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Diffusion from
an entrance
to an exit

by Michael E. Fisher

Asymptotic and exact solutions are derived from
first principles by various methods for the
moments of the number of steps or traversal
time, etc., of a particle which diffuses, most
specifically on a linear chain, to an exit site
without previously leaving via an entrance site.
The presentation is expository and uses
standard methods.

1. Introduction

Rolf Landauer, in whose honor this note is penned, has
posed the following problem: A particle diffuses on a finite
one-dimensional lattice or chain of sites, x=10, 1, ---,

L — 1, L, with unit lattice spacing, moving to the right or the
left on each step with probability % To start, the particle is
inserted through the entrance site at x, = 0 onto the initial
site x; = 1. It may eventually diffuse through the chain and,
without first returning to the entrance, emerge at the exit site
x, = L. On average how many steps does the particte then
take? The proposed answer, for L large, is

n= %Lz. (n

This problem may be tackled and solved by fairly
straightforward probabilistic or standard random-walk
techniques, as set out, for example, in Feller’s notable text
[1). The generality and power of these techniques are not,
however, as widely appreciated as they might be.
Furthermore, the explicit solution of a concrete problem is
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often informative, especially when, as here, the methods are
of broad applicability. Accordingly, this paper offers two
solutions which are developed “from scratch” and require
little or no a priori knowledge.

The first solution starts by addressing the general problem
of random walks on any lattice or graph which reach a
given exit site, e, for the first time having avoided other sites
a, b, - - -; specialization to a uniform one-dimensional lattice
and an asymptotic evaluation of a sum or integral yields (1)
and further moments of the step distribution, such as

2z

Y L'b", )]

(an’y = (n’) = (n)’ =
where b’ is the mean square size of a single step. In addition,
explicit results are obtained for a general initial site x;.

The second method tackles the finite one-dimensional
problem head on and utilizes the eigenfunctions of a chain
with a partial fraction decomposition and Fourier
summations. It yields the exact answers for a walk which
pauses or takes a “resting step” with probability w, = w
but moves one site to the right or left with a probability
w, = %(l ~— w) so that

P=1-w=w 3)

The analysis gives

b =3 (L= ), @
(An*yb* = 4—25 [L“ - 5(1 - % W>L2 - ’2—5 W+ 4], )
(An*yb°® = L [16L° + 422 + 3w)L*

945
+ 21(15w" = 15w — 4)L% — 16 + 189w — 315w’],  (6)

and so on as desired! Note that these expressions all vanish
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identically on setting L = 1. This is correct, since the particle
then exits as soon as it is inserted! Again, an arbitrary
starting point, x, = /, is readily handled.

Both methods adopt what might be called a statistical
mechanical formulation by asking for the generating function
or (grand canonical) partition function

o

Giz):= Y gz, z=¢7, %)
n=0

where g, is the weight or relative probability of the desired

walks, in this case walks executed by the particle in going

from i to e, for the first time, in n steps without visiting

a, b, - - . If, as here, the g, can be read as probabilities of

mutually exclusive events, then G(1) represents the total

probability, in this case, of exiting at e. Thus g,/G(1) is the

probability distribution of the number of steps to exiting or,

in other words, of traversal times, and so, as usual, one has

) 3

= — = —— 8

(n) zaz In G(2) B ot In G {=0, 8)

2——"21 G A3————631nG 9)
(An™) = 6(‘2 n s (An™) = 6{3 §=0,

£=0

with similar but more complex expressions for the higher
moments. Note that we may suppose | z| < 1 or {> 0 in all
intermediate manipulations.

Apart from their common aim to calculate the generating
function, the two methods presented below are independent,
and a reader preferring to examine only the direct attack on
the one-dimensional problem may skip directly to Section 4.
Landauer and Biittiker [2] have addressed the problem using
a device suggested by A. B. Pippard, but they obtain only the
first moment(s) of exiting at ¢ (and/or a). Gardiner has
pointed out that the problem may be regarded as the
limiting case of one analyzed in his book [3], but that
connection is not immediately obvious and, naturally, his
solution utilizes material developed in earlier parts of the
book. H. Thomas and N. G. van Kampen have, in private

"correspondence with Landauer, reported their own solutions.

2. First visits with avoidance

Consider an arbitrary lattice or linear graph, finite or infinite,
with sites or vertices, i, j, k, - - - on which a particle diffuses
according to arbitrary transition probabilities but with no
memory. (Of course, this is just a disguised Markov process.)
Let p (i — j) be the probability or, more generally, statistical
weight of all n-step walks from ; to j. What is the weight,

q.(i — Jj), of n-step walks from i to j which avoid, i.e., do not
visit, any sites a, b, - - - belonging to a set A? To answer this,
and for its own interest, we also ask for f,(i — ), the weight
of walks from i to e, avoiding sites in A, which reach e, the
chosen exit, for the first time on the nth step. In fact, one
may regard the avoided set A as a set of irreversible exits (or
traps) and merely enquire after those walks exiting at e.
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To solve the problem we first relate the g, and the f, to the
P, thence we will derive equations for the f, in terms of the
D,» which we regard as known. Because there is no memory,
the weight/probability of walks from i to j which go via site k
is the product of the weights/probabilities of the walks from 7
to k and the walks from k to j. Consider, then, the
unrestricted walks of total weight p, (i — j) which go from ¢
to j in n steps. If such walks avoid sites in A4, their weight is
just g,(i — j). Otherwise, with weight f, (i — a), the walk
must reach some site, say a, in 4 for the first time on, say,
step /with 1 < /< n — 1; thereafter the walk may proceed
from a to j in (n — ¢) steps which are quite unrestricted.
Expressing this analysis in symbols and summing over all the
disjoint possibilities yields the basic recursion relation

n—1

pi—>j=gq(i—>))+ El E,, i—ap, (a—j), (10)

where / and j are not in 4. Evidently, if the /(i — a) are
known, this yields the desired g, in terms of the p,.

To obtain equations for the f,, apply the same argument
but suppose that the final site j = ¢ is an exit, i.e., belongs to
A. Then q,(i — j) = f(i — ¢) and (10) reduces to

n—1
plimo=flime+ 3 I fimap, a—e (11
=1 a€A
where i is outside 4. As e ranges over 4, these relations
provide a set of equations which, in fact, suffice to determine
the f,.
To take advantage of the convolution structure of (11), we
introduce the generating functions (or discrete Laplace
transforms)

P2):= % Z"p(1 =)
Flz)= % Z'ffa—>e), (12)

n=1

which, of course, contain all the known and desired
information. If | 4| is the number of sites to be avoided,
multiplying (11) by z" and summing from n = 1 to = yields
the set of | 4] linear equations

Fl2)+ X P2F (2) = P(2), (13)

to be solved for the | 4| generating functions F,(z). One may
then return to (10), and for the generating function of the g,
one derives

0,(2) = Py(2) — X F(2P,(2). (14)

a€A

The expressions (13) and (14) solve the problem posed, at
least for finite | 4|. When there are only a few sites to be
avoided more explicit results are easy to obtain. Thus
consider first

a. |A|=1:4=1{a}.
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The left side of (13) now entails only the number of »-step
returns r,(i) := p,(i — i) which enter via

RA2):= ¥ rfa) = P,(2), (15)

and lead simply to
F(2) = P(2)/[1 + R(2)], (16)
and thence

_P(1+R)-P,P,
B 1+R,

0,2 an

For the problem posed in the Introduction we need to
avoid both the entrance site ¢ and the exit site ¢, and so
must consider

b. |4l =2:4=a, el
Solution of the set (13) is trivial and leads to

_ P, (2)[1 + R(2)] ~ P, (2P, (2)
T+ RN+ RG] - PP

F(2) (18)
and likewise for F (z); the formula for Q,(z) is left to the
reader.

The denominator in (18) represents the determinant
18, + P,(2)). For | 4| > 2, practical computations depend
on the tractability of this determinant, which intimately
reflects the structure of the avoided set 4 on the basic lattice
or graph. Only if this has some relatively simple “shape” is
one likely to obtain more implicit results. For |4] =2 and a
one-dimensional lattice or chain, however, it is not hard to
go further, as we now show.

3. Evaluation of the avoidance formula

For symmetric, translationally invariant walks on an infinite
d-dimensional lattice or corresponding torus, one has
pi—j)=p,(j— i)and r,(i) = r, (independent of i); then
(18) simplifies to

P (21 + R(2)] = P (2)P,(2)

GO = B = T T Rer - P

(19)

To proceed we need expressions for the generating functions
P(z) and R(z) := P(z).

Suppose we seek only results valid when the separation, L,
between a and e is large; then, as will be seen, an asymptotic
evaluation suffices. Two methods will be presented: the first
supposes one knows the standard expression for the
probability of diffusing from the origin, say at i, to the site j
with coordinate x in # steps, namely, the Gaussian formula

p(x) = e 2xb ™, (20)

where, as in the Introduction, b’ is the mean-square single-
step length. For fixed x the summand in the generating
function thus decays as 1 /nd/ % and so, as z — 1, which in
view of (8) and (9) is what is required, the generating
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function P,(z) := P,(z) diverges provided d=2. (The
divergence reflects the fact that a walker is certain to exit
eventually at e (g being avoided) when d < 2; conversely, for
d > 2 a walker may, with some probability, escape and never
exit: See, e.g., Feller [1].) This divergence will cancel between
numerator and denominator in (19) so that only the
corresponding x-dependent amplitudes are actualiy needed.
We may hence approximate the generating-function sum on
n by an integral. For d = 1 we are thus led to

P() = L dr e 2nb ), @1
where, as before, z = ¢~*. The integral is a standard Laplace
transform [4] whence

P(2) = e 2b’n)"”, (22)
where we have introduced

K6 = V2 £b. (23)

Finally, we may substitute in (19). Suppose, for added
generality, that the particle starts at i = /lattice spacings
from the entry site @ and so at L — /spacings from the exit e.
Then one finds simply

e — e sinh ()

G2 = 1 — e sinh L«(§) (24)
Expansion in powers of « « { "2 gives
¢ 1LP=r 2L -0
lnG,(z)—lnz—ng'+E PCT
16 L°=/¢°
-5 m I + .-, (25)

from which the results quoted in the Introduction, and
more, follow via (8) and (9), with /= | <« L. [The general
coefficient of ¢ in (25) is (=) 2*"~'B, /m(2m)!, where the
B, are Bernoulli’s numbers.]

Now one might regard the approximation of the
generating function sum by an integral as dubious, or not
know (20) or be unable to perform the integral in (21). Then
one may, alternatively, adopt a direct, knowledge-free route
which starts with the basic single-step recursion relation for
Ppoili—j) = p,. (x). Toreach x in n + 1 steps, consider all
n-step walks from i to the site at x — y and add a single step
of weight p,(y) to complete the walk. Summing over all
possibilities gives

Do) = 2 p,(x — ¥)P(Y). (26)
Y
Introducing the Fourier transforms

p) =2 e px), #k =X " px) 27)

leads to the general solution

P, = [¢(®)], (28)
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when the initial site / is at the origin x = 0. Multiplying by
z" and summing the resulting geometric progression gives
the Fourier transform of the desired generating function,
P(z), as

1+ P(2) = Y[l = z(K)]. (29)
Finally, Fourier inversion yields the exact expression

—ik-x
po= [ 2X (30)

~J a1 - zek)

in which the integral runs over the Brillouin zone
appropriate to the lattice studied.

We could, of course, derive (20) from this, but that step is
not helpful here. Rather, note that for d not too large, the
integral will be dominated by regions where the denominator
is small. If one neglects (or averages suitably for) cases in
which, for example, the walk can reach only one sublattice
when 7 is odd and the other when # is even, then ¢(k) has a
unique maximum at k = 0. Near this one has

1= zp(k)= ¢+ %1 bE + Ok*, Kb, ) (31

when z = ¢~f — 1, where, explicitly,

b =3 y’p(y). 32)
Yy

These formulae are most easily checked for the one-
dimensional, nearest-neighbor pausing walk defined in the
Introduction, for which

ok)y = w + (1 — w)cosk. (33)

Substituting the approximation (31) in (30) and extending
the region of integration gives
“dk ™

—_—T

2-7r§‘+-b2k2 ford = 1.
o 3

P(z) = (34)
This is valid asymptotically as { — 0. The integral is again
standard (5] but is also easy to do by contour integration: It
leads precisely back to (22) and (23), from which the answer

(24) followed!

4. Diffusion on a chain
If one is allergic to the manipulation of generating functions
or regards the general machinery deployed in Section 3 as
too heavy for the problem in hand, a direct attack on the
one-dimensional chain may appeal. Consider, first, the
simplest case of a random walk which moves to the right or
the left with probability % If g,(x) is the weight of walks from
i to the site j at x, the basic recursion relation is
1 1
G (X) = 5 g, (x =1+ 3 ax+1) (35)
[which may be compared with (26)]. This has solutions of
the form g,(x) & \"(8)e"”™ provided

A(B) = cosé. (36)
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Now, if the diffusing particle reaches the entrance a at
x = 0 or the exit e at x = L, it is removed from the chain
and should not be counted thereafter. This can be
accomplished by imposing the boundary conditions

3,0 = ¢ (D) =0, alln (37)

These lead to the eigensolutions

g,(x) « X'(kw/L)sin(kxx/L), (38)

with k= 1,2, ..., L = 1, and hence the general solution is
L-1

a,(x) = X ¢\'(kn/L)sin(krx/L). (39)
k=1

To determine the amplitudes ¢, we impose the general initial
condition

qo(x) = 6)(/ (/¢ 0’ L)’ (40)

where / = | for the problem, as originally posed in the
Introduction. On setting #» = 0 in (39), multiplying by
sin(jzx/L), summing on x and using (or easily proving) the
orthogonality of the eigenfunctions, one obtains

¢, = (2/L)sin(kx{/L). (1)
Now we want g,, which is the weight of walks exiting (for
the first and only time!) at x = L on their nth step. All such

walks were at x = L — 1 on their (n — 1)th step and of these
walks then exited. Hence we have

g, = -;— qa,(L-1) forn=1, (42)
and g, = 0 since /# 0, L by supposition. The desired
generating function for walks initially at x = /is thus
® L-1 k+1 . .
" n _Z (=) sinfsin/f
G2) = EO ZETT ,EO 1 - zcosd ’
6 =kx/L, 43)

where we have used (39) and (41) with sin[kx(L — 1)/L] =
(=Y*"'sin(kw/L). Furthermore, the summation has been
extended to include k = 0, which is valid since the summand
vanishes at k = 0 provided | z| < I, as is assumed
henceforth.

The expression for G, (z) just obtained represents a formal
answer to our problem. For L = 1 it yields G, (z) = 0, which
is trivially correct; for L = 2, 3, and 4, one easily finds
22 Z3
m g e

G2 = % z, (44)
which results are not hard to check by direct consideration
of walks on the corresponding short chains. For large L,
however, it is imperative to perform the sum on k.
Surprisingly, perhaps, it is possible to do this exactly!

The clue is to regard the denominator, 1 — zcos#, as
proportional to a quadratic in e” which can be factored, and
then to use a partial fraction decomposition. The first step is
most cleanly effected if one defines ¢(z) through
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= = = 45)

or, what is equivalent,

coshe(z) := 1/z = &', (46)

For | z| < 1 one can choose ¢ real and positive. Then the
identities

izsinf 1 1
1 —zcosf | —e°

o —¢ _—if
e’ 1 —e %™

=3

= 2 e—mb(eim? - e—inﬂ)’ (47)
n=0
are easily checked. Now the summand in (43) is even in ¢
and so, if a factor % is introduced, the limits on k may
be further extended to ~L (to L — 1) and then, by
periodicity, changed to k = 0 to 2L — 1. Writing —sin/§ =

%i (¢ — ¢} and substituting in (43) then yields

G@)=5 X e™Sn,—Soi= S+ S, (48)
n=0

n—f

N —

where the S7 are simple geometric sums which are easily
evaluated. Explicitly one has

PR
Sf:n = — Z elszlm r/L’
2L 5,
=0, 0mn fOT j=0,%1 %2, ... (49)

Using this in (48), taking care to avoid n < 0, and noting
0 <7< L leads finally to

G (Z) = E e-(zj"’l)Ld’(eld) _ e—/¢)
/ 0
_e(e"” — &) _ sinh/e(z)
T 1 —¢™ " sinhLe(z)

(50)

a remarkably simple closed-form answer [which may be
compared with the previous, asymptotic result (24)].

An expansion of In G (z) identical to (25) holds, but with
b* = 1 [as follows from (3) with w = 0] and ¢ replaced by
%q‘)z. Lastly, in order to expand in powers of {, as needed to
evaluate the leading moments, one may use (45) or (46),
which yield
2

1
¢2=§'+§§‘2+Z§§3+-". (51)

1
2

In our solution one has, of course, the freedom to vary the
initial point at x = /. If one puts /= L — | and invokes right-
left symmetry one sees that G, _,(z) represents the generating
function for walks exiting at the entrance a. Thus one
readily derives the corresponding exact mean “return time”
and its dispersion, namely,

2 1
(m,=3 (L - 5) (52)
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o _8 ;3 3,23 >
(An)a—45<L 2L 2L+1. (53)
The result, (n), = %L, has also been found by Landauer {2].

5. Pausing walk on a chain

It remains to treat the walk described in the Introduction,
which pauses with probability w = | — w on each step. The
recursion relation (35) evidently becomes

q,.,(x) = % wg,(x — 1) + wg,(x) + % wg,(x + 1). (54)

However, the results (39)-(41) remain valid if one replaces
(36) with

A8) = w + Wcosé. (55)
[This may be compared to (33).] The expression (42) for g,

now requires a factor w on the right. In light of (55), the
denominator in (43) becomes

1 — zw — zwcosf = (1 — zw)(1 — Zcos#h) (56)
with
3= = W1 — zw) = We /(1 — we™). (57)

Consequently, the expression (43) for G, (z) remains correct
if, in the second line, z is replaced with Z. Likewise, (50) and
(51) are still correct if z and { are replaced by Z, and
w2
-— "+
£~ 5 {

w(l + w)

= SR EEr (58)

{=

gl -

Finally, utilizing (25) and replacing { with %d:z(é) yields

InG,(z) = —% (L= ;—i_

2

2ie_p_sfy_3 RN P S
+45[L / 5<1 2w>(L 1’)]2!w2+ , (59)

from which the detailed results quoted in (4)~(6) follow.
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