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Some Combinatorial Lemmas in Topology 

Abstract:  For many years it has  been known that a combinatorial result, called  the Sperner  lemma,  provides 

an  elegant  proof of the  Brouwer  Fixed  Point Theorem. Although the proof is elementary, its complete formal 

exposition  depends  upon  the  somewhat  complicated  operation of subdividing a simplex. Also, the proof does 
not  show  whether  the  Sperner lemma can be  derived from the  Brouwer  Fixed  Point Theorem. 

This central  result of this  paper is a combinatorial proposition,  analogous  to  the  Sperner  lemma,  and 
applying to the n-cube, for which  subdivision is a trivial operation. This Cubical  Sperner lemma follows 
immediately from the  Brouwer  Fixed  Point Theorem and thus  opens the  possibility of other  applications 
of topology  to combinatorial problems.  The question of such a topological proof is  raised for another  cubical 

analogue of the Sperner  lemma,  due to Ky  Fan, and for the Tucker lemma,  which is related  to  the antipodal 

point theorems. The Cubical  Sperner lemma of this  paper  implies the Tucker lemma in 2-dimensions;  this 
suggests that other  connections joining these combinatorial results remain to be  discovered. 

1. Introduction 

One of the most beautiful theorems of modern mathe- 
matics is the Brouwer Fixed Point Theorem, [I] 
both for its spare and weak hypotheses and for its 
wide and powerful applications. Its beauty is en- 
hanced by an elegant proof due to Knaster,  Kuratow- 
ski,  and Mazurkiewicz, [a] which derives the result 
from a purely combinatorial lemma discovered by 
Sperner [3]. The following informal account of this 
argument for 2-dimensions  will serve to motivate 
the investigations reported in this paper. 

Consider a triangle T presented with  barycentric 
coordinates X = (xo,  xl,  x,), where x. L 0 ,  x1 2 0 ,  
x2 2 0 and x. + x1 + x2 = 1. By a proper labeling 
of T ,  we shall mean the assignment of a label 
L(X) = 0, 1, or 2 to each X E T such that if L ( X )  = j 
then xi > 0. (This condition says merely that  the 
three vertices of T are labeled 0, 1, and 2, respec- 
tively, and  that a point on an edge of T carries 
the label of one of the endpoints of the edge.) 
By a subdivision of T ,  we shall mean a decomposition 
of T into smaller triangles such that each edge of 
the decomposition is the edge of either one or two 
small triangles. The mesh of a subdivision is the 
largest diameter of any triangle of the subdivision. 

518 Sperner Lemma. For any subdivision of T and 
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any proper labeling, some small triangle of the sub- 
division carries a complete set of labels (0, 1, and 2) 
on its vertices. 

This assertion is illustrated in Fig. 1, where the 
shaded triangle  has  a complete set of labels. The 
proof of the lemma follows easily from the  fact 
that  any small triangle which  does not  carry  a 
complete set of labels has an even number of edges 
with 0 and 1 on their endpoints. Thus, if the lemma 
were false, the  total number of such edges on the 
boundary of T would  be even. However, this number 
is clearly odd. 

For the derivation of the Brouwer Fixed Point 
Theorem from Sperner’s Lemma, let f : X + Y = 
f(X) be a continuous function defined on T into T ,  
that is, such that yo 2 0, y, 2 0 ,  y2 2 0 and 
yo + y1 + yz = 1 for all Y = (yo, yl, yz) = f(X). 

Brouwer  Fixed Point Theorem. There exists an 
X E T such that /(X) = 2. 

Proof. The function f induces a proper labeling 
of T by means of the definition: Set L(X) = j if 
yi 5 xi # 0. If more than one label satisfies this 
condition, assign the smallest. 

Choose a sequence of subdivisions of T such that 



2 

It 
0 0 1 

Figure 1 The  Sperner lemma, in which shaded 
triangle carries a complete set of labels 
on  its  vertices. 

the associated sequence of meshes tends to zero. 
For each subdivision, choose a small triangle with 
a complete set of labels by Sperner’s Lemma. For 
some subsequence, the barycenters of these small 
triangles converge to a point x e T. Since the 
meshes tend to zero, the three subsequences of the 
vertices of these triangles with labels 0, 1, and 2, 
respectively, also  converge to x. Hence, by  the 
continuity of f and  the definition of the labeling, 
v i  5 Zi for j = 0, 1, 2. However, v i  = zj  = 1 
and therefore P = j(2) = 2. This completes the 
proof of the theorem. 

Although this proof leaves little to be desired by 
way of clarity or simplicity, it raises two natural 
questions: 

(1) The Brouwer  Fixed Point Theorem follows 
directly from Sperner’s Lemma. Is the reverse impli- 
cation as direct? 

(2) The formal description of the subdivision of 
a triangle (or, more generally, a simplex) is cumber- 
some.  Does an analogue of the Sperner Lemma 
hold for the cube, for which subdivision is  a  trivial 
formal operation? 

The  central result of this paper is  a combinatorial 
lemma which is a cubical analogue of Sperner’s 
Lemma and which is equivalent to  the Brouwer 
Fixed Point Theorem. This lemma will be stated 
and the equivalence proved in Section 2. A self- 
contained and complete proof of the lemma is given 
in Section 3. Certain related results  and several 
open questions are discussed in Section 4. Some 
reflections on the significance of this  type of result 
are presented in Section 5. 

2. A Cubical  Sperner lemma 
Let I = (il, - - , i,,)-denote an n-vector with  all 
components integers. Relations between vectors  are 
to hold in all components; for any integer i, let i 
stand for the vector (i, - - , i) in vector relations. 
Let I 5 I’ denote I 5 I’ and I # I’. 

Cubical Sperner Lemma. Let rv denote the  set 
{ 1/0 6 I 5 p ) ,  for p a positive integer. Let L be 
a function defined on I?, into rl such that 

0 5 I - %(I) + 1 6 p for all I e I?,. (1) 

Then, in rv there exist 

Io  5 I, 2 -.-  5 I ,  6 I ,  + 1 (2) 

such that 

0 < UIO) + L(I1) + * * * + L(IJ  < m + 1. (3) 
As an informal explanation of the content of this 

lemma, I’, consists of the vertices of a subdivision 
of the n-cube into “small cubes.’’ The function L 
assigns to each vertex I of r, an n-component 
(‘label” L ( I )  = (11, . . - , In) with components 0 
or 1. Condition (1) requires that l i  = 0 whenever 
ij = 0 and t i  = 1 whenever ii = p and  thus makes 
the labeling “proper.” Condition (2) describes a  set 
of I lying on a small cube in r,; later  it will  be  seen 
that this  set  spans  an m-simplex in a canonical 
simplicial decomposition of the n-cube. Condition 
(3) asserts that, for no component j, are all of the 
labels on the vertices in this  set equal to 0 or equal 
to 1. Figure 2 illustrates the lemma for n = p = 2. 

Figure 2 Cubical  Sperner lemma for the case 
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The labeling shown is proper. Triples satisfying (2)  
span the triangles indicated by dotted lines; the 
shaded triangle, among others, satisfies property (3). 

For the derivation o f  the Brouwcr Fixed Point 
Theorem from this lemma,  let X = (x1, - 7 X") 
denote a point in n-space and  let C =  ( X  I 0 6 X 5 11 
represent the unit n-cube. Furthermore,  let f : X .--$ 

Y = f ( X )  be  a  continuous  function defined on C 
into C, that is, such that 0 5 Y 5 1 for all Y = 

(Yll ... , yn) = ! (X) .  The function f induces a 
labeling of the points of C by means of the definition: 
Set L ( X )  = &(X), , Zn(X)), where Zi(X) = 0 
if yi  2 xi # 1 and Zi(X) = 1 if yi 5 xi # 0. If 
more than one label satisfies these conditions, assign 
the smaller in each component. 

Now imagine C decomposed into p" small cubes 
by means of the hyperplanes xi = i /p (i = 1, . - . , 
ordinate directions. The vertices of this decomposi- 
tion correspond in a natural way to  the points of 
I?,. Precisely, 

p - 1 ; j  = 1, ... , n) perpendicular to  the n CO- 

By means of this correspondence, the labeling L 
of C defined by f induces a labeling of I?,,. By the 
definition of L,  this labeling clearly satisfies (1). 

The hypotheses of the lemma being met, we may 
now choose, for each p = 1, 2, - , a set 

I ;  _< I ;  _< e . .  _< I: 5 I;+ 1 

(where m may vary  with p )  such that 

0 < L(I;) + L(I;) + - - - + L(Ii) < m + 1. (4) 

Since C is closed and bounded, we may also choose 
a subsequence pl, p,, , p,, - such that  the 
sequence X ; 1  = (l/pl)I;' converges to a limit point a E c. 

Now suppose = f(x) Z a, that is, gj # Zi 
for some j .  If gi < si, then  by  the continuity of f 
we have yi < xi for all  points X sufficiently  close 
to x. This means, for 1 sufficiently large, 

zj(r;') + Zi(I?) + - + Zi(I9A) = m + 1. 

Similarly, fji > Zi leads to  the conclusion 

li(1;') + Zi(I?) + + Z;(I?) = 0. 

Since both conclusions are ruled out  by (4), = 
f(8) = x and  the Brouwer Fixed Point Theorem 
is proved. 

To derive the lemma from the Brouwer theorem, 
one needs the means to extend a mapping defined 
on the vertices of a subdivision of the cube to  the 

520 entire cube. These  are provided by the lemma [4]: 

Lemma 1. Let X e C. Then X has a unique 
representation 

x = XOI" + * + XJ,, 
where X, > 0, . - , X, > 0, x. + + X, = 1 and 

O j I o I . . * < I m 5 1 .  

Proof. First, we shall show that every X E C 
has such a representation  by an explicit construc- 
tion.  Let (jl, . . . , in) be a permutation of (1, - - , n) 
such that xi> 2 - - 2 xi%. Define I ,  = 0 and 
I ,  = I ,  + Ei,  + 0 . .  + E j ,  for IC = 1, 9 n, 
where E j  is  the jth unit vector. Clearly 

o = r , _ < 1 , <  < I * =  1. 

Set xi. = 1 and xin+, = 0, and define Xk = x i k  - xi,+, 
for k = 0, 1, - .  . , n. Then all 

x k  1 0, x, + -.. + x, = 1, 

and 

x 0 1 0  + 1 1 1 1  + * * * + x?Jn 
= (xi, - xi , ) I ,  + * + ( x i ,  - xjn+JIn 

= I o  + xil(I1 - 1 0 )  + * * *  + xi.(In - In-1) 
= x;,E;, + * * * + ~ i , E i ,  = X .  

Dropping any I, with zero X,, the required repre- 
sentation follows. It is clearly unique since I,, - , I,, 
are linearly independent by  their construction. 

This result provides a canonical decomposition of 
the n-cube into (open) simplexes. The decomposi- 
tion  is  illustrated for n = 3 in Fig. 3. 

Corollary. Let C, = { X  I 0 5 X -5 p] , for p 
a positive integer. Then every X e C,  has a unique 
representation, 

Figure 3 Canonical  decomposition of the  n-cube 
into  open simplexes for the case n = 3. 
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X = XoIo + - - -  + XJ,, where 

X, > 0, , X, > 0, X, + + X, = 1 and 

I ,  2 -.. 5 I ,  r I ,  + 1. 

Proof. Let I = [ X ] ,  that is, the vector composed 
of the integer parts of the components of X .  Then 
X - I E C and Lemma 1 applies to provide the 
representation 

x - I = X& + - - + XJL. 

Setting I ,  = I + I;, + , I ,  = I + I;, the Corol- 
lary follows. 

0 Theorem 1 .  The Brouwcr Fixed Point Theorem 
for C,  implies the Cubical Sperner Lemma. 

Proof. Let  L be a labeling of r, satisfying 

0 5 I - 2L(I) + 1 5 p for all I e r,. (1) 

The labeling is extended to a piecewise linear func- 
tion on all C, by the following definition: For X E C,, 
let X = X o I o  + + XJ, be the representation 
of the Corollary. Set 

! (X)  = x - 2[X,L(IO) + * - * + XmL(Im)l + 1 
m 

= Xk[Ik - 2L(Ik) + 11. 
k=O 

Then, clearly, 

0 5 f ( X )  5 p 

by (l),  and hence f is a continuous function defined 
on C, into C,. Therefore, by the Brouwer Fixed 
Point Theorem, there exists an a e C,  such that 
f(x) = x. For  this a, 
X,L(I,) + - .  + X,L(I,) = 3. 
Hence 

0 < L(1J + * * + L(I,) < m + 1 

and the lemma is proved. 

3. A proof of the cubical lemma 

As is often the case, an inductive proof of the lemma 
proceeds more smoothly when the assertion is 
strengthened. Let L be a (labeling) function defined 
rn into rl. For each I E r,, let RL(I)  denote the 
number of initial 0’s in L(I ) .  Thus, RL is a (qeduced 
labeling) function defined on I’, into the set 
(0, 1, * * .  9 d .  

Strong Cubical Sperner Lemma. Let r, denote 
the set ( I / O  5 I 5 p )  , for p a positive integer. Let 
L be a function defined on rn into rl such that 

0 I - 2L(I) + 1 5 p for all I E r,. (1) 

Then,  in rp there exist an odd number of sets 

I ,  5 I ,  5 * . .  5 I ,  = I ,  + 1 (2’) 
such that 

(RL(I,), RL(I,), * * * , RL(I“)) = (0, 1, * * * , n) * (3’) 

Proof. A set in rp satisfying (2’) will be called 
an n-simplex. A set in r, satisfying 

I o  5 I ,  5 * 5 In-, 5 I ,  + 1 (2’9 

will be called an (n - 1)-simples. Each n-simplex 
has  n + 1 faces which are  obtained  by deleting 
any single vertex. Conversely, each (n - 1)-simplex 
is the face of either one  or two n-simplexes. This is 
seen by the following  case analysis: 

Case A .  In (2”), all vertices I,, . . , have 
their jth component equal to 0. Then 

I ,  5 I ,  5 * . .  5 I,-1 5 I ,  + 1 = I ,  + 1 (5) 

is an n-simplex in r,. 
Case B.  In (2’’), all vertices I,, . . - , I,-1 have 

their jth component equal to p .  Then 

I,-1 - 1 5 I ,  5 5 1,-1 = (In-l - 1) + 1 (6) 

is an n-simplex in r,. 
Case C. In (2”), all vertices I,, - , I,-1 have 

their jth component equal to q, where 0 < q < p .  
Then  both ( 5 )  and (6) are n-simplexes in rn. 

Case D. In  (2”) ,  no component of Io ,  . . I I,-l 
is constant. Then, for some k, where 0 5 IC < n - 1, 

Ik+l = I k  + + 
for distinct unit vectors E, and E,. In this case, 

Io 5 * * *  5 Ik 5 I ,  + E ,  

5 5 * * *  5 In-1 = I ,  + 1 

and 

Io 5 * * *  5 I ,  5 I k  +E’. 
5 I,+, 5 * ’ *  5 In-1 = IO f 1 

are n-simplexes in r,. 
In Cases A and  B,  the (n - 1)-simplex is called 

a boundary face; in Cases C and D, it is called an 
interior face. The four cases are  illustrated  in Fig. 4. 

An  n-simplex satisfying (3’) is said to be complete. 
An (n - 1)-simplex satisfying 

{RUIo),  RL(I1) , . , RUIn-J  1 
= (0, 1, * * -  , n  - 1) (3”) 

is said to be complete. Clearly every complete n- 52 1 
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Figure 4 Four  cases for the (n - 1)-simplex in the 
Strong Cubical  Sperner lemma. Cases A 
and B are boundary faces; C and 0, in- 
terior  faces. 

simplex has exactly one complete face and  every 
incomplete n-simplex has  either zero or two com- 
plete faces. Hence the parity of the  complete n- 
simplexes  equals the parity of the  complete boundary 
faces (since every complete interior face is counted 
twice and does not change the  parity). 

For a boundary face of type A, the reduced 
label j - 1 is missing, where j is a fixed index, 
0 5 j 6 n. For a boundary face of type B, the 
reduced label j is missing,  where j is a fixed index, 
0 6 j 6 n. Therefore, the only complete boundary 
faces are of type B  with in = p for  all vertices of 
the face. In r, the vertices I = (ill , in) for 
which in = p satisfy the hypotheses of the lemma 
for dimension n - 1, if the nth coordinates of both 
vertices and labels are deleted. (Note that I ,  = 1 
for all such vertices and hence no reduced label is n.) 
Since the lemma is clearly true for n = 1, an induc- 
tion completes the proof. 

4. Related  lemmas and open  questions 

In this section, certain  related combinatorial lemmas 
will be discussed and several open questions posed. 

In Section 2, a direct  argument showed that  the 
Cubical Sperner Lemma follows from the Brouwer 
Theorem. The idea of this proof was extremely 
simple. By f ( I )  = I - 2L(I)  + 1, each coordinate 
of I was increased or decreased by 1 if the corre- 
sponding component of L(I )  was 0 or 1, respectively. 
If a simplex of the subdivision has some component 

constant in all of its labels, then it is displaced one 
unit  in that coordinate direction by f. Simplexes 
on the boundary of r, are always moved into r, 
since the labeling is proper. To deny the lemma 
would mean the existence of a continuous mapping 
of C, into C, with every point moved at least one 
unit. 

Question 1. Is there an argument analogous to 
the preceding proof which will derive the original 
Sperner Lemma from the Brouwer Fixed Point 
Theorem? 

The Fixed Point Theorem of Kakutani [5] is 
proved from the Brouwer Fixed Point Theorem 
using an approximation argument.  This procedure 
seems unnatural  and suggests: 

Question 9. Does there exist a combinatorial 
lemma which  will serve as a basis for a  direct proof 
of the Kakutani Fixed Point Theorem? 

It is possible to prove the Cubical Sperner Lemma 
for n = 2 without resorting to a simplicial decom- 
position (triangulation) of the 2-cube (square). To 
show this  argument,  let A = (0, 0) , B = (1, 0 ) ,  
C = (1, l), and D = (0, 1) be the labels used; 
then  the requirements for a labeling are shown in 
Fig. 5. The conclusion of the lemma may  then be 
strengthened to: 

There exists a small square of the subdivision 
with  three  distinct labels. 

To prove this, orient the edges of each small 
square as shown in Fig. 5 and  count each occurrence 

Figure 5 Requirements for labeling for proof of 
Cubical  Sperner lemma in case n = 2. 

D *  C or D t r  

A .  A or B 
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Figure 6 Transformation of labeling to  show  con- 
nection between Strong  Cubical  Sperner 
lemma  and Tucker's lemma, for n = 2. 

of A B  (BA) as an edge of a small square as + 1 (- 1). 
If no small square  has  three  distinct labels then 
this count is clearly zero. On the other  hand, since 
interior edges are ea,ch counted twice with opposite 
orientations, the count may be made on the bound- 
ary alone. Here, the only contribution comes from 
the lower edge of Fig. 5 and  the  total count  is 
clearly + 1. This  contradiction proves the lemma 
for n = 2. 

Question 3. Is  it possible to prove the Cubical 
Sperner Lemma without resorting to a simplicial 
decomposition of the n-cube? 

Some years ago, A. W. Tucker discovered a com- 
binatorial lemma which serves as  the basis for a 
direct proof of the Borsuk-Ulam and Lusternik- 
Schnirelmann Antipodal Point Theorems. 161 

Tucker's  Lemma. Let r, denote the set ( I / O  5 
I 5 p 1, for p a positive integer. Let A denote the 
set { f I, . 3 - , &n].  There does not exist any 
function A defined  on I', into A such that (0.1 ) (1.1) (1.1) (1,1) (1,1) "__""_~"_""""""""""""""""""" 

I 
I 
I 

I 
I I' I I 

/ I  I 

A(I)  + A ( P )  # 0 if I 5 I' 5 I + 1 

and I /'IT 1 
A(I)  + A(I') = 0 if I + I' = p (0,O)L "" ~~ ""_ 1 (1,O) 1(1,1) ~ I - - - - - - - - - - - -. ; (1 , l )  

(7) j I ,//' j I I I I I 
I 

I I 1 I 

I I' 

I I 
I I 
I I 

I I I I /' 
I 

and not 0 < I < p .  (8) \ I ,,,I' 

I 
I 

I 
I It is natural, in view of Section 2, to ask 

Question 4.  Is it possible to derive Tucker's o, , ;y~  _ _ _ _ _ _ _ _ _ _ _  (0.0) 
Lemma from an Antipodal Point Theorem? 

(1,1) I (1.1) 

,' I 
An interesting connection exists between the II ,' I 

I' I 

Strong Cubical Sperner Lemma and Tucker's I 
Lemma, at least  for n = 2. To show this, fist 1 /' /' II ; I 

establish the following 1 - 1 correspondence between (0,O)I _ _ _ _ _ _ _ _ _ _ _ _ _ ,  (LO) (0,O) ,'(0,1) 

labels from A and labels from r,: 
, I ' ( L 1 )  

I I I' I 
I I I \ I , ' ,  

I ,/' I 
I /' I 

I 

"_ - -__ _"" J 
I 
I 
I 

, , (110) 

, 
/ 

I 
I 

I 
L - - - - - - - - - - - - 

I 

I I 
I I I 

I I I I I 
I I I 
I I I 

I I I 1 ,  

+1 * (1, 0) 2 f-) (1, 1) 

-1  * (0, 1) -2 ++ (0, 0). 

/ I  

, 
I I j ,/' II I I 

I I I /  I 

By means of this correspondence, any function A (0.0) (0,O) (0,O) (40) (1,O) 523 

induces a labeling L,  and vice versa. Notice that 

A ( I )  + A(I')  = 0 if and only if L ( I )  + L(1') = 1; 

such labels A ( I )  and A(I') (or L( I )  and L(I')) 
will  be  called complementary. Condition (8) requires 
that antipodal labels on the boundary of I', be 
complementary, while condition (7)  requires that 
no small square  carry complementary labels. 

Assume a given labeling A of rP that satisfies 
(8), and  transform this  into a labeling L. An example 
is given in Fig. 6. Clearly this labeling L need not 
be proper; however, by adding a border of squares 
to r, it can  be completed to a proper labeling in 
a number of ways. Carry  out  this completion so 
that antipodal vertices on the new boundary  carry 
complementary labels and so that no new label is 
the complement of the adjacent label on the old 
boundary. Such a completion of Fig. 6 is shown in 
Fig. 7 .  

If any adjacent vertices in the old boundary  are 
complements then (7) is not satisfied for A. Other- 
wise, the only occurrences of complementary labels 
in a small square of the border must be adjacent 
along a diagonal. Using only the diagonals of the 
canonical simplicial decomposition, these  pairs  have 
been indicated in Fig. 7 .  Each such diagonal is 
the face of two triangles; the third  vertex in each 
such triangle is distinct from the labels of the 
diagonal. Hence, each such diagonal is the face of 
two  triangles carrying one of the following four 

Figure 7 Completion of Figure 6 by adding bor- 
der of  squares  to r, and proper labeling. 
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sets of labels (organized in two  types): Question 7. Is Fan’s Lemma equivalent to  the 

Type I .  ((1711, (0,1>, (0,O)I ((1, O ) ,  (0, 11, (0, 0)) 
Brouwer Fixed Point Theorem? 

T?Jpe I I .  { ( O ,  O ) ,  (LO), (1,1)1 I @ ,  I>, (1, o>, (1, 1>1. 

These occurrences have been labeled in Fig. 7 by 
their  types.  By the antipodal  character of the 
labeling of the boundary, the  total number of occur- 
rences in the border is divisible by 4; by the comple- 
mentary  character of the two  types,  the  total number 
of occurrences of Type 1 in the border is even. 

On the other  hand,  Type 1 is exactly all complete 
sets of reduced labels that can be assigned to a 
triangle. The Strong Cubical Sperner Lemma asserts 
that  the  total number of occurrences of complete 
triangles in the square is odd. Hence there  must 
be an odd number of occurrences of Type 1 in the 
original square. (These are left for the reader to 
find.) Hence condition (7) is not satisfied and 
Tucker’s Lemma is proved. This leads us to ask: 

Question 6. Is there a derivation of Tucker’s 
Lemma from the Strong Cubical Sperner Lemma 
for  all n? 

Recently Ky  Fan [7] has proved a different ana- 
logue of Sperner’s Lemma for the n-cube. 

Fan’s Lemma. Let rD denote the set { I / O  5 
I 5 p )  for p a positive integer. Let F denote  a 
function defined  on r?, into rl such that 

0 5 I - 2F(I) + 1 5 p for all I E rD, ( 1) 

and 

if I and I’ are  adjacent vertices of I??,, then 
F ( I )  and  F(I’)  are  either  adjacent  vertices (9) 
of I’, or coincide. 

Then  there exists an odd number of small cubes of 
rP which map onto rl. 

Question 6. Is there  any relation between the 
Cubical Sperner Lemma of this paper and Fan’s 
Lemma? 

5. Conclusion 

The various combinatorial results discussed in this 
paper all  share  their origins in topology. Although 
they  have been stated  in a geometric manner so 
as  to facilitate  their  application, it is important to 
recognize that they  are purely combinatorial in 
nature  and can be stated  without reference to  any 
continuous geometric objects. Also, although  they 
were devised for the purpose of proving certain 
theorems in topology, we have seen that  the direction 
of this implication can be reversed in at least one 
important  instance (Theorem 1).  This opens the 
possibility of other applications of topology to com- 
binatorial problems. 

Another aspect of this paper which deserves com- 
ment is the use of cubical rather  than simplicial 
complexes.  As  we have seen, cubical complexes have 
the crucial advantage of their ease of description 
in  binary  notation; for digital  computation,  there- 
fore, they  are a natural  object to study.  This  ad- 
vantage, however, is offset by t,he absence of an 
appropriate homology theory with a boundary 
operator suited to our purposes. One consequence 
of this fact for the present paper has been the use 
of simplicial decomposition to prove theorems which 
have purely cubical statements.  Fan’s Lemma, which 
has  a cubical proof, offers  some hope in this direction, 
but much remains to be done. 
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