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P. J .  Price 

Anisotropic Conduction in  Solids Near  Surfaces 

Abstract: A reduction in the electrical conductivity of a solid results from ”diffuse” reflection of electrons from 

the surfaces.  The effect occurs for specular reflection also, if the operative electron-energy surfaces are not 

spherical. A theory of the latter case i s  given here. The average conductivity of a thin crystal tends to a finite 

limit (rather than zero) as the thickness tends to zero. The Hall effect for the same circumstances is also treated. 

1. Introduction 

It is  well known that the electrons near a surface con- 
tribute less than the average electron to the electrical 
conductivity of a solid if they are diffusely, rather than 
specularly, reflected by the surface. For  the “isotropic” 
model (spherical surfaces of constant energy,  spherically 
symmetrical bulk scattering), and completely  diffuse  re- 
flection (expectation of electron velocity after a reflection 
equal to  zero),  the theory of this  effect has been  exten- 
sively  developed.1*273 The present paper concerns the 
generalization of the theory, for conduction by a thin 
single-crystaI plate with parallel sides, to nonspherical 
electron energy surfaces. Two new features of the phe- 
nomenon appear with  this generalization: 

(a) The conductivity is not in general isotropic, with 
respect to different directions parallel to the two  bounding 
surfaces, even for a cubic crystal. 

(b) Even purely specular reflection  is in general asso- 
ciated with a change in the conductivity. 

These two features are examined  below by working out 
the theory with specular reflection for  the standard case 
of a band-edge  neighborhood  with  ellipsoidal  energy sur- 
faces. We shall  be concerned only with situations where 
the thickness of the crystal, a, is large compared with the 
lattice constant, so that the electron state may  be  specified 
by a position  vector r and a crystal momentum vector p 
(together with  spin state and band index), and where 
the electronic state when a current is  flowing may be 
adequately determined by a Boltzmann equation for  the 
distribution function f ( p ,  r) . 

The problem has previously and independently been 
treated by Ham and mat ti^,^ especially the diffuse  reflec- 
tion case. The idea presented in Section 2 below (that the 
normal component of the wavevector changes in specular 
reflection, by an amount given  by  energy conservation) 
was first introduced by  them.4 The mathematical tech- 

nique used here is  different,  however. The “vector mean 
free path” concept,5,6  generalized to allow for the surface 
reflections,  is  used to calculate the components of the 
conductance of a thin crystal without first  solving for 
f ( p ,  r ) .  A principal result, eqs. (35), (37) ,  was previ- 
ously  obtained by Ham.? 

2. Specular reflection 

An  essential preliminary is to determine the relation be- 
tween electron states before and after a specular reflec- 
tion from the boundary surface. It is supposed here that 
the direction of the change in crystal momentum on 
reflection is normal to the  surface. This principle may  be 
made plausible by  two (idealized) examples : 

(a) The surface acts on the electron by a potential whose 
gradient is normal to the surface and very  small in mag- 
nitude (so that the surface region  is  wide compared with 
a lattice constant but narrow compared with a “bulk 
mean free  path”).  Then the electron trajectory is  given  by 

dp/d t   =e  grad (surface potential), 

and hence the total change in p is normal to the surface. 

(b) The crystal terminates abruptly at  an atomic plane. 
If the electron wavefunction is expressed as a linear com- 
bination of the band Wannier functions, 

$(r) =XnAn4r-Rn), 

then the effect of the surface may  be  given by the condi- 
tion that A ,  vanishes at the boundary sheet of lattice cells. 
Since for a Bloch  wave A,=exp(i p Rn/h), it follows 
again that the component of p parallel to the surface must 
be the same for incident and reflected  waves. 

A further condition which  must  be  satisfied  is, of 
course, that  the electron energy e is the same for the 
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initial and final states. Thus, if p’ refers  to  the final, p to 
the initial, state,  we  have 

p“p=prk, (1) 

. (P’) -.(PI =o , (2) 

where k is the  unit vector normal  to  the surface. These 
conditions correspond  to  the “construction”  shown in 
Fig. 1. The  full line  represents a section,  in  a  plane  con- 
taining k, of a surface of constant  energy  in p - space, 
and  the points P, P’ represent the initial and final states. 

Obviously, conditions ( 1 )  and  (2)  do  not necessarily 
determine  the final state uniquely. In  the conduction 
band of germanium,  for example,  inter-valley,  as well as 
intra-valley, reflections may  satisfy  them. There is no 
obvious  general  way to settle  this  question, and so it is 
natural  to tentatively  assume at first,  in  applications, that 
only  intra-valley reflections occur. (One may be  able  to 
choose  orientations, for measurement,  such  that only 
intra-valley reflections are possible. For example, by mak- 
ing the  normal  to  the  surface a [ 1, 1 ,  11  direction for 
n-germanium, or-presumably-the triad axis for bis- 
muth. For metals, one should by a  suitable  choice of 
orientation be able  to eliminate umklapp reflections, 
leaving  only  a physically unique p’ for  each  p.) 

An “ellipsoidal” band-edge  neighborhood has a  con- 
stant inverse mass tensor y .  The electron  energy is 

.=*p * y - p ,  ( 3 )  

and  the electron velocity is 

v=a./ap=y p . 
Then 

2(&”&)  =(p”p).   (v’+v) .  ( 5 )  

It follows from eqs. ( 1 ) , (2) and ( 5 )  that  the  component 
of velocity normal  to  the  surface is reversed in  specular 
reflection, for  the present case. However, the  component 
of v parallel to  the  surface also changes in general. In 
terms of Cartesian  coordinates  with the Z-axis normal 
to  the  surface  (which will be used throughout this paper), 
we have 

P i - P z =  - 2v*/y*2 

and hence 

vx”v,=-2(yxz/yz*)vz 7 

vy”z)y=”2(yyz/yz*)v*, 

in addition to  the above  result 

3. Conduction with specular reflection 

At a  point far away from boundaries in a  homogeneous 
crystal,  when Boltzmann’s equation is valid as stated in 
Section 1, the electronic  conductivity tensor is596 

~ = ( e 2 / h ~ k T ) I f , ( l - - ~ ) l v ,  (8) 

where I stands for integration ld3p - - - - over  the Brillouin 
zone  and  summation over bands  and spin  orientations, 
f o ( & )  is the  Fermi distribution function,  and  the “vector 
mean free path” 1 is given by6 

Here v 1 t )  stands  for  the expectation of the velocity v of 
an electron after  an interval t since it was in a  definite 
specified state (of which 1 is then a function). 

The foregoing definition (9)  of 1 may be generalized, 
€or present  purposes, simply by including the  surface 
reflections in  the electron  “histories” (of the ensemble 
which is averaged  over  in the definition of v I t )  ) . (See also 
Section 2.5 of Reference 2 . )  The result is then  a  function 
of position r as well as of electronic (Bloch) state. The 
local current density, for a given electric field, is not  in 
general given by the local value of Zfo( 1 -fo>l(r)v;  but 
the volume  average, ( 1 / V )  Id3r~ (r), of the conductivity 
is equal  to  the right-hand  side of (8) with the volume 
average of the new I substituted.8 It will be  convenient to 
use a single symbol, A ,  for  the  operator ( l/V)/d3r - - - - . 
Then 

A ~ = ( e ~ / h ~ ~ k T ) Z f ~ ( l ” f ~ ) ( A l ) v .  (10) 

We wish to calculate the  components of A u  in  the XY 
plane, for  the geometry  shown  in  Fig. 2. An electron 
starting  from point 0, in the  state represented by P in 
Fig. 1, follows the  path  ORIRz - - - alternating between 
states represented by P and P’, until  it is scattered inside 
the crystal. We shall  assume that  the expectation of v 
after this  “bulk”  scattering is zero. If it were not for the 
reflections, the vector mean  free  path would therefore be 
equal  to TV,  where 1 / ~  is the scattering  frequency. The 
probability that  the electron is scattered after  an interval 
> t l ,  out of the initial  state, is of course exp( - ~ J T ) .  

Figure I Construction for specular reflection. 
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Figure 2 Electron path with specular reflections. 

By summing  over  the segments of path OR1, RIR2,  - - - - - 
and allowing for  the decreasing  probabilitics of tracing 
successive segments still unscattered, we find 

1 = TV + ( T’v’- TV) e-U@ (1  - e - @ ‘ )  
l“e-(@+$’) 

(and similarly for  any  other  state variable  replacing v in 
(9) ) , where 

$ G ~ / T ~ V Z ~ ,  (12) 

ua is the perpendicular  distance from thc initial position 
of the electron to  the  surface towards  which  the z com- 
ponent of v is directed (see  Fig. 2 ) ,  and  the primes refer 
to  the  state  after  the first reflection at R1. The averaging 
A reduces to ( l /a)/dz - - - , the integral being taken over 
the thickness of the plate: that is, to Soldu - - - - - . Then 

We now specialize to  the “ellipsoid” case given by 
eqs. (3) to (7), and also  assume that T is a function of 
energy E only. Then T ’ = T ,  $’=+, and  the  factor [ ] of 
(13) becomes 

It is convenient to  factor  out of the  operation  I, in ( lo ) ,  
the  following  average over a surface of constant energy 
( E  = E ~ ,  say)  for  any  function g of electron state: 

g - I [ g s ( E - E l ) ] / z 6 ( E - E E 1 ) = g ( & l ) .  

(Then I g = / g ( E ) N ( & ) d E  where N(EI)  is the density of 
statesI8(E-E1).) By (6), (13) and (14), 

.- 
Al,v,=72)p2),-2T(ypz/yzz)VUzv4$, (15) 

where p ,  q = x ,  y .  The first term of (15) corresponds to 
the  ordinary bulk  conductivity, and is given by 
- 
VV=$&Y. 

The second term is obtained  similarly,  in the limit of very 
154 small  thickness a. Since 
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we may  in  this  limit  replace + by 3 in (15) (neglecting 
the deviation from this  value over  the small part of the 
energy surface  where 1 vz 1 is not >>a/,). Then 

A I , ~ , ’ = T ~ E ( Y ~ ~ - Y ~ ~ Y ~ ~ / Y ~ ~ ) .  (17) 

Thus A U , , ~  differs from  the “bulk”  value of a,, by a factor 
( 1 - y p z y q J y p y y z z ) .  Since  this factor depends on p ,  q, in 
general the effective conductivity is anisotropic even for 
a  combination of “ellipsoidal” band-edge  neighborhoods 
with cubic over-all symmetry. 

The  fact  that  for  pure specular reflection the average 
conductivity differs from  the bulk value, and  tends  to a 
smaller but finite limit at zero  thickness, may be  under- 
stood as  follows: The  disturbance of the distribution 
function caused by an electric field is proportional (i.e., 
on a given energy surface)  to E v, and  the  current  due  to 
this disturbance is proportional  to 1 ; so the conductivity 
contributed by a given energy  shell is proportional to 
lv. For the bulk,  with I=T(E)v, it is hence proportional 
t o G .  For the  limit of small  thickness, many links in  the 
path OR1R2R3 - - - (Fig. 2)  are covered before  the veloc- 
ity is randomized  by a bulk  scattering.  Since equal times 
are spent  in the states P and P’, by (9) 

- 

I=T(V+v’)/2. 

The  average5 weights states P and P’ equally, but in the 
two limits there  are different  correlations between the 
velocities in the first and second  factors. Specifically, 

3 (vv+ v’v’) (bulk) is replaced by 

*(v+v’)  (v+v’) ==+(VV+V’V’) - b(v-v’)  (v-v’).  

This correlation effect is the  mathematical origin of the 
change in conductivity: it is associated  with the physical 
situation, in the  thin limit, that a free  path mixes states 
P and P’ in proportions asymptotically  independent of 
thickness. In a  similar way the  Hall  constant tends to a 
finite  limiting  value  as the crystal thickness tends to  zero 
(Section 6). 

For greater thicknesses, the generalization of (17) 
may  be expressed in terms of the minimum  value of + on 
the energy surface: 

K z  E a/Tv(2yzzE). (18) 

( K ~  is the generalization of the  parameter K of Reference 2.) 
Let X be the  ratio of vz to its maximum  value, ( 2yezc), 
so that $ = K % /  I XI. Then  it follows from  the geometry of 
ellipsoids (see  the  Appendix)  that  the  required average 
of $($) over  an energy surface is 

J o  

In  the limit of very large thickness, by ( 16) the right- 
hand side of (19) is equal  to 3 / 4 K z .  In place of (17) We 
then  have 



A 1 ~ = ~ E ( 3 Y p q - ( Y ~ z Y q z / Y z e ) T ~ ( 2 Y z z & ) / a }  
-. 

(20) 

Obviously, each  surface may  be  regarded  as  contributing 
half the difference between Asp, and  the bulk  value of 
up,, in  this  limit. If T ~ E  is independent of E ,  and in  any 
case for a metal  or  degenerate  semimetal  in  the residual 
resistance range, we may say that  each  surface adds, to 
the  conductance aAup, of a square, (- 3ypzyqz/4ypqyzz) 
times the  “bulk”  contribution  from a  thickness 7 s  

of crystal. 
For any thickness, we have  from  (14), ( 1 5 )  and (19) : 

A I , ~ , = ~ T E [ Y P ~ ~ - G ( ~ K z ) Y P z Y ~ z / Y z z I ,  (21) 

where 

4. Diffuse reflection 

This case will be briefly discussed here,  with the assump- 
tion that  the x ,  y components of velocity have  zero 
expectation after a re f lec t i~n .~  Then  the trajectories  con- 
tributing to ( 9 )  terminate at  the first surface reached, if 
not before. Therefore 

Ip(r )  = m P (  l - e - ~ ~ / ~ I ~ ~ l ) .  (23 1 
The effective mean free  path is hence given by 

AZ*=TZlp(l-(l“-eb)/+}. ( 24) 

For  the “ellipsoid” case, A& is obtained by substitut- 
ing K,/ I XI  for + and averaging { } of (24) as in Section 3. 
The calculation  in the present  case is somewhat more 
complicated.  Using  eq. (A7) of the Appendix, we find 

A ~ , , ~ , = T F ~  F ( K ~ ,  w p q ) ,  (25) 

where 

and 

0P93YPsYqz(Y-l)zZ/yPq. (27) 

The  function F ( K ,  0) is the  same as K / @ ( K )  given by eq. 
( 1 7 )  of Reference 2. Thus  (25) generalizes  Fuchs’  result 
for spherical  symmetry to “ellipsoidal symmetry.” We 
have 

F ( K ,  W ) ~ + ( ~ - - O ) K  b g ( l / K ) ,   K - 0 ,  (28) 

and  therefore  the result  corresponding to  (17)  in Sec- 
tion  3 is 

A ~ = 3 T & [ y p q - y p z y q z ( Y - l ) ~ , ] ~ ~  log(l/K,). (29) 

Also 

The result ( 1 7 )  is transformed below to a form suitable 
for  some applications. It is recalled that (17) refers  to 
specular  intra-valley reflection in a  crystal thin  compared 
to  the  appropriate  mean  free  path, q/I(2&yzz),  for bulk 
scattering, and  that it was  obtained by assuming that bulk 
scattering is randomizing  (expectation of electron veloc- 
ity after a  scattering is zero)  and  has a frequency, 1 /~ ,  
which is a function of energy  only. We have, for one 
“valley,” 

where t is a constant given by (8) and  proportional  to 

I f O ( l - f O ) T E / k T .  

We consider the usual  case that two of the principal 
values of Y are  equal: we denote them by yl, and  the 
third by yII.  Let  the axis of revolution (the  third principal 
axis)  make  an angle 6 with the XY plane, and be  per- 
pendicular  to  the Y axis. Then 

(34) 

where s and c are respectively sin 6 and cos 6. If we write 
the  contribution of this valley to  the “surface  conduc- 
tivity”  tensor (the x,  y components of A u )  as 

then 

It is recalled that  ys  and yl are respectively equal  to l /ml l  
and l/m!, in the usual notation. If there is an rz-fold axis, 
with n>2,  normal  to  the  surface,  the  surface conductivity 
will of course be isotropic. A set of equivalent valleys 
equally  inclined to  the axis will contribute  +((yl+ysl,) 
per valley to  the  surface conductivity. 

It should be noted that,  for  the conditions  resulting  in 
( 3 3 ) ,  

Al, = 0 (38) 
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p ( O ) i i =  (e3 /2ckTh3)Zfo( l - fo)s i i ,  
(41) 

S i j ~ I ; , ~ ~ I ; t I ; ~ e i ~ ~ e j t ~ v ~ ( a l ~ / a p ~ ) l ~ .  

(The ei jk  are the usual  “skew triadic” coefficients, zero 
unless i, j ,  k are all  different  and otherwise +- 1 according 
as the order of i, j ,  k is  cyclic or countercyclic.) Just as 
(10) is related to (8), the average over the width of a 
thin crystal AB( 0) is obtained from (41) by again  gener- 
alizing 1 to take into account the surface reflections and 
scatterings and by then replacing ltl ,  in  (41) by A ( l t l , ) .  
For specular reflection  with T = T ( E )  we  find 

A ( ~ ~ ) = T ~ v v + T ~ $ ( + ) { v ( v ’ - v )  

+ (v“v)v+3(v”v) (v“v)} , (42) 

where # is  given  by (14). In the limit  where the thick- 
ness, a, tends to zero, #+& and hence 

A (1  1) = (AI) (AI) (43) 

where,  as in Section  3, 

A ~ = T V + : T ( V ’ - V ) .  (44) 

From (6) ,  (43) and (44), for an “ellipsoidal”  band- 
edge neighborhood 

AS,z=.r2 ~E(2(y f*y)2-2y’z*y’yy) ,  (45) 

where 

YfP4~YPP-YPzYqz/Yzz ’ (46) 
For a single  valley with rotational symmetry  and oriented 
as in Section 5 it follows that AP(O),, is proportional to 
2(y,,- ( y z 2 ) 2 / y z z ) y y Y ,  compared to 2yzzyy ,  for the 
“bulk” limit of large thickness. Therefore, by (34), for a 
set of equivalent  valleys  equally  inclined to  the surface 
normal, 

P ( O ) z z ( a + O )  1 
p(o),,(a+co) 1+x ’ 

- -~ 

(471 

pz=py=O, P z =  * V / 2 E / Y z z )  , (A21 

where the maximum and minimum  values of vz are 
+- v ( 2 y z r ~ ) .  Since the system of ellipsoids (3) is ob- 
tained from the system of spheres E = const. p z  by a 
linear transformation in p space, the average g(vz) may 
be expressed as an integral over v, with constant weight- 
ing factor: 

- 

m = 4 p V z ) d A  -1 9 (A3 1 

where 

h = w z / ~ ( 2 y , , E )  * (A41 

The result (19) is obtained by the following argument: 
The  factor vq (it is recalled that p ,  q stand for x or y )  
must  be replaced by the appropriate average over each 
v, ellipse. The required average is,  obviously, propor- 
tional to vz, and therefore the correct substitution in the 
integral over v, is 

wq+wz(2)4‘uz) / (2). (A5 1 
The substitution required for deriving ( 2 5 )  is obtained 

as  follows: we have 

V p W q  = (YpxYqrPz2 + YpsYPYPrPu + + ) 

+ (ypxyqzPxPz+ + + ) 

+ YpzYqzPz2 * (A61 

It is  evident from ( A 2 )  that the centers of the wz ellipses 
are at p z = p y = O ,  and therefore that the substitution for 
the first line of (A6) is proportional to 1 -A2, that for the 
second  is zero, and the substitution for  the third line is 
proportional to X2. Let the required substitutions be 
A (1 - h2) and BX2. Then 

#A f % B = G = + E y p q  3 

3 B = y p z y 9 z P z ~ = 3 E y p z y q z ( Y - ~ ) z t .  
- 

Hence, finally, 

In  the same limit a+O, for specular reflection, the 
other components of p(0) are zero. Thus it results from Vu,’%+ - V p ~ q [ ( 1 - o ~ p ) - ~ 2 ( 1 - 3 W ~ ~ ) l  9 

the foregoing theory that the linear Hall current - the 
second term of (40) - has no component normal to the where 
surface. However, ~ ( 0 ) ~ ~  vanishes  in the same limit and 
therefore the Hall field normal to the surface does not 

3 -  
2 

(A71 

I ~Pq-yPzYqz(Y-l)ez/YPq * (A8) 

I 156 necessarily  vanish. (Note that, according to (34), ( ~ - l ) ~ ~ = y ~ ~ / y , ~ y ~ . )  
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