José Canosa

On a Nonlinear Diffusion Equation
Describing Population Growth

Abstract: A nonlinear eigenvalue problem is solved analytically to obtain the shock-like traveling waves of Fisher’s nonlinear diffusion
equation, with which he described the wave of advance of advantageous genes. A phase-plane analysis of the wave profiles shows that
the propagation speed of the waves is linearly proportional to their thickness. The analytic solution is asymptotically accurate in the
limit of infinitely large characteristic speeds. However, as they have a minimum threshold value which is not zero, the asymptotic solu-
tion turns out to be highly accurate for all propagation speeds. The wave profiles of Fisher’s equation are shown to be identical to the
steady state solutions of the Korteweg-de Vries-Burgers equation that are obtained when dissipative effects are dominant over dis-

persive effects.

Introduction
This paper describes our study of the traveling wave
solutions of

u,=wu,, +ku (1—u), 1

a nonlinear equation of evolution of diffusive type used
by Fisher [1] to describe the propagation of a virile
mutant in an infinitely long habitat. The growth of the
mutant population is due to diffusion and nonlinear local
multiplication. In Eq. (1), v is the diffusion coefficient, &
is a positive multiplication factor, 7 is time, y is distance,
and the subscripts designate partial derivatives. With
only an inconsequential variation, Eq. (1) becomes a
model used to describe the evolution of the neutron
population in a nuclear reactor, where the domain is
obviously finite [2]. The use of the same model for both
problems is not surprising because neutrons in a reactor
evolve in time by the same physical processes as the pop-
ulation in Fisher’s equation, that is, by diffusion and
nonlinear local multiplication.

In the second section, we review the fundamental re-
sults obtained by Fisher [1] and by Kolmogoroff, Petrov-
sky, and Piscounoff (KPP) [3].

The phase-plane analysis of the traveling waves de-
fined by Eq. (1) is carried out in the third section. This
analysis yields the result that the propagation speed of
the waves is linearly proportional to their thickness.

We obtain analytically in the fourth section the travel-
ing wave profiles in the physical plane. Although the
accuracy of the solution increases asymptotically with
the propagation speed, the solution is highly accurate for
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all the characteristic speeds because these have a mini-
mum threshold value which is not zero. This notable
result is verified by the excellent agreement between the
analytic solution for the traveling wave of minimum
speed and the numerical solution of Fisher [1]. We also
show that Fisher’s population fronts are identical to some
of the steady state solutions of the Korteweg-de Vries-
Burgers equation.

The stability analysis of the fifth section shows that all
the traveling waves are unstable for the case of small
perturbations that vanish at infinity. This is true because
an infinitesimally small perturbation can transform one
wave into another, a property characteristic of problems
with a continuous spectrum of wave fronts. However, if
we restrict the perturbations so that they vanish at a finite
distance in the wave frame, we can then prove stability.

Fisher’s equation in infinite domains

It is convenient to remove dimensions from Eq. (1) by
expressing time and length in the dimensionless units
t=kr and x= (k/v)'?y, so that Eq. (1) acquires the
simpler form

u,=u,, +u{l—u). (2)

Fisher’s equation can be thought of as describing the
nonlinear evolution of a population in a one-dimensional
habitat. The habitat can support only a certain maximum
population per unit length which, for convenience, we
choose as unity. The initial condition for Fisher’s equa-
tion must thus be restricted as follows:
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Figure 1 Qualitative plot of the profile of the minimum-speed
traveling wave.
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Figure 2 Qualitative plot of the trajectories of Eq.(9). The
solution to the nonlinear eigenvalue problem defined by Egs.
(7) and (8) is given by the trajectory that intercepts the critical
points. These are a saddle point at («,y) = (1,0) and a stable
node at {(u,y) = (0,0).

0= u(x,0)=1, — < x < oo, (3)

We shall be interested in the solutions of Eq. (2), sub-
ject to Eq. (3), such that all the x derivatives tend to
zero as x — =+ o and that satisfy the conditions
lim u(x,f) =1, lim u(x,t) =0, t=0. (4)
X —>— o x> +w

The problem defined by Eqgs. (2), (3), and (4) de-
scribes the advance of the population along a habitat
that is saturated at the left and unoccupied at the right.
In their basic paper, KPP [3] proved that, for each initial
condition of the form (3), Eq. (2) has a unique solution
that is bounded for all times as the initial distribution, i.e.,
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0=u(xt)=1, —0 < x < ™, t>0.

Further, in a series of remarkable theorems, KPP showed
that, for the following initial conditions satisfying
Egs. (4),

1 x<0

1(x,0) = (5a)
0 x>0

and
1 x<a

u(x,0) =<f(x) a<x<b (5b)
0 x> b,

where f(x) is arbitrary, the solution becomes, in the limit
t — o, a shock-like traveling wave that satisfies Eq. (4)
and propagates to the right with the minimum allowed
characteristic speed Cyin = 2.

Both Fisher [1] and KPP [3] found that Eq. (2) has
an infinite number of traveling wave solutions of charac-
teristic speeds ¢ = 2. Fisher also carried out a very ac-
curate and detailed numerical computation of the shock-
like profile of the traveling wave of minimum speed,
which is indicated conceptually in Fig. 1.

Wave profiles in the phase plane

The phase-plane analysis given in this section shows
that a traveling wave propagates with a speed linearly
proportional to its thickness. We seek traveling wave
solutions of Eq. (2) in the form

u(x,t) =ulx—ct) = uls), (6)

where ¢ is the speed of the wave or population front.
Substitution of Eq. (6) into Eq. (2) gives an ordinary
nonlinear differential equation for the shock-like wave
profiles,

(d*ulds”) + c(dulds) + u— > =0, (7)

The proper boundary conditions for Eq. (7) satisfying
Eqgs. (4) are

u(—wo) =1, u(+o) = 0. (8)

Equations (7) and (8) define a nonlinear eigenvalue
problem in an infinite domain, where the propagation
speed ¢ is the eigenvalue. The trajectories defined by
Eq. (7) in the phase plane [(u, dul/ds) = (u,y)] are
given by

dvidu = [ (u* — u) — cylly. 9)

The form of these trajectories, shown in Fig. 2, applies if
and only if the origin is a stable node [4]. This condition
requires that the propagation speeds of the traveling
waves be given by the continuous spectrum

c=2, (10)
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Table 1 Coordinates of the point of inflection of the wave profile of minimum speed.

(u, dulds) from Eq. (15)

Exact corresponding value from

Value:  First order Second order

Third order Ref. [1]

(0.5-0.125) (0.437,-0.125)

(0.437,~0.123) (0.442,-0.123)

which is the result reported by Fisher and KPP. Unless
Eq. (10) is satisfied, the origin of the phase-plane would
be a center or a focus [4], and this configuration would
result in negative distributions «, which is a physical
impossibility.

Figure 2 shows that only the trajectory going through
the critical points gives the solution to the nonlinear
eigenvalue problem defined by Eqs. (7) and (8). There-
fore, for each eigenvalue c¢ there is a unique correspond-
ing wave profile. The profiles are obtained as follows.
It is convenient to define a new variable ¥ = ¢y, in terms
of which Eq. (9) becomes

e(dyldu) = (> — u— )/,

e =1/,

(11)
y = cy.

The solution of Eq. (11) is sought in the form of a
series

yug) = g,(u) +eg,(u) + g, (u) +- - (12)

Substituting into Eq. (11) and grouping the like powers of
€, one obtains

O(1) gozuz—u,
O(e) g,=—g,& (13)

O(e") g,=—8,8— &8

.

where the prime indicates derivative with respect to u.
Equations (13) show that the series (12) is obtained
merely by a substitution process, without the need for
solving any differential equation at any order in . After
transforming to the variable y, we explicitly get

y(ue) =€ (' —u) — ¥ (2 — 36 + u) +
262 (5u* — 106° + 64 — u) + O (™). (14)

The result given by Eq. (14) has two notable properties.
First, the limit as ¢ — 0 is uniform, i.e., to any order in £
the series (14) gives approximations to the trajectory
that intercepts both critical points [Fig. 2], as can be seen
by inspection of Eq. (14). Second, the series (14) is
asymptotically accurate in the limit of infinitely large
propagation speeds [e¢ — 0, ¢ = =; see Eq. (11)]; how-

JuLy 1973

ever, because the minimum speed is sufficiently high so
that the expansion parameter £ is always “small” (i.e.,
its maximum allowed value is 0.25) we expect that the
accuracy of Eq. (14) will be good for all traveling waves
defined by Eqgs. (2), (3), and (4). It will be shown that
this is indeed the case.

Equation (14) is now used to obtain the propagation
speed of the waves. The coordinates of the minimum of
the trajectory that intercepts the critical points are ob-
tained by an elementary calculation using Eq. (14). The
result is

(u,y) = (udufds) = [1/2 — e/4, — (1 — £"/4)/4c], (15)
which gives the coordinates of the inflection point of the
wave profile in the physical plane, as indicated in Fig. 1
and Table 1. We define the steepness § of the profile as
the magnitude of the slope of its point of inflection; Eq.
(15), then, shows that, for all quantitative purposes,

S = 1/4c, (16)

because the error in Eq. (16) is O(¢*). The maximum
error, which occurs for the minimum-speed wave, is less
than two percent, as is indicated by the data in Table 1.
For the faster waves, this error decays as the fourth
power of the speed [see Eqs. (15) and (11)]. Because
the profile half-thickness L is inversely proportional to
the steepness, Eq. (16) yields the fundamental result

c=1L/4, (17)

i.e., the propagation speed of the wave is linearly pro-
portional to its thickness. An interesting consequence
of this result is that all the waves, regardless of their
thicknesses, would take the same time to pass before a
stationary observer.

Kendall’s numerical solution (Figs. 5 and 6 of Ref. 5)
of an equation similar to Fisher’s showed the linear
dependence between the propagation speed and the wave
thickness. In a recent paper, Montroll [6] studied a
nonlinear equation of evolution that is similar to Fisher’s
equation. Montroll solved the partial nonlinear differen-
tial equation exactly by transforming it into the linear
heat equation, a technique similar to that used by Hopf
[7] and Cole [8] for Burgers’ equation. Montroll argued
that the solution of his equation closely resembles that
of Fisher’s equation. Although there are some formal
similarities between Fisher’s and Montroll’s equations,
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the qualitative behavior of their solutions is in fact quite
different. For the traveling waves corresponding to our
initial conditions [Eqs. (3) and (4)], Montroll’s equa-
tion admits arbitrarily steep profiles [Eq. (31) of Ref.
6], but, as shown by Eqgs. (16) and (10), diffusion pre-
vents the steepness of the profiles of Fisher’s equation
from exceeding the maximum value

Smax = 1/8.

In dimensionless units, the wave speed for Montroll’s
equation [9] is given by

c =4S + (1/48) = (4/L) + (L{4), (18)

which shows a nonlinear dependence between the wave
speed and its thickness. In Fisher’s equation, on the
other hand, the speed is linearly proportional to the
thickness [see Eq. (17)].

Wave profiles in the physical plane
The wave profiles in the physical plane are now obtained
using the results of the phase-plane analysis. When a
new unit of length is defined by
_s

=7 (19)
Eq. (7) becomes

e(duld?®) + duldz + u— v’ =0,

1/c* = 1/4.

u(—») =1, u(+wo) =0, €

(20)

Since there is a uniform limit as € — 0 for Eq. (20), a
valid solution in all the domain is obtained simply by ex-

panding
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u(z:e) = uy(z) +eu (z) + - (21)

Substituting Eq. (21) into Eq. (20) and grouping like
powers of €, one obtains

o(1) u) +u0—u02=0, (22)
O(e) u'+ (1—2u)u, =—u. (23)

The initial conditions for u, and «, are given by Eq. (15),
with the origin of distance in the wave frame being the
point of inflection of the wave [see also Eq. (21)]; i.e.,

1, (0) = 1/2, u, (0) =—1/4, (24)

Therefore, solving successively Eqs. (22) and (23), with
their respective initial conditions given in Eq. (24), and
transforming back to the variable s [Eq. (19)], we finally
obtain the wave profiles:

1 L, P (s/c)
1+ exp (s/c) [1+exp (s/c)]?

u{sg) =

x[l—ln 4 exp (sfc) ]+O(sz).

—_—— (25)
{1+ exp (s/c)}

It should be noticed that the profile half-thickness,
defined as the reciprocal of the steepness S[Egs.(16)
and (17)}, is L = 4c¢, which is four times the relaxation
length or e-folding distance of the wave given by Eq.
(25). Therefore, in the wave frame with the origin at the
point of inflection, the main part of the wave extends
over one full thickness from —L to +L. As discussed
previously, the accuracy of the asymptotic expansion for
the wave profiles is least for the minimum-speed wave,
where £ = 1 /4. For the faster waves, the accuracy of the
result (25) increases as the fourth power of the propaga-
tion speed. A comparison of the profiles given by Eq.
(25) for the minimum-speed wave with the numerical
solutions obtained by Fisher [1] is shown in Table 2.
The origin of distance used by Fisher in the wave frame
was different from ours; the correspondence between his
abscissas and ours is s = s — 0.765.

In Table 2 the wave profile is given as a function of dis-
tance in Fisher’s coordinate system. The agreement
between the second-order asymptotic solution and the
numerical solution is uniformly good over the whole
thickness of the wave. Therefore we could use the pro-
files (25) in conjunction with the KPP initial condition
given by Eq. (5a) as a standard for comparison of
numerical methods for solving time-dependent viscous
flow problems [10]. It should be recalled that the accu-
racy of Eq. (25) is independent of the values of the dif-
fusion coefficient v and the multiplication factor k.

We conclude by pointing out an interesting result. The
diffusive waves of Fisher’s equation are identical to the
steady state solutions of the Korteweg-de Vries-Burgers
equation,

wtuu, —vu,, +pu, =0,

v>0, u>0,(26)

which are obtained when the diffusive effects (deter-
mined by the magnitude of ») dominate over the disper-
sive effects (determined by the magnitude of u). The
Korteweg-de Vries-Burgers equation has been used by
Johnson {11] for the description of shallow water waves
on a viscous fluid [11]. Numerical computations of
the steady-state solutions have been done by Johnson,
who also obtained an asymptotic solution for the case in
which the dispersive effects dominate the dissipative
effects [11,12], and by Grad and Hu [13] for a problem
of weak plasma shocks propagating perpendicularly to a
magnetic field. The steady state solutions of (26) are
given [Eq.(35) of Ref. 11] by

H'—H + H' =caH',
H(_—m) = 1’

a>0

H (420) = 0, 27

where the primes denote derivatives relative to the inde-
pendent variable x, and the parameter o is defined in
terms of the diffusion and dispersion coefficients v and u
[11,14]. With the new independent and dependent vari-
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ables defined as s=—x and « =1 — H, respectively,
Eq. (27) becomes

2
W +ouw +u—u =0,

W) =1,  ul(+e) =0, (28)

which is exactly our Eq. (7) if we reinterpret o as the
propagation speed of the Fisher-equation waves.

The Fisher and KPP condition o =c = 2 [see Eq.
(10)] leads to the shock profiles of Johnson, which are
monotonic both upstream and downstream. For o < 2,
the second class of steady state solutions of (26) is ob-
tained, i.e., shocks that are oscillatory and damped up-
stream, and monotonic downstream [11].

Stability
The question of the stability of the traveling waves has
not been resolved in the literature [1,3,5,6]. We now
show that all the waves are unstable against small per-
turbations that vanish at infinity. When we restrict the
perturbations so that they vanish at a finite distance,
then, we prove stability. By using this stability analysis,
in conjunction with a monotonicity result of KPP[3], we
prove that the superspeed waves do not evolve neces-
sarily into the minimum speed wave, when subject to
arbitrary perturbations.

We define a coordinate system moving in the positive
x-direction with a speed ¢, i.e.,, s =x — ct; Eq. (2) then
becomes

= ugy +cu +u(l —u). {29)

We now use the standard stability formalism dis-
cussed by Jeffrey and Kakutani [14] for Burgers’ equa-
tion, and by Cohen for boundary value problems in finite
domains [15]. We superimpose a small disturbance
v(s,t) on the traveling wave u(s;c), i.e.,

u(s,t) =u(s;c) +evis,t). (30)

Substituting (30) into (29) and keeping only terms of
the first order in €, we obtain the time-dependent equa-
tion for the perturbation

v, = v+ cv,+ [1—2u(sic) o (31)

We say that the wave u(s;c) is stable if all solutions of

(31) decay in time as follows:
!i_g_; v(s,t) =0, or 1119.3 v(s,t) = us;c). 32)

The first limit has an obvious meaning. The second would
result in an infinitesimally small translation of the wave
along the axis because

u(s — 8s;¢c) = uls;c) —ugps.

It is shown below that « (s;c) is a stationary solution of
(31), as required.
If we now look for solutions of (31) in the form
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Table 2 Profile of the wave of minimum speed: asymptotic
and numerical solutions.*

Asymptotic solution,

Eq. (25) Fisher's numerical
solution, Table 1V
Sp First order  Second order of Ref. 1

—10.3480 1.0 0.99 0.99
—5.9205 0.96 0.94 0.94
—3.3525 0.89 0.84 0.84
—1.9572 0.79 0.74 0.74
—0.9191 0.70 0.64 0.64
—0.0360 0.60 0.54 0.54
0.765 0.50 0.44 0.44
1.5224 0.41 0.34 0.35
2.4101 0.30 0.24 0.25
3.5053 0.20 0.14 0.15
5.3693 0.09 0.05 0.05
7.6061 0.03 0.01 0.01

*Fisher used the parameter values y =k = 1, and ¢ = 2 for the minimum-speed

profile.
v(s,t) =f(s) exp (—=\1), (33)

we find that A and f are given by the following eigenvalue
problem, which is not self-adjoint:

f"+eff+(AN+1=-2u)f=0 f—0ass — *+x,

(34)

Just as for the case of the Burgers and Korteweg-de
Vries equations [14], the fundamental eigenvalue and
eigenfunction of (34) are

A=0, fls)=u/s:ic), (35)

as can be seen by substituting (35) into (34). This gives
the s-derivative of Eq. (7). The result (35) is character-
istic of all traveling wave problems and has the physical-
ly obvious meaning that a traveling wave is invariant
under translation along the axis. It is also known that all
other eigenvalues of (34) satisfy Re(\) > 0, which is
sufficient to prove stability in problems such as Burgers’
equation, where there is a unique traveling wave solu-
tion [14,16]. However, we now show that, because of
the existence of a continuous spectrum of traveling
waves, not all solutions of (31) are of the form (33).

Consider an infinitesimally small perturbation that
changes the wave having velocity ¢ into a neighboring
one of speed ¢ + 8¢; in this case, the initial condition for
Eq. (31) is

v(s,0) = u(s;c + 8c) — uls;c). (36)

One should keep in mind that Eq. (31) is expressed in a
coordinate system moving with a speed c¢; in this frame,
the wave ¢ + 8¢ moves with speed 8¢ and the wave hav-
ing velocity ¢ is stationary. Therefore, the solution of
(31) with the initial condition (36) is
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vis,t) = uls — 8ct; c +8¢c) — uls;c)
=u(s:c + 8c) — us(s;c + 8c)dct — u(s;c)
= u(s;c) + u.(s;c)8c — us(s;c + dc)det — uls;c)
= 8¢ (u, — tuy). (37)

That (37) is an exact solution of (31) can be verified by
direct substitution. The result (37) has the following
physical meaning. Relative to an observer riding the
wave of velocity ¢, the faster wave will start moving away
to a distance which is linearly proportional to the time
elapsed since the instant of the perturbation. In the pre-
cise sense of this discussion, we can say that all travel-
ing waves of Fisher’s equation are unstable.

If the perturbations are restricted so that they vanish
at a finite distance in the wave frame, this precludes the
transformation -of one wave into another and stability
results. This can be shown by a study of the eigenvalue
equation (34) with the boundary conditions f(==L) = 0.
In this case, the problem is made self-adjoint by the
transformation f(s) = exp (—cs/2) y(s), so that it be-
comes '

Y +Ir—q(s)]y=0,
y(xL) =0,
q(s) =714 — (1 —=2u) = 2uls:c) >0, (38)

because ¢ = 2. Since the traveling waves u(s;c) are
everywhere positive, ¢(s) is larger than 0 also; it is then
known that all eigenvalues of (38) are real and positive,
which means that all finite extent perturbations of the
wave decay exponentially in time.

The precise time evolution of different initial con-
ditions and the main stability results obtained here will
be studied further in a forthcoming paper, where Fisher’s
equation is solved numerically.
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Note added in proof

We demonstrate that the superspeed waves (¢ > 2) do
not necessarily evolve into the minimum speed wave
when subject to arbitrary perturbations of infinite ex-
tent. To prove this, we consider an initial condition [see
Eq. (30)]:

u(s,0) = u(s;c) + ev(s,0), (39)
where the perturbation satisfies

v(5,0) > 0. (40)
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KPP obtained a monotonicity result (Theorem 3 of [3])
which shows that, in a fixed laboratory frame, the distri-
bution resulting from the initial condition (39) and (40)
satisfies

u(x,t) > ulx;c,t). (41)

The result (41) has an obvious physical meaning in the
context of heat conduction, namely, the temperature
distribution in a rod resulting from an instantaneous temp-
erature increase superimposed on the traveling heat
wave u(x;c,t) must be everywhere higher than the temp-
erature given by the unperturbed heat wave [17]. Let
us now assume that the initial condition (39) and (40)
evolves into a wave. We now show that this wave cannot
have a speed smaller than c; if it had a speed smaller than
¢ then, after a sufficiently long time, the distribution re-
sulting from the slower wave would satisfy

u(x;c —8e,t) < u(xc,t), (42)

which is in contradiction with the monotonicity result
of KPP [Eq. (41)]. Therefore, a necessary condition
for the slowing down of the waves is that the perturba-
tions satisfy v(s,0) < 0. When the perturbations are of
the class (40) but of finite extent, we have proved [see
Eq. (38)] that the initial condition (39) reverts again
into the wave u(s;c) in the wave frame. However, in
order to satisfy the KPP condition (41), the initial con-
dition must asymptotically evolve into a wave u(s;c)
which, in the laboratory frame, is translated to the right
with respect to the original wave. If the finite-extent per-
turbation were negative, the original wave would be in-
stead translated to the left.

In conclusion, even if we assume that all initial condi-
tions of Fisher’s equation evolve into traveling waves,
the stability analysis shows that the minimum speed wave
is not the unique time-asymptotic steady state.
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