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Fast  Beamforming  with  Circular Receiving Arrays 

Abstract: The  Fast  Fourier  Transform (FFT) can  be applied to circular arrays receiving wideband sonar radiation. As with conven- 
tional beamforming,  the FFT serves in the first stage  to divide the  spectrum into narrow  frequency bands. Then  the  array  element re- 
sponses of each band are  analyzed in a 5,econd stage of FFTs for the Fourier  components  (modes) of the  array excitation function for 
the  respective band.  Application of weights of the mode responses,  to simulate the radiation efficiency of the modes for  any given  ele- 
ment  radiation pattern  and  to control the array  pattern, yields the  Fourier  components of the  beam  pattern. To integrate these  Fourier 
components, inverse FFTs follow which yield as many beam pattern  samples  as  there  are  array  elements. 
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398 ponent  serves only one  directive beam in azimuth  and 
the number of contiguous  beams  equals  the  number of 
array elements, N ,  the number of beamforming  compo- 

399 nents  increases  as N ( N  - 1 ) .  Geometrically simple 
400  arrays  can,  however, lead to beamforming networks with 

fewer  components.  For  example,  the beam  cophasal 
excitation of a linear array  requires  phase shifts in the 

402 feed  lines that vary by uniform steps  across  the  array. 
403 This led Butler and  Lowe [6] to design, for electromag- 

netic arrays, a matrix network of interconnected feed 
lines in which phase shifters serve multiple beams simul- 

405 taneously.  Besides  simple phase shifters,  hybrids are 
Computer simulation of the  fast beamforming 

process 407 

Introduction 
Circular  arrays  have been  studied  extensively because 
they offer several unique features: 

Beam shapes in the plane of the  array,  the azimuth 
plane, are essentially  independent of the  steering 
angle [ 13. 
The beam  direction is independent of the signal fre- 
quency  even when phase shifters, rather  than delay 
lines, are employed in the feed  lines of the ele- 
ments [2]. 
Radiation that is omnidirectional in azimuth can be 
achieved  with  beams  directional in elevation,  e.g., 
conical  beams [3, 41. 

If the excitation of each  array  element is first de- 
termined for a desired  beam shape,  the  conventional 
circuit then  consists of phase  shifters and attenuators 
inserted in  all feed  lines, save  one  for  each beam, and a 

398 combiner  for all the line outputs [ 51. Because  each com- 

used  which  shift phases and also  add.  Thus  the  numbers 
of phase shifters  and  hybrids are only ( N / 2 )  log,N and 
( N / 2 )  (lo%N - 1 ), respectively. The analog techniques 
are, of course,  instantaneous beamformers and  the 
advantage of the Butler  matrix lies in the saving of com- 
ponents.  Because  the excitation  function of a linear radi- 
ator  and  the  corresponding farfield pattern  are related 
by the  Fourier  transform,  the Butler  matrix generates 
samples of the  Fourier transform of the  array excitation. 

Computationally,  the  phase shift  and attenuation of a 
signal is a complex multiplication. If the signal can  be 
sampled at a sufficiently low rate,  as is the  case with 
sonar signals, digital multiplications  and additions  can 
be  performed in real time. Hence  the  number of multi- 
plications would be  equal  to  the  number of phase shifters 
if the flow of computations would follow the analog pro- 
cess. Because digital multiplications take time and  are 
performed  sequentially, computations according to  the 
Butler  matrix can  be completed in a much  shorter time 
than computations  according  to  the  conventional circuit. 

Investigators of sonar  arrays,  however, arrived  in- 
dependently at a fast beamforming (FBF)  process  for 
linear  receiving arrays by introducing the  Fast  Fourier 
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Transform (FFT) [7], only to realize afterwards  that 
the  FBF  was  the digital equivalent of the Butler matrix. 

Earlier investigators of the  circular  array applied the 
conventional circuit for beamforming [ 8- IO].  Later it 
was  realized that  the Butler  matrix  could also be  intro- 
duced  to  the beam  forming of circular  arrays [ 11, 121 
because  any  arbitrary excitation of a circular line aper- 
ture  can be expressed by a spatial Fourier  series [ 13 - 
151, and each  term  constitutes  an excitation  function, 
referred to  as a mode, whose phase  changes by uniform 
steps from  element to element as in the beam  cophasal 
excitation of a linear array.  It was also recognized that 
a  one-to-one  relationship  existed between  the spatial 
frequency  terms of the excitation  function  and those of 
the farfield pattern [ I ] .  Furthermore,  to  generate  the 
pattern  or beam response from the modes of the farfield 
pattern would require  an  inverse  Fourier transform. The 
FFT, therefore, offers advantages in the digital beam 
forming process  for circular arrays  because it can  serve 
sequentially as a spectral  analyzer of broadband  signals, 
as a mode former,  and  as a beam former.  The  object of 
this paper is to  present  the  theory and  implementation of 
fast beamforming with circular  receiving arrays. 

Modal representation of the array excitation function 
An  arbitrary excitation  function E, of a circular  array of 
M equally  spaced elements can  be treated  as a  sampled 
continuous periodical  complex  variable E [ 161, so that 
- 
E s ( a r )  = $(a,) &x,), ( 1 )  

where  the sampling function 

s ( a J  = S{sin[(M/2) (cy,- a , ) l ) .  ( 2 )  

As illustrated in Fig. 1 ,  the  array is disposed on a circle 
of radius R in the x - y plane  and concentric with the 
z axis.  Angle a, relates  to  an  arbitrary position on  the 
circle  and a, is the position of the zero-th array element. 
A field point is at  the  distance Y, azimuth a, and elevation 
E from a point on  the  circle,  and is the  distance from 
the  center of the circle. 

We are  interested in the spatial frequency or mode 
spectrum of the excitation  function.  Ideally, the radiation 
pattern is exclusively determined by E, but the  substitu- 
tion of an  array  for  the  continuous ring radiator is dic- 
tated by engineering constraints leading to  pattern per- 
turbations which must  be  controlled. Since E c a n  be  ex- 
pressed by its own mode spectrum, Eq. ( I )  can  be 
written as 

q=-m q=-m 

Figure 1 Coordinate system  of the circular array of equally 
spaced  elements  used in deriving the spatial frequency of the 
excitation  function. 

Hence we may first derive  the mode spectrum of a 
sampled modal excitation  function Eqs(ar) = Eqs, 

I1 
(a, - a,) Cq exp[jqa,], 1 

which  can  be expressed by 
Ca - 

Eqs = c. q l  exPrjk.19 

where c, is defined as 

Now we substitute  Eq. (4) into  Eq. (6) and solve  the 
integral 

X cos - (a,  - a,) exp[j(q - I)a,]da,. [': 1 (7 )  

The integral is zero  except  for  the  discrete angles a, of 
the  array  elements  at values 

a,{ = a, + i ( 2 % - / M ) ,  0 5  i5" 1. (8) 

At  the i-th point, the integral has  the solution 
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and  we  can write 

X x exp[ji(q - /)255-/M]. 
M-1 

(10) 
i = O  

The sum on i in Eq. ( I O ) ,  abbreviated S,, can be ex- 
pressed in closed form [ 171 as 

1 - exp[j  ( q  - 1)255-] 
1 - exp[ j (q  - 1)27r/M] ' 

SM = 

Since q - 1 is an integer, S M  is zero  except when q - 1 = 

r M ,  with r an integer, Then, by ]'Hospital's rule, 

' M = (  1' M , q - l = r M  

0 , q " l f r M  

Now  Eq. ( 10) becomes, with Eq. ( 12), 

and th> array excitation  function Eq. (5) of a  sampled 
mode  can  be expressed in terms of the original mode 
and a  series of aliasing  modes 

l = q - r M .  (14) 
l = - m  

Thus  the aliasing mode  spectral responses  are spaced at 
distances M with respect  to q.  Equation (14) can also be 
written as a  summation over r and substituted  into  Eq. 
(3),  so that  the mode spectrum of the  array excitation 
function becomes 

m 

X exp [-jrM (a ,  - a,) 3.  ( 1 5 )  

Comparison of Eq. (15)  with Eq. (3)  shows  that  factor 

M 2 exp[-jrM(a, - a,)]  = s(a,) 
27r ,=--m 

is  the modal representation of the sampling  function 
of Eq. (4).  

r=-m 

Radiation  coefficient of a mode 
According  to  Eq. ( 15) the excitation  function of a cir- 
cular  array  can  be  expressed  as a continuous ring ex- 
citation  function  consisting of an infinite number of 
modes due  to  the summation on r ,  even if the number of 

400 modes due  to q is limited. Each mode of the excitation 
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function generates its counterpart in the radiation func- 
tion in a one-to-one relationship. However,  since  the 
phase and  amplitude  relationship of these  mode pairs 
is a  function of the spatial frequency and the  diameter 
of the  array, we can  say  that  the  circular  radiator  acts 
as a  linear filter on  the spatial frequency  spectrum of the 
excitation  function to  produce  the spatial frequency 
spectrum of the radiation pattern.  The  transfer function 
of this filter is the radiation coefficient6 of a mode. 

We assume  that a differential element of a ring of 
radius R ,  

ds = Rda, (16) 

exhibits  a  directional pattern g (0, E) ,  with 

which is assumed to  be  independent of the element  loca- 
tion a, on the  circle,  and can  be expressed by a real func- 
tion that is symmetric with respect  to  the radial  plane 
0 = 0. Thus we can  express  the  pattern in terms of a 
Fourier  series 

m 

g ( 0 ,  E )  = x U n ( € )  cosno. (18)  
n=o 

The contribution of the ring element to  the ring ra- 
diation pattern  due  to  the modal excitation F,(a,) as 
defined in Eq. (3) is 

where 

r(a,)  = yo - R COS E COS (a,  - a ) ,  (20) 

Substituting Eqs. (16), (17),  (18), and (20) into (19) 
yields the farfield pattern of the ring element 

dF,= (T x C, exp[jqa,]u,(~) 
m 

n=o 

X cosno exp[jpcose cos6]da,, (21 1 
where 

R 255-R u = c - a n d p = -  
r0 A '  

Introducing 0 as  the  sole variable,  according to  Eq. ( 17), 
leads  to  an integral form  for  the farfield pattern  due  to 
the  entire ring excitation 

(22) 
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The integral in Eq. (23) can be split into  two  terms 

I ~ lT exp [-j ( q  - n )  01 exp [jPcosE  cos01 

+ + ln exp[-j(q + n)O]exp[jPcos~ cosOldO. (24) 

for which the  solutions  are known [ 181, 
I = Tj"q-n'J 

qn -(,-n)(P cos E )  

+ Tj-(q+nJJ-(q+n,(p cos €1. (25) 

This  expression  can  be transformed  into [ 191 

I,, = ~j'[ j-"J(,-,,(p cos E )  +j"J(,+,,(P cos €11. (26) 

Sincej' = e x p [ q ~ / 2 ]   a n d j t n  = exp[*n~/2] Eq. (23) 
becomes 

n 

It is interesting to  note  that  the  phase of the radiated 
mode changes with q in steps of ~ / 2  with respect  to  the 
excited  mode. A higher  elevation E effects the magnitude 
of the radiated  mode in the  same way as p, which means 
a reduced R / h .  Furthermore,  since Bessel functions 
decay rapidly as  the  order increases  beyond the magni- 
tude of the argument, the spatial  mode filter is a low- 
pass filter. 

Two examples of greater  interest  to  sonar engineering 
will give further insight into the  characteristics of the 
mode  radiation. The first example assumes omnidirec- 
tional ring elements,  and  the  second  assumes  radiators 
with a  cardioid pattern. Such patterns  can  be realized 
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Figure 2 Mode radiation efficiency of a ring as determined 
by the circumference in terms of the wavelength or by the  ele- 
vation  angle of radiation. Point sources are omnidirectional. 

by combining the  outputs of a closely spaced pair of 
omnidirectional elements in a suitable  network. 

For  the omnidirectional ring elements we set 

Thus n = 0, U ( E )  = a, = 1 and 

The logarithmic measure of the normalized power ratio 
becomes 

A plot of the  power  ratio is illustrated in Fig. 2 for  two 
values of the argument P cos E. Therefore,  the  two  curves 
can be interpreted in various  ways. For  example,  for 
radiation in the ring plane  with E = 0, the  curves  relate 
to circumferences of four  and eight wavelengths, or  for 
a fixed normalized circumference of /3 = 8, the  curves 
relate  to elevation angles of 0 and  60  degrees.  The  curves 
are plotted for q 1 0; however,  they  also  apply  to q < 0 
for integral values of q. 

The  curves  show  that  the radiation coefficient drops 
off sharply, starting at q = /3 cos E. There  are also (P /7 r )  
cos E zeros of the Bessel function, which result in stop 
bands within the low-pass region. It may also be  pointed 401 
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I Mode q 

Figure 3 The excitation  function of a mode of a circular  ra- 
diator. 

out  that only the  zero-order mode can  radiate in the di- 
rection E = 90 degrees. The illustration of the wavefront 
of a mode  in  Fig. 3 may help to  show  the physical char- 
acteristics of a  modal  radiation. It explains that  the field 
contributions in the z direction cancel,  even in the  near- 
field. It  also  shows  that within the plane of the ring two 
spiral  wavefronts radiate,  one  radiates  away from the 
ring, and  the  other  radiates toward the  center.  The  latter 
will emerge  from the  center and  interfere with the  former 
spiral wave  front.  This  results in the variations of the 
radiation coefficient within the  passband. 

For  the cardioid  directivity of the ring elements  we  set 

& ( e )  = $( 1 + cos E cos e ) .  (34) 

Thus n = 0, 1 ;  a, = $, a, = 4 cos E and 

6, = exp [ jw- / 21 

x {Jq(P cos €1 + j  2 [Jq+,(P cos E )  

- Jq-l (P cos €1 I > .  (35) 

cos E 

The logarithmic measure of the normalized power  ratio 
becomes 

* [ J , ( P  cos € ) I 2  +- cos2 € 

16 

x [Jq+,(P cos €1 -Jq-,(P cos € ) I 2  . I (36) 

A plot of Eq. (36) is shown in Fig. 4 for  the  same  two 
402 parameters  as  are used for  the omnidirectional elements, 
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but  the  curves apply  only to  the plane of the ring, E = 0. 
Since  the spiral wave propagating toward  the  center  no 
longer exists,  the radiation coefficient does  not  show  the 
variations caused by the  interference of the  two spiral 
waves of the omnidirectional case.  The spatial frequency 
bandwidth, however, is not  affected by the cardioid 
pattern. 

It may be  pointed out  that baffled circular  arrays  can 
be  treated with good  approximation as  arrays of elements 
with cardioid patterns, provided that  the  distance be- 
tween  the element  and the baffle is small in terms of the 
diameter of the  array [ 1 11. 

Pattern synthesis from spatial  frequency 
components and array design constraints 
To determine  the excitation  function E for a  given  beam 
pattern F we first develop  the  pattern in a Fourier 
series [ 201 

where 

Then  the spatial frequency  components of the excitation 
function are  computed  according  to  Eq. (30), 
- c, = Dq/ fq .  (39)  

Finally, the excitation  function is computed.  For  the 
ring radiator  we obtain the  continuous function 

where 

- c q -  
2.rr 

E exp ["jqa,] da,. (41 1 

The relation of Eq. (40) would, in theory, enable us to 
generate faithfully any  pattern for which Eq. (38)  has 
a  solution. The sampling process by the array  elements, 
however, results in the excitation  function of Eq. (15),  
which leads to a pattern  that  deviates  more  or less  from 
the  desired beam shape, depending on  the  number M 
of elements. 

A point source in the farfield generates  the  cophasal 
excitation  function E, with mode coefficients Cqc. Hence 
multiplication by f q  would result in the mode coefficients 
D,, of the cophasal  beam pattern F,. To generate a dif- 
ferent  pattern F with mode coefficients Dq and Cq for 
the  pattern and  excitation functions,  respectively, a 
transfer coefficient 
- "  

tq = cq/cqc (42 1 
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must  be  included with the transmission coefficient fp so 
that with Eq.  (39) 

E, = fqfqCqc. (43) 

Theoretically,  there is no lower limit to  the physical 
size of the  array.  However, significant higher  modes of 
the  pattern will fall into the region 14) > p cos E ,  re- 
quiring a very high and precisely adjusted  transfer co- 
efficient fQ. This region constitutes  the supergain opera- 
tion of the  array  [2 11. While the supergain  has  been 
avoided by the designer of electromagnetic arrays be- 
cause of the noise limitation in the  receiver, a certain 
degree of supergain can be utilized in sonar  arrays which 
operate with high background  noise. Thus  an intelligent 
tradeoff study is required to  arrive  at  the optimum  com- 
promise of pattern directivity and physical array di- 
mension. 

After  the size of the  array has  been decided,  the num- 
ber of elements must be  determined.  As  shown,  the ele- 
ments sample the  continuous excitation  function E and 
the sampled  function E, with its aliasing spectrum of 
spatial frequencies is radiated. While the higher fre- 
quency  components  are  severely  attenuated by the low- 
pass filter action of the radiation process,  we need  be 
concerned only with the effect of the  adjacent pair of 
aliasing modes. Thus  for  the  computation of the  array 
pattern  the  truncated  form 

+ I  

X 2 exp[--J'rM(a,- a,)],  (44 1 

may be  substituted  for  Eq. (15 ) ,  whereby q, is chosen, 
where  the modes make no relevant  contribution  to  the 
pattern. To determine M we select  the most  demanding 
case of the highest  desired  mode q,,. Then  the  diameter 
of the  array would be chosen 

qh 3 /3, with E = 0, (45 1 
depending whether supergain operation is required or 
not. Then  the mode with r = -1 would be of no  concern, 
but for r = 1 the mode  should  be suppressed, i.e., 

T="l  

qh- - q h  

or, with Eq. (45), 

M > 2qh 3 2p.  (46) 

If,  for example, an  array of elements with cardioid  pat- 
tern should  be  designed to  radiate a pattern  that ranges 
up to  the eighth mode without  operating in the supergain 
region, a normalized ring circumference of p = 8 as il- 
lustrated in Fig. 4 would be the  proper choice. To sup- 
press the  closest aliasing mode qh - M by 10 dB  we  de- 
termine from the diagram qh - M =-lo, or M = 18. Then 

pcosr= 277R/h 

-10 - 
pcosc = 4 

-20 - 

\ 

-30 - 

-40 - 

-50 - 

Figure 4 Mode radiation efficiency of a  ring. The point sources, 
unlike those in Figure 2, have a  cardioid  pattern  pointing ra- 
dially outward. 

the element  spacing on  the  circumference /3 / M becomes 
0.445 A. This  agrees with the  experience of circular array 
designers that  the  element spacing  should be less than 
h / 2  [ 2 2 ,  231. For supergain  designs, the  number of 
elements  increases with no theoretical limit. 

Of course,  the  introduction of the FFT to  the beam- 
forming process will impose a similar constraint  as with 
the Butler  matrix. In  both  cases  the  number of array 
elements should be M = 2', with y an integer. 

It may be pointed out  that multiplication of cq by 
exp[jqa]  rotates  each mode of the excitation  function 
and  hence  the  pattern by the azimuth  angle a. This simple 
process is another useful feature of the  pattern  synthesis 
from excitation  function  modes. 

The beamforming network and its theory 
The digital processing of broadband  signals for  fast 
beamforming with circular  arrays  consists of the follow- 
ing steps: 

1. Spectral resolution of the received signals by means 

2. Modal  resolution of the  spectral  bands by means of 

3. Weighting of the mode outputs by complex multi- 

of the  Fast  Fourier  Transform. 

fast mode formers (FMFs).  

plications. 403 
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M samplers 

M buffers 

M FFTs 

N 

I I 

output I I I 
0 1 2 3  I 5 I I 

iii+ 
Figure 5 Block diagram of the fast beamformer for a circular 
array. 

4. Pattern  synthesis by  processing the weighted mode 
outputs in fast beam formers (FBFs).  

The block  diagram of Fig. 5 illustrates how these  four 
steps  are  carried  out.  The  array  consists of M = 8 ele- 
ments  counted in i. Radiation is assumed from a distant 
source in the  direction of element 5 .  A bank of M 
samplers samples the  broadband signal at a rate  com- 
mensurate with the  requirements  for  the highest fre- 
quency.  Batches of N  samples are  stored in a  bank of 
buffers and  transferred  to a bank of M FFTs, which 
deliver  N  samples of the  spectral distribution. Samples 
of the  same  spectral band originating from all the ele- 
ments  are  fed through  N FMFs.  Each  FMF  delivers M 
mode  outputs identified by q, and the terminals are 
counted in h. Each  mode  sample is weighted,  requiring 
a total of M . N weights. The multipliers are  derived ex- 
ternally so that beam shapes  can be  controlled. Finally, 
the weighted mode  samples are  fed through  N FBFs 
which generate M samples of the angular  distribution of 

404 radiation. 

The  number N = 2’ equally  spaced  time  samples x(k) 
of the signal x ( t )  determines  the  spectral resolution  which 
must  be adequate  to enable the identification of modes 
that  depend  on  the  phasor  concept.  However, in most 
cases  the objective of signal identificatian requires a 
much  higher  resolution than  the beamformer. The FFT 
delivers N  equally spaced vamples s ( n )  of the  frequency 
spectrum s( f )  according tq the algorithm [24] 

. N-l 

s ( n )  =- x(k)exp[-j2rnk/N], 1 

k=O 

with 

x ( k )  = s(n)exp[j2rnk/N].  
N-1 

n=O 

Frequency  and time  spacings Af and At, respectively, 
are related  by 

Af = l/NAt,  (49) 

so that  the time samples of a signal of frequency  f, re- 
ceived by element i, take  the  form 

x ( k )  = x o  cos (2n-fkht + $i + +o),  ( 5 0 )  

or 

x(k) = {exp[j(  2rfiAt + $i + bo)] 
X 

2 

+ exp[-j(2rfkAt + $i + +,)I. (51) 

Then  the  spectral samples  become,  according to 
Eq.  (471, 

s ( n )  = - 1 (exp{j[2rk( f At - n / N )  + $i + +0]} 

N - l  x 

k=O 

+ exp[-j(2rk(fAt + n / N )  + $i + +O)]). (52) 

The summations can be expressed by single terms [ 171 ’ (h. sin [$ (fT - n)n- 
sin [ (fT - n ) r ]  

s ( n )  = 2 

+ sin [ (fT + n ) ~ ]  

1 
This  equation  reveals  two  responses with the  envelopes 

sin [UT n)n-I = snF 1 [I: 
(54) 

N  sin - (fT T n ) r  

and  the  phases 
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F 

The  envelopes peak at 

f T 3 n = 0 , ? N N , - + - 2 N . . . ,   ( 5 6 )  

where  the solution n = f T refers to  the desired response, 
while aliasing due  to sampling causes  the remaining 
responses.  Also  the  side lobes of the envelopes cause 
undesired responses. Design  conditions of FFTs  are 

high sampling rates  and minimize side  lobe  responses by 
nonuniform weighting of the samples. The  important 
fact,  however, should be noted that  the  phase of the 
signal of the  elements $i is preserved in the  spectral 
samples. This  phase  results in a rather complex way from 
the  superposition of the  constituent modes of the  array 
excitation  function. To trace  the effect of a mode through 
the F M F  we  set 

I well established [ 2 4 ]  to avoid aliasing by the  choice of 

q J i  = 2.rrq - 1 

M 

and simplify the  spectral  expression by substituting Eqs. 
( 5 4 )  and ( 5 5 )  into Eq. ( 5 3 ) .  Thus 

s ( n ,  i )  =O {Sn- exp[j(u,- + 2.rrqi/M + &)] 
X 

2 

To generate  the beam response  we must compensate 
for  the radiation coefficient of the modes  and  adjust the 
modes to  the spatial frequency  spectrum of the desired 
pattern by weighting each mode by the  factor 

W,, = w,, exp[jv,] =JbFq  (65 1 
as  derived in Eqs. (30) and (42).  Since Jh = f-q and Fq = 

t-q, only M / 2  different weights are required for  each 
beamformer. The weighted mode  responses  can  then  be 
expressed by 

u (n,  h = {S,-V,- exp [ j  ( cr,- + p,,- + vh + + o )  3 

- 

X 

2 

+ S,+V,,+ exp[-j(cr,+ + phf + v,, + +0)11 
( 6 6 )  

with 
- - 

V,' = w,,u,+. ( 6 7 )  

In  the final stage of the beamforming network  the 
weighted mode responses  are  added  to  form  the  pattern. 
AS discussed above,  the  phase shifting of the modes  by 
exp [jqa] means a rotation of the modes and  hence of the 
patterfi by the azimuth  angle a. An  inverse FFT performs 
the  process of phase shifting and adding  according to 
the algorithm stated in Eq. ( 4 8 ) .  Thus  an  FBF performs 
the computation 

Applying the  same algorithm to  the  spectral sample 
hpO 

processing in the F M F  as  shown  for  the time function  and yields as many beam responses  as  array  elements, 
samples  to  generate  the  spectral  samples,  we  obtain uniformly distributed  over  the azimuth. Since  the  beams 

are  about  as wide as  their  separations, good  azimuth 

u ( n ,  h )  =; IS,- Uh- exp[j(a,- + p,,- + + o )  
source radiation  distributed over  the  azimuth,  the  FBF 

X coverage  can  be achieved.  With  background and single 

+ s,+ uh+ exp[-j(a,+ + + + o ) ~  1, ( 5 9 )  provides a sampled  panoramic  display.  Substituting Eq. 
( 6 6 )  into  Eq. ( 6 8 )  yields 

w h e r e 0 5  h 5 M -  1 ,  ( 6 0 )  

U,' = (61 1 - sin [ ( q  -+ h ) m ]  S,-V,-exp[j(cr,- + +0)] 
M-1 

x 2 eXP[j(P,,- + v h -  2 r m h l M ) I  
h=O 

+ S,+V,+ exp[-j(cr,+ + +o)  1 

With proper design the second term in Eq. (58) is in- x x exp[-j(p; + v,, + 2 . r rmh/M) l ] .   ( 69 )  
significant. Therefore  the mode response  develops peaks h=O 

only due to the  envelope U,- at Cophasal beam excitation and pattern of a circular 

An example of general interest is the  cophasal excitation 
Since  the sampling theorem  requires  that 141 < M / 2 ,  the of the  circular  array  to generate a beam in the direction 
mode responses  appear  at  the terminals as defined by the ab, eb [ 121. The field strength contribution of an omni- 
solutions  directionally  radiating ring element is 

M= 1 

h - q = O 0 , 2 M , ' 2 M ; . .  ( 6 3 )  array 

JULY 1976 FAST BEAMFORMING 



4 -0.6 I I I I I 
0 30 60 90 120 150 IS0 

cy (degrees) 

Figure 6 Patterns of a cophasally  excited  circular  radiator of 
four wavelengths  circumference if the mode spectrum  is  limited 
to P = p,,, as indicated. 

Substituting Eqs. (20) and ( 2 2 )  into Eq.  (70) yields, 
under  the farfield condition, 

dF = &(a,.) exp  [jpcos E cos (a,  - a )  Ida,. (71 1 
The  expression  for F(a,) can readily be  derived  from 
Eq.  (71),  since all ring elements must be phased so that 
their  contributions in the direction a,, and E,, add  up 
cophasally. Thus 

E(a,.) = E, exp[-jp  cos E, cos (a,  - a,)]. (72) 

Substituting Eq.  (72)  into  Eq.  (7 1 )  results in 

d F  = uE, exp{jp[cos E cos(a, - a )  

- 

- COS E,,  COS(^, - a,)]}da,.  (73) 

Applying  trigonometric  identities, we derive 

dF = uE, exp[jpg sin (a ,  + y)]da, 

where 

g = [cos2 E + cos2 E, - 2 cos E cos Eb cos ( a  - a,,)]+ 

and 

cos E cos (Y - cos Eb cos a, 
cos E sin a - cos E,, sin ab ' 

y = arctan  (74) 

then 

exp[jpg sin (a ,  + ?)]doc,. (75 1 

Integration  yields the real  function [ 181 

F = 2rrm E, J , ( P g ) .  (76) 

With the beam  pointed in the direction ab = E,, = 0, the 
azimuth pattern  becomes 

(77) 

The normalized form of Eq. (77),  

(78) 

is plotted by a solid line in Fig. 6. It  constitutes  the limit- 
ing case of an  array with M + ~0 elements. 

To express  the cophasal  beam pattern in terms of its 
modes, we first derive  the modal  form of the excitation 
function Eq.  (72). According to  Eq.  (41 ) , the mode 
coefficients are 

X exp[-jp cos E, cos ( a ,  - a,)] da,. (79) 

Solution of the integral  yields [ 181 

C,= E, exp[-jq(a, + r r /2) ]Jq  ( p  cos E,). (80) 

Then, according to  Eqs.  (32),  (37), and (39) with ?,= 1, 

F = 2rru E, 

- 

- 

,= "lo 

X exp[jq(a - a,,)1JqM cos E ~ ) J ~ ( P  cos €1. (81) 

The equality of the  expressions of Eq.  (76) and (8 1 ) can 
be  shown  with the aid of Graf's formula [25].  The nor- 
malized pattern in the azimuth  plane for a beam pointing 
in the direction ab = E,, = 0 can  be  expressed by 

m 

F = J",p) + 2 J ; ( P ) e x ~ [ j ~ a l ,  P = 141, (82) 

note  that Jf,(p) = J:(p) when q = integer [ 181. 

p=  1 

Figure 6  also  shows  plots of patterns consisting of a 
limited number of modes. As explained by Fig.  2 the 
first order mode and  the modes of order higher  than p 
have almost negligible effects on  the  pattern development. 

The conventional expression  for  the  array  pattern  can 
readily  be  formulated by substituting the contribution 
Fi of an element at  the location ai = a, + i2rr/M for  the 
contribution dF of a differential ring element  in Eq.  (73) 
and  summing the  contributions of all elements: 

- 
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Hence  the normalized  azimuth pattern of a beam pointing 
in the direction of element i = 0 at a, = 0 becomes 

The  pattern of Eq. (84)  has  been  plotted in Fig. 7. 
To express the array  pattern in terms of its  modes, we 

first substitute  the mode coefficients of the excitation 
function of Eq. (80)  into Eq. ( 15) to  obtain  the excita- 
tion function 

m 

X J q ( P  cos eb) exp[-jrM(ar - a J ] .  (85)  

which indicates  a  mode spectrum of orders q - rM.  Then 
the  pattern is obtained by multiplying the excitation 
function  modes  with the  respective radiation coefficients 
as  derived in Eq. ( 3 2 )  

F,= CME,  exp[jq(a - 

r = - m  

m 

q=-m 

Ca 

X J q ( p  cos E ~ )  exp[-jrM(a - a, + ~ / 2 ) ]  
r=--x 

x J(,,-rM)(P cos E ) .  (86)  

Of course,  the  summations of Eq. (85)  and (86)  can be 
truncated  as  discussed with Eq. (44). For  the azimuth 
pattern of a beam, aligned with ab = eb = 0, the  truncated 
normalized  form becomes 

- Qm 

F,,,= 2 exp[jqaIJ,(P) 
9=-qm 

I 

X exp[”juM(a + = ~)IJ,,-,,(P). (87) 

Computer  simulation of the fast beamforming 
process 
To check  out  the  fast beamforming process, a computer 
simulation  was  performed  using an APL program. A 
single frequency signal was assumed so that  the FFTs 
yielded the  array  element signals as  derived  from  Eq. 
(72) in the normalized  form 

r=-1 

(88)  

1 .o 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

14 -0.6 I I I I I 
30 60 90 120 150 180 

r (degrees) 

Figure 7 Patterns of a cophasally excited circular array of four 
wavelengths circumference. With eight elements the pattern 
takes the shape of the solid line and fast beamformer (FBF) 
responses are defined by the X points. The dashed line  and “0” 
points refer to the pattern  and FBF responses for 16 elements. 

The M complex terms of Eq. (88)  were  separated  into 
their real and imaginary components, which constitute 
a  2 X M matrix. Then  the matrix terms  were transformed 
by the FFT routine  to yield a 2 X M matrix of mode 
terms u (h )  . 

The weights of the mode terms  were  derived from Eq. 
(32)  according to  Eq. (65) with iq = 1 .  The ambiguities 
due  to sampling will cause all modes  q % rM to respond 
at  the terminal h = q. With properly  designed arrays only 
modes (41 < M / 2  are significant. Therefore modes  and 
terminals are related as follows: 

The normalized  weights thus  become 

W ,  = exp[jhr/2]Jh(/3  cos E ) ,  O f h < M / ?  

W ,  = exp[j(h - M)T/~]J , - , (P  COS E ) ,  

- 
- 

Now  the complex multiplication of the weights and the 
mode  terms is performed. 

In  the final computation  the  inverse FFT routine  is 
applied to  the weighted  modes  and yields the beam pat- 
tern samples for  cophasal excitation. 407 
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To enable  comparison with previous  plots, the ex- 
ample of an array with p = 4 and M = 8  was chosen and 
the  responses of the  fast beamformer  plotted in Fig. 7 
as “X” marks  together with the theoretical pattern ac- 
cording to  Eq.  (84)  shown by a solid line. The deviation 
in the  back  lobe  sector  is  not  unexpected,  because ac- 
cording to Figs. 2 and 6 the modes of order k 4 contrib- 
ute significantly to  the  cophasal beam pattern  and can 
not  be defined by eight elements according to  the sam- 
pling theorem.  Doubling the number of elements  not only 
results in excellent agreement of the  fast beamformer 
responses with the  theoretical  pattern,  as indicated by 
the “o” marks and  the  dashed line, it also  results in ex- 
cellent agreement of the  array  pattern with that of the 
ring as plotted in Fig. 6. 

From  the  above  example, it can  be  concluded  that  the 
limitation to correctly  sample a given pattern by the 
FBF technique lies solely in the  density of array ele- 
ments. If the  elements  cannot  adequately sample the re- 
quired  excitation function,  the  pattern will be  incorrectly 
represented.  This limitation  applies to  the conventional 
beamforming  technique as well, although the  pattern 
deviates from the given pattern in a different  way. 

Note  added in proof 
While this paper  was in  proof, two additional references 
[26, 271 came  to  the  attention of the  author. 
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