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Computation of Sin hi, Cos hi and %V 

~ Using an Electronic Computer 

Abstract: Rational Pad6 approximations  to Sin N in the interval OSN<41x/256 and to Cos N in O < N < 8 7 ~ / 2 5 6  
allow the computation of both functions in O<NSx/2  with the first ten correct significant  digits in four multi- 

plications and divisions only. If the infinite range O<N<W i s  considered,  one  more multiplication reduces it 
to the range O<N<x/2 so that the total number of operations i s  five. The method is  flexible  and gives any 

desired accuracy. Thus i f  eighteen first correct significant  digits are required, they are obtained in seven 
operations for  any N in (0, 00). 

The same method applied to *and yields  a very accurate first guess which then i s  improved  by 

Newton's method. For the radicals 4 N  with m>4, Newton's method i s  too slow, and  rational Pad6 approxi- 

motions studied in this paper yield better subroutines. 

m -  

Part I: Subroutines for Sine and Cosine 

0 Pad6 approximations 

Given  the  formal expansion 
M 

f(x)- f: c n x n  
n=o 

of f ( x )  into a  convergent or divergent power series, a 
Pad6 approximation  to f ( x )  is rational  function P M ( x ) /  
Q N ( x ) ,  where 

dl N 
PM(x) = c o t  x p k X k  ; Q N ( x )  = 1 + E q k x k  

k = i   k = i  

are defined by the identity 

Q N ( x )  C , X ~ - P M ( X ) = X ~ + ~ + '  E A n x n  . 
n=o n=O 

W W 

Therefore q k ,  1 < k < N ,  satisfy the system 
N 
2 qmcN-m+j="Y+j (1  < j < N )  , 

m=1 

while P k ,  1 < k <  M ,  are computed  with the aid of 
k 

P k = c k f  x q m c k - m  ( l < k < M ) .  
m = 1  

We  have  also 
N 

A n =  2 mCzN-m+n+l (n>O). 
m= o 

The coefficient A ,  decreases very rapidly and  the first term 
A O ~ M + N + l  in  the righthand member of ( 1) divided by 
Q N ( x )  is a good estimate of the absolute error  made in 
approximating f ( x )  by P,v (x )  / Q N ( x )  . Such approxima- 
tions are useful  in  general for small range of I x I since the 
error increases as a power of I X I ,  if I x1 > 1. For 1x1 < 1 
the value of Q N ( x )  differs very little from  one since q k  
decreases  rapidly when k increases, and in  general q1 is 
already  small  enough. This shows that  the  order of magni- 
tude of the  upper bound B of the absolute error in  a given 
range (0,  xo) , where xo<l ,  is approximately  represented 
by 1 Aol I X o I M + N + l .  Thus, it is sufficient to  compute A 0  to 
estimate B. 

Eliminating the coefficients qm from  the N equations 
( 2 )  and  the expression (4) of Ao,  we have Ao=DN/dN, 
where  the elements of the  determinant D ( d i j )  are defined 
by 

d . .=c .  . 
11 1+1-1 ( l < i , i < N + l ) ,  

while the  determinant dN is the principal minor of D N  
obtained by omitting  in DN the last  row and  the last 
column. 

The accuracy of approximation P M / Q N  for a fixed N 
depends on M ,  and it is known that  for a fixed value of N 
the choice M = N  (diagonal  of  the  Pad6  Table) gives the 
best approximation. The accuracy of the approximation 
PAT/QN increases  rapidly  with N .  Once N is fixed, the 
rational function P N / Q N  should be expanded into  an 147 
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equivalent  continued fraction, since  in this form  the com- 
putation of the approximation is performed  much  more 
rapidly than in the  form P N / Q a ,  the  number of operations 
(multiplications and divisions) being halved. 

Reduction of the  infinite  range 

The values of Cos N and Sin N, where O < N < W ,  are 
computed reducing the  argument N to a  small range as 
follows. Forming  the  product N T - ~  and denoting the 
fractional  part of it by fo, so that Nx-'=n+fo where 
n is  an  integer,  we  have Cos N = ( -  1)"Cos nfo, 
Sin N = ( - 1 ) nSin nfo, with O<fo< 1.  Subtracting f o  from 
3 and defining S,=sign(+-fo), so that fo<+ if S1=+l, 
and fo>3 if S1= - 1, we form fl=-T- (-T-fo)&, that is, 
f l= fo  if fo<3,  but f l = l - f o  if fo>-T, we have  Sin n f ~ =  
Sin nfl and Cos  xfo=SlCos T ~ I ,  where O<f1<3. There- 
fore  the  subroutine computes Sint and Cost, where 
O<t<~/2 .  Now Sin rf1 is approximated by P2/Qz if fl  
belongs to  the interval (0, 41/256). When fl exceeds 
41/256, then Sin T f l  is computed as a cosine, namely  as 
Cos [ ~ ( G f l ) ] ,  where 3-fl belongs to  the interval 
(0, 87/256). 

Cos nfl  is computed, using the approximation P3/Q3, 
if O<f1<87/256, but if fl exceeds 87/256 it is computed 
as Sin [ ~ ( 3 - f ~ ) ] ,  where +-fl belongs to  the interval 
(0, 41/256). The  fractions 41/256 and 87/256 are  rep- 
resented  in the binary numeration by (0.00 10 1001 ) 2 and 
(0.  0101 01 1 l ) z .  The angle 8 7 ~ / 2 5 6  expressed in degrees 
is equal  to 61"52'30". 

Subroutine for Cos N, O<N<87x/256 

Applying  this  method to Cos z and letting z2=x, we have 
c,,=(-l)n/(2n)!andchooseM=N=3.Toestimatethe 
accuracy of the  approximation P s / Q 3  we  compute 
AO=&/d3. In this  case we find easily that 10!8!d3=59 
and 8!11!15!D3=11,367.25, so that 

Ao=D,/d3=1.33 X lo-'' . 
If the first ten correct significant digits are required, we 

should  choose the  range (0, xo) so that  the  upper bound 
B for  the absolute error is at most equal  to 5.10-''. The 
relative error is not  important  here because Cos z>O.l 
for z<1.46. Moreover, for cosine all the coefficients q,,, 
are positive and Q3(x)  > 1 ,  which allows us to take 
10llB=  1011Ao~07=4z~14/3. The condition B<5.10-11 
now yields z0<0 .3408~ ,  so that 8 7 ~ / 2 5 6 = 0 . 3 3 9 8   4 3 7 5 ~  
does  insure  first  ten  correct  significant  digits,  using 
P ~ ( x ) / Q s ( x )  as approximation  to Cos z=Cos(xi). But 
if we use P , ( x )   / Q S ( X )  as it is without transforming it 
into a  continued fraction, we will need seven multiplica- 
tions and  one division to  compute  the cosine while the 
usual polynomial  approximation 

S12(x)= 2 (-1)kx*k/(2k)! 
6 

k=O 

yields in O<x<x/4 the  same accuracy  in seven multipli- 
cations. The use of a Pad6  approximation can  be justified 

148 only if we can economize the machine  time  without losing 

the accuracy, and this is done by transforming P3/Q3 into 
a  continued fraction, namely 

The  righthand  member of (5) can be computed in three 
divisions and  one multiplication  only, but  here we are 
confronted  with the following complication,  which is of 
course  a common  feature of almost all applications of 
this method:  the  constant Co is equal  to - 14,615/  127, 
so that our approximation is a  small difference of two 
large  numbers. In a single precision computation the 
continued  fraction ( S ) ,  when used in  a 35-bit binary 
computer, will give only ten  decimal digits, the first three 
of which will be lost in subtracting 14,615/217, so that 
the final value of a cosine will have only first seven correct 
decimals instead of ten. 

Fortunately it is possible to eliminate this cause of loss 
of accuracy,  reducing  the  value of Co below one in abso- 
lute value and  making it positive. This  can be done with- 
out increasing the  number of divisions and multiplications 
which are costly in  machine time. Adding  one  more term 
to P3 (x), we consider P4 ( x )  / Q3 ( x ) ,  where 

P4(x)  = 1 +plxfp*X2+p3x3"q3X4 . 
The numerical  value of the constant t will be chosen later 
and in such a way that  the value taken by Co will satisfy 
the condition O<Co< 1. The replacement of P 3 ( x )  by 
P 4 ( x )  changes the first equation of the system (2) which 
now becomes 

C4+Csql+C2q2+ ( C l + t ) q ~ ' O .  

Solving the system (2 ) ,  we have 

12!(59-34t)q1=10!(229-76t) 
12!(59-34t)qz=  8!(297-42t) 
12!(59--34t)q3= 6 !  127. 

Both Ao and Co= ( p 3 +  tq2)/q3 also become  functions of t :  

127Co=-2,352t2+33,264t-  14,615 
44.15!Ao=(45,469+9,336t)/(59-34t), 

while 

12!(59-34t)p1=10!(-3,665+2,168t) 
12!(59-34t)p2=  8!(-2,133+4,456t) 
12!(59-34t)p3=  6!(-14,615+16,632t).  (7) 

The reduction to  the small range leads to  the  computa- 
tion of COS nf, where the  number f is known. Therefore 
the rational approximation  to Cos xf is to be expressed in 
terms o f f .  Dividing P 4 ( x 2 f 2 )  by Q 3 ( ~ * f 2 ) ,  we obtain 

Here  the  continued  fraction is the expansion of the 
quotient 

( 8 )  

so that 
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We now take ~ ~ t = 4 . 5 = ( 1 0 0 . 1 ) ~ ,  choosing the  factor 
x2t in such a way that  C0=0.49304  82724 while  Ao= 

11!(11+60t)A~=(11,528"31,920t)/1008. 

1.987 x 10-11<2.10-11. ComputingB=Ao(87x/256)  14we Finally,  replacing x by x f ,  
find B=4. which insures ten correct significant digits, 
if O<f<87/256.Atthesametimethefactor4.5=(100.1)~ Sinxf-f  Co(t)-tx3f*+ x 
allows so rapid a computation of the  term 4.5fz that we [ k=1 lf'+Dk" ck*l 1 ' 
do not count it as  an operation. 

The coefficients C,, D,,, in the final result 75C~(t)=x(12,600t2+10,920t+551), 

where 

COS x f  -0.49304  82724-4.5f'f x -" C I  (10) 
since 

m=1 I f ' + D m  C, ( t )  =(az+tb1)n/bz.  

are  computed as follows. First (6) and (7) give the  Here we take t ~ ~ = - 5 1 / 3 2 = - ( 1 . 1 1 0 1 1 ) ~ ,  so that in 
values of Pk, q k  using the value 4 . 5 1 ~ ~  of t .  Then uo, u1, uz a binary machine  the  term t X 3 f Z  is computed very rapidly. 
are obtained by (9)  and the  products v k = x 2 " q k  are com- The corresponding  value to = - 5 1 / 3 2 ~ ~  of t is equal ap- 
puted. The last operation consists in the  transformation  proximately to to= -o.05140 08830, and it gives to c,(t) 

the value 0.96309  49114=Co(to). 

-7.38358.  The  upper bound of the relative error is equal 
Denoting the combinations of C, ,  and D,, as  follows: to  Ao(xf*)ll/Sin -irf*, where f*=41/256.  Therefore its 

( /( ;.vkp) G cm I (11) Computing  the logarithm of Ao, we find log Ao= 
k=o k=o m=l lf2+DYn * 

logarithm is equal to -10,34813 which proves that first 
ten significant digits of our approximation are  correct  for 
this choice of t :  

C I ( D Z D ~ + C ~ )   = W 4 ,  I 
Sin x f = f  0.96309 49114+51f2/32+ x 

C1(D1+Dz)=W5,  [ 76=1 I f ' +  ckdl Dl: 1 
and letting C1= W6,  we see that  the identity (1 1) yields a SE1O-lly (14) 
system of six linear equations  for  our six unknowns Wj, where 1 ~ 1 < ~ . ~  Sin xf, provided fGf:k=41/256. 
1 < j <  6. Solving this system, we now have 

The  four coefficients C k B ,  Dk* are computed  as follows. 

bers u1 = (al + t )  x 3 ,  u2 = (az + t b l )  x5  = bzx4Co( t o ) ,  v1 = blnz 
and v2=b2x4 are computed. The continued fraction in 

D1=W2-W5/W6;C2=Wz-W4/W6-D1(W3-D1); First bl, b2, al, u2, are  found, using t= to .  Then  the num- 
OS=( W1- W4/W, ) /Cz  ; Dz=Ws-Dl-Dz ; 
C3= W4/  We- DzDa . 

Subroutine for Sin N ,  O<NG41~/256. (14) is an expansion of a rational function,  namely 

Trying  to approximate x-I Sin x by the  rational function Ck*( Pz(x2)/Q2(x2),wefindagainthattheconstanttermCoin ( x + u 1 f 2 + u ~ f 4 ) ~ ( 1 + v ~ f 2 + v ~ f 4 ) - u ~ ~ v ~ ~ ~  

Sin x f - f  Co+ 2 

is a  large number,  Co-23.  Therefore, we approximate 
x-lSinx as follows : 

JC=I I f'+ Dk* 

( k=1 I f' ck '  + Dk ) (10) Therefore Ck') ' ,  Dk'% are obtained from  the identity 

C l ~ ~ ~ ( f z + D z " ) ( 1 + v l f ~ + + 2 f 4 ) ~ ( A + B f ~ )  [Cc4' 2 +Dl*Dz*+ 
(D1:l:+D22:)f2+f4] 

where A = T - U ~ / V ~  and B=ul-v1u2/v2 .  First C1*=B/vz 
is computed  and then the  three unknowns Dz*,  D1*+Dz* 

and  determine  the unknown coefficients in the usual way. = n and Dl" D2 + Czo = m are obtained solving the system 
Thus, denoting the coefficient of x2lC in the Maclaurin A n +  Bm"Cl:kvlDz:k =c 
series of x-lSinx by c k =  ( - 1 ) 7c/ (2k+ 1 ) ! and solving the 
system Am - C1*Dz:k = 0 

36(11+60t)bl=13+30t 
1008(11+60t)bz= 5 .  

Having described  how to  program a subroutine  for 
(12) Sin N and Cos N yielding the first ten correct significant 

Since al = bl + c1 and az = bz + c l b l i  cz, we have also digits in five operations. we add  that  the  same method 149 
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gives a subroutine which yields the first eighteen correct 
significant digits in seven operations  only. To  obtain this 
accuracy,  Pad6  approximations of order M =  N = 5  for 
cosine and of order M = N = 4  for sine are  to be used in 
the  same intervals O < f  < 87/256 and 0<f<41 /256 .  

The final formulae  are: 

and 

the  factors 01' and /3 being chosen in such a way that CO 
and EO are small  constants and  the multiplications by 01' 

and ,6 are very rapid operations. 
If subroutines for  the  computation of Sin z and Cos z 

are  required in the interval I zI < ~ / 2  only, then  the  ap- 
proximations ( 1 0 )  and ( 1 4 )  are not the most economical 
because they are expressed in terms of f = z / x  and they 
necessitate the division of the given argument z by X .  To 
economize  this operation,  the  same approximations can 
be expressed in  terms of z directly.  Approximating Cos z 
by P 4 ( z 2 ) / Q 3 ( z 2 )  and choosing in P 4 ( z 2 )  t= t*= 117/256 
=(0.0111 0101)2,wehave 

( 104)  

where CO* =0.75911  39425  44. The  correct value of Co* 
and  the coefficient C,,, Dm are computed, transforming 
P 4 ( z 2 ) / Q 3 ( z 2 )  to  the  form (10") with the aid of ( 6 )  
and ( 7 ) ,  where t=117/256. 

The  same holds for ( 1 4 )  which becomes 

( I z [  < 4 1 ~ / 2 5 6 )  

with C0**=0.32342 18088 78 and t"*=-105/2048= 
-(0.00001 10100 1 ) z .  

Part II: Subroutines for radicals 

fi is generated usually by successive approximations. 
A first guess x0 is improved  with the aid of Heron's 
method 

X,+I 3 (X, + Nx,-') (15) 

and  the sequence x,,, XI, x2 . . . converges to dx the 
relative error e, =xnN-f - 1 decreasing  quadratically: 
I e,+l I =$ens. The  number of iterations  depends on  the 
accuracy required and  on  the choice of xo. This is why it 
is important  to begin with as small eo as possible. A pro- 
cedure  for  the  computation of a good initial guess x. de- 
veloped in the sequel is based on Pad6  approximations. 

Heron's method ( 15) ,  two  milennia  old, is a particular 
case of Newton's method  for solving any equation f (x)=O 

150 by successive approximations 

x n + l = x n - f ( X , ) / f l ( X n ) .  (16) 
If f ( x )  =xm-N=O, then 

~ E ~ x , , + l = [ ( m -   ~ ) x , , + ~ x , , l - m ] / m ,  (17) 

which proves that this  method becomes less and less 
economical, when the  order rn of the radical NIIm in- 
creases. For a  cubic root ( m =  3 )  three  operations are 
necessary to  compute x , , ~  knowing x,,: 

N 1 / 3 " ~ , + 1 = $ ~ n + ( N + 3 N ) / ( 2 ~ n 2 + N ~ n - 1 ) ,  ( 1 8 )  

while for N1/5 five operations are needed. 
Therefore,  rational Pad6  approximations to roots of 

orders m > 3  are even more  important  than  for  square 
roots. 

Square root-binary machine 

Letting N=22mf ,  where 0.25<fQl  and m is an integer, 
we have dN=2".\/f, Let us consider the general  case 
f l / , ,  n>2,  2-"<f Q 1 .  The  accuracy of a rational approxi- 
mation P,( f )  /es( f )  to f1 ln  depends on  the degree s of 
polynomials P,, Q, and  on  the  range a <  f < b of f .  It in- 
creases  with s, but only  small values of s are of interest 
for us. Keeping s small we can increase the accuracy by 
decreasing the  ratio r = b / a  which implies a subdivision 
of the whole range (2-", 1) into subintervals. 

Given  a  subinterval (a, b )  , we choose an  interior point 
c, +b<c<b, and  introduce a new variable t ,  letting 
f = c( 1 + t )  . If the  range of t is denoted by ( - tl ,  fz )  , we 
have 

rt1+tz=r- 1 . ( O < t l ,  t 2 < 1 )  (191 

A second equation  for t l ,  tz is obtained by equating the 
absolute values of the minimum and maximum of relative 
error which happen  to correspond to t =   - t l  and t = t z ,  
the relative error being an increasing function of t .  Given 
s, the coefficient psi, qsi of P, and Q8 are determined by 
the identity 

(20) 

Denoting  the binomial coefficient ( ':) by ci, we 
have pSo = q , O  = 1 and 

8 

2 cs+k-iqsi = 0 ( 1 Q k Q s )  
i = n  

8 

A s o =  2 czs+1-iqsi . 
i=O 

Once P, and Q, are determined, we replace t by f / c -  1 
and  approximate f l / n  by 
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Finally, transforming this rational  function  of f into a 
continued fraction, it is seen that  the  number of opera- 
tions  needed to  compute  our approximation is equal  to s. 

The  sum of infinite series in the second member of 
(20) is fairly well represented by ASo(  1 + t)-1 since the 
ratio A,, d A s i  rapidly approaches minus one when i 
increases. Therefore  the function 

R ( t ) = - - A , o t 2 8 + 1 ( 1 + t ) - ( n + 1 ) / n [ Q , ~ ( t ) ] - 1  

is a good estimate of the relative error.  Thus,  the  upper 
bound B, of I R (  t) I in the range ( - tl, t 2 )  is minimized, if 

R (  - t l )  = JR(t2) I =B, . (21) 

The  equations ( 19) and (21) determine  the  numerical 
values of tl, tz  and with them  the  number c. Applying  this 
method to first four values s=l, 2, 3, 4 of s, we find for 
the  range (a, b )  with b=2a, that is, for r=2:  

p 1 1 = ( n + 1 ) / 2 n , q , , = ( n - - 1 ) / 2 n  

~ ~ 1 = ( 2 n + l ) / 2 n , p ~ ~ = ( n + l ) p ~ ~ / 6 n ,  
q 2 1 = ( 2 n - 1 ) / 2 n , q , , = ( n - l ) q ~ , / 6 n  

ps1=(3n+1)/2n,  P32=(2n+l)p31/5n, 
P33=(nfl)P32/12n 
q31= (3n-  1)/2n, q32= (2n-  l)q3,/5n, 
qss=(n-l)q32/12n 

P41=(4n+ 1)/2n, P42=3(3n+  l)p41/14n, 
P43=(2n+l)P,z/94  p44=(n+l)P43/20n 
q41=(4n--) /h ,  q42=3(3n-l)q41/14n, 
q43=(2n--)q4~/9n, q44=(n"l)q43/2011. 

In general Aso=pss qS,/(2s+1)n>O. 

Solving the equations ( 19) and (21) with r=2, we 
find that tl and tz vary so slowly with n that for small n 
we can take tl=0.3 and tz=0.4 so that c= 10a/7. 

Returning now to  the  square  root, we have  two  sub- 
intervals 0.25<f<0.5 and O.S<f<l. First taking s= 1 so 
that p11= 3/  4 and 414 = 1/4, we have Alo = 2-5. In  the first 
interval, 0.25<f<0.5,  c=5/14 and 1 / ;~0 .597  614 3. 
Computing  the  upper bound Bz of the relative error eo, 
we find that in d T Z P l ( f ) / Q l ( f ) ,  that is, in 

-\/?=c,,- - c11 +eo dT (0.25<f<0.5)  (22) 

one  has le01 <B1= 14X Applying  Heron's method 
twice to  the initial  approximation xo=cl0- cll(f +clz)-l, 
we reduce 

(eo1 to Iez1<+10-12, since lez(   ~31e121~leeo14/8<B14/8 

f +ClZ 

= 3 10-1' . 
This  proves that (22) allows the computation of twelve 

correct significant digits in three operations. The con- 
stants  are: cl0 = 1.792 843, cll = 1.707 469 and c12 = 1.07 1 
429. If O.S<f< 1 another  set of constants is to be used in 
(22), namely CIO* =c10dT=2.535 463, 
c l l*=2cl ld~=4.829 452 and ~ ~ ~ * = 2 c ~ ~ = 2 . 1 4 2  858. 

Thus  the  number of stored  constants is six. 

To mention  some  examples: ( 2 2 )  gives for f1=0.36 
and f2=0.81 the approximations 0.6-10-" and 0.9- 
65 X 10-6 so that  the relative errors  are - 16.10-7 and 
- 7.10-5. We add  that  the  approximate values tl =O.3 and 
t2=0.4 do  not balance R (  -tl) and IRZ(t2) I exactly: 
their ratio is equal  to 1.4. 

Now taking s=2, we have p21=5/4, p22=5/  16, q21= 
3/4,  qZ2=1/16, Azo=2-9 and Bz=10-5. Applying (1) 
this  time to  the first guess 

(23) 
only once, first ten correct significant digits are obtained 
in three  operations: I el I < +BZ2 = +10-ln. Applying ( 1) to 
(23) twice, we obtain twenty correct significant digits in 
four operations. The constants are: cz0 = 5 ( 5 /  14) 4; czl = 

2oczO/7; ~ '~=47/14;   cZ3=4/49  and c ~ ~ = 3 / 1 4 .  In  the 
interval 0.5<f< 1 the constants to be used in (23) change: 

C Z O * = = C ~ , , ~ ~  c21:i:=2c21 dz C Z Z * = ~ C Z ~ ;  C23*=4Cz3 and 
c24+ = 2c24. 

In  the computation of square roots the values of s ex- 
ceeding 2 are not  economical  since (1) necessitates only 
one operation. 

Square root-decimal machine 

Here N =  10pmf and 10-2<f< 1. The range ( 1) is 
subdivided into  four subintervals  because if s=2  our 
method  does  not  work for r23.8. Estimates of relative 
error  are based on  the convergence of the series of gen- 
eral  term ( - t ) k  and  the necessary condition tz< 1 is a 
limitation imposed on r =  b/a.  From it follows tl> 1 -2/r 
since I (  1 - tl) = 1 + tz. To satisfy (21) we must  have 

R ( 2 / r - l ) < ( R ( l ) l ,  that is in our case (n=2) :  

r'"?Qs(2/r- l)>Q,(l)  (r-2)28+1 . 
This inequality  proves that r<r., where r1"3.72, r2s3.81 
etc., r, increasing  with s. Since q i 6 6 z 4 . 6 4 ,  while 
J T O  3.16 it is necessary to subdivide the interval 
( lo-'; 1)  as follows: ( 10-2rk-1;  lo"+) for k= 1, 2, 3, 4 
and r =  104. In  the first subinterval ( k =  1) we have,  tak- 
ing s=2, t1=0.4475; 221c=4 and  thus 

(24) 

where do = 0.674 055; dl = 0.098 002; d2 = 0.170 836; 
d3=0.000 211 4; d4=0.010 904 and le01<17.10-~. For 
instance ~0 .0289Z~~=0 .17"15 .10 -~ ,  but + m Z X o =  

Applying ( 1) to Xo once, first nine correct significant 
digits are obtained in three  operations. The values of di 
in the  other  three intervals ( k=2 ,  3,4)  are obtained by 
observing that if f is in the  range (ra,  rb), then f / r  be- 
longs to  the  range (a,  b).  Therefore denoting the coeffi- 
cient  in (24) by d j  for  the  range (a ,  6) those dj* for the 
range (ra,  rb) are: do* =dot-*, dl* = d1r3/2, d2* = d2r, 151 

v- 4 10-3.10-". 
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d3*=d3r2,  dd*=d4r. The  number of stored  constants is 
equal  to thirteen. 

Applying (1) twice, eighteen correct digits are obtained 
in  four operations. 

Cubic root-binary machine 

It is possible to accelerate the convergence of Newton's 
method  when it is applied to  computation of radicals. 
Instead of the  equation x2m+l -  N=O (radicals of even 
order  are omitted  because  they are reduced to those of 
odd  order  and  square  roots), we consider  the equation 

f(x) =Xnt+l-NX-m=O (m>  1) 

which for m = 1 yields our  recurrence  formula ( 18) for 
the sequence of approximations to N113. When (25) is 
used the relative error ei of the j -  th approximation .xmj to 
N I I m  decreases more rapidly than  the relative errors of 
approximations  deduced from  the  equation xZntc1- N =0: 

I e j + l l ~ ( m + l ) m l e i ( ~ / 3 .  (26) 

To prove (26) replace in 

(25) 

Xm,j+l-xmj=(Nxz/  -XE{)[(m+l)Xzj  +WN.X-~;']-~ 

by (1  +ej+l)  N1/(2nz+l) 

and xlnj by ( 1 +ej) N1/(2m+1). 

The result is 

ej+l=ej+ 

(1+ej)[1-(1+ej)2m+~][(m+1)(1+e,)2~1P-~1+m]-1 

and this gives 

e~+l=(m+l)mej3[1+0(e~)][3+0(ej)]-1. 

In  particular, applying (18)  (m=  1) we have lej+ll 
<2(ejI3/3. For  the fifth root N1/j  (25) takes the  form 
x 3  - N r 2 =  0 and I ej+l I < 2 I ej I 3, the  recurrence relation 
being 

x , + ~ = x ~ [ ~ ( x ~ ~ + N / x , )  +N/xn][2(xn4+N/xn)  +xn4]-l. 
(27) 

Returning  to  the cubic root, we have N = 2"f and N1/3 = 

21nf1/3, where 2-3<f< 1. Subdividing this range  into  three 
intervals ( 2-3; 2-2), (2"; 3) and (3; 1) , we consider first 
the case 2-3<f < F 2 ,  so that r=2. We found general ex- 
pressions of psi, qJi for  any radical. For a cubic  root (n = 3) 
s= 1,  2, 3, 4 they give the coefficients of P, and Q s  as well 
as A,o. For instance Al0=2.3-~,  A~o=7.3-~/2,  A:<0=2.3-~ 
and Aao=3-13143/14. Taking t1=0.3, t2=0.4 and  com- 
puting the  upper bounds B, for the absolute  value of the 
relative error, we found B1=  12.10-*, B~=83.10-~,  Bs= 
56.10-9, B4=38.10-11. Extrapolating we conclude that 
B5 = 3. which proves that in five operations the  Pad6 
approximation to cube  root P 5 ( f ) / Q 5 ( f )  yields first 
eleven correct significant digits without using Newton's 
method at all, while P4(f)  /Q4(f) yields nine digits in four 
operations and twenty-eight in seven, if (18) is applied 
once.  Since 2B13/3"10-9, applying (18) once  to Pl(f)/ 

152 Ql(,f), that is, to 

f ' " ~ ~ o = 1 . 1 2 6 2 5 -  
0.30167 

f+0.35714 ' 
( 2 - 3 q 9 2 - 9  

(28) 

first eight correct significant digits are obtained  in four 
operations,  provided T 3 < f < P .  Take  for instance f= 
0.125, so that xo=0.50056. Applying (18), we find XI= 

0.5+4.10-10. If f=0.25, then xo=0.62938 [the true value 
of (0.25) i s  equal  to 0.62996 052471 and x1=0.62996 
05275. 

Naturally  in  two other intervals (2F;  2-l) and (2-l; 1 ) 
the constants  in (28) change. Thus, in (2-2;  2-l) xo= 
1.418  986-0.760 1607(f+0.71428)-l while  in (2-l;  1) 
x,,= 1.78781 - 1.91548(f+ 1.42856)-l. In all,  nine  stored 
constants are needed  in the case s= 1. If s=2, then 

the values of fifteen constants  being: 

Interval 

2-3 Sf < 2-2 

1.576 745 

1.267 028 

1.153 061 

0.022 490 6 

0.096 938 8 

2-2<f<2-1 

1.986  574 

3.192 710 

2.306 122 

0.089 962 4 

0.193 877 6 

2-1s f < 1 

2.502 926 

8.045 125 

4.612 244 

0.359 849 6 

0.387 755 2 

Here c=5/28 and .(/;=OS63 123 4, tl=0.3, tz=0.4. 
The values in the first interval are: a o = 2 . 8 4 c  al= 
2 . 2 5 y r  b1=113/98,  az=54/2401 and b2=19/196. 
Using (29), first four  correct significant digits are ob- 
tained  in  two divisions only: (eo 1 <75.10-?. Applying to 
x. the  recurrence relation ( 18) once, fifteen correct digits 
are obtained in five operations  since 
/ell S21eol~/3<3.10-16. 

a Cubic root-decimal machine 

The  range < f < 1 should  be subdivided into five in- 
tervals lk[10-0'6(6-k); 10-0.6(5-k)] for k = l ,  2, 3, 4, 5 since 
the  ratio r=10001/5=3.981<4 and then s=3 can  be 
taken,  but  not s<2. We have then t1=0.51836, t z=  
0.91744 and  the  upper  bound B3 of the relative error 
I eo I is equal  to 3.10-5. Therefore in three operations four 
correct significant digits are obtained  without using ( 18). 
If (18) is applied once  to  the first guess x o = P 3 ( f ) / Q 3 ( f ) ,  
then thirteen correct digits are obtained  in six operations 
since I el I < 2 I eo I "3<2. 10-14. The  number of stored  con- 
stants is thirty-five, since  in  each of five intervals z k  seven 
constants are needed. 
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