
Diffusion  from by Michael E. Fisher 

an  entrance 
to an exit 

Asymptotic and exact solutions are derived from often  informative, especially when,  as  here, the  methods  are 
first  principles  by  various  methods  for the of broad  applicability. Accordingly, this  paper offers two 
moments of the  number of steps or traversal 
time,  etc., of a particle which  diffuses,  most 

solutions which are developed  “from  scratch” and require 

specifically  on  a  linear  chain,  to an exit site 
little or  no a priori knowledge. 

The first solution  starts by addressing the general problem 

The presentation is expository and uses 
standard  methods. given exit site, e, for the j r s t  time having  avoided other sites 

a,  b, . . . ; specialization to a uniform one-dimensional  lattice 

without previously  leaving via an  entrance site’ ofrandom walks on  any lattice or graph which reach a 

1. Introduction 
Rolf Landauer,  in whose honor  this  note is penned, has 
posed the following problem: A particle dlffuses  on  ajinite 
one-dimensional lattice or chain of sites, x = 0, 1, . . . , 
L - 1, L,  with unit lattice spacing, moving to  the right  or the 
left on each step with probability f. To start, the particle is 
inserted through the entrance site at x, = 0 onto the initial 
sitex, = 1. It  may eventually drffuse through the chain and, 
withoutjirst returning to  the entrance, emerge at the exit  site 
x, = L. On average how many steps does the  partide then 
take? The proposed  answer,  for L large, is 

n - ; L .  1 2  
(1) 

This problem  may be tackled and solved by fairly 
straightforward  probabilistic or  standard random-walk 
techniques,  as set out, for  example, in Feller’s notable text 
[ I ] .  The generality and power of these  techniques are  not, 
however, as widely appreciated as they  might be. 
Furthermore,  the explicit solution of a concrete  problem  is 
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and  an  asymptotic evaluation  of a sum  or integral yields (1) 
and  further  moments of the  step  distribution, such  as 

( A n 2 )  = ( n 2 )  - ( n )  = - L4/b4, 2 2  
45 (2) 

where b2 is the  mean  square size of a single step. In  addition, 
explicit results are  obtained for a general initial site x,. 

The second method tackles the finite one-dimensional 
problem  head on  and utilizes the eigenfunctions of a chain 
with a partial  fraction decomposition  and Fourier 
summations. It yields the exact answers  for a walk which 
pauses or takes a “resting  step” with probability wo w 
but moves one site to  the right or left with a probability 
w, = ;(I - w) so that 

b 2 = 1 - w W ” .   ( 3 )  

The analysis gives 

( n ) b 2  = - ( L 2  - I ) ,  1 
3 (4)  

45 

(An3)b6 = - [16L6 + 42(2 + 3w)L4 1 
945 

+ 21(15w2 - 1 5 ~  - 4)L2 - 16 + 1 8 9 ~  - 3 1 5 ~ ~ 1 ,  ( 6 )  

and so on as desired! Note  that these  expressions all vanish 
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identically on setting L = 1. This is correct,  since the particle 
then exits  as soon  as  it is inserted! Again, an  arbitrary 
starting point, x, = P, is readily handled. 

mechanical formulation by asking for the generating function 
or (grand  canonical)  partition function 

Both methods  adopt what  might be called a statistical 

m 

G(z)  := g,,zn, z 3 e-', 
n=O 

where g, is the weight or relative probability of the desired 
walks, in this case walks executed by the particle in going 
from i to e, for the first time, in n steps  without visiting 
a, b, . . . . If, as here, the g, can be read as probabilities  of 
mutually exclusive events, then G( 1) represents the total 
probability, in this case, of exiting at e. Thus g,,/G( 1 )  is the 
probability distribution of the  number of  steps to exiting or, 
in other words, of traversal times, and so, as usual, one has 

with similar but  more complex  expressions for  the higher 
moments.  Note  that we may suppose I z I < 1 or { > 0 in all 
intermediate manipulations. 

Apart  from  their common  aim  to calculate the generating 
function,  the two methods presented below are  independent, 
and a  reader  preferring to  examine  only  the direct attack  on 
the one-dimensional  problem may skip directly to Section 4. 
Landauer  and Biittiker [2] have addressed the problem using 
a  device suggested by  A. B. Pippard,  but they obtain  only  the 
first moment(s) of exiting at e (and/or a). Gardiner has 
pointed out  that  the problem  may be regarded as  the 
limiting case of one analyzed in his book [3 ] ,  but  that 
connection is not immediately  obvious and, naturally, his 
solution utilizes material  developed in earlier parts of the 
book. H. Thomas  and N. G. van Kampen have, in private 
correspondence with Landauer, reported  their  own  solutions. 

2. First  visits  with  avoidance 
Consider an  arbitrary lattice or linear  graph, finite or infinite, 
with sites or vertices, i, j ,  k, . . . on which a particle diffuses 
according to  arbitrary transition  probabilities  but with no 
memory. (Of  course, this is just a disguised Markov process.) 
Let p,(i + j )  be the probability or, more generally, statistical 
weight of all n-step walks from i to j .  What is the weight, 
q,(i + j ) ,  of n-step walksfrom i to j which avoid,  i.e., do not 
visit, any sites a, b, . ' ' belonging to a set A? To answer  this, 
and for its own interest, we also ask forf,(i + e),  the weight 
of walksfrom i to  e, avoiding sites in A, which  reach e, the 
chosen exit,  for  thefirst  time on the nth step. In fact, one 
may regard the avoided set A as a set of irreversible exits (or 
traps) and merely enquire after  those walks exiting at e. 

To solve the problem we first relate the q, and  thef,  to  the 
p,; thence we will derive equations for thef,  in  terms of the 
pn, which we regard as  known. Because there is no  memory, 
the weight/probability  of walks from i to j which go via site k 
is the product  of the weights/probabilities of  the walks from i 
to k and  the walks from k to j .  Consider, then,  the 
unrestricted walks of total weight p,(i -+ j )  which go from i 
to j in n steps. If such walks avoid sites in A ,  their weight is 
just qn(i +J). Otherwise, with weightf, (i + a), the walk 
must reach some site, say a, in A for the first time  on, say, 
step f with 1 5 P I n - 1 ;  thereafter the walk may proceed 
from a to j in ( n  - 1 )  steps which are  quite unrestricted. 
Expressing this analysis in symbols and  summing over all the 
disjoint possibilities yields the basic recursion  relation 

p,(i +A = q,(i -+A + C C f,(i --f a)p,& + j ) ,  (10) 
n- I 

/=I  O E A  

where i and j are  not  in A.  Evidently, if thef,(i --f a)  are 
known, this yields the desired q, in  terms of the p,. 

To  obtain  equations for thef,, apply the  same  argument 
but suppose that  the final s i te j  e is an exit, i.e., belongs to 
A. Then q,(i -+ j )  = f , ( i  + e)  and ( 10) reduces to 

p,(i + e) = f ,(i -, e) + C C J;(i -, a) P,& + 4 ,  (1 1) 

where i is outside A .  As e ranges over A,  these  relations 
provide  a set of equations which, in fact,  suffice to  determine 
thef,. 

To take  advantage of the  convolution  structure of (1 I), we 
introduce  the generating functions (or discrete Laplace 
transforms) 

n- I 

/=I aEA 

m 

P,,M := 2 Z"P,(l + A ,  
"=I 

which,  of  course, contain all the known and desired 
information. If I A I is the  number of sites to be avoided, 
multiplying (1 1) by Z" and  summing  from n = 1 to yields 
the set of I A I linear equations 

F,,(z) + P,,(Z)F,,(Z) = P,,(z), 
aEA 

to be solved for the I A I generating functions FJz) .  One  may 
then  return  to  (lo),  and for the generating function of the q, 
one derives 

The expressions ( 13) and ( 14) solve the problem  posed, at 
least for finite J A  1. When there  are only a few sites to be 
avoided more explicit results are easy to  obtain.  Thus 
consider first 

a. IAl = 1 : A  = (a) .  77 
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The left side of ( 1  3 )  now  entails only  the  number of n-step 
returns r,,(i) := p,(i 4 i) which enter via 

function P,(z) := P,(z )  diverges provided d 5 2.  (The 
divergence reflects the fact that a walker is certain to exit 
eventually at e (a being avoided) when d 5 2; conversely, for 
d > 2 a walker may, with some probability, escape and never 
exit: See, e.g., Feller [ I ] . )  This divergence will cancel between 
numerator  and  denominator  in (1 9) so that  only  the 
corresponding x-dependent  amplitudes  are actualiy needed. 
We may hence approximate  the generating-function sum  on 
n by an integral. For d = 1 we are  thus led to 

(17) PJz)  = dt e-f 'e-xz/2h2r/(2~b2t) '~2,  

For  the problem posed in the  Introduction we need to where, as before, z = e-f.  The integral is a standard Laplace 
avoid  both the  entrance site a and  the exit  site e,  and so transform [4]  whence 
must  consider 

b. ( A  1 = 2 : A = (a, e) .  
P,(z) = e-"("1x1/(2b2{)1'2, ( 2 2 )  

where we have introduced 

K(<)  = Jz {'/'/b. (23) 
Solution  of the set ( 1  3) is trivial and leads to 

9 , ( z ) [ l  + R&)l - P,,(Z)P,,(Z) 
F,,(z) = (1 8) Finally, we may  substitute in (19). Suppose,  for added 

11 + R,(z)l[l + R,(z)I - P,Az)P,,(z)' generality, that  the particle  starts at i = llattice spacings 

and likewise for F,,(z); the  formula for Qj(z)  is left to  the 
reader. 

The  denominator in ( 1  8) represents the  determinant 
I 8,, + P J z )  I. For 1 A 1 > 2, practical computations depend 
on  the tractability of this  determinant, which intimately 
reflects the  structure of the avoided set A on  the basic lattice 
or graph.  Only if this  has some relatively simple "shape" is 
one likely to  obtain  more implicit results. For 1 A 1 = 2 and a 
one-dimensional  lattice or  chain, however, it is not hard to 
go further,  as we now show. 

3. Evaluation of  the avoidance  formula 
For symmetric,  translationally invariant walks on  an infinite 
d-dimensional  lattice or corresponding  torus, one has 
p,(i 3;) = p,(j 4 i) and  r,(i) = rn (independent of i); then 
( 1  8) simplifies to 

To proceed we need  expressions  for the generating functions 
P,J(z) and R ( z )  := P,,(z). 

Suppose we seek only results valid when the separation, L, 
between a and  e is large; then,  as will be seen, an  asymptotic 
evaluation suffices. Two  methods will  be presented: the first 
supposes one knows the  standard expression for the 
probability  of diffusing from  the origin, say at i, to  the site j 
with coordinate x in n steps, namely, the Gaussian formula 

p,(x)  = e-2/2h2n/(27rb2n)d'2, 

where, as in the  Introduction, b2 is the mean-square single- 
step length. For fixed x the  summand in the generating 
function  thus decays as l/nd" and so, as z 3 1 ,  which in 
view of (8) and (9)  is what is required, the generating 78 
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from the  entry site a and so at  L - f spacings from the exit e. 
Then  one finds simply 

-xl-,L 

G,(z)  = 

Expansion in powers of K <'/' gives 

In G,(z) = In - - - 7 < + - - - 
L 3 b  45 b4 2! 

- e  - sinh ! K ( < )  
1 - e-2KL sinh LK({)'  

- 

f 1 L2 - f 2  2 L4 - f4 c2 

16 L6 - P 6  r3 
945 b6 3! 
"" + ..., (25) 

from which the results quoted in the  Introduction,  and 
more, follow via (8) and (9), with f = 1 << L. [The general 
coefficient off"  in  (25) is ( - ) m  23m-1B,/m(2m)!, where the 
B, are Bernoulli's numbers.] 

generating function  sum by an integral as  dubious, or not 
know (20)  or be unable  to perform the integral  in (21).  Then 
one may,  alternatively, adopt a  direct, knowledge-free route 
which starts with the basic single-step recursion  relation  for 
~ " + ~ ( i  4;) := p,,+,(x). To reach x in n + 1 steps, consider all 
n-step walks from i to  the site at x - y and  add a single step 
of weight p,(y) to  complete  the walk. Summing over all 
possibilities gives 

Now one might regard the  approximation of the 

P,+,(X) = C P A X  - Y)Pl(Y). (26) 
Y 

Introducing the Fourier transforms 

5 J k )  = P,(x), d k )  = pl(x), 

leads to  the general solution 

d,(k) = [@(k)l", 

x x 
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when the initial  site i is at  the origin x = 0. Multiplying by 
zn  and  summing  the resulting geometric progression gives 
the  Fourier transform  of the desired  generating  function, 
px(z), as 

I + PJz)  = 1/[1 - zc$(k)]. (29) 

Finally, Fourier inversion yields the exact expression 

in which the integral runs over the Brillouin zone 
appropriate  to  the lattice  studied. 

We could,  of  course,  derive  (20) from this, but  that step is 
not helpful here. Rather,  note  that for d not  too large, the 
integral will be dominated by regions where the  denominator 
is small. If one neglects (or averages suitably  for) cases in 
which, for  example, the walk can reach  only one sublattice 
when n is odd  and  the  other when n is  even, then c$(k) has a 
unique  maximum  at k = 0. Near this one has 

1 - zc$(k) = { + - b2k2 + O(k4, kZb2{, {') (31) 

when z = e" --* 1, where, explicitly, 

1 
2d 

These  formulae are most easily checked  for the one- 
dimensional, nearest-neighbor  pausing walk defined in  the 
Introduction, for which 

$(k) = w + ( 1  - w)cosk. (33) 

Substituting the  approximation (31) in (30) and extending 
the region of integration gives 

dk elkr 

__ 27r { + ib2k2 
f o r d  = 1. (34) 

This is valid asymptotically as { --.) 0. The integral is  again 
standard [5] but is also easy to  do by contour integration: It 
leads precisely back to (22) and (23), from which the answer 
(24) followed! 

4. Diffusion  on a chain 
If one is allergic to  the  manipulation of  generating functions 
or regards the general machinery  deployed  in  Section 3 as 
too heavy for the problem in  hand, a direct attack  on  the 
one-dimensional  chain  may  appeal.  Consider, first, the 
simplest case of a random walk which moves to  the right or 
the left with probability :. If q,(x) is the weight of walks from 
i to  the site j at x, the basic recursion  relation is 

1 
2 4,+1(x) = - q,(x - 1) + 2 q,(x + 1) 

1 
(35) 

[which may be compared with (26)]. This has solutions of 
the form q,(x) a An(B)e'Ox provided 

h(8) = cos8. (36) 

Now, if the diffusing  particle  reaches the  entrance a at 
x = 0 or the exit e at x = L, it  is  removed from  the  chain 
and should not be counted thereafter. This  can  be 
accomplished by imposing the  boundary  conditions 

q,(O) = qJL) = 0, all n. (37) 

These lead to  the eigensolutions 

q,(x) X"(kT/L)sin(kxx/L), (38) 

with k = 1, 2, . . ., L - I ,  and hence the general  solution is 

q,,(x) = c,An(k7r/L)sin(k7rx/L). (39) 

To determine  the  amplitudes c, we impose the general initial 
condition 

L- I 

k= I 

%(x) = b,, (f # 0, 0 ,  (40) 

where 1 = 1 for the problem, as originally posed in  the 
Introduction.  On setting n = 0 in (39), multiplying by 
sin(j,x/L), summing  on x and using (or easily proving) the 
orthogonality  of the eigenfunctions, one  obtains 
c, = (2/L)sin(kd/L). (41) 

Now we want g,,, which is the weight of walks exiting  (for 
the first and only time!) at x = L on their  nth step. All such 
walks were at x = L - 1 on their (n - 1)th step and of these 
walks then exited. Hence we have 

g,, = q,-,(L - 1)  for n 2 1, 

and go = 0 since I # 0, L by supposition. The desired 
generating function for walks initially at x = f is thus 

1 
(42) 

m z L"l ( -p1sin@sinf8 
C,(Z) := z"gn = - 2 

"=O L k=O 1 - Z C O S ~  ' 

8 = k?r/L, (43) 

where we have used (39) and (41) with sin[kr(L - 1)/L] = 

(-)k" sin(k7rlL). Furthermore,  the  summation has  been 
extended to include k = 0, which is valid since the  summand 
vanishes at k = 0 provided I z I < 1, as is assumed 
henceforth. 

The expression for C, (z) just  obtained represents a formal 
answer to  our problem. For L = I it yields G, (z) = 0, which 
is trivially correct; for L = 2, 3, and 4, one easily finds 

1 Z2 
C,(Z) = - Z, - and - z3 

2 4 - z2' 8 - 42'' (44) 

which results are  not hard to check by direct  consideration 
of walks on  the corresponding short chains. For large L, 
however, it is imperative to perform the  sum  on k. 
Surprisingly, perhaps,  it is possible to  do  this exactly! 

proportional  to a quadratic in e" which can be factored, and 
then  to use a partial  fraction  decomposition. The first step is 
most cleanly effected if one defines c$(z) through 79 

The clue is to regard the  denominator, 1 - zcosfl, as 
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or, what is equivalent, 

cosh@(z) := l/z e .  

For I zI < 1 one  can choose @ real and positive. Then  the 
identities 

S (46) 

izsinO - 1 1 
I - zcoso 1 - 1 - e e 

- - 
-4 - l a ,  

m 

= c e-"m(e'"8 -in8 - e  ), (47) 
"=-O 

are easily checked.  Now the  summand  in (43) is even  in O 
and so, if a factor  is introduced,  the limits on k may 
be further extended to -L (to L - 1) and  then, by 
periodicity, changed to k = 0 to  2L - 1. Writing -sin 10 = 
t i  (e'" - e"") and substituting in (43) then yields 

1 "  
G,(z) = 2 C e"%:+, - S g  - Si-, + Si+,), (48) 

n=O 

where the S i  are simple  geometric sums which are easily 
evaluated. Explicitly one has 

- - bm.(2,+l)L for j = 0, f l ,  k2 ,  . . .. (49) 

Using  this in (48), taking  care  to avoid n < 0, and  noting 
0 < f < L  leads finally to 

m 

G,(z) = C e (e  e-") "(2I+I)LO N - 
J=o 

e-Lm I@ - - (e  e-'@) sinhl@(z) - 
1 - e-2Lg sinhL@(z)' 

- - 

a remarkably  simple closed-form answer [which may  be 
compared with the previous, asymptotic result (24)]. 

b2 = 1 [as follows from (3) with w = 01 and {replaced by 
16 . Lastly, in order  to  expand  in powers of {, as  needed to 
evaluate the leading moments,  one may use (45) or (46), 
which yield 

An expansion of In G,(z) identical to (25) holds, but with 

1 2  

In  our solution one has, of  course, the freedom to vary the 
initial point  at x = f. If one  puts f = L - I and invokes right- 
left symmetry  one sees that G,-,(z) represents the generating 
function  for walks exiting at  the  entrance a. Thus  one 
readily derives the corresponding  exact mean "return  time" 
and its  dispersion,  namely, 

The result, (n), = :L, has also been found by Landauer [2]. 

5. Pausing  walk  on a chain 
It  remains  to  treat  the walk described in  the  Introduction, 
which pauses with probability w = 1 - W on each  step. The 
recursion relation  (35)  evidently  becomes 

q,+,(x) = iWq,(x - 1) + wqn(x) + 1 Wq,(x + I). 
2  2 (54) 

However, the results (39)-(41) remain valid if one replaces 
(36) with 

A(O) = w + WCOSO. ( 5 5 )  

[This may be compared  to (33).] The expression (42) for gn 
now  requires  a  factor W on  the right. In light of ( 5 9 ,  the 
denominator in (43) becomes 

with 

Consequently, the expression (43) for G,(z) remains correct 
if, in the second line, z is replaced with i. Likewise, (50) and 
(5 I )  are still correct if z and { are replaced by 2, and 

Finally, utilizing  (25) and replacing {with ir#~~(i) yields 

InG,(z) = -- (L2 - f ) 
1 2 s c  

3 W 

+ - L  - P 4  5 1 - - w  (L - P )  -+... ,  (59) 2 
45 [ .  - ( ; )  2 ] 2 $ 2  

from which the detailed results quoted  in (4)-(6) follow. 
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