Design Automation in IBM

SSET
T
30
308
g% e
o

7]

Az

roQ
1)
-]
<
3
o)
=
o

0D
w
®
=
o
e
-
N

Within the context of the changing design requirements of digital systems spanning the semiconductor era, this paper
describes the significant steps in the development of Design Automation technology in IBM. We cover the design tools
which support the design of the electronic portion of such systems. The paper emphasizes the systems approaches taken
and the topics of design verification, test generation, and physical design. Descriptions of the technical contributions and
interactions which have led to the unique characteristics of IBM’s Design Automation systems are included.

Introduction

Design Automation (DA) has become a term to describe
the use of computers by engineers and other specialists to
assist in the design, development, and production of
complex systems. In IBM, the object designs are digital
electronic computer systems, and the DA programs are
organized into coherent, interdependent sets, hence the
term DA systems. The technological evolution of elec-
tronic computer systems over the past thirty years has
been remarkable in its scope and rate of change. This
growth has been made possible by the use of computers
themselves to assist in the design of new generations of
computers. DA has been both a leading application of
computer technology and a significant part of it.

This paper traces the development of DA technology in
IBM from its inception, highlighting some important
technical steps and their genesis, without attempting to be
comprehensive in its coverage. The objective is to put in
context a description of the development of this new
technology and its part in the growth of computer systems
themselves. This paper highlights primarily IBM achieve-
ments but acknowledges and provides some reference to
the considerable work done outside IBM in this area.

Early IBM electronic products, such as the 604 Elec-
tronic Calculator, used design and documentation prac-
tices substantially inherited from earlier electromechani-
cal technology products. Despite the self-imposed disci-
pline which limited logic designs to the use of a small
standard set of predefined circuits, the inherent flexibility
of electronic logic led to designs which were more com-
plex (and, of course, functionally richer) than those using
earlier technologies. This led to more variants of the
initial design, both for engineering changes (ECs) and for
features, and to logistic problems with the design docu-
mentation. As designs became more complex with the
701, 702, 704, 705 series of computers, accurate product
documentation was difficult to maintain through hand-
annotation of printed, draftsman-originated diagrams
and manual recording of ECs installed. This problem led
P. Case and R. Simek to develop, in 1958, the first system
application of computers in IBM development, called
Engineering Change Control, which maintained a data
base of the engineering level of each product and auto-
mated the initiation of field installation of ECs. This effort
demonstrated the utility of the previous generation of
computers in assisting with current designs, and led to

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

631

P. W. CASE ET AL.

Table 1 Technology evolution and DA support systems.

Technology era SMS

SLT/MST

Logic circuits per unit
Chip NA
Chip carrier (module) NA
Card 4-50
Board 400-2000

Logic circuits per 9000
typical large CPU 7094 11

Host computer systems used IBM 704/705

Data base Tape sequential

1-31 100-700

1-31 100-45 000
6-480

600-5000 180 000-230 000

90 000 460 000
3033 3081

IBM 7094 IBM System/370
IBM System/360

Tape sequential Disk-indexed sequential

investigations of ways to improve the handling of the
detailed design data. In parallel, an IBM Research effort,
led by S. Dunwell and J. Logue, initiated work on
mechanized logic diagrams. The movement of the Stretch
project into development, together with the introduction
of IBM’s first comprehensive transistorized technology
(Standard Modular System, SMS), precipitated the for-
mation of a DA development group, led by P. Case, with
the objective of designing and implementing DA systems.

Design automation system evolution

Forming the conceptual foundation of the initial DA
efforts was a systems approach that envisioned a data
base which grew apace with the product under develop-
ment until the completed detail was ready for release to
manufacturing. This data accumulation process paralleled
the two major steps of the existing design process: logic
design followed by physical circuit and wiring design. It
provided a single accurate definition of the state of the
design at any point in time. Subsequent evolution of DA
svstems can be viewed as the interaction of three chang-
ing technological forces: 1) circuit and packaging technol-
ogy, 2) product design methodology, and 3) design auto-
mation technology itself.

o Circuit and packaging technology

The dramatic rate of change in the circuits and packages
used as building blocks by digital circuit designers has
been the predominant influence on the evolution of DA
systems. Table 1 shows three major stages of technology
and identifies the DA systems associated with each one.
Design complexity has also grown with the increase in the
number of package levels which the product designer
personalized. In early SMS technology, the circuit cards
consisted primarily of a predesigned set, and the specifi-
cation of the panel and cable wiring was the essential
physical design variable. Later the cards became more

P. W. CASE ET AL.

nearly unique, and in SLT/MST (Solid Logic Technology/
Monolithic Systems Technology), design of the circuit
cards became an additional physical package design vari-
able. LSI brought a third design level into the picture,
with its requirement for designing chips.

Alternative design approaches sometimes created di-
chotomies for the DA system designer. Nowhere was this
more apparent than in the support requirements for
custom versus masterslice chips. The latter’s regular
structure of circuit cells and wiring channels presents
physical design, layout, and wiring problems quite differ-
ent from those of the more free-form custom chip with its
arbitrarily sized macro islands, which are often formed
from unlike logic components. The logic design portions
of the DA system, however, have more often proved
flexible enough to support custom chip design needs.

Memory-space and execution-time constraints caused
the program structures of first-generation DA systems to
be strongly dependent on the hardware packaging
schemes they were designed to support. Package parame-
ters were often hard-coded into the application programs,
and fixed-format data bases represented the state of the
art. The pace of circuit and hardware evolution put severe
pressure on DA developers because of the time required
to write new programs and to create and verify the circuit
and package rules data base. Most importantly, new
classes of problems were often introduced which had a
critical dependency on untried DA algorithms, as with the
introduction of panels using etched circuits instead of
discrete wire connections. Schedule pressures often re-
sulted in DA programmers having to predict the effective-
ness of heuristics prior to writing their programs. Such
predictions were often regarded as pessimistic by engi-
neers who judged new package capabilities based on
manual wiring trials. Test-generation programmers were

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 5 & SEPTEMBER 1981

presented with cards of unexpected complexity for which
tests had to be generated. As DA systems evolved, the
DA technologists increased efforts to generalize and
parameterize the systems and applications, and succeed-
ed in making major areas of the system less sensitive to
changes in hardware technology. For this capability mod-
ern DA systems sometimes pay a price in program size
and complexity and execution time.

® Design methodology

DA systems had revolutionary effects on IBM’s design
methodology. Not all changes took place painlessly.
Early users experienced a decrease in flexibility, as
program constraints restricted even seemingly trivial fac-
tors such as the position of logic blocks on a page.
Computers proved unforgiving and autocratic in their
relentless insistence on detail, as in matching alphanu-
meric line names, where previously humans had been
able to readily match entries despite minor differences.
Even the traditional sequence of the design process was
altered, as verification and correction of details could no
longer be postponed to a late stage of development.
Gradually, DA systems have evolved to embody, to
codify, and to enforce the requirements attendant to the
design and, especially, the release of IBM’s products. DA
systems provide explicit definitions of documents, no-
menclature, conventions, standards, and auditing limits,
both through the programs and through the library data
sets of circuits and physical units, across a multilabora-
tory environment. Manufacturing and field organizations
use these systems as a vehicle for ensuring commonality,
compliance with agreed standards, and information accu-
racy.

Design documentation requirements provide a particu-
larly illuminating example of the influence of design
methodology on DA systems. While it may seem surpris-
ing now, prior to the existence of DA systems the design
documents were the design. In order to make the digitized
data base the design, a scheme had to be devised that
ensured an accurate relationship between the documents
and the data base, while still permitting the engineer to
design in his customary way—by creating new, or by
altering existing, logic diagrams. Thus the basic structure
of the data base was necessarily reflective of the primary
documentation format, and the content had to be capable
of being printed or displayed in document form. This was
the origin of the unique form of logic block diagram used
in IBM, called an ALD, for Automated Logic Diagram
(see [1, 2]). An alternative would have been to make
severe changes in engineering, manufacturing, and ser-
vicing practices by substituting a listing form of documen-
tation. Although listing formats have since gained favor
for some uses, the value of block diagrams has proven so

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

powerful an aid to human understanding that the systems
effort to utilize this graphic form is regarded as well
justified.

While the initial DA approach to assisting engineers in
reaching accuracy goals was to compare the detailed
design with sets of predefined rules, attention was later
given to helping with the analysis of a design’s functional-
ity. This process is called design verification, and DA
applications with this goal are still evolving. Without such
aids, engineers are forced to build physical hardware
prototypes to validate their designs. Early LSI technolo-
gy users often constructed a prototype in a pre-LSI
technology. DA systems actually anticipated the need for
logic simulation tools to aid in design verification and
alleviate the need for hardware modeling. Gradually,
driven by the difficulty of prototyping dense LSI technol-
ogies, software modeling has become a widely accepted
practice.

Overall, current DA systems support a methodology
for handling, organizing, and processing design data that
makes possible the complex designs indicated in the LSI
column of Table 1. Other than the continual evolution of
applications to meet the needs of new technologies,
perhaps the most significant systems improvement affect-
ing design methodology now taking place is the evolution
to the use of interactive alphanumeric and graphic termi-
nals as the predominant mode of access to the systems.

® Design automation technology

DA systems and applications have been at the forefront of
programming technology since the earliest DA work.
Programmers continually sought ways to compress data
so that arrays could be contained in available memory
space, devised swapping schemes prior to the availability
of virtual addressing, and invented operating systems
which contained generalized input/output routines, ac-
cess methods, and automatic program linkage mecha-
nisms prior to their availability as part of general-purpose
operating systems. In IBM, these efforts formed a part of
a larger view of design automation as a comprehensive
system. Included in the system structure were functions
to support the access, control, and maintenance of a
common data base, auxiliary libraries of parameters
(rules), and interfaces for the exchange of data between
the data base and the application programs which consti-
tuted the specific design assistance tools.

Design automation has grown into an established scien-
tific discipline, with many facets and subtopics. Breuer of
the University of Southern California [3] and Van Cleem-
put of Stanford University [4] have prepared valuable
bibliographic lists which indicate the breadth and scope of

P. W. CASE ET AL.

634

the technical work being done. Much of the emphasis and
interest in DA today is due to the gating influence of DA
on the ability to utilize LSI technology. In some instances
in LSI, and certainly in VLSI, the progress in DA
algorithms determines the extent to which designers are
able to exploit the inherent semiconductor density and
performance potential. The balance of this paper will
unfold, both for systems and applications, many of the
DA technology areas in which IBM has participated. The
emphasis is on the work of IBM’s organized, centralized
DA development groups. There have been many innova-
tive DA programs, contributed by individuals at several
IBM laboratories, which could not be included. Examples
include wiring programs by J. Cooper, and logic and
simulation programs by D. Rozenberg and A. McBride.

IBM design automation systems

Each of the technologies shown in Table 1 required the
development of a new-generation DA system. This sec-
tion discusses the highlights of each one.

® The SMS DA system

IBM’s first DA system [1] was named for and designed to
be used with SMS technology. An initial characteristic of
the technology which influenced the DA system design
was the use of a set of predefined transistorized circuit
cards configured as ‘‘unit logic’’ portions which plugged
into a wire-wrapped panel. Unit logic design presumed
that a relatively small set of multiple-usage cards could be
designed from which the product designer would select,
place, and interconnect the subset required. The DA
system was therefore configured with an AND/OR-level
logic-block-oriented data base (then called a ‘‘logic mas-
ter file’’) together with a standard rules data base describ-
ing the card/circuit library. Subsets of the design, such as
a panel of logic, could be selected from the data base,
audited against the rules, checked for implicit inconsis-
tencies, and processed by other applications. Two appli-
cations of note were the logic page drawing and panel
wiring programs.

The logic block diagram programs were programmed to
compute the routing of the interconnecting lines. The first
successful heuristics were programmed by S. Sobel and
R. Carpenter. Solutions to this topological problem
proved more difficult than expected, and required several
years of evolution before programs by C. Warburton and
R. Christopher prepared logic diagrams that began to be
as esthetically pleasing as had the previous manually
drafted drawings. Nevertheless, the improvement in ac-
curacy and the reduction in data entry workload provided
a strong incentive, and in fact made the use of automated
block diagrams feasible.

P. W. CASE ET AL.

The panel wiring programs provided the first step in
automatic design, since they extracted directly from the
logic diagram file the implied set of pins to be intercon-
nected to form each logical net, and computed a set of
actual wires to accomplish the needed physical connec-
tions. These programs also maintained a secondary data
base containing earlier engineering levels of wiring and
calculated the minimal set of add-deletes to upgrade an
existing design. The resultant improvement in accuracy
of wiring data became a hallmark of the DA process.

An important system principle, originated in SMS DA,
was the general policy of accepting manually specified
input to override algorithmically supplied data. Thus
pins, specific wires, etc. could be predefined and left
intact if desired. This compromise furnished a workable
bridge between algorithmic efficiency and practical engi-
neering requirements.

® The SLT/MST DA system

IBM’s second-generation DA system [2] included func-
tions previously implemented and retained a structure
similar to that of the first DA system. Its primary purpose
was to support a new generation of technology, charac-
terized in SLT by etched circuit boards interconnecting
pluggable unit logic cards, and later, in MST, by function-
al cards containing many levels of logic. Important sys-
tems concepts introduced by W. Murley were 1) the
detection of certain classes of errors at the time the data
base file was updated rather than during subsequent
checking runs, 2) the establishment of a conceptual basis
for consistently labeling logical blocks and their associat-
ed wiring nets, eliminating arbitrary net numbers and the
resultant human and program tasks of correlating them
with the logic, and 3) the organization of the logic file in a
nested delta arrangement which supported multiple ver-
sions of a basic design automatically.

SLT unit logic card design was supported by a design
subsystem called Small Card Design Automation, SCDA,
developed by J. Barnes and his coworkers. MST subse-
quently superseded SLT, bringing with it the requirement
to support complex functional cards unique to each
design. Fortunately, primarily due to the foresight of H.
Graff, the DA system was adaptable to this major shift in
engineering practice.

Other innovations of this generation of DA systems
included work by C. Haspel and others on partitioning
programs which assigned logic to cards, placement pro-
grams which positioned cards to aid board wiring, and
logic simulation programs to support design verification
[2]. The SLT/MST data base concepts grew with exten-
sions to support the automatic generation of diagnostic

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981

tests [5, 6]. Subsystems which supported the design of
microprograms introduced concepts of behavioral-level
description of digital logic [7] which eventually led to
multilevel design verification support.

e The EIS DA system

An effort to implement a next-generation DA system to
satisfy LSI and its associated requirements was launched
in 1968. The system was called EIS (Engineering Infor-
mation System) and in 1973 was renamed the Engineer-
ing Design System. Several new concepts were intro-
duced by the principal architects, who included C. Ha-
spel, F. Worthmann, J. Boyle, B. Dzubak, T. Spence,
and R. Taylor.

The primary data base was organized for random
access processing [8]. It allowed all types of design data
(logical, physical, control, etc.) to be stored for all levels
of packaging. This structure avoided many of the prob-
lems inherent with serial tape-oriented systems. Addi-
tionally, the data structure was parameterized so that it
could be easily adapted to varying packaging nomencla-
tures and requirements. This has allowed the heart of the
DA system to accommodate designs which include
many varieties of chips, modules, cards, planars, and
boards. Methods of segmenting the data base were even-
tually developed to accomplish hierarchical processing.
This allowed the chips to be designed independently of,
but in parallel with, the module or card. When the chip
design was complete, the necessary data were available
for completing the processing of the next level of pack-
age. Since the necessary data were a small subset of the
entire chip design data, very dense second- and third-
level packages could be processed. Another major thrust
has been to provide interactive processing with both
graphic and alphanumeric terminals. The emphasis has
been on physical design applications for both custom [9]
and regular [10] designs. Concurrently, batch mode test
pattern generation and design verification capabilities
were provided.

Programs were also implemented to audit the design
process. This allowed the DA system to ensure that the
right level of technology rules was used, that the design,
checking, and test-generation programs all ran success-
fully, that no severe design errors were detected, and,
most importantly, that if the design data were changed in
the middle of the process, the necessary programs had
been rerun to ensure total design data integrity prior to
manufacturing. This feature has promoted a design disci-
pline which has made masterslice (gate array) chip design
in particular a very reliable process.

The following sections single out three DA application
areas covering some of the most challenging technical

IBM J. RES. DEVELOP. ® VOL. 25 @ NO. 5 ¢ SEPTEMBER 1981

problems. These are design verification, test generation,
and physical design, the last emphasizing chip wiring. We
trace their technological evolution and show their status
and importance in the LSI area.

Design verification

Design verification is a term used to denote a host of tasks
which must be performed by a logic design engineer in
order to ascertain the correctness of his design. We
examine the major design verification functions of simula-
tion, Boolean verification, and timing analysis in some
detail, while mentioning other functions only briefly.
There are several reasons for the engineer to verify his
design. The initial specification of the design is basically
behavioral, is often expressed informally in prose, and
contains inherent ambiguities. Designers need a way to
ensure that their design is a correct implementation of the
specification. Also, the complexity of the design usually
forces designers to think in terms of multiple conceptual
levels. In particular, the detailed implementation of some
portions of the design may affect the general design of
other portions. Thus, implementation constraints and the
interactions between portions of the design often prevent
a pure ‘‘top-down’’ design process. The designer needs a
tool capable of verifying the correctness of a mixed
software model of the design, with each portion described
on an appropriate conceptual level. Another factor is that
design iterations are commonplace, as conflicting partial
solutions are resolved. Again, verification tools are need-
ed to check self-consistency of the total design. Lastly,
human errors and oversights are unavoidable because of
the size and complexity of the designs being considered.
Thus, tools are needed to check for such problems
whenever manual intervention occurs during the design
process.

Initially, IBM DA developers concentrated only on
computerized structural checking tools to aid in verifying
the correctness of the design. Logical and physical
checks as well as design rules checking were introduced
to detect inconsistencies in the design data, to identify
sourceless and sinkless nets, to ascertain that parameters
were within prescribed limits (e.g., checks for maximum
fan-in and maximum fan-out), to check against a library
for the family of circuits in use, etc. During the mid-
1950s, such checking algorithms were developed in vari-
ous IBM laboratories. One set of early functional checks
to be programmed dealt with computation of signal delays
through a logic network. These checks, along with delay
simulation, are needed in addition to functional verifica-
tion. Functional verification, in which programs perform
Boolean evaluations or propagate signals through the
logical model, started in the 1960s. The class of Boolean
evaluators includes heuristic and definitive tools. The

635

P. W. CASE ET AL.

636

former include the variety of logic numerical simulators,
and the latter consist of Boolean analyzers. The remain-
der of the discussion on design verification focuses on the
key aspects of functional verification.

® Functional verification

Simulation has been the workhorse of functional design
verification over a period of almost twenty years. The
SLT/MST DA System was the first one to offer logic
simulation to the design engineer in IBM. The SLT/MST
DA simulator [2], developed by H. Graff and D. Hoffman
and their associates, operated on a model consisting of a
network of interconnected logic blocks, selected from the
system logic file. It used parameters stored in a circuit
library to compute the Boolean output of each given
block as a function of its input signal values. The output
of the simulator included a sequence chart and a timing
chart, both of which served as debugging tools in the
hands of the engineer. The simulator was a nominal delay
simulator, and it utilized the concept of significant event
simulation. The significant event technique is important
since it limits the amount of examination and calculations
done by the simulator. By considering only those design
elements which could possibly change logical state as a
result of the latest change of state, running time is kept to
alow level. One problem encountered was that of settling
due to oscillations, which was solved by introducing
artificial delays to create a wait long enough for small
spikes to disappear. The simulator was a two-value
simulator, and thus did not have the accuracy of modeling
needed to perform transition analysis. While the software
model of the design to be simulated was obtained via a
direct reading of the Logic Master File, test pattern
sequences to simulate the logic had to be manually
specified by the engineer in the form of input bit patterns.
A significant innovation was introduced by F. Hackl and
E. Carlstrom, who linked the simulator to the system
used to develop microcode for the System/360 models.
This allowed the microcode to be used as stimulus for
hardware design verification, a concept which is used to
this day.

A significant development was three-valued simula-
tion. The invention of a three-valued algebra by Eichel-
berger [11], which solved a test-generation problem, also
helped logic simulators detect and handle logic circuit
hazard and race conditions. The third value, X, was
added to the stable Boolean values ‘‘0”’ and ‘1>’ to allow
analysis of networks in which some signals are not in
stable states. One such simulator is described in [12].

The next major thrust was to combine the valuable
features of the variety of logic simulators developed
locally within each laboratory into a functionally richer

P. W. CASE ET AL.

and faster logic simulator. The Variable Mesh Simulator
(VMS) was designed by R. Forbes, M. Kelly, and J. Teets
[13], first as a standalone program, and subsequently as
part of the EIS. VMS was first used in 1971 and, due to
its generality, it is still in use today. One significant
feature was its four-value modeling capability which
allowed more accurate results than those obtained by
three-value simulation. In addition to “‘0,”” *‘1,”” and X,
the U value was added, denoting an uninitialized value.
At start of simulation, all nets are assigned the value U. In
the course of simulation, these Us are replaced by other
values. If any remain, however, at the conclusion of the
simulation, it means that specific nets were not affected
by the stimulus applied, indicating either a design error or
incomplete coverage by that stimulus. VMS also included
varying degrees of delay and timing accuracies, namely,
zero delay, unit delay, nominal delay, and extreme delay.
In VMS, any combination of value range and delay type
appropriate to a phase of product development may be
chosen. VMS is named for its ability to mix these cases in
a single run, the variable-mesh concept. In the mixed
simulation mode, the design can be represented by a
number of interconnected subsets, each of which may be
described in a different form or on a different level. Thus,
it is possible to handle each part of the design in a way
appropriate to its state. In 1973, a new mode, the behav-
ioral simulation mode, was added to VMS. Behavioral
modeling enables parts of the design, which are of interest
omwy insofar as their input/output behavior is concerned,
to be modeled at a high level, thus speeding up the
simulation, since only the portion of logic being debugged
has to be treated as a detailed logic network. VMS also
included a high-level programming language designed to
assist the engineer in specifying stimuli. P. Agnew’s
formulation of engineering problems and their solution
through simulation ensured that VMS indeed solved the
real problems in a manner acceptable to design engineers.

In 1973, the need for a functional cycle simulation
capability resulted in the formulation of a register transfer
language (RTL) [14] and its translation to an executable
VMS model. This capability was subsequently replaced,
in 1978, by a new table-driven functional simulator which
featured efficient model generation with a fast incremen-
tal update capability. A variation of functional simulation
compares an RTL description of a design specification to
its logic network implementation. This is done by gener-
ating VMS models for the two descriptions and simulating
them with VMS, using the same stimulus and comparing
the results. Another significant technique, which was
developed by H. Kriese and D. Baglan, allows the
designer to simulate his detailed design at a greater speed
by translating the primitive-level logic networks into
executable behavioral models. Simulating these behavior-

1BM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 « SEPTEMBER 1981

al models by VMS is more efficient than simulating the
original networks because it allows significantly lower
storage requirements and reduced event scheduling.

® Delay and timing analysis

The analysis of timing and the computation of signal
delays through a logic network constitute an important
part of design verification. An early functional check to
be programmed involves the counting of logic circuits
along a path in order to get an approximation of the signal
delays through the logic. This check considers only the
time element and not the Boolean function element.
Subsequently, more advanced delay and timing analysis
programs were developed, incorporating varying degrees
of accuracy and a variety of computational concepts.
These tools complement delay simulation, which in itself
did not provide a flexible or powerful enough tool for
engineers seeking maximum performance in their prod-
ucts. A requirement for more accurate timing and delay
analysis led to the development in the late 1960s of a
delay path analysis program. Using parameters defining
both circuit delays and wire path delays, this program
calculates delays for all paths for a given logic network. It
was little used, since its exhaustive analysis consumed
considerable execution time and produced voluminous
output. With the advent of LSI, the delay calculation
program mentioned above was replaced by a variety of
technology-dependent programs. A general timing analy-
sis algorithm developed by R. Hitchcock and his cowork-
ers is now in use. It is based on block- rather than path-
oriented processing, and as a result it requires much less
execution time than the path-oriented algorithms.

® Boolean verification

Successful incorporation of LSI required development of
a novel design verification methodology that included a
hardware flowchart specification of the design, an auto-
mated translation of the flowchart to pseudologic design,
a functional cycle simulation of the flowchart, a detailed
description of the implemented logic, a timing analysis of
the logic, and Boolean comparison between the logic and
the pseudologic. The overall approach is important be-
cause it eliminates direct low-level hardware simulation.
Also, timing verification is separated from logic function-
al verification.

A key element is the Boolean comparison which deter-
mines, by analysis, whether or not two combinational
logic networks are functionally equivalent. In case they
are not equivalent, input states are determined that
illustrate the unlike behavior of the two networks. One of
the networks is assumed to be ‘‘good’’ or correct, while

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

the other represents a hardware design that is to be
verified by comparison with the ‘‘good’’ network. The
“‘good”’ network description is obtained by the transla-
tion of the flowchart description of a machine or part of a
machine into a logic network description consisting of
interconnected primitive blocks such as AND, OR, NAND,
etc. This is the pseudologic which is used as the standard
and against which the manually implemented design is
compared. The flowchart description of the machine is a
graphic form of the RTL hardware description language
described in [14]. Its translation into equivalent pseudo-
logic is accomplished by using synthesis techniques with-
out optimization to a particular technology. Programs to
translate an RTL-type description into logic could be
found in the Logic Automation programs, and the flow-
chart translator which is used today is based on an
algorithm developed by J. Roth [15] and H. Halliwell.

Test-generation programs are particularly suitable for
Boolean comparison, since one can view the networks
being compared as a pair, a good machine and a ‘‘faulty’’
version of the good machine. If no test exists to distin-
guish the ‘“‘faulty’’ network from the original, the net-
works are equivalent. A difference between test genera-
tion and Boolean comparison is that in test generation one
usually expects to find an input state (pattern) that
distinguishes between the original network and the
“‘faulty’’ network. In Boolean comparison, however, it is
usually expected that there will be no input state to
distinguish between the networks being compared.

One specific approach to the solution of the Boolean
analysis problem, using test-generation techniques, is the
VERIFY algorithm, developed by Roth [16] as a deriva-
tive of his well-known D-ALG test-generation algorithm.
VERIFY, which may be viewed as a special case of the
consistency subroutine of the D-algorithm, was imple-
mented by H. Halliwell, who introduced important effi-
ciency enhancements to the original algorithm.

Another Boolean analysis approach was introduced
by A. Brown and his coworkers. It included the Dif-
ferential Boolean Analyzer (DBA), which was devel-
oped by R. Bahnsen as an application of the expansion
theorem of Boolean algebra. A significant factor in the
success of DBA was the segmentation of the logic into a
set of overlapping segments. These segments were pro-
cessed independently by the Boolean analyzer, thus
decreasing its running time. The use of structure process-
ing ahead of Boolean analysis contained the data explo-
sion problem which is common to Boolean analysis
algorithms. Additional research on Boolean comparison
algorithms involved the use of simulation as an aid to the
Boolean verification process. Numeric random simula-

637

P. W. CASE ET AL.

638

tion was used to improve the efficiency of Boolean
analysis [17], while symbolic simulation was used to
generalize the process [18] to include a higher-level model
comparison.

The Boolean verification methodology is gaining in
importance because of the growing acceptance of struc-
tured design methodologies and the use of LSSD design
(discussed in the next section). G. Smith has made
significant contributions to Boolean verification by intro-
ducing innovations in both usability and efficiency areas,
thus helping make this tool useful for the engineer. More
recently, early user experience was combined with im-
proved algorithms and methodology to add a Boolean
analysis function to the Engineering Design System.

Test generation

The derivation of tests for logical functionality of digital
equipment is a process known as test generation. This
process is normally performed through an analysis of the
logical structure of the product.

What is the technical problem making test generation
difficult? Why not just verify operation as it was intend-
ed? Most concisely, the problem is one of combinatorics
due to restricted access. A logic network with n inputs is
‘“‘intended’’ to operate correctly for at least 2" different
input combinations. If the network contains storage ele-
ments it is ‘‘intended’’ to operate correctly for each of the
allowable states of the storage elements. For m indepen-
dent storage elements, the number of combinations of
““intended’’ operation becomes at least 2"*™. The number
of combinations, and hence the testing time, becomes
impractical for even modest values of n and m. The
practical problem of test generation is thus one of finding
small subsets of allowable combinations which when
applied to actual equipment can identify the presence of
faults. A second problem involves the identification of
what is wrong when the test fails.

In this section we present snapshots taken at three
points in time illustrating important problems and their
evolutionary solutions: first, the early experimental work
in 1958-1960, second, the first large-scale card test sys-
tem of about 1965, and third, the recent past and the
impact of the introduction of LSI.

® The SEA project

Early experiments

The Systems Error Analysis (SEA) Project [19], started at
IBM Endicott in 1958 by R. Forbes, was motivated by the
large effort required to write system diagnostic programs.
The system concept was to automate the test-generation
process, using the design automation file as source data

P. W. CASE ET AL.

and an analyzer program to generate tests, followed by a
fault simulator to generate symptom characteristics for
diagnosis. An important part of this work was the intro-
duction of test objectives (faults, or commonly, stuck-
faults). This concept reduced test size and served as a
basis for diagnosis. Three key technical problems recog-
nized at that time were addressed simultaneously: First,
sequential networks were more difficult than combina-
tional networks and required special solutions; second,
simulation was potentially time-consuming, and third,
there were no techniques for applying tests to actual
products or for guiding the repair process.

Combinational networks

The first formal approach to test generation was devel-
oped by Roth [15], who had been working on Boolean
minimization using algebraic topological methods. One of
the operators developed, called IT* (Pi-star), generated
the on and off arrays for a Boolean network. If one
viewed a fault as transforming the network into a second
network, one could then operate on each with II* to
generate a pair of on and a pair of off arrays. If we call
these [ON], [OFF], [ON'], and [OFF'], then ([ON]N [OFF'])
U ([oFF]) N [oN']) would be the totality of tests for the
given fault. If one did this for each fault, the problem of
generating a test set for all faults was reduced to a
covering problem. Though theoretically sound, this ap-
proach proved to be impractical. Even modest networks
(100 gates) resulted in excessive computer running time.

A second approach developed by C. Stieglitz of the
SEA Project proved more successful. Basically, it was a
tracing approach, which started at the point of a fault and
traced first forward to an output and then backward
toward the inputs. In tracing forward, a sensitized path
was created which would have one of two values depend-
ing on whether or not the fault was present. In tracing
backward, inputs were generated which would sustain the
conditions necessary for the sensitized path. This tracing
process could produce many false starts; that is, paths
could be chosen which proved to be unsensitizable or
requirements on net values could contradict each other.
Processing for these false starts could potentially become
overly time-consuming. The key solution to this problem
was an operation called IMPLY. Each time a choice in
tracing was made, IMPLY was used to project its conse-
quences. In this way, many mutually exclusive choices
were eliminated, streamlining the test-generation proc-
ess. Essentially the same algorithm minus the IMPLY
operator was formalized by Roth [16] using his D calculus
in what has since become a classic paper in the field.

Sequential networks
Test generation for sequential networks proved much
more difficult. The first difficulty was the lack of an

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢« SEPTEMBER 1981

algorithm for analyzing sequential networks. Secondly,
sequential networks contained races and hazards which
could cause unexpected operation. One approach to this
problem was pursued by S. Seshu of Syracuse Universi-
ty, acting as a consultant to the SEA Project. Seshu’s test
generator produced input sequences which changed one
input at a time to minimize potential race conditions. If
the network had » inputs, »n potential successors to each
test existed. Each of these was evaluated using a fault
simulator and the ‘‘best’’ one in terms of information gain
was chosen [20]. This approach to test generation had
sporadic success. Its biggest value was in providing a
model and a vocabulary for describing the testing
process.

Fault simulation

It was recognized fairly early that fault simulation running
time could potentially increase as the cube of the network
size. As a result, the efficiency of the program was
considered very important. The simulators used in the
SEA Project were based on a concept from L. Tung
called parallel compiled simulation. The instructions to be
executed were compiled from the network model to avoid
any conditional branching instructions. In addition, each
bit in a computer word was used to represent a different
fault so that as many faults as there were bits in a word
could be simulated at once [21].

Applications

The early programs resulted in some successful applica-
tions. These all involved the programs for combinational
networks. The algorithm for sequential networks proved
too costly and erratic. The first commercial application
was on the IBM 1418 Optical Character Recognition
machine, where they were used to generate tests for the
recognition logic, a very large combinational circuit. The
programs generated the tests on the basis of the logic
description in the design automation master file. Perhaps
a more important application in terms of future directions
was in the testing of SMS twin cards, initiated by M.
Correia. Until that point, cards were tested exhaustively
by applying all possible combinations of inputs. Test
symptoms were generated by cutting components and
running the tests. With the increasing density (greater
than 10 to 20 circuits), this was no longer feasible. The
SEA programs were demonstrated to be an effective
alternative greatly reducing costs and elapsed time. Since
the internal card logic did not then exist on any DA
system, the logic was entered manually into the system.

Another application area was in system test. K. Mal-
ing, M. Evans, and others, as reported by Preiss in [22],
adopted the applied concept and combined it with a
technique of deductive fault simulation in a system which
supported logic designs with tens of thousands of logic

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢gNO. 5 « SEPTEMBER 1981

gates. These programs were incorporated in the Fault
Locating Test (FLT) System [6] and successfully used on
the IBM 9020 and System/360 products to automate the
diagnostic process. A principal contribution of the FLT
system was the idea that the computer system should
incorporate a reasonable (= 5%) increment of special
hardware to give the sequential machine logic the appear-
ance of combinational logic during testing.

& Test generation for sequential networks

In the early 1960s, the introduction of SLT with its
anticipated high volumes and many part numbers mandat-
ed the automatic generation of card tests. Further, these
cards contained sequential networks, requiring exten-
sions to the existing systems. One of the problems in
working with sequential networks is to have a good model
on which to operate. The most popular model had been
one generated by ‘‘cutting’’ the feedback lines. Feedback
lines were chosen somewhat arbitrarily, but enough were
cut to eliminate all loops. The network was then convert-
ed to a Huffman model by inserting delay elements in the
cut lines. In this model races were detected when more
than one feedback changed state at the same time. The
races were resolved by considering all possible sequences
for the changes. The problem with this model is the way it
treats delays. In a real network, delays are distributed
throughout the circuits and their interconnections. In the
Huffman model, as well as in the other switching theory
models of the time, the delays were concentrated at a
small number of points.

A system called SALT (Sequential circuit Automated
Logic Test) was developed for the purpose of generating
tests for SLT cards. Because of the experience with the
Huffman model, a modification was chosen to capitalize
on the independent behavior of the storage elements
within the network. Storage elements were given a topo-
logical definition as a set of loops having a common
circuit. Each subset of circuits comprising a storage
element was then analyzed using a Huffman model of its
own. The results of the analysis were saved in state tables
and other specialized tables used in the test-generation
process. The new system worked reasonably well but a
serious problem remained. In spite of the network model
changes, hazard conditions still produced occasional
anomalous behavior. Since one of the purposes of an
automated system is integrity of the data, these anomalies
were very troublesome.

This problem led Eichelberger to propose a three-
valued algebra [11] (see the preceding section on design
verification). The SALT simulator had been implemented
as a three-valued simulator for an entirely different rea-
son, that being to allow partial specification of test

639

P. W. CASE ET AL.

640

pattern inputs. As a result, the technique was quickly
implemented, with two very good results. Simulation
time was greatly reduced and simulation results became
accurate. The time reduction came because in using the
Huffman model, oscillations caused repeated simulations.
Only after 2" (z = number of feedback cuts) passes
without reaching stability could it be determined there
was an oscillation. Using the three-value approach, there
were at most 2n passes, n passes each changing one of the
feedback signals to an X, and another n passes each
changing a feedback signal to a known value. In no case
would a feedback signal change more than twice. Accura-
cy was increased because the model would now produce
an X if there was any delay distribution that could
produce ambiguous results. As a result the system was
fail-safe or pessimistic. Real hardware never behaved
differently than predicted and the test coverage was
always at least as claimed. The only disadvantage was
that in the case of controlled races (because the hardware
delays were bounded) the results would be overly pessi-
mistic.

Applications

The SALT system marked the integration of card test
generation with DA in IBM. SLT cards had their own
Design Automation System and corresponding data base,
which served as the source of data for test generation. In
addition to the logic tests described, SALT also consisted
of programs to generate nonfunctional tests involving pin-
to-pin impedance. The tests were kept in an on-line
manufacturing data system. The final test system was a
highly automated computer-controlled system that man-
aged a continuous stream of mixed part numbers through
the various test stations. A printout containing repair
actions was attached to each card not passing.

o Test generation for LSI

Technology evolution has been characterized by con-
stantly increasing density. By 1969, it was having pro-
found effects on card test generation due to a proliferation
of very complex cards. The original SALT concepts, as
embodied in a Technology Independent Test Engineering
System (TITES) [23], were not achieving test objectives.
The TITES test-generation programs were modified in at
least two important ways. Because the increased number
of storage elements caused the tracing algorithms to
become less effective, the programs were modified to
become more heuristic and less predictable. Often the
tests had to be augmented by manually generated tests.
Second, the three-valued simulation approach became
too pessimistic. Many of the circuits used, such as
latches, contained managed races which the simulator
flagged as being unable to operate. Gradually, simulation
algorithms to selectively reduce hazard detection were

P. W. CASE ET AL.

introduced, compromising test data. This required further
manual intervention and increased test-generation time.

IBM’s decision to enter LSI with an open-part-number
set meant that system designers would now be designing
chips as well as cards. Because of the situation in card
test generation, it was decided to shift test-generation
responsibility to the system designer. In addition to chips,
the designer also had to generate tests for multichip
modules and cards, each adding a significant level of
complexity. An automated test-generation methodology
became necessary. Starting with a system that was just
barely working, LSI added a level of complexity and time
constraints that could not be met.

LSSD (level sensitive scan design)

A solution was proposed by E. Eichelberger. Since test-
generation programs were much more effective on combi-
national than on sequential networks, the problem was to
find a way to physically transform sequential networks
into combinational ones without excessive overhead.
This was the same problem which FLT had dealt with in
System/360, but now the difficulty was to find a hardware
solution appropriate to the testing of LSI chips, with
circuits accessible only through the chip pads. Eichel-
berger suggested that circuits be designed with an inde-
pendent way to load and unload the storage elements.
Each storage element could then look like an input or an
output to the test generator, which could then generate
tests for combinational networks interconnecting the
storage elements. Considering chip pins to be a valuable
asset, Fichelberger proposed that this be done by con-
necting the storage elements into a shift register with each
end connected to a pin [24]. A further requirement was
that there be no race conditions during testing. This could
be accomplished if the design used polarity-hold latches
for storage elements, a two-or-more phase clock, and a
structure such that no direct path from the output of a
latch fed the input of another latch gated with the same
phase. Collectively, this approach came to be known as
LSSD. The important difference between test generation
for LSSD designs and previous test-generation schemes
was that the designer was given a set of design rules or
constraints which made automatic test generation easier.

In the early 1970s IBM started to put together a Design
Automation test-generation system for LSSD. The re-
quirements of the system were that it be applicable to
chips, multichip modules, and cards. The network sizes
to be covered ranged from several hundred to many
thousands of circuits. The tests were to be generated in
the product design laboratory and sent via digital inter-
face to manufacturing locations for direct application on
the testers. This called for high confidence in the integrity
of the data.

IBM J. RES. DEVELQP. ¢ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

Because of the reliance on design rules, it was impor-
tant to provide the designer with tools to check that the
rules were being followed. To do this, Godoy [25] devised
a novel way to use the design verification simulation
system. This was accomplished by replacing the subrou-
tines that normally emulate the logic functions of circuits
with special subroutines that propagate the check signals
having special functional meaning. Large networks were
handled by programs that separated the network into
smaller subnetworks bounded by latches, primary inputs,
and primary outputs. The test generators operated on the
subnetworks to generate tests. Other programs reassem-
bled the tests to be consistent with the original large
network [26]. The LSSD system is the current preferred
test methodology within IBM. It has been applied suc-
cessfully to generate tests for chips and cards on the IBM
System 38 and on System/370 Models 3081, 4331, and
4341.

Automated physical design using regular package
structures

In the earlier parts of this paper, brief historical refer-
ences were made to the evolution of physical design
techniques as packaging technology has become more
sophisticated. Although both the density and the details
of structure of all levels of these packages have advanced
rapidly, a simplifying hierarchy of regular images has
continued to be the key feature of physical design. On
each level, objects with input and output connectors are
placed into ‘‘sockets’” on a fixed grid, and wiring is done
in X and Y directions in channels allotted for the purpose
on distinct planes with ‘“‘via holes’’ for plane-to-plane
communication. Chips obeying these constraints, in gen-
eral, share a planar space for power bussing, devices, and
wires, whereas chip carriers and higher-level packages
often divide their vertical structure of planes among pad-
to-grid redistribution wires, power, and signal wiring.

e Pre-LSI physical design

In IBM’s early transistorized designs (the 1400 and 7000
series), engineers handled directly the problems of mod-
ule (chip-carrier) and card placement as well as connector
pin assignment on all package levels. The back panels
which held SMS cards were wired using discrete connec-
tors made by numerically controlled machinery [27]. On
each of these panels, which had 40 sockets of 16 pins
each, approximately 800 wires were connected by auto-
mated wire-wrap techniques. A principal contribution of
the original wiring program was to produce digitized
instructions for the wire-wrap machinery. The extra
space afforded by the third dimension permitted the
wiring algorithm to avoid parallelism and cross-talk by
spreading out the wiring.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

The advent of SLT, with its etched card and board
wiring, focused attention on the problem of wireability
and on other physical design aids which affected wireabil-
ity, such as placement of cards in sockets on the boards
and pin assignment on cards and boards. In addition to
layout of etched wiring, programs specified discrete
wires, both for overflow and for engineering changes to
the boards. SLT, like all subsequent regular packages,
permitted only a fixed number of wiring tracks in each
wiring channel, all of course running parallel on a given
wiring plane. These boards had two wiring planes, one of
which was used for principally horizontal and the other
for principally vertical routing, with predrilled via holes
on a regular grid to permit passage from one plane to
another. SLT layout first had to face the joint problems of
estimating the required track and via capacities of pack-
ages, in relation to the statistical distribution of wiring
demand. Analytic formulation of this complex problem
was lacking, and the approach taken by U. Kodres and H.
Lippman was to use a heuristic algorithm completing
longest nets first, one by one, followed by a ‘“‘maze-
running’’ algorithm to embed as many nets as possible.
This last technique was first suggested by E. Moore and
was given detailed definition by C. Lee of Bell Labora-
tories [28]. Depending on the available board capacity
and on the wire-length distribution determined by the
placement and pin assignments, this separation into
phases permitted completing 50-90% of the wires in the
first phase, followed by completion of 80-100% of nets in
the maze-running. A feature in the design schedule and
economics was that a hopefully small remaining number
of “‘overflow’’ wires could be embedded manually into
the image, or actually attached as discrete ‘‘yellow”
wires to one surface of the package.

MST made effective use of the programs developed for
SLT by applying them to internal wiring of the pluggable
cards themselves. Automatic placement was refined by
T. Lavery and included the effects of electrical con-
straints. An optimum combination of the wiring algo-
rithms and human intervention was worked out for expe-
ditious completion of the card designs. During the period,
Hitchcock propos.. and developed his cellular approach
to wiring images, which simplified and speeded up the use
of the maze-runner by permitting the application of
hierarchical subdivision of the wiring image in a simpli-
fied representation [29]. A summary of subsequent devel-
opment and use of wiring algorithms has been given by
Hightower [30], then at Bell Labs, who originated a fast-
running variation of maze-running known as the ‘‘line-
probe’’ technique. Up to this time, the high proportion
of manufacturing cost relative to development cost
and duration led to the design of packages capable of
holding more subpackages than could be efficiently

641

P. W. CASE ET AL.

642

wired. We next discuss the influence of LSI in changing
this approach.

e Physical design in the LSI era

Prior to the use of LSI, the design of chips themselves
had not been a part of the product design process. The
use of chips and chip design presented three significant
differences from earlier work with pluggable packages: 1)
Chips are not ‘‘reworkable’’;i.e., they cannot be repaired
or changed economically once manufactured. Each engi-
neering change may be viewed as a new layout, although
design of the next package level usually makes it neces-
sary to retain existing assignments of chip I/O (input/
output) connectors. 2) Chips cannot be internally
‘‘probed’’ in production testing operations, which must
be done through the 1/0 connectors. 3) Placement and
wiring of circuits on chips, whether automatically pro-
grammed or done partly manually, is a more difficult
design task, since discrete wires may not be added. The
additional package complexity of LSI made analytic
assistance necessary to the solution of the wiring prob-
lem.

It was established IBM practice that a regular package
hierarchy made both design and manufacturing simpler.
Work in many companies with such hierarchies led to an
important simplifying observation which was found to
relate logic package connector count to the number of
““modules’’ or subpackages carried and wired together by
the package itself. In IBM this relation is known as Rent’s
rule, after E. Rent; it had been shown both theoretically
by Donath [31] and experimentally by R. Russo and B.
Landman to be a consequence of typical logic partitioning
by designers aiming at an efficient compromise between
performance (reducing delay through the logic) and cost
(minimizing module count, connector usage, and package
size for a given circuit count). This compromise histori-
cally has occurred at a subfunctional package level (.e.,
at a level in the package hierarchy where the total circuit
count is only a fraction of architecturally recognizable
functions such as CPU, storage control, etc.).

The rule gives a fractional power dependence of the
package I/0O connector count as a function of packaged
circuit count. The Rent relationis T = AC®, 12 < p <
3/4, where A is the average used subpackage connector
count, C = number of subpackages contained in the
package, and T = used I/O connector count for the
package itself. This relation is of enormous importance,
since it permits prior definition of a range of acceptable
package sizes and connector counts at all subfunctional
package levels. It was shown by Donath [32] that the rule
implies a corresponding but slower growth of average
wire length with package circuit count. This in turn

P. W. CASE ET AL.

implies that the wiring load per circuit grows heavier with
increasing levels of integration. To this information, and
the subpackage count itself, one can add the typical
number of wires per subpackage. Together, they reflect
the degree of success of partitioning, placement, and pin
assignment techniques in subdividing and locating the
logic in the package hierarchy. W. Vilkelis, W. Thomp-
son, and L. Poch had made early estimates of the wiring
capacity packages must contain. This work was followed
by the probabilistic model of Heller, Mikhail, and Donath
[33], who were able to give ‘‘wireability”’ formulas to
determine package wiring capacities. An agreed means of
analytically evaluating proposed package designs thereby
became available, and these formulas are now widely
used in IBM.

The use of sharp estimates of chip size and wiring
capacity is crucial to a successful LSI product. Our
understanding of physical design algorithms has gradually
developed. With the wireability estimation tool, we can
match the presently asymptotic approach to optimality of
the entire suite of these algorithms to the wiring capaci-
ties of the packages constituting a large logic function.
One can then evaluate the tradeoff in final manual editing
and net completion versus the asymptotically more diffi-
cult improvement of automatic wiring programs.

e Assignment and placement of circuits in a stan-
dardized image

Assignment of package pins to particular signal inputs
and outputs was recognized early as amenable to comput-
er handling. At first this was done after placement of
subpackages on the package. The general problem of
linear assignment had already been solved in another
context. A matrix is formed assigning ‘‘costs,” e.g., a
weighted combination of wire lengths and local conges-
tion associated with the assignment of a given wire to a
given pin (.e., a given matrix row). Preassignment of
some pins can be accommodated, and the least cost can
be found or approximated in polynomial time as a func-
tion of the number of pins.

Placement of subpackages on a carrier is a more
difficult problem, and in some of the work discussed
herein, pin assignment and placement are often combined
into one program. A simple model of the problem was
early studied in operations research as the ‘‘quadratic
assignment problem.”’ Since the problem is n-p complete,
one must use a heuristic, which can be aimed at more
realistic constraints. The simplest effective approach uses
some weighting of wire lengths and local congestion.
Most successful work (a summary reference is [34]) has
recognized that the problem has to be attacked hierarchi-
cally and globally. That is, one must use the ‘‘divide and

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 e SEPTEMBER 1981

conquer’” approach to break the overall problem into
successively manageable subunits, starting from an over-
all view., Khokhani and Patel [35] were the first to
incorporate specifically, in a global placement algorithm,
some measure of the global wiring implied by the place-
ment of circuits on a plane. This, weighted together with a
minimum length criterion, led to successful and relatively
rapid placement of circuits on a masterslice (gate array)
chip and is now widely used in IBM chip designs. The
growth of the computer time associated with this algo-
rithm is empirically found to be given by n'™, where § <
0.2. The algorithm has two parts: a constructive phase
based on relative connectivity, followed by an iterative
phase which exchanges blocks.

® Global and local wiring algorithms

Early wiring programs were handicapped by a lack of
understanding of the degree of difficuity of the problem
they were attempting to solve, or knowing whether a
solution was possible. Inadequate approaches to optimal-
ity of wiring capacity, of connector assignment, and of
placement all dump their burdens on the wiring program.
The more closely all these factors work together, there-
fore, the more effective can be the wiring routines. The
crucial insight into successful wiring algorithms for large
problems is the built-in capability to look at the global
picture of the unit to be wired. Work for LSI automatic
wiring of chips at IBM by Chen, Nan, Feuer, Khokhani,
and Schmidt [36], integrated with the evaluation and
algorithmic capabilities earlier mentioned [35], has made
use of hierarchical global wiring. In this way, final
channel selection is deferred as long as possible and each
connection is given equal treatment. The method consists
of subdividing the wiring space into blocks in a hierarchi-
cal fashion and assigning connections to the block bound-
aries they cross by successive perturbation of a global
trial solution, which converges to an overall lowering of
demand versus capacity in each block. Then the solution
is mapped to a finer grid and, eventually, to wire seg-
ments (e.g., Steiner tree representations) in the actual
wiring channels. Often the connections are allocated to
channels in the vertical and horizontal directions by
‘‘line-packing’’ techniques, which date back to the work
of A. Hashimoto and J. Stevens at the University of
Illinois and of B. Kernighan, D. Schweikert, and G.
Persky of Bell Laboratories (see Reference [30]).

An essential novelty in the global wiring, introduced by
Chen [36], is first to define the wiring for each net
independently on an empty global block image. Then the
nets are superposed, and perturbations of appropriate
nets are carried out by moving wires to reduce any excess
of demand over capacity at individual block boundaries.
This way, all nets are treated equally, any convenient

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981

scheme for routing individual nets can be followed, and
nets can be varied in location at the possible expense of
increasing lengths. At the end of these procedures, an
efficient maze runner can be used {30}, if desired, 10 clean
up some or all of the remaining nets.

Habra [37] and also Skinner [10] have developed valu-
able, time-saving alternative interactive editing schemes
to put in and check the final few unwired nets. Thousands
of chips, like those described in [35] and [36] and, more
recently, chips containing hundreds of circuits on similar
images, have been completed using the programs. Better
than 90% of the chips achieve 96% completion of nets.
The CPU times for placement and wiring programs lie in
the range of one to two hours, including the set-up time,
using IBM System/370 Model 168-3 class systems. A
paralle] development to this work was later carried
through by H. Koch and P. Backer for use on higher-level
packages.

Checking programs and custom chip design

The foregoing discussion of masterslice chip design has
assumed the availability and use of a library of prede-
signed ‘‘books” which are placed into the slots of regular
arrays. These ‘‘books’’ are themselves irregular multilev-
el circuits. Their design, along with the initial layout of
the masterslice itself, has also stimulated the develop-
ment of design assistance tools. Of particular interest are
the problems posed by the manipulation and analysis of
irregularly shaped entities in the various package levels.
A graphic design assistance tool which has been devel-
oped for this purpose is the Interactive Graphic System
(IGS) [9]. The USC (Universal Shapes Checker), a collec-
tion of programs performing analytic and shapes checking
[38], provides a means of detecting whether such designs
conform to physical and electrical constraints for the
circuit family. While the use of these tools has been
extended to very complex structures with hundreds of
thousands of shapes, the design of entire custom chips
which have an irregular layout has evolved separately.

The emergence of FET technology, with its higher
densities, resulted in the design of layout-assistance tools
which included IBM 1620 and 1130 computers attached to
various graphic workstations [39-45] and programs for
postprocessing, like those developed and used by W.
Donath and others. MST-era efforts led to two memory
chip design tools, Memory Graphics Program and Memo-
ry Graphics Programming System, as well as graphic
tools for laying out logic chips.

Another application of FET technology was to random
logic chip design. A columnar arrangement proposed by
A. Weinberger in 1967 [46], called a master-image, at-

643

P. W. CASE ET AL.

644

tempted to bridge the gap between the pure custom and
the regular grid approaches, and led to the development
of a design system supporting FET logic design called
Chip Design System, CDS. CDS permitted definition of a
library of logic ‘‘books’’ which could be checked electri-
cally and placed on a regular cell array. As interest grew
in FET logic, automatic programs were developed for
placement by B. Dunham and J. North and for pin
assignment and wiring by N. Nan and M. Feuer. FET
design efforts were merged by W. Rosenbluth and his
colleagues into the FADS system (FET Adaptive Design
System) which supported small system users.

Several other important efforts which strongly influ-
enced the eventual design technology and tools had been
proceeding in parallel. Early FET work by J. Logue was
directed toward avoiding the limitations in circuit density
which were a consequence of the master-image approach.
Parallel work was done in Los Gatos by A. McBride, L.
Warren and others. For products having very high vol-
umes of production (like microprocessors), arbitrarily
limiting oneself to lower levels of integration and more
costly production in order to reduce design time and
attain low-risk manufacturing proved to be noncompeti-
tive. Eventually, the master-image approach, which was
suitable for products where development costs dominat-
ed, was supplemented with custom design techniques.
Among the first products to use custom design techniques
was the UC-0, a 1973 design of a two-chip microprocessor
which achieved an integration level four times that of its
master-image equivalent in the same technology. This
effort demonstrated the leverage of custom circuit design,
achieving 2000 equivalent circuits on a convection-cooled
chip.

The most significant design-related by-product of the
UC-0 work was to demonstrate the formidable difficulties
associated with a design approach which used individual-
ly tuned logic cells at high levels of integration. Each
UC-0 cell had to be capacitively “‘padded’’ to preserve
the logic level presented to the logic blocks in its fan-out.
Moreover, this padding was a function of placement and
wiring as well as fan-out, causing an iterative design
process throughout the physical design of the chip. The
demands for shorter development time were inconsistent
with such a time-consuming design process. Subsequent
special-function logic designs have built and expanded on
custom techniques, which exploit FET unique circuitry
and reduce design logistics through functional partition-
ing of the logic into islands of ‘‘macros.”” These macros
permitted almost unlimited design innovations internal to
the macro, while providing a more rigid interface at the
macro-to-macro boundaries. Thus, the iterative process
described earlier is improved while still achieving highly

P. W. CASE ET AL.

customized circuitry. Another approach, which eliminat-
ed the iteration and retained most of the masterslice
advantages, was developed by P. Satre and his cowork-
ers. Called RMS (Rochester Master Slice), this method
further sacrificed density for improved speed of design,
although improvements have been made along these lines
by workers at the IBM Rochester and Essonnes labora-
tories.

A second important advance in IBM’s custom design
concepts came from early work by H. Fleisher and his
collaborators, who suggested partitioning schemes for
trading off decoder, AND-array, and OR-array configura-
tions in a logic chip to achieve yield or performance
advantages [47]. This work led to macros composed of
programmed logic arrays, now a widespread application
area. In the years following 1973, increasing FET densi-
ties and the success of custom macro concepts led to their
application throughout the semiconductor industry. Out-
side IBM, double-polysilicon-layer FET chips made pos-
sible more versatile designs with greater wiring complex-
ity. Within IBM, the first available 64K-bit FET memory
chip was designed using metal gate technology.

In the future, in order for increasing density to mean
increasing complexity of function, custom design will be
required. Improved techniques will be needed if design
times for VLSI logic are to be held within economical
levels. Emphasis on the logical and physical design of
macros and their interconnections can be expected.

Summary

In a period of slightly more than twenty years, design
automation has become a recognized discipline encom-
passing the realms of data processing applications, meth-
odology of design of digital systems, and the exploitation
of semiconductor technology. We have outlined the
growth of DA technology in IBM, emphasizing the sys-
tems basis of the work as well as the key DA applications
of test generation, design verification, and physical de-
sign, to illustrate the increasing interdependence of semi-
conductor product designs and DA capability.

While we have related many technical contributions to
the evolution of DA technology, the authors recognize
and regret their inability to comprehensively credit many
important individual efforts.

The authors hope that readers of this paper will gain
insight into the potential future use and value of DA
technology, and, more generally, into the problems and
opportunities associated with the emergence of wholly
new technical disciplines.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

Acknowledgments

Space does not permit comprehensive acknowledgment
of all the individuals who have contributed to the success
of IBM’s Design Automation projects. The following
individuals deserve special mention for their personal
efforts, and serve as examples of others whose contribu-
tions have not been referenced herein. Among the devel-
opment and liaison engineers who substantively influ-
enced the evolution of DA are S. G. Tucker, W. T.
Burke, and A. E. Fitch. Within the DA development
groups F. J. Worthmann, R. E. Forbes, R. Bertolino, J.
Sanborn, C. Von Krogh, D. Cooper, and 1. S. Saba made
important technical contributions.

References

1.

10.

11.

12.

13.

14.

P. W. Case, H. H. Graff, and M. Kloomok, ‘‘The Recording
Checking and Printing of Logic Diagrams,”’ Proceedings of
the Eastern Joint Computer Conference, Philadelphia, PA,
1958, pp. 108-118.

. P. W. Case, H. H. Graff, L. E. Griffith, A. R. Leclercq, W.

B. Murley, and T. M. Spence, ‘‘Solid Logic Design Automa-
tion,”” IBM J. Res. Develop. 8, 127-140 (1964).

. M. A. Breuer, ‘‘Recent Developments in Automated Design

and Analysis of Digital Systems,” Proc. IEEE 60, 12-27
(1972).

. W. M. Van Cleemput, Computer-Aided Design of Digital

Systems: A Bibliography, Computer Science Press, Wood-
land Hills, CA, Vols. 1-4, 1976-1979.

. R. E. Forbes, C. B. Stieglitz, and D. Muller, ‘*Automated

Fault Diagnosis of Switching Failures,”” unpublished report
presented at the 1961 AIEE Conference on Diagnosis of
Failures in Switching Circuits, University of Michigan, May
1961. (C. B. Stieglitz and D. Muller are Jocated at the IBM
System Products Division laboratory, Endicott, NY. R. E.
Forbes is located at the IBM System Products Division
laboratory, Charlotte, NC.)

. R. J. Preiss, ‘““The Use of Fault Location Tests in Prototype

Bring-Up,”’ Proceedings of the IFIP Congress, New York,
1965, pp. 511-517.

. B.R. S. Buckingham, W. C. Carter, W. R. Crawford, and G.

A. Nowell, ““The Controls Automation System,’’ Proceed-
ings of the Sixth Annual Symposium on Switching , Universi-
ty of Michigan, 1965, pp. 279-288.

. T. Beretvas, ‘A General Purpose Multi-Indexed Data Man-

agement System with History Capabilities,”” Technical Re-
port TR00.2078, IBM Data Systems Division laboratory,
Poughkeepsie, NY, 1970.

. P. Carmody, A. Barone, J. Morrell, A. Weiner, and J.

Hennesy, ‘‘An Interactive Graphics System for Custom
Design,”” Proceedings of the 17th Design Automation Con-
ference, Minneapolis, MN, 1980, pp. 430-489.

F. Skinner, ‘‘Interactive Wiring System—IWS 370, Pro-
ceedings of the 17th Design Automation Conference , Minne-
apolis, MN, June 1980, pp. 296-308.

E. B. Eichelberger, ‘‘Hazard Detection in Combinational
and Sequential Switching Circuits,”” IBM J. Res. Develop. 9,
90-99 (1965).

J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, “A
Three-Value Computer Design Verification System,”” IBM
Syst. J. 8, 178-188 (1969).

P. N. Agnew and M. Kelly, ‘‘The VMS Algorithm,”” Tecani-
cal Report TRO1.1338, IBM System Products Division labo-
ratory, Endicott, NY, 1970.

G. J. Parasch and R. L. Price, ‘‘Development and Applica-
tion of a Designer Oriented Cyclic Simulator,”” Proceedings
of the 13th Annual Design Automation Conference, Palo
Alto, CA, 1976.

IBM J. RES. DEVELOP. ¢ VOL. 25 e NO. 5 e« SEPTEMBER 1981

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

. J. P. Roth, Computer Logic, Testing, and Verification,
Computer Science Press, Potomac, MD.

J. P. Roth, ‘‘Diagnosis of Automata Failures: A Calculus and
a Method,”” IBM J. Res. Develop. 10, 278-291 (1966).

W. E. Donath and H. Ofek, ‘‘Automatic Identification of
Equivalence Points for Boolean Logic Verification,”” IBM
Tech. Disclosure Bull. 18, No. 8, 2700-2703 (1976).

H. Ofek et al., *“Structured Design Verification "of Sequen-
tial Machines,”” Research Report RC 7037, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1978.

R. E. Forbes and C. B. Stieglitz, ‘‘Status Report on Systems
Error Analysis for Diagnostics,”” Technical Report
TR01.11.083.578, IBM System Products Division labora-
tory, Endicott, NY, 1959.

S. Seshu and D. N. Freeman, ‘‘The Diagnosis of Asynchro-
nous Sequential Switching Systems,”” IRE Trans. Electron.
Computers EC-11, 459-465 (1962).

R. N. Ascher, D. N. Freeman, J. S. Jephson, and L. H.
Tung, ‘‘Some Problems in Automation of Diagnostic Proce-
dures,”” presented at the Conference on Diagnosis of Fail-
ures in Switching Circuits, Michigan State University, May
15-16, 1961,

M. A. Breuer, Design Automation of Digital Systems, Vol.
1, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972, Ch. 7, pp.
352-358.

P. S. Bottorff and R. A. Rasmussen, ‘‘A View of a User-
Oriented Production Test Generation System,”’ Proceedings
of the 7th Annual Design Automation Workshop, San Fran-
cisco, CA, June 1970, pp. 90-94.

E. B. Eichelberger and T. W. Williams, ‘‘A Logic Design
Structure for LSI Testability,”” Proceedings of the 14th
Design Automation Conference, New Orleans, LA, 1977,
pp. 462-468.

H. C. Godoy, G. B. Franklin, and P. S. Bottorff, ‘‘ Automat-
ic Checking of Logic Design Structures for Compliance with
Testability Ground Rules,”” Proceedings of the 14th Design
Automation Conference, New Orleans, LA, 1977, pp. 469-
478.

P. S. Bottorff, R. E. France, N. H. Gorges, and E. J. Orosz,
““Test Generation for Large Logic Networks,”” Proceedings
of the 14th Design Automation Conference, New Orleans,
LA, 1977, pp. 479-485.

G. W. Altman, I.. A. DeCampo, and C. R. Warburton,
*‘Automation of Computer Panel Wiring,”’ Trans. AIEE 79,
Part 1, 118-125 (1960).

C. Y. Lee, ““An Algorithm for Path Connection and its
Applications,”” IRE Trans. Electron. Computers EC-10, 346-
365 (1961).

R. B. Hitchcock, ‘‘Cellular Wiring and the Cellular Model-
ling Technique,”” Proceedings of the 6th Annual Design
Automation Workshop, Miami Beach, FL, 1969, pp. 25-42.
D. W. Hightower, ‘‘The Interconnection Problem, A Tutori-
al,”’ Proceedings of the 10th Annual Design Automation
Workshop, Portland, OR, 1973, pp. 1-21.

W. E. Donath, ‘‘Equivalence of Memory to ‘Random Log-
ic,” " IBM J. Res. Develop. 18, 401-407 (1974).

W. E. Donath, ‘‘Placement and Average Interconnection
Lengths of Computer Logic,”” IEEE Trans. Circuits Syst.
CAS-26, 272-277 (1979).

W. R. Heller, W. F. Mikhail, and W. E. Donath, ‘‘Prediction
of Wiring Space Requirements for LS1,’’” Proceedings of the
I4th Annual Design Automation Conference, New Orleans,
LA, 1977, pp. 32-42.

M. Hanan and J. Kurtzberg, ‘‘Placement Techniques,”” in
Design Automation of Digital Systems: Theory and Tech-
niques, Vol. 1, M. Breuer, Ed., Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1972, Ch. §, pp. 213-282.

K. Khokhani and A. M. Patel, ‘‘The Chip Layout Problem:
A Placement Procedure for LSI,”” Proceedings of the 14th
Annual Design Automation Conference, New Orleans, LA,
1977, pp. 291-297.

645

P. W. CASE ET AL.

P. W. CASE ET AL.

. K. A. Chen, M. Feuer, K. Khokhani, N. Nan, and S.
Schmidt, **The Chip Layout Problem: An Automatic Wiring
Procedure,” Proceedings of the 14th Annual Design Auto-
mation Conference, New Orleans, LA, 1977, pp. 298-302.

. R. R. Habra, ‘‘Interactive Graphics for Wiring,”’ Proceed-
ings of the International Conference on Interactive Tech-
niques in Computer Aided Design (ACM), Bologna, Italy,
1978, pp. 317-320.

. C. McCaw, ‘“‘Unified Shapes Checker—A Checking Tool for
LS1,” Proceedings of the 16th Annual Design Automation
Conference, San Diego, CA, 1979, pp. 81-87.

. J. S. Koford, G. A. Sporzynski, and P. R. Strickland,
‘“‘Using a Graphic Data Processing System to Design
Artwork for Manufacturing Hybrid Integrated Circuits,”
Proceedings of the Fall Joint Computer Conference, San
Francisco, CA, 1966, pp. 229-246.

. A. M. Barone, M. E. Harris, W. T. James, and D. M.

Sheppard, ““A Computer-Aided Method for Checking and
Making Integrated Circuit Masks,’’ Technical Papers, West-
ern Electronic Show and Convention, Los Angeles, CA,
1966, Session 1/4.

. F. E. Grace, ‘‘Planning for Automated Artwork,”” Proceed-
ings of the 2nd National Conference of the Association for
Precision Graphics, Los Angeles, 1968, Section VI.

. A. D. Levit, ““ADL, An Automated Drafting Language,”’

Proceedings of the 2nd National Conference of the Associa-
tion for Precision Graphics, Los Angeles, 1968, Section V.

. W. E. Donath and J. Lesser, “‘LAGER, A Language for the
Digital Transcription of Design Patterns,”’ Research Report
RC 1730, 1BM Thomas J. Watson Research Center, York-
town Heights, NY, 1966.

. General Information Manual, ‘“Memory Graphics Process-
ing System,”’ Technical and Business Publications, Dept.
183, East Fishkill, NY, D60C-100-5-70, DCS2-6500.

45. Program Reference Manual, “GSP/Custom Chip Design
System User’s Guide,”” RM2-8032, Dept. 123, IBM East
Fishkill, NY, Sept. 1969.

46. A. Weinberger, ‘‘Large Scale Integration of MOS Complex

Logic, A Layout Method,” IEEE J. Solid-State Circuits SC-
2, 182-190 (1967).

47. H. Fleisher, A. Weinberger, and V. Winkler, ““The Write-
able Personalized Chip,”” Computer Design 5, 55 (1970).

Received August 20, 1980; revised February 20, 1981

P. W. Case is located at the IBM System Communica-
tions Division laboratory, Neighborhood Road, Kings-
ton, New York 12401. M. Correia is located at the IBM
General Technology Division laboratory, East Fishkill
Facility, Hopewell Junction, New York 12533. W. Giano-
pulos is located at the IBM Data Processing Product
Group headquarters, 1000 Westchester Avenue, White
Plains, New York 10604. W. R. Heller and R. L. Simek
are located at the IBM Data Systems Division laboratory,
and H. Ofek and T. C. Raymond at the IBM General
Technology Division laboratory, both at Poughkeepsie,
New York 12602. C. B. Stieglitz is located at the IBM
System Products Division laboratory, P.O. Box 6, Endi-
cott, New York 13760.

IBM J. RES. DEVELOP. o VOL. 25 ¢ NO. 5 ® SEPTEMBER 1981

