E. G. Kogbetliantz

Computation of SinN, Cos Nand YN
Using an Electronic Computer

Abstract: Rational Padé approximations to Sin N in the interval 0SXN<417/256 and to Cos Nin 0<N<877/256
allow the computation of both functions in 0SN<7/2 with the first ten correct significant digits in four multi-
plications and divisions only. If the infinite range 0<SN<® is considered, one more multiplication reduces it
to the range OSN<7/2 so that the total number of operations is five. The method is flexible and gives any

desired accuracy. Thus if eighteen first correct significant digits are required, they are obtained in seven

operations for any N in (0, ®).

The same method applied to \/N and {’/N yields a very accurate first guess which then is improved by
Newton’s method. For the radicals /N with m>4, Newton’'s method is too slow, and rational Padé approxi-

mations studied in this paper yield better subroutines.

Part I: Subroutines for Sine and Cosine

® Padé approximations

Given the formal expansion
o0

f(x)~ 3 cax™
n=0

of f(x) into a convergent or divergent power series, a
Padé approximation to f(x) is rational function Py (x)/
On(x), where

Py(x) =c0+k§ Pixt s Oy(x)y =1+ kﬁ gxF
-1 e}
are defined by the identity
Ov(x) S ot~ Pu(x) Sx¥1 S 4,07, (1)
n=0 n=0
Therefore gi, 1<k<N, satisfy the system

N

X GqmCN_mej=—Cx.j
m=1

(1<j<N), (2)

while pi, 1<k< M, are computed with the aid of

k

pk?“”ck‘i_ Eqmck_m (1<k<M). (3)
m=1
We have also
N
An= E qmC2N_mins1 (n>0) N (4)
m=0

The coefficient A, decreases very rapidly and the first term
Aox¥+¥+1 in the righthand member of (1) divided by
QOv(x) is a good estimate of the absolute error made in
approximating f(x) by Py(x)/Qn(x). Such approxima-
tions are useful in general for small range of |x] since the
error increases as a power of |x|, if [x|>1. For |x|<1
the value of Qx(x) differs very little from one since g
decreases rapidly when k increases, and in general g; is
already small enough. This shows that the order of magni-
tude of the upper bound B of the absolute error in a given
range (0, xo), where x,<1, is approximately represented
by {Ao||xo|¥+¥+1, Thus, it is sufficient to compute A, to
estimate B.

Eliminating the coefficients ¢., from the N equations
(2) and the expression (4) of Ao, we have Ao=Dy/dn,
where the elements of the determinant D(d;;) are defined
by
dij=cij1 (1<, j<N+1),
while the determinant dy is the principal minor of Dy
obtained by omitting in Dy the last row and the last
column.

The accuracy of approximation Py/Qy for a fixed N
depends on M, and it is known that for a fixed value of N
the choice M=N (diagonal of the Padé Table) gives the
best approximation. The accuracy of the approximation
Py/Qy increases rapidly with N. Once N is fixed, the
rational function Py/Qy should be expanded into an
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equivalent continued fraction, since in this form the com-
putation of the approximation is performed much more
rapidly than in the form Py/Qy, the number of operations
(multiplications and divisions) being halved.

® Reduction of the infinite range

The values of Cos N and Sin N, where O<N<®, are
computed reducing the argument N to a small range as
follows. Forming the product Nz-* and denoting the
fractional part of it by fo, so that N='=n-+f, where
n is an integer, we have Cos N=(—1)"Cos =fo,
Sin N=(—1)"Sin =f,, with 0<f,<1. Subtracting f, from
1 and defining S;=sign(3—fo), so that fo<3} if S;=+1,
and fo>>3 if S,=—1, we form f1=%—(34—fo)S,, that is,
f1=f0 if f0<%, but f1=1—f0 if f0>£', we have. Sin 7rf0=
Sin =f; and Cos 7fo=S51Cos =f1, where 0<f,;<4. There-
fore the subroutine computes Sint and Cost, where
0<t<w/2. Now Sin =f, is approximated by P./Q: if f,
belongs to the interval (0, 41/256). When f; exceeds
41/256, then Sin =f; is computed as a cosine, namely as
Cos [#(3—f1)], where 4—f, belongs to the interval
(0, 87/256).

Cos 7f; is computed, using the approximation Ps/Qs,
if 0<f1<87/256, but if f, exceeds 87/256 it is computed
as Sin [#($—f1)], where +—f, belongs to the interval
(0, 41/256). The fractions 41/256 and 87/256 are rep-
resented in the binary numeration by (0.0010 1001). and
(0.0101 0111),. The angle 87=/256 expressed in degrees
is equal to 61°52'30".

® Subroutine for Cos N, 0<N<87x/256

Applying this method to Cos z and letting z2=x, we have
¢=(—1)"/(2n)! and choose M =N =3. To estimate the
accuracy of the approximation P3/ Qs we compute
Ao=D3/ds. In this case we find easily that 10!8!d;=59
and 8!11!15!D3;=11,367.25, so that

Ao=D3/ds=1.33x 1011,

If the first ten correct significant digits are required, we
should choose the range (0, xo) so that the upper bound
B for the absolute error is at most equal to 5.10-11, The
relative error is not important here because Cos z>>0.1
for z<1.46. Moreover, for cosine all the coefficients g,
are positive and Q3(x)>1, which allows us to take
101*B=10"4,x,"=420'*/3. The condition B<S5.10-11
now yields 20<0.34087, so that 87#/256=0.3398 4375+«
does insure first ten correct significant digits, using
P3(x)/Qs(x) as approximation to Cos z=Cos(x?). But
if we use P3(x)/Qs(x) as it is without transforming it
into a continued fraction, we will need seven multiplica-
tions and one division to compute the cosine while the
usual polynomial approximation

6
S12(x) =3 (—1)kx2*/ (2k)!

k=0
yields in 0<x<z/4 the same accuracy in seven multipli-
cations. The use of a Padé approximation can be justified
only if we can economize the machine time without losing
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the accuracy, and this is done by transforming Ps/ Q; into
a continued fraction, namely

Co*l _
|x +D m *

3
Py(x)/Q:(x)=Co+ 3 (3)

m=1
The righthand member of (5) can be computed in three
divisions and one multiplication only, but here we are
confronted with the following complication, which is of
course a common feature of almost all applications of
this method: the constant C, is equal to —14,615/127,
so that our approximation is a small difference of two
large numbers. In a single precision computation the
continued fraction (5), when used in a 35-bit binary
computer, will give only ten decimal digits, the first three
of which will be lost in subtracting 14,615/217, so that
the final value of a cosine will have only first seven correct
decimals instead of ten.

Fortunately it is possible to eliminate this cause of loss
of accuracy, reducing the value of Cj below one in abso-
lute value and making it positive. This can be done with-
out increasing the number of divisions and multiplications
which are costly in machine time. Adding one more term
to Ps(x), we consider P4(x)/Q3(x), where

Pi(x) =1+ pix -+ pox?-+psxd—tqsxt .

The numerical value of the constant ¢ will be chosen later
and in such a way that the value taken by C, will satisfy
the condition 0<Cy<1. The replacement of Ps(x) by

P,(x) changes the first equation of the system (2) which
now becomes

cstC3q1tCaqat (C1+I)CI3=0 .

Solving the system (2), we have
121(59—341)q1=101(229—76t)

121(59—341)q2= 8!1(297—421)

121(59—34t)gs= 6!1127. (6)
Both A4, and Co=(p3+tq=)/ qs also become functions of #:

127Co= —2,35212+ 33,264t — 14,615
44.151 40— (45,469 +9,3361) /(59— 34t)

while

121(59—341t)p,=10!(—3,665-2,168¢)
121(59—34t)p-= 8!(—2,133+4,456¢)
121(59—34¢)ps= 6!1(—14,615416,632¢). (N

The reduction to the small range leads to the computa-
tion of Cos =f, where the number f is known. Therefore
the rational approximation to Cos =f is to be expressed in
terms of f. Dividing P,(=2%f2) by Qs(m?f?), we obtain

3 Cl
Cos nf =Co—n?tf>+ > ———.
° 2171 Dn
Here the continued fraction is the expansion of the
quotient
3 -1
(uo+u1f2+uzf4)l:1+ > qm(mzm] , (8)
m=1

so that




gsuo=gs— (ps+1q2)
7 2qaur=qs(p1+1) —q1(ps+1q2)
miqauz=qs(p2+1q1) —q2(ps+1q2) . 9)

We now take w2¢=4.5=(100.1)2, choosing the factor
72t in such a way that Cy=0.49304 82724 while A=
1.987 x 10-11<2.10-11, Computing B=A,(87=/256)'* we
find B=4.10-1* which insures ten correct significant digits,
if 0<f<87/256. At the same time the factor 4.5=(100.1),
allows so rapid a computation of the term 4.57> that we
do not count it as an operation.

The coefficients C,,,, D,, in the final result

3
Cos 7/=0.49304 82724—4.5f2+ > —Cﬂ—
m=1 |f2 +Dm
are computed as follows. First (6) and (7) give the
values of py, gi; using the value 4.5/ 72 of t. Then uo, us, u2
are obtained by (9) and the products v, =n%*q, are com-
puted. The last operation consists in the transformation

2 . 3 3 le
S H=F——. 11
(Zor) [(Zoe) =375 an

Denoting the combinations of C,, and D, as follows:

D1\D:;D;+CoD3+CsD1=Wy
D,Dy+D,D3+D3D,+Cy+Cs=Wy
Di+Dy+Dy=W;,
C1(D2D3+C3)=W,,
CI(D1+D2)=W5 s

and letting Cy =W, we see that the identity (11) yields a
system of six linear equations for our six unknowns W;,
1<j<6. Solving this system, we now have

D=Wy—Ws5/We; Co=Wy—W,/Weg—D:1(Ws—Ds);
Dy=(W1—Wy/W¢)/Cy; Dy=W3—D;—Dy3;
Cs=W,y/We—DsDy .

® Subroutine for Sin N, 0<N<417/256.

(10)

Trying to approximate x-! Sin x by the rational function
P2(x2)/Q2(x2), we find again that the constant term Cy in

Sin f~f<c s Cil > (10)

rf= Tkt
’ k-1 |f2+ch

is a large number, Co=23. Therefore, we approximate

x~1Sinx as follows:

x1Sinx = (1 +a1xt+axx* —tbyx%) /(1 4+ b1x2+ boxt)

and determine the unknown coefficients in the usual way.
Thus, denoting the coefficient of x2*¥ in the Maclaurin
series of x~1Sinx by ¢x=(—1)*/(2k-+1) ! and solving the
system

(t+c1) ba+cabi+c3=0
C2b2+C3b1 +C4:O )

we obtain
36(11460t)b,=134+30¢
1008(11+60t)by— 5. (12)

Since ay=b,+c1 and az=by+c1b1+ ¢z, we have also

36(11+460¢)a;=— (53+330¢)
1008(11+60t)az= (551 +5460¢)/15 (13)

as well as
111(11+60t) A= (11,528—31,920¢t) /1008 .
Finally, replacing x by «f,

Sin wf:f[Co(t) —tr3fr+ é ——ﬂ—:l ,
ka1 |[PHDy?

where

75Co(t) =m(12,600¢24+ 10,920+ 551) ,

since

Co(t)=(az+th1)n/bs.

Here we take t73=—51/32=—(1.11011),, so that in
a binary machine the term #x3f2 is computed very rapidly.
The corresponding value to=—51/32x3 of t is equal ap-
proximately to to=—0.05140 08830, and it gives to Co(r)
the value 0.96309 49114=Cy(10).

Computing the logarithm of Ao, we find log Ao=
—7.38358. The upper bound of the relative error is equal
to Ao(wf*)11/Sin =f*, where f*=41/256. Therefore its
logarithm is equal to —10,34813 which proves that first
ten significant digits of our approximation are correct for
this choice of ¢:

2 Ck*‘ } /
k=1 | f2 + ch*

+EL01, (14)
where | E|<4.5 Sin =f, provided f<f*=41/256.

Sin =f=f [:0.96309 491144+51£2/324+

The four coefficients C.*, D, * are computed as follows.
First b1, b2, a1, a2, are found, using ¢t=1t,. Then the num-
bers U= (611 + t) 71"3, Uy = (az + tbl) 7= b27T4C0(t0) 1= b1772
and v.=byrt are computed. The continued fraction in
(14) is an expansion of a rational function, namely (

2 *
(rHuf+usft) /(1012 +02f4) — U /2=, _.i'_ .
%=1 |2+ Dy
Therefore Ci*, D)* are obtained from the identity

Co* (/24 Do) (L+ 0,2+ 02f*) = (A + Bf?) [Co*+ Dy*Ds*+
(D + D) 241,

where A =7— u2/v2 and B= Uy — 7)1”2/’!)2. First Cl'FZB/ Va2
is computed and then the three unknowns D>*, D,*4Dy*
=n and D,*D;+C,* =m are obtained solving the system

An+Bm—Ci*v,Dy* =Cr*
Am—C*Dy*=0

Bn—C*v,Dy* =Cr*v;— A .

Finally,

Dy*=n—Dy* and Cy* =m—Dy*Dy* .

Having described how to program a subroutine for
Sin N and Cos N yielding the first ten correct significant
digits in five operations, we add that the same method 149
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gives a subroutine which yields the first eighteen correct
significant digits in seven operations only. To obtain this
accuracy, Padé approximations of order M=N=5 for
cosine and of order M =N =4 for sine are to be used in
the same intervals 0<f<87/256 and 0<f<41/256.

The final formulae are:

Cos 7= Co—af+ 3 —
T~ —Q, _
° i 124D

and

. 4 Eyl
Sin rf = 2 [ S
in wf fl:EoJrﬁf +K§1 1 Gn ] ,

the factors ¢ and 8 being chosen in such a way that Co
and E, are small constants and the multiplications by «
and (8 are very rapid operations.

If subroutines for the computation of Sin z and Cos z
are required in the interval |z|<<#/2 only, then the ap-
proximations (10) and (14) are not the most economical
because they are expressed in terms of f=z/= and they
necessitate the division of the given argument z by =. To
economize this operation, the same approximations can
be expressed in terms of z directly. Approximating Cos z
by P.(22)/Q3(z?) and choosing in P,(z2) t=r*=117/256
=(0.0111 0101) 2, we have

3
Cos z=Co*— 22+ 3 Col

—I;;_T_B——, (|z]| <87w/256)
m=1 m

(10%)

where Cp*=0.75911 39425 44. The correct value of Co*
and the coefficient C,,, D,, are computed, transforming
P.(z2)/Q3(z2) to the form (10*) with the aid of (6)
and (7), where t=117/256.

The same holds for (14) which becomes

2 Cn
Sinz=z I:CO**—t”‘*ZZ—f— > I

oml 14*
m=1 IZZ"‘Dm ( )

(1z] <417/256)

with Cy**=0.32342 18088 78 and ¢*=—105/2048==
—(0.00001 10100 1).

Part Il: Subroutines for radicals

A/N is generated usually by successive approximations.
A first guess xo is improved with the aid of Heron’s
method

xn+1:%(xn+N.Xn_l) (15)

and the sequence xo, x;, X2 ...converges to \/ N, the
relative error e,=x,N-t—1 decreasing quadratically:
|eni1]| =%en2. The number of iterations depends on the
accuracy required and on the choice of x,. This is why it
is important to begin with as small e, as possible. A pro-
cedure for the computation of a good initial guess x, de-
veloped in the sequel is based on Padé approximations.

Heron’s method (15), two milennia old, is a particular
case of Newton’s method for solving any equation f(x)=0
by successive approximations
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xn+1=xn_f(xn)/f’(xn) . (16)
If f(x) =xm—N—0, then

’(n/-ﬁzxm-lz[(m*l)xn'{'anl—m]/m ’ (17)

which proves that this method becomes less and less
economical, when the order m of the radical N'/™ in-
creases. For a cubic root (m=3) three operations are
necessary to compute x,,; knowing x,:

N3Zxp=4X0+ (N+IN) /(222 + Nxy?), (18)

while for N'/5 five operations are needed.

Therefore, rational Padé approximations to roots of
orders m>3 are even more important than for square
ToOts.

& Square root—binary machine

Letting N=22"f, where 0.25<f<1 and m is an integer,
we have \/N=2m+/7. Let us consider the general case
i/ n>2, 2-7<f< 1. The accuracy of a rational approxi-
mation P;(f)/Q:(f) to f/» depends on the degree s of
polynomials P,, Q, and on the range a<f<b of f. It in-
creases with s, but only small values of s are of interest
for us. Keeping s small we can increase the accuracy by
decreasing the ratio r=>»b/a which implies a subdivision
of the whole range (2-7, 1) into subintervals.

Given a subinterval (a, b), we choose an interior point
¢, +b<c<b, and introduce a new variable ¢, letting
f=c(1+¢). If the range of ¢ is denoted by (—#, t2), we
have

rt1+t2=r—1 . (0<tl, 12<1) (19)

A second equation for #y, 2 is obtained by equating the
absolute values of the minimum and maximum of relative
error which happen to correspond to t=—1; and t=#f,
the relative error being an increasing function of t. Given
s, the coefficient p, g5 of P, and Q, are determined by
the identity

w [/ 1/n 8 8 . L X
j=0 j =0 i=0 0

1/n
Denoting the binomial coefficient < ) by ¢;, we
have pyo=gsn=1 and I

(20)

E cs+k‘iqsi:0 (1<k<s)
=0
k
Psk= 2 Cs_isi (1<k<s)
i=0

s
A80= 2 C2541-iqsi «

i=0

Once P, and Q, are determined, we replace ¢ by f/c—1
and approximate f*/* by

fl/"zcl/”< 1+3 Bs,-ﬂ'> <1+ S Csif“‘>_ .

i=1 i=1




Finally, transforming this rational function of f into a
continued fraction, it is seen that the number of opera-
tions needed to compute our approximation is equal to s.

The sum of infinite series in the second member of
(20) is fairly well represented by A4,(1+1¢)-* since the
ratio A; .1/ Ay rapidly approaches minus one when i
increases. Therefore the function

R(1) = = At (14 1)~ /2[Q, (1) |

is a good estimate of the relative error. Thus, the upper
bound B, of |R(¢)| in the range (—t, t2) is minimized, if

R(—11)=|R(#:)| =B, . (21)

The equations (19) and (21) determine the numerical
values of #,, t; and with them the number ¢. Applying this
method to first four values s=1, 2, 3, 4 of 5, we find for
the range (a, b) with b=2a, that is, for r=2:

pu=(n+1)/2n,qu=_(n—1)/2n

p21=(2n+1)/2n, pao=(n+1) p21/6n,
q21=(2n— 1)/2", q22=(n— 1)q21/6n

psi=(3n+1)/2n, pso=(2n+ 1) ps1/ 5n,
p33=(n+1)p32/12n
gs1=(3n—1)/2n, gs2=(2n—1)qz1/ 5n,
qss=(n—1)qs2/ 12n

pu=(4n+1)/2n, p12=3(3n+1) ps1/ 14n,
Piz=(2n+1)pe2/9n, psa=(n+1)pis/20n
qu=(4n~1)/2n, q,2=3(3n—1)q4/14n,
q13=(2n—1)qs2/9n, qss=(n—1)q43/20n .

In general A,0=p,; q:s/ (25s+1)n>0.

Solving the equations (19) and (21) with r=2, we
find that ¢, and #, vary so slowly with n that for small n
we can take 1;=0.3 and t-=0.4 so that c=10a/7.

Returning now to the square root, we have two sub-
intervals 0.25<f<0.5 and 0.5<f<1. First taking s=1 so
that p11=3/4 and q1,=1/4, we have A,,=2-%, In the first
interval, 0.25<f<0.5, ¢=5/14 and \/c=0.597 614 3.
Computing the upper bound B; of the relative error e,
we find that in /7= P:(f)/Q:(¥), that is, in

‘\/?=C1o—‘ cu

(0.25<f<0.5) (22)
f+eiz

+eo \/ 7
one has |ey| <B;=14x10-%. Applying Heron’s method
twice to the initial approximation xo=cio—c11(f+c12),
we reduce

Ieol to ]€2I<%10_12, since |e2| z%[e12|z|eol4/8<814/8
=110z,

This proves that (22) allows the computation of rwelve
correct significant digits in three operations. The con-
stants are: ¢;0=1.792 843, ¢11=1.707 469 and ¢;2=1.071
429, If 0.5<f< 1 another set of constants is to be used in
(22), namely c10* =c10\/2=2.535 463,

(,‘11* = 2011 \/7= 4.829 452 and C12* = 2C12 =2.142 858.

Thus the number of stored constants is six.

To mention some examples: (22) gives for f;,=0.36
and f,=0.81 the approximations 0.6—10¢ and 0.9—
65 % 10-¢ so that the relative errors are —16.10-7 and
—7.10-5. We add that the approximate values t;=0.3 and
t2==0.4 do not balance R(—1f;) and |R:(t2)| exactly:
their ratio is equal to 1.4.

Now taking s=2, we have p21=5/4, paa=5/16, gs =
3/4, QQ2=1/16, A20=2_9 and Bz=10‘5. Applyll’lg (1)
this time to the first guess

cul __cxl (0.25<£<0.5)
|f‘|'6'22 |f+024

(23)

only once, first ten correct significant digits are obtained
in three operations: |e1| <4B22=%10-9, Applying (1) to
(23) twice, we obtain twenty correct significant digits in
four operations. The constants are: c20=5(5/14)%; ¢21 =
20(320/7; Ca0=47/ 14, C2‘§:4/49 and C24=3/ 14. In the
interval 0.5<f<1 the constants to be used in (23) change:

€20"=C20V/2; 21" =2C21V/2; Caz*=202s; Coy* =423 and
C2a*=2C24.

In the computation of square roots the values of s ex-
ceeding 2 are not economical since (1) necessitates only
one operation.

\/?:x0=6‘20R

® Square root—decimal machine

Here N=10%*"f and 10-2<f<1. The range (10-2,1) is
subdivided into four subintervals because if s=2 our
method does not work for r>3.8. Estimates of relative
error are based on the convergence of the series of gen-
eral term (—1?)* and the necessary condition #.<1 is a
limitation imposed on r=»5/a. From it follows t;,>1—2/r
since r(1—1) =1+t To satisfy (21) we must have

R(2/r—1)<|R(1)|, that is in our case (n=2):
230, (2/r—1)>Q,(1) (r—2)28+1 |

This inequality proves that r<r,, where r;=3.72, ro=3.81
etc., r, increasing with s. Since +/ 100~ 4.64, while
v/100=3.16 it is necessary to subdivide the interval
(107%; 1) as follows: (10-2r%-1; 10-2¢%) for k=1, 2, 3, 4
and r=102. In the first subinterval (k=1) we have, tak-
ing s=2, t;=0.4475; 221c=4 and thus

dy| ds|
=xo=do— —
ViR x=do [f+da  |f+ds

(1<100/<r)
(24)

where do=0.674 055; d,==0.098 002; d.=10.170 836;
d;=0.000 211 4; d,=0.010 904 and |ey|<17.10-5. For
instance 1/0.0289 = x,=0.17—15.10-5, but ¢ 10=x,=
W/ 10—-3.10-¢.

Applying (1) to xo once, first nine correct significant
digits are obtained in three operations. The values of d;
in the other three intervals (k=2, 3, 4) are obtained by
observing that if f is in the range (ra, rb), then f/r be-
longs to the range (a, b). Therefore denoting the coeffi-
cient in (24) by d; for the range (a, b) those d;* for the
range (ra,rb) are: do* =dort, di* =dir¥/2, do* =dyr,

151
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d3*=dsr?, d,*=d,r. The number of stored constants is
equal to thirteen.

Applying (1) twice, eighteen correct digits are obtained
in four operations.

® Cubic root—binary machine

It is possible to accelerate the convergence of Newton’s
method when it is applied to computation of radicals.
Instead of the equation x2"+1—N=0 (radicals of even
order are omitted because they are reduced to those of
odd order and square roots), we consider the equation

f(x) =xm+l_ Nx-m=() (m>l) (25)

which for m=1 yields our recurrence formula (18) for
the sequence of approximations to N1/3. When (25) is
used the relative error e; of the j—th approximation x,,; to
Nt/m decreases more rapidly than the relative errors of
approximations deduced from the equation x>+ —N=0:

lejal=(m+1)m|e;|3/3. (26)
To prove (26) replace x,,, 5,1 in
X, ji1— Xmj= (Nx ;% —x ey [(m+ D) x % +mNx- ]t
by (1+e;,1) N/ (2mt)
and x,,; by (1-+e;) N1/2m),
The result is
ej1=ej+

(1+e)[1—(1+e)2m+1][(m+1) (1+e;)2m 1+ m]*
and this gives
eja=(m+1)me[14+0(e;) [34+0(e;) ]2

In particular, applying (18) (m=1) we have |e;,1|
<2|e;|3/3. For the fifth root N'/5 (25) takes the form
x3—Nx2=0 and |e;,1] <2]e;|3, the recurrence relation
being

Xni1=Xn[2(Xt+ N/ x2) + N/ x,1[2 (X220 + N/ x0) +x02171.
27)

Returning to the cubic root, we have N=23"f and NV/3—
2mf1/3 where 2-3<f< 1. Subdividing this range into three
intervals (2-3; 2-2), (2-2; £) and (4; 1), we consider first
the case 2-3<f<2-2, so that r=2. We found general ex-
pressions of ps;, q.; for any radical. For a cubic root (n=3)
s=1, 2, 3, 4 they give the coefficients of P, and Q, as well
as Ay. For instance A10=2.3"%, A20=7.3"7/2, A30=2.3"?
and A4=3-13143/14. Taking t,=0.3, t,=0.4 and com-
puting the upper bounds B, for the absolute value of the
relative error, we found B;=12.10-%, B2=83.10"7, B3=
56.10-%, B,=38.10-11. Extrapolating we conclude that
B;=3.10-12 which proves that in five operations the Padé
approximation to cube root Ps5(f)/Qs(f) yields first
eleven correct significant digits without using Newton’s
method at all, while P4(f) /Q4(f) yields nine digits in four
operations and twenty-eight in seven, if (18) is applied
once. Since 2B:*/3=10-?, applying (18) once to Pi(f)/
Q.1(f), that is, to
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0.30167

= x=1.12625— ———,
f+0.35714

(2-3<f<22)
(28)

first eight correct significant digits are obtained in four
operations, provided 2-3<f<2-2. Take for instance f=
0.125, so that xo=0.50056. Applying (18), we find x,=
0.5+4.10-2, If f=0.25, then x,=0.62938 [the true value
of (0.25)1/3 is equal to 0.62996 05247] and x, =0.62996
05275.

Naturally in two other intervals (2-2; 2-1) and (2-1; 1)
the constants in (28) change. Thus, in (2-2; 2-1) xq==
1.418 986—0.760 1607(f+0.71428)~* while in (2-1; 1)
xo=1.78781—1.91548(f+ 1.42856)-. In all, nine stored
constants are needed in the case s=1. If s=2, then

(l1| a2|

V= x0=ao — o T (29)
the values of fifteen constants being:
Interval
29<fS27 | 222 | 271<4<1
ao 1.576 745 1.986 574 | 2.502 926
a, 1.267 028 3.192 710 | 8.045 125
by 1.153 061 2.306 122 [ 4.612244
as 0.022 490 6 | 0.089 962 4 | 0.359 849 6
by 0.096 938 8 | 0.193 877 6 | 0.387 7552

Here c=5/28 and %/c¢=0.563 1234, 1,=0.3, 1,=0.4.
The values in the first interval are: ao=2.8\:7 ¢, ar=

2.25/¢c; b;—113/98, a,=54/2401 and b,=19/196.
Using (29), first four correct significant digits are ob-
tained in two divisions only: |eq|<<75.10-7. Applying to
Xo the recurrence relation (18) once, fifteen correct digits
are obtained in five operations since

|€1| <2|€0|3/3<310’u’

‘@ Cubic root—decimal machine

The range 10-3<f<1 should be subdivided into five in-
tervals 1;[10-0-8(6-F); 10-0-6(5-)] for k=1, 2, 3, 4, 5 since
the ratio r=10001/5=3.981<4 and then s=3 can be
taken, but not s<2. We have then #;,=0.51836, t,=
0.91744 and the upper bound B; of the relative error
|eo] is equal to 3.10-5. Therefore in three operations four
correct significant digits are obtained without using (18).
If (18) is applied once to the first guess xo=Pa(f)/ Qs(f),
then thirteen correct digits are obtained in six operations
since [e;1| <2]eo|3/3<2.10-14, The number of stored con-
stants is thirty-five, since in each of five intervals I; seven

constants are needed.
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