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On  a  Nonlinear  Diffusion  Equation 
Describing  Population  Growth 

Abstract: A nonlinear  eigenvalue  problem is solved  analytically to  obtain  the shock-like  traveling  waves of Fisher’s  nonlinear diffusion 
equation, with which he  described  the  wave of advance of advantageous genes. A phase-plane  analysis of the wave profiles shows that 
the propagation  speed of the  waves is linearly  proportional to  their  thickness.  The analytic  solution is asymptotically accurate in the 
limit of infinitely large characteristic  speeds.  However,  as they have a minimum threshold  value which is not zero,  the  asymptotic solu- 
tion turns  out  to  be highly accurate for all propagation  speeds. The  wave profiles of Fisher’s equation  are shown to be identical to the 
steady  state solutions of the Korteweg-de  Vries-Burgers equation  that  are obtained  when  dissipative  effects are  dominant  over dis- 
persive  effects. 

Introduction 
This  paper  describes  our study of the traveling wave 
solutions of 

ui = vuyy + ku ( 1  - u), ( 1 )  

a  nonlinear equation of evolution of diffusive type used 
by Fisher [ 11 to  describe  the propagation of a virile 
mutant in an infinitely long habitat. The growth of the 
mutant  population is due  to diffusion and  nonlinear  local 
multiplication. In  Eq. ( l ) ,  v is the diffusion coefficient, k 
is a positive multiplication factor, T is time, y is distance, 
and  the  subscripts designate  partial derivatives. With 
only an inconsequential  variation, Eq. ( 1  ) becomes a 
model used to  describe  the evolution of the  neutron 
population in a  nuclear reactor,  where  the domain is 
obviously finite [2]. The  use of the  same model for  both 
problems is not  surprising because  neutrons in a reactor 
evolve in time  by the  same physical processes  as  the pop- 
ulation in Fisher’s equation,  that  is, by diffusion and 
nonlinear local multiplication. 

In  the second section,  we review the fundamental re- 
sults obtained by Fisher [ 1 ] and by Kolmogoroff, Petrov- 
sky,  and Piscounoff (KPP) [3]. 

The phase-plane  analysis of the traveling waves  de- 
fined by Eq. ( 1 )  is carried out in the third section.  This 
analysis yields the result that  the propagation speed of 
the  waves is linearly proportional to  their  thickness. 

We  obtain  analytically in the  fourth  section  the travel- 
ing wave profiles in the physical  plane.  Although the 
accuracy of the solution increases asymptotically  with 
the propagation speed,  the solution is highly accurate  for 

all the  characteristic  speeds  because  these  have a mini- 
mum threshold  value which is not zero.  This notable 
result is verified by the excellent agreement  between  the 
analytic  solution for  the traveling wave of minimum 
speed and the numerical  solution of Fisher [ 11. We also 
show that Fisher’s  population fronts  are identical to  some 
of the  steady  state solutions of the Korteweg-de  Vries- 
Burgers equation. 

The stability  analysis of the fifth section  shows  that all 
the traveling  waves are  unstable  for  the  case of small 
perturbations  that vanish at infinity. This is true  because 
an infinitesimally small perturbation  can transform one 
wave into  another, a property  characteristic of problems 
with a continuous  spectrum of wave fronts.  However, if 
we  restrict  the  perturbations so that they  vanish at a finite 
distance in the  wave  frame,  we can  then prove stability. 

Fisher’s  equation in infinite  domains 
It  is convenient  to  remove dimensions  from Eq. ( 1 )  by 
expressing time and length in the dimensionless  units 
f = kt- and x = ( k / v ) ” 2 y ,  so that Eq. ( 1  ) acquires  the 
simpler  form 

U t  = Ll,, + 11 (1 - 1 1 ) .  ( 2 )  

Fisher’s equation  can be  thought of as describing the 
nonlinear  evolution of a population in a  one-dimensional 
habitat. The  habitat  can  support only  a certain maximum 
population per unit  length  which, for  convenience, we 
choose  as unity. The initial condition for  Fisher’s  equa- 
tion must  thus be restricted as follows: 307 
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0 5  Li(x, t )  5 1, - 00 < x < 00, 

Further, in a series of remarkable theorems, KPP showed 
that, for the following initial conditions satisfying 

t > 0.  f "  

Eqs. (41, 

* 
X 

Figure 1 
traveling wave. 

Qualitative plot of the profile of the minimum-speed 

Figure 2 Qualitative plot of the trajectories of Eq.(9).  The 
solution to the nonlinear eigenvalue problem defined by Eqs. 
(7 )  and (8) is given by the trajectory that intercepts the critical 
points. These are a saddle point at ( U J )  = (1 ,O)  and a stable 
node at ( u , y j  = (0,Oj. 

0 5  u ( x , O )  5 1, --z < x < m. ( 3 )  

We shall be interested in the solutions of Eq. ( 2 ) ,  sub- 
ject to Eq. ( 3 ) ,  such that all the x derivatives tend to 
zero as x + & w and that satisfy the conditions 

lim u ( x , t )  = 1, lim u ( x , t )  = 0, t 1 0 .  (4 )  
X'-m x + + m  

The problem defined by Eqs. ( 2 ) ,  ( 3 ) ,  and (4)  de- 
scribes the advance of the population along a habitat 
that is saturated at the left and unoccupied at the right. 
i n  their basic paper, KPP [3] proved that, for each initial 
condition of the form ( 3 ) ,  Eq. (2)  has a unique solution 
that is bounded for all times as the initial distribution, i.e., 308 

x < o  
1r(x,O) = 

and 

u ( x , O )  = f ( x )  
1 x < a  

{O x > b ,  
a < x  < h 

where , f ( x )  is arbitrary, the solution becomes, in the limit 
t -+ m, a shock-like traveling wave that satisfies Eq. ( 4 )  
and propagates to the right with the minimum allowed 
characteristic speed cmin = 2. 

Both Fisher [ I ]  and KPP [3] found that Eq. (2) has 
an infinite number of traveling wave solutions of charac- 
teristic speeds c 2 2.  Fisher also carried out a very ac- 
curate and detailed numerical computation of the shock- 
like profile of the traveling wave of minimum speed, 
which is indicated conceptually in Fig. 1 .  

Wave profiles in the phase plane 
The phase-plane analysis given in this section shows 
that a traveling wave propagates with a speed linearly 
proportional to its thickness. We seek traveling wave 
solutions of Eq. (2) in the form 

f l ( X , t )  = u ( x  - c t )  3 /A($), (6) 

where c is the speed of the wave or population front. 
Substitution of Eq. (6) into Eq. ( 2 )  gives an ordinary 
nonlinear differential equation for the shock-like wave 
profiles, 

(d'ulds') + c ( d u / d s )  + u - 11' = 0. (7 )  

The proper boundary conditions for Eq. (7 )  satisfying 
Eqs. (4 j are 

u(-cQ) = 1 ,  u ( + w )  = 0. ( 8 )  

Equations (7 )  and ( 8 )  define a nonlinear eigenvalue 
problem in an infinite domain, where the propagation 
speed c i s  the eigenvalue. The trajectories defined by 
Eq. (7 )  in the phase plane [ ( u ,  dulds)  = ( u , y ) ]  are 
given by 

dy/du = [ (u' - U )  - C Y ] / Y .  (9 1 

The form of these trajectories, shown in Fig. 2, applies if 
and only if the origin is a stable node [ 4 ] .  This condition 
requires that the propagation speeds of the traveling 
waves be given by the continuous spectrum 

c 1: 2, (10) 
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Table 1 Coordinates of the point of inflection of the wave profile of‘ minimum speed. 

( u ,  dulds j f r o m  Eq. ( 1 5 )  
Exact corresponding value f r o m  

Vulue: First  order  Second  order  Third  order Ref. [ I1  

(0.5,-0.125 1 (0.437,-0.125) (0.437,-0.123) (0.442,-0.123) 

which is  the result reported by Fisher  and KPP. Unless 
Eq. (10) is satisfied, the origin of the phase-plane would 
be a center  or a focus [4], and this configuration would 
result in negative  distributions u, which is a physical 
impossibility. 

Figure 2 shows that only the  trajectory going through 
the critical  points  gives the solution to  the nonlinear 
eigenvalue  problem defined by Eqs. (7 )  and (8) .  There- 
fore,  for  each eigenvalue c there is a unique  correspond- 
ing wave profile. The profiles are obtained as follows. 
It is convenient  to define a  new  variable j = cy, in terms 
of which Eq. (9)  becomes 

E (djildu) = ( 2  - u - y ) / y ,  

E 3 1/c2, j = cy. 
(11) 

The solution of Eq. ( 1  1 )  is sought in the  form of a 
series 

Y ( U , E )  = g,(u) + Egl (u )  + &,(U) +.... (12 )  

Substituting into  Eq. ( 11) and grouping the like powers of 
E, one  obtains 

O(1) g o =  u 2  - u,  

O(E) SI =-g,g‘,, (13) 

O(E2) g* = -g,g’, - g‘,g,, 

where  the prime indicates derivative with respect  to 1 1 .  

Equations ( 1 3 )  show  that  the series ( 12) is obtained 
merely by a substitution process, without the need for 
solving any differential equation  at any order in E. After 
transforming to the variable y ,  we explicitly get 

I 
y ( u , E )  = E1/n(U2 - u )  - E312(2u3 - 3 2  + u )  + 

2c5”(5u4 - 10u3 + 6u2 - u )  + O(e7”). (14) 

The result given by Eq. (14) has  two notable  properties. 
First,  the limit as E -+ 0 is uniform, i.e., to any order in E 

the  series (14) gives approximations  to  the  trajectory 
that  intercepts both critical points  [Fig. 21, as can be seen 
by inspection of Eq. (14). Second,  the  series (14) is 
asymptotically accurate in the limit of infinitely large 
propagation speeds [E -+ 0, c + 00; see  Eq. ( 11 ) ] ;  how- 

ever,  because the minimum speed is sufficiently high so 
that the expansion  parameter E is always “small”  (i.e., 
its maximum allowed value is 0.25) we expect  that  the 
accuracy of Eq. ( 14 ) will be good for all traveling waves 
defined by Eqs. (2), ( 3 ) ,  and (4). It will be  shown that 
this is indeed the  case. 

Equation (14) is now used to obtain the propagation 
speed of the waves. The  coordinates of the minimum of 
the trajectory that  intercepts  the critical points are ob- 
tained by an elementary  calculation using Eq. ( 14). The 
result is 

( U J )  ( ~ ~ , d L ~ l d s )  (112 - ~14, - (1 - i2/4)/4c],  (15) 
which gives the  coordinates of the inflection point of the 
wave profile in the physical  plane, as indicated in Fig. 1 
and Table 1. We define the  steepness S of the profile as 
the magnitude of the  slope of its point of inflection; Eq. 
( 15), then,  shows  that, for all quantitative  purposes, 

S = 1/4c, (16) 

because the  error in Eq. ( 16) is 0 (6’). The maximum 
error, which occurs  for  the minimum-speed wave, is less 
than  two percent,  as is indicated by the  data in Table 1. 
For  the  faster  waves, this error  decays  as  the  fourth 
power of the speed [see  Eqs. ( 1 5 )  and ( 11 j]. Because 
the profile half-thickness L is inversely  proportional to 
the  steepness, Eq. ( 16) yields the fundamental  result 

c = Ll4,  (17) 

i.e., the  propugation speed of the wave is linearly pro- 
portional to its  thickness. An interesting consequence 
of this  result is that all the waves,  regardless of their 
thicknesses, would take the  same time to pass before a 
stationary observer. 

Kendall’s numerical  solution (Figs. 5 and 6 of Ref. 5 )  
of an  equation similar to Fisher’s  showed the linear 
dependence between the propagation speed  and  the  wave 
thickness. In a recent  paper, Montroll [6] studied  a 
nonlinear equation of evolution that is similar to Fisher’s 
equation. Montroll solved the partial  nonlinear differen- 
tial equation  exactly by transforming it into the linear 
heat equation, a  technique similar to  that used by Hopf 
[7] and Cole [8] for Burgers’ equation. Montroll  argued 
that the  solution of his equation closely resembles  that 
of Fisher’s equation. Although there  are  some formal 
similarities between Fisher’s  and  Montroll’s equations, 

1 
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the qualitative  behavior of their solutions is in fact quite 
different. For  the traveling waves  corresponding  to  our 
initial conditions [Eqs. (3) and (4)],  Montroll's equa- 
tion admits  arbitrarily steep profiles [Eq.  (3 l )  of Ref. 
61, but,  as  shown by Eqs.  (16)  and ( l o ) ,  diffusion pre- 
vents  the  steepness of the profiles of Fisher's  equation 
from exceeding the maximum value 

S,,, = 1/8. 

In dimensionless units,  the  wave speed for Montroll's 
equation  [9] is given by 

c = 4S + (1/4S) = (4/L) + (L/4) ,  (18) 

which shows a  nonlinear dependence  between  the  wave 
speed  and  its  thickness. In  Fisher's  equation,  on  the 
other hand, the speed is linearly proportional to  the 
thickness  [see  Eq.  (17)]. 

Wave profiles in the  physical plane 
The  wave profiles in the physical  plane are now obtained 
using the  results of the phase-plane  analysis.  When a 
new unit of length is defined by 

r z = -  
c' (19) 

Eq. (7) becomes 

~ ( d ' ~ / d Z 2 )  + du/dz + u - u2 = 0, 

u ( - x )  = 1, U ( + X )  = 0, E= 1/c2 S 1/4. (20) 

Since  there is a  uniform limit as e --z 0 for  Eq.  (20), a 
valid solution in all the domain is obtained simply by ex- 
panding 

u ( z ; e )  = u 0 ( z )  + EU,  ( z )  +. ' '. (21 1 
Substituting Eq.  (21)  into  Eq.  (20)  and grouping like 
powers of E ,  one  obtains 

O(  1 )  No' + Uo - UO2 = 0, 
O ( e )  11,' + ( 1  - 2U")U, = -11; 

The initial conditions for uo and 14, are given by Eq.  (15), 
with the origin of distance in the  wave  frame being the 
point of inflection of the  wave  [see  also  Eq. (21)] ; i.e., 

U , , ( O )  = 1/2, ~ ~ ( 0 )  =-1/4.  (24) 

Therefore, solving successively Eqs.  (22) and (23), with 
their  respective initial conditions  given in Eq.  (24),  and 
transforming back to  the variable s [Eq. ( 19)], we finally 
obtain  the  wave profiles: 

u ( S ; E )  = "E 
I exp ( s / c )  

1 + exp (s/c) [ I  + exp  (s/c)]' 

31 0 
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It should be noticed that  the profile half-thickness, 
defined as  the reciprocal of the  steepness S [Eqs.( 16) 
and  (17)}, is L = 4c, which is  four times the relaxation 
length or e-folding distance of the  wave given by Eq. 
(25).  Therefore, in the  wave  frame with the origin at  the 
point of inflection, the main part of the wave extends 
over  one full thickness from "L to +L. As discussed 
previously, the  accuracy of the  asymptotic  expansion  for 
the  wave profiles is least  for  the minimum-speed wave, 
where e = 1/4.  For  the  faster  waves,  the  accuracy of the 
result (25)  increases  as  the  fourth  power of the propaga- 
tion speed. A comparison of the profiles given by Eq. 
(25)  for  the minimum-speed wave with the numerical 
solutions  obtained by Fisher [ I ]  is shown in Table 2. 
The origin of distance used by Fisher in the  wave frame 
was different  from ours;  the  correspondence  between his 
abscissas  and  ours  is s = sF - 0.765. 

In  Table 2 the  wave profile is given as a  function of dis- 
tance in Fisher's  coordinate  system.  The  agreement 
between  the  second-order  asymptotic solution and  the 
numerical  solution is uniformly good over  the whole 
thickness of the  wave.  Therefore  we could use  the pro- 
files (25) in conjunction  with the KPP initial condition 
given  by Eq.  (5a)  as a standard  for  comparison  of 
numerical methods  for solving time-dependent  viscous 
flow problems [ 101. It should  be  recalled that  the  accu- 
racy of Eq.  (25) is independent of the values of the dif- 
fusion  coefficient u and the multiplication factor k .  

We conclude by pointing out  an interesting  result. The 
diffusive waves of Fisher's  equation  are identical to  the 
steady  state solutions of the Korteweg-de  Vries-Burgers 
equation, 

Ut  + 1111, - uu,, + pu,,, = 0, u > 0, p > 0, (26) 

which are obtained when  the diffusive effects (deter- 
mined by the magnitude of u )  dominate  over  the  disper- 
sive effects  (determined by the magnitude of p ) .  The 
Korteweg-de  Vries-Burgers equation  has been  used by 
Johnson [ 111 for  the description of shallow water  waves 
on a viscous fluid [ 111. Numerical computations of 
the  steady-state solutions have  been  done by Johnson, 
who also obtained an  asymptotic solution for  the  case in 
which the  dispersive effects dominate  the dissipative 
effects [ 1 1,121, and by Grad and Hu [ 131 for a problem 
of weak  plasma shocks propagating  perpendicularly to a 
magnetic field. The  steady  state solutions of (26)  are 
given [Eq.(35) of Ref. 1 1 ] by 

H z  - H + H" = uH', u > o  
H("oo) = 1, H(+.o) = 0, (27) 

where  the primes denote  derivatives relative to  the inde- 
pendent variable x, and  the  parameter u is defined in 
terms of the diffusion and dispersion coefficients u and p 
[ 1 1,141. With  the new independent  and  dependent vari- 
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ables defined as s = - x  and u = 1 - H ,  respectively, 
Eq.  (27)  becomes 

u” + uu’ + II - u2 = 0, 
u(-m) = 1, u(*) = 0, 

which is exactly our  Eq. (7 )  if we  reinterpret u as  the 
propagation  speed of the  Fisher-equation waves. 

The  Fisher  and  KPP condition IT = c 2 2 [see  Eq. 
( l o ) ]  leads  to  the shock profiles of Johnson, which are 
monotonic  both upstream  and  downstream.  For u < 2, 
the  second  class of steady state solutions of (26) is ob- 
tained, i.e., shocks  that  are oscillatory and  damped up- 
stream,  and monotonic downstream [ 1 11. 

Stability 
The  question of the stability of the traveling waves  has 
not been  resolved in the  literature  [1,3,5,6]. We now 
show  that all the  waves  are  unstable against small per- 
turbations  that vanish at infinity. When we  restrict  the 
perturbations so that they  vanish at a finite distance, 
then,  we  prove stability. By using this stability analysis, 
in conjunction with a  monotonicity  result of KPP [ 31, we 
prove  that  the  superspeed  waves  do not evolve neces- 
sarily into the minimum speed wave,  when subject  to 
arbitrary  perturbations. 

We define a coordinate  system moving in the positive 
x-direction  with  a speed c, i.e., s = x  - cf; Eq. (2) then 
becomes 

ut = us, + cu, + u(  1 - u ) .  (29) 

We now use  the  standard stability  formalism  dis- 
cussed by Jeffrey and Kakutani [ 141 for Burgers’ equa- 
tion, and by Cohen  for boundary value problems in finite 
domains [ 151. We  superimpose  a small disturbance 
u(s, t )  on  the traveling  wave u ( s ; c ) ,  i.e., 

u(s , t )  = u ( s ; c )  + E U ( S , t ) .  (30) 

Substituting (30) into (29)  and keeping only terms of 
the first order in E ,  we obtain the time-dependent equa- 
tion for  the  perturbation 

u, = us, + cu, + [ 1 - 2 u ( s ; c ) ] u .  (31) 

We  say that  the  wave u ( s ; c )  is stable if all solutions of 
(3 1 ) decay in time as follows: 

pil u ( s , t )  = 0, or !iir u ( s , t )  = u,(s;c). (32) 

The first limit has  an  obvious meaning. The second would 
result in an infinitesimally small translation of the wave 
along the  axis  because 

u ( s  - Ss;c)  = u ( s ; c )  - u,ss. 

I t  is shown  below that u,(s;c) is a stationary solution of 
(3 I ) ,  as required. 

If we now  look for solutions of (3 1 ) in the form 
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Table 2 Profile of the  wave of minimum speed:  asymptotic 
and numerical  solutions.* 

Asymptotic  solution, 
Eq. ( 2 5 )  Fisher’s  numerical 

solution,  Table IV 
of Re$ I 

SF First  order  Second  order 

-10.3480 1 .o 0.99 0.99 
-5.9205 0.96 0.94 0.94 
-3.3525 0.89 0.84  0.84 
-1.9572 0.79 0.74 0.74 
-0.9191 0.70 0.64  0.64 
-0.0360 0.60 0.54 0.54 

0.765 0.50 0.44 0.44 
1.5224 0.41 0.34 0.35 
2.4101 0.30 0.24 0.25 
3.5053 0.20 0.14 0.15 
5.3693 0.09 0.05 0.05 
7.6061 0.03 0.0 1 0.01 

profile. 
*Fisher  used  the  parameter values Y = k = 1, and c = 2 for  the minimum-speed 

v ( s , t )  =f ( s )  exp ( -A t ) ,  (33) 

we find that A and f a re  given by the following eigenvalue 
problem, which is not self-adjoint: 

f ”  + cf’ + (A  + 1 - 2u)f= 0 f -  0 as s - -tm. 

(34) 

Just  as  for  the  case of the Burgers and Korteweg-de 
Vries’  equations [ 141, the fundamental  eigenvalue and 
eigenfunction of (34)  are 

h = 0, f(s)  = u,(s;c), (35) 

as  can  be  seen by  substituting ( 3 5 )  into (34).  This gives 
the  s-derivative of Eq. ( 7 ) .  The result (3.5) is character- 
istic of all traveling wave  problems  and  has  the physical- 
ly obvious meaning that a traveling wave is invariant 
under translation  along the axis. I t  is also known that all 
other eigenvalues of (34) satisfy Re(A) > 0, which is 
sufficient to  prove stability in problems such  as Burgers’ 
equation,  where  there is a  unique  traveling wave solu- 
tion [14,16]. However,  we now show  that,  because of 
the  existence of a continuous  spectrum of traveling 
waves, not all solutions of (3 1 ) are of the form ( 3 3 ) .  

Consider  an infinitesimally small perturbation  that 
changes  the  wave having velocity c into a  neighboring 
one of speed c + Sc; in this case,  the initial condition for 
Eq. (3 1 ) is 

u(s,O) = u(s;c  + 6c)  - u(s ;c ) .  (36) 

One should keep in mind that  Eq. (3 1) is expressed in a 
coordinate  system moving with a speed c ;  in this frame, 
the  wave c + 6c moves with  speed Sc and  the  wave hav- 
ing velocity c is stationary.  Therefore,  the solution of 
(3 1 ) with the initial condition (36)  is 31 1 
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u ( s , t )  = u ( s  - 6ct; c + 6c)  - u ( s ; c )  
= u(s ;c  + 6c) - u,(s;c + 6c)Sct - u ( s ; c )  
= u ( s ; c )  + uc(s;c)6c - u,(s;c + 6c)6ct - u ( s ; c )  
= 6c (11, - tu,). (37) 

That  (37) is an  exact solution of (3 1 ) can  be verified by 
direct substitution. The result (37)  has  the following 
physical meaning. Relative to  an  observer riding the 
wave of velocity c, the  faster  wave will start moving away 
to a distance which is linearly proportional to  the time 
elapsed  since the  instant of the  perturbation. In the  pre- 
cise  sense of this discussion, we  can say that all travel- 
ing waves of Fisher’s equation  are  unstable. 

If the  perturbations  are restricted so that they  vanish 
at a finite distance in the  wave frame,  this  precludes the 
transformation of one  wave  into  another and  stability 
results. This  can be  shown by a study of the eigenvalue 
equation  (34) with the  boundary conditions f ( S )  = 0. 
In  this  case,  the problem is made self-adjoint by the 
transformation f ( s )  = exp (-cs/2) y (s ) ,  so that it be- 
comes 

Y” + EA - q(  S ) l Y  = 0, 
Y W )  = 0, 
q ( s )  = c2/4 - (1 - 2u)  2 2u(s ;c )  > 0, (38) 

because c 2 2 .  Since  the traveling waves u ( s ; c )  are 
everywhere positive, q ( s )  is larger  than 0 also;  it is then 
known that all eigenvalues of (38)  are real  and  positive, 
which means  that all finite extent  perturbations of the 
wave  decay exponentially in time. 

The  precise time  evolution of different initial con- 
ditions  and  the main stability results obtained here will 
be  studied further in a forlhcoming paper,  where  Fisher’s 
equation is solved numerically. 
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Note added in proof 
We demonstrate  that  the  superspeed  waves ( c  > 2 )  do 
not necessarily evolve  into  the minimum speed  wave 
when  subject to arbitrary perturbations of infinite ex- 
tent. To prove this, we consider  an initial condition [see 
Eq. (3011: 

u(s,O) = u(s ;c )  + & U ( S , O ) ,  (39) 

where  the  perturbation satisfies 

31 2 u(s ,O)  > 0. (40 1 

KPP obtained  a  monotonicity  result (Theorem 3 of [3] ) 
which shows  that, in a fixed laboratory frame, the distri- 
bution  resulting  from the initial condition (39)  and  (40) 
satisfies 

u ( x , t )  > u ( x ; c , t ) .  (41 1 
The  result  (41)  has  an  obvious physical meaning in the 
context of heat  conduction, namely, the  temperature 
distribution in a rod resulting from  an  instantaneous t emp  
erature  increase superimposed on  the traveling heat 
wave u ( x ; c , t )  must be everywhere higher  than the temp- 
erature given by the  unperturbed  heat wave [ 171. Let 
us now assume  that  the initial condition (39) and (40) 
evolves into a wave.  We now show  that this wave cannot 
have a speed smaller  than c ;  if it had a  speed  smaller  than 
c then,  after a sufficiently long  time, the distribution  re- 
sulting from  the slower wave would satisfy 

u ( x ; c  - 6 C J )  < u ( x ; c , t ) ,  (42) 

which is in contradiction  with the monotonicity result 
of KPP  [Eq.  (4 1 ) 1. Therefore, a necessary  condition 
for  the slowing down of the  waves is that  the  perturba- 
tions satisfy u(s,O) < 0. When the  perturbations  are of 
the  class (40) but of finite extent, we have  proved  [see 
Eq. (38) ]  that  the initial condition (39)  reverts again 
into  the  wave u ( s ; c )  in the wave  frame. However, in 
order to satisfy the  KPP condition (4 1 ), the initial con- 
dition must asymptotically  evolve into a wave u ( s ; c )  
which, in the laboratory frame,  is  translated  to  the right 
with respect  to  the original wave. If the finite-extent per- 
turbation were negative, the original wave would be in- 
stead  translated to  the left. 

In conclusion, even if we assume  that all initial condi- 
tions of Fisher’s  equation evolve into traveling  waves, 
the stability  analysis shows  that  the minimum speed  wave 
is not the unique  time-asymptotic steady state. 
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