Coherent voltage
oscillations

in small normal
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and the
crossover
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regime

by Yuval Gefen

We discuss the possibility of charge oscillations
in a normal tunnel junction, driven by an external
current source (/,), in the coherent limit. In that
limit the dephasing time t, is larger than the
period t, = e/I,. This behavior is modified when
t, decreases.

1. Introduction

When discussing quantum effects in mesoscopic (typically
submicron) systems [1], one should account for several
important aspects of the problem. Quantum interference is
important on length scales shorter than /, (the phase-
breaking length); fluctuations (both quantum and
thermodynamic) may become appreciable, as the
©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other

information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 32 NO. 1 JANUARY 1988

thermodynamic limit is not yet approached; the discreteness
of charge carriers may also lead to novel effects.

The latter have been emphasized in recent discussions of
Bloch oscillations in small current-driven Josephson
junctions. These oscillations, first suggested by Widom et al.
[2], were later discussed by Likharev and Zorin [3] and by
others [4-8]. One considers a small capacitance junction
which is driven by a classical ideal current source. This
source may continuously inject charge into one of the
electrodes of the junction. Charge transfer across the
junction may take place in discrete quanta of 2e or e.
Minimizing the instantaneous energy of the system, this
gives rise to voltage oscillations at frequency 2e//,, (and
e/1.), where I__is the externally injected dc current. There is
some experimental evidence of interesting charging effects
that occur in such systems [9-11], but Bloch oscillations
have not been observed so far.

The analysis of this effect involves a few questions, some
of which are not yet satisfactorily settled. One issue is the use
of a washboard potential versus a time-dependent vector
potential to describe an externally driven system not in 103
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equilibrium. Setting ¢ as the phase difference of the
macroscopic wave function across the Josephson junction,
should we identify 8 with 8 + 2z [12]7* We do not discuss
these problems here, but rather focus on similar oscillations
that occur in normal tunnel junctions. Ben-Jacob and Gefen
[4] suggested that the existence of a superconducting state is
not a necessary requirement for the existence of charge
oscillations, and, in fact, they should be observed in a small
normal tunnel junction as well. A few works that followed
treated some aspects of this problem [5, 13-16]. However,
all these works have assumed fast thermal equilibration in
the electrodes of the junction and have neglected
interference effects that may occur during the tunneling
(see below).

Thouless and Gefen have recently considered this
problem, in the limit of large z, (“the coherent limit”), and
found that the behavior of the junction in that limit is
significantly different from the “incoherent” limit considered
previously [17]. Here the main results are summarized,
emphasizing some of the assumptions made in our analysis
and commenting on the conditions needed to observe the
charge oscillations. There are several other effects pertinent
to these systems, including nonequilibrium noise and
nonlinear response; these are not discussed in this paper.

2. Definition of the problem

We consider a normal tunnel junction driven by an ideal dc
current source. There are several setups that can be used to
model a current source; none of them is a satisfactory

*E. Shimshoni et al., unpublished; A. J. Leggett, Physics Dept., University of Illinois,
Urbana, IL 61801, unpublished notes.
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microscopic model. The setup we use is shown in Figure 1.
It consists of two small metallic electrodes embedded in an
electrostatic field generated by a large (“classical”) capacitor.
Such a configuration was previously suggested by Biittiker
[8]. This field is varied adiabatically by slowly charging up
the large capacitor C”. We assume that the charging of C” is
continuous and uniform in time. This assumption raises
sqme difficulties: The charging current supplied by the
battery V consists, of course, of discrete charge carriers. It
therefore cannot be uniformly continuous. However, we
note that F, the bare electrostatic field in C” (in the absence
of the small junction) is related to the external charge Q” by

E=Q'/C'L, (1)

where L is the distance between the two plates of C”. For
macroscopic values of the above quantities, the fluctuations
in E can be made small [18]. The polarization of the small
systems tries now to follow the electrostatic field E. This can
be accomplished by occasionally transferring electrons across
the junction. We are interested in the dynamics of this
process.

At this point let us consider the instantaneous (adiabatic)
energy of the system. As we increase V' (or ¢, the total
charge on C”) linearly in time, the energy stored in the
capacitor C” (and ) increases (there is a volume factor
involved). We subtract these energies and refer to the energy
of the capacitor C (plus excitations of the electron gas in the
electrodes) as the energy of the system.

The internal energy of a noninteracting degenerate
electron gas is given by [19]

. 2/3 mk [ 2/3
E=E0+<§> ?NT<]_V> s (2)
where m is the electron mass, N is the number of electrons
in the system (i.e., the electrodes), ¢ is the volume, and T is
the temperature. E, is the internal energy at 7= 0. When C
is not charged, the energy levels of the system form a
quasicontinuous spectrum with energy spacing AE that
satisfies log AE(E) ~ —VE [19]. As C is being charged
adiabatically, the energy of the system increases
proportionally to QZ, hence proportionally to 7 (tis the
time). This is the case where no charge transfer across the
junction is allowed. The instantaneous energy levels, plotted
versus time, form a set of parabolas, shown schematically in
Figure 2. If the capacitor C is initially charged, a shifted set
of parabolas is obtained, with the shift depending on the
initial (discrete) charge on C. These sets mutually intersect.
Introduction of a tunneling Hamiltonian removes some of
the degeneracies of the intersecting parabolas. To first order
in the tunneling Hamiltonian, a gap appears only between
those parabolas that describe many-particle states connected
by a single electron tunneling. This description assumes that
a single value of the capacitance C is associated with all the
microscopic states of the system.
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In the following discussion we are interested in the energy
modulations of the system (in time) due to charging effects.
The characteristic energy scale here is &°/8C, which is much
smaller than the thermal fluctuations vN kT It is thus
necessary to carry any measurement over a relatively long
period of time in order to obtain a good signal-to-noise ratio.
If we Fourier-transform the instantaneous energy of the
system (assuming the adiabatic limit), in order to obtain a
signal at frequency I, /e which is above the noise level, we
need a measurement time ¢, which satisfies

to > N TY(8C/EN e/ ) L., ©)

where ¢, is the equilibration time (the characteristic time
scale over which the noise-noise correlation function
vanishes). For N = 10°, kT = ¢'/8C, e/, ~107" s,

1, ~107"s, we obtain 7, = I .

3. The coherent limit

We follow a wave packet in the action (energy-time) space
(see Figure 2) as it evolves in time, while driving the system
with external current I, . As we have noted in the previous
paragraph, the system is initially described as a wave packet
of energy width VN kT. When the inelastic rate is small, this
wave packet may be considered to be coherent over some
time interval. We have written the equations of motion that
govern the quantum-mechanical evolution of the system in
the action space, assuming the continuum limit. This is
allowed when the energy level spacings AE are small and the
current is large enough so that the probability NOT to
undergo Zener tunneling between any pair of consecutive
energy levels 1| — Pz is small and satisfies

2 27I'C
hel ’

| - P, = (AE) @)
where AE are the narrow energy gaps through which Zener
tunneling may take place. We then have calculated the
Green functions of this process; details of this calculation are
given elsewhere [17]. The main result of our calculation is
summarized below. Let us first note that in our picture,
following the energy levels of one particular set of parabolas
(and consequently being driven to increasingly higher
energies) implies no charge transfer in real space. As we have
discussed above, upon the introduction of small tunneling,
Hamiltonian gaps open between previously intersecting
parabolas. Hence, following these parabolas (see the arrow in
Figure 2) implies that Zener tunneling through the gaps is
very efficient (and the probability of charge tunneling in real
space is small). Indeed, this is what we find in our analysis.
One might think that even if the probability of not
undergoing Zener tunneling through any given energy gap is
small, say 1 — P, = ¢ as we follow a given parabola through
1/e gaps, the probability of not undergoing Zener tunneling
at least once (and thus making a transition to the next set of
parabolas, i.e., transferring charge across the junction)

IBM J. RES. DEVELOP. VOL. 32 NO. | JANUARY 1988

§  Shifted sets of energy levels corresponding to different initial charge
§ on C (see text).

becomes significant. However, we find that this is NOT the
case. As long as the coherent picture is valid, it is difficult for
the system to reduce its energy by transferring charge to the
other electrode. This is qualitatively different from the
incoherent picture discussed in previous works

[5,7-8, 13-16].

4. The incoherent limit

Inelastic processes facilitate the relaxation of the system. In
the presence of such processes, we expect the behavior
discussed above to break down for large .

In the coherent regime the wave packet under
consideration follows the parabolic energy levels
“ballistically.” The rate at which the energy of the system
increases is dE/dt = p = el, /2C (this expression is obtained
by linearizing the parabolas near the midpoint of
intersection). On time scales larger than the phase-breaking
time ¢, (but smaller than ¢, = ¢,), the wave packet broadens
diffusively in the energy direction. Its energy width after time
tist, - p¢/t,)"”. This width becomes of the order of the
energy modulations ¢°/8C after time

2
1 e
r=—lg<1—> L, %)

We thus expect the charge oscillations (of frequency 1,,/e) to
have a finite lifetime ~ 7 which gives rise to a finite spectral
width,

Finally, we define the ohmic resistance R of the system by
comparing the rate of dissipation (Iex)zR with the rate at
which we pump energy into the system. The latter is
estimated by noting that at each period (z, = e/I_,) the
energy of the system is increased by ¢, - p (for time t < ¢,
the energy of the system increases roughly linearly in time.
For times 1, < < t,, the wave packet broadens diffusively
but the average energy does not increase). Therefore, the rate
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of pumping energy into the system is pz,/(e/I,,). We obtain

R = pt,/el,,, which implies
2
1 e
- (L) 6
"7 3RC <1) )

For I, =107 A, 1,=10""s,and C = 10" F, we find
R=10kQ,1,~16 - 107"°s,and 7 = 107 s.
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