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Calculations  of  Impurity Atom Diffusion  Through a 
Narrow Diffusion  Mask  Opening* 

Abstract: Relaxation  methods  have  been  used to solve a mixed  boundary  value  problem  arising in the fabrication of junction 
transistors:  impurity atom diffusion  through a narrow diffusion  mask  opening. This particular problem is encountered in 
the fabrication of  very narrow diffused p-n junctions. It is  shown that the depth of a very narrow junction cannot always be 
determined from an elementary  one-dimensional  analysis of this diffusion  process. If the width  of a diffusion  mask  opening is 
less than two  impurity atom diffusion  lengths,  the  junction  depth  becomes  geometry  dependent.  Normalized  graphs are pre- 
sented to illustrate the impurity atom  distribution  resulting from this particular geometric  configuration. 

Introduction 

In  the design and fabrication of diffused semiconductor  sion process throughout a wide range of experimental 
devices, the stripe geometry has become widely accepted. conditions. The minimum width for a diffusion mask 
This  type of structure is well suited to the photolithographic  opening (before junction  penetration becomes geometry 
techniques used  in  transistor and integrated  circuit  fabrica- 
tion. Furthermore,  the  stripe configuration has  many 
advantages in  the  operation of junction  transistors; for 
example, it reduces emitter  current crowding, which is a from various size openings in a mask. 
frequent  problem in high power devices. Although  many 
such advantages are derived from a stripe geometry, 
important fabrication difficulties frequently arise because 
a very narrow diffusion mask opening will sometimes 
limit impurity atom penetration into  the semiconductor 
material. In this  type of structure  the impurity atom 
distribution is no longer described by an elementary 
one-dimensional diffusion process. Instead,  this distri- 
bution  must be determined from a detailed  solution of a 
boundary value problem  approximating the  structure 
under consideration. 

Figure 1 shows an experimental  demonstration' of 
the diffusion problem considered in  this  mathematical 
investigation. Several stripe-shaped openings were made 
in an oxide diffusion mask,  each  stripe of a different 
width.  Next,  impurity atoms were simultaneously diffused 
through these openings and  into  the semiconductor 
material. After the material had been beveled and  stained 
a substantial difference could be observed in  the pen- 
etration  depth of each p-n junction. An  important charac- 
teristic was observed by repeating this  type of diffu- 

Figure 1 Photograph of  the p-n junction profiles resulting 
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Figure 2 Mathematical model of the diffusion  mask  used 
for narrow p-n junction fabrication. 

Figure 3 Semi-infinite  analytical  model of a planar junc- 
tion diffusion  mask. 

dependent) is not a constant;  the minimum  stripe  width 
increases with an increase in  impurity atom diffusion 
length. 

This paper presents the results of a two-dimensional 
mathematical  solution for a boundary value problem 
approximating the above  experiment;  such  information 
is not presently available in the literature.  Two different 
diffusion processes are considered in the mathematical 
analysis. The first solution is based upon a constant-Co 
diffusion process; i.e., during diffusion, a constant im- 
purity atom concentration is maintained upon  the exposed 
semiconductor surface. In addition, a solution is presented 
for this  boundary value problem assuming the use of a 
two-step diffusion technique.' The two-step technique 
consists of maintaining a constant  impurity atom surface 
concentration  for a relatively small  portion of the  total 
diffusion time; thereafter the impurity atom source is 
removed and diffusion is continued. 

Analysis 

Figure 2 illustrates the mathematical  model  used  in this 
investigation. The  entire semiconductor surface is assumed 
to be covered by a diffusion mask, except that  portion of 
the surface from which diffusion is to take place. It 
should be recognized that  the present  mathematical 
analysis is based upon  an idealization of the oxide masking 
technique. For analytical purposes, it  is assumed that 
the diffusion mask is  an impenetrable  barrier for impurity 
atoms,  thereby  reducing to zero the impurity atom flux 
normal  to  the semiconductor surface. It is further assumed 
that  the diffusion mask  does not provide an easy diffusion 
path  along the mask and semiconductor  boundary. 

In rectangular  Cartesian  coordinates, the diffusion of 
impurity  atoms within homogeneous media is  given by 
the differential equation 

where C(x,  y )  represents the concentration density of 
impurity  atoms, and D is their diffusion constant. 

There is no known  analytical  solution for  Eq. (1) that 
is consistent with the  boundary conditions  shown  in 
Fig. 2. In fact,  this  particular  type of mixed boundary 
value problem is one of recognized mathematical difficulty? 
For this reason,  relaxation  methods4  have been used to 
obtain  the required  impurity atom distribution. The 
entire two-dimensional  analytical  model (Fig. 2 )  was 
approximated by a symmetrical  matrix array of 4225 
nodes. The  boundary conditions of this structure (Fig. 2) 
were approximated by maintaining a specified impurity 
atom density upon the  matrix nodes  representing the 
semiconductor  surface.  Thereafter, the impurity atom 
density within this array was relaxed in a fashion consistent 
with a finite-difference approximation for Laplace's 
equation; thereby the diffusion process was synthesized. 
After a prescribed number of relaxation cycles through 
this  matrix array,  the resulting impurity atom distribution 
was taken to be the required  solution of the  boundary 
value problem. 

Solving problems by relaxation is a numerical method 
rather  than an analytical  method. An important  part of 
this  numerical method is to estimate the resulting com- 
putational accuracy. The computation  time  required to 
complete this  type of analysis is often excessive, and a 
relatively small nodal matrix  must  therefore  be used to 
approximate the boundary value problem under con- 
sideration. For  this reason, the  computational accuracy 
becomes limited. In  the present analysis an estimate of 
the accuracy is obtained by numerically calculating the 
impurity atom distribution  within a structure similar 
to  that shown in Fig. 2, yet this  test structure differs 
sufficiently from Fig. 2 to represent a mathematically 
tractable  boundary value problem. Thereafter, a direct 
comparison is made between the numerically determined 
impurity atom distribution, and  the distribution  obtained 
from  an analytical  solution of this same test problem. 

It  has been shown' that a limited form of the present 
boundary value problem  (Fig. 3) can be solved in an 
analytical fashion. After  transforming the diffusion 
equation, Eq. (l), to polar  coordinates, 

DIFFUSION THROUGH A NARROW 1 

7 

@ASK OPENING 



where the hypergeometric  series , F l [ a ;  p ;  71 is  given  by 

and 

Although  Eq. (3) is not directly  applicable to the 
boundary value  problem under discussion  (Fig. 2), this 
equation provides a means of estimating the computational 
accuracy obtained by the numerical  analysis. From 
calculations of the impurity atom distribution in  Fig. 3, 
using  Eq. (3), it can  be shown that negligible  change  will 
be  observed in the impurity atom distribution of Fig. 2 
when the diffusion  mask  opening  is four impurity atom 
diffusion  lengths, or larger. For structures containing 
a diffusion  mask  opening of four impurity atom diffusion 
lengths  (Fig. 2), an estimate of the computational accuracy 
is obtained by a direct  comparison  between Eq. (3) and a 
numerical solution of the boundary  value  problem. 

Equation (3) is applicable only  when the diffusion 
process  maintains a constant impurity atom concentration 
(C,) upon the semiconductor  surface. During recent  years, 
transistor fabrication  techniques  have been directed 
toward a two-step  diffusion  process. In a two-step  process, 
diffusion  is  first  accomplished by the constant surface 
concentration  method, although this initial diffusion  is 
intentionally of limited penetration depth. The second 
part of this two-step  process  is  accomplished without an 
impurity atom source. During this second  diffusion, 
impurity atoms are permitted to penetrate deeply into 
the structure, with the presumed  limitation that additional 
impurity atoms can  neither enter nor leave the semi- 
conductor material. 

There  is no known  analytical  two-dimensional solution 
for this two-step  process.  In  one  dimension, an integral 
solution has been obtained for the impurity atom distri- 
bution,' 

where t1 and t2 are  the first and second  diffusion  times, 
respectively; Dl and D ,  are the respective impurity atom 
diffusion constants during  these intervals; and Co is 
the impurity atom surface  concentration  during the 
first  diffusion. 

The two-step  diffusion  represents a combination of 
two  frequently  used  processes that are mathematically 
tractable in one  dimension. If in Eq. (6) D2t2 << D l t l ,  we 
obtain the familiar  complementary error function  type of 
impurity atom distribution. If in Eq. (6) Dltl << Dzt2,  
this  expression  becomes a Gaussian distribution (instan- 
taneous source). For Fig. 2, an instantaneous-source 
diffusion  yields the two-dimensional  impurity atom 
distribution 

X { Erfc ( x  ~ -") - Erfc ("====)}e x + w  (7) 
2 dm2 2 d D2t2 

Equation (7) provides a means of evaluating the com- 
putational accuracy  resulting from a relaxation solution 
of Fig. 2 when D l t ,  << D2t,;  this is  accomplished  in the 
same  manner as described for Eq. (3). 

Application 

Figure 4 illustrates a series of calculated p-n junction pro- 
files resulting from various  size  diffusion mask  openings. 
This particular illustration was  obtained from numerous 
relaxation  solutions for the boundary value  problem 
shown  in  Fig. 2. Although  these  calculated  junction 
profiles  (Fig. 4) are intended to approximate the accom- 
panying photograph (Fig. l), it should be  mentioned 
that the photograph contains substantial distortion. This 
distortion arises from the use of a low angle bevel  which 
magnifies the dimension  perpendicular to the semi- 
conductor surface, but the bevel permits greater accuracy 
to be obtained in the measurement of junction penetration 
depth. 

It is impractical to present a detailed illustration of the 
impurity atom distribution resulting from calculations 
similar to those plotted in Fig. 4. For this reason, such 
information is  given  only  along  two important geometrical 
dimensions of a planar p-n junction: in a direction  per- 
pendicular to the semiconductor  surface, at the center 
of the diffusion  mask  opening  (Fig. 5 ) ;  and in a direction 
parallel to the semiconductor  surface,  along the semi- 
conductor-diffusion mask boundary (Fig. 6). Because 
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Figure 4 Calculated p-n junction  profiles  resulting from various  size  openings  in a diffusion  mask  when C,,/Co = lo-'. This 
calculation is based  upon a constant-Co  diffusion  process. 

both of these illustrations (Figs. 5 and 6) were obtained 
from relaxation  solutions of the associated  boundary  value 
problem, an estimate  must  be made  for  the  computational 
accuracy of the numerical technique. This  estimate is 
obtained from Figs. 7 and 8. 

Assuming a diffusion mask width of at least four 
impurity atom diffusion lengths (where Lo = 2 2 / D t ) ,  it 
can be shown5 that Eq. (3) provides a valid description of 
the required  impurity atom distribution. For this  type 
of structure, a direct comparison has been made between 
Eq. (3) and  the numerically determined impurity atom 
density. Figure 7 presents such a comparison  along a 
line perpendicular to  the semiconductor surface. Similarly, 

Figure 5 Calculated  junction  depth  perpendicular  to the 
semiconductor surface and at the center of the diffusion 
mask  opening (constant-Co diffusion process). 
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Fig. 8 presents a comparison  along the semiconductor- 
diffusion mask boundary. 

From Figs. 7 and 8, when the diffusion mask opening 
has a width of at least four impurity atom diffusion 
lengths (SdE 5 w), the numerical method provides 
sufficient accuracy for most engineering purposes. A 
negligible error  is observed in Fig. 7 along a line perpen- 
dicular to  the semiconductor  surface and at the center of 
this  mask opening. In contrast, the numerical method 
introduces an  error of about 15% in  the calculated 
impurity atom density along the semiconductor-diffusion 
mask boundary (Fig. 8). The source of this  error  is readily 
seen. The density of a four thousand (4225) node relaxation 

Figure 6 Calculated  junction  location  along  the  semicon- 
ductor-diffusion  mask  boundary (constant-Co diffusion proc- 
ess). 
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Figure 7 Impurity atom profile  perpendicular to semicon- 
ductor surface and at the center of the diffusion  mask open- 
ing (constant-Co diffusion process). 

matrix is not sufficient to resolve a large  impurity atom 
gradient,  particularly when this  gradient exists only 
within a small region of the semiconductor  material. 
In Fig. 8, such a gradient is observed near the diffusion 
mask edge ( y  = 0). 

An estimate of the  computational accuracy has been 
made  for  narrow diffusion mask openings (w % 0.2 “E). 
A decrease of opening width  introduces no basic change 
in the impurity atom distribution  along the semiconductor- 
diffusion mask  boundary (Fig. 8). At this  location we 
can therefore expect little increase (or decrease) in the 
computational error. The numerically determined  con- 
centration density should always remain slightly larger 
than its correct value, although this error should not 
exceed 15%. 

It can be observed (Fig. 7) that a narrow diffusion 
mask opening  introduces fundamental changes in the 
impurity atom distribution  perpendicular to the semi- 
conductor surface. In fact, a close comparison of Figs. 7 
and 8 shows that  the distributions become identical  in 
these two illustrations when w = 0 . 2 4 % .  This implies 

10 that a narrow mask  opening  results  in the  same impurity 
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Figure 8 Impurity atom profile  along  the  semiconductor- 
diffusion mask boundary (constant-Co diffusion process), 

atom distribution  parallel and perpendicular to  the 
semiconductor  surface; an identical  computational error 
will therefore exist in these two directions. 

Figures 9 and 10 present the results of similar calcula- 
tions, assuming the use of a two-step diffusion process. 
Figure 9 shows the calculated  penetration depth of a 
p-n junction in a direction perpendicular to the semi- 
conductor  surface (at the center of the diffusion mask 
opening). Figure 10 shows the calculated  junction  penetra- 
tion  depth along the semiconductor-diffusion mask 
boundary.  Both of these illustrations  indicate an increased 
dependence upon  the width of a diffusion mask opening, 
with a decrease in the  ratio of the impurity atom diffusion 
lengths during  the two parts of the two-step process 

Again, as in  the constant-C, calculations (Figs. 5 and 6), 
it is necessary to evaluate the  computational accuracy 
attained by these  numerical techniques. For  the two-step 
diffusion process, this  evaluation has been conducted for 
values of the  ratio  (Dlfl/Dztz)  that yield an impurity 
atom distribution lying between the Gaussian (instan- 
taneous source) and  the complementary error function 

(DlhlDdZ).  
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Figure 9 Calculated  junction  depth  perpendicular to the 
semiconductor  surface and  at the center of the diffusion 
mask opening. This calculation is based upon  a  two-step 
diffusion process. 

(constant C,) types of distribution.  Figure 11 (Curve A) 
presents the results of this evaluation. From a numerical 
calculation of the distribution perpendicular to the 
semiconductor surface and (at the center of the diffusion 
mask opening, Fig. 2), satisfactory agreement is obtained 
with the analytical one-dimensional equation for  this 
distribution. This numerical calculation was conducted 
for a diffusion mask opening that is four diffusion lengths 
wide (4.0 = w/y). 

Because the boundary value problem of Fig. 2 is 
mathematically tractable for an instantaneous-source 
diffusion process, a means is available for estimating the 
accuracy of the numerical analysis at small values (.01) 
of ( D l t l / D 2 t 2 ) .  This comparison is presented in Fig. 11 
(Curves B and C). Satisfactory agreement is shown to 
exist between these two analytical techniques, thereby 
implying that  the numerical solutions (Figs. 9 and 10) 
are adequate  for  most engineering purposes. 

Conclusions 

Figures 5 and 6 (constant-C, diffusion), and Figs. 9 
and 10 (two-step diffusion), illustrate the p-n junction 
location within semiconductor material when diffusion 
takes place through a narrow diffusion mask opening. 
These junction locations are influenced negligibly  by the 
width of the mask opening, assuming this width is two 
impurity atom diffusion lengths or larger (4.0 l/ot 5 w). 
When the width of a diffusion mask opening becomes 
smaller than  two  impurity atom diffusion lengths (w < 
4 dz, a substantial  reduction occurs in the p-n junction 
penetration depth. This reduced penetration depth is 
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Figure 10 Calculated  junction  location  along the semicon- 
ductor-diffusion mask  boundary  (two-step diffusion process). 

Figure 11 Calculated  impurity atom distributions after dif- 
fusion through  narrow diffusion mask openings. Curve A 
perpendicular to surface when w/y = 4.0 and (Dltl/D2t2)1pa 
= 0.33; curve B perpendicular to surface when w/y = 0.30 
and (Dltl/D2t2)1/2 = 0.10; curve  C  along boundary when 
w/y = 0.30 and (Dltl/D2t2)1/’ = 0.10. 
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process. 
Figures 9 and 10 establish that  at small values of the 

parameter (Dl t l /Dz tz ) ,  the junction  penetration depth 
becomes more dependent upon  the width of the diffusion 
mask opening. In practice, one encounters  such a situation 
when the initial  step (tl) in a two-step diffusion (holding 
constant C,) becomes small as compared to  the second 
step (diffusion after  removal of the impurity atom source). 

The results of this analysis have  also established that 
impurity atom diffusion through a narrow mask opening 
(w < 4.0 4%) cannot be accurately described by an 
elementary one-dimensional analytical model. For a 
narrow stripe geometry, the one-dimensional approxi- 
mation  substantially overestimates the junction pene- 
tration depth. 

Acknowledgments 

The  authors would like to thank  Dr. J .  Riseman for 
his support of this  analytical effort. In addition, they 

many valuable suggestions. 

References 
1. M.  Duffy,  private  communication. 
2. D. P.  Kennedy and P. C. Murley, Proc.  IEEE  52,620  (1964). 
3. L. V. Kantorovich  and V. I. Krylov, Approximate  Methods 

in Higher Analysis, Interscience  Publishing Co., New York, 
1958. 

4. R. V. Southwell, Relaxation  Methods in Engineering Science, 
Oxford  University  Press,  London, 1940. 
R. V. Southwell, Relaxation  Methods in Theoretical Physics, 
Vol. I ,  Oxford  University  Press, London, 1946. 
R. V. Southwell, Relaxation  Methods in Theoretical Physics, 
Vol. 11, Oxford  University  Press,  London, 1956. 
R. V. Southwell, An Introduction to the Theory of Elasticity, 
Oxford  University  Press, London, 1941. 
G. E. Forsythe  and W. R. Wasow, Finite-Difference Methods 
for  Partial Differential Equations, John Wiley and Sons, 
Inc., New York, 1960. 

5. D. P.  Kennedy and R.  R. O’Brien, ZBM Journal9,179  (1965). 

Received July 8, 1965. 

12 

D. P.  KENNEDY AND P. C. MURLEY 


