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The  Magnetic Behavior 
of Superconductors of Negative  Surface Energy 

Abstract:  Abrikosov and the  author have  separately suggested that a new  type  of  reversible  magnetic 
behavior is to  be  expected in superconductors whose coherence length is small compared  with  their 
penetration depth. The  treatments  of these two  authors  are shown to  lead to similar results for pure 
metals and to  only  slightly different results for alloys. The  experimental evidence in  favor  of a new  type 
of  reversible  magnetic  behavior  in superconductors is discussed. 

1. Introduction 

While the ideal magnetic behavior of a  superconductor, 
characterized by its reversibility and by the dis- 
appearance of the  magnetization M at  the critical field 
H,, is  well understood,  the  frequently observed depar- 
tures  from  this simple behavior have remained,  in 
many respects, puzzling. However, in the light of 
comparatively recent measurements, it seems necessary 
to distinguish between two types of contribution  to 
departures  from ideal behavior: 
1) There may be hysteresis, with flux being trapped in 
the  superconductor when an  external field greater  than 
H ,  is reduced to  zero. 
2) The field required for  the complete  suppression of 
the  superconducting  state may be much larger  than  the 
initial  penetration  field;  this effect is quite  distinct  from 
that  attributable  to a  nonzero demagnetizing co- 
efficient. 

The magnetization curves of certain specimens of 
rhenium  and  ruthenium'  are extreme examples of 
behavior of type (1); while there is considerable 
hysteresis, the  magnetization is suppressed over quite 
a  narrow  range of values of the  external field. The 
measurements of Calverley and Rose-Innes' on a 
mixed single crystal of composition Ta,,Nb,, show 
behavior of type (2) clearly, and by itself for  the first 
time; while hysteresis is absent,  the field required to 
suppress  the  superconducting  state completely is more 
than  ten times larger than  the initial penetration field. 

The impression that these two kinds of behavior are 
quite  distinct is confirmed when one considers the 
rather  scant  experimental evidence concerning  their 
respective origins. On  the  one  hand, while flux trapping 
is not yet  well understood,  its relative absence in 
extremely well-annealed specimens, even of single- 
phase and  its enhancement by cold working 
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(e.g., in  tin4  or  rhenium')  or by fast neutron  bombard- 
ment,' support  the idea that it is due  to  the presence of 
extended flaws in the  specimen6 Within these flaws the 
surface energy of a  boundary  separating  a  normal  and 
a  superconducting region probably assumes a value 
different from  that characteristic of the flawless super- 
conductor. On the  other  hand,  the work of Abr iko~ov,~  
based on the  Ginzburg-Landau theory,' and a some- 
what similar treatment  due  to  the a ~ t h o r , ~  both suggest 
that a  superconductor with a negative but spatially 
independent surface energy should exhibit a new type of 
reversible magnetic behavior which we may identify 
with type (2) above. In this  paper we shall compare  the 
work of Abrikosov with that of the  author  and then 
review the evidence in  favor of this new type of 
magnetic behavior of superconductors. 

2. Abrikosov's theory 

It is inherent  in  the  Ginzburg-Landau  theory  that 
superconductors  may be divided into two groups" 
according to  the value of the dimensionless parameter 
K ;  for superconductors of the first group ( K  < 1/,/2) 
the  total surface energy of a  normal-superconducting 
boundary is positive and  the specimen exhibits ideal 
magnetic behavior, but  for those of the  second  group 
( K  > 1/42> a negative surface energy' and quite 
different magnetic behavior7  are expected. This predic- 
tion is of particular  interest since Gor'kov' ' 3'' showed 
that, when the coherence length  in  the  superconducting 
state is small compared with A,, the London penetra- 
tion  depth in small fields, then  the Bardeen, Cooper 
and Schrieffer theoryt3 leads to  the local Ginzburg- 
Landau  equations if K is given by: 

K = 2J%H,AL2/A , (1) 

e being the  electronic  charge.  Throughout  this  paper 
we use electromagnetic units. 63 
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Abrikosov’s theory of the magnetic behavior of 
superconductors of the second group7 predicts the 
existence of two transition fields. For  an external field 
H < H,, the specimen shows a perfect Meissner 
effect, while for H > H,, it is entirely in the  normal 
state. For intermediate fields there exists a mixed state 
characterized by an array of filaments of  flux threading 
the specimen. Abrikosov’s asymptotic expressions for 
the free energy of such  a  superconductor, assuming a 
square  array of  flux filaments, (a) for H just  greater 
than H,, and (b) for H just less than Hc2, may be used 
to  obtain, by interpolation,  a  smooth curve represent- 
ing the free energy of the  superconductor  for  all 
intermediate values of the field. Graphical differentia- 
tion of such curves, for several values of IC, leads to the 
magnetization curves shown in  Fig. 1. Clearly these 
magnetization curves satisfy the  thermodynamic  con- 
dition 

j r M d H  = -HC2/8n , (2) 

where, as  for superconductors of the first group, 
Hc2/8n is the difference in free energies per unit 
volume between the  normal  state  and  the super- 
conducting  state  in  zero field. 

Strictly, in a narrow  range of fields just above H c l ,  a 
triangular  array of filaments is predicted to have a 
slightly lower free energy than  a  square  array,  but 
since this  consideration only slightly modifies the 
magnetization curves in Fig. 1 we have ignored it. 
Abrikosov’s’ equation (36) which relates h ,  = H,,/H, 
to h, = Hc2/H,  = J? K ,  and which is only valid in 
the  limit of large h,, is represented by the  continuous 
curve, Fig. 2. For values of h, which are  not large we 
have followed Abrikosov in assuming that  the  true 

Figure I Magnetization curves of a superconduc- 
tor, according to Abrikosov. 

behavior is better represented by a curve, such as  the 
broken  one shown, passing through  the  point h,  = 

In Section 4 we shall compare  experimental values of 
h, with those derived from values of K estimated by 
one of the following methods: 

1) In pure metals, for which we shall henceforth use 
the  symbol x0, three  methods are a~a i l ab le : ’~  
(a) At temperatures sufficiently close to T,, A, in Eq. 
(1) is large compared with the coherence length and 
then coincides with the measured penetration  depth A. 
(b) One may derive A,(O), the  London  penetration 
depth at absolute zero, from  measurements of the 
anomalous skin effect15s’6 and use the BCS r e l a t i ~ n , ’ ~  
valid near T,: 

h, = 1. 

A,(t)= A,(0){2(1 - t ) } - % ,  (3) 

( t  = TIT,). This  procedure is analogous to using 
Gor’kov’sll  relation: 

KO = 2a.J6/7C(3)n,(O)Ito (4) 

= O.96~,(O)lto 9 

-where to = aAv/kT, is the coherence length  in  the  pure 
superconductor, a = 0.18 and v is the  mean  Fermi 
velocity. 
(c) If K~ < I/$ then,  near T,, the  limiting field to 
which the  superconductor will supercool, is @coH, .  

2) In alloys IC may be deduced from  methods l(a) 
and  l(c)  above; however it is more useful to note 
Gor’kov’sl’ prediction that  the occurrence of electron 
scattering leads to a value of K which is related to 
that  of  the  pure metal by K = KO/&). Here p = 
h/8n2kTcoAL2(O) = t0/2nal = 0.884t0/1, c is the  con- 
ductivity of the alloy in the  normal  state  and 1 is 
the electronic mean free path;  the function ~ ( p )  tends 

Figure 2 Relation between the  two reduced tran- 
sition fields for Abrikosov’s theory and 
for the laminar model. Experimental 
points obtained by  fitting magnetization curves 
to Abrikosov’s theory. 
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to unity for p -+ 0 and  to n2/75(3)p for p + 00. If we 
define tG = t o x ( p )  as  the coherence length of the 
alloy, so that  Eq. (4) is now extended to relate IC and 
tc, then  the  latter  quantity  is given, to better than 6 x, 
by the expression: 

t G - l  = to-l + (all)- , 1 ( 5 )  
where a’ = 2an3/7[(3) = 1.32. It is striking to note 
that  the coherence length of an alloy originally intro- 
duced by Pippard, tp ,  is given  by an almost  identical 
expression, a’ being merely replaced by a E 0.8.15 

To within the  accuracy of Eq. ( 5 )  one may then 
write 

IC = I C ~  + (ey”/ckn3)J215(3)/2x 

= K O  + 7.5 X 10-6y”/0, (6) 

where y is the coefficient of the electronic specific heat 
per  unit  volume in the  normal  state.  Unlike Gor’kov’s 
Eq. (25) this  equation is not restricted to alloys 
with p & 1. 

3. The author’s laminar model 

Although sugge~ t ions l~ , ’~  concerning the role of a 
negative surface energy in  superconducting alloys 
were made  many years ago,  it was not  until recently 
that a very simple quantitative  treatment based 
directly on this  concept was put forward.’ Essentially 
this  model  supposes that in a magnetic field H a 
superconductor  may split up into  alternate  normal  and 
superconducting  laminae lying parallel to the field. In 
addition to  the magnetic  free energy of the system, 
which, at  an isolated boundary, may be  thought of as 
giving rise to a surface energy -AH2/8n, there is 
assumed to exist a positive “configurational”  surface 
energy of magnitude AtHcZ/Sn. Pippard’’320  has sug- 
gested that A‘ should be of the  order of t p ;  both t p  and 
A may be estimated from his nonlocal theory.15 

While for q ( = A ’ / I )  > 1  the  model leads to ordi- 
nary “ideal” superconducting  behavior,  for q < 1 
the magnetic behavior is quite different, a mixed 
laminar  structure being stable between the two transi- 
tion fields h ,  = 4% and h,;  the  upper  transition field  is 
given  by q = h ,  + (1 - h,2)tanh”(l/h,), E 2/3h, 
for h,  & 1. The magnetization curves based on this 
model’ are clearly quite similar to  those in Fig. 1. 
Since Eq. (2) must always be obeyed, it is therefore 
hardly  surprising that  the relation between h ,  and h,  
predicted by this model, represented by the chain 
curve in  Fig. 2, is similar to  that  found by Abrikosov. 
The failure of the  laminar model to predict a  second- 
order  transition  from  the mixed to the  normal  state 
arises from  the  fact that A is assumed to be field- 
independent. 

In  attempting a  more detailed comparison between 
the two models  care  must be  exercised since, on  the 
one  hand  the  Ginzburg-Landau  equations are only 
valid as long  as the “density of superconducting 
electrons”  may  be considered small, i.e., at tempera- 

tures close to T,, while on  the  other  hand Pippard’s 
nonlocal theory is essentially concerned with the 
properties of t, and A at temperatures well below T,. 
Nevertheless, just  as Whitehead found  for  super- 
conducting  colloids,21  it seems probable that  the 
shapes of the  magnetization curves of superconductors 
of the second group do not  change much as  one passes 
from a  temperature close to T, to  one small compared 
with T,. Thus if the  two models are physically equiva- 
lent,  the values they predict for h, should be in fair 
agreement. For  pure metals this is indeed so, since 
Abrikosov’s theory leads to h2t0/AL(0) = 1.35, while 
according to  the laminar model, for h, not  too close to 
unity,  the same quantity  should  equal 2/3. However for 
alloys with I < to the work of Abrikosov  and  Gor’kov 
suggests that h, should be equal to l.02AL(0)/l, while 
the  laminar model predicts h, = 0.931L(0)t0”2/1’/2. 
Thus  the two models disagree in their  dependence of 
h, on I ;  Pippard” has suggested that according to the 
nonlocal  theory, h, should be proportional  to I - % .  

4. Comparison with experiment 

(a) Tantalum-niobium alloys 

The reversible magnetic  behavior of an alloy of 
composition Ta,,Nb,, has  already been discussed 
briefly in terms of the  laminar model,’ and we shall 
now extend this discussion somewhat.  According to 
the  nonlocal  theory15 : 

40) = ~ L ( O ) ( t O / t P ) ”  7 

which, for I << to, becomes 

A(0) = (~h/4nc~okT,)” . (7)  

Taking a = 0.18, a = 0.8, c = 2.5 x lo-“ emu  and 
T, = 6.9”K we find I (0)  = 890 A for  this alloy*. The 
value q = 0.16 derived by fitting the experimental 
results to  the laminar model therefore suggests that 
t p  w 142 A. 

We may now note  the  particular  interest afforded by 
the temperature  variation of q,  the permeability 
measured  in  a small alternating field, for two rather 
similar specimens, both of composition Ta,,Nb,,.’ 
Since the results for  the two specimens, reproduced in 
Fig. 3, are indistinguishable, and since the specimens 
had  quite different flux trapping characteristics, it 
seems hard  to believe that  the  width of the  transitions 
was determined by anything susceptible to  random 
variation, such as  a slight inhomogeneity or a  minority 
defect concentration in the specimen. Pippard” has 
suggested that the  breadth of the zero-field transition 
should be due to fluctuations  in  temperature of 
regions whose size is of the  order of magnitude of the 
superconducting coherence length.  The full curve in 
Fig. 3 represents Pippard’s expression for  the  shape of 
the resistive transition (which we have assumed to be 

‘Previouslyg A(0) = 800 A was obtained by assuming a = 1 .  65 
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Figure 3 Temperature  variation  of  the  alterna- 
ting field permeability  of  TaS3Nbr7. 

valid also  for q )  obtained by taking T, = 6.164"K, c, 
(the specific heat  per  unit volume of the  normal metal 
at T,) = 6.7 x lo4 erg cm-, deg" (obtained by 
i n t e r p o l a t i ~ n ~ ~ * ~ ~ )  and 5 = 125 A. The small differ- 
ence between the values of the coherence length  for 
Ta,,Nb,, and Ta,,Nb,, could very well result from 
their  somewhat different values of 1. 

Thus, except possibly for  the  nature of the  transition 
at H,,, the  laminar  model  accounts  reasonably well for 
what is so far known about these alloys. Nevertheless, 
the  experimental  points  in  Fig. 2, Reference 9, may be 
equally well represented by a very similar pair of 
curves, derived from Abrikosov's t h e ~ r y , ~  if one  takes 
h, = 4.7 and H ,  = 425 oersteds at 6.O"K and h, = 4.5 
and H, = 890 oersteds at 4.2"K. These values of h, 
may be  compared with the prediction of Eq. (6). The 
slight supercooling  found by BudnickZ5  in  pure  tanta- 
lum suggests that  for this  metal K~ x 0.6; we shall use 
this value in  Eq. (6). From  the values of H,(T) given 
above we find y = 7000 erg cm-, deg-', which, 
together with c = 2.5 x emu,' leads to h, 
= 4.4, again  in excellent agreement with experiment. 

Since the behavior of the  tantalum-niobium alloys 
does not therefore  permit  a clear choice to be made 
between Abrikosov's theory and  the laminar  model we 
shall now examine the  behavior of two other alloy 
systems. Although  neither  has yet shown reversible 
magnetic behavior,  there are indications  in both cases 
of an initial  penetration field  less than H,, as  required 
for  superconductors of the  second  group. 

(b) Lead-thallium alloys 
Magnetization curves of these alloys,26 showing 
some hysteresis, have already been commented on by 
Abr iko~ov .~  Clearly, the  experimental values of 

66 (h l ,  h,) plotted  in  Fig.  2 do  not allow a choice to be 

made between Abrikosov's theory and  the laminar 
model. However, such a choice may be made by study- 
ing the behavior of h, as  a  function of po, the residual 
resistivity. The laminar model, together with the  non- 
local  theory,  leads to  the broken  curve  in  Fig. 4 ;  it 
has been assumed that in the extreme anomalous  limit 
the surface  conductance cm, and  the  angular frequency 
w would continue to be related by w 2 ~ m 3  = 21 emu, 
as  for  pure lead.16 In  order  to study  Abrikosov's 
theory we first need to know I C ~  for lead. The above 
value of w2Cm3 leads, by procedure l(b),  to K~ = 0.5, 
while the  resultsz7 A(0) = 390 A and (dH,/dT),c 
= -238 oersted deg" leadz8 by procedure 1(a), to 

I C ~  = 0.28. By inserting the average value K~ = 0.4 
into  Eq. (6) and assuming that y takes  the  same value 
as  for  pure lead,'* viz., 1713 erg cm-, deg-' we 
obtain  the  continuous  curve in Fig. 4. As expected, for 
small po the two curves differ little, but  for large po 
their  gradients  tend, on a logarithmic  plot, to 3/2 and 
unity respectively. 

In  order  to use the  experimental values of h ,  already 
to test the two theories, the residual 

resistivities of alloys of the  appropriate  compositions 
have been measured.  When  plotted in Fig.  4 the 
results are seen to be in much better agreement with 
Abrikosov's theory than with the  laminar model. 

(c) y-uranium-molybdenum alloys 
Specific heat  measurementsZ9 on alloys of this series 
containing about 25 at. % molybdenum may be  used to 
estimate H,(T); at 1.2"K, for example, one finds 290 
oersteds. However, even for  a specimen showing con- 
siderable hysteresis, the  initial  penetration field at this 

Figure 4 Upper reduced transition field as a 
function of residual resistivity,  for lead- 
thallium alloys. 
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temperature was found to be only of the  order of 100 
 oersted^.^' Since hysteresis can only have the effect 
of increasing the initial  penetration field above  its  true 
thermodynamic value, it seems clear that this alloy 
must be a  superconductor of the second group with 
quite  a small value of h , .  

Existing information only permits its behavior to be 
compared with Abrikosov’s theory. If, in Eq. (6), we 
neglect K~ and  insert y = 12,500 ergcm-3 deg-,  (Ref. 
29) and 0 = 1.3 x we obtain K = 65. 
Thus  at 1.2”K we would expect H,, = 2.7 x lo4 
oersteds, which agrees, perhaps surprisingly well, with 
the observation that  at this  temperature  the resistance 
is restored over  the  range of  fields (2.7 f 0.6) x lo4 
oersteds.31 

5. Discussion 

The close similarity between the  predictions of 
Abrikosov  and  those of the  author, together with their 
over-all agreement with the  rather meager experimental 
evidence so far available, strongly suggests that  a new 
type of reversible magnetic behavior is to be expected 
from  superconductors  in which the coherence length is 
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