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P. J. Price

Anisotropic Conduction in Solids Near Surfaces

Abstract: A reduction in the electrical conductivity of a solid results from "diffuse’ reflection of electrons from

the surfaces. The effect occurs for specular reflection also, if the operative electron-energy surfaces are not

spherical. A theory of the latter case is given here. The average conductivity of a thin crystal tends to a finite

limit (rather than zero) as the thickness tends to zero. The Hall effect for the same circumstances is also treated.

1. Introduction

It is well known that the electrons near a surface con-
tribute less than the average electron to the electrical
conductivity of a solid if they are diffusely, rather than
specularly, reflected by the surface. For the “isotropic”
model (spherical surfaces of constant energy, spherically
symmetrical bulk scattering), and completely diffuse re-
flection (expectation of electron velocity after a reflection
equal to zero), the theory of this effect has been exten-
sively developed.t»2:3 The present paper concerns the
generalization of the theory, for conduction by a thin
single-crystal plate with parallel sides, to nonspherical
electron energy surfaces. Two new features of the phe-
nomenon appear with this generalization:

(a) The conductivity is not in general isotropic, with
respect to different directions parallel to the two bounding
surfaces, even for a cubic crystal.

(b) Even purely specular reflection is in general asso-
ciated with a change in the conductivity.

These two features are examined below by working out
the theory with specular reflection for the standard case
of a band-edge neighborhood with ellipsoidal energy sur-
faces. We shall be concerned only with situations where
the thickness of the crystal, g, is large compared with the
lattice constant, so that the electron state may be specified
by a position vector r and a crystal momentum vector p
(together with spin state and band index), and where
the electronic state when a current is flowing may be
adequately determined by a Boltzmann equation for the
distribution function f(p, r).

The problem has previously and independently been
treated by Ham and Mattis,* especially the diffuse reflec-
tion case. The idea presented in Section 2 below (that the
normal component of the wavevector changes in specular
reflection, by an amount given by energy conservation)
was first introduced by them.* The mathematical tech-
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nique used here is different, however. The “vector mean
free path” concept,’: ¢ generalized to allow for the surface
reflections, is used to calculate the components of the
conductance of a thin crystal without first solving for
f(p,r). A principal result, eqs. (35), (37), was previ-
ously obtained by Ham.”

2. Specular reflection

An essential preliminary is to determine the relation be-
tween electron states before and after a specular reflec-
tion from the boundary surface. It is supposed here that
the direction of the change in crystal momentum on
reflection is normal to the surface. This principle may be
made plausible by two (idealized) examples:

(a) The surface acts on the electron by a potential whose
gradient is normal to the surface and very small in mag-
nitude (so that the surface region is wide compared with
a lattice constant but narrow compared with a “bulk
mean free path”). Then the electron trajectory is given by

dp/dt=e grad (surface potential),
and hence the total change in p is normal to the surface.

(b) The crystal terminates abruptly at an atomic plane.
If the electron wavefunction is expressed as a linear com-
bination of the band Wannier functions,

¥(r) =5,dna(r—Ry),

then the effect of the surface may be given by the condi-
tion that A, vanishes at the boundary sheet of lattice cells.
Since for a Bloch wave A,=exp(ip - Rn/h), it follows
again that the component of p parallel to the surface must
be the same for incident and reflected waves.

A further condition which must be satisfied is, of
course, that the electron energy ¢ is the same for the




initial and final states. Thus, if p’ refers to the final, p to
the initial, state, we have

P"‘P=Prk, (1)
e(p’) —e(p) =0, (2)

where Kk is the unit vector normal to the surface. These
conditions correspond to the “construction” shown in
Fig. 1. The full line represents a section, in a plane con-
taining k, of a surface of constant energy in p - space,
and the points P, P’ represent the initial and final states.

Obviously, conditions (1) and (2) do not necessarily
determine the final state uniquely. In the conduction
band of germanium, for example, inter-valley, as well as
intra-valley, reflections may satisfy them. There is no
obvious general way to settle this question, and so it is
natural to tentatively assume at first, in applications, that
only intra-valley reflections occur. (One may be able to
choose orientations, for measurement, such that only
intra-valley reflections are possible. For example, by mak-
ing the normal to the surface a [1, 1, 1] direction for
n-germanium, or—presumably—the triad axis for bis-
muth, For metals, one should by a suitable choice of
orientation be able to eliminate umklapp reflections,
leaving only a physically unique p’ for each p.)

An “ellipsoidal” band-edge neighborhood has a con-
stant inverse mass tensor y. The electron energy is

e=3p-¥'p, 3
and the electron velocity is

V=0e/0p=Y - p. (4)
Then

2(e'—e)=(p'—p) - (V+V). (5)

It follows from eqs. (1), (2) and (5) that the component
of velocity normal to the surface is reversed in specular
reflection, for the present case. However, the component
of v parallel to the surface also changes in general. In
terms of Cartesian coordinates with the Z-axis normal
to the surface (which will be used throughout this paper),
we have

Pz"l’z= - 2vz/')'zz

and hence
Vg — V= — 2('}'12/')/zz) Vz,
, (6)
Uy —Vy=—2(yy:/v22) ¥z ,
in addition to the above result
v, =—v,. (7)

3. Conduction with specular reflection

At a point far away from boundaries in a homogeneous
crystal, when Boltzmann’s equation is valid as stated in
Section 1, the electronic conductivity tensor is: ¢

o= (e2/WkT)Ifo(1—fo)lv, (8)

where I stands for integration [d3p - - - - over the Brillouin
zone and summation over bands and spin orientations,
fo(e) is the Fermi distribution function, and the “vector
mean free path” 1is given by®

l=/:'°]t)dt. 9)
0

Here v|t) stands for the expectation of the velocity v of
an electron after an interval ¢ since it was in a definite
specified state (of which 1is then a function).

The foregoing definition (9) of 1 may be generalized,
for present purposes, simply by including the surface
reflections in the electron “histories” (of the ensemble
which is averaged over in the definition of v|?) ). (See also
Section 2.5 of Reference 2.) The result is then a function
of position r as well as of electronic (Bloch) state. The
local current density, for a given electric field, is not in
general given by the local value of Ifo(1—fo)1(r)v; but
the volume average, (1/V) (d3re(r), of the conductivity
is equal to the right-hand side of (8) with the volume
average of the new | substituted.® It will be convenient to
use a single symbol, A, for the operator (1/V) fd3r----.
Then

Ae=(e2/hkT)1fo(1—fo) (AD)v . (10)

We wish to calculate the components of Ae in the XY
plane, for the geometry shown in Fig. 2. An electron
starting from point O, in the state represented by P in
Fig. 1, follows the path OR;R; - - - alternating between
states represented by P and P’, until it is scattered inside
the crystal. We shall assume that the expectation of v
after this “bulk” scattering is zero. If it were not for the
reflections, the vector mean free path would therefore be
equal to rv, where 1/7 is the scattering frequency. The
probability that the electron is scattered after an interval
>t, out of the initial state, is of course exp(—1#/7).

Figure I Construction for specular reflection.

TNORMAL
TO SURFACE

»

153

IBM JOURNAL ¢ APRIL 1960




154

Figure 2 Electron path with specular reflections.

By summing over the segments of path OR;, R|Ry,-----
and allowing for the decreasing probabilities of tracing
successive segments still unscattered, we find

_ . B (1—e?)
I=7v+ (z'V—1V)e “‘b_l_e—_(wﬂ (11)
(and similarly for any other state variable replacing v in
(9)), where

p=a/z|v.], (12)

ua is the perpendicular distance from the initial position
of the electron to the surface towards which the z com-
ponent of v is directed (see Fig. 2), and the primes refer
to the state after the first reflection at R;. The averaging

A reduces to (1/a) fdz - - - , the integral being taken over

the thickness of the plate: that is, to [o'du -- - - - . Then
. 1! 1 (1—e“¢)(1——e“i")

Al=7v+(7'v TV)[—({ . gy . (13)

We now specialize to the “ellipsoid” case given by
egs. (3) to (7), and also assume that 7 is a function of
energy ¢ only. Then 7'=r, ¢"=4¢, and the factor [ ] of
(13) becomes

_ 1 [/1—e?
[ ]_Sb(ﬁb):?(l—{—e“?). (14)

It is convenient to factor out of the operation I, in (10),
the following average over a surface of constant energy
(e=¢1, say) for any function g of electron state:

Z=1[gd(c—¢1)1/18(e—e1) =8(e1).

(Then Ig=/g(e)N(e)de where N(e1) is the density of
states I18(e—e1).) By (6), (13) and (14),

A%ZTWG_ZT(YPZ/Yzzjvzvq‘P s (15)

where p, g=x,y. The first term of (15) corresponds to
the ordinary bulk conductivity, and is given by

V= 2ey .
The second term is obtained similarly, in the limit of very

small thickness a. Since

-
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y—3, $—>0;
¢’z 1/¢=TI’UZ|/a’

we may in this limit replace ¢ by 4 in (15) (neglecting
the deviation from this value over the small part of the
energy surface where |v.| is not >>a/7). Then

(16)
¢—o0,

AE'ZT%S(YWI—YWYW/YZZ)' 17

Thus Aoy, differs from the “bulk” value of o5, by a factor
(1—pzYq2/ Ypaye2)- Since this factor depends on p, g, in
general the effective conductivity is anisotropic even for
a combination of “ellipsoidal” band-edge neighborhoods
with cubic over-all symmetry.

The fact that for pure specular reflection the average
conductivity differs from the bulk value, and tends to a
smaller but finite limit at zero thickness, may be under-
stood as follows: The disturbance of the distribution
function caused by an electric field is proportional (i.e.,
on a given energy surface) to E - v, and the current due to
this disturbance is proportional to 1; so the conductivity
contributed by a given energy shell is proportional to
Iv. For the bulk, with I=7(¢)v, it is hence proportional
to vv. For the limit of small thickness, many links in the
path OR RyR; - - - (Fig. 2) are covered before the veloc-
ity is randomized by a bulk scattering. Since equal times
are spent in the states P and P’, by (9)

l=7(v+Vv') /2.

The average Iv weights states P and P’ equally, but in the
two limits there are different correlations between the
velocities in the first and second factors. Specifically,

1(vv+v'v') (bulk) is replaced by
FOHVY(VHVY) =3 (wWHVY) = F(v—V) (v—V).

This correlation effect is the mathematical origin of the
change in conductivity: it is associated with the physical
situation, in the thin limit, that a free path mixes states
P and P’ in proportions asymptotically independent of
thickness. In a similar way the Hall constant tends to a
finite limiting value as the crystal thickness tends to zero
(Section 6).

For greater thicknesses, the generalization of (17)
may be expressed in terms of the minimum value of ¢ on
the energy surface:

ke = a/1\/ (2yz£) . (18)

(k. is the generalization of the parameter « of Reference 2.)
Let A be the ratio of v, to its maximum value, \/ (2y.:¢),
so that ¢=x«,/ |A|. Then it follows from the geometry of
ellipsoids (see the Appendix) that the required average
of ¥/ (¢) over an energy surface is

V009 / V0 — 3/1¢(K2//\))\2d)\ . (19)

In the limit of very large thickness, by (16) the right-
hand side of (19) is equal to 3/4«.. In place of (17) we
then have




Als=1e{%yp0— (Yoryae/v22) TV Ryzze) /a) . (20)

Obviously, each surface may be regarded as contributing
half the difference between Agy, and the bulk value of
g, in this limit. If 7v/¢ is independent of ¢, and in any
case for a metal or degenerate semimetal in the residual
resistance range, we may say that each surface adds, to
the conductance adop,; of a square, (—3vypeyq:/4ypqYez)
times the “bulk” contribution from a thickness 7v/2y..&
of crystal.

For any thickness, we have from (14), (15) and (19):

AI—IEIZ%TS[qu_G(%Kz) }’szqz/Yzz] s (21)

where

G(x)= if tanh(xs) —di . (22)
x Jq 59

4. Diffuse reflection

This case will be briefly discussed here, with the assump-
tion that the x, y components of velocity have zero
expectation after a reflection.® Then the trajectories con-
tributing to (9) terminate at the first surface reached, if
not before. Therefore

L(x) =7v,(1 — euarmiv 1y (23)
The effective mean free path is hence given by
Al,=7v,{1—(1—e?) /¢}. (24)

For the “ellipsoid” case, 41,7, is obtained by substitut-
ingx./ | A| for ¢ and averaging { } of (24) as in Section 3.
The calculation in the present case is somewhat more
complicated. Using eq. (A7) of the Appendix, we find

ATI’?)—II:TU_PEF(Kza wpl))y (25)
where
F,oy=1— 5 L J1%e
2 4
_/ <l—a> _ l——3m)e>8de} (26)
1 5§38 $°
and
®Opa=Yp2Yez (Y1) 22/ ¥pq - (27)

The function F(k, 0) is the same as x/®(«x) given by eq.
(17) of Reference 2. Thus (25) generalizes Fuchs’ result
for spherical symmetry to “ellipsoidal symmetry.” We
have

F(K, w):«’%(l—w)x IOg(l/K), k=0, (28)

and therefore the result corresponding to (17) in Sec-
tion 3 is

AE:%W[qu—YMY(IZ(Y'l)zz]Kz log(1/«.). (29)

Also

Fei— 20%0) o, (30)
8k

and therefore in place of (20) we have

AE”—(I:TS{%YM‘%[qu+Y1)67qz(y'1)zz]T\/(zyzzf)/a} .
(31)
5. Application

The result (17) is transformed below to a form suitable
for some applications. It is recalled that (17) refers to
specular intra-valley reflection in a crystal thin compared
to the appropriate mean free path, vv/(2¢y..), for bulk
scattering, and that it was obtained by assuming that bulk
scattering is randomizing (expectation of electron veloc-
ity after a scattering is zero) and has a frequency, 1/7,
which is a function of energy only. We have, for one
“valley,”

opg(a—>0)=Ey,, (32)
Aopg(a—0) =£(ypa—YreYaz/v22) (33)
where £ is a constant given by (8) and proportional to
Ifo(1—fo) 7e /KT .

We consider the usual case that two of the principal
values of y are equal: we denote them by vy, and the
third by v,. Let the axis of revolution (the third principal
axis) make an angle 6 with the XY plane, and be per-
pendicular to the Y axis. Then

Yea=7yjc*+y.8%,

Yw=7L>

Yez=7 52 +7.6°, (34)
sz=(y”——yl)sc s

Yoy="y==0,

where s and ¢ are respectively sin § and cos 6. If we write
the contribution of this valley to the “surface conduc-
tivity” tensor (the x, y components of A¢) as

&% 0
w):( o 5 ) (35)
1
then
v la—>w) =y c*+y.5°, (36)
ViYL
f(a>0)= ————., 37
7% (a—>0) 71+ y.C G37)

It is recalled that y, and v, are respectively equal to 1/m,
and 1/m, in the usual notation. If there is an n-fold axis,
with n>>2, normal to the surface, the surface conductivity
will of course be isotropic. A set of equivalent valleys
equally inclined to the axis will contribute 3£(y,+7v*))
per valley to the surface conductivity.

It should be noted that, for the conditions resulting in
(33),

Al=0 (38)

and
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Acp:=Aep=A0c,,=0, (39)
D=Xx,Yy.
6. The Hall effect
For conduction uninfluenced by surfaces, we haves
J=0¢(H) -E=0¢(0)-E—H-£(0) x E+0(H?) (40)
where ¢(0) is given by (8) and 8(0), the coeflicient of
the linear Hall effect, is given by
B(0)ij=(e*/2ckTh*) Ifo(1—f0) Sy ,

Sij = 3,221 30€irs€iu¥: (00 /3ps) 1y

(The e;; are the usual “skew triadic” coefficients, zero
unless i, j, k are all different and otherwise =1 according
as the order of i, j, k is cyclic or countercyclic.) Just as
(10) is related to (8), the average over the width of a
thin crystal AB(0) is obtained from (41) by again gener-
alizing 1 to take into account the surface reflections and
scatterings and by then replacing I,l, in (41) by A (1,l,).
For specular reflection with 7=r1(e) we find

A =72vww+ 72y () (v(V'—V)
F+(V-V)v+I(V—-V)(V—-V)}, (42)

where ¢ is given by (14). In the limit where the thick-
ness, a, tends to zero, y—>#% and hence

A1) = (A1) (4l) (43)

(41)

where, as in Section 3,
Al=1v+47(v'—v). (44)

From (6), (43) and (44), for an “ellipsoidal” band-
edge neighborhood

A§z2=72 %ﬁ(z(ylxy)z—z}”zx}"yy) ’ (45)
where
Y 0= Ypa— YpeYaz/ Yoz - (46)

For a single valley with rotational symmetry and oriented
as in Section 5 it follows that AB(0).. is proportional to
2(Yer— (Yo2) ¥/ v22) vy, compared t0 2yuyy for the
“bulk” limit of large thickness. Therefore, by (34), for a
set of equivalent valleys equally inclined to the surface
normal,

B(0)..(a—0) 1

B(0)z:(a—>w) I+
= s (yy—v1)°®
YivL

In the same limit a—0, for specular reflection, the
other components of 8(0) are zero. Thus it results from
the foregoing theory that the linear Hall current — the
second term of (40) — has no component normal to the
surface. However, ¢(0) ., vanishes in the same limit and
therefore the Hall field normal to the surface does not
necessarily vanish.

3

(47)
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Appendix: Geometry of ellipsoidal energy surfaces

Formulas are developed here for transforming the aver-
ages

g(e1) =g(p)=1[g3(e—¢1)1/18(e—e1) (A1)

over an energy surface (3) into integrals over v.. The
planes of constant v, intersect the energy surface in el-
lipses (which we will call “v, ellipses”). The extreme
planes are tangent to the energy surface at

Pz=py=0, P== \/(23/722) s (A2)

where the maximum and minimum values of v, are
+1/(2y:.¢). Since the system of ellipsoids (3) is ob-
tained from the system of spheres ¢ = const. p? by a
linear transformation in p space, the average g(v.) may
be expressed as an integral over v, with constant weight-
ing factor:

g(vz)=%/ g(v.)dA, (A3)
where
)"‘—:'Uz/'\/(z'}'zsz) . (A4)

The result (19) is obtained by the following argument:
The factor v, (it is recalled that p, g stand for x or y)
must be replaced by the appropriate average over each
v, ellipse. The required average is, obviously, propor-
tional to v,, and therefore the correct substitution in the
integral over v, is

v,—>0:(0,2.) / (07) . (A5)

The substitution required for deriving (25) is obtained
as follows: we have

Vp¥g= (YpxYqaPz’+ YpaYayPaPy+ + )
+ (ypeyeeP2P+ + + )
+Ype¥aels" - (A6)

It is evident from (A2) that the centers of the . ellipses
are at p.=p,—=0, and therefore that the substitution for
the first line of (A6) is proportional to 1— A2, that for the
second is zero, and the substitution for the third line is
proportional to A2, Let the required substitutions be
A(1—A2) and BA2 Then

3A+3B=v,ve=%eypq 5

iB= YPZYGZP—ZZ.= %eypeYae (Y )2z -
Hence, finally,

K —
Vplq—> —2—”P”q[(l_‘"pq)_)\z(l—:;wpq)] , (A7)
where
0pg=YpzYaz (Y1) 22/ Vpq - (A8)

(Note that, according to (34), (Y')zz=Yz/¥|Y1.)
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