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Design  Automation in IBM 

Within the context of the changing design requirements of digital systems spanning the semiconductor era, this paper 
describes the signi3cant steps in the development of Design Automation technology in ZBM. We cover the design tools 
which support  the design of the electronic portion of such systems. The paper  emphasizes the systems  approaches taken 
and the topics of design veriJication, test  generation,  andphysical  design. Descriptions of the technical contributions and 
interactions which have led to the unique characteristics of ZBMs Design Automation  systems are included. 

Introduction 
Design Automation (DA) has become a term  to  describe 
the  use of computers by  engineers and  other specialists to 
assist in the  design,  development,  and production of 
complex  systems. In IBM, the object  designs are digital 
electronic computer  systems, and the DA programs are 
organized  into coherent,  interdependent  sets,  hence  the 
term DA systems.  The technological evolution of elec- 
tronic  computer  systems  over  the  past  thirty  years  has 
been  remarkable in its  scope and rate of change.  This 
growth has been made possible  by the  use of computers 
themselves to  assist in the design of new generations of 
computers. DA has been both a leading application of 
computer technology  and a significant part of it. 

This paper  traces  the development of DA technology  in 
IBM from its  inception, highlighting some important 
technical steps  and  their genesis,  without attempting  to  be 
comprehensive  in its coverage. The  objective  is  to  put in 
context a description of the development of this  new 
technology and  its  part in the growth of computer  systems 
themselves. This  paper highlights primarily IBM achieve- 
ments  but acknowledges and provides some  reference to 
the considerable work  done outside IBM in this  area. 

Early IBM electronic  products,  such  as  the 604 Elec- 
tronic  Calculator, used design and documentation prac- 
tices substantially inherited  from earlier  electromechani- 
cal technology products. Despite the self-imposed disci- 
pline  which  limited logic designs to the  use of a small 
standard  set of predefined  circuits, the  inherent flexibility 
of electronic logic led to designs  which were more com- 
plex (and, of course, functionally  richer) than  those using 
earlier  technologies. This led to more variants of the 
initial design, both  for engineering changes (ECs)  and for 
features,  and  to logistic  problems  with the design  docu- 
mentation. As designs  became  more complex with the 
701, 702,704, 705 series of computers,  accurate  product 
documentation was difficult to maintain  through  hand- 
annotation of printed, draftsman-originated  diagrams 
and manual recording of ECs installed. This problem  led 
P. Case  and R. Simek  to  develop, in 1958, the first  system 
application of computers in IBM development, called 
Engineering Change Control, which maintained a data 
base of the engineering level of each  product  and auto- 
mated the initiation of field installation of ECs.  This effort 
demonstrated the utility of the previous  generation of 
computers in  assisting  with current  designs,  and led to 
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Table 1 Technology evolution and  DA  support systems. 

Technology era SMS  SLTIMST LSI 

Logic  circuits  per  unit 
Chip NA 1-3 1 100-700 
Chip  carrier (module) NA 1-3 1 100-45 000 
Card 4-50  6-480 
Board 400-2000  600-5000 180 000-230 000 

Logic  circuits  per 9000 90000 460  000 
typical  large  CPU 7094 I1 3033  308 1 

Host computer systems used IBM  7041705  IBM  7094  IBM Systed370 
IBM Systed360 

Data  base  Tape  sequential  Tape  sequential  Disk-indexed  sequential 

investigations of ways to improve the handling of the 
detailed design data. In parallel, an  IBM Research effort, 
led by S. Dunwell  and J. Logue, initiated work on 
mechanized  logic  diagrams. The movement of the Stretch 
project into development, together with the introduction 
of IBM’s  first comprehensive transistorized technology 
(Standard Modular System, SMS), precipitated the for- 
mation of a DA development group, led  by P. Case, with 
the objective of designing  and  implementing DA systems. 

Design  automation  system  evolution 
Forming the conceptual foundation of the initial DA 
efforts  was a systems approach that envisioned a data 
base which  grew apace with the product under develop- 
ment  until the completed detail was ready for release to 
manufacturing. This data accumulation process paralleled 
the two  major steps of the existing  design process: logic 
design  followed by physical circuit and wiring  design. It 
provided a single accurate definition  of the  state of the 
design at any point in  time. Subsequent evolution of  DA 
svstems can be viewed as the interaction of three chang- 
ing  technological forces: 1) circuit  and  packaging  technol- 
ogy, 2) product design methodology, and 3) design auto- 
mation  technology itself. 

Circuit and packaging technology 
The dramatic rate of change in the circuits and packages 
used as building blocks by  digital circuit designers has 
been the predominant influence on the evolution of  DA 
systems. Table 1 shows three major stages of technology 
and  identifies the DA systems associated with each one. 
Design  complexity has also grown  with the increase in the 
number of package levels which the product designer 
personalized. In early SMS technology, the circuit cards 
consisted primarily of a predesigned set, and the specifi- 
cation of the panel and cable  wiring was the essential 
physical design variable. Later the cards became more 

nearly unique, and  in  SLT/MST  (Solid  Logic  Technology1 
Monolithic Systems Technology), design of the circuit 
cards became an additional physical package design vari- 
able. LSI brought a third  design level into the picture, 
with its requirement for designing chips. 

Alternative design approaches sometimes created di- 
chotomies for the DA system designer. Nowhere was this 
more apparent than in the support requirements for 
custom versus masterslice chips. The latter’s regular 
structure of circuit cells  and  wiring channels presents 
physical design, layout, and wiring problems quite differ- 
ent from those of the more  free-form custom chip  with its 
arbitrarily sized macro islands, which are often formed 
from  unlike  logic components. The logic  design portions 
of the DA system, however, have more often proved 
flexible  enough to support custom  chip  design needs. 

Memory-space and execution-time constraints caused 
the program structures of first-generation DA systems to 
be  strongly dependent on the hardware packaging 
schemes they were designed to support. Package parame- 
ters were often hard-coded into the application programs, 
and  fixed-format data bases represented the state of the 
art. The pace of circuit and hardware evolution put severe 
pressure on DA developers because of the time required 
to write new programs and to create and  verify the circuit 
and package rules data base. Most importantly, new 
classes of problems were often introduced which  had a 
critical dependency on untried DA algorithms, as with the 
introduction of panels using etched circuits instead of 
discrete wire connections. Schedule pressures often re- 
sulted in DA programmers having to predict the effective- 
ness of heuristics prior to writing their programs. Such 
predictions were often regarded as pessimistic by  engi- 
neers who judged new  package capabilities based on 
manual  wiring trials. Test-generation programmers were 
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presented with cards of unexpected  complexity for which 
tests  had  to  be  generated. As DA systems  evolved,  the 
DA technologists increased efforts to generalize  and 
parameterize  the  systems and  applications, and succeed- 
ed in making major areas of the system less sensitive to 
changes in hardware technology. For this  capability mod- 
ern DA systems  sometimes pay a price in  program  size 
and  complexity and  execution time. 

0 Design  methodology 
DA systems  had revolutionary effects on IBM’s design 
methodology. Not all  changes  took place painlessly. 
Early users  experienced a decrease in flexibility, as 
program constraints  restricted  even seemingly trivial fac- 
tors  such  as  the position of logic blocks on a page. 
Computers  proved unforgiving and  autocratic in their 
relentless insistence  on  detail,  as in matching  alphanu- 
meric line names,  where previously humans  had been 
able  to readily match  entries  despite minor differences. 
Even  the traditional sequence of the design process  was 
altered,  as verification and  correction of details could no 
longer be  postponed  to a late stage of development. 
Gradually, DA systems  have evolved to  embody,  to 
codify,  and to enforce  the requirements attendant  to  the 
design and,  especially,  the  release of IBM’s products. DA 
systems  provide explicit definitions of documents, no- 
menclature, conventions,  standards,  and auditing limits, 
both through the  programs and  through the library data 
sets of circuits and physical units,  across a multilabora- 
tory environment.  Manufacturing and field organizations 
use  these  systems  as a vehicle for ensuring  commonality, 
compliance  with agreed  standards,  and information  accu- 
racy. 

Design documentation  requirements  provide a  particu- 
larly illuminating example of the influence of design 
methodology on DA systems. While it may seem surpris- 
ing now, prior to  the  existence of DA systems  the design 
documents were  the  design. In  order to make  the digitized 
data  base the design, a scheme had to  be devised that 
ensured an accurate relationship between  the  documents 
and  the  data  base, while still permitting the engineer to 
design in his customary way-by creating  new,  or by 
altering  existing, logic diagrams. Thus  the basic structure 
of the  data  base  was necessarily reflective of the primary 
documentation format, and the  content  had  to  be capable 
of being printed or displayed in document  form. This was 
the origin of the  unique  form  oflogic block diagram used 
in IBM, called an  ALD,  for Automated  Logic Diagram 
(see [l, 21). An  alternative would have  been  to make 
severe changes  in  engineering,  manufacturing, and ser- 
vicing practices by  substituting a listing form of documen- 
tation. Although listing formats have  since gained favor 
for  some  uses,  the  value of block  diagrams has proven so 
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powerful an aid to human understanding that  the  systems 
effort to utilize  this  graphic form is regarded as well 
justified. 

While the initial DA approach  to assisting  engineers in 
reaching accuracy goals  was to  compare  the detailed 
design with sets of predefined rules,  attention was later 
given to helping with the analysis of a design’s  functional- 
ity.  This process  is called design verification, and DA 
applications with this goal are still evolving.  Without such 
aids, engineers are  forced  to build physical hardware 
prototypes  to  validate  their designs. Early  LSI technolo- 
gy users often constructed a prototype in a pre-LSI 
technology. DA systems actually  anticipated the need for 
logic simulation tools  to aid in design verification and 
alleviate the need for  hardware modeling. Gradually, 
driven by the difficulty of prototyping dense  LSI technol- 
ogies,  software  modeling has become a widely accepted 
practice. 

Overall, current DA systems  support a methodology 
for handling,  organizing, and processing  design data  that 
makes  possible the  complex designs indicated  in the  LSI 
column of Table 1. Other  than  the continual  evolution of 
applications to  meet  the needs of new technologies, 
perhaps  the most significant systems improvement affect- 
ing design methodology  now taking place  is  the evolution 
to  the  use of interactive alphanumeric and graphic  termi- 
nals as  the  predominant mode of access  to  the  systems. 

Design  automation  technology 
DA systems  and applications have been at  the forefront of 
programming technology  since the earliest DA work. 
Programmers  continually  sought  ways to compress  data 
so that  arrays could be contained  in  available  memory 
space, devised  swapping schemes  prior  to  the availability 
of virtual addressing,  and invented operating  systems 
which contained  generalized  inputloutput routines, ac- 
cess  methods,  and  automatic program  linkage  mecha- 
nisms prior to their availability as  part of general-purpose 
operating systems.  In  IBM,  these efforts  formed apart  of 
a  larger view of design  automation as a comprehensive 
system.  Included in the  system  structure  were functions 
to support the  access,  control,  and maintenance of a 
common data  base, auxiliary  libraries of parameters 
(rules), and  interfaces  for  the exchange of data  between 
the  data  base  and  the application programs which consti- 
tuted  the specific design assistance tools. 

Design automation  has grown into  an established  scien- 
tific discipline,  with many  facets  and  subtopics.  Breuer of 
the University of Southern California [3] and  Van Cleem- 
put of Stanford University [4] have  prepared valuable 
bibliographic lists  which  indicate the  breadth and scope of 633 
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the technical  work  being done. Much of the emphasis and 
interest in  DA today is due to the gating  influence of  DA 
on the ability to utilize LSI technology. In some instances 
in LSI, and certainly in VLSI, the progress in DA 
algorithms determines the extent to which designers are 
able to exploit the inherent semiconductor density and 
performance potential. The balance of this paper will 
unfold, both for systems and applications, many of the 
DA technology areas in which  IBM has participated. The 
emphasis is on the work of IBM’s organized, centralized 
DA development groups. There have been many  innova- 
tive DA programs, contributed by individuals at several 
IBM laboratories, which  could  not  be included. Examples 
include wiring programs by J. Cooper, and  logic  and 
simulation programs by D.  Rozenberg  and  A.  McBride. 

IBM design  automation  systems 
Each of the technologies shown  in Table 1 required the 
development of a new-generation DA system. This sec- 
tion discusses the highlights of each one. 

The  SMS DA  sys tem 
IBM’s  first DA system [l] was  named for and  designed to 
be  used  with  SMS technology. An initial characteristic of 
the technology  which  influenced the DA system design 
was the use of a set of predefined transistorized circuit 
cards configured as “unit logic” portions which  plugged 
into a wire-wrapped panel. Unit  logic  design  presumed 
that a relatively small set of multiple-usage cards could  be 
designed  from  which the product designer would select, 
place, and interconnect the subset required. The DA 
system was therefore configured  with an AND/OR-level 
logic-block-oriented data base (then called a “logic  mas- 
ter file”) together with a standard rules data base describ- 
ing the cardcircuit library. Subsets of the design, such as 
a panel of logic,  could  be  selected  from the  data base, 
audited against the rules, checked for implicit  inconsis- 
tencies, and processed by other applications. Two  appli- 
cations of note were the logic  page  drawing  and  panel 
wiring  programs. 

The logic  block  diagram  programs were programmed to 
compute the routing of the interconnecting lines. The first 
successful heuristics were programmed by S. Sobel  and 
R. Carpenter. Solutions to this topological  problem 
proved more  difficult than expected, and required several 
years of evolution before programs by C. Warburton and 
R. Christopher prepared logic  diagrams that began to be 
as esthetically pleasing as had the previous manually 
drafted drawings. Nevertheless, the improvement in ac- 
curacy and the reduction in data entry workload  provided 
a strong incentive, and in fact made the use of automated 
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The panel  wiring programs provided the first step in 
automatic design, since they extracted directly from the 
logic  diagram  file the implied set of pins to be intercon- 
nected to form each logical net, and computed a set of 
actual wires to accomplish the needed  physical connec- 
tions. These programs also maintained a secondary data 
base  containing earlier engineering levels of wiring  and 
calculated the minimal set of add-deletes to upgrade an 
existing  design. The resultant improvement in accuracy 
of  wiring data became a hallmark of the DA process. 

An important system principle, originated in  SMS  DA, 
was the general policy of accepting manually  specified 
input to override algorithmically  supplied data. Thus 
pins, specific wires, etc. could  be  predefined  and  left 
intact if desired. This compromise furnished a workable 
bridge between algorithmic efficiency and practical engi- 
neering requirements. 

The SLTIMST DA  system 
IBM’s second-generation DA system [2] included hnc- 
tions previously  implemented  and retained a structure 
similar to that of the first DA system. Its primary purpose 
was to support a new generation of technology, charac- 
terized in SLT by etched circuit boards interconnecting 
pluggable  unit  logic cards, and later, in  MST, by function- 
al cards containing  many  levels of logic. Important sys- 
tems concepts introduced by  W. Murley  were 1) the 
detection of certain classes of errors at  the time the  data 
base file  was updated rather than  during subsequent 
checking runs, 2) the establishment of a conceptual basis 
for consistently labeling  logical blocks and their associat- 
ed  wiring nets, eliminating arbitrary net numbers and the 
resultant human and program tasks of correlating them 
with the logic,  and 3) the organization of the logic  file  in a 
nested delta arrangement which supported multiple ver- 
sions of a basic design automatically. 

SLT unit logic card design  was supported by a design 
subsystem called  Small  Card  Design Automation, SCDA, 
developed by J. Barnes and  his coworkers. MST subse- 
quently superseded SLT, bringing  with it the requirement 
to support complex functional cards unique to each 
design. Fortunately, primarily  due to  the foresight of H. 
GrafF, the DA system was adaptable to this major  shift  in 
engineering practice. 

Other innovations of this generation of  DA systems 
included  work by C. Haspel and others on partitioning 
programs which assigned logic to  cards, placement pro- 
grams  which positioned cards to aid board wiring,  and 
logic  simulation programs to support design  verification 
[2]. The SLTIMST data base concepts grew with exten- 
sions to support the automatic generation of diagnostic 
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tests [5,  61. Subsystems which supported  the design of 
microprograms introduced  concepts of behavioral-level 
description of digital logic [7] which eventually led to 
multilevel design verification support. 

The EIS DA system 
An effort to implement a next-generation DA system  to 
satisfy LSI  and  its  associated  requirements  was launched 
in 1968. The  system  was called EIS (Engineering  Infor- 
mation System)  and in 1973 was  renamed the Engineer- 
ing Design System.  Several new concepts were  intro- 
duced by the principal architects, who  included C .  Ha- 
spel, F. Worthmann, J. Boyle, B. Dzubak,  T.  Spence, 
and R. Taylor. 

The primary data  base was  organized for random 
access processing [SI. It allowed all types of design data 
(logical, physical, control, etc.) to  be  stored  for all levels 
of packaging. This structure avoided  many of the prob- 
lems inherent  with  serial  tape-oriented systems. Addi- 
tionally, the  data  structure was parameterized so that it 
could be easily adapted  to varying  packaging  nomencla- 
tures  and  requirements. This has allowed the  heart of the 
DA system to  accommodate designs which include 
many  varieties of chips, modules, cards,  planars, and 
boards.  Methods of segmenting the  data  base  were even- 
tually  developed to accomplish  hierarchical  processing. 
This allowed the  chips  to  be designed  independently  of, 
but in parallel with,  the module or  card. When the chip 
design  was complete,  the necessary data  were available 
for completing the processing of the  next level of pack- 
age. Since  the  necessary  data were a small subset of the 
entire chip  design data, very dense  second-  and third- 
level  packages could  be  processed.  Another major thrust 
has  been  to  provide  interactive  processing with  both 
graphic and  alphanumeric terminals. The  emphasis  has 
been  on physical  design  applications for  both  custom [9] 
and  regular [lo] designs. Concurrently,  batch mode test 
pattern generation and design verification  capabilities 
were provided. 

Programs were  also implemented to  audit  the design 
process. This  allowed the DA system  to  ensure  that  the 
right  level of technology  rules was  used,  that  the design, 
checking,  and test-generation programs all ran  success- 
fully, that  no  severe design errors were detected,  and, 
most  importantly, that if the design data  were changed in 
the middle of the  process,  the  necessary programs  had 
been  rerun  to  ensure  total design data integrity prior to 
manufacturing. This  feature  has  promoted a design disci- 
pline  which has  made masterslice  (gate array) chip design 
in particular a very reliable process. 

The following sections single out three DA application 
areas covering some of the most challenging technical 

problems. These  are design verification, test  generation, 
and physical design,  the  last emphasizing  chip wiring. We 
trace their  technological  evolution and  show their status 
and importance in the  LSI  area. 

Design  verification 
Design verification is a term used to  denote a host of tasks 
which  must be  performed by a logic design  engineer in 
order  to  ascertain  the  correctness of his  design. We 
examine the major  design verification functions of simula- 
tion, Boolean  verification,  and timing analysis  in  some 
detail, while mentioning other  functions only briefly. 
There  are  several  reasons  for  the engineer to verify his 
design. The initial specification of the design is basically 
behavioral, is  often  expressed informally in prose,  and 
contains  inherent ambiguities.  Designers  need a way to 
ensure  that  their design is a correct implementation of the 
specification. Also, the complexity of the design usually 
forces designers to think  in terms of multiple  conceptual 
levels. In  particular,  the detailed  implementation of some 
portions of the design may affect the general  design of 
other portions. Thus, implementation constraints  and  the 
interactions between  portions of the design  often prevent 
a pure “top-down’’  design process.  The designer needs a 
tool  capable of verifying the  correctness of a mixed 
software model of the design, with each  portion described 
on  an  appropriate  conceptual level. Another  factor  is  that 
design iterations are commonplace, as conflicting partial 
solutions are  resolved. Again, verification tools  are need- 
ed to check self-consistency of the  total design. Lastly, 
human  errors  and  oversights  are  unavoidable  because of 
the size and complexity of the designs being  considered. 
Thus, tools are  needed  to  check  for  such problems 
whenever manual intervention  occurs during the design 
process. 

Initially, IBM DA developers  concentrated only on 
computerized structural checking tools  to aid  in verifying 
the  correctness of the design. Logical and physical 
checks  as well as design  rules  checking were introduced 
to  detect inconsistencies  in the design data,  to identify 
sourceless and sinkless nets, to ascertain that  parameters 
were within prescribed limits ( e . g . ,  checks  for maximum 
fan-in  and  maximum  fan-out), to check against a library 
for  the family of circuits  in  use,  etc. During the mid- 
1950s, such checking  algorithms  were  developed in vari- 
ous IBM laboratories.  One  set of early functional  checks 
to be  programmed dealt with  computation of signal delays 
through a logic network.  These  checks, along  with  delay 
simulation, are  needed in  addition to  functional verifica- 
tion. Functional  verification,  in which programs  perform 
Boolean evaluations or propagate  signals  through the 
logical model, started  in  the 1%Os. The  class of Boolean 
evaluators includes heuristic and definitive tools. The 
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former include the variety of logic  numerical simulators, 
and the latter consist of Boolean analyzers. The remain- 
der of the discussion on  design  verification focuses on the 
key aspects of functional verification. 

Functional verijkation 
Simulation  has been the workhorse of functional design 
verification over a period of almost twenty years. The 
SLT/MST DA System was the first one to offer  logic 
simulation to the design engineer in  IBM. The SLT/MST 
DA simulator [2], developed by H. Graff and D. Hoffman 
and their associates, operated on a model  consisting of a 
network of interconnected logic blocks, selected from the 
system logic  file. It used parameters stored in a circuit 
library to compute the Boolean output of each given 
block as a function of its input  signal values. The output 
of the simulator included a sequence chart and a timing 
chart, both of which served as debugging tools in the 
hands of the engineer. The simulator  was a nominal  delay 
simulator, and it utilized the concept of significant event 
simulation. The significant event technique is important 
since it limits the amount of examination and calculations 
done by the simulator. By considering  only those design 
elements which  could  possibly change logical state as a 
result of the latest change of state, running  time is kept to 
a low  level.  One problem encountered was that of settling 
due to oscillations, which  was  solved  by  introducing 
artificial delays to  create a wait  long  enough for small 
spikes to disappear. The simulator  was a two-value 
simulator, and thus did not have the accuracy of modeling 
needed to perform transition analysis. While the software 
model of the design to be  simulated  was obtained via a 
direct reading of the Logic Master File, test pattern 
sequences to simulate the logic  had to be  manually 
specified by the engineer in the form of input bit patterns. 
A significant innovation was introduced by F. Hack1 and 
E. Carlstrom, who  linked the simulator to the system 
used to develop microcode for the Systed360 models. 
This allowed the microcode to be  used as stimulus for 
hardware design verification, a concept which is used to 
this day. 

A significant development was three-valued simula- 
tion. The invention of a three-valued algebra by  Eichel- 
berger [ll], which solved a test-generation problem, also 
helped  logic simulators detect and handle logic  circuit 
hazard and race conditions. The third value, X ,  was 
added to the stable Boolean  values “0” and “1”  to allow 
analysis of networks in  which  some  signals are not in 
stable states. One such simulator is described in [12]. 

The next  major thrust was to combine the valuable 
features of the variety of logic simulators developed 
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and faster logic simulator. The Variable  Mesh  Simulator 
(VMS)  was designed by R. Forbes, M. Kelly, and J. Teets 
[13], first as a standalone program, and subsequently as 
part of the EIS. VMS was  first  used in 1971 and, due to 
its generality, it is still  in use today. One  significant 
feature was its four-value modeling  capability  which 
allowed  more accurate results than those obtained by 
three-value simulation. In addition to “0,” “1,” and X ,  
the U value  was added, denoting an uninitialized value. 
At start of simulation, all nets are assigned the value U. In 
the course of simulation, these Us are replaced by other 
values. If any remain, however, at the conclusion of the 
simulation, it means that specific nets were not  affected 
by the stimulus applied, indicating either a design error or 
incomplete coverage by that stimulus. VMS also included 
varying degrees of delay and  timing accuracies, namely, 
zero delay, unit delay, nominal delay, and extreme delay. 
In VMS,  any combination of value  range  and delay type 
appropriate to a phase of product development may be 
chosen. VMS  is  named for its ability to mix these cases in 
a single run, the Variable-mesh concept. In the mixed 
simulation mode, the design can be represented by a 
number of interconnected subsets, each of which  may  be 
described in a different form or on a different level. Thus, 
it is possible to handle each part of the design  in a way 
appropriate to  its  state. In 1973, a new mode, the behav- 
ioral simulation mode, was  added to VMS.  Behavioral 
modeling enables parts of the design, which are of interest 
omy insofar as their inputloutput behavior is concerned, 
to be  modeled at a high level, thus speeding  up the 
simulation, since only the portion of logic  being  debugged 
has to be treated as a detailed  logic network. VMS also 
included a high-level  programming  language  designed to 
assist the engineer in  specifying  stimuli. P. Agnew’s 
formulation of engineering  problems and their solution 
through  simulation ensured that VMS indeed solved the 
real  problems in a manner acceptable to design engineers. 

In 1973, the need for a functional cycle simulation 
capability resulted in the formulation of a register transfer 
language  (RTL) [14] and its translation to an executable 
VMS model.  This capability was subsequently replaced, 
in  1978,  by a new table-driven functional simulator  which 
featured efficient  model generation with a fast incremen- 
tal update capability. A variation of functional simulation 
compares an RTL description of a design  specification to 
its logic network implementation. This is done by gener- 
ating VMS models for the two descriptions and  simulating 
them with  VMS,  using the same stimulus and comparing 
the results. Another significant technique, which  was 
developed by H. Kriese and  D.  Baglan,  allows the 
designer to simulate his  detailed  design at a greater speed 
by translating the primitive-level  logic networks into 
executable behavioral models.  Simulating these behavior- 
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al models by VMS is more efficient than simulating the 
original networks  because it allows significantly lower 
storage requirements  and reduced event scheduling. 

Delay  and  timing  analysis 
The analysis of timing and the  computation of signal 
delays through a logic network constitute  an  important 
part of design verification. An early functional  check  to 
be programmed involves  the counting of logic circuits 
along a path in order  to  get  an approximation of the signal 
delays through the logic. This check  considers only the 
time  element and not the Boolean  function  element. 
Subsequently,  more  advanced delay and timing analysis 
programs  were developed, incorporating  varying  degrees 
of accuracy  and a variety of computational concepts. 
These tools  complement  delay  simulation,  which  in itself 
did not provide a flexible or powerful  enough  tool for 
engineers  seeking  maximum performance in their prod- 
ucts. A requirement  for more accurate timing and delay 
analysis  led to  the development in the  late 1960s of a 
delay path analysis  program.  Using parameters defining 
both circuit delays  and wire path  delays, this  program 
calculates  delays for all paths  for a given logic network. It 
was  little used,  since  its exhaustive  analysis  consumed 
considerable execution time and  produced voluminous 
output. With the  advent of LSI,  the delay  calculation 
program  mentioned above  was replaced  by a variety of 
technology-dependent  programs.  A general timing analy- 
sis algorithm developed by R. Hitchcock  and his  cowork- 
ers  is now in use.  It  is based on block- rather than  path- 
oriented processing,  and  as a result it  requires much less 
execution  time than  the path-oriented  algorithms. 

0 Boolean  verijication 
Successful incorporation of LSI  required development of 
a novel design verification  methodology that included a 
hardware flowchart specification of the design, an  auto- 
mated translation of the flowchart to pseudologic  design, 
a  functional cycle simulation of the  flowchart, a detailed 
description of the implemented logic, a timing analysis of 
the logic, and  Boolean comparison between  the logic and 
the pseudologic. The overall approach is important be- 
cause  it eliminates direct low-level hardware simulation. 
Also, timing verification is  separated  from logic function- 
al verification. 

A  key  element is the Boolean comparison which deter- 
mines, by analysis,  whether  or not two combinational 
logic networks  are functionally  equivalent. In  case they 
are not equivalent, input states  are determined that 
illustrate the unlike behavior of the  two  networks. One of 
the networks is assumed  to be “good”  or  correct, while 
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the  other  represents a hardware design that is to be 
verified by comparison with the  “good”  network.  The 
“good”  network description is obtained  by the transla- 
tion of the flowchart  description of a machine or  part of a 
machine into a logic network description  consisting of 
interconnected  primitive  blocks such  as AND, OR, NAND, 

etc. This is  the pseudologic which is used  as  the  standard 
and against  which the manually implemented design is 
compared.  The flowchart  description of the machine is a 
graphic  form of the  RTL  hardware  description language 
described in [14]. Its translation into equivalent  pseudo- 
logic is accomplished  by using synthesis  techniques with- 
out optimization to a particular  technology.  Programs to 
translate  an  RTL-type description into logic could be 
found in the Logic  Automation programs,  and  the flow- 
chart translator  which is used today  is  based  on  an 
algorithm developed by J.  Roth [15] and  H. Halliwell. 

Test-generation programs  are particularly  suitable for 
Boolean comparison,  since  one can  view the networks 
being compared  as a pair, a good machine and a “faulty” 
version of the  good machine. If no test  exists  to distin- 
guish the  “faulty”  network from the original, the net- 
works  are  equivalent. A difference between  test genera- 
tion and Boolean comparison  is  that in test generation one 
usually expects  to find an input state (pattern) that 
distinguishes between  the original network  and  the 
“faulty” network.  In Boolean comparison,  however, it is 
usually expected  that  there will be no  input  state  to 
distinguish between  the  networks being compared. 

One specific approach  to  the solution of the Boolean 
analysis problem, using test-generation techniques,  is  the 
VERIFY algorithm,  developed by Roth [16] as a deriva- 
tive of his well-known D-ALG  test-generation  algorithm. 
VERIFY, which may be viewed as a  special case of the 
consistency subroutine of the D-algorithm,  was imple- 
mented by H. Halliwell,  who  introduced  important effi- 
ciency enhancements  to  the original algorithm. 

Another Boolean  analysis approach was  introduced 
by A. Brown and his coworkers. It  included the Dif- 
ferential  Boolean  Analyzer (DBA), which was  devel- 
oped by R.  Bahnsen  as  an application of the expansion 
theorem of Boolean  algebra.  A significant factor in the 
success of DBA was  the segmentation of the logic into a 
set of overlapping  segments. These  segments were pro- 
cessed independently  by the Boolean analyzer,  thus 
decreasing its running  time. The  use of structure  process- 
ing ahead of Boolean  analysis  contained the  data explo- 
sion  problem  which is common to Boolean  analysis 
algorithms.  Additional research on Boolean  comparison 
algorithms  involved the  use of simulation as  an aid to  the 
Boolean  verification process. Numeric random simula- 
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tion was used to improve the efficiency of Boolean 
analysis [17], while symbolic simulation was  used to 
generalize the  process [18] to include a higher-level model 
comparison. 

The Boolean verification methodology is gaining in 
importance because of the growing acceptance of struc- 
tured design methodologies  and  the use of LSSD design 
(discussed in the  next section). G. Smith has made 
significant contributions to Boolean verification by intro- 
ducing  innovations in both usability and efficiency areas, 
thus helping make this tool useful for  the engineer. More 
recently,  early user experience  was  combined with im- 
proved algorithms and methodology to  add a Boolean 
analysis function to the Engineering Design System. 

Test  generation 
The derivation of tests  for logical functionality of digital 
equipment  is a process known as  test generation.  This 
process is normally performed through an analysis of the 
logical structure of the product. 

What is the technical  problem making test generation 
difficult?  Why not just verify operation as it  was  intend- 
ed? Most concisely, the problem is one of combinatorics 
due  to restricted access. A logic network with n inputs  is 
“intended” to  operate correctly for  at  least 2” different 
input combinations. If the network contains storage ele- 
ments  it  is “intended”  to  operate  correctly  for  each of the 
allowable states of the storage  elements. For m indepen- 
dent storage elements,  the number of combinations of 
“intended”  operation  becomes at least 2”+”. The number 
of combinations, and  hence the  testing  time,  becomes 
impractical for  even modest values of n and m. The 
practical  problem of test generation  is thus  one of  finding 
small subsets of allowable  combinations which when 
applied to actual  equipment can identify the presence of 
faults. A second  problem involves the identification of 
what  is wrong when the  test fails. 

In this  section we  present  snapshots  taken  at  three 
points in time illustrating  important  problems  and  their 
evolutionary  solutions:  first, the early experimental work 
in 1958-1%0, second,  the first large-scale card  test sys- 
tem of about 1965,  and  third, the  recent  past and the 
impact of the introduction of LSI. 

0 The SEA  project 

Early  experiments 
The Systems Error Analysis (SEA) Project [19], started at 
IBM  Endicott in 1958 by R. Forbes, was  motivated by the 
large effort required to write  system  diagnostic  programs. 
The system concept was to automate the test-generation 
process, using the design  automation file as  source  data 

and an  analyzer  program to generate tests, followed by a 
fault  simulator to  generate symptom characteristics  for 
diagnosis. An important part of this work was the intro- 
duction of test objectives (faults, or commonly,  stuck- 
faults). This concept reduced test  size and  served as a 
basis  for diagnosis. Three key technical  problems recog- 
nized at  that time were addressed  simultaneously: First, 
sequential  networks  were  more difficult than combina- 
tional networks and required  special  solutions; second, 
simulation was potentially time-consuming, and  third, 
there were  no techniques for applying tests  to actual 
products  or  for guiding the repair process. 

Combinational  networks 
The first formal approach  to  test generation  was devel- 
oped by Roth [MI ,  who had been working on Boolean 
minimization using algebraic topological methods. One of 
the operators developed, called n* (Pi-star),  generated 
the on and off arrays  for a Boolean network. If one 
viewed a fault as transforming the network into a second 
network, one could  then operate  on  each with II* to 
generate a pair of on and a pair of  off arrays. If we call 
these [ON],  [OFF], [ON’], and [OFF’], then ( [ON] n [OFF’] ) 
U ([OFF] ) f l  [ON‘] ) would be  the totality of tests for the 
given fault. If one did  this  for each  fault,  the problem of 
generating a test  set  for all faults  was  reduced to a 
covering  problem.  Though theoretically sound, this ap- 
proach  proved to  be impractical. Even modest  networks 
(100 gates) resulted in excessive  computer running time. 

A second approach developed by C. Stieglitz of the 
SEA Project proved more  successful.  Basically,  it was a 
tracing approach, which started  at  the point of a fault and 
traced first forward  to  an  output  and  then backward 
toward the inputs. In tracing forward, a sensitized path 
was created which would have one of two values  depend- 
ing on  whether or  not  the fault was present.  In tracing 
backward, inputs were generated which would sustain the 
conditions necessary  for  the sensitized path. This tracing 
process could produce many false starts;  that  is,  paths 
could be chosen  which  proved to  be unsensitizable  or 
requirements  on net values could contradict  each other. 
Processing  for these  false  starts could potentially  become 
overly time-consuming. The key solution to this problem 
was an operation called IMPLY. Each time a choice in 
tracing  was made,  IMPLY was used to project  its  conse- 
quences. In this way, many mutually exclusive  choices 
were  eliminated, streamlining the test-generation  proc- 
ess. Essentially the  same algorithm minus the IMPLY 
operator was formalized by Roth [16] using his D calculus 
in what  has  since become a classic paper in the field. 

Sequential  networks 
Test generation for sequential  networks  proved much 
more difficult. The first difficulty was the lack of an 
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algorithm for  analyzing  sequential networks. Secondly, 
sequential  networks  contained  races  and  hazards which 
could cause  unexpected operation. One  approach  to this 
problem was pursued by S. Seshu of Syracuse Universi- 
ty, acting as a consultant to the  SEA Project.  Seshu’s test 
generator  produced input sequences  which changed one 
input at a time to minimize potential race conditions. If 
the network  had n inputs, n potential successors  to each 
test existed. Each of these was evaluated using a fault 
simulator  and the  “best” one in terms of information gain 
was chosen [20]. This  approach to  test generation had 
sporadic  success. Its biggest value  was in providing a 
model and  a  vocabulary  for describing the testing 
process. 

Fault simulation 
It was recognized  fairly  early  that  fault simulation running 
time could potentially  increase as the cube of the network 
size. As a result, the efficiency  of the program was 
considered  very important.  The simulators  used in the 
SEA Project  were  based  on  a  concept from  L. Tung 
called parallel compiled simulation. The instructions to be 
executed  were  compiled from the network model to avoid 
any conditional branching  instructions.  In  addition,  each 
bit in a computer  word  was  used to  represent a different 
fault so that  as many  faults as  there were  bits in a word 
could be simulated at  once [21]. 

Applications 
The early  programs  resulted in some  successful applica- 
tions. These all involved  the  programs for combinational 
networks. The algorithm for sequential  networks  proved 
too costly  and erratic.  The first commercial application 
was on the IBM 1418 Optical Character Recognition 
machine,  where they were used to  generate  tests for the 
recognition logic, a  very large combinational circuit. The 
programs  generated  the tests on  the  basis of the logic 
description in the design automation  master file. Perhaps 
a more  important application in terms of future directions 
was in the testing of SMS twin cards, initiated by M. 
Correia. Until that  point, cards  were tested exhaustively 
by applying all possible combinations of inputs. Test 
symptoms  were generated by cutting  components and 
running the tests. With the increasing density  (greater 
than 10 to 20 circuits),  this was no longer feasible. The 
SEA programs  were  demonstrated to be an effective 
alternative  greatly  reducing costs and  elapsed  time.  Since 
the  internal  card logic did not then  exist  on  any DA 
system,  the logic was  entered manually into  the system. 

Another  application area was in system  test. K. Mal- 
ing, M. Evans,  and  others, as  reported by Preiss in [22], 
adopted  the  applied  concept and combined  it with a 
technique of deductive  fault simulation in a system which 
supported logic designs with tens of thousands of logic 

gates.  These programs  were  incorporated in the Fault 
Locating Test  (FLT)  System [6] and successfully  used on 
the IBM 9020 and System/360 products to automate the 
diagnostic process. A principal contribution of the FLT 
system was the idea that  the computer  system  should 
incorporate a reasonable (= 5%) increment of special 
hardware to give the sequential machine logic the  appear- 
ance of combinational logic during testing. 

Test  generation for sequential  networks 
In  the early 1960s, the  introduction of SLT with its 
anticipated high volumes  and many part numbers mandat- 
ed  the automatic  generation of card tests.  Further, these 
cards contained  sequential networks, requiring  exten- 
sions to the existing systems. One of the problems in 
working with sequential  networks is to  have a good model 
on which to  operate.  The most  popular model had been 
one generated by  “cutting”  the feedback  lines.  Feedback 
lines  were  chosen  somewhat  arbitrarily,  but enough were 
cut  to eliminate all loops. The network was then convert- 
ed to a Huffman model by inserting delay  elements in the 
cut lines. In this model races were detected when more 
than  one  feedback  changed state  at  the  same time. The 
races were resolved by considering all possible  sequences 
for  the changes. The problem with this model  is the way it 
treats delays. In a real network,  delays are distributed 
throughout  the  circuits  and  their  interconnections.  In the 
Huffman model, as well as in the  other switching theory 
models of the time, the delays  were  concentrated at a 
small number of points. 

A  system called SALT (Sequential circuit  Automated 
Logic  Test)  was  developed for the purpose of generating 
tests  for  SLT  cards. Because of the experience with the 
Huffman model, a modification was chosen to capitalize 
on the independent  behavior of the  storage elements 
within the  network.  Storage  elements  were given a topo- 
logical definition as a set of loops  having a common 
circuit. Each  subset of circuits comprising a storage 
element was then  analyzed using a Huffman model of its 
own. The results of the analysis were saved in state tables 
and other specialized  tables  used in the test-generation 
process.  The  new  system worked reasonably well but a 
serious problem remained. In spite of the network model 
changes,  hazard  conditions still produced occasional 
anomalous  behavior.  Since  one of the  purposes of an 
automated system is integrity of the  data,  these anomalies 
were  very  troublesome. 

This problem led Eichelberger to  propose a  three- 
valued algebra [Il l  (see  the preceding section  on design 
verification). The  SALT simulator had been implemented 
as a three-valued  simulator  for an entirely different rea- 
son, that being to allow partial specification of test 639 
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pattern inputs. As a result, the technique was  quickly 
implemented, with two very  good results. Simulation 
time was  greatly reduced and  simulation results became 
accurate. The time reduction came because in using the 
Huffman  model, oscillations caused repeated simulations. 
Only after 2" ( n  = number of feedback cuts) passes 
without  reaching stability could it be determined there 
was an oscillation. Using the three-value approach, there 
were at most 2n passes, n passes each changing one of the 
feedback signals to an X ,  and another n passes each 
changing a feedback signal to  a known value. In no case 
would a feedback signal change more than twice. Accura- 
cy  was increased because the model  would  now produce 
an X if there was any  delay distribution that could 
produce ambiguous results. As a result the system  was 
fail-safe or pessimistic. Real hardware never behaved 
differently than predicted and the test coverage was 
always at least as claimed. The only disadvantage was 
that in the case of controlled races (because the hardware 
delays were bounded) the results would  be  overly  pessi- 
mistic. 

Applications 
The SALT system marked the integration of card test 
generation with  DA  in IBM. SLT cards had their own 
Design  Automation System and corresponding data base, 
which served as  the source of data for test generation. In 
addition to the logic tests described, SALT also consisted 
of programs to generate nonfunctional tests involving  pin- 
to-pin impedance. The tests were kept in an on-line 
manufacturing data system. The final test system was a 
highly automated computer-controlled system that man- 
aged a continuous stream of mixed part numbers through 
the various test stations. A printout containing repair 
actions was attached to each card not passing. 

Test  generation for LSZ 
Technology evolution has been characterized by con- 
stantly increasing density. By 1969, it was having  pro- 
found  effects  on card test generation due to  a proliferation 
of very  complex cards. The original SALT concepts, as 
embodied in a Technology Independent Test Engineering 
System (TITES) [23], were not  achieving test objectives. 
The TITES test-generation programs  were  modified  in at 
least two important ways. Because the increased number 
of storage elements caused the tracing algorithms to 
become less effective, the programs were modified to 
become  more heuristic and less predictable. Often the 
tests had to be augmented by manually generated tests. 
Second, the three-valued simulation approach became 
too pessimistic. Many  of the circuits used, such as 
latches, contained managed races which the simulator 
flagged as being unable to operate. Gradually, simulation 

640 algorithms to selectively reduce hazard detection were 

introduced, compromising test data. This required further 
manual intervention and increased test-generation time. 

IBM's decision to enter LSI with  an open-part-number 
set meant that system designers would  now  be  designing 
chips as well as cards. Because of the situation in card 
test generation, it was  decided to shift test-generation 
responsibility to  the system designer.  In addition to chips, 
the designer also had to generate tests for multichip 
modules  and cards, each adding a significant  level of 
complexity. An automated test-generation methodology 
became necessary. Starting with a system that was just 
barely  working, LSI added a level of complexity  and  time 
constraints that could  not  be met. 

LSSD (level  sensitive  scan design) 
A solution  was proposed by E. Eichelberger. Since test- 
generation programs were much more  effective  on  combi- 
national than on sequential networks, the problem  was to 
find a way to physically transform sequential networks 
into combinational ones without excessive overhead. 
This was the same problem  which FLT had dealt with  in 
Systed360, but now the difficulty  was to find a hardware 
solution appropriate to the testing of LSI chips, with 
circuits accessible only  through the chip pads. Eichel- 
berger  suggested that circuits be  designed  with  an inde- 
pendent way to load and unload the storage elements. 
Each storage element could  then  look  like an input or an 
output to the test generator, which  could then generate 
tests for combinational networks interconnecting the 
storage elements. Considering  chip  pins to be a valuable 
asset, Eichelberger proposed that this be done by con- 
necting the storage elements into a shift register with  each 
end connected to  a pin [24]. A further requirement was 
that there be no race conditions during testing. This could 
be  accomplished if the design used polarity-hold latches 
for storage elements, a two-or-more phase clock, and a 
structure such that no direct path from the output of a 
latch fed the input of another latch gated with the same 
phase. Collectively, this approach came to be  known as 
LSSD. The important difference between test generation 
for LSSD designs and previous test-generation schemes 
was that the designer was  given a  set of design rules or 
constraints which  made automatic test generation easier. 

In the early 1970s IBM started to put together a Design 
Automation test-generation system for LSSD. The re- 
quirements of the system were that it be applicable to 
chips, multichip modules, and cards. The network sizes 
to be covered ranged  from several hundred to many 
thousands of circuits. The tests were to be generated in 
the product design laboratory and sent via digital inter- 
face to manufacturing locations for direct application on 
the  testers. This  called for high confidence  in the integrity 
of the data. 
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Because of the reliance on design rules,  it  was impor- 
tant  to provide the designer with tools to  check  that the 
rules  were being followed. To  do this, Godoy [25] devised 
a novel way to  use  the design verification simulation 
system.  This  was  accomplished by replacing the subrou- 
tines that normally emulate the logic functions of circuits 
with  special subroutines  that propagate the check signals 
having special functional meaning. Large  networks  were 
handled by programs that separated the network  into 
smaller  subnetworks  bounded by latches, primary  inputs, 
and  primary outputs.  The test  generators operated on  the 
subnetworks to  generate  tests.  Other programs  reassem- 
bled the  tests  to  be consistent with the original large 
network [26]. The  LSSD system is the  current preferred 
test methodology within IBM. It  has been applied suc- 
cessfully to  generate  tests for chips and  cards on  the IBM 
System 38 and  on Systed370 Models 3081,  4331, and 
434 1 .  

Automated  physical  design  using  regular  package 
structures 
In  the earlier parts of this  paper, brief historical  refer- 
ences were  made to  the evolution of physical design 
techniques as packaging technology has become  more 
sophisticated. Although both the density and  the details 
of structure of all levels of these  packages have advanced 
rapidly, a simplifying hierarchy of regular images has 
continued to be the key feature of physical design. On 
each level, objects with  input and output  connectors  are 
placed into  “sockets” on a fixed grid,  and wiring is  done 
in X and Y directions in channels  allotted for  the purpose 
on  distinct  planes with “via  holes” for plane-to-plane 
communication. Chips obeying these  constraints, in gen- 
eral, share a planar space  for power  bussing, devices, and 
wires,  whereas  chip  carriers  and higher-level packages 
often divide their  vertical structure of planes  among pad- 
to-grid redistribution  wires,  power,  and signal wiring. 

Pre-LSI physical  design 
In IBM’s early  transistorized designs (the 1400 and 7000 
series),  engineers  handled  directly the problems of mod- 
ule (chip-camer)  and card placement as well as  connector 
pin assignment on all package levels. The back  panels 
which held SMS cards were wired using discrete  connec- 
tors made by numerically controlled machinery [27]. On 
each of these  panels, which had 40 sockets of 16 pins 
each, approximately 800 wires were connected by auto- 
mated wire-wrap techniques. A principal contribution of 
the original wiring program was to produce digitized 
instructions  for the wire-wrap machinery. The  extra 
space afforded by the third dimension  permitted the 
wiring algorithm to avoid parallelism and  cross-talk by 
spreading out  the wiring. 
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The advent of SLT, with its etched  card and board 
wiring, focused attention on the problem of wireability 
and  on other physical design aids which affected wireabil- 
ity,  such  as placement of cards in sockets  on  the boards 
and pin assignment  on cards and boards.  In addition to 
layout of etched wiring, programs specified discrete 
wires,  both for overflow and for engineering changes to 
the boards. SLT, like all subsequent  regular  packages, 
permitted  only a fixed number of wiring tracks in each 
wiring channel, all of course running parallel on a given 
wiring plane. These  boards had two wiring planes, one of 
which was used for principally horizontal  and  the other 
for principally vertical  routing, with predrilled via holes 
on a regular grid to permit  passage from  one plane to 
another. SLT layout first had to  face  the  joint problems of 
estimating the required track and via capacities of pack- 
ages, in relation to  the statistical  distribution of wiring 
demand. Analytic  formulation of this  complex problem 
was lacking, and the  approach taken by  U.  Kodres and H. 
Lippman was to  use a heuristic algorithm completing 
longest nets  first, one by one, followed by a “maze- 
running” algorithm to embed as many nets as possible. 
This  last  technique was first suggested by E. Moore and 
was given detailed definition by C .  Lee of Bell Labora- 
tories [28]. Depending  on the available board  capacity 
and  on the wire-length distribution determined by  the 
placement and pin assignments,  this  separation  into 
phases permitted  completing 5 0 4 0 %  of the wires in the 
first phase, followed by completion of 80-100% of nets in 
the maze-running. A feature in the design  schedule and 
economics  was that a hopefully small remaining number 
of “overflow” wires could be embedded manually into 
the image, or actually attached  as  discrete “yellow” 
wires to one surface of the package. 

MST made effective use of the programs  developed  for 
SLT by applying them to internal wiring of the pluggable 
cards themselves.  Automatic  placement was refined by 
T.  Lavery and  included  the effects of electrical con- 
straints. An optimum combination of the wiring algo- 
rithms  and  human  intervention  was  worked out  for expe- 
ditious completion of the card designs. During the period, 
Hitchcock proposA and  developed his cellular  approach 
to wiring images, which simplified and speeded  up the use 
of the maze-runner by permitting the application of 
hierarchical subdivision of the wiring image in a simpli- 
fied representation [29]. A summary of subsequent devel- 
opment and use of wiring algorithms has been given by 
Hightower [30], then  at Bell Labs, who originated a fast- 
running variation of maze-running known as the “line- 
probe” technique. Up  to this  time, the high proportion 
of manufacturing cost relative to development cost 
and duration led to  the design of packages  capable of 
holding more  subpackages  than could be efficiently 



wired. We next discuss the influence of LSI in  changing 
this approach. 

Physical design in the LSZ era 
Prior to the use of LSI, the design of chips themselves 
had  not  been a part of the product design process. The 
use of chips  and  chip  design presented three significant 
differences  from earlier work  with pluggable packages: 1) 
Chips are not “reworkable”; i . e . ,  they cannot be repaired 
or changed economically once manufactured. Each engi- 
neering  change  may  be  viewed as a new layout, although 
design of the next package level  usually makes it neces- 
sary to retain existing assignments of chip I10 (input/ 
output) connectors. 2) Chips cannot be  internally 
“probed” in production testing operations, which  must 
be done through the 110 connectors. 3) Placement and 
wiring of circuits on chips, whether automatically pro- 
grammed or done partly manually, is a more difficult 
design task, since discrete wires may not  be added. The 
additional package complexity of LSI made analytic 
assistance necessary to the solution of the wiring  prob- 
lem. 

It was established IBM practice that a regular  package 
hierarchy made both design  and  manufacturing  simpler. 
Work  in  many companies with  such hierarchies led to an 
important simplifying observation which  was  found to 
relate logic package connector count to the number of 
“modules” or subpackages carried and  wired together by 
the package itself. In IBM this relation is known as Rent’s 
rule, after E. Rent; it had  been  shown both theoretically 
by  Donath [31] and experimentally by R. Russo and B. 
Landman to be a consequence of typical  logic  partitioning 
by designers aiming at an efficient compromise between 
performance (reducing delay  through the logic)  and cost 
(minimizing  module count, connector usage, and package 
size for a given circuit count). This compromise histori- 
cally  has occurred at a subfunctional package level (i .e. ,  
at a level in the package hierarchy where the total circuit 
count is only a fraction of architecturally recognizable 
functions such as CPU, storage control, etc.). 

The rule gives a fractional power dependence of the 
package I/O connector count as a function of packaged 
circuit count. The Rent relation is T = ACP,  112 < p < 
314, where A is the average used subpackage connector 
count, C = number of subpackages contained in the 
package, and T = used VO connector count for the 
package itself. This relation is of enormous importance, 
since it permits prior definition of a range of acceptable 
package sizes and connector counts at all  subfunctional 
package levels. It was shown by Donath [32] that the rule 
implies a corresponding but slower growth of average 

642 wire  length  with package circuit count. This in turn 
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implies that the wiring loadper circuit grows heavier with 
increasing levels of integration. To this information, and 
the subpackage count itself, one can add the typical 
number of wires per subpackage. Together, they  reflect 
the degree of success of partitioning, placement, and  pin 
assignment techniques in  subdividing  and  locating the 
logic  in the package hierarchy. W. Vilkelis, W. Thomp- 
son, and L. Poch had  made  early estimates of the wiring 
capacity packages  must contain. This work was  followed 
by the probabilistic model of Heller, Mikhail,  and  Donath 
[33], who were able to give “wireability” formulas to 
determine package wiring capacities. An agreed means of 
analytically evaluating proposed package designs thereby 
became available, and these formulas are now  widely 
used in  IBM. 

The use of sharp estimates of chip size and wiring 
capacity is crucial to a successful LSI product. Our 
understanding of physical design  algorithms has gradually 
developed. With the wireability estimation tool, we  can 
match thepresently  asymptotic  approach to optimality of 
the entire suite of these algorithms to the wiring capaci- 
ties of the packages constituting a large  logic function. 
One can then evaluate the tradeoff  in  final  manual  editing 
and net completion versus the asymptotically more diffi- 
cult  improvement of automatic wiring programs. 

Assignment and  placement of circuits in a stan- 
dardized image 
Assignment of package pins to particular signal inputs 
and outputs was recognized early as amenable to comput- 
er handling. At first this was done after placement of 
subpackages on the package. The general problem of 
linear assignment had already been solved in another 
context. A matrix is formed assigning “costs,” e g . ,  a 
weighted combination of wire  lengths and local conges- 
tion associated with the assignment of a given  wire to a 
given  pin (i .e. ,  a given  matrix  row). Preassignment of 
some  pins  can  be accommodated, and the least cost can 
be found or approximated in  polynomial  time as a func- 
tion of the number of pins. 

Placement of subpackages on a carrier is a more 
difficult problem, and in  some of the work discussed 
herein, pin assignment and placement are often combined 
into one program. A simple  model of the problem  was 
early studied in operations research as  the “quadratic 
assignment problem.” Since the problem is n-p complete, 
one must use a heuristic, which can be  aimed at more 
realistic constraints. The simplest  effective approach uses 
some weighting of wire  lengths  and local congestion. 
Most successful work (a summary reference is [34]) has 
recognized that the problem has to be attacked hierarchi- 
cally and globally. That is, one must use the “divide and 
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conquer”  approach  to break the overall  problem into 
successively  manageable subunits, starting from  an over- 
all view. Khokhani  and Pate1 [35] were  the first to 
incorporate specifically, in a global placement algorithm, 
some measure of the global wiring implied by the place- 
ment of circuits on a plane. This, weighted together with a 
minimum length criterion, led to successful and relatively 
rapid  placement of circuits  on a masterslice  (gate array) 
chip and  is now  widely  used in IBM chip  designs. The 
growth of the  computer time associated with  this algo- 
rithm is empirically found  to be given by r~’’’, where 6 < 
0.2. The algorithm has  two parts: a constructive  phase 
based  on relative connectivity, followed  by an iterative 
phase which exchanges blocks. 

Global and local wiring algorithms 
Early wiring programs were  handicapped  by a lack of 
understanding of the  degree of di0iculty of the problem 
they  were  attempting  to  solve,  or knowing whether a 
solution was  possible.  Inadequate  approaches  to optimal- 
ity of wiring capacity, of connector  assignment, and of 
placement all dump  their burdens on  the wiring program. 
The  more closely all these  factors  work  together, there- 
fore,  the more  effective can be the wiring routines. The 
crucial insight into successful wiring algorithms for large 
problems is the built-in capability to  look  at  the global 
picture of the unit to be  wired.  Work for  LSI automatic 
wiring of chips at IBM by Chen,  Nan,  Feuer,  Khokhani, 
and Schmidt [36], integrated with the evaluation  and 
algorithmic  capabilities  earlier  mentioned [35], has  made 
use of hierarchical global wiring. In this  way, final 
channel  selection is  deferred  as long as  possible  and  each 
connection is given equal  treatment.  The  method  consists 
of subdividing the wiring space  into blocks in a hierarchi- 
cal fashion and assigning  connections to the block  bound- 
aries  they  cross by successive  perturbation of a global 
trial  solution,  which converges  to  an  overall lowering of 
demand versus capacity in  each  block. Then  the solution 
is mapped to a finer  grid and,  eventually,  to wire seg- 
ments (e.g., Steiner  tree representations)  in the  actual 
wiring channels. Often  the connections are allocated to 
channels  in  the  vertical and horizontal directions by 
“line-packing” techniques, which date back to  the work 
of A. Hashimoto  and J. Stevens  at  the University of 
Illinois and of B. Kernighan, D. Schweikert,  and G. 
Persky of Bell Laboratories  (see  Reference [30]). 

An essential  novelty in the global wiring, introduced by 
Chen [36], is first to define the wiring for  each  net 
independently on  an  empty global block image. Then  the 
nets  are  superposed,  and  perturbations of appropriate 
nets  are carried out  by moving wires to  reduce  any  excess 
of demand over  capacity  at individual block  boundaries. 
This  way, all nets are treated equally, any convenient 

scheme  for routing  individual  nets can  be followed, and 
nets can  be  varied  in  location at  the  possible  expense of 
increasing  lengths.  At the  end of these  procedures,  an 
efficient maze  runner  can  be  used [30], if desired, to clean 
up some or all of the remaining nets. 

Habra [37] and  also  Skinner [IO] have developed valu- 
able, time-saving alternative interactive  editing schemes 
to  put in  and check  the final few  unwired nets.  Thousands 
of chips, like those  described in [35] and [36] and,  more 
recently, chips  containing hundreds of circuits  on similar 
images, have  been  completed using the programs. Better 
than 90% of the  chips  achieve 96% completion of nets. 
The  CPU times for  placement and wiring programs lie in 
the range of one  to  two  hours, including the set-up  time, 
using IBM Systeml370 Model 168-3 class  systems. A 
parallel development  to this work was  later carried 
through  by H.  Koch  and P. Backer  for  use  on higher-level 
packages. 

Checking  programs  and  custom  chip  design 
The foregoing discussion of masterslice chip design has 
assumed the availability and  use of a library of prede- 
signed “books” which are placed into  the  slots of regular 
arrays.  These  “books”  are themselves  irregular multilev- 
el circuits.  Their  design, along with the initial layout of 
the masterslice  itself, has  also stimulated the develop- 
ment of design assistance tools. Of particular  interest  are 
the problems posed by the manipulation and analysis of 
irregularly shaped  entities  in  the various package levels. 
A graphic  design assistance tool which has been  devel- 
oped for this purpose  is  the  Interactive  Graphic  System 
(IGS) [9]. The  USC  (Universal  Shapes  Checker), a collec- 
tion of programs  performing  analytic and  shapes checking 
[38], provides  a means of detecting whether  such designs 
conform to physical and electrical constraints  for  the 
circuit  family.  While the  use of these  tools  has been 
extended  to  very  complex  structures with hundreds of 
thousands of shapes,  the design of entire  custom chips 
which have  an  irregular layout has  evolved  separately. 

The  emergence of FET technology,  with its higher 
densities,  resulted  in the design of layout-assistance tools 
which  included IBM 1620 and 1130 computers  attached to 
various  graphic workstations [39-451 and programs for 
postprocessing, like those developed and used by W. 
Donath  and  others. MST-era efforts led to  two memory 
chip design tools,  Memory Graphics Program  and Memo- 
ry  Graphics  Programming System, as well as graphic 
tools  for laying out logic chips. 

Another application of FET technology  was to random 
logic chip  design.  A columnar  arrangement  proposed by 
A. Weinberger  in 1967  [46], called a master-image, at- 643 
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tempted  to bridge the gap between  the  pure custom  and 
the regular grid approaches, and  led to  the development 
of a design system supporting FET logic  design called 
Chip Design System, CDS.  CDS permitted definition of a 
library of logic “books” which  could be  checked electri- 
cally and placed on a regular cell array. As interest grew 
in FET logic, automatic programs were developed for 
placement  by  B. Dunham  and J. North  and  for pin 
assignment and wiring by N. Nan  and M. Feuer. FET 
design efforts were merged by W. Rosenbluth  and his 
colleagues into  the  FADS  system  (FET  Adaptive Design 
System) which supported small system  users. 

Several other  important efforts which  strongly influ- 
enced  the  eventual design  technology and  tools  had  been 
proceeding in parallel. Early  FET work by J. Logue  was 
directed toward avoiding the limitations  in  circuit  density 
which  were  a consequence of the master-image approach. 
Parallel  work was  done in Los  Gatos by  A.  McBride, L. 
Warren  and  others.  For  products having very high vol- 
umes of production (like microprocessors), arbitrarily 
limiting oneself to  lower levels of integration and more 
costly production  in order  to  reduce design  time and 
attain low-risk manufacturing proved  to  be noncompeti- 
tive.  Eventually,  the master-image approach, which was 
suitable for  products  where  development  costs dominat- 
ed,  was  supplemented with custom design techniques. 
Among the first products to use custom  design  techniques 
was  the UC-0, a 1973 design of a two-chip microprocessor 
which achieved an  integration level four  times  that of its 
master-image equivalent in the  same technology.  This 
effort demonstrated  the leverage of custom circuit  design, 
achieving 2000 equivalent circuits on a convection-cooled 
chip. 

The most significant design-related by-product of the 
UC-0 work was  to  demonstrate  the formidable difficulties 
associated  with a design approach which used individual- 
ly tuned logic cells at high levels of integration. Each 
UC-0 cell had  to  be capacitively “padded”  to  preserve 
the logic level presented  to  the logic blocks in its fan-out. 
Moreover, this padding  was a function of placement  and 
wiring as well as  fan-out, causing an  iterative design 
process throughout the physical  design of the chip. The 
demands  for  shorter  development time were inconsistent 
with such a time-consuming  design process.  Subsequent 
special-function logic designs have built and  expanded  on 
custom  techniques, which  exploit FET unique circuitry 
and  reduce design logistics  through functional partition- 
ing of the logic into islands of “macros.”  These macros 
permitted  almost  unlimited design innovations internal to 
the  macro, while  providing a more rigid interface at the 
macro-to-macro boundaries.  Thus,  the  iterative  process 
described  earlier is  improved while still achieving highly 

customized  circuitry. Another  approach, which eliminat- 
ed  the iteration and retained  most of the masterslice 
advantages,  was  developed by P. Satre  and his  cowork- 
ers. Called RMS  (Rochester  Master Slice),  this  method 
further sacrificed density  for improved speed of design, 
although improvements  have been made along these lines 
by workers  at  the  IBM  Rochester  and  Essonnes labora- 
tories. 

A second  important  advance in IBM’s custom design 
concepts  came  from early work by H. Fleisher  and his 
collaborators, who suggested  partitioning schemes  for 
trading off decoder, AND-array, and  oa-array configura- 
tions in a logic chip  to achieve yield or performance 
advantages [47]. This  work led to macros composed of 
programmed logic arrays, now a widespread  application 
area.  In  the  years following 1973, increasing FET densi- 
ties  and  the  success of custom  macro  concepts led to their 
application throughout  the  semiconductor  industry. Out- 
side  IBM, double-polysilicon-layer FET chips made pos- 
sible  more versatile designs with greater wiring complex- 
ity. Within IBM,  the first  available  64K-bit FET memory 
chip was  designed  using  metal gate technology. 

In  the  future, in order  for increasing  density to mean 
increasing  complexity of function,  custom design will be 
required.  Improved  techniques will be  needed if design 
times  for  VLSI logic are  to  be held within  economical 
levels. Emphasis  on  the logical and physical  design of 
macros and  their interconnections  can  be  expected. 

Summary 
In a period of slightly more than  twenty  years, design 
automation has  become a  recognized  discipline  encom- 
passing the realms of data processing  applications,  meth- 
odology of design of digital systems,  and  the exploitation 
of semiconductor technology. We have outlined the 
growth of DA technology  in IBM, emphasizing the sys- 
tems basis of the  work  as well as  the key DA applications 
of test  generation, design verification, and physical  de- 
sign, to illustrate the increasing interdependence of semi- 
conductor  product designs  and DA capability. 

While we have  related many  technical contributions  to 
the evolution of DA technology, the  authors recognize 
and regret their inability to comprehensively  credit  many 
important individual  efforts. 

The  authors  hope  that  readers of this paper will gain 
insight into  the  potential  future  use  and  value of DA 
technology, and,  more generally, into  the problems and 
opportunities associated with the  emergence of wholly 
new technical  disciplines. 
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