The Magnetic Behavior

B. B. Goodman*

of Superconductors of Negative Surface Energy

Abstract: Abrikosov and the author have separately suggested that a new type of reversible magnetic
behavior is to be expected in superconductors whose coherence length is small compared with their

penetration depth. The treatments of these two authors are shown to lead to similar resuits for pure

metals and to only slightly different results for alloys. The experimental evidence in favor of a new type

of reversible magnetic behavior in superconductors is discussed.

1. Introduction

While the ideal magnetic behavior of a superconductor,
characterized by its reversibility and by the dis-
appearance of the magnetization M at the critical field
H_, is well understood, the frequently observed depar-
tures from this simple behavior have remained, in
many respects, puzzling. However, in the light of
comparatively recent measurements, it seems necessary
to distinguish between two types of contribution to
departures from ideal behavior:

1) There may be hysteresis, with flux being trapped in
the superconductor when an external field greater than
H, is reduced to zero.

2) The field required for the complete suppression of
the superconducting state may be much larger than the
initial penetration field; this effect is quite distinct from
that attributable to a nonzero demagnetizing co-
efficient.

The magnetization curves of certain specimens of
rhenium and ruthenium! are extreme examples of
behavior of type (1); while there is considerable
hysteresis, the magnetization is suppressed over quite
a narrow range of values of the external field. The
measurements of Calverley and Rose-Innes? on a
mixed single crystal of composition Ta;4Nbg, show
behavior of type (2) clearly, and by itself for the first
time; while hysteresis is absent, the field required to
suppress the superconducting state completely is more
than ten times larger than the initial penetration field.

The impression that these two kinds of behavior are
quite distinct is confirmed when one considers the
rather scant experimental evidence concerning their
respective origins. On the one hand, while flux trapping
is not yet well understood, its relative absence in
extremely well-annealed specimens, even of single-
phase alloys,?*? and its enhancement by cold working
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(e.g., in tin* or rhenium!) or by fast neutron bombard-
ment,> support the idea that it is due to the presence of
extended flaws in the specimen.® Within these flaws the
surface energy of a boundary separating a normal and
a superconducting region probably assumes a value
different from that characteristic of the flawless super-
conductor. On the other hand, the work of Abrikosov,’
based on the Ginzburg-Landau theory,® and a some-
what similar treatment due to the author,® both suggest
that a superconductor with a negative but spatially
independent surface energy should exhibit a new type of
reversible magnetic behavior which we may identify
with type (2) above. In this paper we shall compare the
work of Abrikosov with that of the author and then
review the evidence in favor of this new type of
magnetic behavior of superconductors.

2. Abrikosov’s theory

It is inherent in the Ginzburg-Landau theory that
superconductors may be divided into two groups!®
according to the value of the dimensionless parameter
k; for superconductors of the first group (x < 1 /\/ 2)
the total surface energy of a normal-superconducting
boundary is positive and the specimen exhibits ideal
magnetic behavior, but for those of the second group
(x > 1/4/2) a negative surface energy® and quite
different magnetic behavior” are expected. This predic-
tion is of particular interest since Gor’kov!!-'? showed
that, when the coherence length in the superconducting
state is small compared with 4;, the London penetra-
tion depth in small fields, then the Bardeen, Cooper
and Schrieffer theory'3 leads to the local Ginzburg-
Landau equations if k is given by:

K =2/2eH 2,2k, (1)

e being the electronic charge. Throughout this paper
we use electromagnetic units.
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Abrikosov’s theory of the magnetic behavior of
superconductors of the second group’ predicts the
existence of two transition fields. For an external field
H < H,; the specimen shows a perfect Meissner
effect, while for H > H,, it is entirely in the normal
state. For intermediate fields there exists a mixed state
characterized by an array of filaments of flux threading
the specimen. Abrikosov’s asymptotic expressions for
the free energy of such a superconductor, assuming a
square array of flux filaments, (a) for H just greater
than H,, and (b) for H just less than H_,, may be used
to obtain, by interpolation, a smooth curve represent-
ing the free energy of the superconductor for all
intermediate values of the field. Graphical differentia-
tion of such curves, for several values of k, leads to the
magnetization curves shown in Fig. 1. Clearly these
magnetization curves satisfy the thermodynamic con-
dition

f MdH = —H,,/8x, Q)
0

where, as for superconductors of the first group,
H_,/8n is the difference in free energies per unit
volume between the normal state and the super-
conducting state in zero field.

Strictly, in a narrow range of fields just above H.,, a
triangular array of filaments is predicted to have a
slightly lower free energy than a square array, but
since this consideration only slightly modifies the
magnetization curves in Fig. 1 we have ignored it.
Abrikosov’s’ equation (36) which relates h; = H,,/H,
to h, = H,,/H, = /2 k, and which is only valid in
the limit of large 4,, is represented by the continuous
curve, Fig. 2. For values of 4, which are not large we
have followed Abrikosov in assuming that the true

Figure 1 Magnetization curves of a superconduc-
tor, according to Abrikosov.

behavior is better represented by a curve, such as the
broken one shown, passing through the point 4, =
hy, = 1.

In Section 4 we shall compare experimental values of
h, with those derived from values of k estimated by
one of the following methods:

1) In pure metals, for which we shall henceforth use

the symbol x,, three methods are available:'#
(a) At temperatures sufficiently close to T, A; in Eq.
(1) is large compared with the coherence length and
then coincides with the measured penetration depth A.
(b) One may derive 1,(0), the London penetration
depth at absolute zero, from measurements of the
anomalous skin effect'®''® and use the BCS relation, 3
valid near 7 ,:

A (0= 2,0{21 -}, 3)

(t = T|T,). This procedure is analogous to using
Gor’kov’s!! relation:

Ko = 2an\/6/7L(3)2,(0)/¢, 0]
= 0.964,(0)/¢, ,

where &, = ahv/kT, is the coherence length in the pure
superconductor, @ = 0.18 and v is the mean Fermi
velocity.
(c) If ko < 1/4/2 then, near T, the limiting field to
which the superconductor will supercool, is +/2xoH..
2) In alloys k may be deduced from methods 1(a)
and 1(c) above; however it is more useful to note
Gor’kov’s!? prediction that the occurrence of electron
scattering leads to a value of x which is related to
that of the pure metal by x = ky/x(p). Here p =
Ri8n*kT,02,%(0) = &y2nal = 0.884&,/1, o is the con-
ductivity of the alloy in the normal state and [ is
the electronic mean free path; the function y(p) tends

Figure 2 Relation between the two reduced tran-
sition fields for Abrikosov’s theory and
for the laminar model. Experimental
points obtained by fitting magnetization curves
to Abrikosov’s theory.
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to unity for p — 0 and to n2/7¢{(3)p for p — oo. If we
define &; = &yx(p) as the coherence length of the
alloy, so that Eq. (4) is now extended to relate x and
£¢, then the latter quantity is given, to better than 6 9,
by the expression:

(et =G+ @7, ®)

where o' = 2an®/7((3) = 1.32. It is striking to note
that the coherence length of an alloy originally intro-
duced by Pippard, &p, is given by an almost identical
expression, o’ being merely replaced by « ~ 0.8.1°

To within the accuracy of Eq. (5) one may then
write

K = Ko + (ey”Jokn)/21L(3)/2n
=Ko + 7.5 x 10~ %%/a , (6)

where y is the coefficient of the electronic specific heat
per unit volume in the normal state. Unlike Gor’kov’s
Eq. (25) this equation is not restricted to alloys
with p > 1.

3. The author’s laminar model

Although suggestions'’'!® concerning the role of a
negative surface energy in superconducting alloys
were made many years ago, it was not until recently
that a very simple quantitative treatment based
directly on this concept was put forward.® Essentially
this model supposes that in a magnetic field H a
superconductor may split up into alternate normal and
superconducting laminae lying parallel to the field. In
addition to the magnetic free energy of the system,
which, at an isolated boundary, may be thought of as
giving rise to a surface energy —AH?/8m, there is
assumed to exist a positive “configurational” surface
energy of magnitude A’H 2/8x. Pippard'®2?° has sug-
gested that A’ should be of the order of &,; both £, and
4 may be estimated from his nonlocal theory.'?

While for ¢ (=A’/2) > 1 the model leads to ordi-
nary “ideal” superconducting behavior, for g < 1
the magnetic behavior is quite different, a mixed
laminar structure being stable between the two transi-
tion fields #, = ¢* and A, ; the upper transition field is
given by g = h, + (1 — hy>)tanh™'(1/h,), =~ 2/3h,
for h, > 1. The magnetization curves based on this
model® are clearly quite similar to those in Fig. 1.
Since Eq. (2) must always be obeyed, it is therefore
hardly surprising that the relation between s; and 4,
predicted by this model, represented by the chain
curve in Fig. 2, is similar to that found by Abrikosov.
The failure of the laminar model to predict a second-
order transition from the mixed to the normal state
arises from the fact that 1 is assumed to be field-
independent.

In attempting a more detailed comparison between
the two models care must be exercised since, on the
one hand the Ginzburg-Landau equations are only
valid as long as the ‘“density of superconducting
electrons” may be considered small, i.e., at tempera-

tures close to 7,, while on the other hand Pippard’s
nonfocal theory is essentially concerned with the
properties of £, and A at temperatures well below T..
Nevertheless, just as Whitehead found for super-
conducting colloids,?! it seems probable that the
shapes of the magnetization curves of superconductors
of the second group do not change much as one passes
from a temperature close to T, to one small compared
with T,. Thus if the two models are physically equiva-
lent, the values they predict for 4, should be in fair
agreement. For pure metals this is indeed so, since
Abrikosov’s theory leads to 4,&,/4.(0) = 1.35, while
according to the laminar model, for /4, not too close to
unity, the same quantity should equal 2/3. However for
alloys with I < &, the work of Abrikosov and Gor’kov
suggests that 4, should be equal to 1.024,(0)//, while
the laminar model predicts 4, = 0.931,(0)&,%/I.
Thus the two models disagree in their dependence of
h, on I; Pippard?° has suggested that according to the
nonlocal theory, 4, should be proportional to /%,

4. Comparison with experiment

(a) Tantalum-niobium alloys

The reversible magnetic behavior of an alloy of
composition Ta;sNbg, has already been discussed
briefly in terms of the laminar model,’ and we shall
now extend this discussion somewhat. According to
the nonlocal theory!®:

AH0) = A (0)(&o/Ep)%
which, for [ < &,, becomes
A0) = (ahjdnackT,)% . %)

Taking a = 0.18, « = 0.8, 6 = 2.5 x 10”* emu and
T, = 6.9°K we find 4(0) = 890 A for this alloy*. The
value ¢ = 0.16 derived by fitting the experimental
results to the laminar model therefore suggests that
tp & 142 A

We may now note the particular interest afforded by
the temperature variation of #, the permeability
measured in a small alternating field, for two rather
similar specimens, both of composition Tas;Nb,,.?
Since the results for the two specimens, reproduced in
Fig. 3, are indistinguishable, and since the specimens
had quite different flux trapping characteristics, it
seems hard to believe that the width of the transitions
was determined by anything susceptible to random
variation, such as a slight inhomogeneity or a minority
defect concentration in the specimen. Pippard?? has
suggested that the breadth of the zero-field transition
should be due to fluctuations in temperature of
regions whose size is of the order of magnitude of the
superconducting coherence length. The full curve in
Fig. 3 represents Pippard’s expression for the shape of
the resistive transition (which we have assumed to be

*Previousiy® A(0) = 800 A was obtained by assuming a = 1.
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Figure 3 Temperature variation of the alterna-
ting field permeability of Tas;3Nb,;.

valid also for n) obtained by taking 7, = 6.164°K, ¢,
(the specific heat per unit volume of the normal metal
at T.) = 6.7 x 10* erg cm™3 deg™' (obtained by
interpolation?®-2*) and ¢ = 125 A. The small differ-
ence between the values of the coherence length for
TayNbg, and Tas;Nb,, could very well result from
their somewhat different values of /.

Thus, except possibly for the nature of the transition
at H,,, the laminar model accounts reasonably well for
what is so far known about these alloys. Nevertheless,
the experimental points in Fig. 2, Reference 9, may be
equally well represented by a very similar pair of
curves, derived from Abrikosov’s theory,” if one takes
h, = 4.7and H, = 425 oersteds at 6.0°K and 4, = 4.5
and H, = 890 oersteds at 4.2°K. These values of 4,
may be compared with the prediction of Eq. (6). The
slight supercooling found by Budnick?? in pure tanta-
lum suggests that for this metal «, ~ 0.6; we shall use
this value in Eq. (6). From the values of H(T) given
above we find y = 7000 erg cm™> deg™?, which,
together with ¢ = 2.5 x 107* emu,? leads to #,
= 4.4, again in excellent agreement with experiment.

Since the behavior of the tantalum-niobium alloys
does not therefore permit a clear choice to be made
between Abrikosov’s theory and the laminar model we
shall now examine the behavior of two other alloy
systems. Although neither has yet shown reversible
magnetic behavior, there are indications in both cases
of an initial penetration field less than H,, as required
for superconductors of the second group.

(b) Lead-thallium alloys

Magnetization curves of these alloys,2® showing
some hysteresis, have already been commented on by
Abrikosov.” Clearly, the experimental values of
(hy, h,) plotted in Fig. 2 do not allow a choice to be
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made between Abrikosov’s theory and the laminar
model. However, such a choice may be made by study-
ing the behavior of 4, as a function of p,, the residual
resistivity. The laminar model, together with the non-
local theory, leads to the broken curve in Fig. 4; it
has been assumed that in the extreme anomalous limit
the surface conductance ), and the angular frequency
w would continue to be related by w?y > = 21 emu,
as for pure lead.!® In order to study Abrikosov’s
theory we first need to know x, for lead. The above
value of w?Y . * leads, by procedure 1(b), to k, = 0.5,
while the results?” A(0) = 390 A and (dH,/dT)r,
= —238 oersted deg™' lead?® by procedure 1(a), to
Ko = 0.28. By inserting the average value k, = 0.4
into Eq. (6) and assuming that y takes the same value
as for pure lead,?® viz.,, 1713 erg cm™3 deg™? we
obtain the continuous curve in Fig. 4. As expected, for
small p, the two curves differ little, but for large p,
their gradients tend, on a logarithmic plot, to 3/2 and
unity respectively.

In order to use the experimental values of 4, already
measured”2® to test the two theories, the residual
resistivities of alloys of the appropriate compositions
have been measured. When plotted in Fig. 4 the
results are seen to be in much better agreement with
Abrikosov’s theory than with the laminar model.

(c) y-uranium-molybdenum alloys

Specific heat measurements®® on alloys of this series
containing about 25 at. %, molybdenum may be used to
estimate H(7'); at 1.2°K, for example, one finds 290
oersteds. However, even for a specimen showing con-
siderable hysteresis, the initial penetration field at this

Figure 4 Upper reduced transition field as a
function of residual resistivity, for lead-
thallium alloys.
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temperature was found to be only of the order of 100
oersteds.®® Since hysteresis can only have the effect
of increasing the initial penetration field above its true
thermodynamic value, it seems clear that this alloy
must be a superconductor of the second group with
quite a small value of 4,.

Existing information only permits its behavior to be
compared with Abrikosov’s theory. If, in Eq. (6), we
neglect x, and insert y = 12,500 ergcm ™3 deg ™2 (Ref.
29)and o = 1.3 x 107 % emu,’%3! we obtain k¥ = 65.
Thus at 1.2°K we would expect H,, = 2.7 x 10*
oersteds, which agrees, perhaps surprisingly well, with
the observation that at this temperature the resistance
is restored over the range of fields (2.7 + 0.6) x 10*
oersteds.3!

5. Discussion

The close similarity between the predictions of
Abrikosov and those of the author, together with their
over-all agreement with the rather meager experimental
evidence so far available, strongly suggests that a new
type of reversible magnetic behavior is to be expected
from superconductors in which the coherence length is

small compared with the penetration depth. There is
some evidence that, of the two theories, that due to
Abrikosov is to be preferred. A filamentary structure
may therefore well exist in the mixed state, differing
from previous suggestions,3? however, in that it arises
even in the absence of extended defects and is then free
to migrate as the external field is varied.

It is interesting to note that Abrikosov’s theory and
the author’s model both predict a sudden fall in the
magnetization of a superconductor of the second
group when the external field just exceeds H,,, con-
trary to what is observed in Ta;sNbg,.2 It may well
be that the relevant feature missing in the two theories
is that of local temperature fluctuations, such as
undoubtedly contribute to the broadening of the
zero-field transition.

Finally, it seems probable that a complete under-
standing of superconductors of the second group will
eventually lead to an explanation of the differences of
the patterns of trapped flux in “soft” and in *“hard”
superconductors.®3
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