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On Moore Graphs with Diameters 2 and 3

Abstract: This note treats the existence of connected, undirected graphs homogeneous of degree d and of
diameter k, having a number of nodes which is maximal according to a certain definition. For k — 2
unique graphs exist for d = 2, 3, 7 and possibly for d — 57 (which is undecided), but for no other degree.
For k = 3 a graph exists only for d — 2. The proof exploits the characteristic roots and vectors of the ad-
jacency matrix (and its principal submatrices) of the graph.

1. Introduction

In a graph of degree d and diameter £, having n
nodes, let one node be distinguished. Let n,, 7 = 0,

1, --- , k be the number of nodes at distance 7
from the distinguished node. Then n, = 1 and
n; < d{d — 1) for 7> 1. (1)
Hence

k k .
dSni=n<1+dY, d-— 1" 2
i=0 1=1

E. F. Moore has posed the problem of describing
graphs for which equality holds in (2). We call
such graphs ‘“Moore graphs of type (d, k)”. This
note shows that for k = 2 the types (2, 2), (3, 2),
(7, 2) exist and there is only one graph of each of
these types. Furthermore, there are no other (d, 2)
graphs except possibly (57, 2), for which existence
is undecided. For k = 3 only (2, 3) exists; this
is the 7-gon.

The results of Section 2 and IEq. (3) are due to
Moore, who has also shown the nonexistence of
certain isolated values of (d, k) using methods of
number theory.

2. Elementary properties

Moore observed that in graphs for which equality
holds in (2) every node is of degree d, since it
necessitates that equality hold in (1) for each ¢.
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Furthermore, since no node has degree exceeding
d, each node counted in n; is joined with (d — 1)
nodes counted in n;,,, forz =1, --- , k — 1. Hence
no arc joins two nodes equally distant from some
distinguished node, except when both are at distance
k from the distinguished node.

Thus if arcs joining nodes at distance & from the
distinguished node are deleted the residual graph
is a hierarchy, as in Fig. 1. The same hierarchy
results from distinguishing any node.

Frgure 1
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3. Notation

The discussion deals with matrices of various orders,
and with some which are most clearly symbolized
as arrays of matrices or blocks of lower order. We
will not attempt to indicate orders by indices, but
rather to indicate them explicitly or implicitly in
the context.

The following symbols denote particular matrices
throughout:

I is the identity matrix

0 is the zero matrix

J is the matrix all of whose elements are unity

K is a matrix of order d(d — 1) whichisad X d

array of diagonal blocks of J’s of order (d — 1).
Thus

J O 0
K = 0
00 J

0 is used also for a vector all of whose elements

are zero.

u is a vector all of whose elements are unity.

e; is a vector whose 4-th element is unity and

the remainder are zero.

We use prime (") to indicate the transpose of a
matrix. An unprimed vector symbol is a column
vector, a primed vector symbol is a row vector. Thus

The subset of nodes of tier k, Fig. 1, which are
joined to the 7% node of tier (k¢ — 1) is designated
8;. The arcs joining nodes of tier %, which are
omitted from the hierarchy, are called re-enfering
arcs.

4. Diameter 2

Consider a Moore graph with k¥ = 2. Then n =
1 + d° Let A be its adjacency matrix. That is,
with the nodes of the graph given any numbering,

1 if nodes 7 and j have an

a;; = arc in common ,j=1,---,n.
0 otherwise

From the elementary properties, each pair of nodes
is at most joined by one path of length 2. The second
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order adjacencies (i.e., the pairs of nodes joined
by paths of length 2 without retracing any arcs)
are given by A? — dI. Using the Oth, 1st and 2nd
order adjacencies,

A4+ A—d-DI=J. 3)

Since J is a polynomial in A, A and J have a common
set of eigenvectors. One of these is u, and

Au = du.

For this eigenvector, (3) supplies the relation which
is already known,

1+ & = nu.

Ju = nu,

Let » be any other eigenvector of A corresponding
to eigenvalue r. Then

Jv =0,
Using (3),
P 4+r—(@d-1 = 0.

Hence A has two other distinct eigenvalues:

rn=(-14+ Vad - 3)/2,
r=(—1— Vd4d—3)/2.

If d is such that r, and r, are not rational then

each has multiplicity (n — 1)/2 as eigenvalue of A4,

since A is rational. Since the diagonal elements of

A are 0, the sum of the eigenvalues of 4 is 0. Hence
n —1) d’

d+-T(7'1+T2)=d——2“=O.

Ay = .

4

The values of d which satisfy this equation are:

d = 0, for which n = 1. This is a single node,
which does not have diameter 2.

d = 2, for which n = 5. This is the pentagon,
clearly a Moore graph of type (2, 2), and
clearly the only one of that type.

The values of d for which the ’s of (4) are rational
are those for which 4d — 3 is a square integer,
s°, since any rational eigenvalues of A are also
integral. Let m be the multiplicity of r,. Then the
sum of the eigenvalues is

s_1+(n—1—m)_s2_1=0.

d4+m

Usingn — 1 =d’and d = (s° + 3)/4,
S+ s +65—28+ 9 —-32ms —15=0. (5

Since (5) requires solutions in integers the only
candidates for s are the factors of 15. The solutions:
are:




s= 1, m= 0, d= 1, n = 2
s= 3, m= 5, d= 3, n= 10
s= 5 m= 28, d= 7, n= 50
s =15, m = 1729, d = 57, n = 3250.

There is no graph of degree 1 and diameter 2.

The case d = 3 is the Petersen graph, which may
be drawn:

The case d = 7 has an exemplar which is shown
later.

The case d = 57 is undecided.

The uniqueness of Moore graphs (3, 2) and (7, 2)
is shown in the next section.

5. Uniqueness

Let the nodes be numbered as follows:
No. 0: any node, ’
Nos. 1 to d: the nodes adjacent to No. 0 in
arbitrary order,
Nos. (d + 1) to (2d — 1): the nodes of S, in
arbitrary order,
Nos. (#(d — 1) 4+ 2) to (¢(d — 1) + d): the nodes
of 8, in arbitrary order.
The adjacency matrix A then has the form of Fig. 2.
The P;; are matrices of order (d — 1), as indicated
by the tabulation of the number of rows in each
block. The argument will concern several of the
principal submatrices of A. Consider first the princi-
pal submatrix of order d(d — 1) in the lower right,
outlined in heavy rules, which shows the adjacency

relations between the tier 2 nodes through the re-
entering arcs. Let it be designated B. We give further
form to B in the following theorems, which are rather
obvious consequences of the hierarchy of Fig. 1.

o Theorem 1
Na cycle of length less than 5 exists in the graph.

If there were such a cycle, designate one of its nodes
as the distinguished node. Then equality would not
hold in (1) for some <.

o Theorem 2
The diagonal blocks of B are 0.

Let two nodes of tier 2, a and b, be members of
the same subset S;. If they were adjacent, then a,
b and the 7-th node of tier one would form a eycle
of length 3.

® Theorem 8
The blocks P;; of B are permutation matrices.

Let node a be a member of S; and b and ¢ be members
of S;. If ¢ were adjacent to both b and ¢, then
a, b, ¢ and the j* node of tier 1 would form a cycle
of length 4. Hence any node of tier 2 is adjacent
to at most one node in any of the subsets designated
8. Since such a node is adjacent to (d — 1) other
nodes of tier 2 through the re-entering arecs, and

No.
of
Rows
0[11...1[00...0 100...01]...... 00...0] 1
11]00..0]11...1100...01...... 00...0
1100...0(00...0 [ 11...1]...... 00...0
.............................. d
1100...0{00...000...01|...... 11...1
0§ 10...0
0] 10...0
...... 0 P12 cereen Pld d-l
0110...0
0]01...0
0]101...0
...... Py 0 Py d-1
0]0L...0
0{00...1
0]00...1
...... Py P 0 d-1
0]00...1
Figure 2
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since there are (d — 1) subsets S; other than the
one of which it is itself a member, each node of
tier 2 is adjacent to exactly one node in each of
the other subsets. Hence each row and each column
of each P,; in B contains exactly one 1.

o Theorem 4
The nodes may be so numbered that P; = P;; = I.

In arriving at the form for A shown in Fig. 2 no
order was prescribed for the nodes within each S;
of tier 2. Let any order be given to the nodes of S,.
Each node of S, is adjacent to one node of each
other subset. If each node of S; is given the order
number of its adjacent node in S,, then P,; = I.

Note that the orders of nodes in tier 1 and in S,
are still arbitrary. This fact will be used later.

When the nodes are numbered so that A has the
form of Fig. 2 with the further arrangement of
Theorem 4, A is said to be in canonical form. By
using the canonical form of A in (3) one finds that
B satisfies

BB+B—-(d-1I=J-K. (6)
Then from Eq. (6),
For j#1, 2 Pu=Jy;

and Py + 2 PiPu=J if i#k. (N

An analysis similar to that given for A shows that
the eigenvalues of B and their multiplicities are:

etgenvalue multiplicity

2 1
d=3 1 ;
-2 1
6 1

-1
d=7 2 21
-3 14
56 1
_ -1 56
d =57 7 1672
-8 1463

o Theorem &

The Moore graph (3, 2) is unigue.

In the canonical form
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0717
B=i{I 0 P{,
I PO

P cannot be I, for this would mean that Z; P,; =21,
violating (7). Hence

10
and this is unique.

The submatrix B for a Moore graph of type
(7, 2) in canonical form is shown in Fig. 3. Only

Figure 3

000000 100000 100000 100000 100000 100000 100000
00000 010000 010000 010000 010000 010000 010000
0000 001000 001000 001000 001000 001000 001000
000 000100 000100 000100 000100 000100 000100
00 000010 000010 000010 000010 000010 000010

0 000001 000001 000001 000001 000001 000001

000000 010000 001000 000100 000010 000001
00000 100000 000010 000001 000100 001000
0000 000100 100000 000010 000001 010000

~ 000 001000 000001 100000 010000 000010

00 000001 010000 001000 100000 000100

0 000010 000100 010000 001000 100000

000000 000001 000010 001000 000100
00000 000100 001000 000001 000010
0000 000010 010000 100000 000001
000 010000 000001 000010 100000

00 001000 100000 000100 010000

¢ 100000 000100 010000 001000

000000 010000 000100 000010
00000 100000 001000 000001
0000 000001 010000 000100
000 000010 100000 001000
00 000100 000001 100000

¢ 001000 000010 010000

000000 000001 001000
00000 000010 000100
0000 000100 100000
000 001000 010000
00 010000 000001

0 100000 000010

000000 010000
00000 100000
0000 000010
000 000001
00 001000

0 000100

000000
00000
0000
000

00

0




the upper triangle is represented in the Figure, since
B is symmetric. To show that by appropriate num-
bering of the nodes the adjacency matrix for any
graph (7, 2) may be made to correspond with that
shown, and hence that there is only one such graph,
requires several steps. We first show that all P;;
are involutions. As a preliminary:

o Theorem 6

The principal submatriz of 4 for type (7, 2),

01 I
M= I 0 P23
I P 0

has an eigenvalue 2 of multiplicity 3.

The argument involves the invariant vector spaces
corresponding to eigenvalue 2 of A, and some of
the other principal submatrices of A. A set of vectors
forming a basis for the invariant vector space of
A corresponding to the characteristic root 2 is shown
below. For notation, the components are segregated
according to the blocks shown for A in Fig. 2. The
first 8 components are written out and the last 42
components are shown as 7 vectors of dimension 6.
The vectors are numbered at the left for ease of
reference later.

The last 42 components of (I) form an eigenvector
for B for eigenvalue 6, and the last 42 components
of numbers (II) through (VII) are eigenvectors for
B for eigenvalue —1. Hence there remain 21 in-
dependent vectors whose first eight components are
0 and whose last 42 components form a basis for
the eigenspace corresponding to 2 of B. We symbolize
these as

(VIII) 00000000 v v va’ v/ vs' vg vi.

Because as eigenvectors of B they correspond to
different eigenvalues,

u'v,; = 0

We now consider the upper left principal sub-
matrix L of A, of order 26, and the submatrix L*
of order 27 obtained through augmenting L by one
column and the corresponding row,

oj1 11111 10|00 0
1 w |0 0
1 o | v (14
1 o0 | W
1 0 ol o (04
L=1 ol o 01,
1 oo o’
1 o0 o
Otz 0 0 0 0 0 OO I I
0{0 » 0 0 0 0 O\ 0 Py,
010 0 v 0 0 0 Ofl7 )
0
0
0
0
1
L* =L+ |0
0
0
e
€
€;
0

where the augmenting column for L* comes from
the fourth block, and h, ¢ and j are unspecified.

Number
() —14 —4 —4 —4 —4 —4 -
(I1) 0 3 -3 0 0 0
(III) 0 0 3 -3 0 0
av) 0 0 0 3 -3 0
V) 0 0 0 0 3 -3
(VI) 0 0 0 0 0 3 -
(VII) 0 0 0 0 0 0

WWOOOT

—4 oy U u u’ U U u
0 —u' o’ (14 o’ o’ 0’
0o o u’ —u' o’ o 0’ (14
0o o 0’ u’ —u’ o’ 0’ 0’
0o o o o’ u' —u' (14 o
0o o 0’ (VY 0’ u' —u’ (14
-3 0’ o’ o’ o’ u' -y’

501
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—-14 8 —4 —4 -7 -7 -7 -7 5 u’
0 3 -3 0 0 0 4] 0 u —w
00 3 -3 0 0 0 0o o u’
00 0 0 0 0 0 0 v}

w o 0 0 0
o o o 0 o
- 0 0 0 0
v 00 0 0 O

Since the eigenspace for eigenvalue 2 of 4 has
dimension 28 (see the solutions of (5)) a subspace
of this eigenspace of dimensjon at least 4 lies in
the subspace corresponding to L. By inspection of
the exhibited vectors a basis for such a 4-space is
given above in Fig. 4 for some unspecified v,.

If L be augmented by one column and row, as
shown in L* above, then a subspace of dimension
at least 5 of eigenvectors for eigenvalue 2 of A lies
in the subspace of L*. The four vectors above, being
characteristic vectors for 4, are characteristic vectors
for L*.

A fifth vector for the basis of this 5-space is
independent of the eigenvectors (IV), (V), (VI)
and (VII) of A exhibited earlier, since any such
dependence would introduce a component propor-
tional to u in at least one of the last four blocks
(last 24 components). But in the block containing
the augmenting column the vector may have at
most one nonzero component, and in the other
blocks all its components are zero. Hence the fifth
vector is of the form of (VIII)
00000000 w! wj wi w, 0/ ¢V 0.

But v'w; = 0, and w, has at most one nonzero
component. Hence w, = 0.

Of the five eigenvectors for L* exhibited above,
the two containing »’s and w’s are zero in all the
components not corresponding to the principal sub-
matrix M in the statement of the theorem. Hence
they are eigenvectors for an eigenvalue 2 of M.
They are mutually independent, and are also in-
dependent of (being orthogonal to) a vector

W o u)

for M. The latter is, by inspection, an eigenvector
for eigenvalue 2 of M. Hence the eigenvalue 2 of
M has multiplicity at least 3. We can now show

that P,, is an involution. For if we rewrite Py, as P,
then M becomes

o I I
I 0 P).
I PO

Let us denote by z, y, z the three parts of a charac-
teristic vector of M corresponding to 2. Then
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y+z2=22
x4 Pz =2y
z + Py = 2.

Substituting for z in the last two equations, we obtain
—3y+ I +2Pe=0
I+ 2P)y — 32 = 0.

So the multiplicity of 2 as an eigenvalue of M equals
the multiplicity of 3 as an eigenvalue of

{ 0o I+ 2PJ

I+ 2P 0 .

Now any real matrix of the form
[OT

v o)

where all submatrices are square, has for its eigen-
values the square roots of the eigenvalues of 77"
and their negatives. Hence the multiplicity of 2 as
an eigenvalue of M is the multiplicity of 9 as an
eigenvalue of

(I + 2PYI + 2P’) = 51 + 2(P + P').

Thus the multiplicity of 2 as an eigenvalue of M
is the multiplicity of 2 as an eigenvalue of

P4 P,

and it is clear that this is in turn equal to the number
of disjoint cycles in P. 8o P = P,; is composed of
three disjoint cycles. Thus we have

o Theorem 7

In the canonical form for Moore graphs of type (7, 2)
all P, 1, ¥ 1 and © ## j, are involufions.

We adopt the notation

P, =0.

o Theorem 8

In a Moore graph of type (7, 2) in canonical form
P PuPy = Py if 14, %k, ik == 1.

If £ = 1 the theorem is trivial. We consider ¢ = 1
and write the involutions as three transpositions.




Let P;; = (ab)(cd){ef). In P;, the companion of a
must come from one of (¢d) or (ef), and the com-
panion of b from the other, because of (7). Let
P;i. = (ac)(be)(df), which is completely general.
Then P,;P,;, = (aed)(bcf). '

Since P, is in a row with P;; and in a column
with P;, it may have no substitution of terms, which
is the same as any substitution appearing in any
of P;;, P;, or P;;P;,. The only involution with this
property is P,, = (af)(bd)(ce). Evaluating the pro-
duct P;;P,;.P,; proves the theorem.

If all of ¢, j and k are different the expression in
Theorem 8 may be multiplied on the left by P;,
and on the right by P,,, and we have

e Theorem 9

Py PPy = P, if1,4, kareall different and §, k # 1.

o Theorem 10
P;; 5 P, if 1, j, k and 1 are all different.

If any subscript is unity the theorem is trivial.
For ease of presentation, we prove the theorem for
a particular set of subscripts, none unity, but it
obviously extends to the general case.

Suppose Py; = P,;. Then

P3Py Py = PyP3yuPy; = Py,
by Theorem 9. Also,
Py3PyuPys = PPy Py = Pas.
Hence P,, = P,;.
Similarly P,; = Ps,.
Hence
Py + Py + Py = Pyy + P3y + Py
= Py + Py + Pys.
Hence by Eq. (7),
Pys + Py = Pyg + Py; = Pyg + Pis.

But P,, + P,; = Py + P, implies Py = P,,.
Similarly, P26 + P27 = P46 + P47 implies P45 = P27.
Therefore, P;s = P,q, violating (7).

o Theorem 11
The Moore graph (7, 2) is unique.

There are 15 different P,;, 2 < ¢ < j. There are
fifteen different involutions of order 6 without fixed
points. Hence, for any Moore graph (7, 2) in canoni-

cal form, the involution (12)(34)(56) appears once.
By an appropriate numbering of the nodes of tier 1
it may be brought to the P,, position.

Because of Eq. (7), in the remaining P,;, j > 2,
the first row of each is one of ¢}, e}, e, ¢}, and each
of these appears once. By an appropriate numbering
of nodes 4, 5, 6, 7 of tier 1 the P,; may be brought
to the sequence of Fig. 3.

With P, = (12)(34)(56), because of Eq. (7), and
the ordering of nodes of tier 1 already assigned,
P,, might be only (13)(25)(46) or (13)(26)(45). The
order of the fourth and fifth nodes of S; may be
transposed, if necessary, to achieve (13)(25)(46). The
remaining P,; are then uniquely determined. The
argument is similar to that used in Theorem 8.

The second row of B having been determined, all
other P,; are uniquely determined by the relation
of Theorem 9, with j = 2. Hence, any (7, 2) graph
may be numbered to have the adjacency matrix of
Fig. 4.

6. Diameter 3

e Theorem 12

If the polynomial which is characleristic of Moore
graphs of type (d, k), k = 2, is irreducible in the
field of rational numbers, then no such graphs exist
unless d = 2.

The polynomials F,(x) satisfy the difference equation
Fiow=2F;, — (d — DF,_,

Fi=z+4+1, F,=24+z—-—d-1

and the equation for the adjacency matrix for diam-
eter £k is

F4) = J,

similar to (3). An adjacency matrix satisfying this
equation has the number d as one of its eigenvalues,
and it has exactly k distinet other eigenvalues which
are the roots of the irreducible F.(x). Let those
rootsber,t =1, --- , k.

The first and second coefficients of F, k > 2,
are both unity. Hence

k
Zr; = _‘1.
i=1

If F, is irreducible its roots have equal mul-
tiplicity as eigenvalues of A. The number of nodes
in a Moore graph of diameter &, if d > 2, is

k
-1

d—-1
—1age—-1H —1
n=1+ d—2

and hence the multiplicity of each 7, is

503
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_g@=0"=1
k(d — 2)

Since the trace of A is 0,

m

13
d+m > r, =0.
i=1

Substituting for m, this reduces to
d—-1D'—-kd—1D+&—-1 =0.

Considering this as a polynomial in (d — 1), and
remarking k > 2, by the rule of signs it has at most
two positive roots. Since it has a double root at
d —1=1,nod > 2 satisfies it.

Of course, d = 2 corresponds to the (2k + 1)-gon,
which is a Moore graph.
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e Theorem 13
The only Moore graph of diameter 3 is (2, 3).

The polynomial equation for &k = 3 is
24+ —-2d—Dr—d—1) =0.

If a graph (d, 3) exists, d > 2, where d of course
is an integer, then the above equation has at least
one root which is an integer. Let r be such a root.
Then
2
d—1= e+ 1),
2r 4+ 1

Now 2r + 1 is relatively prime to both r and r + 1.
Hence the denominator is 1 or —1, and for both of
these d = 1, but the type (1, 3) does not exist.
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