Q[40(n3) - @o(nl)ll. (384  

Likewise, one finds  for the high-voltage + low-voltage 
backward transition 

. exp I-Q[$(n,) - @ ~ ~ ( n ~ ) l l ,   ( 3 W  

yielding for the slowest relaxation time X,, characteristic for 
the long-time dynamics  in a bistable system, the value 

X, = -(r+ + r-1. (39) 

In terms of the Fokker-Planck approximation  in Section 4, 
one finds from  the corresponding mean first passage time 
expression [ 10, 121 

rKM = - + 1  
2* 7+@J JIC.;(n,)l+;(n3)l 

. expl-Q[$,(n,) - +o(nl)ll, (40) 

while the novel Fokker-Planck  scheme in Section 5 yields 

+ Un,) Y+(nJ 
2a 7+(n3)  

rNFP = - - JG;(n,)l d ~ , )  I 

. exp(-Q[d~~(n,) - bo(nl)ll. (41) 

Because y+(nJ = y-(n,), i = 1, 2, 3, one finds 

L(n,) = ~ , ( n ~ )  = A2(ni) = y+(nj) = y-(n,). (42) 

Thus,  the new Fokker-Planck  scheme gives rates that 
coincide precisely with Equations (38). Because the 
curvatures  of $o and $o do coincide, the prefactors of the two 
Fokker-Planck schemes  coincide; the exponential  leading 
parts, however, dlffer in leading order. The  conventional 
Fokker-Planck modeling  exponentially overestimates the 
transition rates; i.e., 

1 -  

"" r:M  r:M - - exp(QA*), (43) 
r+ r&p 

with 

being strictly positive. This intensive quantity characterizing 
the  error  in  the transition-rate  evaluation [see Equation (43)] 
is depicted  in Figure 5. 

6. Conclusions 
In this paper we take a new  look at  the role  of noise in 
negative differential resistance circuits. Due  to a certain 
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mathematical inconvenience of modeling the noise dynamics 
with shot noise,  i.e.,  with a master equation dynamics, one 
usually attempts a description in terms of a Fokker-Planck 
approximation. We  have presented a novel  Fokker-Planck 
scheme which  possesses advantageous features over the 
conventional scheme of truncating the Kramers-Moyal 
expansion at the second order. The new Fokker-Planck 
modeling yields both the correct stationary probability and 
the deterministic law, and also correctly produces the 
transition rates,  while  with the conventional scheme one 
would exponentially overestimate these rates in leading 
order [see Equation (43) and Figure 51. Physically this result 
has its origin in the systematic overestimation of the 
Kramers-Moyal  diffusive  noise strength, i.e, A,(n) > i 2 ( n ) ;  
see  below Equation (34). Thus  the escape times are 
underestimated, yielding  too-large  escape  rates. Moreover, it 
has  been demonstrated elsewhere [9] that for  processes 
possessing boundaries, the novel scheme preserves those 
boundaries. For example, if the state variable is strictly 
positive, the novel  Fokker-Planck modeling yields a state- 
dependent diffusion  coefficient that vanishes at the origin, 
and  thus does not drive the system  beyond its natural 
boundary toward negative state variables. The novel scheme 
has  been constructed to accurately describe the long-time 
dynamics of the process,  i.e., quantities such as the 
stationary probability and stationary correlations, etc. 
Nevertheless, both Fokker-Planck schemes of Sections 4 and 
5 are approximations to the same master equation in the 
first  place, and they certainly cannot reproduce all of the 
features of the master equation process. In particular, 
characteristic features that are sensitive at the order l / n  
clearly cannot be reproduced within a continuous state 
approximation. 

While  Rolf Landauer wrote  his  prescient paper on 
statistical densities and state-dependent noise in tunnel 
diodes over 25 years ago, it is interesting to note that 
research and development on small systems and on more 
sophisticated electronic devices  with  negative  differential 
resistance continues to be an area of active and widespread 
interest today [ 131. 
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