398

H. P. RAABE

H. P. Raabe

Fast Beamforming with Circular Receiving Arrays

Abstract:

The Fast Fourier Transform (FFT) can be applied to circular arrays receiving wideband sonar radiation. As with conven-

tional beamforming, the FFT serves in the first stage to divide the spectrum into narrow frequency bands. Then the array element re-
sponses of each band are analyzed in a second stage of FFTs for the Fourier components (modes) of the array excitation function for
the respective band. Application of weights of the mode responses, to simulate the radiation efficiency of the modes for any given ele-
ment radiation pattern and to control the array pattern, yields the Fourier components of the beam pattern. To integrate these Fourier
components, inverse FFTs follow which yield as many beam pattern samples as there are array elements.
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Introduction
Circular arrays have been studied extensively because
they offer several unique features:

¢ Beam shapes in the plane of the array, the azimuth
plane, are essentially independent of the steering
angle [1].

¢ The beam direction is independent of the signal fre-
quency even when phase shifters, rather than delay
lines, are employed in the feed lines of the ele-
ments [2].

¢ Radiation that is omnidirectional in azimuth can be
achieved with beams directional in elevation, e.g.,
conical beams [3, 4].

If the excitation of each array element is first de-
termined for a desired beam shape, the conventional
circuit then consists of phase shifters and attenuators
inserted in all feed lines, save one for each beam, and a
combiner for all the line outputs [5]. Because each com-

ponent serves only one directive beam in azimuth and
the number of contiguous beams equals the number of
array elements, N, the number of beamforming compo-
nents increases as N(N — 1). Geometrically simple
arrays can, however, lead to beamforming networks with
fewer components. For example, the beam cophasal
excitation of a linear array requires phase shifts in the
feed lines that vary by uniform steps across the array.
This led Butler and Lowe [6] to design, for electromag-
netic arrays, a matrix network of interconnected feed
lines in which phase shifters serve multiple beams simul-
taneously. Besides simple phase shifters, hybrids are
used which shift phases and also add. Thus the numbers
of phase shifters and hybrids are only (N/2) log,N and
(N/2)(log,N — 1), respectively. The analog techniques
are, of course, instantaneous beamformers and the
advantage of the Butler matrix lies in the saving of com-
ponents. Because the excitation function of a linear radi-
ator and the corresponding farfield pattern are related
by the Fourier transform, the Butler matrix generates
samples of the Fourier transform of the array excitation.

Computationally, the phase shift and attenuation of a
signal is a complex multiplication. If the signal can be
sampled at a sufficiently low rate, as is the case with
sonar signals, digital multiplications and additions can
be performed in real time. Hence the number of multi-
plications would be equal to the number of phase shifters
if the flow of computations would follow the analog pro-
cess. Because digital multiplications take time and are
performed sequentially, computations according to the
Butler matrix can be completed in a much shorter time
than computations according to the conventional circuit.

Investigators of sonar arrays, however, arrived in-
dependently at a fast beamforming (FBF) process for
linear receiving arrays by introducing the Fast Fourier
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Transform (FFT) {7], only to realize afterwards that
the FBF was the digital equivalent of the Butler matrix.

Earlier investigators of the circular array applied the
conventional circuit for beamforming [8-10]. Later it
was realized that the Butler matrix could also be intro-
duced to the beam forming of circular arrays [11, 12]
because any arbitrary excitation of a circular line aper-
ture can be expressed by a spatial Fourier series [ 13—
15], and each term constitutes an excitation function,
referred to as a mode, whose phase changes by uniform
steps from element to element as in the beam cophasal
excitation of a linear array. It was also recognized that
a one-to-one relationship existed between the spatial
frequency terms of the excitation function and those of
the farfield pattern [1]. Furthermore, to generate the
pattern or beam response from the modes of the farfield
pattern would require an inverse Fourier transform. The
FFT, therefore, offers advantages in the digital beam
forming process for circular arrays because it can serve
sequentially as a spectral analyzer of broadband signals,
as a mode former, and as a beam former. The object of
this paper is to present the theory and implementation of
fast beamforming with circular receiving arrays.

Modal representation of the array excitation function
An arbitrary excitation function Es of a circular array of
M equally spaced elements can be treated as a sampled
continuous periodical complex variable E [16], so that

E_s(ar) = s(e,) E(ar), (1)
where the sampling function
s(a,) = 8{sin[ (M/2) (o, — a,)]}. (2)

As illustrated in Fig. 1, the array is disposed on a circle
of radius R in the x — y plane and concentric with the
z axis. Angle «, relates to an arbitrary position on the
circle and a, is the position of the zero-th array element.
A field point is at the distance r, azimuth «, and elevation
e from a point on the circle, and r, is the distance from
the center of the circle.

We are interested in the spatial frequency or mode
spectrum of the excitation function. Ideally, the radiation
pattern is exclusively determined by E, but the substitu-
tion of an array for the continuous ring radiator is dic-
tated by engineering constraints leading to pattern per-
turbations which must be controlled. Since E can be ex-
pressed by its own mode spectrum, Eq. (1) can be
written as

© %

E(a,)=5(e,) 3 Efa)= 3 sla) C,expliga,]

a=—w g=~w

= ¥ E,la,). 3)
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Figure 1 Coordinate system of the circular array of equally
spaced elements used in deriving the spatial frequency of the
excitation function.

Hence we may first derive the mode spectrum of a
sampled modal excitation function E_,(a,) = E,

Foms i)

X cos[% (o, — ae)] C, expljga,], (4)

which can be expressed by

E,= 3 C, expljla,], (s)

I=—w

where C—q, is defined as

_ 1 27 _ )
Cy= —Z;J; E,, exp[—jla,]da,. (6)

Now we substitute Eq. (4) into Eq. (6) and solve the
integral

—_ C 27 2 M
q .
Cp= g fo 8{—M sm[—2 (a, — ae)]}

M .
X cos[; (ar——ae)] exp[j(g — Da,]de,. (7)
The integral is zero except for the discrete angles a, of
the array elements at values
a,=a,+i27/M), 0=i=M-—1. (8)

At the i-th point, the integral has the solution

f:ﬂ 6{% sin[% (a, — ae)]} COS[Mz (o, — ae)]

X exp[j(q — e, ]da, = explj(q — Dey], 9)
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and we can write

C, = (C,/2m) explj(g— Da,]
M-1

X Y expljilq— 2w /M].

i=0

(10)
The sum on i in Eq. (10), abbreviated S,,, can be ex-
pressed in closed form [17] as

_1—explj(g—D2n]
" 1—expli(g—D2m/M]’

(11)

Since g — ! is an integer, S,, is zero except when q — /=
rM, with r an integer, Then, by ’'Hospital’s rule,

M,q—1=rM

S, = : (12)
0,g—1#M

Now Eq. (10) becomes, with Eq. (12),
5 explila—De,l, l=q—rM

. T

= (13)

0, l#qg—rM

and the array excitation function Eq. (5) of a sampled
mode can be expressed in terms of the original mode
and a series of aliasing modes

q .
o= 7, explige,]

X i expjl(e, — a,)], (14)

l=—w

l=q—rM.

Thus the aliasing mode spectral responses are spaced at
distances M with respect to q. Equation (14) can also be
written as a summation over r and substituted into Eq.
(3), so that the mode spectrum of the array excitation
function becomes

> €, explige,]

9=

=_M
E,=%-

X i exp[—jrM (a, — ) ]. (15)

r=—xc

Comparison of Eq. (15) with Eq. (3) shows that factor

M & . _

o r;—w exp[—rM (a, — a,)] = s(a,)

is the modal representation of the sampling function
of Eq. (4).

Radiation coefficient of a mode

According to Eq. (15) the excitation function of a cir-
cular array can be expressed as a continuous ring ex-
citation function consisting of an infinite number of
modes due to the summation on r, even if the number of
modes due to ¢ is limited. Each mode of the excitation

function generates its counterpart in the radiation func-
tion in a one-to-one relationship. However, since the
phase and amplitude relationship of these mode pairs
is a function of the spatial frequency and the diameter
of the array, we can say that the circular radiator acts
as a linear filter on the spatial frequency spectrum of the
excitation function to produce the spatial frequency
spectrum of the radiation pattern. The transfer function
of this filter is the radiation coefficient fq of a mode.

We assume that a differential element of a ring of
radius R,

ds = Rdo, (16)
exhibits a directional pattern g(6, €), with
0=a—a, (17)

which is assumed to be independent of the element loca-
tion «, on the circle, and can be expressed by areal func-
tion that is symmetric with respect to the radial plane

= 0. Thus we can express the pattern in terms of a
Fourier series

%

2(0, €)= a,(e) cosnd.

n=0

(18)

The contribution of the ring element to the ring ra-
diation pattern due to the modal excitation E_q(ar) as
defined in Eq. (3) is

— I'ed — .
dF,= Ha) C, expljge,] £(6, €)

X exp[—j r((;’) 277]ds, (19)

where

(20)

Substituting Eqs. (16), (17), (18), and (20) into (19)
yields the farfield pattern of the ring element

r(e,) =r,— R cos € cos (o, — a),

qu =c al exp[jqa,la, (€)
n=0

X cosnf exp[ jBcose cosflda,, (21)
where
a=c§andﬁ=M. (22)
o A

Introducing 6 as the sole variable, according to Eq. (17),
leads to an integral form for the farfield pattern due to
the entire ring excitation

F,=0 3 C, expljgala,(e)
n=0

27
X f exp[—jqf]cosnb exp[jBcose cost]do.

0

(23)
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The integral in Eq. (23) can be split into two terms

27
l,=% J’ exp[—7 (¢ — n)8lexp[jBcose cosd]do
0

2
+3 f exp[—j (g + n)0]exp[jBcose cosdldh. (24)
0

for which the solutions are known [18],
I,= n-j""_")J_(q_m(B Cos €)

+ wj_(q”).l_(qm)(ﬁ cos €). (25)
This expression can be transformed into [19]
I,= qu[jfnj(q_n)(ﬁ cos €) +j"J(qM)(,B cose)]. (26)
Since j? = exp[gw/2] and j* = exp[*nw /2] Eq. (23)
becomes

F,=on i C, expljq(a+m/2)]

X a,(€){exp[—jnm/2]J,_,)(B cos €)

+ exp[jnm/2]J,_,\(B cos €)}. (27)
Eq. (27) constitutes a mode of the farfield pattern
F,= D, expljga], (28)
with

D,=naC, expljqm/2] Y a,(e)

n=0
x {exp[—jnm/2]J,_,(B cos €)
+ expljnm/2]J,,,(B cos €)}, (29)

the magnitude of the pattern mode. Thus the radiation
coeflicient of a mode is defined as

o

=== moexplign/2] ¥ a,(¢)

q q n=0

x {exp[—jnm/2]J,_,(B cos €)
+ expljnm/2]J,,,(B cos €)}. (30)

fq:

|

It is interesting to note that the phase of the radiated
mode changes with ¢ in steps of /2 with respect to the
excited mode. A higher elevation e effects the magnitude
of the radiated mode in the same way as 8, which means
a reduced R/\. Furthermore, since Bessel functions
decay rapidly as the order increases beyond the magni-
tude of the argument, the spatial mode filter is a low-
pass filter.

Two examples of greater interest to sonar engineering
will give further insight into the characteristics of the
mode radiation. The first example assumes omnidirec-
tional ring elements, and the second assumes radiators
with a cardioid pattern. Such patterns can be realized

JULY 1976

Beose=2nR/A

Bcose=8
/_\
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Figure 2 Mode radiation efficiency of a ring as determined
by the circumference in terms of the wavelength or by the ele-
vation angle of radiation. Point sources are omnidirectional.

by combining the outputs of a closely spaced pair of
omnidirectional elements in a suitable network.
For the omnidirectional ring elements we set

8(0) = 1. (31)
Thus n=0, a(e) =a,= 1 and
JZ: 2mo expligm/2]J,(B cos €). (32)

The logarithmic measure of the normalized power ratio

becomes
fu Y
A,=10log (%) =20 log| J (B cos €)]. (33)

A plot of the power ratio is illustrated in Fig. 2 for two
values of the argument 8 cos e. Therefore, the two curves
can be interpreted in various ways. For example, for
radiation in the ring plane with € = 0, the curves relate
to circumferences of four and eight wavelengths, or for
a fixed normalized circumference of 8 = 8, the curves
relate to elevation angles of 0 and 60 degrees. The curves
are plotted for ¢ = 0; however, they also apply to ¢ < 0
for integral values of q.

The curves show that the radiation coefficient drops
off sharply, starting at ¢ = 8 cos €. There are also (8/7)
cos € zeros of the Bessel function, which result in stop
bands within the low-pass region. It may also be pointed
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Mode ¢

Figure 3 The excitation function of a mode of a circular ra-
diator.

out that only the zero-order mode can radiate in the di-
rection € = 90 degrees. The illustration of the wavefront
of a mode in Fig. 3 may help to show the physical char-
acteristics of a modal radiation. It explains that the field
contributions in the z direction cancel, even in the near-
field. It also shows that within the plane of the ring two
spiral wavefronts radiate, one radiates away from the
ring, and the other radiates toward the center. The latter
will emerge from the center and interfere with the former
spiral wave front. This results in the variations of the
radiation coefficient within the passband.

For the cardioid directivity of the ring elements we set

2.(0) = (1 + cos € cos ). (34)
Thus n=10, 1; a,= 4, a, = % cos € and
J-‘;C:')TO' expljgm/2]

X {J,(Bcose€)+j c02s €

[J 41 (B cos €)

—Jq_l(B cos €)]}. (35)
The logarithmic measure of the normalized power ratio
becomes
2

Jee
A,=10 log(—i;)

=10 log{%[Jq(,B cos €)]” +@ls6i§
X [JqH(B Cos €) —Jq_l(,B cos e)]z}. (36)

A plot of Eq. (36) is shown in Fig. 4 for the same two
parameters as are used for the omnidirectional elements,

but the curves apply only to the plane of the ring, e = 0.
Since the spiral wave propagating toward the center no
longer exists, the radiation coefficient does not show the
variations caused by the interference of the two spiral
waves of the omnidirectional case. The spatial frequency
bandwidth, however, is not affected by the cardioid
pattern.

It may be pointed out that baffled circular arrays can
be treated with good approximation as arrays of elements
with cardioid patterns, provided that the distance be-
tween the element and the baffle is small in terms of the
diameter of the array [11].

Pattern synthesis from spatial
components and array design constraints
To determine the excitation function E for a given beam
pattern F we first develop the pattern in a Fourier
series [20]

frequency

F='S D, expljgal, (37)
g=—o
where
D =if F exp[—jga]da. (38)
T 2m 4,

Then the spatial frequency components of the excitation
function are computed according to Eq. (30),

C,=D,/f, (39)

Finally, the excitation function is computed. For the
ring radiator we obtain the continuous function

E= Y C,expljga,], (40)
g=—o

where

_ 1 27

Cq:;fo E exp[—jqa,]da,. (41)

The relation of Eq. (40) would, in theory, enable us to
generate faithfully any pattern for which Eq. (38) has
a solution. The sampling process by the array elements,
however, results in the excitation function of Eq. (15),
which leads to a pattern that deviates more or less from
the desired beam shape, depending on the number M
of elements.

A point source in the farfield generates the cophasal
excitation function E, with mode coefficients C .. Hence
multiplication by f, would result in the mode coefficients
D, of the cophasal beam pattern F,. To generate a dif-
ferent pattern F with mode coefficients D, and C, for
the pattern and excitation functions, respectively, a
transfer coefficient

,=C,/C, (42)
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must be included with the transmission coeﬂicientfq SO
that with Eq. (39)

D,=ftC.. (43)

Theoretically, there is no lower limit to the physical
size of the array. However, significant higher modes of
the pattern will fall into the region |g| > 8 cos e, re-
quiring a very high and precisely adjusted transfer co-
efficient t_q This region constitutes the supergain opera-
tion of the array [21]. While the supergain has been
avoided by the designer of electromagnetic arrays be-
cause of the noise limitation in the receiver, a certain
degree of supergain can be utilized in sonar arrays which
operate with high background noise. Thus an intelligent
tradeoff study is required to arrive at the optimum com-
promise of pattern directivity and physical array di-
mension.

After the size of the array has been decided, the num-
ber of elements must be determined. As shown, the ele-
ments sample the continuous excitation function E and
the sampled function FS with its aliasing spectrum of
spatial frequencies is radiated. While the higher fre-
quency components are severely attenuated by the low-
pass filter action of the radiation process, we need be
concerned only with the effect of the adjacent pair of
aliasing modes. Thus for the computation of the array
pattern the truncated form

M & = .
E,=5_- % C,expliqa,]

a=—qp,

+1
X Y exp[—rM(a, —a,)], (44)
r=-1
may be substituted for Eq. (15), whereby g,, is chosen,
where the modes make no relevant contribution to the
pattern. To determine M we select the most demanding
case of the highest desired mode ¢,. Then the diameter
of the array would be chosen

q, = B, with e = 0, (45)

depending whether supergain operation is required or
not. Then the mode with r =—1 would be of no concern,
but for » = 1 the mode should be suppressed, i.e.,

q, — M <-— qy
or, with Eq. (45),
M > 2q, = 28. (46)

If, for example, an array of elements with cardioid pat-
tern should be designed to radiate a pattern that ranges
up to the eighth mode without operating in the supergain
region, a normalized ring circumference of 8 = 8 as il-
lustrated in Fig. 4 would be the proper choice. To sup-
press the closest aliasing mode g, — M by 10 dB we de-
termine from the diagram ¢, — M =—10, or M = 18. Then

JULY 1976

Beose=27R/A

A,,(dB)

Figure 4 Mode radiation efficiency of a ring. The point sources,
unlike those in Figure 2, have a cardioid pattern pointing ra-
dially outward.

the element spacing on the circumference 8/M becomes
0.445 \. This agrees with the experience of circular array
designers that the element spacing should be less than
N/2 [22, 23]. For supergain designs, the number of
elements increases with no theoretical limit.

Of course, the introduction of the FFT to the beam-
forming process will impose a similar constraint as with
the Butler matrix. In both cases the number of array
elements should be M = 27, with y an integer.

It may be pointed out that multiplication of C, by
exp[jga] rotates each mode of the excitation function
and hence the pattern by the azimuth angle . This simple
process is another useful feature of the pattern synthesis
from excitation function modes.

The beamforming network and its theory

The digital processing of broadband signals for fast
beamforming with circular arrays consists of the follow-
ing steps:

1. Spectral resolution of the received signals by means
of the Fast Fourier Transform.

2. Modal resolution of the spectral bands by means of
fast mode formers (FMFs).

3. Weighting of the mode outputs by complex multi-
plications.
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Figure 5 Block diagram of the fast beamformer for a circular
array.

4. Pattern synthesis by processing the weighted mode
outputs in fast beam formers (FBFs).

The block diagram of Fig. 5 illustrates how these four
steps are carried out. The array consists of M = 8 ele-
ments counted in {. Radiation is assumed from a distant
source in the direction of element 5. A bank of M
samplers samples the broadband signal at a rate com-
mensurate with the requirements for the highest fre-
quency. Batches of N samples are stored in a bank of
buffers and transferred to a bank of M FFTs, which
deliver N samples of the spectral distribution. Samples
of the same spectral band originating from all the ele-
ments are fed through N FMFs. Each FMF delivers M
mode outputs identified by ¢, and the terminals are
counted in 4. Each mode sample is weighted, requiring
a total of M - N weights. The multipliers are derived ex-
ternally so that beam shapes can be controlled. Finally,
the weighted mode samples are fed through N FBFs
which generate M samples of the angular distribution of
radiation.

The number N = 2" equally spaced time samples x (k)
of the signal x(¢) determines the spectral resolution which
must be adequate to enable the identification of modes
that depend on the phasor concept. However, in most
cases the objective of signal identification requires a
much higher resolution than the beamformer. The FFT
delivers N equally spaced samples s(n) of the frequency
spectrum s(f) according tq the algorithm [24]

s(n) =%NE’ x(k)exp[~2mnk/ N1, (47)
k=0
with
x (k) =N§ s(n)exp[j2mnk/N]. (48)
n=0

Frequency and time spacings Af and At, respectively,
are related by

Af=1/NAzs, (49)

so that the time samples of a signal of frequency f, re-
ceived by element i, take the form

x(k) = x, cos (2mfkAt+ ¢, + ¢,), (50)

or

x(k) =2 {exp[j(2mfkAt + b, + 6,)]

+ exp[—j(2mfkAL + i, + ¢,)]. (51)

Then the spectral samples become, according to
Eq. (47),

1 N~1x
=== [27k(fAr—n/N) + ¢, + ¢,
s(n NZ2 <exp{J[ wk(f n/ ¥, + od,1}
+ exp[—j(2mk(fAt + n/N) + ¢, + cbo)]). (52)

The summations can be expressed by single terms [17]
o) % ( sin [(lfT — ny]
N sin [ﬁ (fT—n)w]

><exp{j[NI;1 (fT—”)W+¢’i+¢o]}

sin [(fT + n)w]
N sin [# T+ n)ﬂ']

+

x exp{—j[N; LT +n)ym+ o, + ¢0]}>. (53)

This equation reveals two responses with the envelopes
sin [(lfT+n)7T] =5~ (54)
N sin [ﬁ (fTin)rr]

and the phases
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N—N‘—l(fT:n)w+¢i+¢o=a‘+¢i+¢0. (55)

The envelopes peak at
fT+n=0,=N,+2N---, (56)

where the solution n =fT refers to the desired response,
while aliasing due to sampling causes the remaining
responses. Also the side lobes of the envelopes cause
undesired responses. Design conditions of FFTs are
well established [24] to avoid aliasing by the choice of
high sampling rates and minimize side lobe responses by
nonuniform weighting of the samples. The important
fact, however, should be noted that the phase of the
signal of the elements ; is preserved in the spectral
samples. This phase results in a rather complex way from
the superposition of the constituent modes of the array
excitation function. To trace the effect of a mode through
the FMF we set

i
‘l’i = 27Tq M (57)
and simplify the spectral expression by substituting Eqgs.
(54) and (55) into Eq. (53). Thus

s(n, i) =%Q {S,” explj(o, +2mqi/M + ¢)]

+ S, exp[—j(o," +2mqi/M + ¢,)1}. (58)

Applying the same algorithm to the spectral sample
processing in the FMF as shown for the time function
samples to generate the spectral samples, we obtain

TN _ -
u(n,h)=7°{Sn U, explj(o, +up, +d,)

+8," U," exp[—i(a," + 1, + &)1} (59)
where 0= h=M— 1, (60)

sin [(g F h)w]

U, = , (61)

- M sin [ﬁ (g /’1)77]

M-—1
M

and u,” = (g = h)w. (62)
With proper design the second term in Eq. (58) is in-
significant. Therefore the mode response develops peaks
only due to the envelope U, at

h—q=0,=M,+2M, -- (63)

Since the sampling theorem requires that |g| < M /2, the
mode responses appear at the terminals as defined by the
solutions

q> 0’ h— q= 0,

(64)
g <0, h—qg=M.

JULY 1976

To generate the beam response we must compensate
for the radiation coefficient of the modes and adjust the
modes to the spatial frequency spectrum of the desired
pattern by weighting each mode by the factor
W, =w, explj»,] =f1, (65)
as derived in Egs. (30) and (42). Since fq =f_q and t—q=
t__q, only M /2 different weights are required for each
beamformer. The weighted mode responses can then be
expressed by

X, _ _ . _ _
v(n,h)=5°{8,, vV, expljlo,” +u, +v,+¢,)]

+8,°V," exp[—i (o, +m, +v,+¢,)]1}
(66)

with
v, =w,U," (67)

In the final stage of the beamforming network the
weighted mode responses are added to form the pattern.
As discussed above, the phase shifting of the modes by
exp[jga] means a rotation of the modes and hence of the
patterh by the azimuth angle a. An inverse FFT performs
the process of phase shifting and adding according to
the algorithm stated in Eq. (48). Thus an FBF performs
the computation

M=1
b(n, m) =3 v(n, h) exp[—2mmh/M] (68)
h=0

and yields as many beam responses as array elements,
uniformly distributed over the azimuth. Since the beams
are about as wide as their separations, good azimuth
coverage can be achieved. With background and single
source radiation distributed over the azimuth, the FBF
provides a sampled panoramic display. Substituting Eq.
(66) into Eq. (68) yields

b(n,m) = % {Sn‘Vn_exp[j (0, + )]
X i explj(u,” +v,— 2mmh/M)]

+8,V," exp[—j(c,” + ¢,)]

M=1
X 3 expl—j(m, + v, + 2mmh/M)]}. (69)
h=0

Cophasal beam excitation and pattern of a circular
array

An example of general interest is the cophasal excitation
of the circular array to generate a beam in the direction
a,, €, [12]. The field strength contribution of an omni-
directionally radiating ring element is

r(e,)
A

7l C

dF:r(a])

—E_(a,)exp[—j Zﬂ]ds. (70)
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Figure 6 Patterns of a cophasally excited circular radiator of
four wavelengths circumference if the mode spectrum is limited
to P=p_. as indicated.

Substituting Eqgs. (20) and (22) into Eq. (70) yields,
under the farfield condition,

dF = 0E(a,)exp[jBcos € cos(a, — a)]dea,. (71)

The expression for E(a,) can readily be derived from
Eq. (71), since all ring elements must be phased so that
their contributions in the direction «, and ¢, add up
cophasally. Thus

E(a,) = E, exp[—jB cos €, cos (a, — ) ]. (72)
Substituting Eq. (72) into Eq. (71) results in
dF = oE, exp{jB[cos € cos(a, — a)

—cos €, cos(a, — a,)]}da,. (73)

Applying trigonometric identities, we derive

dF = oE, exp[jBg sin (a, +v)]de,

where

g = [cos’ € + cos’ €, — 2 cos € cos €, cos (a— ab)]%
and

COS € COS & — COS € COS @

y = arctan (74)

COs € sin @ — co$ €, sin ¢, ’

then

27

F=0E, J exp[jBg sin (a, + y)]da,. (75)
0

Integration yields the real function [18]

F=2no E J,(Bg). (76)

With the beam pointed in the direction o, = ¢, =0, the
azimuth pattern becomes

F,,=2m0 E,J, (23 sin %) (77)

The normalized form of Eq. (77),

Fon =", (26 5in 2), (78)
is plotted by a solid line in Fig. 6. It constitutes the limit-
ing case of an array with M — o elements.

To express the cophasal beam pattern in terms of its
modes, we first derive the modal form of the excitation
function Eq. (72). According to Eq. (41), the mode
coefficients are

E 27
Co=7 fo exp[—jqe,]

X exp[—jB cos €, cos (a, — ;) ] de,. (79)
Solution of the integral yields [18]
C,=E, exp[—jq(a, +7/2)1J, (B cos €,). (80)

Then, according to Egs. (32), (37), and (39) with t_q= 1,

F=2no E, i

¢=—x

Xexp[jq(a—ah)]jq(,B cos eb)‘lq(B cose). (81)

The equality of the expressions of Eq. (76) and (81) can
be shown with the aid of Graf’s formula [25]. The nor-
malized pattern in the azimuth plane for a beam pointing
in the direction «, = €, = 0 can be expressed by

(82)

F=1@) +2 3 P@explipal,  p=ldl.

p=1

note that J* (B) =J.(B) when g = integer [ 18].

Figure 6 also shows plots of patterns consisting of a
limited number of modes. As explained by Fig. 2 the
first order mode and the modes of order higher than 8
have almost negligible effects on the pattern development.

The conventional expression for the array pattern can
readily be formulated by substituting the contribution
F, of an element at the location o, = e, + i27/ M for the
contribution dF of a differential ring element in Eq. (73)
and summing the contributions of all elements:
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F=cE, Y exp{j,B{cos €

i=

X cos (i%+ae—a>—cos €
2
X cos <lﬁ+ae_“b)]}- (83)

Hence the normalized azimuth pattern of a beam pointing
in the direction of element i = 0 at a, = 0 becomes

= ﬁ g exp{jﬁ{cos (i 2[‘;[71 — a) —cos li/l—w]} (84)

The pattern of Eq. (84) has been plotted in Fig. 7.

To express the array pattern in terms of its modes, we
first substitute the mode coefficients of the excitation
function of Eq. (80) into Eq. (15) to obtain the excita-
tion function

o0

ME,
E=5" 3 ewliqla,—a,—m/2)]

g=-x

XJ,(Bcose) > exp[irM(a, —a,}]. (85)
which indicates a mode spectrum of orders ¢ — rM. Then
the pattern is obtained by multiplying the excitation
function modes with the respective radiation coefficients
as derived in Eq. (32)

F,=0oME, Y, expliqla—a,)]
q=—oo

X J,(B cos €,) i exp[—rM(a—a,+7/2)]

r=—x

X Jy_yapy (B cOS €). (86)

Of course, the summations of Eq. (85) and (86) can be
truncated as discussed with Eq. (44). For the azimuth
pattern of a beam, aligned with o, = €, = 0, the truncated
normalized form becomes

Im
F,= 3 expligal/,(B)

=—Qy

1
X ¥ expl—rM(a +m 2)]J(q—rM)(B)' (87)
r=—1

Computer simulation of the fast beamforming
process
To check out the fast beamforming process, a computer
simulation was performed using an APL program. A
single frequency signal was assumed so that the FFTs
yielded the array element signals as derived from Eq.
(72) in the normalized form

s(i) = exp[jﬁ COS €, COS (i;ME-!— a, — ab>]. (88)

JULY 1976

-0.2 t— X
-04
= 06 | | ] | L
- [0 30 60 90 120 150 180
a{degrees)

Figure 7 Patterns of a cophasally excited circular array of four
wavelengths circumference. With eight elements the pattern
takes the shape of the solid line and fast beamformer (FBF)

Tyl

responses are defined by the X points. The dashed line and “‘o
points refer to the pattern and FBF responses for 16 elements.

The M complex terms of Eq. (88) were separated into
their real and imaginary components, which constitute
a 2 X M matrix. Then the matrix terms were transformed
by the FFT routine to yield a 2 X M matrix of mode
terms u(h).

The weights of the mode terms were derived from Eq.
(32) according to Eq. (65) with t_q = 1. The ambiguities
due to sampling will cause all modes g + rM to respond
at the terminal 4 = g. With properly designed arrays only
modes |gq| < M/2 are significant. Therefore modes and
terminals are related as follows:

q=nh, q<M/2
(89)
g=h—M, q=M/2.
The normalized weights thus become
W, = exp[jhm/21J,(B cos €), 0<h<M/2

W, =explj(h— M)m/21J,_,,(B cos €),
M /2= h < M|(90)

Now the complex multiplication of the weights and the
mode terms is performed.

In the final computation the inverse FFT routine is
applied to the weighted modes and yields the beam pat-
tern samples for cophasal excitation.
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To enable comparison with previous plots, the ex-
ample of an array with 8 =4 and M = 8 was chosen and
the responses of the fast beamformer plotted in Fig. 7
as “X” marks together with the theoretical pattern ac-
cording to Eq. (84) shown by a solid line. The deviation
in the back lobe sector is not unexpected, because ac-
cording to Figs. 2 and 6 the modes of order = 4 contrib-
ute significantly to the cophasal beam pattern and can
not be defined by eight elements according to the sam-
pling theorem. Doubling the number of elements not only
results in excellent agreement of the fast beamformer
responses with the theoretical pattern, as indicated by
the “0”” marks and the dashed line, it also results in ex-
cellent agreement of the array pattern with that of the
ring as plotted in Fig. 6.

From the above example, it can be concluded that the
limitation to correctly sample a given pattern by the
FBF technique lies solely in the density of array ele-
ments. If the elements cannot adequately sample the re-
quired excitation function, the pattern will be incorrectly
represented. This limitation applies to the conventional
beamforming technique as well, although the pattern
deviates from the given pattern in a different way.

Note added in proof
While this paper was in proof, two additional references
[26, 27] came to the attention of the author.
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