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H. W. Kuhn

Some Combinatorial Lemmas in Topology

Abstract: For many years it has been known that a combinatorial result, called the Sperner Lemma, provides
an elegant proof of the Brouwer Fixed Point Theorem. Although the proof is elementary, its complete formal
exposition depends upon the somewhat complicated operation of subdividing a simplex. Also, the proof does
not show whether the Sperner Lemma can be derived from the Brouwer Fixed Point Theorem.

This central result of this paper is a combinatorial proposition, analogous to the Sperner Lemma, and
applying to the n-cube, for which subdivision is a trivial operation. This Cubical Sperner Lemma follows
immediately from the Brouwer Fixed Point Theorem and thus opens the possibility of other applications
of topology to combinatorial problems. The question of such a topological proof is raised for another cubical
analogue of the Sperner Lemma, due to Ky Fan, and for the Tucker Lemma, which is related to the antipodal
point theorems. The Cubical Sperner Lemma of this paper implies the Tucker Lemma in 2-dimensions; this

suggests that other connections joining these combinatorial results remain to be discovered.

1. Introduction

One of the most beautiful theorems of modern mathe-
matics is the Brouwer Fixed Point Theorem, [1]
both for its spare and weak hypotheses and for its
wide and powerful applications. Its beauty is en-
hanced by an elegant proof due to Knaster, Kuratow-
ski, and Mazurkiewicz, [2] which derives the result
from a purely combinatorial lemma discovered by
Sperner [3]. The following informal account of this
argument for 2-dimensions will serve to motivate
the investigations reported in this paper.

Consider a triangle T presented with barycentric
coordinates X = (xo, 1, ), where z, = 0, 2, = 0,
2, = 0and zy + 2, + z, = 1. By a proper labeling
of T, we shall mean the assignment of a label
L(X) =0,1,0r2toeach X e T such that if L(X) = j
then 2; > 0. (This condition says merely that the
three vertices of T are labeled 0, 1, and 2, respec-
tively, and that a point on an edge of T carries
the label of one of the endpoints of the edge.)
By a subdivision of T', we shall mean a decomposition
of T into smaller triangles such that each edge of
the decomposition is the edge of either one or two
small triangles. The mesh of a subdivision is the
largest diameter of any triangle of the subdivision.

Sperner Lemma. For any subdivision of T and
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any proper labeling, some small triangle of the sub-
division carries a complete set of labels (0, 1, and 2)
on its vertices.

This assertion is illustrated in Fig. 1, where the
shaded triangle has a complete set of labels. The
proof of the lemma follows easily from the fact
that any small triangle which does not carry a
complete set of labels has an even number of edges
with 0 and 1 on their endpoints. Thus, if the lemma
were false, the total number of such edges on the
boundary of 7" would be even. However, this number
is clearly odd.

For the derivation of the Brouwer Fixed Point
Theorem from Sperner’s Lemma, let f : X —» ¥V =
f(X) be a continuous function defined on 7 into T,
that is, such that yo = 0, . =2 0, . = 0 and
Yo+ y1 4+ ¥y = Liorall Y = (yo, y1, y2) = f(X).

) Brouwer Fixed I_JOint _Theorem. There exists an
X £ T such that f(X) = X.

Proof. The function f induces a proper labeling
of T' by means of the definition: Set L(X) = j if
i = z; # 0. If more than one label satisfies this
condition, assign the smallest.
Choose a sequence of subdivisions of 7T such that




0 0 1

Figure 1 The Sperner Lemma, in which shaded
triangle carries a complete set of labels
on its vertices.

the associated sequence of meshes tends to zero.
For each subdivision, choose a small triangle with
a complete set of labels by Sperner’s Lemma. For
some subsequence, the barycenters of these small
triangles converge to a point X ¢ 7. Since the
meshes tend to zero, the three subsequences of the
vertices of these triangles with labels 0, 1, and 2,
respectively, also converge to X. Hence, by the
continuity of f and the definition of the labeling,
§; < &;forj = 0,1, 2. However, Y_ 7; = > & = 1
and therefore ¥ = f(X) = X. This completes the
proof of the theorem.

Although this proof leaves little to be desired by
way of clarity or simplicity, it raises two natural
questions:

(1) The Brouwer Fixed Point Theorem follows
directly from Sperner’s Lemma. Is the reverse impli-
cation as direct?

(2) The formal description of the subdivision of
a triangle (or, more generally, a simplex) is cumber-
some. Does an analogue of the Sperner Lemma
hold for the cube, for which subdivision is a trivial
formal operation?

The central result of this paper is a combinatorial
lemma which is a cubical analogue of Sperner’s
Lemma and which is equivalent to the Brouwer
Fixed Point Theorem. This lemma will be stated
and the equivalence proved in Section 2. A self-
contained and complete proof of the lemma is given
in Section 3. Certain related results and several
open questions are discussed in Section 4. Some
reflections on the significance of this type of result
are presented in Section 5.

2. A Cubical Sperner Lemma

Let I = (&, -, i,) denote an n-vector with all
components integers. Relations between vectors are
to hold in all components; for any integer ¢, let ¢
stand for the vector (¢, --- , 7) in vector relations.
Let I < I'denote I < I'and I = I'.

Cubical Sperner Lemma. Let T, denote the set
{I/0 £ I £ p}, for p a positive integer. Let L be
a function defined on T, into I'y such that

0sI—-2{)+1<p forall IeT,. ¢
Then, in T, there exist

L L <L LI, 2L +1 @
such that

0 <L)+ LUI)+ --- + L) <m+1. @)

As an informal explanation of the content of this
lemma, T, consists of the vertices of a subdivision
of the n-cube into “small cubes.”” The function L
assigns to each vertex I of I, an n-component
“label” L{I) = (I, +-+ , l,) with components 0
or 1. Condition (1) requires that {; = 0 whenever
7; = 0and l; = 1 whenever 7; = p and thus makes
the labeling “proper.” Condition (2) describes a set
of I lying on a small cube in I',; later it will be seen
that this set spans an m-simplex in a canonical
simplicial decomposition of the n-cube. Condition
(3) asserts that, for no component j, are all of the
labels on the vertices in this set equal to 0 or equal
to 1. Figure 2 illustrates the lemma forn = p = 2.

Figure 2 Cubical Sperner Lemma for the case
n=p=2

©,1) (Ln 1,1

(1,0

(1,0)
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The labeling shown is proper. Triples satisfying (2)
span the triangles indicated by dotted lines; the
shaded triangle, among others, satisfies property (3).

For the derivation of the Brouwer Fixed Point
Theorem from this lemma, let X = (2, -+~ , z,)
denote a point in n-space and let C={X |0 < X < 1}
represent the unit n-cube. Furthermore, let f : X —
Y = f(X) be a continuous function defined on C
into C, that is, such that 0 £ V¥ £ 1 forall Y =

(1, --+ , ¥) = f(X). The function { induces a
labeling of the points of C' by means of the definition:
Set L(X) = (I(X), -+, L(X)), where I,(X) = 0

fy, 2o, #land LX) =1ify; < a; #0.If
more than one label satisfies these conditions, assign
the smaller in each component.

Now imagine ¢ decomposed into p” small cubes
by means of the hyperplanesz; = ¢/p ¢ =1, -+,
p—1;j =1, --- , n) perpendicular to the n co-
ordinate directions. The vertices of this decomposi-
tion correspond in a natural way to the points of
T,. Precisely,

4 % .
X (p ’ H p) o> (zl;
By means of this correspondence, the labeling L
of C defined by f induces a labeling of T',. By the
definition of L, this labeling clearly satisfies (1).

The hypotheses of the lemma being met, we may
now choose, foreach p = 1,2, -.- | a set

LN <Ipshh+1

- ,1) =1eT,.

(where m may vary with p) such that
0 <L) + LUY) + -+ L) <m+1. @

Since C is closed and bounded, we may also choose

a subsequence p,, s, --- , P, -+ such that the
sequence X3! = (1/p;)I% converges to a limit point
XecC.

Now suppose ¥ = f(X) = X, that is, 7; # &
for some j. If §7; < &,, then by the continuity of f
we have y;, < z; for all points X sufficiently close
to X. This meaus, for [ sufficiently large,

LU + LU + - + LI = m 4+ 1.
Similarly, 7, > &; leads to the conclusion
LI + LIy + -+ + L% = 0.
Since both conclusions are ruled out by (4), Y =
f(X) = X and the Brouwer Fixed Point Theorem
is proved.

To derive the lemma from the Brouwer theorem,
one needs the means to extend a mapping defined

on the vertices of a subdivision of the cuhe to the
entire cube. These are provided by the lemma [4}:
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Lemma 1. Let X e C. Then X has a unique
representation
X = Nlo + «++ 4+ Al
where N > 0, --- , N, > 0,2 F -~
0sL,<---LI, 51

Proof. First, we shall show that every X ¢ C
has such a representation by an explicit construc-
tion. Let (j1, -+ , J.) be a permutation of (1, --- , n)
such that z;, = --. = =z;,. Define I; = 0 and
I, = IO+Ei1+ +Eihf0rk= 1, -, n,
where E; is the j* unit vector. Clearly

0=L<5L<L:-<I=1

+ A, = land

Set z;, = land z;,,, = 0, and define A\, = x; — x;
fork = 0,1, --- , n. Then all

Nz 0, N+ o+ =1,
and
)\OIO + )\111 + tet + )\nIn
= (xin - xin)[() + e + (xi. - xinﬂ)In
I+ z; (L — I + - 4 2,1, — 1-y)
=z B+ +z.E, = X.
Dropping any I, with zero A, the required repre-
sentation follows. It is clearly unique since I, - -+ , I,,
are linearly independent by their construction.

This result provides a canonical decomposition of
the n-cube into (open) simplexes. The decomposi-
tion is illustrated for n = 3 in Fig. 3.

Corollary. Let C, = {X |0 £ X £ p}, for p

a positive integer. Then every X ¢ C, has a unique
representation,

Figure 3 Canonical decomposition of the n-cube
into open simplexes for the case n — 3.




X =Xlo+ -+ +\.I.., where
>\0>Ov"'yxm>0,)‘0+"'
L L--- LI, 21,4+ 1.

Proof. Let I = [X], that is, the vector composed
of the integer parts of the components of X. Then
X — I ¢ C and Lemma 1 applies to provide the
representation

X =T =NIo+ -+ + 2,1

Setting I, =1+ 15, ---,1, =144 I, the Corol-
lary follows.

+ A, = 1 and

e Theorem 1. The Brouwer Fixed Point Theorem
for C, implies the Cubical Sperner Lemma.

Proof. Let L be a labeling of I, satisfying
0TI —-2L)+1=p forall IeT,. 0))

The labeling is extended to a piecewise linear func-
tion on all C, by the following definition: For X ¢ C,,
let X = Nlo + --- 4+ \.I,. be the representation
of the Corollary. Set

HX) = X — 20D + - + ML) + 1
= ST ~ 2L + 11

Then, clearly,
0=fX)=p

by (1), and hence f is a continuous function defined
on C, into C,. Therefore, by the Brouwer Fixed
Point Theorem, there exists an X ¢ C, such that
f(X) = X. For this X,

NL(Io) + -+ + N L) = 3.
Hence

O0<LUp)+ -+ L{U,)<m+1
and the lemma is proved.

3. A proof of the cubical lemma

As is often the case, an induective proof of the lemma
proceeds more smoothly when the assertion is
strengthened. Let L be a (labeling) function defined
I, into I'y. For each I ¢ T, let RL(I) denote the
number of initial 0’s in L(I). Thus, RL is a (zeduced
labeling) function defined on T, into the set
{0, 1, --- , n}.

Strong Cubical Sperner Lemma. Let T, denote
the set {I/0 < I < p}, for p a positive integer. Let
L be a function defined on T, into T, such that

0TI —-2L(I)+1=p forall IeT, (1)

Then, in T, there exist an odd number of sets

L<L<L.---<LI,=1+1 2"
such that
{RL(I,),RL(I,), --- ,RL(I)} = {0, 1, --- ,n}. (3"

Proof. A set in T, satisfying (2") will be called
an n-simplex. A set in T, satisfying

IOSIlS...SIﬂ—léIO—i_l (2")

will be called an (n — 1)-simplex. Each n-simplex
has n + 1 faces which are obtained by deleting
any single vertex. Conversely, each (n — 1)-simplex
is the face of either one or two n-simplexes. This is
seen by the following case analysis:

Case A. In (2"), all vertices I,, - --
their j* component equal to 0. Then

IOSIIS"'SI»—JSIO‘I‘l:Io‘I"I (5)

, 1., have

is an n-simplex in T',.

Case B. In (2), all vertices I,, ---
their jt component equal to p. Then

ILhwn—1L <+ Z1I,.,= (Iu—1_1)+1 (6)

, I._1 have

is an n-simplex in T,.

Case C. In (2"), all vertices I, --- , I,_, have
their j* component equal to g, where 0 < ¢ < p.
Then both (5) and (6) are n-simplexes in T,.

Case D. 1In (2"), no component of I,, --- , I,
is constant. Then, for some k, where 0 £ &t < n — 1,

Li,w=1,+E, + E,

for distinet unit vectors E, and F,. In this case,

I < SL<LIL+E
<Lian<--LLi,=0L+1

and
ILL---ZL<I,+E,
SIMS Sln—1=Io+1

are n-simplexes in T,
In Cases A and B, the (n — 1)-simplex is called
a boundary face; in Cases C and D, it is called an
interior face. The four cases are illustrated in Fig. 4.
An n-simplex satisfying (3') is said to be complete.
An (n — 1)-simplex satisfying

{RL(I,), RI(I,), - -+ , RL(I,-))}
={0,1,...,n_1} (3"

is said to be complete. Clearly every complete n-
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Figure 4 Four cases for the (n — 1)-simplex in the
Strong Cubical Sperner Lemma. Cases A
and B are boundary faces; C and D, in-
terior faces.

simplex has exactly one complete face and every
incomplete n-simplex has either zero or two com-
plete faces. Hence the parity of the complete n-
simplexes equals the parity of the complete boundary
faces (since every complete interior face is counted
twice and does not change the parity).

For a boundary face of type A, the reduced
label j — 1 is missing, where j is a fixed index,
0 £ j = n. For a boundary face of type B, the
reduced label j is missing, where j is a fixed index,
0 = j < n. Therefore, the only complete boundary
faces are of type B with ¢, = p for all vertices of
the face. In T, the vertices I = (4, --- , 3,) for
which 7, = p satisfy the hypotheses of the lemma
for dimension n — 1, if the nt* coordinates of both
vertices and labels are deleted. (Note that I, = 1
for all such vertices and hence no reduced label is =.)
Since the lemma is clearly true for n = 1, an induc-
tion completes the proof.

4. Related lemmas and open questions

In this section, certain related combinatorial lemmas
will be discussed and several open questions posed.

In Section 2, a direct argument showed that the
Cubical Sperner Lemma follows from the Brouwer
Theorem. The idea of this proof was extremely
simple. By f(I) = I — 2L(I) + 1, each coordinate
of I was increased or decreased by 1 if the corre-
sponding component of L(I) was 0 or 1, respectively.
If a simplex of the subdivision has some component
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constant in all of its labels, then it is displaced one
unit in that coordinate direction by f. Simplexes
on the boundary of T, are always moved into T,
since the labeling is proper. To deny the lemma
would mean the existence of a continuous mapping
of C, into C, with every point moved at least one
unit.

Question 1. Is there an argument analogous to
the preceding proof which will derive the original
Sperner Lemma from the Brouwer Fixed Point
Theorem?

The Fixed Point Theorem of Kakutani [5] is
proved from the Brouwer Fixed Point Theorem
using an approximation argument. This procedure
seems unnatural and suggests:

Question 2. Does there exist a combinatorial
lemma which will serve as a basis for a direct proof
of the Kakutani Fixed Point Theorem?

It is possible to prove the Cubical Sperner Lemma
for n = 2 without resorting to a simplicial decom-
position (triangulation) of the 2-cube (square). To
show this argument, let A = (0, 0), B = (1, 0),
C = (1, 1), and D = (0, 1) be the labels used;
then the requirements for a labeling are shown in
Fig. 5. The conclusion of the lemma may then be
strengthened to:

There exists a small square of the subdivision
with three distinct labels.

To prove this, orient the edges of each small
square as shown in Fig. 5 and count each occurrence

Figure 5 Requirements for labeling for proof of
Cubical Sperner Lemma in case n = 2.
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Figure 6 Transformation of labeling to show con-
nection between Strong Cubical Sperner
Lemma and Tucker's Lemma, for n — 2.

of AB (BA) as an edge of a small square as +1 (—1).
If no small square has three distinct labels then
this ecount is clearly zero. On the other hand, since
interior edges are each counted twice with opposite
orientations, the count may be made on the bound-
ary alone. Here, the only contribution comes from
the lower edge of Fig. 5 and the total count is
clearly +1. This contradiction proves the lemma
forn = 2.

Question 8. Is it possible to prove the Cubical
Sperner Lemma without resorting to a simplicial
decomposition of the n-cube?

Some years ago, A. W. Tucker discovered a com-
binatorial lemma which serves as the basis for a
direct proof of the Borsuk-Ulam and Lusternik-
Schnirelmann Antipodal Point Theorems. [6]

Tucker’s Lemma. Let T, denote the set {I/0 =
I = p}, for p a positive integer. Let A denote the

set {1, , n}. There does not exist any
function A defined on I', into A such that
ADH+ AN =0 if IT=I'=T+1 D
and
AD+ AN =0 if I4+1I'=p

andnot 0 < I <p. ®

It is natural, in view of Section 2, to ask

Question 4. Is it possible to derive Tucker’s
Lemma, from an Antipodal Point Theorem?

An interesting connection exists between the
Strong Cubical Sperner Lemma and Tucker’s
Lemma, at least for n = 2. To show this, first
establish the following 1—1 correspondence between
labels from A and labels from T;:

+1e@1,00 20,1
—10,1) —2+(0,0.

By means of this correspondence, any function A

o

[{A))

I«ZI)

induces a labeling L, and vice versa. Notice that
A(D) + A{I") = 0if and only if L) + L(I) = 1,

such labels A(I) and A(I") (or L(I) and L(I"))
will be called complementary. Condition (8) requires
that antipodal labels on the boundary of T', be
complementary, while condition (7) requires that
no small square carry complementary labels.

Assume a given labeling A of T, that satisfies
(8), and transform this into a labeling L. An example
is given in Fig. 6. Clearly this labeling L need not
be proper; however, by adding a border of squares
to T, it can be completed to a proper labeling in
a number of ways. Carry out this completion so
that antipodal vertices on the new boundary carry
complementary labels and so that no new label is
the complement of the adjacent label on the old
boundary. Such a completion of Fig. 6 is shown in
Fig. 7.

If any adjacent vertices in the old boundary are
complements then (7) is not satisfied for 4. Other-
wise, the only occurrences of complementary labels
in a small square of the border must be adjacent
along a diagonal. Using only the diagonals of the
canonical simplicial decomposition, these pairs have
been indicated in Fig. 7. Each such diagonal is
the face of two triangles; the third vertex in each
such triangle is distinet from the labels of the
diagonal. Hence, each such diagonal is the face of
two triangles carrying one of the following four

Figure 7 Completion of Figure 6 by adding bor-
der of squares to I', and proper labeling.
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sets of labels (organized in two types):
Type I. {(1,1),(0,1), (0, 0)} {(1,0), (0, 1), (0, 0)}
Type II' {(0' 0)’ (1’ O)’ (1’ 1)} {(0’ 1)7 (1’ 0)1 (11 1)}'

These occurrences have been labeled in Fig. 7 by
their types. By the antipodal character of the
labeling of the boundary, the total number of occur-
rences in the border is divisible by 4; by the comple-
mentary character of the two types, the total number
of occurrences of Type 1 in the border is even.

On the other hand, Type 1 is exactly all complete
sets of reduced labels that can be assigned to a
triangle. The Strong Cubical Sperner Lemma asserts
that the total number of occurrences of complete
triangles in the square is odd. Hence there must
be an odd number of occurrences of Type 1 in the
original square. (These are left for the reader to
find.) Hence condition (7) is not satisfied and
Tucker’s Lemma is proved. This leads us to ask:

Question 6. Is there a derivation of Tucker’s
Lemma from the Strong Cubical Sperner Lemma
for all n?

Recently Ky Fan [7] has proved a different ana-
logue of Sperner’s Lemma for the n-cube.

Fan’s Lemma. Let T, denote the set {I/0 =<
I £ p} for p a positive integer. Let F denote a
function defined on T, into I'; such that

0T —2F()+1=<p forall IeT,, 1)

and

if I and I’ are adjacent vertices of I',, then
F(I) and F(I') are either adjacent vertices 9
of T, or coincide.

Then there exists an odd number of small cubes of
I, which map onfo T,.

Question 6. Is there any relation between the
Cubical Sperner Lemma of this paper and Fan’s
Lemma?

Question 7. Is Fan’s Lemma equivalent to the
Brouwer Fixed Point Theorem?

5. Conclusion

The various combinatorial results discussed in this
paper all share their origins in topology. Although
they have been stated in a geometric manner so
as to facilitate their application, it is important to
recognize that they are purely combinatorial in
nature and can be stated without reference to any
continuous geometric objects. Also, although they
were devised for the purpose of proving certain
theorems in topology, we have seen that the direction
of this implication can be reversed in at least one
important instance (Theorem 1). This opens the
possibility of other applications of topology to com-
binatorial problems.

Another aspect of this paper which deserves com-
ment is the use of cubical rather than simplicial
complexes. As we have seen, cubical complexes have
the crucial advantage of their ease of description
in binary notation; for digital computation, there-
fore, they are a natural object to study. This ad-
vantage, however, is offset by the absence of an
appropriate homology theory with a boundary
operator suited to our purposes. One consequence
of this fact for the present paper has been the use
of simplicial decomposition to prove theorems which
have purely cubical statements. Fan’s Lemma, which
has a cubical proof, offers some hope in this direction,
but much remains to be done.
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