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Multifont OCR Postprocessing  System 

Abstract: A series of techniques is  being developed to postprocess noisy, multifont, nonformatted OCR data on a word basis to 
1 )  determine if a field  is alphabetic or numeric; 2)  verify that an alphabetic word  is legitimate; 3 )  fetch from a dictionary a set of poten- 
tial entries using a garbled word as  a key; and 4) error-correct the garbled word by selecting the most likely dictionary word. Four al- 
gorithms were developed using a technique called vector processing (representing alphabetic words as numeric vectors) and also by 
applying Bayes  maximum  likelihood solutions to correct  the OCR output. The result was the development of a software simulator which 
processed sequential fields generated by the Advanced Optical Character Reader (in use by the U.S. Postal Service in New York City), 
performed the four functions indicated above, and selected the correct alphabetic word from a dictionary of 62000 entries. 

1. Introduction 
From its  technical debut,  the Optical Character  Reader 
(OCR) has had unique  potential for  text processing ap- 
plications. Its input  processing rate  far  exceeds  that of 
key punch/typewriter input  and  its output is in machine- 
readable  form, unlike that of non-coded information fac- 
simile scanning. Despite  these very  important attributes, 
OCRs  have made  only minor inroads to  the overall text 
processing  operation.  A large part of the reluctance to- 
wards OCR utilization in publication-associated indus- 

Figure 1 Multifont OCR postprocessing system. 
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tries  can  be traced to the highly constrained fonts and 
formats in which the  present  generation OCRs must 
operate. 

When multifont nonformatted optical character recog- 
nition is attempted, problems  that are  not  as prevalent in 
unifont OCRs become  evident. They stem from the 
highly error-prone  character recognition environment 
that is created when OCR operation  is  performed over 
many different alphabetic  and  numeric fonts with mini- 
mum control  exercised over  text conventions  and  typo- 
graphic  print  quality. In scanning such text, discrimina- 
tion  between  confusable character geometries causes a 
nominal five percent character recognition error rate. T o  
cope with such character recognition reliability prob- 
lems, a series of cybernetic error correction procedures, 
referred to  as postprocessing, is required as an  integral 
portion of the multifont nonformatted OCR system. 

A  postprocessing  technology  has  been  developed 
which has  the error correction  power  and flexibility re- 
quired  to  support  multifont,  nonformatted, OCR  text 
processing  applications. The overall  cybernetics design 
is  termed Contextual Word Recognition. The  Contex- 
tual Word Recognition Postprocessor is  driven by an 
OCR  character recognition stream of the type  generated 
by the Advanced  Optical Character  Reader  (AOCR). 
The  AOCR is a multifont OCR  scanner which has  been 
developed by the IBM Federal  Systems and System 
Development Divisions under  contract  to  the United 
States  Postal Service. The optical character recognition 
capability of the system  enables it to handle  a wide range 
of type styles (fonts) and print quality. Character recogni- 
tion is performed in a  dual  channel mode, simplifying the 
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Table 1 Effect of imperfect input. 

Condition 

1. Poor print quality 
2. Multiple fonts ] 
3. Unformatted  information 

4. Excessive  number of 
dictionary  entries 

Result 

5 -  10% Reject or misread  rate 
Mis-segmentation of characters 

Indeterminate  alphameric fields 
Blank or space errors 
Invalid  entry selection 
Large  computational 

requirement 

Example 

B + E  
w + v* 
7354 + IBSA 

*ALE + DALE,  HALE,  MALE, 
PALE,  SALE,  VALE,  YALE 

basic character recognition logic by allowing separate 
and  independent alphabetic  and  numeric depositions  to 
be made  for  each  character’s video image (see Section 2).  

In  the  last  two  years,  the  OCR  error  correction  capa- 
bility of the  Contextual Word  Recognition Postproces- 
sor (CWRP)  has been  extensively tested using actual 
AOCR mail character recognition tapes.  From a heuris- 
tic standpoint,  the  results obtained from  postprocessing 
mail address  data should  be readily extrapolatable  to 
OCR nonformatted  multifont operation  on general 
textlword processing  applications. The problems  noted 
in Table 1 are germane to  both applications. To substan- 
tiate  these performance  projections, and  to possibly 
enhance performance characteristics of the  CWRP, a 
program called Optical Character Word Processing 
Simulation (OCWPS) is now  underway to apply the 
postprocessing  algorithms to general multifont nonfor- 
matted  text. 

Contextual word  recognition postprocessing refers to 
the  series of cybernetic  operations  that  are performed on 
the  OCR  data  stream  at  one level above  character rec- 
ognition, called the word level (or subfield level, see 
Section 2).  By working at  the word level, certain infer- 
ences  and  error rectifications are possible which would 
not be  feasible at  the  character level. The whole  post- 
processing operation  can be conceptualized  schematical- 
ly as a procedure  that  answers  four  questions concerning 
each subfield of OCR  data  (Fig. 1 ) .  In a serial manner 
these  questions may be  posed as 

1. Is the subfield alphabetic (“alpha”) or numeric (de- 
tailed in Section 2) ? 

2. If alphabetic,  does  the  character string contain any 
errors  (detailed in Section 3) ? 

3. If garbled,  what  segment of the  error  correction dic- 
tionary should be  searched  to find the originally 
scanned version of the garbled word (detailed in Sec- 
tion 4) ? 

4. Which entry in the  dictionary  segment that  has been 
fetched is the word that  was  scanned by the  OCR 
and  garbled into its present form  (detailed in Sec- 
tion 5)? 

The remainder of this paper explains in detail the algo- 
rithms used in the  CWRP  to accomplish each of the pre- 
ceding OCR  data manipulations. Each algorithm is dis- 
cussed in terms of the functions it performs in a text 
processing,  multifont,  nonformatted OCR  environment. 
Because  the  results of the previously  mentioned 
OCWPS  study  are not yet  complete, the statements re- 
lated to specific algorithm performance capability reflect 
results previously obtained from those  aspects of the 
postal  problem that  are  the  most analogous to  the  text 
processing  application. 

Frequently used abbreviations 

AOCR  Advanced  Optical  Character  Reader 
AWVR  Alpha Word Vector  Representation 
BOND Bayesian Online  Numeric  Discriminant 
BRM Binary Reference  Matrix 
CRS Crowding  Segmentation 

CWRP  Contextual Word  Recognition Postpro- 

DAP Dictionary  Access Point 
FLP  First/Last Position (fetch  discriminant) 
HSS Horizontal Splitting  Segmentation 
OCR Optical Character  Reader 
OCWPS Optical Character Word  Processing Simu- 

RCML Regional Context Maximum  Likelihood 

V F  Vector  Fetch 
WG Word Group 

cs Catenation Segmentation 

cessor 

lation 

(error  correction  procedure) 

2. Alphameric subfield discrimination 
The first postprocessing  function  performed on  the raw 
recognition stream  output is alphameric subfield discrim- 
ination. In pursuing the design of a nonformatted multi- 
font  character recognition  capability, we have a rather 
unique  “dual  channel”  recognition  processing philoso- 
phy to maintain cost-effective  recognition logic design. 
This implies that  two  separate recognition  “channels” 
are implemented. In  one  channel all characters  are pre- 399 

OCR POSTPROCESSING JULY 1975 



Table 2 AOCR dual recognition streams. 

Line 1 Line 2 Line 3 

Alpha AARON BAKERS SlSO PAGE BL SAINT  LOUIS MO * * I I * 
Numeric 4 * 8 0 *   8 4 6 6 * 5  5150  8466 8* 5*1**  *001* * 0 63113 

Table 3 Geometrically  similar alphabetic and numeric char- 
acters. 

Alpha 0 I I 2 S T B 
Numeric 0 1 1 2 5 7 8 

Table 4 Common  OCR misinterpretations. 
~ ~~~~ 

Alpha word Numeric  interpretation 

SOUTH 80478 or 804TH 
THIRD 781 RD 
FIFTH 01078 or OlOTH 

sumed to be  alphabetic  only and  an  appropriate  alpha 
identification (or reject) is assigned to  each  character 
scanned (including the  numerals). With respect  to  the 
second  channel, all characters  are presumed to  be nu- 
meric  and an  appropriate numeric identification (or 
rejection)  is assigned to  each  character  scanned (includ- 
ing the  alphabetic  symbols). As a result, during the recog- 
nition  stage of OCR processing, the  acceptance of a char- 
acter  as a 0, for example, is not  contingent on discerning 
that  the  scan is not that of an  alphabetic 0, C, or U. Typi- 
cal  output of the  AOCR recognition  unit is  shown in 
Table 2. 

In viewing Table 2, it may appear  that  the  dual  chan- 
nel  recognition approach  has only  accomplished trans- 
ferring the alphameric ambiguity from  the  character  scan 
level up to  the subfield level. (A subfield is  any  set of 
contiguous characters preceded and followed by a blank 
space.)  The remainder of this section  addresses  the res- 
olution of this  problem of alphameric subfield discrimi- 
nation in a generalized  omnifont text processing  environ- 
ment. An  analytic  procedure  is developed and  the  re- 
sults of its  use in the  complex postal address  analysis 
problem are  discussed. 

Alphameric subfield discrimination procedure 
Although seemingly trivial,  reliable  discrimination  be- 
tween alpha  and  numeric subfields in a  multifont charac- 

400 ter recognition environment  is a very  complex process. 

Discrimination between  alpha  and numeric characters 
has always been  one of the most difficult problems in the 
design of omnifont character recognition  equipment. The 
difficulty stems  from  the  fact  that  the  Roman  and  Arabic 
character  sets, to which the  alphas  and  the numerics 
respectively relate,  were  generated independently  with 
no  concern  for avoiding  mutual  confusion. Hence,  over 
commonly used  fonts,  they  share many of the  same 
basic  geometric  shapes as shown in Table 3. 

The  alphameric discrimination  problem on  the  charac- 
ter recognition  level is reflected at  the subfield level dur- 
ing postprocessing.  Many  common alpha  words  can  be 
recognized in part or in total  as numeric subfields. Some 
common  misinterpretations  observed in the postal  ad- 
dress problem are shown  in Table 4. The  converse  also 
holds  potentially for many numeric subfields. 

The  crux of the processing  problem  in  numeric  sub- 
field discrimination is that  real or aliased  numeric char- 
acter strings do  not lend themselves  to  methods of direct 
contextual analysis.  A  numeric subfield is completely 
nonredundant, implying that  any  set of digits creates a 
meaningful data  set. 

Bayesian online numeric discriminant procedure 
When  analyzing the dual  recognition streams which are 
comprised  by the  output  from  the  AOCR, simple  rules, 
such  as determining the  preponderance  per subfield of 
alphabetic or numeric  recognitions, are useful but  are 
not sufficient for subfield alphameric  genre  decisions. 
For about 20 percent of the subfields, the recognition 
quality of the subfield is  the  same  for both channels or 
not sufficiently different to allow  reliable  decision. For 
example, 

a. Alpha  channel SlSO PAGE BL-indeterminate 
alpha subfield 

b. Numeric  channel 5150 8466 8*-indeterminate 
numeric subfield 

In  these  instances  where a recognition  quality differen- 
tial of at  least  two reject characters  does  not exist, the 
Bayesian Online  Numeric Discriminant (BOND) pro- 
cedure is used. 

The  BOND  procedure  seeks  to  achieve alphameric 
inference  capability  by  associating  with a numeric  sub- 
field a form of quasi-redundancy. Redundancy in a  con- 
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textual  sense  means  that  dependencies  exist  between  the 
presence of one  character  and  the  presence of another. 
Normally,  contextual redundancy is thought of  in a hori- 
zontal sense-that  is, between characters  on a line, 
within a word.  An  example of this concept is digram sta- 
tistics. These probabilities of character  juxtaposition 
combinations allow the projection of likely succeeding 
characters from  knowledge of the preceding one.  For  ex- 
ample,  given the alpha  string SPRI-G, N would be chosen 
over z to fill the blank position.  Mathematically,  this 
takes  the form of the  conditional  probability 

P ( a k l a i )  3 ( 1 )  

where ai is observed  and a, is projected as a possible 
following character.  The value of ( 1 )  relates  to  the 
compatibility of the uprc  character pair with respect  to 
English text. 

Clearly  no analog-to-contextual redundancy in the 
form of digrams exists with respect  to numeric subfields. 

Although redundancy of the horizontal  form does  not 
exist  for numeric  subfields, redundancy of a  special 
“vertical” nature  can be  induced by virtue of the  AOCR 
recognition environment. 

Alpha  channel SIOUX FALLS SD S *IO1 vertical 

Numeric  channel 5 100” 56**5 50 5 7101 1 redundancy. 

As  shown previously, for  each  character  scanned  the 
AOCR  creates independent outputs,  the  attempted al- 
pha  and numeric  recognitions. Characteristic of this type 
of dual  recognition system  are 

1 .  Each legitimate  numeric character is misrecognized 
by the  alpha recognition  channel as a reject or as  one 
of a specific set of alphas. (For  example, a 2 is often 
read in the  alpha channel as a Z.) 

2. Each legitimate alpha  character is misrecognized by 
the numeric  recognition  channel as a  reject or as  one 
of a specific set of numerics. (For example,  an S is 
often  read in the  numeric channel as a 5.) 

A concept of vertical  redundancy  can  be  evolved that 
associates  the recognition of a character in one  channel 
with one of a set of misrecognitions  possible in the  other 
channel. This  can be formulated as  the conditional prob- 
ability 

P (ail nj) ( 2 )  

that, given the  scanned  numeric  character nj, the  alpha 
recognition channel  has misrecognized it as ai. The con- 
verse conditional  probability statement, 

P(njlai), (3) 

is  the related probability that, given the  alpha  character 
ai ,  the numeric  recognition  channel has misrecognized it 
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as nj  Probabilities (2) and (3)  are referred to  as  Chan- 
nel Confusion  Probabilities and  are  denoted formally as 

Pce(ail nj) and (4) 
P C ,  bj l  ai) . ( 5 )  

Analysis of AOCR machine performance indicator data 
readily yields the  complete  set of channel  confusion 
probabilities as they relate  to  numerics  (Table 5 )  and  to 
alphas(Tab1e 6).  The inference  potential of these statis- 
tics is enhanced by computing  them  independently  with 
respect  to  uppercase  and  lowercase alpha characters  and 
to  the various conflict and reject characters. 

Using the machine  performance  indicator data  bases, 
one can  proceed to implement the  BOND  procedure. 
The subfields dealt with are  those  whose dual channel 
recognition output is indeterminate with respect  to  the 
reject character criterion. The  BOND  procedure  seeks 
to discriminate alpha  and numeric subfields on  the basis 
of their Bayesian likelihood factors. This implies that  the 
output of both channels is assessed from the  perspective 

P(a1pha readlnumeric  read)  and  (6) 
P (numeric  readlalpha  read). ( 7 )  

Expression (6) is the probabilistic statement  that  assess- 
es  the compatibility of the  alpha  channel recognition 
output with the  assumption  that a  numeric subfield has 
been scanned.  Expression  (7)  evaluates  the  converse, 
that  is,  the compatibility of the numeric channel recogni- 
tion output with the  assumption  that  an  alpha subfield 
has been scanned.  Expressions  (6) and ( 7 ) ,  for  compu- 
tational purposes, can  be expressed in terms of products 
of channel confusion  probabilities. Hence, 

P (alpha  readlnumeric  read) = n P,,(ujl nj) ( 6 4  
k 

j=l 

k 

P (numeric  read)  alpha  read) = n PC, ( njl aj) , ( 7 4  
j =  1 

where k is the  number of characters in the subfield. In 
this perspective, a subfield’s alpha or numeric genre 
stands  out  as  the  quotient of the ratio of Eq.  (6a)  to  Eq. 
(7a).  That  is, 

k 

4 = JJ Pee ( ajl nj)  JJ PC, ( njl aj)  , 

where 4 5 1 implies alpha  and 4 > 1 implies numeric. 
The  inference  inherent in the  formulation of Eq. (8) 

results  from  the  ratio of Bayesian  likelihood factors. NO 
syntactic or contextual information is utilized in the pre- 
ceding  alphameric  discrimination processes.  Hence,  the 
validity of the  BOND  procedure with respect to general 
OCR application can be nominally assumed. 

Using  raw  recognition stream  data  (tapes) resulting 
from mail processed by the  AOCR,  the  BOND  pro- 

j = 1  l k  j = 1  (8) 

40 1 
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Table 5 Channel  confusion statistics for numerics-values of P,,(ajlni) in percent  for  each  numeric  read  total. 

Alpha  read Numeric  read 
Numeric 

reject 

0 1 2 3 4 5 6 7 8 9 * 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
w 
X 
Y 
2 

Alpha 
reject 

Conflict ill 
Conflict I/i 
Conflict N/W 

0 0 
0 0 

1.153 0 
,576 0 
0 0 
0 0 
0 0 
0 0 
0 12.925 
0 0 
0 0 
0 61.565 
0 0 
0 0 

92.795 0 
0 0 
.288 0 
0 0 
0 0 
0 1.361 
,865 0 
0 0 
0 0 
0 0 
0 0 
0 0 

3.746 8.503 
0 11.565 
0 0 
.576 4.082 

1.237 
.336 
0 
0 
.336 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8.389 
0 
.67 1 
0 
0 
0 
0 
0 
0 
0 

16.779 

72.148 
0 
0 
0 

0 
3.553 

0 
0 
SO8 
0 

1.015 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
SO8 
0 
0 
0 
0 
0 
0 
0 

0 

93.909 
0 
0 
SO8 

,625 0 
0 .654 
0 0 
0 0 
0 .980 
0 0 
0 0 

1.250 0 
0 0 
0 0 
0 0 
.625 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 74.183 

1.250 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

38.750 23.856 
0 0 
0 0 

57.500 ,327 

0 
0 
0 
0 

3.297 
0 

1.099 
0 
0 
0 
0 
0 
0 
0 

1.099 
0 
0 
0 

1.099 
0 
0 
0 
0 
0 
0 
0 

93.407 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
,877 
0 

2.632 
0 
0 
0 
0 

2.632 
0 

,877 
0 
0 

92.982 

1.612 0 
25.806 0 

0 0 
0 0 

4.839 0 
0 0 

1.6 13 22.727 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1.613 0 
6.452 2.273 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

58.065 70.455 
0 0 
0 0 
0 4.545 

6.667 
1.333 
1.333 

0 
5.333 
2.667 

0 
0 

1.333 
0 
0 
0 

1.333 
0 

2.667 
1.333 

0 
5.333 
6.667 
2.667 

0 
0 

1.333 
1.333 
1.333 
1.333 

42.667 
0 
0 

13.333 

cedure  has been  extensively tested.  An alphameric  sub- 
field discrimination correctness  rate of 99:6  percent  has 
been  achieved in these offline simulations. There is no 
apparent reason to  assume  that  this same level of accu- 
racy would not hold in a general text  processing applica- 
tion. 

Figure 2 Example of alphameric  discrimination using the 
BOND calculation. 

Line I Line 2 Line 3 

channel 
Subfield I Subfield 2 Subfield 3 Subfield 4 Subfield 5 r v  

~ i n e 3 1  1 1 1 &\ 
402 Subfieldgenre AA NAA AAAN 

Figure 2 is a copy of the  BOND  procedure  output  for 
a typical AOCR read. The step-by-step  calculations  re- 
lated to  the first two  BOND quotients are shown in 
Table 7. 

3. Verification 
In  the  Contextual Word Recognition Postprocessor, 
OCR word verification is formed by means of the Binary 
Reference  Matrix (BRM).  The BRM approach  was 
conceived as a highly efficient, low-storage-requirement 
mode of validating whether a word scanned by the  OCR 
has been  read  correctly, i.e., without  misread characters. 
This function  must be performed for  each subfield that 
has been identified as  alphabetic by the BOND pro- 
cedure (Section 2) .  Logically, the BRM  must  contain a 
representation, in some  manner, of all words  that might 
be anticipated in documents scanned by the  OCR.  This 
“scanning  vocabulary”  may, at times, be  even  broader 
than the ordinary  dictionary. Therefore, conventional 
storage,  access, and  search  techniques  against the  OCR 
vocabulary may not be acceptable, particularly in a real- 
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Table 6 Channel confusion  statistics for  alpha-values of P,,(n,luj) in percent  for  each numeric  read  total. 

Alpha  read 

0 1 2 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
w 
X 
Y 
2 

Alpha 
reject 

Conflict i/l 
Conflict I/i 
Conflict N/W 

,852 
14.286 
86.667 
77.48 1 

.474 
0 

13.953 
0 
0 
0 
0 
0 
0 

8.353 
98.222 

0 
0 
s o 1  
0 
0 

69.444 
,263 
0 
0 
0 
0 

12.775 
0 
0 

4.779 

2.699 3.977 
0 0 
0 1.667 
0 
0 

.763 
1.502 

2.564 0 
0 0 
0 0 

94.298 0 
0 0 
0 ,361 

33.898 1.695 
0 0 
.232 0 
0 0 
0 
0 

1.316 
0 

2.003 2.504 
0  0 

30.732 0 
0 0 
0 0 
0 0 

6.897 0 
2.775 0 

0 0 

10.132 1.762 
97.561 0 

100.000 0 
3.309 0 

3 
__ 

0 
0 
0 
,382 
,158 
0 

2.326 
0 
0 
0 
0 
0 
,556 
,077 
0 
0 
0 
,167 
,379 
0 
0 
0 
0 
0 
0 
0 

.88 1 
0 
0 
0 

Numeric  read 

4 

36.932 
0 
0 
,763 
.079 
0 
0 

.5 15 
0 
0 

7.762 
1.695 
6.111 
1.392 
,148 
0 
0 
0 
0 
0 
0 

5.000 
11.015 
6.897 

12.950 
0 

5 

,142 
0 
0 
0 

7.5 I O  
26.923 
2.326 

,515 
0 
0 
0 
0 

1.111 
,232 
0 
0 
0 
,334 

67.803 
0 
0 
0 
,432 
0 
0 
0 

6 

1.563 
0 
0 
,382 

30.5 14 
0 

53.488 
21.649 

0 
0 

29.061 
0 
,556 
,541 
0 
0 
0 
,501 
,189 

0 
0 
0 
0 
0 
0 

2.707 

7 
.~ 

0 
0 
0 
0 
,079 

1.282 
0 
0 
0 
0 
0 
0 
0 
,155 
0 
0 
0 
,334 
0 

27.548 
0 

29.21 1 
5.616 

0 
3.392 

0 

8 

6.108 
57.143 

0 
.763 

10.119 
5.128 
2.326 

62.887 
0 
0 

1.986 
0 

7.778 
.619 
0 

76.3 16 
0 

37.563 
1.326 
,478 
0 
0 

1.080 
0 
0 
0 

9 

0 
0 
0 
0 
,158 
0 

4.65 1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

50.000 
0 

4.545 
0 
0 
,263 
,216 
0 
,103 
0 

1.762 4.405 5.286 1.322 2.643 1.322 
0 0 0 0 
0 

0 
0 

0 
0 0 0 0 

6.985 ,368 1.471 3.676 3.676 ,368 

Numeric 
reject 

* 

47.727 
28.57 1 
1 1.667 
19.466 
49.407 
64.103 
20.930 
14.433 
5.702 

0 
60.830 
62.7 12 
83.333 
88.399 

1.630 
22.368 
50.000 
56.093 
25.758 
38.535 
30.556 
65.263 
81.641 
86.207 
80.78 1 

100.000 

57.709 
2.439 

0 
75.000 

time  application. The goal of the verification technique is 
to minimize storage and  search time for a large diction- 
ary  associated with an  OCR application. The work dis- 
cussed in this  paper relates  to verification techniques 
operating with a verification word list of more than 
15 000 English words of length averaging  eight alphabet- 
ic characters.  Under  the BRM  methodology, the preced- 
ing word  list has been stored  for verification purposes 
using only 10 000 bytes of storage. (Conventional  alpha 
character  EBCDIC  representation would have required 
120 000 bytes  to  store  the  same word list.) 

Alpha word  vector  representation 
The  BRM is a specialized  application of the  Alpha Word 
Vector  Representation  (AWVR)  technique.  The me- 
chanics of this  technique are shown in Table 8. 

The underlying  rationale of AWVR is that  any word 
or character string  can be mapped into a vector  repre- 
sentation by assigning a unique  numeric value to  each 
letter in the alphabet. One of the most direct  and intui- 
tive  assignment schemes would designate A = 1 ,  B = 2, 

Table 7 Example of the BOND calculation. 

Subfield 1 2 3  
Alpha channel SlSO PAGE BL 
Numeric  channel 5150 8466  8* 

Subfield I 

- (74.2) (61.6) (74.2) (92.8) 
(67.8) (33.9) (67.8) (98.2) 

- = 2.0539 

Result greater  than 1 implies numeric field 

Subfield 2 

- - (0.001)  (0.6)  (1.0)  (3.3) 
(76.3)  (36.9)  (53.5)  (30.5) 

= 0.000 

Result  less than  or equal to 1 implies alpha field 
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Table 8 Alpha  word vector  representation (AWVR) meth- 
odology (A = 1, B = 2,.  . ., Z = 26).  

Step 1 
Vector  mapping 

Step 2 
Vector  attributes 

CORNWALL’ (3,  15,  18,  14,  23,  1,  12,  12,) 

( 3 ,  15,  18,  14,  23,  1,  12,  12) -+ (magnitude,  angle) 
Magnitude = function of characters in word 

= L,’ = (3 ) ’  + (15)’ + (18)’ + (14)’ + (23)’ 
N=l  

+ (1)’ + (12)’ + (12)’ = 1572 

= y  

Angle = function of character position 

= s e c - f s )  = 83.7392 degrees 

Table 9 Binary  reference  matrix. 

Angle range P 

I- I Bit position 1 

0 0  

0 0  

C = 3,  . . ., Z = 26. Any vector  representation of a  word 
so generated  would, in turn, be  uniquely reconstitutable 
in terms of the linear  algebraic vector  attributes of mag- 
nitude  and angle, where  the magnitude  reflects the word 
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sitioning of characters within the word relative  to a ref- 
erence  vector R. A  suitable  form for  the  reference  vector 
is R =  (fi, s, e;..). 

It should be  noted  at  this point that by just using the 
magnitude-angle representation,  an  alpha word of any 
length can be represented uniquely in only four  bytes of 
storage. 

Generation of the binary reference  matrix ( B R M )  
The ability to transform an  alpha word list into its  vec- 
torial image may be looked upon  as  the initial phase of 
BRM generation. Next,  it is necessary to use  the  vector 
representation in an efficient manner  for verification. 
The  BRM itself is  the  array  that  results when “legal” 
magnitude-angle  combinations are mapped into a storage 
table matrix. This, in essence, allows further  compaction 
of what in its vectorial form  was already a highly com- 
pact version of the original alpha word  list. The  BRM is 
therefore a logical arrangement of storage, which asso- 
ciates a  magnitude value  and  an angle  segment range 
with each bit position. The row  dimension of the BRM 
relates  to  the range of possible  magnitude values  that 
can  be  generated  from  the legal word list. Each column 
bit  position relates  to a segment of the  range of angle 
that  the  same  words can similarly generate.  Hence,  the 
existence of a legal word is  denoted by turning on a bit 
position that  contains  the angle  value of the  word in the 
row corresponding  to  its magnitude. This  process  and 
the resulting core configuration are  shown schematically 
in Table 9. 

Verification of an  OCR  word  read is accomplished by 
accessing the bit  position in the BRM corresponding  to 
the magnitude and angle  indicated by the read. The word 
would  be  considered correct  (ungarbled) if the related 
BRM bit position were  ascertained  to be in the “on” 
position. The  computer  operations required to  achieve 
this verification can easily be accomplished within a 
real-time constraint, especially because  the  storage di- 
mensions of the BRM  make it conveniently core-storable. 

Clearly,  the  BRM will verify the  existence of any  cor- 
rectly  read  word. However, special considerations must 
be  taken  into  account  to allow the BRM to perform its 
associated task of garbled (erroneous) word  discrimina- 
tion. The high degree of data  compaction achieved in the 
BRM  has  incurred a decrease in the  uniqueness with 
which a word’s vector mapping can be represented.  It 
will be  recalled, initially, that  each  vector mapping of a 
word - by algebraic definition -yields a unique magni- 
tude-angle data  set.  The  discrete integer data lend them- 
selves well to being isomorphically  mapped into  the 
respective row  designations of the  BRM  (Table 10). 
However,  the angle data, which originally took  the form 
of a continuum (nonintegral values),  cannot be so di- 
rectly accommodated in the  BRM configuration. 
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To allow representation in a BRM,  the angle data 
must  be quantified into range  segments  compatible  with 
the limited number of row  entries offered by a bit string 
of reasonable length. This  causes  the angle part of the 
vector mapping scheme  to  have a degree of non-unique- 
ness  associated with it in the BRM representation.  Un- 
less certain analytical  safeguards are  taken,  the ambigui- 
ty associated with angle  may compromise  the BRM’s 
error word  discrimination  potential. This wouM make 
the BRM unable  to  discern  and discriminate those gar- 
bled words which have  generated, by chance, a valid 
magnitude and  come sufficiently close  to a valid angle 
value to  access  the  same BRM  bit  position as a valid 
word. This possibility can never be precluded entirely;  it 
can,  however,  be  made negligibly small by  setting  up the 
BRM  to  take full advantage of the  sparse  areas of the 
matrix. 

Sparsity can  be considered  almost synonymous with 
BRM error-word discrimination  potential. The basic 
idea of sparseness is to  take  advantage of the  fact  that 
the  BRM  contains  many  more empty (0) positions than 
occupied (1) positions.  Logically, it follows that  the 
greater the sparseness  the  less likely the false verifica- 
tion of error  words  and  therefore  the  greater  the  error 
discrimination  potential of the BRM  methodology. The 
following strategy is used to exploit the  sparseness of 
the BRM. 

Specialization of the BRM vector numbering scheme 
The  alphameric equivalency scheme used to  map  the 
valid word  list  into a vector  representation, which in 
turn is synthesized  into  the  BRM,  takes  advantage of the 
known dictionary  and  OCR misread characteristics. 
With a properly chosen  scheme,  one can  maximize the 
potential that, when an  error  occurs,  the word falsely 
generated by the  OCR will be  rejected as invalid by the 
BRM. To accomplish  this, there  are  two general  restric- 
tions which must be placed on  the numbering scheme: 1 ) 
The numbering scheme  must be chosen  such  that  the 
density of the matrix is not uniform, and a continuous, 
sparse  area of the matrix is identifiable; and 2) the num- 
bering scheme must  be chosen  such  that invalid words 
generate magnitude-angle representations  that  are locat- 
ed in the  sparse  area of the matrix. 

Restriction 1 To some  degree,  the generation of magni- 
tude itself produces a  nonuniformity in the BRM  with 
identifiable areas of sparsity. As an  example, Fig. 3(a) 
shows  the magnitude density function for all combina- 
tions of eight-character fields in which each of the 26 
characters  has  an  equal probability of occurrence. Mag- 
nitude values cluster  toward  the  center of the range  with 
sparse  areas  toward  the low and high magnitudes. How- 
ever,  words in the English language do not have uniform 
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Figure 3 Density function for the magnitude of eight-charac- 
ter fields: (a) L is uniformly  distributed [ P ( L )  = 1/LmaX] for 
general fields: and (b) P ( L )  = 2(  1 - L/Lmax)/Lmax, as shown, 
for English words. 

Table 10 Sample binary reference matrix  using 10 kilobytes of 
storage; conventional storage would require 120 kilobytes. 

Angle 
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character usage. Rather,  character usage varies from 
approxima/(ely 10 percent (e)  to  as little as 0.1 percent 
(4).  By absigning numerical values  to  characters in order 



inverse to  their probability of occurrence,  the density 
function  can  be  substantially  shifted so that  the  lower 
magnitude  portion of the matrix has the higher density, 
with the higher  magnitude  values  becoming  progressive- 
ly more  sparse. 

For  example, if the characters  are  ordered according 
to  occurrence  frequency  and  are assigned  numerical 
values in sequence starting with 1 ,  the resulting  density 
function  can be  approximated  as 

P ( L )  = L ( 1  - "). 
' m a ,   ' m a ,  

When this  density  function is transformed by the magni- 
tude function Y = E:=l LN2 for  eight-character  words 
( M  = 8 ) ,  the resulting  magnitude  density  function [Fig. 3 
(b) ] is heavily populated in the lower portions of the 
matrix  and is increasingly sparse  at  the higher value of 
magnitude. In  fact,  for  the  case of English words  the 
probability of having an occupied  matrix  position above 
one-half the maximum possible  value of magnitude 
(8Li , , )  is essentially zero.  In practice, the BRM is trun- 
cated  for values above 4Lia,. For  the remainder of the 
matrix the majority (85 percent) of the legal words  are 
represented by values below 2Lia,, whereas  the region 
between 2Li,, and 4L2,,, has a high degree of sparsity. 

To  meet the first condition only,  for a BRM number- 
ing scheme  the optimal  solution occurs  when  the  charac- 
ters  are assigned  numerical  values in order  inverse  to 
their probability P ( a j )  of occurrence in the dictionary of 
valid words.  This may be expressed  as 

. . . < Lk-l < L,  < Lk+l < .  . . (9) 

. . .  > P ( a , - , )  > P ( a , )  > P ( a , + , )  >.. ' .  (9' ) 

and 

Restriction 2 The  restriction  that words  garbled by the 
OCR  generate magnitude-angle representations in the 
sparse  area of the matrix can be satisfied by placing two 
conditions on  the numbering scheme:  (a) Because  unre- 
liable words  are made  up of unreliable characters, if 
such (easily misread)  characters  are assigned high val- 
ues, the words which contain these  characters will have 
high magnitude  values. By this  method  reliable words 
cluster in dense  areas of the matrix and unreliable words 
tend to  be found in sparse  areas.  For this purpose  the 
designation of numbers would best be made by ordering 
characters in accordance with their reliability and  as- 
signing the numerical  values in sequence starting  with 1. 
Stated  another  way, the characters should be ordered 
according to their unreliability and assigned numbers in 
inverse sequence starting with L,,,. This condition may 
be  expressed  as follows: 

Unreliability = I: P(ai l  adiet), 
"26 
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where adict is a particular input  character and ai is one 
of the possible output  characters falsely generated by 
the  OCR.  Therefore, (9)  and (9') become 

. . . < Lk-l < L, < Lk+l <. . . (10) 

and 
26 26 . . .< 

P ( a i l a k - , )  < 2 
ifk-1 ifk 

26 

< P(aiIuk+J <. . .. (10') 
i#k+l  

(b)  The condition expressed in the inequalities (10) and 
(10') causes unreliable words  to  map  into  the  sparse 
upper magnitude  portions of the matrix. However, this 
alone is not sufficient to  assure  that garbled words map 
into sparse  areas of the matrix. For  example, it is possi- 
ble for  an unreliable character  to  be falsely read into a 
reliable character and cause  the resulting  false  version of 
an unreliable  word to  be mapped into a lower portion of 
the matrix. What this  probably  indicates is that  there  are 
actually two  measures of unreliability. One is for the  dic- 
tionary word and is expressed by that portion of the 
character  transfer function defined as 

"2fi 

P(ailadict)'  
V a d i c t  

The  other is the unreliability associated with characters 
in the word as read by the  OCR.  This  measure may be 
expressed by that portion of the  character  transfer  func- 
tion, 

a26 

I: P ( a j l a o u t p u t ) '  
aj#%utput 

in which aOUtPUt is a particular  output  character, incor- 
rectly  read by the  OCR,  and aj is  one of the possible 
input characters which caused this  read. It should be 
noted  that  these  two  measures of unreliability are by no 
means  equal  for a particular  character. 

It is necessary,  then,  to formulate a third  condition on 
the assignment of numerical  values to  characters.  The 
purpose of this  condition is to give high values  to  those 
characters in the  OCR  output which have a high proba- 
bility of having been  misread  from other  input  charac- 
ters.  This condition may be expressed  as follows: 

' . . < Lk-l < L, < Lk+l < .  . ' ( 1 1 )  

and 
26 26 

" '  < p( ' j l ak - l )  < ' ( ' j l a k )  
j fk-1  j #  k 

26 

< x P(uj1ak+J <. . .  . (1  1') 
j#k+l  
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The condition expressed in ( 1 1 )  and ( 1  1 ’) tends  to 
cause  words, incorrectly  read by the  OCR,  to map into 
higher values of magnitude  than their original dictionary 
versions. 

Alphameric  equivalency  using all ussignment con- 
ditions 
The  three conditions expressed in the inequalities (9) 
and (9 ’ ) ,  (10) and ( lo’ ) ,  and ( 1  1 )  and ( 1   1 ‘ )  are  not 
necessarily  compatible  with each  other when based  sta- 
tistically on English dictionary  words and normal OCR 
transformation characteristics. A character  such  as t has 
a  relatively high occurrence  rate but is also highly unreli- 
able. The numbering scheme based on relations (9) and 
(9‘) would be  substantially  different from  that  based  on 
relations (10) and (10’) or ( 1   1 )  and ( 1  1 ’ ) .  It is neces- 
sary,  therefore,  to define some  character  measure  that 
reflects the character’s  ranking when all three  conditions 
are  considered simultaneously. Such a ranking will not 
be  optimal for  any  one condition. However,  the total 
effect when  used in word verification with the  BRM 
should  be to  map  incorrectly read words into a sparse 
region of the matrix. 

Condition (9) implies that a character should have a 
high numerical  assignment if its  occurrence  rate ‘ ( a j )  is 
low. This may be restated  to  require  that  character uj 
have a low numerical  assignment if l / P ( a j )  is small. 

Conditions ( 10) and ( 1 1 )  imply that a character  has a 
high numerical  assignment if its unreliability is high. 
This unreliability is defined differently for dictionary 
words than for  OCR  output words. It is possible to  de- 
fine an  average  measure of unreliability for a character 
based  on  both conditions. This  average  measure is ex- 
pressed  as 

where adict is a particular  input character  and aoUt,,Ut is 
the  correct OCR output  for this character. 

For any  large data sample, ‘ (adict)  is approximately 
equal to P(aoUtput). Equation ( 12) may, therefore, be sim- 
plified to 

Combining  condition (9)  with conditions (10) and 
( 1 1 ), we  see  that a character should be  assigned  a high 
numerical value if both 1 / ‘ ( a j )  and  are high and, 

Table 11 Verification numbering scheme. 

Common substitutions 

E + F  
L + l  
M + N  

Number selection 

B + E  
h + n  
G + C  

A 10 
B 17 
C 35 
D 1 1  

4 
45 

G 24 
H 25 +” 

60 
13 
28 

3 
M 50 
G 

r-N 1 
0 20 
P 30 
Q 5 5  
R 2 
S 6 
T 18 

- -  u 23 
v 40 
w 15 
X 16 
Y 21 
2 21 
b 22 

conversely, a low value if 1 / ‘ ( a j )  and u are low. The 
product of these  two  measures is, therefore, a meaning- 
ful condition by which to assign  numerical  values. The 
resulting expression  for  the assignment of numerical 
values could then be 

and 

It should  be  noted that the  conditions (14) and (14‘) 
apply for any uniform numbering sequence  (not  just 1 to 
26) which runs from L,,,JZ to L,,,, where Z is the 
number of characters in the  alphabet  and L,,, is the 
maximum  numerical value in the  sequence. 

Also, because conditions (14) and (14‘) indicate  only 
an ordering of the  characters, it is possible to  select val- 
ues which are not uniformly separated in the numerical 
sequence.  This  causes a deviation  from the statistical 
model by which the conditions were  derived,  but in 
practice it permits shifting numerical  assignments  when 
empirical data indicate  potential  improvement in perfor- 
mance. 

Table 1 1  shows the alphameric  equivalency scheme 
that  was  used  for a dictionary of 15 000 words.  In this 
case LmaX = 60 and  the spacing of numerical values is 
nonuniform. 

When configured in this manner,  the  BRM  has proved 
to be  an effective error word  discriminant tool. Extensive 407 
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testing has been conducted with the BRM  occupied with 
a  word list of approximately 15 000 street names.  Recog- 
nition output of the  AOCR installed in the  New  York 
City  General  Post Office was  tested against the BRM to 
determine  the reliability of its verification processes.  An 
overall misverification rate of less than one  percent was 
attainable. This  is of interest in that only 10000  bytes, 
or 80  000  bits, of core  storage  were used for  the  BRM. 
Of these  80  000  bits, nominally 15 000  were occupied 
(storage  value = 1 ). Based on binomial statistics, if these 
occupied bit  positions  were  randomly scattered  over  the 
matrix,  with no strategy  taking into  account  the  OCR 
misread propensities,  then,  on  the  average,  one  out of 
every five error  words should  strike an  occupied bit 
position, leading to a 20 percent  erroneous verification 
rate.  Hence, in contrast,  the  noted misverification rate 
of less  than  one  percent  stands  as testimony to  the 
strategy of building BRM  to reflect the  character misread 
propensities of the  OCR  and  thereby effect reliable 
discrimination of OCR garbled words. Additional  BRM 
error word discrimination reliability can be accrued 
directly by allocating  additional storage  to  the  present 
10000-byte matrix. 

Further,  the  BRM  concept should not be  viewed as 
applicable only to  OCR word correctness verification. 
Rather,  for  example,  the potential exists  to  adapt  the 
basic techniques  to  perform-in a highly efficient man- 
ner - human operator  keystroke verification. 

4. Dictionary access 
This  section  describes  the mechanics of the  dictionary 
access  or  fetch  procedure.  For  each word that failed to 
verify in the  BRM  (Section 3 ) ,  error  correction  process- 
ing must be entered.  The strategy  used to effect OCR 
error  correction is to  reference  an  error  correction dic- 
tionary and  determine from all the  words listed therein 
which of the dictionary entries is the word that  was 
scanned by the  OCR  and misread into  the garbled  form 
currently being processed. Clearly, a  basic part of this 
operation is the ability to  determine which  segment of the 
error  correction  dictionary should  be  reviewed. Schemat- 
ically this is shown in Fig. 4. The  more  accurately  we  can 
delineate the portion of the dictionary that  contains  the 
correct  form of the garbled word,  the larger the dictionary 
can be  without  compromising the efficiency and real-time 
nature of the  OCR  error  correction  operation. 

When  the verification procedure,  discussed in Section 
3 ,  passes a word to  error  correction processing, the prop- 
erties of an  OCR misread  make it impossible to  formu- 
late a reliable  dictionary access using the normal dictio- 
nary  indexing  word attributes of character alphabetic 
properties  and/or word  length. The  OCR  error propensi- 
ties can  alter  either  or  both of the word attributes in 

408 various  ways. In spite of this,  there is still much poten- 
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tial dictionary entry key information in the garbled data. 
To  utilize a  garbled word as a key to  the  dictionary, 
the  character string  must  be  analyzed in a new  perspec- 
tive. The vehicles for this  analysis are  the  Vector  Fetch 
(VF) and the Word Group  (WG) file organization con- 
cepts. 

Vector  fetch  methodology 
The rationale that underlies the V F  dictionary  accessing 
methodology can  best  be  understood  as a  specialized 
application of classical  statistical  confidence  interval 
theory.  As normally configured, a confidence  interval 
sets up  a range of values within which the  true value of a 
factor being estimated can be said to lie with a predeter- 
mined error tolerance. 

Within the  perspective of the confidence  interval  anal- 
ysis,  the V F  methodology can be configured as a spe- 
cialized application  which uses  the garbled  word data  to 
1 )  estimate  the dictionary  location of the word that  was 
misread by the  OCR,  and 2) give data-fetch relevance to 
the estimated Dictionary  Access Point by generating 
around it a  range of entries wherein the required  word 
information lies with  a  predetermined certainty.  The 
description of the analytical  mechanics  involved in the 
implementation of the preceding dictionary  accessldata 
fetch methodology is logically broken  into three  por- 
tions: 

1. Estimation of the Dictionary Access  Point; 
2. Determination of the fetch width constraints; and 
3. Dictionary  organization. 

Estimation of dictionary access point 
The  Dictionary  Access  Point  (DAP) is the initial esti- 
mate of where  the  correct form of the  OCR garbled 
word lies in the  error  correction dictionary. The vehicle 
for this initial estimation process is a specialized Hash- 
ing transformation applied to  the garbled alpha  character 
string.  Underlying the  Hashing transformation is a spe- 
cially developed  numeric code, in which each  character 
in the recognition alphabet  has a numeric  designation 
that reflects  its absolute  and  its relative OCR recogni- 
tion reliabilities. The particulars of the  alphameric  as- 
signment scheme  are  elaborated later. It presently  suf- 
fices to say that  the numeric  magnitude  assignment is 
related to reliability of recognition of the  alpha  charac- 
ter.  In its simplest  form  this implies that  the more reli- 
able  an  alpha  character recognition, the  more weight is 
put  upon it in the  Hashing calculation. 

Given this alphameric assignment scheme,  the  DAP 
follows as a  summation of positive  integers: 

DAP = LN, (15) 
M 

N=l 
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where L, is the numeric  value  assigned to  the  character 
in the  Nth position of the garbled word,  and M is the 
number of character positions in the garbled  word. The 
key to this technique  is  the derivation of the  appropriate 
alphameric  assignment  scheme. Dual  and seemingly 
conflicting constraints  have  to be accommodated in the 
assignment  scheme.  Essentially, the alphameric  assign- 
ment  used to  compute  the  DAP  has  to 

1. minimize the effect on  the  DAP of intercharacter 
aliasing resulting  from OCR misreads and 

spread  over the range of DAPs. 

The first constraint reflects the desire  that  Eq. ( 1 5 ) ,  
the  Hashing formulation,  be as insensitive as possible to 
the  expected result of OCR substitution and segmenta- 
tion  misreads. The  second  constraint  seeks  to avoid a 
trivial solution  evolving as a result of the first constraint. 
Such  a  solution would be the collapsing of the  dictionary 
so that all entries occupy  a single DAP  or  a very narrow 
band of DAPs. If  this were the case, nearly the  entire 
dictionary would  be  brought  down in each  fetch.  This, in 
terms of real-time  processing constraints, would be an 
unacceptable situation and would defeat  the  intent of the 
VF algorithm. 

The optimal  alphameric  assignment scheme  for  the 
VF can  be  derived by a mathematical approach using 
linear  programming,  which is based on expressing the 
OCR intercharacter aliasing propensities as linear  rela- 
tions. This implies, for  every non-null event in the OCR 
confusion  matrix, a normed distance (Le., an  absolute 
value  relationship) of the  form 

1 1 ~ ~  - X,ll 5 constant, (16) 

where X m  and X ,  are  the numeric  designates of the al- 
phabetic  characters  denoted in the  general case by a and 
p. Existing OCR confusion statistics, when reconstitut- 
ed in the  above  form, yielded 437 separate  expressions 
of the form (16). Standard linear  optimization  formula- 
tion,  however, is not able  to directly accommodate a 
normed distance  as a base variable in the system of con- 
straints or in its objective  function. 

To allow the programming optimization of the VF 
alphameric  assignment scheme  to reflect a  normed  ana- 
log of the OCR misread characteristics, a  mixed-integer 
linear programming formulation  was adopted.  Each con- 
straining  relation of the form (16) is reconstituted  as a 
set of mixed-integer linear programming constraints of 
the form 

2. map the dictionary  word  into a relatively  uniform 

K + Z ,  2 X m  - X ,  + 2KIm, 2 K - Zm,, (17) 

where Ia ,  represents  the  set of integer  variables  con- 
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Figure 4 Partial fetch  process. 

strained to  take  on  the values one or zero; Z a p  is the 
variable over which the  objective function  optimization, 
min (X Pa, Zm,), is performed; Pa, is  the relative weight or 
importance value associated with the  respective con- 
straint;  and K is the  fetch  error  tolerance in units of 
magnitude. In  the  present analysis, Pa, has been set 
equal  to  the  cumulative  occurrence  rate of the  respective 
a, p characters.  Up  to this point,  the  system of optimiza- 
tion equations  has injected into  the analysis  only  con- 
straints  consistent with the first goal above. 

The second  goal, the  avoidance of inordinate degrees 
of clustering of dictionary entries in any range of magni- 
tude, is accomplished by appending  to  the  system of 
OCR misread  inter-relationships (17) a series of con- 
straints which reflects a suitable  dictionary  infra-struc- 
ture  that maintains  salutary  entry-distribution character- 
istics with respect  to all segments of the dictionary. 
These  latter  constraints  are  set up by randomly selected 
legal entries from the dictionary  word list and specify 
that a predetermined  normed distance be maintained 
between them in the final dictionary  vector  structure. 
For example,  the  entries CORNWALL and SHERWOOD can 
be used to yield a vector dictionary  infra-structure con- 
straint of the form 



Figure 5 Numeric  assignment  scheme and substitution ma- 
trix.  The  off-diagonal  numerals  are  the  relative  bccurrence 
rates. 

X , + X , + X , + X , + X , + X , + X , + X ,  

- ( X , + X , + X , + X , + X , + X , + X 0 + X , )  

= X c + x , + x A + 2 x , - x s - x x , - x x , - x x , - x x ,  
> D , .  (18) 

The value of Dl  represents  the normed distance  between 
entries CORNWALL and SHERWOOD in the  dictionary, 
where  an  alphameric assignment scheme has  been  used 
which yields good  dictionary  word-list-spread character- 
istics while not necessarily  meeting all the  OCR minimal 
Hashing distortion constraints  as given  by ( 17).  One of 
the suitable modes  for derivation of this initial alphamer- 
ic assignment scheme is examined below. The optimiza- 
tion-programming array of constraints is completed by 
adding the additional  infra-structure constraints  consis- 
tent with the simple linear format  described by the 
CORNWALL,  SHERWOOD example in (18). 

The initial alphameric  assignment scheme used to 
generate relations of the form (18)  was  obtained by 
treating Eq.  (15)  as a vector magnitude computation; 
that  is, 

M 

Y =  x L,2, (19) 
N= 1 

and by assigning 1  through 26 ( L i ,  1  through 676)  to 
the  characters in the  alphabet. 

Figure 5 indicates  how the numeric  assignments are 
41 0 made in a manner  that is semiconsistent  with that  re- 

quired by the  OCR-misread magnitude-distortion mini- 
mization constraints posed by (17).  The horizontal set 
represents  the  OCR recognition  decision. All correct 
recognitions are indicated by the diagnoal of the matrix. 
All substitutions or rejects  are off the diagonal. For 
example, if an H and  an M are given values of 10 and 9 ,  
respectively, and if an H is misread as  an M, the differ- 
ence of magnitude is 100 minus 8 1, or 19. This would be 
an  appropriate selection because H-M substitution is 
common. 

If the  OCR misread distortion  tolerance is set at 2250 
units [Le., the nominal  value of the  factor K on  the right 
side of the  system of equations  generated  from ( 17)], a 
relatively  simple yet meaningful initial assignment of 
alpha  characters  to  the numeric  designations  indicated 
on  the  axes of the confusion matrix  can  be  derived;  then 
a large number of common  recognition errors  are  con- 
tained within these  5250-unit  Hashing file-address  dis- 
tortion tolerance boundaries. 

The initial numeric  assignment scheme is shown in 
Fig. 5, where  the shaded  portion of the figure has  those 
misreads for which the initial scheme  cannot  compen- 
sate  (the  numbers within the matrix relate  to  the relative 
occurrence  rates of the specific misread errors). Empiri- 
cal analysis  with  this  numbering scheme  showed  that 
although it did not  satisfy all constraints of the form 
(16), it did transform  a word list into a suitably  distrib- 
uted  dictionary  that did not contain high-density  ranges 
with  inordinate  clustering of dictionary entries  For  this 
reason, this  numbering scheme  was  used  to define the 
normed distances  between  the randomly selected  entries 
used  to  formulate  the dictionary infra-structure con- 
straints,  as given by ( 18). 

Other numbering schemes could have been success- 
fully used  for  the  bases of these  infra-structure  con- 
straints.  The  vector magnitude scheme  was used  be- 
cause of its simplicity and our experience with it from 
initial investigations. 

The resulting  formulation of mixed-integer  linear pro- 
gramming constraints  and objective functions  was 
solved using the  IBM Mathematical  Programming Sys- 
tem [ 11. The final output of the programming solution 
yielded a set of alphameric  assignments which mini- 
mized Hashing distortions  due  to  OCR  misread, while 
maintaining a relatively uniform spread of entries  over 
the dictionary. The  alphameric assignment scheme is 
shown in Table 12. 

Determination of fetch width  constraints 
If the garbled word data  were transformed into a magni- 
tude value using the alphameric  assignment scheme 
shown in Table 12, it could be  assumed  that  the garbled 
and  correct  forms of the  same word would map into fair- 
ly similar (close) magnitude  values. If the  correct form 
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of each word had  been stored in the  error  correction dic- 
tionary  with respect  to its  magnitude, then  the DAP 
yielded by (15) would approach  the vicinity of the  cor- 
rect word entry required for completion of error  correc- 
tion processing. However,  to successfully  perform the 
decision process  that underlies the Regional Context 
Maximum  Likelihood (RCML)  error  correction  pro- 
cedure  (Section 5), it is a prerequisite that  the garbled 
form of the  word  be  compared in a  conditional  probabi- 
listic format with the  correct version of that word. 
Hence, the DAP, in itself, is not sufficient for  fetching 
the  data required for  the  latter  phases of OCR  error 
correction.  However,  the proximity of the DAP to  the 
correct  dictionary  entry  makes it a natural  axis  point for 
the  construction of a confidence  interval that will act  as 
the delimiter of a  dictionary fetch range. If properly 
configured, the  fetch range will bring into  core storage  a 
block of address  entries which contains within it, with a 
predetermined error  tolerance, the correct version of the 
garbled  word. As in the preceding example,  the selection 
of +250 units  as a fetch width implies an  error  tolerance, 
i.e., the possibility of the  correct version of the garbled 
word being outside  the  fetch range. 

The  three major OCR error  sources  that must  be 
compensated  for in the  construction of the  dictionary 
fetch  range are I )  reject characters, 2) substitution er- 
rors,  and 3) segmentation errors.  The  fetch is most  ef- 
fective  for the reject and substitution errors. Segmenta- 
tion errors  are statistically less predictable  and therefore 
not  as readily overcome. A garbled word can become 
unretrievable using the V F  if successive misreads within 
the  word additively  reinforce each  other until a magni- 
tude difference greater  than  2250 units is achieved.  This 
situation is comparatively rare, in that  successive mis- 
reads tend to cancel  randomly, to some degree,  the mag- 
nitude  deviation that  each  has added. 

Word group file organizution 
Lengthwise  organization of dictionary files is used to 
complement and reinforce the discrimination  potential of 
the V F  methodology. The  VF is a vehicle that  enables 
garbled alpha  data  to  be given  relevance as a file key. 
There  is,  however,  another powerful discriminant,  name- 
ly, word length. 

Figure 4 shows a schematic of the  fetch  process  for 
the garbled  word. The magnitude of the error word is 
calculated using ( 15) .  For  the  word shown the magni- 
tude is 1 616. The word length is also used to  reduce  the 
number of entries in the fetch. For  OCR garbled data, 
length cannot be used  as  an  absolute discriminant  be- 
cause segmentation drrors may artificially increase  or 
decrease  the word  length. A common approach  to this 
problem is to include in the fetch  not only words of the 
same length as  the  error  word, but  also all words of adja- 
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Table 12 Final  fetch  vector  alphameric  assignment  scheme- 
values  generated using mixed-integer  linear  programming. 

A = 2 5 0  G = 1 9 0  M=217  S =429  Y = 110 
8 = 2 1 3  H=303  N = 5 5  T = 141 Z =429  
C =  248 I = 75 0 = 3 4 0  U = 110 * = 2 0 0  
D =  321 J = 235 P = 121 V = 17 Conflict i / l =  75 
E =  95 K=470  Q = 2 8 4  W=115  ConflictN/W=225 
F = 2 1 3  L = 76 R = 2 7 5  X =429  

cent ( 2 1  character) length and  even  those  that differ by 
as  much  as two characters.  This is done  according  to 
rules which themselves  are length-dependent. The prob- 
lem with  this approach is that it leads to unacceptably 
large fetch sizes (on  the  average, approximately 20 per- 
cent of the  dictionary). 

It is again possible to utilize OCR  error  statistics  to 
improve the  word length discrimination.  Because  word 
length changes  are  caused by some type of segmentation 
(splitting or  catenation), only the  words  prone  to  be 
mis-segmented by virtue of their  composition are  en- 
tered in more than one of the word-length-oriented  dic- 
tionary subdivisions. This leads to  the Word Group con- 
cept.  In a Word Group, all words of a  designated length 
are included, as well as words of  all other lengths that 
have a significant probability of being mis-segmented to 
the  basic length. 

The implementation of Word Group file organization 
is dependent  on  the determination of objective criteria 
by  which  a  word and  its  character composition may be 
evaluated  for  degree of mis-segmentation propensity and 
consequent multiple Word Group  entry  requirements. 
To  allow objective assessment of a dictionary entry 
word group candidacy,  the following statistical  segmen- 
tation threshold  calculation is performed. 

The probability of word segmentation is described 
functionally by Eq.  (20) : 

where  the  bar notation  indicates the complement of the 
segmentation event,  that  is,  the non-occurrence of seg- 
mentation. From empirical data averaged over all word 
lengths, the value of the right side of Eq. (20) can  be 
assessed as 0.6 percent.  It is reasonable,  therefore,  to 
take  as a  threshold for Word Group duplicative entry, 
any  word  whose  cumulative character segmentation 
probability surpasses this nominal value or, in other 
words, 

P (  W,,,) > T = 0.006. (21) 

The relationship in Eq.  (20)  can  be made more mean- 
ingful by posing it  in terms of constituent  character 
events  as 41 1 
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P(W,,,)  = 1 - P(a,,) * P(a,=) * * .  P ( a N G ) .  (22) 

P ( q = )  * P(a,=). * .  PbNE1 < 1 - T .  

By substituting  Eq. ( 2 2 )  into Eq. (21 ) we  obtain 

In  terms of logarithms,  this finally results in a general 
threshold  relationship for Word Group  candidacy, 
namely, 

lllog P(al=) + log p(a ,G)  

+ * . . + l o g  P(aN=)II > II log (1  - TNl. (23 1 
By relating (23) to  the binomial model which  under- 
lies its application, we  can readily solve  for  the levels 
of mis-segmentation propensity  (probability) which 
make a word a candidate  for duplicative entry in one 
Word Group,  two Word Groups,  etc.  This is performed 
as follows. 

Threshold  for  one segmentation event: 
L 

c, II log PbjE)Il ' II 1% ( 1  - T)IL 
j=1 

where L is the  number of characters in a word. Threshold 
for  two segmentation events: 

P(Word,,,.,) = C l  P(aseg)' P(a=)  L-2 
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wherePmeans  the  average  value of P.  Hence,  the  word 
mis-segmentation  threshold for a dictionary  entry  to  be 
entered in two  adjacent Word Groups  becomes 

This  expression  can be put in convenient  computational 
form  for a particular length, e.g., 8: 

Analgous  analytical procedures  can  be applied to obtain 
the  complete  spectrum of Word Group  thresholds, i.e., 
for single entry,  double  entry, triple entry,  etc.,  for  each 
respective word length. 

In a Word Group using the previously derived mis- 
segmentation  propensity thresholds, all words of the 
designated  length are included, as well as  words of other 
lengths that  have a significant probability of being mis- 
segmented to  that length. Therefore, a single word may 
appear in several  Word Groups,  based  on  its  character 
composition. For  example, in Fig. 6 the word CORNWALL 
appears in Word Group 8, its  correct length. CORNWALL, 
however,  has  four  characters  that  are  prone  to splitting 
segmentation (one  character segmented into  two). 
These  are C, 0, N, and W. It  has been determined  that 
there  is a significant probability of CORNWALL being mis- 
read as a nine-character word,  such as CORNVVALL, or a 
ten-character word such  as CIJRNVVALL. Therefore,  the 
word is also included in Word Groups 9 and 10. Simi- 
larly, WHITEHALL is initially in Word  Group 9. However, 
it is also included in Word Group 8 because it has  two 
character pairs, either of which is likely to  catenate  into 
a single character;  these  are HI and LL. 

In  summary,  the dictionary  organization takes  the 
form of autonomous Word Groups based on alpha-field 
length. This implies that all N-character dictionary en- 
tries  are listed together,  where N = 1, 2, 3 , .  . . up  to  the 
length the longest set of dictionary  words being consid- 
ered.  Appended  to  each of these  error  correction dic- 
tionary entry  subsets  are  dictionary  words of a different 
length but  whose  alphabetic composition makes  their 
segmentation  propensity exceed a threshold so that  they 
are likely candidates  for OCR length  distortion  effects. 

The  number of entries in the  fetch  produced by using 
both magnitude and Word Group discriminants has been 
shown in simulation to  be  between six and  seven  percent 
of the  number of unique entries in the total  dictionary. 
This reduction in fetch size is achieved while  having 
only  a small effect on  fetch  accuracy. 

Further fetch discrimination 
With respect  to reduction in dictionary  fetch  size,  Vec- 
tor  Fetch  and  Word  Groups are passive  discriminants. 
This implies that their fetch  reduction potential is 
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achieved by  virtue of dictionary  organization. No signifi- 
cant computational  activity  must be  expended  to utilize 
the discriminatory  potential of these  fetch  constraints.  In 
conjunction  with V F  and  WG, a third  very  effective 
passive  fetch discriminant  can be incorporated into  the 
fetch operation. The third  discriminant requires  that ei- 
ther  the first- or  the last-position character match be- 
tween  the garbled word field and any dictionary entry  to 
be  fetched  into  core  storage.  The  FirstlLast Position 
(FLP) fetch  constraint is of particular significance in 
terms of its reliability,  its  discrimination  potential, and 
the  OCR recognition  anomaly that  underlies  its applica- 
tion. 

The  FLP  fetch  constraint  results  from  the  observed 
fact  that  even when a word is badly garbled, rarely are 
both  the first and  last  letters misread. In referring to a 
word  as  garbled,  we specifically mean to differentiate 
between a subfield that  contains misreads and  one  that is 
a "wipe out." The "wipe out,"  which  normally results 
from  interference or  a nonreadable  font, is a  misread 
that  has  lost all character  content  relevance  and  is basi- 
cally uncorrectable. A  garbled subfield, on  the  other 
hand, contains recognition errors normally  resulting from 
substitution or mis-segmentation. I t  is extremely unlike- 
ly that mis-segmentation will exist strongly  enough at 
both  the beginning and  the  end of a word  to  create mis- 
reads in both positions, if the word is not a  wipe out. 
Analysis of OCR  data  has shown occurrence of simulta- 
neous first- and  last-character misreads in a subfield that 
has  some degree of character  content  to  be  much  less 
than  one  percent.  Thus, it is a working assumption  that 
at  least  the first or  the  last  character is valid in any word 
that is to  enter  and  complete  the  error  correction pro- 
cess. 

Implementation of the  FLP  constraint, shown in Fig. 
7, is achieved by the following file organization: The dic- 
tionary is double-stored,  for  example, using separate 
spools of the disk storage facility. In the first dictionary 
copy, within each alphabetic  grouping  (e.g., first charac- 
ter A, first character B, etc.) , the  entries  are organized in 
Word  Groups  and  then, within each Word Group, divi- 
sion is by entry magnitude. The  second dictionary copy 
is identical to  the first except  that  it is alphabetized 
according to the  last  character in each  entry.  Not only 
does  this configuration achieve, in a passive manner,  the 
FLP fetch discrimination but also it greatly increases  the 
1/0 efficiency. It allows  more  potential  for data  (or 
processing) overlap  and  reduces disk  latency to a mini- 
mum. 

The most important  factor in the  FLP utilization is the 
reduction of fetch size it  achieves. Both  analytically and 
in fetch simulation, the FLP discrimination has been 
shown  to  reduce  fetch size  by an  average  factor slightly 
greater  than six. This  means  that by using in concert all 
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Figure 7 Complete fetch process from double-stored diction- 
XY. 

three  fetch discriminants, the  average block of data  that 
enters  the  error  correction  phase is only about  one  per- 
cent of the dictionary. ( u s e  of simple word length, i.e., 
not Word Group, would  lead to  an  average  fetch size of 
26 percent.)  This is particularly significant considering 
that  no  overt computational effort has been expended 
while  achieving  this  reduction. Table 13 shows  the  ap- 
proximate  fetch  performance resulting from simulation 
when the  three  fetch discriminants are used in concert. 

In  summary,  the  OCR file organization results in the 
ability to greatly  scale down  the computing  potential 
required to  support  the  OCR  operation  without sacri- 
ficing performance accuracy  or real-time operating  char- 
acteristics. 

5. Error  correction 
The final procedure performed  by contextual  word rec- 
ognition  postprocessing is Regional Context Maximum 
Likelihood (RCML)  error  correction.  The  RCML  pro- 
cedure provides highly reliable OCR  error  correction of 
alpha words that  have been  garbled  during  recognition 
processing by character  substitution,  character rejection, 41 3 
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Table 13 Fetch accuracy with 0.75 percent" of file fetched. 

Error  type 

Segmentation 
Average 
recovery Cate- 

Rejection  Substitution  Crowding  Splitting  nation  rate 

Relative 
occurrence 
(%I 

57.1 1 24.53  5.70  6.72  5.94 

Recovery 
rate (%) 98.9  97.4  90.4  76.7  56.5  94.05 

aThis is the average percentage of the error correction dictionary that meets the  triple physical constraint of being at the intersection of 

2. Dlctionary word  group containing the entries related to the garbled word's alpha character string length; and 
1. Magnitude of the data fetch range; 

3.  Matching the garbled  word in at least the first or the last character. 

horizontal  splitting segmentation,  catenation segmenta- 
tion, or crowding  segmentation. 

RCML procedure 
RCML  error  correction  operates  on  the garbled  word 
that failed verification (Section 3 )  and  on  the  set of 
words  fetched from the  OCR  error  correction dictionary 
(Section 4) .  A typical  problem is shown in Table 14. 
The  output of the RCML  procedure is the  determination 
of which of these dictionary entries  corresponds  to  the 
word that  has been  scanned by the  OCR  and garbled 
into  its present  incorrect form. Because  the  OCR  error 
correction  operation must  often be performed  against a 
dictionary  word list as  comprehensive  as  an ordinary 
dictionary,  the  RCML algorithm  must be capable of dis- 
criminating  among  contending  dictionary entries  that 
may differ by as little as  one  alpha  character.  The 
RCML  procedure  must  therefore utilize  more than  just 
the  count of matching characters  between  the garbled 
word and a dictionary  entry in order  to  achieve reliable 
error  correction. 

Error  correction by the  RCML  method is done by 
means of a  conditional  probabilistic  analysis. This ap- 
proach  evaluates  the likelihood that  each of the  respec- 
tive  dictionary entries being considered  could have been 
mapped  into the garbled character string by means of the 
OCR device's error misread  propensities. The  analysis 
uses all data available in formulating  this  probability. 
Physically, the likelihood analysis corresponds  to  the 
computation of an analog distance between  a  dictionary 
word and  the garbled data, weighted by the a  priori 
probability that  the  dictionary  entry would have  oc- 
curred in the  alpha fields being OCR  scanned.  Mathe- 
matically,  this analysis is formulated by the conditional 

41 4 probabilistic statement 

P(dictionary  entry lgarbled alpha  string) 

- - P(dictionary  entry, garbled  alpha string) . (24) P(garb1ed alpha  string) 

The  denominator of Eq. (24) is essentially  a scaling fac- 
tor  and  has  the  same value for all the  entries being com- 
pared with the garbled alpha string. Hence, the  relative 
ranking of each  entry  (i.e.,  the probability of each  entry 
mapping into the garbled alpha string) is based on  the 
value of the  numerator in Eq. (24). Therefore,  for  the 
rest of the  error  correction analysis, the  focus is on  what 
maximizes the numerator. 

By applying Bayes' theorem,  we can  reformulate the 
numerator in Eq. (24) as 

P(dictionary  entry, garbled alpha  string) 

= P(garb1ed alpha stringldictionary entry) 

X P(dictionary  entry). 

T h e  a  priori  factor 
The probability factor  P(dictionary  entry) is called the a 
priori probability of the  event.  For  text processing, it is 
the probability that  the dictionary entry being compared 
to  the garbled character string appears in the  data being 
scanned. A priori data  for word occurrence  rates in gen- 
eral English text may be obtained from  prior  analysis [ 21. 

For more  specialized text  input,  other  sources of a 
priori data  are available. In addition, an  adaptive self- 
teaching approach can  be utilized which allows the dic- 
tionary word entries  to dynamically attain  their  appro- 
priate a  priori values. Detailed discussion of such self- 
teaching  algorithms  is, however,  outside  the  scope of 
this paper. 
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Evaluation of the likelihood factor 
The probability factor 

P(garb1ed alpha stringldictionary entry) (26) 

is called the likelihood factor.  The major computational 
effort of the  RCML  error  correction  procedure  centers 
around  the evaluation of this expression. 

In  the evaluation of the likelihood factor  one must 
capture, in a probabilistic form,  the misread propensities 
of the  subject  OCR.  The conditional format of (26) 
poses  the likelihood as follows: Given a dictionary en- 
try, what is  the probability of the  OCR misread  proper- 
sities having mapped it into  the garbled alpha string? 
Since  OCRs recognize an  alpha field on a character-by- 
character basis  (i.e., they  do not  directly  recognize 
words  as single entities), (26) is really the  product of a 
series of independent probabilistic events.  In  this 
perspective,  there  are  two  categories of OCR misrecog- 
nition that  must  be  addressed:  They  are substitution and 
segmentation. 

Substitution  maximum likelihood analysis 
OCR substitution  manifests itself in two ways. The first 
is character substitution. The recognition  unit captures 
the video image of a single character, but the  features 
required for  alpha  determination  are aliased as  another 
character. Logically,  this  can occur only if there is some 
degree of similarity in shape of the  alpha  characters in- 
volved. Examples of such  letter combinations are 8, D; D, 
0 ;  0, C; I, i; etc.  The  second form of substitution is char- 
acter rejection. As with character substitution, the recog- 
nition unit captures a single character.  However, rejec- 
tion occurs  because of the inability of the recognition 
logic to  relate it to  any  character  or  because more  than 
one  set of alpha determination logic is satisfied by the 
character  features isolated. In this  discussion, all rejects 
are  denoted by an  asterisk (*) . 

From a probability standpoint, both of the misread 
effects  can  be  posed as simple, independent, conditional 
probabilities.  Respectively, character substitution and 
reject  substitution enter (25) as 

PC ( Ljl L,) and (27) 

P,(*lL,). (28) 

These  represent  the probability that  the  alpha  character 
L, is scanned by the  OCR  and  that Lj or * is the  output. 
This probability datum is derived  from a character con- 
fusion  matrix and is prestored, requiring no  computation 
time. The  character confusion statistics  are compiled 
separately  relative to  uppercase  and  lowercase  alpha 
characters. 

An  example indicates  how expressions of the  forms 
(27) and (28) can  be  applied in this Bayesian  decision 
process.  The garbled word  is CDRNWA*L and the  entry 
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Table 14 Basic  error correction/dictionary match  problem. 

Garbled  word 
CDRNWA*L 

Dicfionary  candidates 

CROMWELL 
CHRISTIAN 
CLARIDGE 
COLONIAL 
CORNWALL 
TOWNHALL 
HOSPITAL 
GLENFALL 
NATIONAL 
W Z T E H A g  

from the dictionary fetch which is being tested is CORN- 
WALL. The likelihood factor is given by the probabilistic 
series of independent  events  as  shown in this example. 

Example 

Garbled word = CDRNWA*L 

Dictionary word = CORNWALL 

Likelihood factor = P(CDRNWA*LICORNWALL) 

. . . P,( *I L) . P,( LI L) . 
The likelihood factor  is  the  product of a number of inde- 
pendent  character confusion  probabilities,  which results 
in a relative value  that  can be compared with that gener- 
ated by the  other  words  under  test.  The  entry word 
which has  the highest  probability of being the original 
word is chosen, provided it meets  certain  reasonableness 
criteria. 

Segmentation maximum likelihood analysis 
Segmentation differs from  substitution in that  its inde- 
pendent  events  correspond  to groupings of at least  two 
characters. Nominally, there  are  three  types of segmen- 
tation error.  They  are horizontal .splitting segmentation, 
catenation  segmentation,  and crowding  segmentation. 
The underlying  mechanical factor, which all of these 
segmentation types  have in common,  is  that  they  are 
generated by the improper discernment of character be- 
ginning and  end points. 

Horizontal Splitting  Segmentation (HSS) is  prone  to 
broad (wide)  uppercase  characters, such as W, M, N, U, 
0, and C. The  HSS effect occurs  when  the recognition 
unit is misled into cutting one of these  characters  into 
two parts. Each portion is in turn reviewed by the recog- 
nition logic as if it were a legal character.  This  results in 41 5 
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Table 15 Horizontal splitting segmentation. 

H 

M 

I *  
ME 
MR 
N N  
N *  
* C  
* I  0 
* M  
* N  
* *  

OD 
OE 

several  patterns of character  and/or rejection  misrecog- 
nition. Several of the  more common forms  are indicated 
in Table 15. 

From a  probabiltistic standpoint,  the segmentation 
misread effect can be expressed  as a  dual aliasing effect 
conditioned on  the  occurrence of one of the  set of upper- 
case  letters noted  previously. Functionally, this is indi- 
cated  as 

Obviously,  the evaluation of (26) becomes more com- 
plicated  when the HSS effect must  be considered.  The 
control logic of the calculation  must consider  three  pos- 
sible conditions when  one of the segmentation prone 
characters, Liseg, is  encountered.  The conditions are 

1. Liseg has  given  rise to a  simple  substitution effect of 
the  form 

41 6 
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2. LiSeP has been  improperly segmented, giving rise to 
an  HSS effect of the form 

3 .  LiSep has been  properly  recognized and  outputed, 
givmg rise to 

P c ( L i s e g l L i s e g ) .  (32 )  

The  presence of this  last possibility is especially difficult 
to discern correctly  because  the most  common type of 
character  HSS  (Table 15) recreates itself along with an 
additional spurious  character.  The  analytic details of the 
inclusion of HSS in the evaluation of the likelihood fac- 
tor  (25)  are discussed later so that it can  be  elaborated 
upon in the  perspective of catenation  and crowding seg- 
mentation errors. 

Catenation Segmentation (CS) is nearly the mirror 
image of HSS. It  occurs principally among  closely 
spaced  lowercase  characters. Mechanically, CS evolves 
when the recognition unit is unable to discern in the  scan 
the  presence of two individual characters.  Hence,  the 
AOCR recognition logic proceeds  to  process  the  charac- 
ters in a logically catenated  manner. 

This effect occurs mainly due  to  characters printed in 
a stylized manner  or by crowded  typewriter slugs. Table 
16 contains several of the most C S  prone letter combi- 
nations.  In a probabilistic  format the  CS  event can be 
posed as 

PC (L#&i+l) and (33 )  

P,(*IL,L,,,). ( 3 4 )  

The  latter  event may be  particularly difficult to isolate 
while evaluating (26) because Li itself may have a high 
propensity  for mapping into an asterisk (Le., being 
rejected)  and is therefore suggestive of a plain substitu- 
tion  instead of a CS. 

Crowding Segmentation (CRS) differs from HSS and 
CS error  types by not affecting word length. The  causa- 
tive factors related to  CRS  are  character spacing and 
juxtaposition. A  potential CRS event  occurs when the 
recognition  unit  isolates two  characters  but,  because of 
their proximity to  each  other, misassigns the segmenta- 
tion point. This effectively segments  portions of one 
character  into  the video representation of the  other. A 
misread results if the  addition of the neighboring charac- 
ter segment either 1 )  creates a composite character  that 
triggers the recognition logic of a different character  or 
2 )  interferes with the recognition analysis  and leads to a 
reject (*) output. 

The overriding factor behind CRS is character geome- 
try. Only  relatively few of the 676 possible  diagrams are 
prone  to “snowballing”  a  print-crowding effect into a 
character  misread,  as  described previously. An  example 
of such  a character pair and  the evolution of a CRS 
event is shown in Fig. 8, where  the re digram maps into 
an n* combination. It should be  noted  that  the  observed 
video image would not have evolved if the subject di- 
gram  was er or ri. The  appropriate confusion data related 
to  the  CRS  events can be quantified in the  form 

P C  (LjLj+llLiLi+l) ’ (35 )  

To structure  an effective and efficient evaluation 
methodology for  the likelihood factor (26) ,  one must 
stress  the commonality of its  possible constituents. Es- 
sentially, each of the  candidate aliasing effects  can be 
represented  as a  confusion  probability. The only  addi- 
tional factor  that must be  accommodated in the  analysis 
is that, unlike the  treatment of simple substitution  shown 
in the  example, a  predictable one-to-one  correspondence 
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Table 16 Catenation  segmentation. Machine recognition + n Machine recognition + * (rejection) 

rv 
so 
tn 

e 
lo 

tu ") u ;;} m 

:g c 
ne- n 

c i  

dy- d or 

f r  ' 
ir 
lo 
mr 
or 
ra 
rg  
ro 
rs 
s u  

'Y- Y 

re-  v 

* * * * *  * * * * * * *  
* * * * *  * * * * * * * * *  
* * * * * * * * * * * * * * *  * 
* * * * * * * * * * * * *  * *  
* * * * * * * x * * * *  * * * *  
* * * * * * * *  * * * *  
* * * * * *  
* * * * *  

* * * * *  

* * * * *  
* * * * *  

* * * * *  
* * * * * *  
* * * * * *  

* * * * *  * * * * * * *  
* * * * *  
* * * * *  

* * * * * * *  

* * * * *  
* * * * * * *  

* * * * *  
* * * * *  
* * * * *  

* * * * *  
* * * * *  

* * * * * *  

* * x * *  

* * x * *  

* * * * *  
* * * * *  

* * * * *  
* * *  
* * *  

* * x * *  

* * * * *  
* * *  

* *  
* *  

* * *  * * * x *  

* * * * * * * * * * x * *  

* * * * * * * * * * * * X *  

* * * * * * * * * * * * *  

* * * * * * * * x * * * * * *  

* * * * * * * * * *  

* * * * *  
* * * * *  
* * * * * *  
* * * * * * * *  

. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  
* * * * * * * * * * * * * * * * * * *  

* * * * * * * * * * *  

* * *  
* *  

* * * * * * * *  
* * * * * *  * * * * * * * * * * *  
* * * * * * * * * * * x * * * * * *  
* * * * * * * * * * * * * * * *  
* * * * * * * * * * e * * * *  
* * * * * * * * * * * * *  

e m - p  Figure 8 Binary  video  scan of a character pair  that  resulted in 
crowding  segmentation. 

between characters in a dictionary entry and the garbled 
data field no longer  strictly  holds. This, of course, fol- 
lows because  the  occurrence of an HSS error in one 
character of a  dictionary  word creates two characters in 
its garbled representation.  The  converse holds for CS 
error. Implicit in each of the previous  mis-segmentation 
possibilities is the  requirement  to realign the remainder of 
the garbled address  data  to  compensate  for  the  character 
misalignment effect incurred due  to  the  presence of a 
segmentation error. 

To configure a  reliable algorithm that  accommodates 
the segmentation considerations, two  innovations  must 
be appended  to  the  standard  procedures,  as applied in 
(26),  when  evaluating the likelihood factor.  The innova- 
tions  are exception character-pair flagging and the use of 
regional context.  These innovations are explained as fol- 
lows. 

Exception  character  and  character-pair  flagging 
There  are  about six HSS prone  characters and 30 to 50 
CS prone  character pairs. By themselves, they  consti- 
tute only a small part of the  alpha  composition of the 
dictionary. Unless a flag is encountered,  the likelihood 
factor analysis proceeds  as if character substitution  were 
the only garbling factor  to be considered. Only  when a 
flag is encountered  does  the routine branch into the  spe- 
cial logic for possible  segmentation error  occurrences. 

Special characters can  be  inserted into each  word 
where its  segmentation prone  characters  or  character 
pairs  exist. This,  however, has the  drawback of increas- 

ing the average word length and  destroying the  compact- 
ness of the  dictionary, which is important  for 1 /0  effi- 
ciency. Hence,  to  accommodate  the flagging and storage 
requirements, a  special alpha  character  storage  conven- 
tion is adopted.  Each  alpha  character is stored using 
only five of the eight bits usually used to  store a charac- 
ter.  The  other  three bits are then  used to provide eight 
flag-code combinations,  two of which are delegated for 
HSS character  and CS character pairs. 

If,  for display purposes,  the  HSS  code is denoted by 
"!", then,  for  example,  the word WALSTON, which con- 
tains both HSS and CS occurrences, would be stored in 
the dictionary as 

Use of regional  context 
The key to HSS and CS flags being used effectively in 
the likelihood factor computation is regional context. 

Unless  an  alpha  character in a  dictionary entry is pre- 
ceded by a flag, it is assumed that it enters into the likeli- 
hood factor analysis as  an  event of the form PC (LilLj), 
where i = j is among the possibilities. This implies that 
only the possibility of simple substitution is being as- 
sumed. If a flag  is encountered in the dictionary entry, 
then  the  analysis  associated with the likelihood factor 
must address, in addition to simple substitution,  the  pos- 
sibility of segmentation. The use of regional context now 
enters  as follows. 41 7 
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Test 
w + v  

word-CORNWALL A - V T  

cases 
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next 

Input- word CDRNVVALL w”*vv_f A - b A  
W A + A  

Region of 
segmentation 
uncertainty 

Figure 9 Example of regional context. 

Assume  that  the flag indicates the possibility of HSS. 
At this point,  three possibilities exist; they are 

1 and 2: Pc(LjlLiseg); 

3 : PC byj+, ILiseg), 

where j =  is,, is included. To  proceed with the evaluation 
of the likelihood factor, a decision must be made be- 
tween events 1 and 2 and  the HSS event posed by 3.  
The decision  mechanism rests  on  the  use of regional 
context. 

If condition 3 is correct, then the remainder of the 
garbled character string  must  be  left-adjusted one posi- 
tion. This changes the existing correspondence  between 
the  characters of the garbled alpha string and  the dic- 
tionary entry.  The change (shift) in regional context  is 
reflected in terms of the likelihood factor  constituents  as 

Pc(LjLj+IILisep) * ‘c(‘j+2ILi+l). (36) 

If condition 1 or 2 is correct, then the regional context 
is not disturbed and  the likelihood factor  constituents 
corresponding  to  those in (36) are 

(37) 

The decision  concerning  the presence or absence of 
HSS then follows  by  whichever  formulation, (36) or 
(37), yields the larger  probability  value. 

Similarly, if a flag denotes  the  presence of a character 
pair that is prone to CS,  then 

would denote  the related constituents of the likelihood 
factor  under that  supposition. This  expression would be 
evaluated  relative to 

(39) 

which is the likelihood factor evaluation  progression that 
would exist in the  absence of a CS misread. The deci- 
sion criterion,  as with HSS misread, would be based on 
the relative  probabilities of the  respective  expressions. 
Figure 9 further illustrates the implementation of region- 
al context in segmentation type  error  correction. 41 8 
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For crowding  segmentation, the evaluation of the like- 
lihood factor in (26) follows by also  denoting the possi- 
ble CRS  prone  character digrams in the dictionary en- 
tries by a special character.  The evaluation  progression 
at this  point then  considers  the  two possibilities, 

P,(Lj+llLi+l) . P,(LjILi) and 

Pc(Lj+lLjILi+lLi). 

Because,  unlike the HSS and  CSS  evaluations,  no 
change in character string  length  must  be taken into ac- 
count,  the  choice of how to  treat  and include the digrams 
Li+&, in the likelihood calculation  follows  from which- 
ever of the  above  expressions yields the larger  prob- 
ability. 

Programming  expediencies for decreasing  computing 
requirements 
The  RCML  procedure may have  to  be  evoked many 
times during the  OCR processing of an  average  docu- 
ment. It  therefore  becomes  important  to minimize the 
related  computation.  A  substantial decrease in comput- 
ing requirement is accrued by appending to  the  basic 
error  correction algorithm a comprehensive series of dic- 
tionary candidate screening processes.  In  concert,  these 
logical procedures actually increase algorithm reliability 
while decreasing  computing  time. 

The package of logical screening processes includes  a 
premature termination threshold  and a Go/No Go 
threshold. 

Premature  termination  threshold 
Premature termination  effects  a  major decrease in com- 
putation  performed by the  error  correction function by 
terminating the consideration of a  dictionary entry  as 
soon  as  its likelihood factor  drops below a fixed percent- 
age of the largest likelihood factor  obtained in the analy- 
sis so far.  Recall that  the likelihood factor (26) mea- 
sures, in a  probabilistic  fashion, the  degree of match or 
mismatch between a garbled word and a dictionary-fetch 
entry.  The evaluation format of the likelihood factor 
lends itself naturally to  this  type of thresholding; it can 
be evaluated as a  series of multiplications of confusion 
probabilities (values  between 0 and 1 ). As with any 
multiplicative series of terms less than  one,  each  succes- 
sive  multiplication decreases  the value of the existing 
product. 

The normal tolerance level is taken  to be 10 percent 
of the largest likelihood computed so far in the analysis. 
This threshold  markedly decreases  computation,  once 
the  RCML  procedure  has  encountered  the  correct dic- 
tionary  entry. 

Following is an example of the thresholding imple- 
mentation. If it is assumed  that  an  80-percent likelihood 
factor is the largest so far in the analysis, then  the toler- 
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ance level is eight percent.  Hence,  for  the  error  correc- 
tion routine  to  continue, consideration of any forthcom- 
ing entry  requires  that  the entry  maintain  a likelihood 
value of at  least  72  percent.  Most dictionary entries 
show  a sufficient incompatibility within one  or  two  char- 
acters  to  drop below the  tolerance level and are  there- 
fore terminated. 

GolNo Go threshold 
This thresholding operation is akin to  the  premature 
termination  criterion. It  focuses,  however, on the  other 
end of the probability  spectrum. It allows  consideration 
of a dictionary  candidate  to be terminated  as soon as it 
drops below an  absolute minimum threshold. Its value 
follows from  the  fact  that  no  matter how dissimilar a 
garbled  word  and a dictionary entry  are,  the likelihood 
factor is computable. 

Fortunately,  such a likelihood computation  quickly 
converges toward zero. By placing a lower limit on  the 
acceptable likelihood values,  the term-by-term  evalua- 
tion of an only  casually  related dictionary entry can  be 
terminated if it drops below the threshold. 

Performance curve 
In concert,  the GoJNo Go and the  premature termina- 
tion thresholds make  a significant difference in the num- 
ber of operations  that, on the  average,  are performed 
during an  error  correction  operation.  Figure 10 shows 
the cumulative operations performed for  the maximum 
likelihood computation  with and without  thresholding. 
This graph reflects an  average  case with the correct en- 
try  encountered halfway through the  search.  It should be 
noted that, of the  entries which enter  error processing, 
only about  one in 20 is processed  beyond the Go/No Go 
and premature termination  thresholds. 

Although the discussion and analysis of the evaluation 
of the likelihood factor  have been posed in terms of a 
series of multiplicative operations, in reality, for  further 
computational efficiency, they are performed in the 
computer  as  an addition of prestored logarithmic values 
(logs) of probabilities. This procedure replaces  the rela- 
tively slow operation of multiplication with the high- 
speed add instruction. In itself, the use of the  addition of 
logs of probabilities,  instead of direct multiplication, 
decreases  the computational  requirements by a factor of 
about six. By virtue of all the  computational expedien- 
cies,  the  complete  Contextual Word  Recognition  Post- 
processor can be  accommodated  for many text  process- 
ing applications on relatively small processors. 

Reasonability criterion 
At the completion of RCML processing two possibilities 
exist: Either 

1 .  no candidate  entry has passed  the threshold  criterion 
or 

JULY 1975 

Cumulative number of dictionary 
entries processed 

Figure 10 Comparison of computational  performance, at 10 
characters per entry, (a) with and (b)  without thresholding. 

2. one  or more  dictionary entries  have completed 
RCML processing. 

If condition 1 exists,  then  no  error  correction is possible 
and a  reject is indicated. In most cases, this  situation is 
the result of the  correct form of the garbled  word not 
being present in the  data block fetched. Condition 2 is 
the  more common  case. I t  indicates, from a 1ikelihood;of- 
match  standpoint,  that  one  or  more of the  dictionary 
entries reviewed might have been  misread into  the gar- 
bled word. 

The  correct  choice may or may not be in the final set 
of dictionary  candidates. To control,  at this  point, the 
potential for miscorrection,  a  reasonability  criterion re- 
quires a  match in at  least 50 percent of the  character 
positions for a final candidate  to be accepted  as  the  cor- 
rect  form of the garbled  word. The  output of the  RCML 
procedure is reviewed in the  order of high-to-low proba- 
bility score,  and  the first to pass is  accepted. If none of 
the final candidates  passes, a reject is indicated. 

The  accuracy  and reliability of RCML  error  correc- 
tion has been assessed by offline simulation using recog- 
nition tapes  from  the  AOCR.  The following was ob- 
served in a run  against a dictionary of 62000 entries 
when  the  correct word was  present in the  fetch: 

a. 97.7  percent  correct; 
b. 0.7 percent rejected  (rejection implies no dictionary 

candidate  was  accepted); 
c. 1.6 percent  incorrect (incorrect  selection implies the 

wrong word was associated with the  garbled word). 

RCML error correction  technique  simulation  results 
As mentioned  previously, the  RCML  error  correction 
procedure was  applied to  actual  AOCR garbled mail 
address data. Via this technique, substitution, character 419 
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Table 17 AOCR garbled words  corrected by Bayesian  technique. 

Garbled word 

LONISVE*L 
NEWI*RK 
MICHIAAN* 
COL*BUS 
*OWAM 
TH*RD 
ATLAN*IE 
*O**ERCE 
ERONX 
AVENUE  OF 

AMRICAS 
GRATNECTK 

BROAD**NY 
H*IDSON 
RANKLIN 
MONI*MENT 

Comment  Correct  word  chosen 

Substitution 
Substitution 
Splitting  segmentation 
Substitution 
Rejection 
Rejection 
Substitution 
Re.iection 
Substitution 
Catenation 

Catenation 

Splitting  segmentation 
Splitting segmentation 
No read 
Splitting segmentation 

Performance on error words 
Correct selection -97.7% 
Rejection - 0.7% 
Incorrect selection - 1.6% 

segmentation 

segmentation 

LOUISVILLE 
NEW  YORK 
MICHIGAN 
COLUMBUS 
IOWA 
THIRD 
ATLANTIC 
COMMERCE 
BRONX 
AVENUE OF THE 

AMERICAS 
GREATNECK 

BROADWAY 
HUDSON 
FRANKLIN 
MONUMENT 

rejection,  horizontal splitting segmentation, catenation 
segmentation,  and crowding  segmentation errors  were 
treated.  The  results contained in Table 17 demonstrate 
the effectiveness and flexibility of the technique. 

6. Conclusions 
The  Contextual  Word Recognition Postprocessor  tech- 
nology provides a flexible,  real-time,  reliable system  for 
performing  multifont OCR  error  correction.  Integrated 
into a multifont OCR  architecture,  these  cybernetic  pro- 
cedures offer a new avenue  for overcoming the reliabili- 
ty  problems that  have plagued operational  implementa- 
tion of omnifont  recognition  processing. 

Tests conducted  over a period of a year  have  shown 
that  the  Contextual Word  Recognition Postprocessor is 
a significant advance in the  state of the art in automatic 
error  correction.  In light of the published results of 
Damereau  [3],  Vossler [4], the  IBM  Research Division 
[SI, Szanser [ 6 ] ,  and  Hahn  [7],  the  error  correction 
technology discussed in this paper offers two unique 
advantages. 

First,  the  Contextual Word Recognition Postproces- 
sor offers a computationally  practical and easily imple- 
mentable  method of coupling a large,  almost  open-end- 
ed,  error  correction dictionary  with later  phases of the 
automatic  error  recovery  process.  This  is achieved  using 
the Binary Reference  Matrix  for verification purposes 
and  the  Vector  Fetch/Word  Group methodology for 

420 accessing the  error  correcting  dictionary.  The  error 

correction dictionary  used in our  tests  was  more  than six 
times  larger than  the largest such file used  by any of the 
referenced experimenters. 

Second,  the Regional Context Maximum  Likelihood 
error  correction  procedure yielded by far  the highest 
error recovery reliability of any of the  above  techniques. 
The mis-association rate of the  RCML  correction  was 
less  than half the  rate  reported by  any of the preceding 
investigators. 

Similar enhancements in the  state of the  art of auto- 
matic error  correction  can  be  assessed relative to pub- 
lished results related to digram and trigram inference 
techniques  for effecting garbled word error  recovery. 
Direct “apples-to-apples” comparison of contextual 
word recognition is  more difficult, however,  because 
work in this vein is mainly posed  as recognition en- 
hancement  instead of error recovery and  no dictionary 
word list as  such  is used.  Published results related to 
digram  and  trigram methods,  however, clearly  indicate 
compromised reliability and  deterioration of perfor- 
mance  when  large  vocabularies must  be used. The major 
published results in digram and trigram techniques  are 
Vossler [4], Carlson [8], Raviv [9], Cornew [lo], and 
Riseman [ 1 1 1. 
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