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Multifont OCR Postprocessing System

Abstract: A series of techniques is being developed to postprocess noisy, multifont, nonformatted OCR data on a word basis to
1) determine if a field is alphabetic or numeric; 2) verify that an alphabetic word is legitimate; 3) fetch from a dictionary a set of poten-
tial entries using a garbled word as a key; and 4) error-correct the garbled word by selecting the most likely dictionary word. Four al-
gorithms were developed using a technique called vector processing (representing alphabetic words as numeric vectors) and also by
applying Bayes maximum likelihood solutions to correct the OCR output. The result was the development of a software simulator which
processed sequential fields generated by the Advanced Optical Character Reader (in use by the U.S. Postal Service in New York City),
performed the four functions indicated above, and selected the correct alphabetic word from a dictionary of 62000 entries.

1. Introduction

From its technical debut, the Optical Character Reader
(OCR) has had unique potential for text processing ap-
plications. Its input processing rate far exceeds that of
key punch/typewriter input and its output is in machine-
readable form, unlike that of non-coded information fac-
simile scanning. Despite these very important attributes,
OCRs have made only minor inroads to the overall text
processing operation. A large part of the reluctance to-
wards OCR utilization in publication-associated indus-

Figure 1 Multifont OCR postprocessing system.
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tries can be traced to the highly constrained fonts and
formats in which the present generation OCRs must
operate.

When multifont nonformatted optical character recog-
nition is attempted, problems that are not as prevalent in
unifont OCRs become evident. They stem from the
highly error-prone character recognition environment
that is created when OCR operation is performed over
many different alphabetic and numeric fonts with mini-
mum control exercised over text conventions and typo-
graphic print quality. In scanning such text, discrimina-
tion between confusable character geometries causes a
nominal five percent character recognition error rate. To
cope with such character recognition reliability prob-
lems, a series of cybernetic error correction procedures,
referred to as postprocessing, is required as an integral
portion of the multifont nonformatted OCR system.

A postprocessing technology has been developed
which has the error correction power and flexibility re-
quired to support multifont, nonformatted, OCR text
processing applications. The overall cybernetics design
is termed Contextual Word Recognition. The Contex-
tual Word Recognition Postprocessor is driven by an
OCR character recognition stream of the type generated
by the Advanced Optical Character Reader (AOCR).
The AOCR is a multifont OCR scanner which has been
developed by the IBM Federal Systems and System
Development Divisions under contract to the United
States Postal Service. The optical character recognition
capability of the system enables it to handle a wide range
of type styles (fonts) and print quality. Character recogni-
tion is performed in a dual channel mode, simplifying the
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Table 1 Effect of imperfect input.

Condition Result Example
1. Poor print quality 5-10% Reject or misread rate B—E
2. Multiple fonts Mis-segmentation of characters W — V¥
3. Unformatted information Indeterminate alphameric fields 7354 — IBSA

4. Excessive number of
dictionary entries

Blank or space errors
Invalid entry selection
Large computational

- requirement

*ALE — DALE, HALE, MALE,
PALE, SALE, VALE, YALE

basic character recognition logic by allowing separate
and independent alphabetic and numeric depositions to
be made for each character’s video image (see Section 2).

In the last two years, the OCR error correction capa-
bility of the Contextual Word Recognition Postproces-
sor (CWRP) has been extensively tested using actual
AOCR mail character recognition tapes. From a heuris-
tic standpoint, the results obtained from postprocessing
mail address data should be readily extrapolatable to
OCR nonformatted multifont operation on general
text/word processing applications. The problems noted
in Table 1 are germane to both applications. To substan-
tiate these performance projections, and to possibly
enhance performance characteristics of the CWRP, a
program called Optical Character Word Processing
Simulation (OCWPS) is now underway to apply the
postprocessing algorithms to general multifont nonfor-
matted text.

Contextual word recognition postprocessing refers to
the series of cybernetic operations that are performed on
the OCR data stream at one level above character rec-
ognition, called the word level (or subfield level, see
Section 2). By working at the word level, certain infer-
ences and error rectifications are possible which would
not be feasible at the character level. The whole post-
processing operation can be conceptualized schematical-
ly as a procedure that answers four questions concerning
each subfield of OCR data (Fig. 1). In a serial manner
these questions may be posed as

1. Is the subfield alphabetic (“alpha’’) or numeric (de-
tailed in Section 2) ?

2. If alphabetic, does the character string contain any
errors (detailed in Section 3)?

3. If garbled, what segment of the error correction dic-
tionary should be searched to find the originally
scanned version of the garbled word (detailed in Sec-
tion 4)?

4. Which entry in the dictionary segment that has been
fetched is the word that was scanned by the OCR
and garbled into its present form (detailed in Sec-
tion 5)?

JULY 1975

The remainder of this paper explains in detail the algo-
rithms used in the CWRP to accomplish each of the pre-
ceding OCR data manipulations. Each algorithm is dis-
cussed in terms of the functions it performs in a text
processing, multifont, nonformatted OCR environment.
Because the results of the previously mentioned
OCWPS study are not yet complete, the statements re-
lated to specific algorithm performance capability reflect
results previously obtained from those aspects of the
postal problem that are the most analogous to the text
processing application.

o Frequently used abbreviations

AOCR  Advanced Optical Character Reader
AWVR  Alpha Word Vector Representation

BOND  Bayesian Online Numeric Discriminant

BRM Binary Reference Matrix

CRS Crowding Segmentation

CS Catenation Segmentation

CWRP  Contextual Word Recognition Postpro-
cessor

DAP Dictionary Access Point

FLP First/Last Position (fetch discriminant)

HSS Horizontal Splitting Segmentation

OCR Optical Character Reader
OCWPS Optical Character Word Processing Simu-
lation

RCML  Regional Context Maximum Likelihood
(error correction procedure)

VF Vector Fetch

WG Word Group

2. Alphameric subfield discrimination

The first postprocessing function performed on the raw
recognition stream output is alphameric subfield discrim-
ination. In pursuing the design of a nonformatted multi-
font character recognition capability, we have a rather
unique ‘“‘dual channel” recognition processing philoso-
phy to maintain cost-effective recognition logic design.
This implies that two separate recognition ‘‘channels”
are implemented. In one channel all characters are pre-
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Table 2 AOCR dual recognition streams.

Line 1

Line 2 Line 3

Alpha AARON BAKERS
Numeric 4*80%* 8466*5

SAINT LOUIS MO **1*
5*¥1** *001* * 0 63113

SISO PAGE BL
5150 8466 8*

Table 3 Geometrically similar alphabetic and numeric char-
acters.

Alpha [e] i | z S T
Numeric 0 1 1 2 5 7 8

oW

Table 4 Common OCR misinterpretations.

Alpha word Numeric interpretation
SOUTH 80478 or 804TH
THIRD 781RD
FIFTH 01078 or 010TH

sumed to be alphabetic only and an appropriate alpha
identification (or reject) is assigned to each character
scanned (including the numerals). With respect to the
second channel, all characters are presumed to be nu-
meric and an appropriate numeric identification (or
rejection) is assigned to each character scanned (includ-
ing the alphabetic symbols). As a result, during the recog-
nition stage of OCR processing, the acceptance of a char-
acter as a 0, for example, is not contingent on discerning
that the scan is not that of an alphabetic O, C, or U. Typi-
cal output of the AOCR recognition unit is shown in
Table 2.

In viewing Table 2, it may appear that the dual chan-
nel recognition approach has only accomplished trans-
ferring the alphameric ambiguity from the character scan
level up to the subfield level. (A subfield is any set of
contiguous characters preceded and followed by a blank
space.) The remainder of this section addresses the res-
olution of this problem of alphameric subfield discrimi-
nation in a generalized omnifont text processing environ-
ment. An analytic procedure is developed and the re-
sults of its use in the complex postal address analysis
problem are discussed.

~ Alphameric subfield discrimination procedure
Although seemingly trivial, reliable discrimination be-
tween alpha and numeric subfields in a multifont charac-
ter recognition environment is a very complex process.

W. S. ROSENBAUM AND J. J. HILLIARD

Discrimination between alpha and numeric characters
has always been one of the most difficult problems in the
design of omnifont character recognition equipment. The
difficulty stems from the fact that the Roman and Arabic
character sets, to which the alphas and the numerics
respectively relate, were generated independently with
no concern for avoiding mutual confusion. Hence, over
commonly used fonts, they share many of the same
basic geometric shapes as shown in Table 3.

The alphameric discrimination problem on the charac-
ter recognition level is reflected at the subfield level dur-
ing postprocessing. Many common alpha words can be
recognized in part or in total as numeric subfields. Some
common misinterpretations observed in the postal ad-
dress problem are shown in Table 4. The converse also
holds potentially for many numeric subfields.

The crux of the processing problem in numeric sub-
field discrimination is that real or aliased numeric char-
acter strings do not lend themselves to methods of direct
contextual analysis. A numeric subfield is completely
nonredundant, implying that any set of digits creates a
meaningful data set.

Bayesian online numeric discriminant procedure

When analyzing the dual recognition streams which are
comprised by the output from the AOCR, simple rules,
such as determining the preponderance per subfield of
alphabetic or numeric recognitions, are useful but are
not sufficient for subfield alphameric genre decisions.
For about 20 percent of the subfields, the recognition
quality of the subfield is the same for both channels or
not sufficiently different to allow reliable decision. For
example,

SISO PAGE BL-indeterminate
alpha subfield

a. Alpha channel

b. Numeric channel 5150 8466 8* —indeterminate
numeric subfield

In these instances where a recognition quality differen-
tial of at least two reject characters does not exist, the
Bayesian Online Numeric Discriminant (BOND) pro-
cedure is used.

The BOND procedure seeks to achieve alphameric
inference capability by associating with a numeric sub-
field a form of quasi-redundancy. Redundancy in a con-
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textual sense means that dependencies exist between the
presence of one character and the presence of another.
Normally, contextual redundancy is thought of in a hori-
zontal sense—that is, between characters on a line,
within a word. An example of this concept is digram sta-
tistics. These probabilities of character juxtaposition
combinations allow the projection of likely succeeding
characters from knowledge of the preceding one. For ex-
ample, given the alpha string SPRI-G, N would be chosen
over Z to fill the blank position. Mathematically, this
takes the form of the conditional probability

P(aa), (1)

where a; is observed and a, is projected as a possible
following character. The value of (1) relates to the
compatibility of the a,a, character pair with respect to
English text.

Clearly no analog-to-contextual redundancy in the
form of digrams exists with respect to numeric subfields.

Although redundancy of the horizontal form does not
exist for numeric subfields, redundancy of a special
“vertical” nature can be induced by virtue of the AOCR
recognition environment.

Alpha channel vertical

SIOUX FALLS SD S *I10I
redundancy.

Numeric channel 5100* 56**5 50 5 7101

As shown previously, for each character scanned the
AOCR creates independent outputs, the attempted al-
pha and numeric recognitions. Characteristic of this type
of dual recognition system are

1. Each legitimate numeric character is misrecognized
by the alpha recognition channel as a reject or as one
of a specific set of alphas. (For example, a 2 is often
read in the alpha channel as a 7.)

2. Each legitimate alpha character is misrecognized by
the numeric recognition channel as a reject or as one
of a specific set of numerics. (For example, an S is
often read in the numeric channel as a 5.)

A concept of vertical redundancy can be evolved that
associates the recognition of a character in one channel
with one of a set of misrecognitions possible in the other
channel. This can be formulated as the conditional prob-
ability

P(ayn) (2)

that, given the scanned numeric character n;, the alpha
recognition channel has misrecognized it as a,. The con-
verse conditional probability statement,

P(nja). (3)

is the related probability that, given the alpha character
a,, the numeric recognition channel has misrecognized it

JuLy 1975

as n, Probabilities (2) and (3) are referred to as Chan-
nel Confusion Probabilities and are denoted formally as

Pe.(aln) and (4)
P (njla). (5)

Analysis of AOCR machine performance indicator data
readily yields the complete set of channel confusion
probabilities as they relate to numerics (Table 5) and to
alphas(Table 6). The inference potential of these statis-
tics is enhanced by computing them independently with
respect to uppercase and lowercase alpha characters and
to the various conflict and reject characters.

Using the machine performance indicator data bases,
one can proceed to implement the BOND procedure.
The subfields dealt with are those whose dual channel
recognition output is indeterminate with respect to the
reject character criterion. The BOND procedure seeks
to discriminate alpha and numeric subfields on the basis
of their Bayesian likelihood factors. This implies that the
output of both channels is assessed from the perspective

P (alpha read|numeric read) and (6)
P (numeric read|alpha read). (7)

Expression (6) is the probabilistic statement that assess-
es the compatibility of the alpha channel recognition
output with the assumption that a numeric subfield has
been scanned. Expression (7) evaluates the converse,
that is, the compatibility of the numeric channel recogni-
tion output with the assumption that an alpha subfield
has been scanned. Expressions (6) and (7), for compu-
tational purposes, can be expressed in terms of products
of channel confusion probabilities. Hence,

k

P (alpha read|numeric read) =[] P..(a)ln) (6a)
=1
k

P (numeric read|alpha read) =[] P, (nla), (7a)
=1

where k is the number of characters in the subfield. In
this perspective, a subfield’s alpha or numeric genre
stands out as the quotient of the ratio of Eq. (6a) to Eq.
(7a). That is,

& .
¢)=HPcc(ujlnj)/H Pcc(nj|aj), (8)
j=1 j=1

where ¢ = 1 implies alpha and ¢ > 1 implies numeric.

The inference inherent in the formulation of Eq. (8)
results from the ratio of Bayesian likelihood factors. No
syntactic or contextual information is utilized in the pre-
ceding alphameric discrimination processes. Hence, the
validity of the BOND procedure with respect to general
OCR application can be nominally assumed.

Using raw recognition stream data (tapes) resulting
from mail processed by the AOCR, the BOND pro-
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Table 5 Channel confusion statistics for numerics - values of P, (a;|#,) in percent for each numeric read total.

Numeric
Alpha read Numeric read reject
0 1 2 3 4 5 [} 7 8 9 *
A 0 0 1.237 .0 625 0 0 0 1.612 0 6.667
B 0 0 336 3.553 0 .654 0 0 25.806 0 1.333
c 1.153 0 0 0 0 0 0 0 0 0 1.333
D .576 0 0 0 0 0 0 0 0 0 0
E 0 0 336 508 0 .980 3.297 0 4.839 0 5.333
F 0 0 0 0 0 0 0 0 0 0 2.667
G 0 0 0 1.015 0 0 1.099 0 1.613 22,727 0
H 0 0 0 0 1.250 0 0 0 0 0 0
{ 0 12.925 0 0 0 0 0 0 0 0 1.333
J 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0
L 0 61.565 0 0 .625 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 1.333
N 0 0 0 0 0 0 0 0 0 0 0
o 92.795 0 0 0 0 0 1.099 0 0 0 2.667
P 0 0 8.389 0 0 0 0 0 0 0 1.333
Q .288 0 0 0 0 0 0 0 0 0 0
R 0 0 671 0 0 0 0 .877 1.613 0 5.333
S 0 0 0 .508 0 74.183 1.099 0 6.452 2.273 6.667
T 0 1.361 0 0 1.250 0 0 2.632 0 0 2.667
U .865 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 0 0 0
w 0 0 0 0 0 0 0 0 0 0 1.333
X 0 0 0 0 0 0 0 0 0 0 1.333
Y 0 0 0 0 0 0 0 2.632 0 0 1.333
z 0 0 16.779 0 0 1} 0 0 0 0 1.333
Alpha
reject 3.746 8.503 72.148 93909 38.750 23.856 93.407 .877 58.065 70.455 42.667
Conflict il 0 11.565 0 0 0 0 0 0 0 0 0
Conflict I/i 0 0 0 0 0 0 0 0 0 0 0
Conflict N/W .576 4,082 0 .508  57.500 327 0 92.982 0 4.545 13.333

cedure has been extensively tested. An alphameric sub-
field discrimination correctness rate of 99.6 percent has
been achieved in these offline simulations. There is no
apparent reason to assume that this same level of accu-
racy would not hold in a general text processing applica-
tion.

Figure 2 Example of alphameric discrimination using the
BOND calculation.

Line 1 Line 2 Line 3 Alpha
AARON BAKERS| SISO ] [PAGE SAINT LOUIS Al* * |1 * channel
4*80* 8466*5]5150] {8466 5*1** *001* 63”3Numeric

channel
Subfield 1 | Subfield 2.|Subfield 3 Subfield 4 Subfield 5

Linel 0 0 0 0o 0
v
Line 2—2.0539 ~—0.0000 ~0.0000 0 0
Line 3 0 0.0003 0 0
0 0 0
Subfield genre AA T NAA AAAN
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Figure 2 is a copy of the BOND procedure output for
a typical AOCR read. The step-by-step calculations re-
lated to the first two BOND quotients are shown in
Table 7.

3. Verification

In the Contextual- Word Recognition Postprocessor,
OCR word verification is formed by means of the Binary
Reference Matrix (BRM). The BRM approach was
conceived as a highly efficient, low-storage-requirement
mode of validating whether a word scanned by the OCR
has been read correctly, i.e., without misread characters.
This function must be performed for each subfield that
has been identified as alphabetic by the BOND pro-
cedure {Section 2). Logically, the BRM must contain a
representation, in some manner, of all words that might
be anticipated in documents scanned by the OCR. This
“scanning vocabulary” may, at times, be even broader
than the ordinary dictionary. Therefore, conventional
storage, access, and search techniques against the OCR
vocabulary may not be acceptable, particularly in a real-
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Table 6 Channel confusion statistics for alpha-values of P {(n,la;) in percent for each numeric read total.

Alpha read Numeric read Numeric
reject
0 1 2 3 4 5 6 7 8 9 *

A .852 2.699 3.977 0 36.932 .142 1.563 0 6.108 0 47,727
B 14.286 0 0 0 0 0 0 0 57.143 0 28.571
C 86.667 0 1.667 0 0 0 0 0 0 0 11.667
D 77.481 0 .763 .382 .763 0 382 0 .763 0 19.466
E 474 0 1.502 158 .079 7.510 30.514 .079 10.119 158 49.407
F 0 2.564 0 0 0 26.923 0 1.282 5.128 0 64.103
G 13.953 0 0 2.326 0 2.326 53.488 0 2.326 4,651 20.930
H 0 0 0 0 515 S15 21.649 0 62.887 0 14.433
| 0 94.298 0 0 0 0 0 0 0 0 5.702
J 0 0 0 0 0 0 0 0 0 0 0
K 0 0 361 0 7.762 0 29.061 0 1.986 0 60.830
L 0 33.898 1.695 0 1.695 0 0 0 0 Q0 62.712
M 0 0 0 .556 6.111 1.111 556 0 7.778 0 83.333
N 8.353 232 0 077 1.392 232 541 155 619 0 88.399
o} 98.222 0 0 0 .148 0 0 0 0 0 1.630
P 0 0 1.316 0 0 0 0 0 76.316 0 22.368
Q 0 0 0 0 0 0 0 0 0 50.000 50.000
R 501 2.003 2.504 167 0 334 501 334 37.563 0 56.093
S 0 0 0 .379 0 67.803 .189 0 1.326 4,545 25.758
T 0 30.732 0 0 0 0 2.707 27.548 478 0 38.535
u 69.444 0 0 0 0 0 0 0 0 0 30.556
\ .263 0 0 0 5.000 0 0 29.211 0 .263 65.263
w 0 0 0 0 11.015 432 0 5.616 1.080 216 81.641
X 0 6.897 0 0 6.897 0 0 0 0 0 86.207
Y 0 2.775 0 0 12.950 0 0 3.392 0 .103 80.781
b4 0 0 0 0 0 0 0 0 0 0 100.000

Alpha

reject 12.775 10.132 1.762 .881 1.762 4.405 5.286 1.322 2.643 1.322 57.709

Conflict i/l 0 97.561 0 0 0 0 0 0 0 0 2.439

Conflict I/i 0 100.000 0 0 0 0 0 0 0 0 0

Conflict N/w 4779 3.309 0 0 6.985 .368 1.471 3.676 3.676 .368 75.000

time application. The goal of the verification technique is Table 7 Example of the BOND calculation.

to minimize storage and search time for a large diction- ‘

ary associated with an OCR application. The work dis- Subfield 1 2 3 1

cussed in this paper relates to verification techniques Alpha channel SISO PAGE BL

operating with a verification word list of more than Numeric channel 5150 8466 8*

15 000 English words of length averaging eight alphabet-

ic characters. Under the BRM methodology, the preced- Subfield I p P

ing word list has been stored for verification purposes BOND = ?(sls) PA) P(sts) P(o|0)

using only 10 000 bytes of storage. (Conventional alpha (5ls) PN P(sls)  P(o]o)

character EBCDIC representation would have required _(7142) (61.6) (742) (92.8) _ 50539

120 000 bytes to store the same word list.) (67.8) (33.9) (67.8) (98.2)

Result greater than 1 implies numeric field

s Alpha word vector representation

The BRM is a specialized application of the Alpha Word Subfield 2

Vector Representation (AWVR) technique. The me- BOND=P(P|8) P(Al4) P(Gl6) P(E|6)

chanics of this technique are shown in Table 8. P(8lp) P(4]A) P(6|G) P(6]E)

The underlying rationale of AWVR is that any word (0.001) (0.6) (1.0) (3.3)

or character string can be mapped into a vector repre- - (76.3) (36.9) (53.5) (30.5) 0.000

sentation by assigning a unique numeric value to each o

letter in the alphabet. One of the most direct and intui- Result less than or equal to 1 implies alpha field

tive assignment schemes would designate A= 1, B = 2, 403
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Table 8 Alpha word vector representation (AWVR) meth-
odology (A=1,B=2,"-+,Z=26).

Step 1

Vector mapping
CORNWALL — (3, 15, 18, 14,23, 1, 12, 12,)

Step 2

Vector attributes
(3, 15, 18, 14, 23, 1, 12, 12) — (magnitude, angle)
Magnnitude = function of characters in word

=3 L2=(3)"+ (15 + (18)* + (14)" + (23)°

N=1

+ (D + (12)* + (12)* = 1572

=Y
Angle = function of character position
= sec“(ﬂ) — 83.7392 degr
SNL, . egrees

Table 9 Binary reference matrix.

Angle rangg ————»

Bit position
Byte
number
1 2 3| 4 5 6 7.1 8
L
=
2
2 1 0 0 oo 0 0 o] o
&b
=]
=
2 0 0 00 0 0 0| o
3 0 0 0| o 0 0 0} 0
4 0 0 0 (0 0 ¢ 0| 0 J
i P o
v
7403 0 1 0| o 0 0 1|0
7404 0 0 0|1 0 0 0| o0
7405 0 1 0| o 0 1 0| o
9997 0 0 0| o0 0 0 of o
9998 0 0 0| o0 0 0 0| 0
10000 0 0 ol o 0 0 of| o
C=3, -+, Z= 26. Any vector representation of a word

so generated would, in turn, be uniquely reconstitutable
in terms of the linear algebraic vector attributes of mag-
nitude and angle, where the magnitude reflects the word
character content, and the angle reflects the relative po-

W. S. ROSENBAUM AND ]J. J. HILLIARD

sitioning of characters within the word relative to a ref-
erence vector R. A suitable form for the reference vector
isR=(V2, V3, V5.

It should be noted at this point that by just using the
magnitude-angle representation, an alpha word of any
length can be represented uniquely in only four bytes of
storage.

~ Generation of the binary reference matrix (BRM)
The ability to transform an alpha word list into its vec-
torial image may be looked upon as the initial phase of
BRM generation. Next, it is necessary to use the vector
representation in an efficient manner for verification.
The BRM itself is the array that results when “legal”
magnitude-angle combinations are mapped into a storage
table matrix. This, in essence, allows further compaction
of what in its vectorial form was already a highly com-
pact version of the original alpha word list. The BRM is
therefore a logical arrangement of storage, which asso-
ciates a magnitude value and an angle segment range
with each bit position. The row dimension of the BRM
relates to the range of possible magnitude values that
can be generated from the legal word list. Each column
bit position relates to a segment of the range of angle
that the same words can similarly generate. Hence, the
existence of a legal word is denoted by turning on a bit
position that contains the angle value of the word in the
row corresponding to its magnitude. This process and
the resulting core configuration are shown schematically
in Table 9.

Verification of an OCR word read is accomplished by
accessing the bit position in the BRM corresponding to
the magnitude and angle indicated by the read. The word
would be considered correct (ungarbled) if the related
BRM bit position were ascertained to be in the ‘“on”
position. The computer operations required to achieve
this verification can easily be accomplished within a
real-time constraint, especially because the storage di-
mensions of the BRM make it conveniently core-storable,

Clearly, the BRM will verify the existence of any cor-
rectly read word. However, special considerations must
be taken into account to allow the BRM to perform its
associated task of garbled (erroneous) word discrimina-
tion. The high degree of data compaction achieved in the
BRM has incurred a decrease in the uniqueness with
which a word’s vector mapping can be represented. It
will be recalled, initially, that each vector mapping of a
word-by algebraic definition~yields a unique magni-
tude-angle data set. The discrete integer data lend them-
selves well to being isomorphically mapped into the
respective row designations of the BRM (Table 10).
However, the angle data, which originally took the form
of a continuum (nonintegral values), cannot be so di-
rectly accommodated in the BRM configuration.

IBM J. RES. DEVELOP.




To allow representation in a BRM, the angle data

must be quantified into range segments compatibie with -

the limited number of row entries offered by a bit string
of reasonable length. This causes the angle part of the
vector mapping scheme to have a degree of non-unique-
ness associated with it in the BRM representation. Un-
less certain analytical safeguards are taken, the ambigui-
ty associated with angle may compromise the BRM’s
error word discrimination potential. This would make
the BRM unable to discern and discriminate those gar-
bled words which have generated, by chance, a valid
magnitude and come sufficiently close to a valid angle
value to access the same BRM bit position as a valid
word. This possibility can never be precluded entirely; it
can, however, be made negligibly small by setting up the
BRM to take full advantage of the sparse areas of the
matrix.

Sparsity can be considered almost synonymous with
BRM error-word discrimination potential. The basic
idea of sparseness is to take advantage of the fact that
the BRM contains many more empty (0) positions than
occupied (1) positions. Logically, it follows that the
greater the sparseness the less likely the false verifica-
tion of error words and therefore the greater the error
discrimination potential of the BRM methodology. The
following strategy is used to exploit the sparseness of
the BRM.

s Specialization of the BRM vector numbering scheme

The alphameric equivalency scheme used to map the
valid word list into a vector representation, which in
turn is synthesized into the BRM, takes advantage of the
known dictionary and OCR misread characteristics.
With a properly chosen scheme, one can maximize the
potential that, when an error occurs, the word falsely
generated by the OCR will be rejected as invalid by the
BRM. To accomplish this, there are two general restric-
tions which must be placed on the numbering scheme: 1)
The numbering scheme must be chosen such that the
density of the matrix is not uniform, and a continuous,
sparse area of the matrix is identifiable; and 2) the num-
bering scheme must be chosen such that invalid words
generate magnitude-angle representations that are locat-
ed in the sparse area of the matrix.

Restriction 1 To some degree, the generation of magni-
tude itself produces a nonuniformity in the BRM with
identifiable areas of sparsity. As an example, Fig. 3(a)
shows the magnitude density function for all combina-
tions of eight-character fields in which each of the 26
characters has an equal probability of occurrence. Mag-
nitude values cluster toward the center of the range with
sparse areas toward the low and high magnitudes. How-
ever, words in the English language do not have uniform
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Figure 3 Density function for the magnitude of eight-charac-
ter fields: (a) L is uniformly distributed [P(L) = 1/Ly.x] for
general fields: and (b) P(L) =2(1—L/L_,)/L,,,. as shown,
for English words.

Table 10 Sample binary reference matrix using 10 kilobytes of
storage; conventional storage would require 120 kilobytes.
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character usage. Rather, character usage varies from
approxima/ely 10 percent (e) to as little as 0.1 percent
(q). By aésigning numerical values to characters in order
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inverse to their probability of occurrence, the density
function can be substantially shifted so that the lower
magnitude portion of the matrix has the higher density,
with the higher magnitude values becoming progressive-
ly more sparse.

For example, if the characters are ordered according
to occurrence frequency and are assigned numerical
values in sequence starting with 1, the resulting density
function can be approximated as

2 L
P(L) = (1 —L——).

max max

When this density function is transformed by the magni-
tude function Y = =)_ L,* for eight-character words
(M = 8), the resulting magnitude density function [Fig. 3
(b)] is heavily populated in the lower portions of the
matrix and is increasingly sparse at the higher value of
magnitude. In fact, for the case of English words the
probability of having an occupied matrix position above
one-half the maximum possible value of magnitude
(8L2 ) is essentially zero. In practice, the BRM is trun-
cated for values above 4L’ . For the remainder of the
matrix the majority (85 percent) of the legal words are
represented by values below 2Lfnax, whereas the region
between 2L and 412 _has a high degree of sparsity.
To meet the first condition only, for a BRM number-
ing scheme the optimal solution occurs when the charac-
ters are assigned numerical values in order inverse to
their probability P(«;) of occurrence in the dictionary of

valid words. This may be expressed as

~~~<Lk_1<Lk<Lk+1<~-~ (9)
and
«+> Pla,_,) > Pla,) > P(a,,,) > - (9")

Restriction 2 The restriction that words garbled by the
OCR generate magnitude-angle representations in the
sparse area of the matrix can be satisfied by placing two
conditions on the numbering scheme: (a) Because unre-
liable words are made up of unreliable characters, if
such (easily misread) characters are assigned high val-
ues, the words which contain these characters will have
high magnitude values. By this method reliable words
cluster in dense areas of the matrix and unreliable words
tend to be found in sparse areas. For this purpose the
designation of numbers would best be made by ordering
characters in accordance with their reliability and as-
signing the numerical values in sequence starting with 1.
Stated another way, the characters should be ordered
according to their unreliability and assigned numbers in
inverse sequence starting with L ... This condition may
be expressed as follows:

*26
Unreliability = Y Pl ay,),

GO Qiet
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where aq¢ is a particular input character and «; is one

“of the possible output characters falsely generated by

the OCR. Therefore, (9) and (9') become
<L <L, <L, < (10)

and

26 26
e < 2 P(ayla,_,) < 2 P(ajla,)

izk—1 itk

26
< 3 Plajag,) < (10)
izk+1

(b) The condition expressed in the inequalities (10) and
(10') causes unreliable words to map into the sparse
upper magnitude portions of the matrix. However, this
alone is not sufficient to assure that garbled words map
into sparse areas of the matrix. For example, it is possi-
ble for an unreliable character to be falsely read into a
reliable character and cause the resulting false version of
an unreliable word to be mapped into a lower portion of
the matrix. What this probably indicates is that there are
actually two measures of unreliability. One is for the dic-
tionary word and is expressed by that portion of the
character transfer function defined as

26

> Plalag,).

% =8gjct

The other is the unreliability associated with characters
in the word as read by the OCR. This measure may be
expressed by that portion of the character transfer func-
tion,

a6

2 P (aj |aoutput) ?
a

L Coutput

in which o,y i8S a particular output character, incor-
rectly read by the OCR, and a; is one of the possible
input characters which caused this read. It should be
noted that these two measures of unreliability are by no
means equal for a particular character.

It is necessary, then, to formulate a third condition on
the assignment of numerical values to characters. The
purpose of this condition is to give high values to those
characters in the OCR output which have a high proba-
bility of having been misread from other input charac-
ters. This condition may be expressed as follows:

'”<Lk—1<Lk<Lk+l<.” (11)

and

- < 2 P(aj|ak_l) < E P(ajlak)

jrk—1 J=k

< ¥ Plajey,,) <--- (11")

J=k+1
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The condition expressed in (11) and (11') tends to
cause words, incorrectly read by the OCR, to map into
higher values of magnitude than their original dictionary
versions.

» Alphameric equivalency using all assignment con-
ditions

The three conditions expressed in the inequalities (9)
and (9'), (10) and (10’), and (11) and (11’) are not
necessarily compatible with each other when based sta-
tistically on English dictionary words and normal OCR
transformation characteristics. A character such as | has
a relatively high occurrence rate but is also highly unreli-
able. The numbering scheme based on relations (9) and
(9') would be substantially different from that based on
relations (10) and (10') or (11) and (11’). It is neces-
sary, therefore, to define some character measure that
reflects the character’s ranking when all three conditions
are considered simultaneously. Such a ranking will not
be optimal for any one condition. However, the total
effect when used in word verification with the BRM
should be to map incorrectly read words into a sparse
region of the matrix.

Condition (9) implies that a character should have a
high numerical assignment if its occurrence rate P(aj) is
low. This may be restated to require that character a;
have a low numerical assignment if 1/P(q;) is small.

Conditions (10) and (11) imply that a character has a
high numerical assignment if its unreliability is high.
This unreliability is defined differently for dictionary
words than for OCR output words. It is possible to de-
fine an average measure of unreliability for a character
based on both conditions. This average measure is ex-
pressed as

1
)+ Pla

U=P(a

output dict)

o6

X [P(aoutput) 2 P(aj|aoutput)

@#qoutput

+ Plagy) 2 P(ailadict)]’ (12)

ai#agjet

where ay is a particular input character and aguiput iS
the correct OCR output for this character.

For any large data sample, P(agq) iS approximately
equal to P (aguput) - Equation (12) may, therefore, be sim-
plified to

- %26 %26
U ==}[ Y Paglagy) t Y P(ailad.‘ct)]. (13)
% Cgutput a#adict

Combining condition (9) with conditions (10) and
(11), we see that a character should be assigned a high
numerical value if both 1/P(q;) and U are high and,
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Table 11 Verification numbering scheme.

Common substitutions

E—>F B—E
L—1 h—=n
M — N G—>C

Number selection

A 10 —N 1

B 17 e} 20

C 35 P 30
D 11 Q 55
E:E 4 R 2
F 45 S 6
G 24 T 18
H 25— u 23

| 60 v 40
I:J 13 w 15
K 28 X 16

L 3 Y 21
M 50 z 21
b 22

conversely, a low value if 1/ P(a].) and U are low. The
product of these two measures is, therefore, a meaning-
ful condition by which to assign numerical values. The
resulting expression for the assignment of numerical
values could then be

”'<Lk—1<Lk<Lk+1<‘” (14)
and
< Uk—l Uk < Uk+1 <o ( 141)
P(a,_,) Pla) Pla,,)

It should be noted that the conditions (14) and (14')
apply for any uniform numbering sequence (not just 1 to
26) which runs from L.J/Z to Lpy.x, Where Z is the
number of characters in the alphabet and L.y is the
maximum numerical value in the sequence.

Also, because conditions (14) and (14') indicate only
an ordering of the characters, it is possible to select val-
ues which are not uniformly separated in the numerical
sequence. This causes a deviation from the statistical
model by which the conditions were derived, but in
practice it permits shifting numerical assignments when
empirical data indicate potential improvement in perfor-
mance.

Table 11 shows the alphameric equivalency scheme
that was used for a dictionary of 15000 words. In this
case L, = 60 and the spacing of numerical values is
nonuniform.

When configured in this manner, the BRM has proved
to be an effective error word discriminant tool. Extensive
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testing has been conducted with the BRM occupied with
a word list of approximately 15 000 street names. Recog-
nition output of the AOCR installed in the New York
City General Post Office was tested against the BRM to
determine the reliability of its verification processes. An
overall misverification rate of less than one percent was
attainable. This is of interest in that only 10 000 bytes,
or 80 000 bits, of core storage were used for the BRM.
Of these 80000 bits, nominally 15000 were occupied
(storage value = 1). Based on binomial statistics, if these
occupied bit positions were randomly scattered over the
matrix, with no strategy taking into account the OCR
misread propensities, then, on the average, one out of
every five error words should strike an occupied bit
position, leading to a 20 percent erroneous verification
rate. Hence, in contrast, the noted misverification rate
of less than one percent stands as testimony to the
strategy of building BRM to reflect the character misread
propensities of the OCR and thereby effect reliable
discrimination of OCR garbled words. Additional BRM
error word discrimination reliability can be accrued
directly by allocating additional storage to the present
10000-byte matrix.

Further, the BRM concept should not be viewed as
applicable only to OCR word correctness verification.
Rather, for example, the potential exists to adapt the
basic techniques to perform—in a highly efficient man-
ner —human operator keystroke verification.

4. Dictionary access

This section describes the mechanics of the dictionary
access or fetch procedure. For each word that failed to
verify in the BRM (Section 3), error correction process-
ing must be entered. The strategy used to effect OCR
error correction is to reference an error correction dic-
tionary and determine from all the words listed therein
which of the dictionary entries is the word that was
scanned by the OCR and misread into the garbled form
currently being processed. Clearly, a basic part of this
operation is the ability to determine which segment of the
error correction dictionary should be reviewed. Schemat-
ically this is shown in Fig. 4. The more accurately we can
delineate the portion of the dictionary that contains the
correct form of the garbled word, the larger the dictionary
can be without compromising the efficiency and real-time
nature of the OCR error correction operation.

When the verification procedure, discussed in Section
3, passes a word to error correction processing, the prop-
erties of an OCR misread make it impossible to formu-
late a reliable dictionary access using the normal dictio-
nary indexing word attributes of character alphabetic
properties and/or word length. The OCR error propensi-
ties can alter either or both of the word attributes in
various ways. In spite of this, there is still much poten-
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tial dictionary entry key information in the garbled data.
To utilize a garbled word as a key to the dictionary,
the character string must be analyzed in a new perspec-
tive. The vehicles for this analysis are the Vector Fetch
(VF) and the Word Group (WG) file organization con-
cepts.

e Vector fetch methodology

The rationale that underlies the VF dictionary accessing
methodology can best be understood as a specialized
application of classical statistical confidence interval
theory. As normally configured, a confidence interval
sets up a range of values within which the true value of a
factor being estimated can be said to lie with a predeter-
mined error tolerance.

Within the perspective of the confidence interval anal-
ysis, the VF methodology can be configured as a spe-
cialized application which uses the garbled word data to
1) estimate the dictionary location of the word that was
misread by the OCR, and 2) give data-fetch relevance to
the estimated Dictionary Access Point by generating
around it a range of entries wherein the required word
information lies with a predetermined certainty. The
description of the analytical mechanics involved in the
implementation of the preceding dictionary access/data
fetch methodology is logically broken into three por-
tions:

1. Estimation of the Dictionary Access Point;
2. Determination of the fetch width constraints; and
3. Dictionary organization.

Estimation of dictionary access point
The Dictionary Access Point (DAP) is the initial esti-
mate of where the correct form of the OCR garbled
word lies in the error correction dictionary. The vehicle
for this initial estimation process is a specialized Hash-
ing transformation applied to the garbled alpha character
string. Underlying the Hashing transformation is a spe-
cially developed numeric code, in which each character
in the recognition alphabet has a numeric designation
that reflects its absolute and its relative OCR recogni-
tion reliabilities. The particulars of the alphameric as-
signment scheme are elaborated later. It presently suf-
fices to say that the numeric magnitude assignment is
related to reliability of recognition of the alpha charac-
ter. In its simplest form this implies that the more reli-
able an alpha character recognition, the more weight is
put upon it in the Hashing calculation.

Given this alphameric assignment scheme, the DAP
follows as a summation of positive integers:

M
DAP=3 L, (15)

N=1
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where L, is the numeric value assigned to the character
in the Nth position of the garbled word, and M is the
number of character positions in the garbled word. The
key to this technique is the derivation of the appropriate
alphameric assignment scheme. Dual and seemingly
conflicting constraints have to be accommodated in the
assignment scheme. Essentially, the alphameric assign-
ment used to compute the DAP has to

1. minimize the effect on the DAP of intercharacter
aliasing resulting from OCR misreads and

2. map the dictionary word into a relatively uniform
spread over the range of DAPs.

The first constraint reflects the desire that Eq. (15),
the Hashing formulation, be as insensitive as possible to
the expected result of OCR substitution and segmenta-
tion misreads. The second constraint seeks to avoid a
trivial solution evolving as a result of the first constraint.
Such a solution would be the collapsing of the dictionary
so that all entries occupy a single DAP or a very narrow
band of DAPs. If this were the case, nearly the entire
dictionary would be brought down in each fetch. This, in
terms of real-time processing constraints, would be an
unacceptable situation and would defeat the intent of the
VF algorithm.

The optimal alphameric assignment scheme for the
VF can be derived by a mathematical approach using
linear programming, which is based on expressing the
OCR intercharacter aliasing propensities as linear rela-
tions. This implies, for every non-null event in the OCR
confusion matrix, a normed distance (i.e., an absolute
value relationship) of the form

X, — X4l = constant, (16)

where X, and X, are the numeric designates of the al-
phabetic characters denoted in the general case by a and
B. Existing OCR confusion statistics, when reconstitut-
ed in the above form, yielded 437 separate expressions
of the form (16). Standard linear optimization formula-
tion, however, is not able to directly accommodate a
normed distance as a base variable in the system of con-
straints or in its objective function.

To allow the programming optimization of the VF
alphameric assignment scheme to reflect a normed ana-
log of the OCR misread characteristics, a mixed-integer
linear programming formulation was adopted. Each con-
straining relation of the form (16) is reconstituted as a
set of mixed-integer linear programming constraints of
the form

K+Z,=X,—X,+2KI,=K—Z, (17)

where 1, represents the set of integer variables con-
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Figure 4 Partial fetch process.

strained to take on the values one or zero; Z ; is the
variable over which the objective function optimization,
min (X P, Z ;). is performed; P, is the relative weight or
importance value associated with the respective con-
straint; and K is the fetch error tolerance in units of
magnitude. In the present analysis, P ; has been set
equal to the cumulative occurrence rate of the respective
a, B characters. Up to this point, the system of optimiza-
tion equations has injected into the analysis only con-
straints consistent with the first goal above.

The second goal, the avoidance of inordinate degrees
of clustering of dictionary entries in any range of magni-
tude, is accomplished by appending to the system of
OCR misread inter-relationships (17) a series of con-
straints which reflects a suitable dictionary infra-struc-
ture that maintains salutary entry-distribution character-
istics with respect to all segments of the dictionary.
These latter constraints are set up by randomly selected
legal entries from the dictionary word list and specify
that a predetermined normed distance be maintained
between them in the final dictionary vector structure.
For example, the entries CORNWALL and SHERWOOD can
be used to yield a vector dictionary infra-structure con-
straint of the form
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1 4 9 1625 36 49 64 81100 121144 169 196 225 256 289 324 351 400 441 434 529 576 625 676
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AOCR read

Figure 5 Numeric assignment scheme and substitution ma-
trix. The off-diagonal numerals are the relative occurrence
rates.

Xo+ Xo+ Xy + X+ X, + X, + X_+ X,
— X+ X, + X+ X, + X, + X, + X, + X,)
=X+ X + X, +2X —X,— X, — X, — X, — X,
>D,. (18)

The value of D, represents the normed distance between
entries CORNWALL and SHERWOOD in the dictionary,
where an alphameric assignment scheme has been used
which yields good dictionary word-list-spread character-
istics while not necessarily meeting all the OCR minimal
Hashing distortion constraints as given by (17). One of
the suitable modes for derivation of this initial alphamer-
ic assignment scheme is examined below. The optimiza-
tion-programming array of constraints is completed by
adding the additional infra-structure constraints consis-
tent with the simple linear format described by the
CORNWALL, SHERWOOD example in (18).

The initial alphameric assignment scheme used to
generate relations of the form (18) was obtained by
treating Eq. (15) as a vector magnitude computation;
that is,

M
Y=3 Ly, (19)
N=1
and by assigning 1 through 26 (LNZ, 1 through 676) to
the characters in the alphabet.
Figure 5 indicates how the numeric assignments are
made in a manner that is semiconsistent with that re-
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quired by the OCR-misread magnitude-distortion mini-
mization constraints posed by (17). The horizontal set
represents the OCR recognition decision. All correct
recognitions are indicated by the diagnoal of the matrix.
All substitutions or rejects are off the diagonal. For
example, if an H and an M are given values of 10 and 9,
respectively, and if an H is misread as an M, the differ-
ence of magnitude is 100 minus 81, or 19. This would be
an appropriate selection because H-M substitution is
common.

If the OCR misread distortion tolerance is set at 250
units [i.e., the nominal value of the factor K on the right
side of the system of equations generated from (17)], a
relatively simple yet meaningful initial assignment of
alpha characters to the numeric designations indicated
on the axes of the confusion matrix can be derived; then
a large number of common recognition errors are con-
tained within these %250-unit Hashing file-address dis-
tortion tolerance boundaries.

The initial numeric assignment scheme is shown in
Fig. 5, where the shaded portion of the figure has those
misreads for which the initial scheme cannot compen-
sate (the numbers within the matrix relate to the relative
occurrence rates of the specific misread errors). Empiri-
cal analysis with this numbering scheme showed that
although it did not satisfy all constraints of the form
(16), it did transform a word list into a suitably distrib-
uted dictionary that did not contain high-density ranges
with inordinate clustering of dictionary entries For this
reason, this numbering scheme was used to define the
normed distances between the randomly selected entries
used to formulate the dictionary infra-structure con-
straints, as given by (18). ’

Other numbering schemes could have been success-
fully used for the bases of these infra-structure con-
straints. The vector magnitude scheme was used be-
cause of its simplicity and our experience with it from
initial investigations. '

The resulting formulation of mixed-integer linear pro-
gramming constraints and objective functions was
solved using the IBM Mathematical Programming Sys-
tem [1]. The final output of the programming solution
yielded a set of alphameric assignments which mini-
mized Hashing distortions due to OCR misread, while
maintaining a relatively uniform spread of entries over
the dictionary. The alphameric assignment scheme is
shown in Table 12.

Determination of fetch width constraints

If the garbled word data were transformed into a magni-
tude value using the alphameric assignment scheme
shown in Table 12, it could be assumed that the garbled
and correct forms of the same word would map into fair-
ly similar (close) magnitude values. If the correct form
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of each word had been stored in the error correction dic-
tionary with respect to its magnitude, then the DAP
yielded by (15) would approach the vicinity of the cor-
rect word entry required for completion of error correc-
tion processing. However, to successfully perform the
decision process that underlies the Regional Context
Maximum Likelihood (RCML) error correction pro-
cedure (Section 5), it is a prerequisite that the garbled
form of the word be compared in a conditional probabi-
listic format with the correct version of that word.
Hence, the DAP, in itself, is not sufficient for fetching
the data required for the latter phases of OCR error
correction. However, the proximity of the DAP to the
correct dictionary entry makes it a natural axis point for
the construction of a confidence interval that will act as
the delimiter of a dictionary fetch range. If properly
configured, the fetch range will bring into core storage a
block of address entries which contains within it, with a
predetermined error tolerance, the correct version of the
garbled word. As in the preceding example, the selection
of =250 units as a fetch width implies an error tolerance,
i.e., the possibility of the correct version of the garbled
word being outside the fetch range.

The three major OCR error sources that must be
compensated for in the construction of the dictionary
fetch range are 1) reject characters, 2) substitution er-
rors, and 3) segmentation errors. The fetch is most ef-
fective for the reject and substitution errors. Segmenta-
tion errors are statistically less predictable and therefore
not as readily overcome. A garbled word can become
unretrievable using the VF if successive misreads within
the word additively reinforce each other until a magni-
tude difference greater than +250 units is achieved. This
situation is comparatively rare, in that successive mis-
reads tend to cancel randomly, to some degree, the mag-
nitude deviation that each has added.

Word group file organization

Lengthwise organization of dictionary files is used to
complement and reinforce the discrimination potential of
the VF methodology. The VF is a vehicle that enables
garbled alpha data to be given relevance as a file key.
There is, however, another powerful discriminant, name-
ly, word length.

Figure 4 shows a schematic of the fetch process for
the garbled word. The magnitude of the error word is
calculated using (15). For the word shown the magni-
tude is 1616. The word length is also used to reduce the
number of entries in the fetch. For OCR garbled data,
length cannot be used as an absolute discriminant be-
cause segmentation érrors may artificially increase or
decrease the word length. A common approach to this
problem is to include in the fetch not only words of the
same length as the error word, but also all words of adja-
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Table 12 Final fetch vector alphameric assignment scheme —
values generated using mixed-integer linear programming.

A=250 G=190 mM=217 S =429 Y =110

B=213 H=303 N= 55 T =141 Z =429

C=248 1 = 75 0=340 U =110 * =200

D=321 J =235 P =121 v = 17 Conflicti/I=75
E= 95 K=470 Q=284 w=115 Conflict N/W =225
F=213 L= 76 R =275 X =429

cent (=1 character) length and even those that differ by
as much as two characters. This is done according to
rules which themselves are length-dependent. The prob-
lem with this approach is that it leads to unacceptably
large fetch sizes (on the average, approximately 20 per-
cent of the dictionary).

It is again possible to utilize OCR error statistics to
improve the word length discrimination. Because word
length changes are caused by some type of segmentation
(splitting or catenation), only the words prone to be
mis-segmented by virtue of their composition are en-
tered in more than one of the word-length-oriented dic-
tionary subdivisions. This leads to the Word Group con-
cept. In a Word Group, all words of a designated length
are included, as well as words of all other lengths that
have a significant probability of being mis-segmented to
the basic length.

The implementation of Word Group file organization
is dependent on the determination of objective criteria
by which a word and its character composition may be
evaluated for degree of mis-segmentation propensity and
consequent multiple Word Group entry requirements.
To allow objective assessment of a dictionary entry
word group candidacy, the following statistical segmen-
tation threshold calculation is performed.

The probability of word segmentation is described
functionally by Eq. (20):

P(word__)=1— P(wordﬁ) =1—-P(W (20)

seg s_eE) ’

where the bar notation indicates the complement of the
segmentation event, that is, the non-occurrence of seg-
mentation. From empirical data averaged over all word
lengths, the value of the right side of Eq. (20) can be
assessed as 0.6 percent. It is reasonable, therefore, to
take as a threshold for Word Group duplicative entry,
any word whose cumulative character segmentation
probability surpasses this nominal value or, in other
words,

P(W_) > T =0.006. (21)

Sek')
The relationship in Eq. (20) can be made more mean-

ingful by posing it in terms of constituent character
events as
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Figure 6 Dictionary organization.

P(W,) =1—Playg) - Playg) * Playgy). (22)

sSeg

By substituting Eq. (22) into Eq. (21) we obtain

Pla - Pla "'P(“Nge—g') <1-T.

IFg) zﬁ)
In terms of logarithms, this finally results in a general
threshold relationship for Word Group candidacy,

namely,
llog P(c
+: 4 log Play)l > [ log (1~ T)|. (23)

Seg

rseg) + log P(azﬁg)

By relating (23) to the binomial model which under-
lies its application, we can readily solve for the levels
of mis-segmentation propensity (probability) which
make a word a candidate for duplicative entry in one
Word Group, two Word Groups, etc. This is performed
as follows.

Threshold for one segmentation event:

L
> llog Pyl > |l log (1 — T,
j=1

where L is the number of characters in a word. Threshold
for two segmentation events:

P(word,,,) = C," Pla,)’ Plagy) ™
L BT B
_2'(L'—2)'[1 P(aggg-)] P(awg)
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where P means the average value of P. Hence, the word
mis-segmentation threshold for a dictionary entry to be
entered in two adjacent Word Groups becomes

~ L! —
P(word,,,,) = WML—1 [1—-Pla,)]">T.
This expression can be put in convenient computational

form for a particular length, e.g., 8:

log P(ez) [| > [l log [1 — VT (2!)(61) / (8)]]l

seg

Analgous analytical procedures can be applied to obtain
the complete spectrum of Word Group thresholds, i.e.,
for single entry, double entry, triple entry, etc., for each
respective word length.

In a Word Group using the previously derived mis-
segmentation propensity thresholds, all words of the
designated length are included, as well as words of other
lengths that have a significant probability of being mis-
segmented to that length. Therefore, a single word may
appear in several Word Groups, based on its character
composition. For example, in Fig. 6 the word CORNWALL
appears in Word Group 8, its correct length. CORNWALL,
however, has four characters that are prone to splitting
segmentation (one character segmented into two).
These are C, O, N, and wW. It has been determined that
there is a significant probability of CORNWALL being mis-
read as a nine-character word, such as CORNVVALL, or a
ten-character word such as CIIRNVVALL, Therefore, the
word is also included in Word Groups 9 and 10. Simi-
larly, WHITEHALL is initially in Word Group 9. However,
it is also included in Word Group 8 because it has two
character pairs, either of which is likely to catenate into
a single character; these are Hl and LL.

In summary, the dictionary organization takes the
form of autonomous Word Groups based on alpha-field
length. This implies that all N-character dictionary en-
tries are listed together, where N =1, 2, 3,-- - up to the
length the longest set of dictionary words being consid-
ered. Appended to each of these error correction dic-
tionary entry subsets are dictionary words of a different
length but whose alphabetic composition makes their
segmentation propensity exceed a threshold so that they
are likely candidates for OCR length distortion effects.

The number of entries in the fetch produced by using
both magnitude and Word Group discriminants has been
shown in simulation to be between six and seven percent
of the number of unique entries in the total dictionary.
This reduction in fetch size is achieved while having
only a small effect on fetch accuracy.

» Further fetch discrimination

With respect to reduction in dictionary fetch size, Vec-
tor Fetch and Word Groups are passive discriminants.
This implies that their fetch reduction potential is
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achieved by virtue of dictionary organization. No signifi-
cant computational activity must be expended to utilize
the discriminatory potential of these fetch constraints, In
conjunction with VF and WG, a third very effective
passive fetch discriminant can be incorporated into the
fetch operation. The third discriminant requires that ei-
ther the first- or the last-position character match be-
tween the garbled word field and any dictionary entry to
be fetched into core storage. The First/Last Position
(FLP) fetch constraint is of particular significance in
terms of its reliability, its discrimination potential, and
the OCR recognition anomaly that underlies its applica-
tion.

The FLP fetch constraint results from the observed
fact that even when a word is badly garbled, rarely are
both the first and last letters misread. In referring to a
word as garbled, we specifically mean to differentiate
between a subfield that contains misreads and one that is
a “wipe out.” The “wipe out,” which normally results
from interference or a nonreadable font, is a misread
that has lost all character content relevance and is basi-
cally uncorrectable. A garbled subfield, on the other
hand, contains recognition errors normally resulting from
substitution or mis-segmentation. It is extremely unlike-
ly that mis-segmentation will exist strongly enough at
both the beginning and the end of a word to create mis-
reads in both positions, if the word is not a wipe out.
Analysis of OCR data has shown occurrence of simulta-
neous first- and last-character misreads in a subfield that
has some degree of character content to be much less
than one percent. Thus, it is a working assumption that
at least the first or the last character is valid in any word
that is to enter and complete the error correction pro-
cess.

Implementation of the FLP constraint, shown in Fig.
7, is achieved by the following file organization: The dic-
tionary is double-stored, for example, using separate
spools of the disk storage facility. In the first dictionary
copy, within each alphabetic grouping (e.g., first charac-
ter A, first character B, etc.), the entries are organized in
Word Groups and then, within each Word Group, divi-
sion is by entry magnitude. The second dictionary copy
is identical to the first except that it is alphabetized
according to the last character in each entry. Not only
does this configuration achieve, in a passive manner, the
FLP fetch discrimination but also it greatly increases the
I/O efficiency. It allows more potential for data (or
processing) overlap and reduces disk latency to a mini-
mum.

The most important factor in the FLP utilization is the
reduction of fetch size it achieves. Both analytically and
in fetch simulation, the FLP discrimination has been
shown to reduce fetch size by an average factor slightly
greater than six. This means that by using in concert all
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Figure 7 Complete fetch process from double-stored diction-
ary.

three fetch discriminants, the average block of data that
enters the error correction phase is only about one per-
cent of the dictionary. (Use of simple word length, i.c.,
not Word Group, would lead to an average fetch size of
26 percent.) This is particularly significant considering
that no overt computational effort has been expended
while achieving this reduction. Table 13 shows the ap-
proximate fetch performance resulting from simulation
when the three fetch discriminants are used in concert.

In summary, the OCR file organization results in the
ability to greatly scale down the computing potential
required to support the OCR operation without sacri-
ficing performance accuracy or real-time operating char-
acteristics.

5. Error correction

The final procedure performed by contextual word rec-
ognition postprocessing is Regional Context Maximum
Likelihood (RCML) error correction. The RCML pro-
cedure provides highly reliable OCR error correction of
alpha words that have been garbled during recognition
processing by character substitution, character rejection,
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Table 13 Fetch accuracy with 0.75 percent” of file fetched.

Error type

Segmentation

Average
Cate- recovery
Rejection Substitution Crowding Splitting nation rate
Relative
occurrence 57.11 24.53 5.70 6.72 5.94
(%)
Recovery
rate (%) 98.9 97.4 90.4 76.7 56.5 94.05
*This is the average percentage of the error correction dictionary that meets the triple physical constraint of being at the intersection of
1. Magnitude of the data fetch range;
2. Dictionary word group containing the entries related to the garbled word’s alpha character string length; and
3. Matching the garbled word in at least the first or the last character.
horizontal splitting segmentation, catenation segmenta- P(dictionary entry|garbled alpha string)
tion, or crowding segmentation. o .
P(dictionary entry, garbled alpha string) (24)

& RCML procedure

RCML error correction operates .on the garbled word
that failed verification (Section 3) and on the set of
words fetched from the OCR error correction dictionary
(Section 4). A typical problem is shown in Table 14.
The output of the RCML procedure is the determination
of which of these dictionary entries corresponds to the
word that has been scanned by the OCR and garbled
into its present incorrect form. Because the OCR error
correction operation must often be performed against a
dictionary word list as comprehensive as an ordinary
dictionary, the RCML algorithm must be capable of dis-
criminating among contending dictionary entries that
may differ by as little as one alpha character. The
RCML procedure must therefore utilize more than just
the count of matching characters between the garbled
word and a dictionary entry in order to achieve reliable
error correction.

Error correction by the RCML method is done by
means of a conditional probabilistic analysis. This ap-
proach evaluates the likelihood that each of the respec-
tive dictionary entries being considered could have been
mapped into the garbled character string by means of the
OCR device’s error misread propensities. The analysis
uses all data available in formulating this probability.
Physically, the likelihood analysis corresponds to the
computation of an analog distance between a dictionary
word and the garbled data, weighted by the a priori
probability that the dictionary entry would have oc-
curred in the alpha fields being OCR scanned. Mathe-
matically, this analysis is formulated by the conditional
probabilistic statement

W. S. ROSENBAUM AND J. J. HILLIARD

P(garbled alpha string)

The denominator of Eq. (24) is essentially a scaling fac-
tor and has the same value for all the entries being com-
pared with the garbled alpha string. Hence, the relative
ranking of each entry (i.e., the probability of each entry
mapping into the garbled alpha string) is based on the
value of the numerator in Eq. (24). Therefore, for the
rest of the error correction analysis, the focus is on what
maximizes the numerator.

By applying Bayes’ theorem, we can reformulate the
numerator in Eq. (24) as

P(dictionary entry, garbled alpha string)

= P(garbled alpha string|dictionary entry)

X P(dictionary entry). (25)

s The a priori factor
The probability factor P(dictionary entry) is called the a
priori probability of the event. For text processing, it is
the probability that the dictionary entry being compared
to the garbled character string appears in the data being
scanned. 4 priori data for word occurrence rates in gen-
eral English text may be obtained from prior analysis [ 2]. -
For more specialized text input, other sources of «a
priori data are available. In addition, an adaptive self-
teaching approach can be utilized which allows the dic-
tionary word entries to dynamically attain their appro-
priate a priori values. Detailed discussion of such self-
teaching algorithms is, however, outside the scope of
this paper.
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~ Evaluation of the likelihood factor
The probability factor

P{garbled alpha string|dictionary entry) (26)

is called the likelihood factor. The major computational
effort of the RCML error correction procedure centers
around the evaluation of this expression.

In the evaluation of the likelihood factor one must
capture, in a probabilistic form, the misread propensities
of the subject OCR. The conditional format of (26)
poses the likelihood as follows: Given a dictionary en-
try, what is the probability of the OCR misread proper-
sities having mapped it into the garbled alpha string?
Since OCRs recognize an alpha field on a character-by-
character basis (i.e., they do not directly recognize
words as single entities), (26) is really the product of a
series of independent probabilistic events. In this
perspective, there are two categories of OCR misrecog-
nition that must be addressed: They are substitution and
segmentation.

Substitution maximum likelihood analysis

OCR substitution manifests itself in two ways. The first
is character substitution. The recognition unit captures
the video image of a single character, but the features
required for alpha determination are aliased as another
character. Logically, this can occur only if there is some
degree of similarity in shape of the alpha characters in-
volved. Examples of such letter combinations are B8, D; D,
0; O, C; |, i; etc. The second form of substitution is char-
acter rejection. As with character substitution, the recog-
nition unit captures a single character. However, rejec-
tion occurs because of the inability of the recognition
logic to relate it to any character or because more than
one set of alpha determination logic is satisfied by the
character features isolated. In this discussion, all rejects
are denoted by an asterisk (*).

From a probability standpoint, both of the misread
effects can be posed as simple, independent, conditional
probabilities. Respectively, character substitution and
reject substitution enter (25) as

PC(leLi) and (27)
P.(*|L). (28)

These represent the probability that the alpha character
L, is scanned by the OCR and that L; or * is the output.
This probability datum is derived from a character con-
fusion matrix and is prestored, requiring no computation
time. The character confusion statistics are compiled
separately relative to uppercase and lowercase alpha
characters.

An example indicates how expressions of the forms
(27) and (28) can be applied in this Bayesian decision
process. The garbled word is CDRNWA*L and the entry
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Table 14 Basic error correction/ dictionary match problem.

Garbled word
CDRNWA*L

Dictionary candidates

CROMWELL
CHRISTIAN
CLARIDGE
COLONIAL
CORNWALL
TOWNHALL
HOSPITAL
GLENFALL
NATIONAL
WHITEHALL

from the dictionary fetch which is being tested is CORN-
WALL. The likelihood factor is given by the probabilistic
series of independent events as shown in this example.

Example
Garbled word = CDRNWA*L
Dictionary word = CORNWALL
Likelihood factor = P(CDRNWA*L|CORNWALL)
= P,(C|C) - P.(D[O) - P(RIR) - P,(NIN)
o PCJY) - PUL).

The likelihood factor is the product of a number of inde-
pendent character confusion probabilities, which results
in a relative value that can be compared with that gener-
ated by the other words under test. The entry word
which has the highest probability of being the original
word is chosen, provided it meets certain reasonableness
criteria.

Segmentation maximum likelihood analysis
Segmentation differs from substitution in that its inde-
pendent events correspond to groupings of at least two
characters. Nominally, there are three types of segmen-
tation error. They are horizontal splitting segmentation,
catenation segmentation, and crowding segmentation.
The underlying mechanical factor, which all of these
segmentation types have in common, is that they are
generated by the improper discernment of character be-
ginning and end points.

Horizontal Splitting Segmentation (HSS) is prone to
broad (wide) uppercase characters, such as w, M, N, U,
O, and C. The HSS effect occurs when the recognition
unit is misled into cutting one of these characters into
two parts. Each portion is in turn reviewed by the recog-
nition logic as if it were a legal character. This results in
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Table 15 Horizontal splitting segmentation.
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several patterns of character and/or rejection misrecog-
nition. Several of the more common forms are indicated
in Table 15.

From a probabiltistic standpoint, the segmentation
misread effect can be expressed as a dual aliasing effect
conditioned on the occurrence of one of the set of upper-
case letters noted previously. Functionally, this is indi-
cated as

Po(LL;,|L).

Obviously, the evaluation of (26) becomes more com-
plicated when the HSS effect must be considered. The
control logic of the calculation must consider three pos-
sible conditions when one of the segmentation prone
characters, L; . is encountered. The conditions are

1. L, o has given rise to a simple substitution effect of

s

the form

P(LL, ) or (29)

P.(*|L; ). (30)

iseg
2. L, has been improperly segmented, giving rise to

1,

anseIgFISS effect of the form
P (L, IL, ). (31)

3. Liseg has been properly recognized and outputed,

giving rise to
PC (LisegILiseg) : (32)

The presence of this last possibility is especially difficult
to discern correctly because the most common type of
character HSS (Table 15) recreates itself along with an
additional spurious character. The analytic details of the
inclusion of HSS in the evaluation of the likelihood fac-
tor (25) are discussed later so that it can be elaborated
upon in the perspective of catenation and crowding seg-
mentation errors.

W. S. ROSENBAUM AND J. J. HILLIARD

Catenation Segmentation (CS) is nearly the mirror
image of HSS. It occurs principally among closely
spaced lowercase characters. Mechanically, CS evolves
when the recognition unit is unable to discern in the scan
the presence of two individual characters. Hence, the
AOCR recognition logic proceeds to process the charac-
ters in a logically catenated manner.

This effect occurs mainly due to characters printed in
a stylized manner or by crowded typewriter slugs. Table
16 contains several of the most CS prone letter combi-
nations. In a probabilistic format the CS event can be
posed as

PC(LjILiLM) and (33)

P.(+|L,L,, ). (34)

The latter event may be particularly difficult to isolate
while evaluating (26) because L, itself may have a high
propensity for mapping into an asterisk (i.e., being
rejected) and is therefore suggestive of a plain substitu-
tion instead of a CS.

Crowding Segmentation (CRS) differs from HSS and
CS error types by not affecting word length. The causa-
tive factors related to CRS are character spacing and
juxtaposition. A potential CRS event occurs when the
recognition unit isolates two characters but, because of
their proximity to each other, misassigns the segmenta-
tion point. This effectively segments portions of one
character into the video representation of the other. A
misread results if the addition of the neighboring charac-
ter segment either 1) creates a composite character that
triggers the recognition logic of a different character or
2) interferes with the recognition analysis and leads to a
reject (*) output.

The overriding factor behind CRS is character geome-
try. Only relatively few of the 676 possible diagrams are
prone to ‘“‘snowballing” a print-crowding effect into a
character misread, as described previously. An example
of such a character pair and the evolution of a CRS
event is shown in Fig. 8, where the re digram maps into
an n* combination. It should be noted that the observed
video image would not have evolved if the subject di-
gram was er or ri. The appropriate confusion data related
to the CRS events can be quantified in the form

PC(Lij+1|LiLi+1)' (35)

To structure an effective and efficient evaluation
methodology for the likelihood factor (26), one must
stress the commonality of its possible constituents. Es-
sentially, each of the candidate aliasing effects can be
represented as a confusion probability. The only addi-
tional factor that must be accommodated in the analysis
is that, unlike the treatment of simple substitution shown
in the example, a predictable one-to-one correspondence
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Table 16 Catenation segmentation.
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between characters in a dictionary entry and the garbled
data field no longer strictly holds. This, of course, fol-
lows because the occurrence of an HSS error in one
character of a dictionary word creates two characters in
its garbled representation. The converse holds for CS
error. Implicit in each of the previous mis-segmentation
possibilities is the requirement to realign the remainder of
the garbled address data to compensate for the character
misalignment effect incurred due to the presence of a
segmentation error.

To configure a reliable algorithm that accommodates
the segmentation considerations, two innovations must
be appended to the standard procedures, as applied in
(26), when evaluating the likelihood factor. The innova-
tions are exception character-pair flagging and the use of
regional context. These innovations are explained as fol-
lows.

Exception character and character-pair flagging
There are about six HSS prone characters and 30 to 50
CS prone character pairs. By themselves, they consti-
tute only a small part of the alpha composition of the
dictionary. Unless a flag is encountered, the likelihood
factor analysis proceeds as if character substitution were
the only garbling factor to be considered. Only when a
flag is encountered does the routine branch into the spe-
cial logic for possible segmentation error occurrences.
Special characters can be inserted into each word
where its segmentation prone characters or character
pairs exist. This, however, has the drawback of increas-
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Figure 8 Binary video scan of a character pair that resulted in
crowding segmentation.

ing the average word length and destroying the compact-
ness of the dictionary, which is important for 1/O effi-
ciency. Hence, to accommodate the flagging and storage
requirements, a special alpha character storage conven-
tion is adopted. Each alpha character is stored using
only five of the eight bits usually used to store a charac-
ter. The other three bits are then used to provide eight
flag-code combinations, two of which are delegated for
HSS character and CS character pairs.

If, for display purposes, the HSS code is denoted by
“1”_ then, for example, the word WALSTON, which con-
tains both HSS and CS occurrences, would be stored in
the dictionary as

Iw! |A[ L[ [s?] [T2] {O!} [N1].

Use of regional context
The key to HSS and CS flags being used effectively in
the likelihood factor computation is regional context.
Unless an alpha character in a dictionary entry is pre-
ceded by a flag, it is assumed that it enters into the likeli-
hood factor analysis as an event of the form Pc(Li|Lj),
where i = j is among the possibilities. This implies that
only the possibility of simple substitution is being as-
sumed. If a flag is encountered in the dictionary entry,
then the analysis associated with the likelihood factor
must address, in addition to simple substitution, the pos-
sibility of segmentation. The use of regional context now
enters as follows.
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Figure 9 Example of regional context.

Assume that the flag indicates the possibility of HSS.
At this point, three possibilities exist; they are

1 and 2: Pc(leLiseg);
3: P(LL, L),

where j= i, is included. To proceed with the evaluation
of the likelihood factor, a decision must be made be-
tween events 1 and 2 and the HSS event posed by 3.
The decision mechanism rests on the use of regional
context,

If condition 3 is correct, then the remainder of the
garbled character string must be left-adjusted one posi-
tion. This changes the existing correspondence between
the characters of the garbled alpha string and the dic-
tionary entry. The change (shift) in regional context is
reflected in terms of the likelihood factor constituents as

Pc(Lij‘rl'Liseg) ’ Pc(Lj+2|Li+1)' . (36)

If condition 1 or 2 is correct, then the regional context
is not disturbed and the likelihood factor constituents
corresponding to those in (36) are

PALIL, ) - P(Ly,,IL,,). (37)

The decision concerning the presence or absence of
HSS then follows by whichever formulation, (36) or
(37), yields the larger probability value.

Similarly, if a flag denotes the presence of a character
pair that is prone to CS, then

Pc(Lj'LiLi+l) ' Pc(Lj+1|Li+2) (38)

would denote the related constituents of the likelihood
factor under that supposition. This expression would be
evaluated relative to

Pc(leLi) : Pc(Lj+llLi+1)v (39)

which is the likelihood factor evaluation progression that
would exist in the absence of a CS misread. The deci-
sion criterion, as with HSS misread, would be based on
the relative probabilities of the respective expressions.
Figure 9 further illustrates the implementation of region-
al context in segmentation type error correction.
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For crowding segmentation, the evaluation of the like-
lihood factor in (26) follows by also denoting the possi-
ble CRS prone character digrams in the dictionary en-
tries by a special character. The evaluation progression
at this point then considers the two possibilities,

Pc(Lj+1iLi+1) : Pc(Lj\Li) and

P, (Lj+1Lj |Li+1Li)'

Because, unlike the HSS and CSS evaluations, no
change in character string length must be taken into ac-
count, the choice of how to treat and include the digrams
L, L, in the likelihood caiculation follows from which-
ever of the above expressions yields the larger prob-
ability.

& Programming expediencies for decreasing computing
requirements
The RCML procedure may have to be evoked many
times during the OCR processing of an average docu-
ment. It therefore becomes important to minimize the
related computation. A substantial decrease in comput-
ing requirement is accrued by appending to the basic
error correction algorithm a comprehensive series of dic-
tionary candidate screening processes. In concert, these
logical procedures actually increase algorithm reliability
while decreasing computing time.

The package of logical screening processes includes a
premature termination threshold and a Go/No Go
threshold.

Premature termination threshold

Premature termination effects a major decrease in com-
putation performed by the error correction function by
terminating the consideration of a dictibnary entry as
soon as its likelihood factor drops below a fixed percent-
age of the largest likelihood factor obtained in the analy-
sis so far. Recall that the likelihood factor (26) mea-
sures, in a probabilistic fashion, the degree of match or
mismatch between a garbled word and a dictionary-fetch
entry. The evaluation format of the likelihood factor
lends itself naturaily to this type of thresholding; it can
be evaluated as a series of multiplications of confusion
probabilities (values between 0 and 1). As with any
multiplicative series of terms less than one, each succes-
sive multiplication decreases the value of the existing
product. :

The normal tolerance level is taken to be 10 percent
of the largest likelihood computed so far in the analysis.
This threshold markedly decreases computation, once
the RCML procedure has encountered the correct dic-
tionary entry.

Following is an example of the thresholding imple-
mentation. If it is assumed that an 80-percent likelihood
factor is the largest so far in the analysis, then the toler-
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ance level is eight percent. Hence, for the error correc-
tion routine to continue, consideration of any forthcom-
ing entry requires that the entry maintain a likelihood
value of at least 72 percent. Most dictionary entries
show a sufficient incompatibility within one or two char-
acters to drop below the tolerance level and are there-
fore terminated.

Go/No Go threshold

This thresholding operation is akin to the premature
termination criterion. It focuses, however, on the other
end of the probability spectrum. It allows consideration
of a dictionary candidate to be terminated as soon as it
drops below an absolute minimum threshold. Its value
follows from the fact that no matter how dissimilar a
garbled word and a dictionary entry are, the likelihood
factor is computable.

Fortunately, such a likelihood computation quickly
converges toward zero. By placing a lower limit on the
acceptable likelihood values, the term-by-term evalua-
tion of an only casually related dictionary entry can be
terminated if it drops below the threshold.

Performance curve

In concert, the Go/No Go and the premature termina-
tion thresholds make a significant difference in the num-
ber of operations that, on the average, are performed
during an error correction operation. Figure 10 shows
the cumulative operations performed for the maximum
likelihood computation with and without thresholding.
This graph reflects an average case with the correct en-
try encountered halfway through the search. It should be
noted that, of the entries which enter error processing,
only about one in 20 is processed beyond the Go/No Go
and premature termination thresholds.

Although the discussion and analysis of the evaluation
of the likelihood factor have been posed in terms of a
series of multiplicative operations, in reality, for further
computational efficiency, they are performed in the
computer as an addition of prestored logarithmic values
(logs) of probabilities. This procedure replaces the rela-
tively slow operation of multiplication with the high-
speed add instruction. In itself, the use of the addition of
logs of probabilities, instead of direct multiplication,
decreases the computational requirements by a factor of
about six. By virtue of all the computational expedien-
cies, the complete Contextual Word Recognition Post-
processor can be accommodated for many text process-
ing applications on relatively small processors.

* Reasonability criterion
At the completion of RCML processing two possibilities
exist: Either

1. no candidate entry has passed the threshold criterion
or
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Figure 10 Comparison of computational performance, at 10
characters per entry, (a) with and (b) without thresholding.

2. one or more dictionary entries have completed
RCML processing.

If condition 1 exists, then no error correction is possible
and a reject is indicated. In most cases, this situation is
the result of the correct form of the garbled word not
being present in the data block fetched. Condition 2 is
the more common case. It indicates, from a likelihood:of—
match standpoint, that one or more of the dictionary
entries reviewed might have been misread into the gar-
bled word. ,

The correct choice may or may not be in the final set
of dictionary candidates. To control, at this point, the
potential for miscorrection, a reasonability criterion re-
quires a match in at least 50 percent of the character
positions for a final candidate to be accepted as the cor-
rect form of the garbled word. The output of the RCML
procedure is reviewed in the order of high-to-low proba-
bility score, and the first to pass is accepted. If none of
the final candidates passes, a reject is indicated.

The accuracy and reliability of RCML error correc-
tion has been assessed by offline simulation using recog-
nition tapes from the AOCR. The following was ob-
served in a run against a dictionary of 62000 entries
when the correct word was present in the fetch:

a. 97.7 percent correct;

b. 0.7 percent rejected (rejection implies no dictionary
candidate was accepted);

c. 1.6 percent incorrect (incorrect selection implies the
wrong word was associated with the garbled word).

* RCML error correction technique simulation results

As mentioned previously, the RCML error correction
procedure was applied to actual AOCR garbled mail
address data. Via this technique, substitution, character
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Table 17 AOCR garbled words corrected by Bayesian technique.

Garbled word Comment Correct word chosen
LONISVE*L Substitution LOUISVILLE
NEWI*RK Substitution NEW YORK
MICHIAAN* Splitting segmentation MICHIGAN
COL*BUS Substitution COLUMBUS
*OWAM Rejection IOWA
TH*RD Rejection THIRD
ATLAN*IE Substitution ATLANTIC
*O**ERCE Rejection COMMERCE
ERONX Substitution BRONX
AVENUE OF Catenation AVENUE OF THE

AMRICAS segmentation AMERICAS
GRATNECTK Catenation GREATNECK
segmentation
BROAD**NY Splitting segmentation BROADWAY
H*IDSON Splitting segmentation HUDSON
RANKLIN No read FRANKLIN
MONI*MENT Splitting segmentation MONUMENT
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Performance on error words
Correct selection —97.7%

Rejection

- 0.7%

Incorrect selection — 1.6%

rejection, horizontal splitting segmentation, catenation
segmentation, and crowding segmentation errors were
treated. The results contained in Table 17 demonstrate
the effectiveness and flexibility of the technique.

6. Conclusions

The Contextual Word Recognition Postprocessor tech-
nology provides a flexible, real-time, reliable system for
performing multifont OCR error correction. Integrated
into a multifont OCR architecture, these cybernetic pro-
cedures offer a new avenue for overcoming the reliabili-
ty problems that have plagued operational implementa-
tion of omnifont recognition processing.

Tests conducted over a period of a year have shown
that the Contextual Word Recognition Postprocessor is
a significant advance in the state of the art in automatic
error correction. In light of the published results of
Damereau [3], Vossler [4], the IBM Research Division
[5], Szanser [6], and Hahn [7], the error correction
technology discussed in this paper offers two unique
advantages.

First, the Contextual Word Recognition Postproces-
sor offers a computationally practical and easily imple-
mentable method of coupling a large, almost open-end-
ed, error correction dictionary with later phases of the
automatic error recovery process. This is achieved using
the Binary Reference Matrix for verification purposes
and the Vector Fetch/Word Group methodology for
accessing the error correcting dictionary. The error
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correction dictionary used in our tests was more than six
times larger than the largest such file used by any of the
referenced experimenters.

Second, the Regional Context Maximum Likelihood
error correction procedure yielded by far the highest
error recovery reliability of any of the above techniques.
The mis-association rate of the RCML correction was
less than half the rate reported by any of the preceding
investigators.

Similar enhancements in the state of the art of auto-
matic error correction can be assessed relative to pub-
lished results related to digram and trigram inference
techniques for effecting garbled word error recovery.
Direct ‘“‘apples-to-apples” comparison of contextual
word recognition is more difficult, however, because
work in this vein is mainly posed as recognition en-
hancement instead of error recovery and no dictionary
word list as such is used. Published results related to
digram and trigram methods, however, clearly indicate
compromised reliability and deterioration of perfor-
mance when large vocabularies must be used. The major
published results in digram and trigram techniques are
Vossler [4], Carlson [8], Raviv [9], Cornew [10], and
Riseman [11].
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