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On  Moore Graphs with Diameters 2 and 3 

Abstract: This note  treats  the  existence of connected, undirected  graphs  homogeneous of degree d and  of 

diameter k, having a number of nodes which is maximal according to a certain  definition. For k = 2 
unique  graphs  exist for d = 2, 3, 7 and  possibly for d = 57 (which is undecided), but for no  other  degree. 

For k = 3 a graph exists only for d = 2. The proof exploits  the  characteristic  roots and vectors of the ad- 
jacency matrix (and  its principal submatrices)  of  the  graph. 

1. Introduction 

In  a graph of degree d and  diameter k ,  having n 
nodes, let one node be  distinguished. Let ni, i = 0 ,  
1, 0 . .  , k be the number of nodes a t  distance i 
from the distinguished node. Then no = 1 and 

ni 5 d(d - I)'-' for i 2 1.  (1) 

Hence 

C n i  = n 5 1 + d (d - I)'-'. (2) 

E. F. Moore has posed the problem of describing 
graphs  for which equality holds  in (2). We call 
such  graphs "Moore graphs of type (d, k)". This 
note shows that for k = 2 the  types (2, 2), (3, 2), 
(7, 2) exist and  there  is only  one graph of each of 
these  types.  Furthermore,  there  are  no  other (d, 2 )  
graphs except possibly (57, 2), for  which  existence ' is  undecided. For k = 3 only (2, 3) exists;  this 
is the 7-gon. 

The results of Section 2 and Eq. (3) are  due  to 
Moore, who has also shown the nonexistence of 
certain  isolated  values of (d, k )  using  methods of 
number  theory. 

2. Elementary properties 

Moore  observed that in  graphs  for which equality 
holds in (2) every  node  is of degree d,  since it 
necessitates that  equality hold in (1) for  each i. 

k k 

i - 0  i - 1  
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Furthermore, since no  node has degree exceeding 
d,  each  node  counted in ni is  joined with (d - 1) 
nodes  counted  in ni+l, for i = 1, . . . , k - 1. Hence 
no  arc joins two nodes  equally  distant  from some 
distinguished  node,  except  when both  are  at distance 
k from the distinguished  node. 

Thus if arcs joining  nodes a t  distance k from the 
distinguished  node are deleted the residual graph 
is  a  hierarchy, as in  Fig. 1. The same  hierarchy 
results  from  distinguishing any node. 

Figure 1 
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3. Notation 

The discussion deals  with  matrices of various orders, 
and  with some which are most clearly symbolized 
as arrays of matrices or blocks of lower order. We 
will not  attempt  to indicate  orders  by indices, but 
rather  to indicate  them explicitly or implicitly in 
the context. 

The following symbols denote  particular  matrices 
throughout: 

I is the  identity  matrix 
0 is the zero matrix 
J is the  matrix all of whose elements are  unity 
K is a  matrix of order d ( d  - 1) which is a d X d 
array of diagonal blocks of J’s of order (d  - 1). 

Thus 

J 0 0 

K = 0 J . . .  0 .  
............ 

,O 0 * * *  J ,  

order adjacencies (;.e., the pairs of nodes joined 
by  paths of length 2 without  retracing any arcs) 
are given by A’ - d l .  Using the Oth, 1st and 2nd 
order  adjacencies, 

A’ + A - (d  - 1)1 = J .  (3) 

Since J is a polynomial in A ,  A and J have  a common 
set of eigenvectors. One of these is u, and 

Ju = nu, Au = d u .  

For  this eigenvector, (3) supplies the relation which 
is already known, 

(1 + d2)u = nu. 

Let v be any  other eigenvector of A corresponding 
to eigenvalue r .  Then 

JV = 0, AV = ?v. 
Using (3), 

T’ + r - (d  - 1) = 0. 
0 is used also for  a  vector  all of whose elements Hence A has two  other  distinct eigenvalues: 
are zero. 
u is a vector all of whose elements are  unity. r1 = (-1 + 1 /4d-3 ) /2 ,  
ei is  a  vector whose i-th element is unity  and 
the remainder are zero. r2 = (-1 - 4 4 d  - 3)/2. 

We use prime (’) to indicate the transpose of a If d is such that r1 and r2 are not  rational  then 
matrix. An unprimed  vector symbol is a column each has multiplicity (n - 1)/2 as eigenvalue of A ,  
vector,  a primed vector symbol is a row vector. Thus since A is rational. Since the diagonal elements of 

A are 0,  the sum of the eigenvalues of A is 0. Hence rll 
u =  I! I u’ = (1,1, - * , 1). 

The values of d which satisfy this equation  are: 

d = 0, for which n = 1. This is a single node, 

joined to  the ith node of tier ( k  - 1) is designated d = 2, for which n = 5. This is the pentagon, 
Si. The  arcs joining nodes of tier k, which are clearly a Moore graph of type (2, 2), and 
omitted  from the hierarchy, are called re-entering clearly the only one of that type. 
arcs. 

The  subset of nodes of tier k ,  Fig. 1, which are which does not  have  diameter 2. 

The values of d for which the T’S of (4)  are rational 
are those  for which 4d - 3 is a  square  integer, 
s2, since any  rational eigenvalues of A are also 

4. Diameter 2 integral.  Let m be the multiplicity of T ~ .  Then  the. 

Consider a Moore graph  with k = 2. Then n = 
sum of the eigenvalues is 

1 + dZ.  Let A be its adjacency  matrix. That is, 
with  the nodes of the graph given any numbering, 2 + + ( n - I - m ) - = O .  

Using n - 1 = d2 and d = (s2 + 3)/4, 

s - 1  -s - 1 
2 

” ! 1 1 if nodes i and j have an 
a.. = arc  in common i, j = 1, * * e  ,n. 

s5 + s4 + 6s3 - 2s’ + (9 - 3 2 ~ ~ ) s  - 15 = 0. (5)s 
0 otherwise 

Since (5) requires  solutions  in  integers the only 
From  the elementary  properties, each pair of nodes candidates for s are  the  factors of 15. The solutions,. 

498 is a t  most joined by one path of length 2. The second are: 
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s =  1, m =  0,  d =  1, n =  2 

S =  3 ,  m =  5,  d =  3, n =  10 

s =  5 ,  m =  28, d =  7, n =  50 

s = 15, m = 1729, d = 57, n = 3250. 

There is no graph of degree 1 and diameter 2. 

The case d = 3 is the Petersen  graph, which may 
be drawn: 

/ 

The case d = 7 has an exemplar which is shown 
later. 
The case d = 57 is undecided. 
The uniqueness of Moore graphs (3, 2)  and (7, 2 )  
is shown in the next section. 

5.  Uniqueness 

Let  the nodes be numbered as follows: 
No. 0: any node, 
Nos. 1 to d :  the nodes adjacent to KO. 0 in 
arbitrary order, 
Nos. (d + 1) to (2d - 1): the nodes of S ,  in 
arbitrary order, 

Nos. ( i (d  - 1) + 2)  to ( i (d  - 1) + d ) :  the nodes 
of Si in arbitrary order. 

The adjacency  matrix A then has the form of Fig. 2. 
The Pi, are matrices of order (d - l), as indicated 

by the  tabulation of the number of rows in each 
block. The  argument will  concern several of the 
principal submatrices of A .  Consider first the princi- 
pal submatrix of order d(d - 1) in the lower right, 
outlined in heavy rules, which  shows the adjacency 

. . . . . . . . .  

relations between the tier 2 nodes through  the re- 
entering  arcs.  Let it be designated B. We give further 
form to B in the following theorems, which are  rather 
obvious consequences of the hierarchy of Fig. 1. 

Theorem 1 

No cycle of length  less  than 5 exists in the  graph. 
If there were such  a cycle, designate one of its nodes 
as the distinguished node. Then  equality would not 
hold in (1) for some i. 

Theorem 2 

The  diagonal  blocks of B are 0. 

Let  two nodes of tier 2, a and b, be members of 
the same subset Si. If they were adjacent,  then a ,  
b and  the  i-th node of tier one would form a cycle 
of length 3. 

Theorem 3 
The  blocks P i j  of B are  permutation  matrices. 

Let node a be a member of Si and b and c be members 
of Si. If a were adjacent to both b and c ,  then 
a, b, c and  the jth node of tier 1 would form a cycle 
of length 4. Hence any node of tier 2 is adjacent 
to at most one node in  any of the subsets designated 
Si. Since such a node is adjacent  to (d - 1) other 
nodes of tier 2 through the re-entering arcs,  and 

0 11 . .  . 1  

1 00 . . .  0 
1 00 . . .  0 

1 00 . . .  0 

0 10 . . .  0 
0 10 . . .  0 

0 10 . . .  0 

0 01 . . .  0 
0 01 . . .  0 

0 01 . . .  0 

" 

. . . . . . .  
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. . . . . . . .  

" 

. . . . . . .  
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since there  are (d  - 1) subsets Si other than  the 
one of which it is itself a member, each node of 
tier 2 is adjacent to exactly one node in each of 
the  other subsets. Hence each row and each column 
of each P i i  in B contains exactly one 1. 

Theorem 4 
The nodes may be so numbered  that PI i  = Pi ,  = I. 

In arriving at  the form for A shown in Fig. 2 no 
order was prescribed for the nodes within each Si 
of tier 2. Let  any order  be given to  the nodes of S,. 
Each node of S, is adjacent to one node of each 
other  subset. If each node of Si is given the order 
number of its adjacent node in SI, then P l i  = I. 

Note  that  the orders of nodes in  tier 1 and  in S, 
are still arbitrary.  This  fact will be used later. 

When the nodes are numbered so that A has  the 
form of Fig. 2 with  the  further arrangement of 
Theorem  4, A is said to be in canonical form. By 
using the canonical form of A in (3) one finds that 
B satisfies 

B2 + B - (d - 1)1  = J - K .  (6) 

Then from Eq.  (6), 

For j # 1, P i i  = J I ;  
i 

and P i ,  + ~ , P i i P , ,  = J if i Z k .  (7) 

An analysis similar to  that given for A shows that 
the eigenvalues of B and  their  multiplicities  are: 

eigenvalue multiplicity 

d = 3  

2 1 
-1 

1 
2 
2 

-2 1 

6 1 
-1 6 

2 21 
-3  14 

56 1 
-1 56 

7 1672 
-8 1463 

d = 7  

d = 57 

Theorem 5 

The  Moore  graph (3, 2) i s  unique. 

500 In  the canonical form 

IBM JOURNAL NOVEMBER 1960 

P cannot  be I, for this would mean that xi PZi = 21, 
violating (7). Hence 

= [: bl 
and  this is unique. 

The  submatrix B for  a Moore graph of type 
(7, 2 )  in canonical form is shown in Fig. 3. Only 

Figure 3 

000000 100000 100000 100000 100000 100000 100000 
00000 010000 010000 01Oooo 010000 010000 010000 
0000 001000 001000 001000 001000 001000 001000 
000 000100 000100 000100 000100 000100 000100 
00 000010 000010 000010 000010 000010 o00010 
0 0oO001 o00001 000001 000001 000001 000001 

000000 010000 001000 000100 000010 000001 
00000 100000 000010 oooO01 o00100 001000 

OOOO 000100 100000 000010 000001 010000 
000 001000 000001 100000 010000 000010 
00 000001 010000 001000 100000 000100 
0 000010 000100 010000 001000 100000 

ooooO0 000001 000010 001000 000100 
OOOOO 000100 001000 O o o o o l  o00010 
0000 000010 010000 100000 000001 
000 010000 000001 000010 100000 
00 001000 100000 000100 010000 
0 1oO000 o00100 010000 001000 

000000 010000 000100 000010 
00000 100000 001000 0oO001 

OOOO 000001 010000 000100 
000 000010 100000 001000 
00 000100 000001 100000 
0 001Ooo Ooo010 010000 

000000 000001 001000 
00000 000010 000100 

OOOO 000100 100000 
000 001000 010000 
00 010000 000001 
0 1oO000 000010 

000000 010000 
00000 100000 
0000 000010 
000 000001 
00 001000 
0 000100 

000000 
00000 
0000 

000 
00 
0 



the upper  triangle is represented  in the Figure,  since 
E is symmetric. To show that by appropriate num- 
bering of the nodes the adjacency  matrix  for  any 
graph (7, 2) may  be  made  to correspond with  that 
shown, and hence that  there is  only  one  such graph, 
requires  several  steps.  We  first show that  all Pii 
are involutions. As a  preliminary: 

Theorem 6 

The principal  submatrix of A for type  (7, 2 ) ,  

M = I 0 P23 

r P:, o i 
has an eigenvalue 2 of mulliplicity 3. 

The  argument involves the  invariant  vector spaces 
corresponding to  eigenvalue 2 of A ,  and some of 
the  other principal  submatrices of A .  A set of vectors 
forming a basis  for the  invariant  vector space of 
A corresponding to  the characteristic  root 2 is  shown 
below. For notation, the components are segregated 
according to  the blocks shown  for A in Fig. 2. The 
first 8 components  are  written  out  and  the  last 42 
components  are shown as 7 vectors of dimension 6. 
The vectors  are  numbered at   the left  for ease of 
reference later. 

The  last 42 components of (I) form an eigenvector 
for B for  eigenvalue 6, and  the  last  42  components 
of numbers (11) through (VII) are eigenvectors for 
B for eigenvalue - 1. Hence  there  remain 21 in- 
dependent  vectors whose first  eight  components are 
0 and whose last 42 components  form  a  basis  for 
the eigenspace  corresponding to  2 of B. We symbolize 
these as 
(VIII) 0 0 0 0 0 0 0 0 2); up’ Vl‘ v,‘ 2); v i  v,‘. 

Because as eigenvectors of B they correspond to  
different  eigenvalues, 

U‘Ui = 0. 

We now consider the upper  left  principal  sub- 
matrix L of A ,  of order 26, and  the  submatrix L* 
of order 27 obtained  through  augmenting L by one 
column and  the corresponding row, 

L =  

0 1 1 1 1 1 1 1  0’ 0 ’ 0 ’  

1 u’ 

0‘ 0’ 0’ 1 

0’ 0’  0’ 1 

, 0’  0’ 0’ 1 

0’ 0’ 0’ 0 1 

u‘ 0’ 0’ 1 

0’ ut 0’ 1 

0’  0‘ 
- ”- 

- ”- 

”- 

o u o o o o o o  

P23 I O  o o u o o o o o  

I I 0 
- -” 

- ”- 

O O O ~ O ~ ~ ~  o E~ r 

- I” 

where the augmenting column for L* comes from 
the  fourth block, and h, i and j are unspecified. 

Number 

I (I) -14 -4 -4 -4 -4 -4 -4 “4 U‘ U’ u’ u’ u’ ut ut 
(11) 0 3 -3 0 0 0 0 0 u‘ ”u‘ 0’  0’ 0’  0’ 0’ 

(111 1 0 0 3 -3 0 0 0 0 0’ u‘ -24’ 0’ 0‘ 0’ 0‘ 
(IV) 0 0 0 3 - 3  0 0 0 0 ’  0‘ u’  -u’ 0‘  0’  0‘ 
(VI 0 0 0 0 3 - 3  0 0 0 ’  0’ 0’ 

(VI ) 0 0 0 0 0 3 - 3  0 0 ’  0’ 0’ 0’ u‘ “u‘ 0‘ 
WII) 0 0 0 0 0 0 3 -3 0‘ 0’ 0’ 0’ 0’ u’ ”u’ 

ut -u’ 0’ 0’ 
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Figure 4 
-14 8 -4 -4 -7  -7  

0 3 - 3  0 0 0 
0 0  3 - 3  0 0 
0 0 0 0 0 0  

~ ~~ 

Since the eigenspace for eigenvalue 2 of A has 
dimension 28 (see the solutions of (5)) a subspace 
of this eigenspace of dimension a t  least 4 lies in 
the subspace corresponding to L. By inspection of 
the exhibited vectors  a basis for such a 4-space is 
given above in Fig. 4 for some  unspecified v i .  

If L be augmented  by one column and row, as 
shown in L* above,  then  a subspace of dimension 
at least 5 of eigenvectors for eigenvalue 2 of A lies 
in the subspace of L*. The four vectors  above, being 
characteristic vectors for A ,  are characteristic vectors 
for L”. 

A fifth vector for the basis of this 5-space is 
independent of the eigenvectors (IV), (V), (VI) 
and (VII) of B exhibited earlier, since any such 
dependence would introduce  a component propor- 
tional to u in at least one of the  last four blocks 
(last 24 components). But in the block containing 
the augmenting column the vector may have at 
most one  nonzero component, and  in  the other 
blocks all its components are zero. Hence the fifth 
vector is of the form of (VIII) 
0 0 0 0 0 0 0 0 w:  w; w: w: 0’ 0’ 0’. 

But u’wi = 0, and w4 has a t  most one nonzero 
component. Hence w4 = 0. 

Of the five eigenvectors for L* exhibited above, 
the two containing v’s and w’s are zero in  all the 
components not corresponding to  the principal sub- 
matrix M in the statement of the theorem. Hence 
they  are eigenvectors for an eigenvalue 2 of M .  
They  are  mutually  independent,  and  are also in- 
dependent of (being orthogonal to) a vector 
(u’ u’ u’) 
for M .  The  latter is, by inspection, an eigenvector 
for eigenvalue 2 of M .  Hence the eigenvalue 2 of 
M has  multiplicity at least 3. We can now  show 
that P23 is an involution. For if we rewrite P23 as P ,  
then M becomes 

(0 I 1)’ 

( I  0 P)  

Let  us  denote by x, y, z the  three  parts of a charac- 

\(I P’ O), 

. 

teristic vector of M corresponding to 2. Then 502 
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-7 -7 5u’ u’ u’ 0’ 0’ 0’ 0’ 
0 0 u‘ -u‘ 0‘ 0’ 0‘ 0’ 0’ 
0 0 0’ u’ ”u’ 0’ 0’ 0’ 0’ 
0 0 v: v; v,’ 0’ 0’ 0‘ 0’ 

y + 2 = 2 x  
x + Pz = 2y 

x + Ply = 22. 

Substituting for x in the  last  two  equations, we obtain 

-3y + ( I  + 2P)z = 0 
( I  + 2P’)y - 32 = 0. 

So the multiplicity of 2 as an eigenvalue of M equals 
the multiplicity of 3 as an eigenvalue of 

[ I  +O2P‘ I : 
L’ 3 
Now any real matrix of the form 

where all  submatrices  are  square,  has for its eigen- 
values the  square roots of the eigenvalues of TT’ 
and  their negatives. Hence the multiplicity of 2 as 
an eigenvalue of M is the multiplicity of 9 as an 
eigenvalue of 

( I  + 2P)(I + 2P’) = 51 + 2(P + P’). 

Thus  the multiplicity of 2 as an eigenvalue of M 
is the multiplicity of 2 as an eigenvalue of 

P + P‘, 

and it is clear that  this is in turn equal to  the number 
of disjoint cycles in P. So P = P,, is composed of 
three disjoint cycles. Thus we have 

Theorem 7 
In  the canonical form for Moore graphs of type (7, 2) 
all Pii, i, j ti 1 and i # j, are involutions. 

We adopt  the notation 

Pii = 0. 

Theorem 8 

In  a Moore graph of type (7, 2) in canonical form 

PiiPi,P,, = Pik if i # j ,  i f IC, j,k # 1. 

If i = 1 the theorem is trivial. We consider i # 1 
and write the involutions as three transpositions. 



~ 

Let Pi i  = (ab)(cd)(ef) .  In Pi,  the companion of a 
must come from one of (cd) or (e f ) ,  and  the com- 
panion of b from the  other, because of (7). Let 
P i ,  = (ac) (be) (d f ) ,  which is completely general. 
Then PijPjk = (aed)(bcf). 

Since P i ,  is in a row with P i i  and  in  a column 
with Pi,  it may have no substitution of terms, which 
is the same as  any substitution  appearing in any 
of P i ; ,   P i ,  or PijPik. The only involution with this 
property is P i ,  = (af)(bd)(ce).  Evaluating  the pro- 
duct PijPjkPki proves the theorem. 

If all of i, j and k are different the expression in 
Theorem 8 may be multiplied on the left  by Pik  
and on the right  by P i k ,  and we have 

Theorem 9 

PjaPjiPjk = P ; k  if i, j ,  k are all diferent  and j ,  k # 1. 

Theorem 10 

P i i  # P k l  if i, j ,  k and 1 are all diferent. 

If any subscript is unity  the theorem is trivial. 
For ease of presentation, we prove the theorem for 
a  particular  set of subscripts, none unity,  but  it 
obviously extends to  the general case. 
Suppose P23 = P45. Then 

p 2 3 P 3 2 4 5  = p23p34pZ3 = p 2 4  

by Theorem 9. Also, 

P23P34P45 = P45P34P45 = P35. 

Hence P,, = P,5. 

Similarly P,,  = PS4.  

Hence 

p 2 3  + p Z 4  + p25 = p 3 2  + p 3 4  + p3.5 
= P42 + P,, + P45. 

Hence by  Eq. (7) ,  

p26 + p27 = p 3 6  + p37 = p46 p 4 7 -  

But P26 + P27 = P36 -k P3,  implies P36 = P27. 

Similarly, P26 + P,, = P46 + P,, implies P 4 6  = P2?. 
Therefore, P36 = P46, violating (7). 

0 Theorem 11 

The Moore  graph (7, 2) i s  unique. 

There are 15 different P i i ,  2 5 i < j. There  are 
fifteen different involutions of order 6  without fixed 
points.  Hence, for any Moore graph (7, 2) in canoni- 

cal form, the involution (12)(34)(56) appears once. 
By an appropriate numbering of the nodes of tier 1 
it may be brought to  the P,, position. 

Because of Eq. (7) ,  in the remaining P z i ,  j > 2, 
the first row of each is one of e:, e:, e:,  e ; ,  and each 
of these appears once. By an appropriate numbering 
of nodes 4, 5,  6, 7 of tier 1 the PZi  may be brought 
to  the sequence of Fig. 3. 

With P,, = (12) (34)(56), because of Eq. (7) ,  and 
the ordering of nodes of tier 1 already assigned, 
P,, might be only (13)(25)(46) or (13)(26)(45). The 
order of the  fourth  and  fifth nodes of X, may be 
transposed, if necessary, to achieve (13)  (25)  (46). The 
remaining P2i  are  then uniquely determined. The 
argument is similar to  that used in Theorem 8. 

The second  row of B having been determined,  all 
other Pi i  are uniquely determined by the relation 
of Theorem 9, with j = 2. Hence, any (7, 2) graph 
may be numbered to have the adjacency  matrix of 
Fig. 4. 

6. Diameter 3 

Theorem 12 

If the  polynomial  which i s  characteristic of Moore 
graphs of type ( d ,  k ) ,  k 2 2, i s  irreducible in the 
Jield of rational  numbers,  then no such  graphs  exist 
unless d = 2. 

The polynomials Fi(z) satisfy the difference equation 

F;+1 = x F ~  - (d - 1)Fi-1 

F , = x + l ,   F Z = ~ * + z - ( d - l )  

and  the equation for the adjacency matrix for diam- 
eter k is 

FdA) = J, 
similar to (3). An adjacency  matrix satisfying this 
equation  has the number d as one of its eigenvalues, 
and it has exactly k distinct  other eigenvalues which 
are the roots of the irreducible Fk(x) .  Let  those 
roots be Ti, i = 1, , k.  

The first and second  coefficients of F,, k 2 2, 
are  both  unity. Hence 

g r i  = -1.  
i = l  

If F, is irreducible its roots  have  equal mul- 
tiplicity as eigenvalues of A .  The  number of nodes 
in  a Moore graph of diameter k ,  if d > 2, is 

n = l + d  

and hence the multiplicity of each ri is 

(d - 1y - 1 
d - 2  
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m = d  (d - l)IC - 1 
k(d - 2) 

Since the trace of A is 0, 

d + m x r i = O .  

Substituting for m, this reduces to 

IC 

i = l  

(d  - l)k - k(d - 1) + (IC - 1) = 0. 

Considering this  as  a polynomial in (d - l), and 
remarking k 2 2, by the rule of signs it has at  most 
two positive roots. Since it has  a double root at  
d - 1 = 1, no d > 2 satisfies it. 

Of course, d = 2 corresponds to  the (2k + 1.)-gon, 
which is a Moore graph. 
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Theorem 13 
The only Moore graph of diameter 3 is (2 ,  3). 

The polynomial equation for k = 3 is 

x3 + X' - 2(d - l ) ~  - (d  - 1) = 0. 

If a graph (d ,  3) exists, d > 2, where d of course 
is an integer, then  the above equation has at  least 
one root which  is an integer. Let r be such a root. 
Then 

r'(r + 1). 
2r + 1 

d - l =  

Now 2r + 1 is relatively prime to both r and r + 1 .  
Hence the denominator is 1 or - 1, and for both of 
these d = 1, but  the  type ( 1 ,  3) does not exist. 
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