
VAX-11
Run-Time Library
Reference Manual
Order No. AA-00368-TE

Aprll 1980

This document contains detailed descriptions of all general purpose
procedures in the VAX-11 Common Run-Time Procedure Library.
It also contains information about calling library procedures, includ­
ing programming techniques. The information in this book is not
introductory in nature.

VAX-11
Run-Time Library
Reference Manual
Order No. AA-00368-TE

OPERATING SYSTEM AND VERSION: VAXNMS V02

SOFTWARE VERSION: VAXNMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First printing, August 1978
Revised April 1980

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corpora­
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

Copyright© 1978 Digital Equipment Corporation
Copyright © 1979, 1980 Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS

7/80-14

MAS SB US
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

Contents
Page

Preface

Chapter 1 Introduction

1.1 Run-Time Library Capabilities. . 1-1
. 1-2
. 1-4
. 1-5

1.2 Linking with the Run-Time Library
1.3 Library Calling Conventions
1.4 Organization of the Run-Time Library .

1.5

1.4.1 General Purpose Procedures. . .

1.4.1.1 General Utility Procedures.
1.4.1.2 Mathematics Procedures . .
1.4.1.3 Resource Allocation Procedures. .
1.4.1.4 Signaling and Condition Handling Procedures.
1.4.1.5 Syntax Analysis Procedures
1.4.1.6 Cross-Reference Procedures

1.4.2 Language Support Procedures. . . .

1.4.2.1
1.4.2.2

Language-Specific Procedures
Language-Independent Support Procedures.

Procedure Descriptions

. . 1-6

. 1-6

. 1-6
.. 1-6

. 1-6

. 1-7

. 1-7

. 1-7

. 1-7

. 1-8

. 1-8

Chapter 2 Calllng Run-Time Library Procedures

2.1 How to Call Library Procedures . 2-1
2.2 Call Summary 2-2
2.3 Library Naming Conventions. . . 2-5

2.3.1 Entry Point Names. . . . 2-5
2.3.2 JSB Entry Point Names . 2-6
2.3.3 Library Return Status and Condition Value Symbols. . . 2-6

2.4 Procedure Parameter Characteristics . . 2-7

2.4.1
2.4.2
2.4.3

Parameter Access Types . . .
Parameter Data Types
Parameter Passing Mechanisms .

2.4.3.1 Passing Parameters by Immediate Value
2.4.3.2 Passing Parameters by Reference.
2.4.3.3 Passing Parameters by Descriptor

. 2-7
.. 2-8

. 2-9

. 2-10

. 2-10

. 2-11

2.4.4 Parameter Data Forms 2-11

. 2-12 2.5 Combinations of Data Forms/Passing Mechanisms

2.5.1 Passing Scalars as Parameters . 2-12
2.5.2 Passing Arrays as Parameters 2-12
2.5.3 Passing Strings as Parameters 2-12

2.5.3.1 Passing Input Parameter Strings to the Library. . 2-13
2.5.3.2 Returning Output Parameter Strings from the Library. . 2-13
2.5.3.3 Summary of String Passing Techniques. . . 2-15

2.5.4 Summary of Parameter Passing Mechanisms. 2-16

m

2.6 Errors from Run-Time Library Procedures 2-17
2.7 Calling a Library Procedure in MACRO 2-18

2.7.1 Calling Sequence Examples. . 2-18

2.7.1.1 CALLS Instruction Example . 2-19
2.7.1.2 CALLG Instruction Example. . 2-19
2.7.1.3 JSB Entry Points . 2-19

2.7.2 Passing Parameters to Library Procedures . 2-20
2.7.3 Return Status . 2-20
2.7.4 Function Return Values 2-21

2.8 Calling a Library Procedure in BLISS 2-22

2.8.1 Calling Sequence Example . 2-22
2.8.2 Passing Parameters to Library Procedures . 2-22
2.8.3 Return Status . 2-23
2.8.4 Function Return Values 2-23
2.8.5 Calling JSB entry points from BLISS . . 2-23

2.9 Calling a Library Procedure in BASIC .. 2-23

2.9.1 Calling Sequence Exam pl es . 2-24
2.9.2 Passing Parameters to Library Procedures . 2-24

2.9.2.1 BY VALUE. 2-25
2.9.2.2 BY REF 2-25
2.9.2.3 BY DESC. 2-25

2.9.3 Return Status . 2-25
2.9.4 Function Return Values 2-26

2.10 Calling a Library Procedure in COBOL. . 2-27

2.10.1 Calling Sequence Examples. 2-27
2.10.2 Passing Parameters to Library Procedures . . 2-29

2.10.2.1 BY VALUE. 2-30
2.10.2.2 BY REFERENCE . 2-30
2.10.2.3 BY DESCRIPTOR 2-30

2.10.3 Return Status . 2-30

2.11 Calling a Library Procedure in FORTRAN 2-31

2.11.1 Calling Sequence Examples. 2-32
2.11.2 Passing Parameters to Library Procedures . . 2-32

2.11.2.1 %VAL 2-33
2.11.2.2 %REF 2-33
2.11.2.3 %DESCR. 2-33

2.11.3 Return Status . 2-33
2.11.4 Function Return Values 2-34

2.12 Calling a Library Procedure in PASCAL 2-35

2.12.1 Calling Sequence Example . 2-35
2.12.2 Passing Parameters to a Library Procedure 2-36

2.12.2.1 %IMMED. 2-36
2.12.2.2 VAR. 2-36
2.12.2.3 %STDESCR 2-36
2.12.2.4 %DESCR. 2-36
2.12.2.5 Function and Procedure Names as Parameters 2-37

w

2.12.3 Return Status
2.12.4 Function Return Value .

. 2-37

. 2-38

Chapter 3 General Utility Procedures

3.1 Common Control Input and Output Procedures . .3-5

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8

3.1.9
3.1.10
3.1.11

Assign Channel with Mailbox.
Chain to Program
Execute Command
Get Line from SYS$INPUT. .
Get Line from FOREIGN Command Line .
Get String from Common . .
Get System Message
Listing Control

3.1.8.1 Currency Symbol
3.1.8.2 Digit Separator Symbol
3.1.8.3 Number of Lines per Line Printer Page.
3.1.8.4 Radix Point Symbol .

Put Line to SYS$0UTPUT .
Put String to Common
Translate Logical Name . . .

.. 3-7
.3-8
.3-8
.3-9
.3-11
.3-13
.3-13
.3-15

.3-16

. 3-17

.3-18

.3-19

. 3-20

. 3-21

. 3-22

3.2 Terminal Independent Screen Procedures. . 3-23

. 3-24

. 3-24

. 3-25

. 3-26

. 3-27

. 3-28

. 3-29

. 3-30

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11

Cursor Positioning on a Screen .
Screen Functions in Buffer Mode .
Erase Line
Erase Page
Get Screen Information .
Get Text from Screen .
Move Cursor Up One Line, Scroll Down if at Top
Put Current Buffer to Screen or Previous Buffer .
Put Text to Screen
Set/Clear Buffer Mode
Set Cursor to Character Position on Screen

. . 3-30
. 3-34
. 3-35

3.3 String Manipulation Procedures 3-35

3.3.1 String Conventions for LIB$, OTS$ and STR$ Facilities . 3-36
3.3.2 Character Oriented Procedures 3-37

3.3.2.1 Compare Two Strings 3-38
3.3.2.2 Compare Two Strings for Equal . 3-38
3.3.2.3 Locate a Character 3-39
3.3.2.4 Return Length of String as Longword Value. . 3-40
3.3.2.5 Return Relative Position of Substring. . 3-41
3.3.2.6 Scan Characters. . 3-43
3.3.2.7 Skip Characters. 3-44
3.3.2.8 Span Characters. 3-45
3.3.2.9 Transform Byte to First Character of String . 3-46
3.3.2.10 Transform First Character of String to Longword Value . 3-48

3.3.3 String Arithmetic Procedures

3.3.3.1 Add Two Decimal Strings . . .
3.3.3.2 Multiply Two Decimal Strings .

. 3-49

. 3-49

. 3-50

v

3.3.3.3 Reciprocal of a Decimal String. .3-51
3.3.3.4 Round or Truncate a Decimal String . .3-52

3.3.4 String Oriented Procedures . .3-53

3.3.4.1 Append a String. .3-54
3.3.4.2 Concatenate Two or More Strings .3-54
3.3.4.3 Copy a Source String to a Destination String . .3-55
3.3.4.4 Extract a Substring of a String. .3-59
3.3.4.5 Generate a String . . 3-61
3.3.4.6 Prefix a String .3-62
3.3.4.7 Replace a Substring . . 3-63
3.3.4.8 Trim Trailing Blanks and Tabs .3-65

3.3.5 Translate String Functions . .3-65

3.3.5.1 Move Translated Characters . .3-66
3.3.5.2 Move Translated Until Character . 3-67
3.3.5.3 Translate ASCII to EBCDIC . .3-68
3.3.5.4 Translate EBCDIC to ASCII . . 3-70
3.3.5.5 Translate Matched Characters . . 3-71
3.3.5.6 Uppercase Conversion . . 3-72

3.4 Formatted Input and Output Conversion Procedures . 3-73

3.4.1 Input Conversions . 3-74

3.4.1.1 Convert Text to Floating. . 3-74
3.4.1.2 Convert Text (Signed Integer) to Longword. . 3-76
3.4.1.3 Convert Text (Logical) to Longword . 3-77
3.4.1.4 Convert Text (Octal) to Longword . . 3-78
3.4.1.5 Convert Text (Hexadecimal) to Longword. . 3-79
3.4.1.6 Convert Text to Binary . 3-80

3.4.2 Output Conversions . 3-81

3.4.2.1 Convert Longword to Text (Signed Integer) . . 3-81
3.4.2.2 Convert Longword to Text (Logical) . 3-82
3.4.2.3 Convert Longword to Text (Octal) . 3-83
3.4.2.4 Convert Longword to Text (Hexadecimal). . 3-84
3.4.2.5 Convert Floating to Text. . 3-85

3.4.3 Convert Binary to Formatted ASCII . . 3-86

3.4.3.1 Formatted ASCII Output . 3-87
3.4.3.2 Formatted ASCII Output with List Parameter . 3-88

3.5 Variable Bit Field Instruction Procedures . . 3-88

3.5.1 Insert a Variable Bit Field . 3-89
3.5.2 Extract and Sign-Extend a Field . 3-90
3.5.3 Extract a Zero-Extended Field . 3-91
3.5.4 Find First Clear Bit . 3-92
3.5.5 Find First Set Bit . 3-93

3.6 Performance Measurement Procedures . 3-94

3.6.1 Free Timer Storage. . 3-94
3.6.2 Initialize Times and Counts. 3-95
3.6.3 Return Accumulated Times and Counts as a Statistic . 3-96
3.6.4 Show Accumulated Times and Counts. 3-97

3.7 Date/Time Utility Procedures 3-98

3.8

3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8

Convert Binary Date/rime to an ASCII String.
Return Month, Day, Year as INTEGER*2.
Return Month, Day, Year as INTEGER*4.
Return System Date as 9-Byte String .
Return System Time in Seconds
Return System Time as 8-Byte String ...
Return Day Number as a Longword Integer
Return System Date and Time as a String.

Miscellaneous Procedures

3.8.1 AST in Progress
3.8.2 Calculate Cyclic Redundancy Check (CRC)
3.8.3 Construct Cyclic Redundancy Check (CRC) Table .
3.8.4 Emulate VAX-11 Instructions. . . .
3.8.5 Multiple Precision Binary Procedures
3.8.6 Simulate Floating Trap.
3.8.7 Extended Multiply and Integerize Procedures .
3.8.8 Evaluate Polynomial Procedures
3.8.9 Queue Access Procedures

3.8.9.1 Queue Entry Inserted at Head .
3.8.9.2 Queue Entry Inserted at Tail. .
3.8.9.3 Queue Entry Removed at Head
3.8.9.4 Queue Entry Removed from Tail.

Chapter 4 Mathematics Procedures

4.1 The Mathematics Procedures

4.2

4.3

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Entry Point Names. .
Calling Conventions
Algorithms.
Error Handling. . . .
Summary of Mathematics Procedures .

Floating-Point Mathematical Functions

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14

Arc Cosine .. .
Arc Sine
Arc Tangent
Arc Tangent with Two Parameters
Common Logarithm
Cosine
Exponential . . .
Hyperbolic Cosine .
Hyperbolic Sine .
Hyperbolic Tangent
Natural Logarithm . .
Sine
Square Root .
Tangent

Complex Functions .

4.3.1 Absolute Value.
4.3.2 Conjugate of a Complex Number .

3-99
3-100
3-100
3-101

. 3-101
3-102

. 3-102
3-103

3-104

3-104
3-105

. 3-106
3-106
3-107
3-109
3-109
3-111
3-112

3-113
3-114
3-115

. 3-116

4-1

4-1
4-2
4-3
4-3
4-4

4-9

4-9
4-10
4-11
4-11
4-12
4-13
4-14
4-15
4-16
4-16
4-17
4-17
4-18
4-19

4-20

4-20
4-21

vii

4.3.3 Cosine.
4.3.4 Division of Complex Numbers
4.3.5 Exponential .
4.3.6 Imaginary Part of a Complex Number.
4.3.7 Make Complex from Floating-Point.
4.3.8 Multiplication .
4.3.9 Natural Logarithm .
4.3.10 Real Part of a Complex Number
4.3.11 Sine.
4.3.12 Square Root .

4.4 Exponentiation Code-Support Procedures.

4.4.1 D_floating Base .
4.4.2 G_floating Base .
4.4.3 H_floating Base .
4.4.4 Word Base.
4.4.5 Longword Base.
4.4.6 F_floating Base .

4.5 Complex Exponentiation Procedures

4.5.1 Complex Floating-Point Power
4.5.2 Signed Longword Integer Power .

4.6 Random Number Generators.

4.6.1 Uniform Pseudorandom Number Generator

4.7 Processor-Defined Mathematical Procedures

Chapter 5 Process-Wide Resource Allocation Procedures

5.1

5.2

5.3

5.4

um

Allocation of Virtual Memory

5.1.1 Static Storage
5.1.2 Stack Storage
5.1.3 Heap Storage
5.1.4 Use of System Services .
5.1.5 Allocate Virtual Memory in Program Region.
5.1.6 Deallocate Virtual Memory from Program Region
5.1.7 Fetch Virtual Memory Statistic.
5.1.8 Show Virtual Memory Statistics .

Logical Unit Allocation

5.2.1 Allocate One Logical Unit Number
5.2.2 Deallocate One Logical Unit Number

Event Flag Resource Allocation Procedures .

5.3.1 Allocate One Local Event Flag .
5.3.2 Deallocate One Local Event Flag
5.3.3 Reserve a Local Event Flag ..

String Resource Allocation Procedures .

5.4.1 Allocate One Dynamic String . .
5.4.2 Deallocate One Dynamic String .
5.4.3 Deallocate n Dynamic Strings. .

4-21
. 4-22
. 4-23

4-23
4-24
4-24
4-25

. 4-25
4-26
4-26

. 4-27

. 4-28

. 4-29

. 4-30

. 4-31

. 4-32

. 4-32

. 4-33

. 4-34

. 4-35

. 4-36

. 4-36

. 4-37

. 5-2

. 5-3

. 5-4

. 5-4

. 5-5

. 5-6

. 5-8

. 5-9

. 5-10

. 5-11

. 5-11
.. 5-12

. 5-12

. 5-13

. 5-13

. 5-14

. 5-14

. 5-16

. 5-19

. 5-21

Chapter 6 Slgnallng and Condition Handling Procedures

6.1 Summary of VAX-11 Condition Handling Facility
6.2 Exception Conditions

6.3

6.4

6.2.1 Condition Value
6.2.2 Hardware Processor Detected Exception Conditions
6.2.3 Language-Support Procedures Exception Conditions .
6.2.4 Mathematics Procedure Exception Conditions ..

6.2.4.1 Integer Overflow and Floating Overflow.
6.2.4.2 Floating Underflow

6.2.5 VAX-11 RMS and Executive Detected Errors

Establishing a Condition Handler

6.3.1 Establish a Condition Handler
6.3.2 Delete Handler Associated with Procedure Activation

Default Handlers

6.4.1
6.4.2
6.4.3
6.4.4

Trace back Handler .
Catch-All Handler .
Last-Chance Handler.
Using Default Handlers to Output Messages.

6.5 Overflow/Underflow Detection Enabling Procedures ..

6.5.1 Enable/Disable Decimal Overflow Detection .
6.5.2 Enable/Disable Floating-Point Underflow Detection
6.5.3 Enable/Disable Integer Overflow Detection. •.

6.6 Generating Signals

6.6.1
6.6.2
6.6.3
6.6.4

Signal Exception Condition . .
Stop Execution via Signaling .
Signaling Messages. .
Signal Argument List. . .

6. 7 Condition Handlers

6.7.1 Signal Argument Vector
6.7.2 Mechanism Argument Vector.
6. 7 .3 Restrictions for Accessing Data from Handlers .

6.8 Returning from a Condition Handler .

.. 6-2
.6-3

.6-5
. . 6-5

. 6-7

.6-7

.6-7

. 6-8

.6-8

.6-8

. 6-8

.6-10

.6-11

. 6-11

.6-11

.6-12

.6-12

. 6-12

.6-13

.6-13

.6-14

.6-15

.6-15

.6-18

.6-18

.6-19

.6-21

.6-22

.6-25

.6-27

.6-28

6.8.1 Resignaling 6-28
6.8.2 Continuing. 6-29
6.8.3 Request to Unwind 6-30
6.8.4 Summary of Interaction Between Handlers and Default Handlers. 6-33

6.9 User Logging of Error Messages

6.9.1 SYS$PUTMSG Put Message System Service
6.9.2 Caller-Supplied Action Subroutine

6.10 Signal Handling Procedures

6.10.1 Match Condition Values
6.10.2 Fixup Floating Reserved Operand.
6.10.3 Convert any Signal to a Return Status

6.11 Multiple Active Signals

.6-34

.6-34

. 6-35

.6-37

.6-37

.6-39

.6-42

.6-43

ix

Chapter 7 Syntax Analysis Procedures

7.1 LIB$TPARSE - A Table-Driven Finite-State Parser. . 7-1
7.2 Fundamentals of a Finite-State Parser . . 7-2
7.3 The Alphabet of LIB$TPARSE. . 7-3

7.3.1 'x' - Any Particular Character . 7-3
7.3.2 TP A$_ANY - Any Single Character 7-3
7.3.3 TPA$_ALPHA - Any Alphabetic Character. 7-3
7.3.4 TPA$_DIGIT - Any Numeric Character 7-3
7.3.5 TPA$_STRING - Any Alphanumeric String 7-3
7.3.6 TPA$_SYMBOL - Any Symbol Constituent String . 7-4
7.3.7 TPA$-13LANK - Any Blank String. . 7-4
7.3.8 TPA$_DECIMAL - Any Decimal Number . 7-4
7.3.9 TPA$_0CTAL - Any Octal Number. . 7-4
7.3.10 TPA$-8EX - Any Hexadecimal Number. 7-4
7.3.11 'keyword' - A Particular Keyword String . 7-4
7.3.12 TPA$_LAMBDA - The Empty String . 7-5
7.3.13 TP A$_EOS - End of Input String . 7-5
7.3.14 !label - Complex Subexpression. 7-5

7.4 Coding a State Table in Macro. 7-5

7.4.1 $!NIT _STATE - Initialize the TPARSE Macros 7-5
7.4.2 $STATE - Define a State . 7-6
7.4.3 $TRAN - Define a State Transition. 7-6
7.4.4 $END_STATE - End the State Table . 7-8

7.5 Coding a State Table in BLISS 7-8

7.5.1 $INJT_STATE - Initialize the TPARSE Macros 7-8
7.5.2 $STATE - Declare a State . . 7-9
7.5.3 $TRAN and $END_STATE . 7-9
7.5.4 BLISS Coding Considerations. . 7-9

7.6 Calling LIB$TP ARSE . . 7-10

7.6.1 The LIB$TP ARSE Parameter Block. . 7-11
7.6.2 Interface to TPARSE Action Routines. 7-13

7.7 LIB$TP ARSE State Table Processing . 7-14
7.8 Blanks in the Input String. . 7-15
7.9 Abbreviating Keywords . 7-16
7.10 Using Subexpressions . . 7-17

7.10.1 Use of Subexpressions and Transition Rejection . 7-18
7.10.2 Using Subexpressions to Parse Complex Grammars . 7-19

7.11 State Table Object Representation . . 7-20
7.12 LIB$LOOKUP _KEY - Scan Keyword Table . 7-23

Chapter 8 Cross-Reference Procedures

8.1 Introduction. . 8-1
8.2 Cross-Reference Output . . 8-2
8.3 Table Initialization Macros . 8-4

8.3.1 $CRFCTLTABLE Macro. . 8-4
8.3.2 $CRFFIELD Macro . 8-5

x

8.3.2.1 Flag Usage

8.3.3 $CRFFIELDEND Macro

8.4 Entry Points to Cross-Reference Procedures.

8.5

8.6

8.4.1
8.4.2

8.4.3
8.4.4

Insert Key Entry Point - LIB$CRF -1NS_KEY
Insert Reference Entry Point - LIB$CRF -1NS_REF . .

8.4.2.1 Using LIB$CRF-1NS-REF to Insert a Key

Output Entry Point - LIB$CRF_OUTPUT
Synopsis by Value

User Example

8.5.1 Control Table Initialization.
8.5.2 Sample Calls.

8.5.2.1 Symbol Processing.
8.5.2.2 Output

How to Link the Cross-Reference Sharable Image ..

Appendix A Summary of Run-Time Library Entry Points

A.l Summary of Procedure Parameter Notation.
A.2 General Utility Procedures .

A.2.1 Common Control Input/Output Procedures
A.2.2 Terminal Independent Screen Procedures
A.2.3 String Manipulation Procedures.
A.2.4 Formatted Input Conversion Procedures .
A.2.5 Formatted Output Conversion Procedures .
A.2.6 Variable Bit Field Instruction Procedures
A.2.7 Performance Measurement Procedures.
A.2.8 Date/Time Utility Procedures .
A.2.9 Miscellaneous General Utility Procedures

A.3 Mathematics Procedures.

A.3.1 Floating-Point Mathematical Functions .
A.3.2 Complex Functions.
A.3.3 Exponentiation Procedures .
A.3.4 Complex Exponentiation Procedures.
A.3.5 Random Number Generators .
A.3.6 Floating/Integer Conversion Procedures
A.3.7 Miscellaneous Functions

A.4 Resource Allocation Procedures.

A.4.1 Dynamic Allocation of Virtual Memory Procedures.
A.4.2 String Resource Allocation Procedures .

A.5 Signaling and Condition Handling Procedures.

A.5.1 Establishing a Condition Handler .
A.5.2 Enable/Disable Hardware Conditions
A.5.3 Signal Generators
A.5.4 Signal Handlers

A.6 Syntax Analysis Procedures' .

.8-5

.8-6

.8-6

.8-6
.. 8-7

.. 8-8

.8-9

.8-10

.8-10

.8-10

.8-12

.8-12

.8-13

.. 8-14

A-1
A-3

. A-3
A-4
A-5
A-7
A-8
A-9
A-9
A-9
A-10

A-11

A-11
A-14

. A-16
A-16
A-17
A-17

. A-19

A-21

A-21
A-22

A-23

. A-23

. A-23

. A-23

. A-23

. A-23

xi

A.7 Cross-Reference Procedures A-24

Appendix B Run-Time Library Error Messages

B.1 Introduction.
B.2 The Error Signaling Sequence
B.3 Exceptions
B.4 Error Message Descriptions .
B.5 General Library Return Status Condition Values
B.6 Mathematical Procedures Runtime Errors
B.7 Language-Independent Errors ...
B.8 String Procedures Run-Time Errors
B.9 Hardware Trap Conditions.

. B-1

. B-1

. B-2

. B-3

. B-4

. B-7

. B-9

. B-10

. B-11

Appendix C Vax-11 Procedure Calling and Condition Handling Standard

XU

C.l Calling Sequence
C.2 Argument List

C.2.1 Argument List Format
C.2.2 Argument Lists and High-Level Languages
C.2.2.1 Order of Argument Evaluation
C.2.2.2 Language Extensions for Argument Transmission

C .3 Function Value Return
C.4 Condition Value

C.4.1 Interpretation of Severity Codes.
C.4.2 Use of Condition Values

C.5 Register Usage
C.6 Stack Usage.
C.7 Argument Data Types ...

C.7.1 Atomic Data Types.
C.7.2 String Data Types .
C.7.3 Miscellaneous Data Types
C.7.4 COBOL Intermediate Temporary Data Type.

C.8 Argument Descriptor Formats

C.8.1 Descriptor Prototype
C.8.2 Scalar, String Descriptor (DSC$K_CLASS_S) .
C.8.3 Dynamic String Descriptor (DSC$K_CLASS_D) .
C .8.4 Varying String Descriptor.
C.8.5 Array Descriptor (DSC$K_CLASS_A)
C.8.6 Procedure Descriptor (DSC$K_CLASS_p)
C.8.7 Procedure Incarnation Descriptor (DSC$K_CLASS_pl).
C.8.8 Label Descriptor (DSC$K_CLASS_J)
C.8.9 Label Incarnation Descriptor (DSC$K_CLASS_JI) ...
C.8.10 Decimal Scalar String Descriptor (DSC$K_CLASS_SD)
C.8.11 Non-Contiguous Array Descriptor (DSC$K_CLASS_NCA)
C.8.12 Reserved Descriptors .

C.9 VAX-11 Conditions

C.9.1 Condition Handlers.
C.9.2 Condition Handler Options .

C.10 Operations Involving Condition Handlers .

. C-4

. C-4

. C-4

. C-5

. C-5

. C-6

. C-6

. C-7

. C-9

. C-10

. C-10

. C-11

. C-12

. C-12

. C-14

. C-14

. C-15

. C-15

. C-16

. C-16

. C-16

. C-17

. C-17

. C-19

. C-20

. C-20

. C-20

. C-20

. C-20

. C-23

. C-23

. C-23

. C-24

. C-25

C.10.1 Establish a Condition Handler .
C.10.2 Revert to the Caller's Handling .
C.10.3 Signal a Condition

C.11 Properties of Condition Handlers. . . .

C.11.1 Condition Handler Parameters and Invocation.
C.11.2 Use of Memory
C.11.3 Returning from a Condition Handler
C.11.4 Request to Unwind.
C.11.5 Signaler's Registers.

C.12 Multiple Active Signals
C.13 Change History

Appendix D Algorithms for Mathematics Procedures

D.1 Floating Mathematical Functions

D.1.1 Arc Cosine ..
D.1.2 Arc Sine
D.1.3 Arc Tangent
D.1.4 Arc Tangent with Two Parameters
D.1.5 Common Logarithm
D.1.6 Cosine
D .1. 7 Exponential . . .
D.1.8 Hyperbolic Cosine
D.1.9 Hyperbolic Sine .
D.1.10 Hyperbolic Tangent
D.1.11 Natural Logarithm .
D.1.12 Sine.
D .1.13 Square Root . . .
D.1.14 Tangent

D.2 Exponentiation Functions

D.2.1 Floating Base to Floating Power.
D.2.2 Floating Base to Integer Power
D.2.3 Integer Base to Integer Power. .

Appendix E Image Initialization and Termination

E.1 Image Initialization
E.2 Initialization Argument List
E.3 Declaring Initialization Procedures .
E.4 Dispatching to Initialization Procedures
E.5 Initialization Procedure Options
E.6 Image Termination

Appendix F CALLG, CALLS Instructions

F .1 CALLG Instruction
F .2 CALLS Instruction

C-25
C-26
C-26

C-28

C-28
. C-29

C-29
C-30
C-31

C-31
C-33

.D-1

.D-1

.D-2

.D-2

.D-5

.D-6

.D-6

.D-6

.D-8

.D-8

.D-10

.D-11

.D-12

.D-15

.D-18

.D-19

.D-19

.D-21

.D-22

E-1
E-3
E-4
E-5
E-5
E-6

F-1
F-2

xm

Appendix G Sample Programs Using LIB$TPARSE

Figures

Tables

xw

G.1 Sample MACRO Program Using LIB$TPARSE.
G.2 Sample BLISS Program Using LIB$TPARSE ..

.G-1

.G-6

1-1 Development of a Program that Calls the Run-Time Library . . 1-3
1-2 The VAX-11 Run-Time Procedure Library . . . 1-5
2-1 Calling the Run-Time Library 2-2
2-2 Procedure Parameter Passing Mechanisms . . 2-9
6-1 Sample Stack Scan for Condition Handlers . . . 6-6
8-1 Producing a Cross-Reference Listing 8-2
8-2 Summary of Symbol Names and Values . . . 8-2
8-3 Summary of Symbol Names, Values, and Names of Referring Modules . . 8-3
8-4 Summary Indicating Defining Module . . . 8-3
8-5 Argument List for Entering a Key 8-7
8-6 Argument List for Entering a Reference. 8-7
8-7 Argument List for Output of Cross-Reference. . . . 8-9
B-1 Sample Dialogue of the HELP ERROR Command .. B-3
E-1 Sequence of Events during Image Initialization . . . E-3
F -1 CALLG Instruction Sequence . F-1
F-2 CALLS Instruction Sequence. ·F-3

2-1 String Passing Techniques Used by the Run-Time Library
2-2 Valid Run-Time Library Parameter Passing Mechanism.
2-3 Function Return Values in BASIC ..
2-4 Function Return Values in FORTRAN
2-5 Function Return Values in PASCAL
3-1 General Utility Procedures .
4-1 Mathematics Procedures
4-2 Exponentiation Procedures.
4-3 Complex Exponentiation Procedures
4-4 Miscellaneous Mathematical Functions.
5-1 Process-Wide Resource Allocation Procedures .
5-2 LIB$, OTS$, & STR$ Parameter Passing Conventions . .
6-1 Signaling and Condition Handling Procedures. . . .
6-2 Interaction Between Handlers and Default Handlers.
7-1 String Syntax Procedures
C-1 Interaction Between Handlers and Default Handlers.

. 2-16

. 2-17

. 2-27

. 2-35

. 2-38
. . 3-1

. 4-4

. 4-27
.. 4-33

. 4-37
. . 5-1
.. 5-16

. 6-3
. . 6-34

. 7-1

. C-27

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-11 Text Management System.

036ALL

Preface

Document Objectives

The VAX-11 Run-Time Library comprises two types of procedures: general
purpose and language-support. This manual introduces the entire library and
describes the callable interface to the general utility procedures. The VAX-11
Guide to Creating Modular Library Procedures describes how to write modu­
lar procedures.

This manual introduces the library, describes the calling and naming conven­
tions, and presents all procedures of a general nature. Each procedure is
documented with a functional description including algorithms and examples,
where appropriate, and instructions for access in all V AX-11 supported
languages.

Intended Audience

This manual is intended for system and application programmers who are
already familiar with VAXNMS system concepts but require a detailed
knowledge of the Run-Time Library. Readers are assumed to be familiar with
the V AXNMS operating system, and proficient in a language supported by
VAXNMS.

Document Structure

The first two chapters of this manual are tutorial, providing an overview of
the Run-Time Library.

• Chapter 1 is an introduction to the library, detailing how it can be used and
how it is organized.

xv

• Chapter 2 explains how to call library procedures and describes the naming
conventions and procedure parameters.

Chapters 3 through 8 contain reference material, providing detailed descrip­
tions of each library procedure:

• Chapter 3 describes the general utility procedures.

• Chapter 4 contains the mathematics procedures.

• Chapter 5 details the resource allocation procedures.

• Chapter 6 presents the signaling and condition handling procedures, and
information on how you can control the handling of error conditions and the
printing of error messages by writing your own condition handlers.

• Chapter 7 describes syntax analysis procedures.

• Chapter 8 describes cross-reference procedures.

The appendixes provide useful background information:

• Appendix A lists all general purpose entry points in the Run-Time Library,
including coding information for the parameters.

• Appendix B lists all error messages and condition symbols returned from or
signaled by library procedures.

• Appendix C is the VAX-11 Procedure Calling Standard.

• Appendix D contains algorithms for the mathematics procedures.

• Appendix E explains image initialization and termination and how users
can control them.

• Appendix F explains in detail the operation of CALLS and CALLG
instructions.

• Appendix G contains detailed MACRO and BLISS examples using the syn­
tax analysis procedures.

Associated Documents

xvi

The following document in association with this manual comprise the
VAX-11 Run-Time Library Documentation:

• VAX-11 Guide to Creating Modular Library Procedures

The following documents are associated with this manual:

• VAX-11 MACRO User's Guide

• VAX-11 MACRO Language Reference Manual

• VAX-11 BLISS-32 User's Guide

• BLISS Language Guide

• VAX-11 BASIC User's Guide

• VAX-11 BASIC Language Reference Manual

• VAX-11 COBOL-74 User's Guide

• VAX-11 COBOL-74 Language Reference Manual

• VAX-11 FORTRAN User's Guide

• VAX-11 FORTRAN Language Reference Manual

• VAX-11 PASCAL User's Guide

• VAX-11 PASCAL Language Reference Manual

• VAX/VMS System Services Reference Manual

For a complete list of all VAX-11 documents, including brief descriptions of
each, see the VAX-11 Information Directory.

Conventions

Unless otherwise noted:

• all numeric values are represented in decimal notation

• all commands terminate with a carriage return

Variable information is indicated by lowercase characters; literal information,
which you must enter exactly as shown, is indicated by uppercase characters.

Brackets ([]) in procedure descriptions indicate optional arguments. An equal
sign after an optional parameter indicates the default value if you omit the
parameter.

Ellipses (...) indicate parameters that can be repeated one or more times.

Unless otherwise specified, the term:

•MACRO means VAX-11 MACRO

• BLISS means BLISS-32

•BASIC means VAX-11 BASIC

•COBOL means VAX-11 COBOL-74

•FORTRAN means VAX-11 FORTRAN

•PASCAL means VAX-11 PASCAL

• Run-Time Library means VAX-11 Common Run-Time Procedure Library

• Linker means V AX-11 Linker

xvii

Summary of Technical Changes

xviii

This manual documents the VAX-11 Run-Time Library Reference Manual
Version 2.0. This section summarizes the technical changes from Version 1.0.

Languages
Added examples and instructions for calling Run-Time Library procedures
from BASIC, COBOL, and PASCAL.

Miscellaneous
Chapters 3,4 and 5 have been rearranged and restructured to accommodate
the many new procedures. Appendices A and D have correspondingly been
reordered. See the Index for an enumeration of the procedure names.

General Utility Procedures
Added new procedures for performance measurement, VO control, interlocked
queue instructions, formatted I/O conversion, terminal independent screen
functions, emulate G_floating, H_floating, and 0 (octaword) instructions,
simulate floating traps on machines which have floating faults, date/time
utility procedures, translation tables and routines.

String Facility
Added new STR$ facility with string arithmetic and many additional string
manipulation procedures (see Chapters 3 and 5). This facility has:

• CALL entry points, with scalar arguments passed by reference

• JSB entry points, with scalar arguments passed by immediate value

• Support for all string data types specified in the VAX-11 Procedure Calling
Standard

• Mechanism for being called directly from higher-level languages

Math Library
Added G_ and H_ floating mathematical functions and D_ and
G_complex mathematical routines. Added a new JSB entry point
(MTH$SQRT-R3) to improve the accuracy of the single-precision
square root. Other JSB entry points (MTH$ACOS-R4, MTH$ASIN-R4,
MTH$DACOS-R7, MTH$DASIN-R7, MTH$DEXP-R6) have been im­
proved so they use fewer registers without impacting execution speed.

FLOOR routines were added which return a truncated (towards minus infin­
ity) integer part of a number in a floating-point representation. SGN routines
were added which return -1, 0, or 1 depending on the sign of the floating-point
input.

Resource Allocation
Added new routines for allocation of dynamic strings, event flags, and logical
unit numbers.

Syntax Analysis
Added a new example in BLISS and moved both examples (MACRO and
BLISS) to a new Appendix G.

Cross-ref ere nee
Added Chapter 8 which contains instructions and examples for using the
cross-reference procedures.

Error messages
Added new error messages for LIB$, MTH$ and STR$ and removed the FOR$
messages. The FOR$ error messages are in the VAX-11 FORTRAN User's
Guide.

VAX-11 Procedure Calling Standard
Appendix Chas been updated with many new data types and other features.
A complete revision history can be found at the end of the appendix.

Algorithms
Added new algorithms for G_ and H_floating math functions and for
D_ and G_complex math procedures.

USER OPEN
The appendix on USEROPEN has been removed. The old Appendix G
(detailing CALLS and CALLG) is now Appendix F.

All chapters and appendixes have been revised to bring this manual up to the
V AXNMS V2.0 level.

xix

Chapter 1
Introduction

The VAX-11 Run-Time Library (or simply, the Run-Time Library) contains
sets of general purpose and language support procedures. MACRO, BLISS, or
high-level language user programs call these procedures in any combination to
perform tasks required for program execution. Because all procedures follow
the VAX-11 Modular Programming Standard, a common run-time environ­
ment is provided for user programs.

The common run-time environment means that any program written in
MACRO, BLISS, or a supported high-level language (BASIC, COBOL,
FORTRAN, PASCAL) can call any procedure in the Run-Time Library. This
environment lets your program contain procedures written in different lan­
guages, thus increasing program flexibility.

A procedure is a set of related instructions that performs a particular task. It
is an executable program unit, and can be a main program, subroutine, or
function. A procedure has an entry point, a parameter (or argument) list, a
return point, and, optionally, a function value or completion status.

Run-Time Library procedures are written using the V AX-11 Procedure
Calling Standard. They are reentrant and position-independent. In addition,
VAXNMS system services are callable procedures that can be used
with Run-Time Library procedures. (See the VAX/VMS System Services
Reference Manual.)

1.1 Run-Time Library Capabilities

The Run-Time Library provides the following capabilities:

• Language-independent support procedures that perform common language
services only once, rather than once for each language.

• Compiler-generated procedures written in any language that can be called
from procedures written in any other language. Each procedure can use its

1-1

language-specific features fully without affecting other procedures. In cer­
tain cases, one language can use some of the features of the other languages.

• File, data type, and procedure-call compatibility between the languages
supported by VAXNMS. File and error handling compatibility between the
VAX-11 and the 16-bit PDP-11 is also provided.

• Capability to add new languages.

• File input/output (I/0) that interfaces solely with VAX-11 Record Manage­
ment Services (RMS).

• For each VAX-11 native-mode language, the ability of the Run-Time
Library to produce files compatible with files produced by the correspond­
ing PDP-11 and VAX-11 compatibility-mode language.

• The ability for each VAX-11 native-mode language to process files pro­
duced by programs written in other languages.

• Use of all procedures from both the Asynchronous System Trap (AST) and
nonAST levels in the same image (two levels maximum). Thus, all proce­
dures are reentrant.

1.2 Linking with the Run-Time Library

Figure 1-1 shows the program development cycle for a user program that calls
the library.

The Run-Time Library is part of the system library automatically searched
when user programs are linked. Run-Time Library procedures execute en­
tirely in user mode and work only when called by native-mode user programs.

Normally, the image activator incorporates sections of the Run-Time Library
into an executable image at run time when you type the RUN command. You
can also link copies of procedures from the library directly to your image by
typing the LINK command with the /INCLUDE qualifier.

When a user program calls the Run-Time Library, the program refers to a
storage location in the library that points to the starting address of the proce­
dure to be executed. This storage location is called a transfer vector.

Transfer vectors permit a single, position-independent copy of the library
procedure to be associated with different virtual addresses in the user images
sharing the procedures. This is done by allocating a global section to the
Run-Time Library to make it a sharable image.

1-2 Introduction

Figure 1-1: Development of a Program that Calls the Run-Time Library

Interactive Input

Editor

Language
Translator

or

Assembler

filenam. LIS

Linker

filenam.MAP

Note: A sharable image
is brought into physical
memory only if the
executable image that
requires it is the first-time
use known to the image
activator.

Source
Module(s)

filenam.XXX

Object
Module(s)

filenam.OBJ

Executable
lmage(s)

filenam.EXE

RUN filenam.EXE

USER PROCESS

Executable
Image

r-----,
I Common Run-Time I
I Procedure I
L

Library ____ J

Procedure
Library

Files
LIB$
MTH$
STA$
OTS$
BAS$
COB$
FOR$
PAS$

Program
Output

Edit Time
Program is
entered & edited

Compile Time
Edited program
is translated into
an object file.

Link Time
The appropriate
library entry points
are made known
to the object module
to form an executable
image;
virtual space is
reserved in the
image for the procedure
to execute

Run Time
With the executable
image aware of the
proper addresses of
the relevant library
procedures in its
virtual address
space, the
image
can call library
procedures at
run time

Introduction 1-3

The sharable image is mapped into the address space of an executable image,
which is in tum activated by the RUN command. At run time, a call instruc­
tion in the user program passes control to a transfer vector that in turn
branches to the called library procedure. This mechanism lets many users
share the same image: the procedure's code can be in different places in
several users' address space simultaneously.

The transfer vectors and the mapping of global sections into a process's ad­
dress space at run time also permit a new version of the library to be installed
without relinking the user images. This is possible because the location of
transfer vectors remains the same- only their contents change for each new
version.

1.3 Library Calling Conventions

The Run-Time Library conforms to the V AX-11 Procedure Calling Standard
(see Appendix C). Therefore, its procedures can be called by all native-mode
languages. Chapter 2 describes the explicit calls you can use to any procedure.

Each procedure has a call entry point. Frequently used procedures also have a
jump-to-subroutine (JSB) entry point. JSB instructions execute faster than
call instructions, but they have some limitations: for example, they do not
create a stack frame, and thus execute in the environment of the caller.

Each procedure belongs to a library facility, which is a set of related proce­
dures. Each procedure's facility is indicated by a four-character prefix to the
procedure's name. For example, the MTH$SIN procedure belongs to the
mathematics facility, as indicated by MTH$. Each facility has its own error
messages, parameter passing mechanisms, and specific parameter forms. The
facilities currently in the library are:

• LIB$ - General purpose procedures such as utility, resource allocation,
signaling and condition handling

• MTH$ - Mathematics procedures

• STR$ - String manipulation procedures

• OTS$ - Language-independent support procedures

• BAS$ - BASIC-specific support procedures

• COB$ - COBOL-specific support procedures

• FOR$ - FORTRAN-specific support procedures

• PAS$ - PASCAL-specific support procedures

To execute properly, each library procedure requires you to supply parame­
ters. Each parameter must be of the data type and form required by the
procedure and must be passed in the proper order by the correct mechanism.
For many procedures, some of the parameters are optional. You can select
your own parameter names, but you must code them as outlined in Chapter 2.

1-4 Introduction

Some procedures return a completion value or a function value. Procedures
called from a high-level language receive this as the value of the function.
Procedures called in assembly language (MACRO) can access this value in
register RO or RO/Rl.

Some procedures allocate image resources (for example virtual memory). Any
library procedure that needs such resources automatically calls the necessary
library resource allocation procedures. Your programs should also call these
procedures when they need image resources.

1.4 Organization of the Run-Time Library

Figure 1-2 illustrates the organization of the Run-Time Library. The library
consists of two major parts: general purpose procedures and language support
procedures. General purpose procedures are documented in Chapters 3
through 8. Appendix A of this manual summarizes these Run-Time Library
entry points.

Figure 1-2: The VAX-11 Run-Time Procedure Library

MATHEMATICS PROCESS-WIDE SIGNALING
GENERAL PROCEDURES RESOURCE &
UTILITY MTH$ ALLOCATION CONDITION

PROCEDURES OTS$ PROCEDURES HANDLING
LIB$
STA$
OTS$

LIB$ PROCEDURES
STA$ LIB$
OTS$

GENERAL PURPOSE

LANGUAGE-INDEPENDENT
SUPPORT PROCEDURES

(COMMON TO MORE THAN
ONE NATIVE-MODE

LANGUAGE)
OTS$

LANGUAGE -SPECIFIC
SUPPORT PROCEDURES

• COMPILED CODE SUPPORT
• FILE PROCESSING
•FORMAT PROCESSING
• 1/0 PROCESSING

BAS$
COB$
FOR$
PAS$

LANGUAGE SUPPORT

SPECIAL
APPLICATION
PROCEDURES

LIB$

Introduction 1-5

1.4.1 General Purpose Procedures

The following sections summarize general purpose procedures. Normally, user
programs call these procedures using explicit CALL statements or function
references (see Chapter 2).

1.4.1.1 General Utility Procedures - General utility procedures include pro­
cedures for getting a record from a logical device, string manipulation, input
and output conversion, and date/time functions.

Chapter 3 details these procedures.

1.4.1.2 Mathematics Procedures - Mathematics procedures perform com­
mon arithmetic, algebraic, and trigonometric functions; for example, taking
the sine of an angle. They are written in MACRO to use the speed and
accuracy of the VAX-11 floating-point instructions. The frequently used
mathematics procedures have both JSB and standard call entry points.

Chapter 4 details these procedures.

1.4.1.3 Resource Allocation Procedures - Resource allocation procedures
allocate the following process resources:

• Virtual memory - one procedure to allocate and another to deallocate
arbitrary sized blocks of the program region

• VMS event flags - one procedure to allocate and another to deallocate
event flags

• BASIC/FORTRAN logical unit numbers - one procedure to allocate and
another to deallocate logical unit numbers

• Character strings - procedures to copy and convert both fixed length and
dynamic strings; procedures to allocate and deallocate dynamic strings

Chapter 5 details these procedures.

1.4.1.4 Signaling and Condition Handling Procedures - Signaling and condi­
tion handling procedures signal exception conditions and support condition
handlers so that you can control errors and change system default responses.
Specifically, the signaling and condition handling procedures let you:

• Communicate errors between user programs, the Run-Time Library, and
VAXNMS

• Alter the default condition handling mechanisms, including the printing of
error messages

• Establish and write special condition handlers to correct, report, and con­
trol errors

1-6 Introduction

• Enable and disable hardware traps

• Establish and remove condition handlers associated with a procedure
activation

Chapter 6 details these procedures.

1.4.1.5 Syntax Analysis Procedures - Syntax analysis procedures analyze
strings. The library includes a table-driven parser called LIB$TPARSE, and a
keyword recognizing procedure called LIB$MATCH_KEY.

Chapter 7 details these procedures.

1.4.1.6 Cross-Reference Procedures - The cross-reference procedures are
contained in a separate sharable image. They can create a cross-reference
analysis of symbols. The procedures accept cross-reference data, summarize
it, and format it for output. The interface to the cross-reference procedures is
through a set of control blocks and format definition tables.

Chapter 8 details these procedures.

1.4.2 Language Support Procedures

Language support procedures are generally called implicitly by compiler­
generated code, as a result of a statement in the higher-level language. The
language support procedures consist of:

• Procedures that support a specific language compiler

• Procedures that support more than one native-mode language compiler

1.4.2.1 Language-Specific Procedures - The language-specific procedures
support the in-line code generated by the language compilers. Some language­
specific procedures are of general utility such as input/output conversion and
date/time. For example, to perform a Language A function from a Language B
program, you may find it easier to write a short Language A procedure to
perform the function, and to call that procedure from your Language B pro­
gram. Chapter 3 documents language-specific procedures, which generally
include:

• File processing support procedures

• Auxiliary input/output procedures

• System procedures

• Compiled-code support procedures

• Compatibility procedures

Introduction 1-7

1.4.2.2 Language-Independent Support Procedures - Language-independ­
ent support procedures consist of all procedures used by more than one native­
mode language compiler. These include:

• Initialization and termination procedures

• Error and exception condition procedures

• Data type conversion procedures

1.5 Procedure Descriptions

Chapters 3 through 8 describe each library procedure. Sections in these chap­
ters are arranged by major category (for example, Performance Measurement
Procedures). Each section presents the procedures in related groups or alpha­
betically by functional description. In addition, Appendix A summarizes the
procedure names and calling sequences.

Each procedure description consists of the following categories, as applicable:

Format

Shows the high-level language format of the procedure, giving the proce­
dure name and parameter order. JSB entry points (if any) are also listed.

Parameters

Describes each parameter. A parameter to the left of the entry point name
in the format is written by the procedure; parameters to the right are read
and sometimes written by the procedure. For example:

old-setting = LIB$FLT _UNDER (new-setting)

In this call, the procedure writes old-setting and reads new-setting.

In the format, required input parameters occur first, followed by required
output parameters (if any). Required input and output parameters are
followed by optional input and output parameters.

Function Value

Library procedures return: (1) nothing (a subroutine) (2) a function value
or (3) a return status that indicates whether the procedure completed
successfully.

In case (1), the format begins with CALL No function value or status
code is returned, and the contents of registers RO/Rl are unspecified at
completion.

In case (2) or (3), the parameter to the left of the equal sign is either: (a) a
descriptive name indicating the nature of the function value returned in
RO or RO/Rl, or (b) ret-status indicating a return status in RO.

1-8 Introduction

Function values follow the parameters.

lmpllclt Inputs (JSB Entry)

Includes any parameters passed in registers for JSB entries.

lmpllclt Outputs (JSB Entry)

Includes any parameters passed in registers for JSB entries.

Return Status

Lists the possible completion codes that the procedure returns in register
RO or RO/Rl. The successful returns are listed first, in alphabetical order,
followed by error return status codes, also in alphabetical order. Success­
ful completion (bit 0 = 1) is always shown by "procedure successfully
completed." If an error status is returned, the severity field of the condi­
tion value is always SEVERE (bits 2:0 = 4) unless ERROR (bits 2:0 = 2) or
WARNING (bits 2:0 = 0) is the f~rst word of the explanation.

Messages

Lists the error messages produced when procedures signal error conditions.
Unless stated otherwise, all error messages are signaled as SEVERE by
calling LIB$STOP.

Notes

Describes any actions taken or side effects performed by the procedure
that are not covered under one of the other headings. When an action is
identical for all procedures in a given library facility, the action is listed in
the chapter introduction only.

Examples

Gives a simple example(s) using the procedure in a short program segment
to clarify the passing mechanisms in the various languages.

Introduction 1-9

Chapter 2
Calling Run-Time Library Procedures

User programs call Run-Time Library procedures using the VAX-11 Proce­
dure Calling Standard (see Appendix C). All of the programming languages
that generate VAX-11 native-mode code provide mechanisms for coding the
procedure calls. Sections 2.2 through 2.6 describe general aspects of calling
procedures on VAXNMS. Sections 2.7 through 2.12 describe how to call
library procedures using MACRO, BLISS, BASIC, COBOL, FORTRAN and
PASCAL.

When you code instructions to call a library procedure, you must furnish
whatever parameters the procedure requires.

When the procedure completes execution, it returns control to the calling
program. If the procedure returns a status code, the calling program should
analyze the code to determine the success or failure of the procedure so it can,
if necessary, change the flow of execution.

2.1 How to Call Library Procedures

A process is created when you log in and exists until you log out. Each time
you run a program, V AXNMS activates an executable image in your process
that contains the program to be executed. The program consists of user proce­
dures, one of which is the main program. The term "main program" or "main
procedure" refers to the first user program or procedure called after image
initialization. However, before the main program or main procedure is called,
V AXNMS calls a number of initialization procedures. (See Appendix E for
more information on initialization procedures.)

Figure 2-1 shows the calling relationship among a main program, user proce­
dures, library procedures, and V AXNMS. In this figure, "CALL" indicates a
request for information or for some action; "RETURN" indicates that the
information requested was returned to the caller, or that the action requested
was performed.

2-1

User procedures can call both other user procedures and library procedures.
From the point of view of the library, user procedures are procedures outside
the library that can call the library. User procedures can be DIGITAL sup­
plied, such as a compiler or a utility, or they can be customer written. Th.e
term "user program" refers to all of one user's procedures, including the main
program.

Figure 2-1: Calling the Run-Time Library

OPERATING SYSTEM

'-+----~-- -------

CALL RETURN

•
I I

<> LIBRARY I
I PROCEDUR~I
I - "----------------··-· L ...
' CALL RETURN

MAIN PROGRAM
(A USER PROCEDURE)

CALL RETURN

Library procedures can call other library procedures or VAXNMS; however,
they cannot call user procedures except in the following instances:

• When initialization is required before the main program gets control (see
Appendix E)

• When users establish their own condition handlers (see Chapter 6)

• When a user •procedure passes the address of a procedure as a parameter to
the library to be called later by the library

2.2 Call Summary

Each procedure requires a specific calling sequence, as shown in the format
section of each procedure description in Chapters 3 through 8. A calling se­
quence takes the general form of:

• Call type

• Library facility prefix

• Procedure name

• Parameter list

2-2 Calling Run-Time Library Procedures

• The MACRO calling sequences are:

CALLS
CALLG
JSB

#n,fac$procedure-name
parameter-list, fac$procedure-name
fac$procedure-name

Section 2. 7 provides a complete explanation of how to code calls to library
procedures using MACRO. Some examples of MACRO calls are:

CALLS
CAL LG
JSB

#2tGALIB$GET_INPUT
ARGLSTtGALIB$GET_VM
MTH$SIN_Rt.l

• The FORTRAN calling sequences are:

CALL statement
function reference

fac$procedure-name
fac$procedure-name

(parameter-list)
(parameter-list)

Section 2.11 provides a complete explanation of how to code calls to library
procedures using FORTRAN. Some examples of FORTRAN calls are:

CALL LIBSMOVTC <SRCt FILLt TABLEt DEST>
STATUS = LIBSGET_INPUT <STRINGt 'NAME:')

As these calling sequences and examples show, the call forms vary from lan­
guage to language. For example, MACRO does not distinguish between func­
tions and subroutines in its CALLS and CALLG instructions, and higher-level
languages provide no explicit JSB call form. In addition, some procedures
provide both call (CALLS/CALLG) and JSB entry points.

Each procedure is identified by a unique entry point name, consisting of the
library facility prefix (LIB$, MTH$, etc.) plus the procedure name, (for exam­
ple, MTH$SIN). Section 2.3 provides more detailed information on library
naming conventions.

Parameters passed to a procedure must be coded in the order shown in the
descriptions in Chapters 3 through 8. Each parameter has four characteristics:
access type, data type, passing mechanism, and parameter form (see
Appendix A).

The access types include:

• Function call (before return)

• JMP (after unwind) access

• Modify (Read and Write) access

• Read-only access

• Write-only access

The data types include:

• Absolute virtual address

• Bit (variable bit field)

Calling Run-Time Library Procedures 2-3

• Byte integer (signed)

• Byte logical (unsigned)

• F _floating complex

• D_floating complex

• G_floating complex

• Data type in descriptor

• F_floating

• D_floating

• G_floating

• H_.floating

• Longword condition value

• Longword integer (signed)

• Longword logical (unsigned)

• Quadword integer (signed)

• Text (character) string

• Word integer (signed)

• Word logical (unsigned)

The passing mechanisms include:

• By descriptor

• By reference

• By immediate value

The parameter forms include:

• Array reference or descriptor

• Dynamic string descriptor

• Fixed-length string descriptor

• Procedure reference or descriptor

• Scalar

• String form specified in descriptor

The procedure descriptions in Chapters 3 through 8 provide specific informa­
tion on parameter characteristics, while Section 2.4 provides general informa­
tion on the same topic. Section 2.5 describes valid combinations of passing
mechanisms and data forms.

2-4 Calling Run-Time Library Procedures

The caller of a library procedure can omit optional parameters at the end of
the parameter list by passing a shortened list. (This differs from a call to
VAXNMS System Services.) Thus, the format for a library procedure with
two optional parameters would be:

CALL fac$na1r1e (Para1r1eter1 [tPara1r1eter2 [tPara1r1eter3]])

The following calls could be made to this procedure in FORTRAN:

CALL
CALL
CALL
CALL
CALL
CALL
CALL

fac$na1r1e <A tB ,c)
fac$narr1e <A tB)
fac$narr1e <A ,5,)
fac$na1r1e <A ,,c)
fac$narr1e (A)
fac$na1r1e <A,)
fac$narr1e (A,,)

NOTE

Optional parameters apply only to the CALL entry points. JSB
entry points do not have optional parameters; all specified re­
gisters are used.

2.3 Library Naming Conventions

This section explains the naming conventions that the Run-Time Library
follows for its entry point names, return status codes, and condition value
symbols.

2.3.1 Entry Point Names

The Run-Time Library entry point naming conventions follow the V AX-11
global symbol naming conventions. A global symbol takes the general form:

fac$symbol

where:

fac is a two- or three-character facility name.

symbol is a one- to eleven-character symbol.

The facility names are maintained in a system-wide, DIGITAL registry. A
unique, 12-bit facility number is assigned to each facility name for use in:
(1) condition value symbols, and (2) condition values in procedure return
status codes, signaled conditions, and messages. All library entry point names
begin with a facility prefix. The high order bit of the 12-bit facility number is
zero for facilities assigned by DIGITAL and one for those assigned by
Computer Special Services (CSS) and customers.

Calling Run-Time Library Procedures 2-5

The library facility prefixes are:

Facility Facility
Name Number Facility

LIB$ 21 General utility procedures-for use with all languages including
MACRO

MTH$ 22 Mathematics procedures

OTS$ 23 Language-independent support procedures

FOR$ 24 FORTRAN-specific support procedures

COB$ 25 COBOL-specific support procedures

BAS$ 26 BASIC-specific support procedures

PAS$ 33 PASCAL-specific support procedures

STR$ 36 String procedures

2.3.2 JSB Entry Point Names

JSB entry point names follow the standard entry point naming conventions
except that they include the number of the highest register accessed or modi­
fied. This helps ensure agreement between the caller and the called procedure
about the number of registers that the called procedure is going to change (see
Section 2. 7.1.3). For example:

JSB MTH$SIN_Ra F_f loatins sine uses RO to Ra

NOTE

JSB entry points are available only to MACRO and BLISS
programs, not high-level languages.

2.3.3 Library Return Status and Condition Value Symbols

Library return status and condition value symbols have the general form:

fac$_abcmnoxyz

where:

fac is the three-letter facility symbol (LIB, MTH, STR, OTS, BAS,
FOR, PAS).

abc are the first three letters of the first word of the associated
message.

mno are the first three letters of the next word.

xyz are the first three letters of the third word, if any.

2-6 Calling Run-Time Library Procedures

Note that articles and prepositions are not considered significant words in this
format. If a significant word is only two letters long, an underscore character
is used to fill out the third space. The VAXNMS normal or success code is
used to indicate successful completion. Some examples follow:

LIB$-1NSVIRMEM

FOR$_NQ_SUCDEV

SS$_NORMAL

MTH$_FLOOVEMAT

BAS$_SUBOUTRAN

Insufficient virtual memory

No such device

Routine successfully completed

Floating overflow in Math Library procedure

Subscript out of range

2.4 Procedure Parameter Characteristics

The Run-Time Library lets you pass parameters of various types and forms to
its procedures. However, some procedures accept certain types of parameters.

Each parameter has the following characteristics:

• Access type (read, write, modify ...)

• Data type (floating, longword ...)

• Passing mechanism (by immediate value, by reference, by descriptor)

• Parameter form (scalar, array, string ...)

The calling program must ensure that parameters passed to a called
procedure are of the type and form that the procedure accepts. For your
convenience, Appendix A uses an abbreviated notation to indicate these char­
acteristics. The following sections describe the four parameter characteristics.

2.4.1 Parameter Access Types

The following parameter access types are available:

• Read-only access - parameter is read but not written; at the calling pro­
gram's option, the parameter can be in read-only storage.

• Write-only access - parameter is written without regard to its original
value.

• Modify access - parameter can be modified, that is, both read and written.

• Function call - parameter is an address of a function to be (optionally)
called before the procedure returns to its caller.

• JMP access - parameter is an address to be (optionally) jumped to after
stack is unwound to the frame of the calling program; no data type field is
given because the parameter is a sequence of instructions (for example, in
FORTRAN, ERR=).

Calling Run-Time Library Procedures 2-7

2.4.2 Parameter Data Types

The procedure descriptions in Chapters 3 through 8 indicate the expected
data types for each parameter. The following parameter data types are used
by the Run-Time Library:

• Byte integer (8-bit signed 2's complement integer)

• Byte logical (8-bit unsigned quantity)

• Word integer (16-bit signed 2's complement integer)

• Word logical (16-bit unsigned quantity)

• Longword integer (32-bit signed 2's complement integer)

• Longword logical (32-bit unsigned quantity)

• Longword condition value

• Absolute 32-bit virtual address

• Quadword integer (64-bit signed 2's complement integer)

• Quadword logical (64-bit unsigned quantity)

• Octaword integer (128-bit signed 2's complement integer)

• Octaword logical (128-bit unsigned quantity)

• F_floating (32-bit F_floating quantity)

• D_floating (64-bit D_floating quantity)

• G_floating (64-bit G_floating quantity)

• H_floating (128-bit H_floating quantity)

• F _floating complex (ordered pair of F _floating quantities representing a
single-precision complex number - the lower (first) addressed quantity
represents the real part, the higher (second) addressed quantity represents
the imaginary part)

• D_floating complex (ordered pair of D_floating quantities representing a
double-precision complex number - the lower (first) addressed quantity
represents the real part, the higher (second) addressed quantity represents
the imaginary part)

• G_floating complex (ordered pair of G_floating quantities representing a
double-precision quantities representing a double-precision complex num­
ber - the lower (first) addressed quantity represents the real part, the
higher (second) addressed quantity represents the imaginary part)

• ASCII text string (a sequence of 8-bit ASCII characters)

• Procedure entry mask

2-8 Calling Run-Time Library Procedures

2.4.3 Parameter Passing Mechanisms

Each procedure has a parameter list of 32-bit longwords; each longword speci­
fies a separate parameter. A called procedure interprets each parameter using
one of three standard passing mechanisms: by immediate value, by reference,
and by descriptor. Figure 2-2 illustrates the three passing mechanisms.

Figure 2-2: Procedure Parameter Passing Mechanisms

PARAMETER LIST

I N :(AP)

PAR 1

PAR 2

ACTUAL VALUE . . .
PAR N

N :(AP)

PAR 1

PAR 2

POINTER TO
ACTUAL VALUE

PAR N

N :(AP)

PAR 1

PAR 2

POINTER TO
DESCRIPTOR

PAR N

Note: PAR 1, PAR 2, PAR N

PROCEDURE PARAMETER

PASSING MECHANISMS

(a) PARAMETER PASSED BY-IMMEDIATE VALUE

(b) PARAMETER PASSED BY-REFERENCE

DATA

ACTUAL VALUE

(c) PARAMETER PASSED BY-DESCRIPTOR

LENGTH

POINTER

can be passed by-immediate value,
by-reference, or by-descriptor
In any of the above examples.

DATA

A

T B

c

D LENGTH

E

1 F

G

H

Calling Run-Time Library Procedures 2-9

2.4.3.1 Passing Parameters by Immediate Value - When parameters are
passed using the immediate value mechanism, the parameter list entry con­
tains the actual, uninterpreted 32-bit value of the parameter. Usually,
parameters passed by immediate value are constants. For example, to pass
100 by immediate value, the caller puts 100 directly in the parameter list.
However, when a variable is passed by immediate value, the variable's value
is copied to the parameter list. For example, to pass variable X, the caller
must copy the current value of X to the parameter list.

Since higher-level languages normally pass scalar parameters by reference,
the %VAL argument list built-in function or equivalent must be used to call
procedures that accept parameters by immediate value. For example:

•BLISS

•BASIC

LIB$SIGNAL<S8$_INTOVF>

CALL LIB$SIGNAL<88$_INTOVF BY VALUE>

• FORTRAN CALL LI 6$8 I GNAL (i.'.VAL (88$_ I NTOl.JF > >

•PASCAL LIB$SIGNAL(%1MMED<SS$_INTOVF>>

The equivalent MACRO code is:

PUSHL

CALLS

#SS$_ I NTOt.IF Push lonsword bY immediate value

#1 tG···LIB$SIGNAL Call LIB$SIGNAL

NOTE

The Run-Time Library is intended to be called from higher­
level languages, so most library procedures do not use the
immediate value mechanism.

2.4.3.2 Passing Parameters by Reference - When parameters are passed
using the reference mechanism, the parameter list entry contains the address
of (that is, points to) the location that contains the value of the parameter.
For example, if variable X is allocated to location 1000, which currently con­
tains the value 100, the parameter list entry will contain 1000.

The following high-level language statements pass a parameter to
LIB$FLT_UNDER by reference:

•BLISS

•BASIC

LIB$FLT_UNDER<%REF<1>>

CALL LIB$FLT_UNDERC1%)

• FORTRAN CALL LI B$FL T _UNDER< 1 >

•PASCAL LI B$FL T _UNDER (1)

2-10 Calling Run-Time Library Procedures

The equivalent MACRO code is:

ONE: .LONG Address of lonsword

PUSHAL ONE
CALLS #1 tGALI5$FLT_UNDER

Push address of lonsword
Call LIBSFLT_UNDER

2.4.3.3 Passing Parameters by Descriptor - When parameters are passed
using the descriptor mechanism, the parameter list entry contains the address
of a VAX-11 descriptor of the parameter. This form is used to pass more
complicated data than can be passed using the preceding forms. All descrip­
tors include the following fields to describe data:

DSC$W_LENGTH
DSC$B_DTYPE
DSC$B_CLASS
DSC$A_I>OINTER

data length in bytes
data type
descriptor class field
address of start of data

Appendix C describes these fields in greater detail.

The following high-level language statements pass a parameter by descriptor:

• BASIC CALL LI 5$ PUT _OUT PUT (I HELLO I)

• FORTRAN c ALL LIB$ p u T _ o u T p u T (I HELL 0 I)

•PASCAL LI5$PUT_OUTPUT<%STDESCR< 'HELLO')

The equivalent MACRO code is:

MSGDSC: • WORD LEN
.BYTE lll
.BYTE 1
.ADDRESS MSG

MSG: .ASCII/Hello/
LEN = .-MSG

DESCRIPTOR: DSC$W_LENGTH
DSC$B_DTYPE
DSC$B_CLASS
DSC$A_POINTER

Strins itself
Define the lensth of the strins

PUSHAQ MSGDSC Push address of descriPtor
CALLS #l tG···LIBSPUT _OLJTPUT ; Cal 1 Procedure

2.4.4 Parameter Data Forms

Possible data forms for Run-Time Library parameters are:

• Scalars (numbers) - a numeric representation of a value

• Arrays - a one or more dimensional arrangement of data

• Dynamic strings - a string whose length and address can be changed when
the string is written

Calling Run-Time Library Procedures 2-11

• Fixed-length strings - a string whose length and address does not change
when the string is written

• Procedure references or descriptors - a descriptor or reference to a procedure
to be passed as a parameter

2.5 Combinations of Data Forms/Passing Mechanisms

Each library facility uses a subset of parameter qualifiers permitted by the
V AX-11 Procedure Calling Standard. Table 2-2 (in Section 2.5.4) summa­
rizes the subset of combinations of data forms and passing mechanisms that
each library facility accepts. Section 2.5.1 discusses scalars, Section 2.5.2
discusses arrays, and Section 2.5.3 discusses strings.

2.5.1 Passing Scalars as Parameters

Input scalar parameters are passed by reference to general utility procedures
(LIB$) and mathematics procedures (MTH$); these procedures are most
likely to be called explicitly from a high-level language program. Input scalar
parameters are passed by immediate value to language-support procedures
(OTS$, BAS$, COB$, FOR$, and PAS$); these procedures are most likely to
be called implicitly from code generated by a language compiler.

Output scalar parameters are always passed by reference to Run-Time Library
procedures.

2.5.2 Passing Arrays as Parameters

Arrays are passed by reference or by descriptor to Run-Time Library proce­
dures depending on the facility.

2.5.3 Passing Strings as Parameters

Strings are always passed by descriptor to Run-Time Library procedures. The
three classes of strings supported by the Run-Time Library are: unspecified,
fixed length, and dynamic. The descriptor format is the same for all three
string types, except for the class code field. The descriptor and the class code
field (bits 31:24) are one of the following:

String Class Symbol Value

Unspecified DSC$K_CLASS_Z 0

Fixed length DSC$K_CLASS_S 1

Dynamic DSC$K_CLASS-.D 2

Fixed-length strings are allocated at compile, link, or run time by the calling
program. The called procedure cannot change the length or address of the

2-12 Calling Run-Time Library Procedures

string. This means that the descriptor for a fixed-length string can be in read­
only memory. Fixed-length strings can be more efficient (as long as you avoid
excessive space filling), but they require you to specify the length of each
string in your program. FORTRAN and PASCAL support fixed-length strings
only.

Dynamic strings are allocated at run time using library resource allocation
procedures. Therefore, both the length and the address change during execu­
tion and no space filling is needed. Dynamic strings are usually more conven­
ient, since you do not need to specify their length in your program. However,
the dynamic allocation usually takes more execution time. BASIC supports
both fixed-length and dynamic strings.

2.5.3.1 Passing Input Parameter Strings to the Library - The parameter list
entry for an input string is the address of a two longword descriptor. The
descriptor can be any of the three classes of string descriptor, since their
formats are identical, except for the class code field. The called procedure
uses the length (DSC$W _LENGTH) and address (DSC$A_I>OINTER) of
the string, as specified in the descriptor. When an input string is compared
with another string for each class of descriptor, the shorter string is extended
with the ASCII space character (hexadecimal 20) as the fill character.

2.5.3.2 Returning Output Parameter Strings from the Library - Library proce­
dures do not return strings as they do other function values. Instead, the
parameter to accept the string function value is passed as the first parameter,
and other parameters are shifted to the right by one position. For example:

char-string = LIB$func (a, b, c)

is equivalent to:

CALL LIB$func (char-string, a, b, c)

In addition, the caller must allocate the space for and fill in the fields of the
output string descriptor at compile, link, or run time.

In languages that support the concept of a string function (such as BASIC and
FORTRAN), the following two examples are equivalent, although the first
more clearly illustrates the function concept:

BASIC FORTRAN

DECLARE STRING STR CHARACTER*10 STR
STR = LIB$funcCAtBtC) STR = LIB$funcCAtBtC>

DECLARE STRING STR CHARACTER*10 STR
CALL LIB$func<STRtAtBtC) CALL LIB$funcCSTRtAtBtC)

In languages that do not support the concept of a string function (such as
MACRO, BLISS and PASCAL), a procedure that returns strings must be
called using an explicit CALL statement. In the following example, a descrip­
tor address for each parameter is pushed onto the stack and a CALLS call is

Calling Run-Time Library Procedures 2-13

made. Note that the actual descriptors for each parameter would appear
elsewhere in the program and would resemble the form shown in the MACRO
example in Section 2.4.3.3.

PUS HAQ C_DESCR Push descr address of c
PUSHAQ B_DESCR Push descr address of B
PUS HAQ A_DESCR Push des er address of A
PUS HAQ CHAR_STR_DESCR Push descr address of char-str
CALLS #lj t LIB$.f unc Call LIB$f unc

Procedures can use other parameters to return additional strings passed by
descriptor. Run-Time Library procedures return strings using the following
methods. The FORTRAN specific (FOR$) procedures assume that the
caller passes a fixed length string descriptor, and thus use only the
first method. General utility procedures (LIB$) and language independent
support procedures (OTS$) examine the class field code of the descriptor
(DSC$K_CLASS) passed by the caller and return the string using either of
these methods:

1. Returning fixed-length or unspecified strings (DSC$K_CLASS_S,
DSC$K_CLASS_Z). The contents of the parameter list entry is the
address of the two-longword descriptor with a class field of zero or
one. In the descriptor, the calling program specifies the length
(DSC$W _LENGTH) and address (DSC$A_POINTER) of the area
where the string is to be written. The called procedure copies.the string to
the indicated area and, if necessary, trailing ASCII space characters (hex­
adecimal 20) are used to fill out the string. If insufficient space is avail­
able, one of the following events occurs, depending on the procedure:

a. The string is truncated on the right; there is no error indication
(normal BASIC and FORTRAN technique).

b. The string is truncated on the right and a success or error condition
value is returned (STR$ facility).

c. The string is set to asterisks and an error condition is returned
(FORTRAN error technique).

2. Returning dynamic strings (DSC$K_CLASS_D),

The parameter list entry contains the address of the two longword descrip­
tor. In the descriptor, the caller can optionally specify the address of a
previously allocated dynamic string area in the DSC$A_POINTER field.
The two bytes immediately preceding the first byte of the string area
contain the number of bytes allocated to the area; that is, the number of
bytes following the first byte. If the string to be returned fits in the
area already allocated (specified by the word preceding the string
itself), the new string is copied to the old area and the length field
(DSC$W__LENGTH) is changed in the descriptor.

If the string to be returned does not fit in the space allocated, the space is
returned to free storage and a new block is allocated. If the address of the

2-14 Calling Run-Time Library Procedures

area (DSC$A_I>OINTER) is 0, no space is returned and a new block is
allocated. Both the length (DSC$W _LENGTH) and address fields
(DSC$A_POINTER) are modified in the descriptor, and the string is
copied to the newly allocated area.

Note that DSC$A_POINTER is set to the address of the first byte of the
string, and the allocated length is stored in the precedingtwo bytes. Thus,
a dynamic string appears the same as any other string when passed as an
input parameter.

User programs that allocate dynamic strings should always use the string
resource allocation procedures provided by the VAX-11 Run-Time
Library rather than attempt to control dynamic string area descriptors
directly. This is because the arrangement and size of control information
that affects a dynamic string is subject to change with new releases of the
Run-Time Library.

Dynamic strings are the usual string form in BASIC. Dynamic strings are not
generally available to FORTRAN and PASCAL programmers. However, a
calling program can pass a dynamic string to a FORTRAN program. The
FORTRAN procedure makes a copy of the descriptor setting the class field to
DSC$K_CLASS_S, If the string is an input parameter, the results are the
same. If the string is an output parameter, the FORTRAN procedure call uses
the current length of the string, space filling if necessary. If the string is too
long, it is truncated. When a dynamic string is passed as an output parame­
ter, the caller must ensure that the string is of sufficient length before calling
any procedure that expects a fixed-length string.

Procedures which return a string as an output parameter where there is no
way for the caller to know the length of the returned string should have an
optional output length parameter. This parameter should be an unsigned,
16-bit integer to contain the output string length. If the output string is a
fixed-length string, the optional length parameter would reflect the number of
characters written not counting the fill characters, if any.

For example, LIB$GET_INPUT has the optional parameter, out-len (see
Chapter 3). If LIB$GET _INPUT were called with a fixed-length, five charac­
ter string and a record containing 'ABC' were read, then out-len would have a
value of three and the output string would be 'ABC '.But, if the record read
contained the value 'ABCDEFG', out-len would have a value of five, and the
output string would be 'ABCDE'.

STR$COPY_DX does not need the optional length parameter, because the
output string length is known by the caller. If the output string is dynamic,
the length is the same as the input string length. If the output string is fixed­
length, the length is the minim um of the two lengths before the transfer.

2.5.3.3 Summary of String Passing Techniques - Table 2-1 shows the string
passing techniques used by library facilities in the Run-Time Library.

Calling Run-Time Library Procedures 2-15

Table 2-1: String Passing Techniques Used by the Run-Time Library

String Type String Descriptor Fields

Class Length Pointer Facility

Input Parameter to Procedures

Input String Ignored Read Read LIB,OTS
Passed by Descriptor STR,lan*

Output Parameter from Procedures (class assumed by called procedure)

Output String Ignored Read Read Ian
Passed by Descriptor

(fixed-length)

Output String Ignored Always Can be LIB,OTS
Passed by Descriptor Written Written STR

(dynamic)

Output Parameter from Procedures (class specified by calling program)

Output String Read Read Read LIB,OTS
(unspecified) STR

(DSC$K_CLASS_Z)

Output String Read Read Read LIB,OTS
(fixed-length) STR

(DSC$K_CLASS_S)

Output String Read Always Can Be LIB,OTS
(dynamic) Written Written STR

(DSC$K_CLASS_D)

*where lan is a language-specific facility.

2.5.4 Summary of Parameter Passing Mechanisms

Table 2-2 summarizes parameter passing mechanisms that can be used with
each data form for each library facility.

2-16 Calling Run-Time Library Procedures

Table 2-2: Valid Run-Time Library Parameter Passing Mechanisms

Data forms By Immediate Value By Reference By Descriptor

Scalars OTS,lan* LIB,MTH -

Input Output - OTS,lan,LIB -

Arrays - OTS,lan,LIB lan
Input - OTS,lan,LIB lan
Output

Strings - - LIB,lan,OTS
Input
Output - - LIB,lan,OTS
Fixed length - - LIB,OTS,STR
Dynamic

*where lan is a language-specific facility.

Any deviations from the information in Table 2-2 are documented parentheti­
cally in the parameter descriptions.

2.6 Errors From Run-Time Library Procedures

A procedure can indicate errors to its caller by either returning a condition
value as a completion code or signaling the error. When the completion code is
returned as a value in RO, the caller can test RO and choose a recovery path.
When the completion code is signaled, the caller must establish a handler to
get control before taking action. (See Chapter 6 for a description of signaling
and condition handling.)

Each facility has a convention for returning errors to its callers:

LIB Always communicates errors by a condition value.

MTH Indicates errors by signaling.
OTS

STR Returns errors in both forms. Severe errors, those judged to be pro­
gramming errors, or conditions which prevent the procedure from
doing any useful work are signaled. Errors that can be corrected using
default values or those judged to be not serious are returned as a
status code.

Calling Run-Time Library Procedures 2-17

2. 7 Calling a Library Procedure In MACRO

This section describes how to code MACRO calls to library procedures using a
CALLS, CALLG, or JSB instruction. Procedures have either CALL or JSB
entry points or both. Procedure descriptions in Chapters 3 through 8 give the
entry points for each procedure. You can use either a CALLS or a CALLG
instruction to invoke a procedure with a CALL entry point; you must use a
JSB procedure to invoke a procedure with a JSB entry point. All MACRO
calls are explicit.

2. 7 .1 Calling Sequence Examples

CALLS and CALLG are hardware instructions.

Parameters are passed to CALLS and CALLG entry points by a pointer to the
parameter list. The only difference between CALLS and CALLG instructions
is:

• For CALLS, the caller pushes the parameter list onto the stack (in reverse
order) before performing the call. (The list is automatically removed from
the stack upon return.)

• For CALLG, the caller specifies the address of the parameter list, which can
be anywhere in memory. The list remains in memory upon return.

The effect of either call instruction on the called procedure is identical.

Either a CALLS or CALLG instruction specifies the address of the entry point
of the procedure being called. The entry point consists of an entry mask,
followed by the instructions to implement the procedure. An entry mask is a
16-bit word whose bits represent the registers to be saved on a procedure call
that uses the CALLS or CALLG instructions; these registers are subsequently
restored by a corresponding RET (return) instruction.

The called procedure must specify in its entry mask any of the registers, R2
through R11, that are written or modified. This ensures that the contents of
R2 through Rll are preserved from the point of view of the calling program.
The CALLS, CALLG, and the RET instructions automatically save and re­
store registers R12 (the argument pointer, AP), R13 (the frame pointer, FP),
and R14 (the stack pointer, SP). Registers RO and Rl are temporary registers,
will not be preserved, and should not be specified in the entry mask.

Both CALLS and CALLG instructions also save the state of the caller's trap
enables, that is, integer overflow, decimal overflow, and floating underflow.
They then set them as indicated by the entry mask, thus isolating the called
procedure from the calling program.

Appendix F contains detailed information about the operation of CALLS and
CALLG instructions and the VAX-11 procedure stack architecture. This in­
formation is particularly pertinent to user control of signaling and condition
handling.

2-18 Calling Run-Time Library Procedures

2. 7 .1.1 CALLS Instruction Example - The following example shows
how the procedure that allocates virtual memory in the program region
(LIB$GET_VM) could be called from a MACRO program. The format of the
LIB$GET_ VM procedure is described in Section 5.1.5.

A call to LIB$GET_VM using a CALLS instruction in MACRO is:

PUSHAL

PUSHAL

CALLS
BLBC

START

LEN

#2 t G ... LI B$GET _I.JM
ROt error

Push address of lonsword to receive
address of bloc~~

Push address of lonsword containins
nuMber of bYtes desired
Al locate 1t1e1t1on'
Branch if MeMory not available

Upon return from LIB$GET _ VM, the calling program branches to an appro­
priate error routine if any errors occurred. (Note that because the stack grows
toward location 0 (that is, the top of the stack), parameters are pushed onto
the stack in reverse order from the order shown in the procedure formats.)

2.7.1.2 CALLG Instruction Example - The following example of a CALLG
instruction is equivalent to the preceding CALLS example:

ARGLST: • LONG 2
.ADDRESS LEN

.ADDRESS START

ArSuMent list count
Address of lonsword containins
nuMber of bYtes desired
Address of lonsword to receive
address of blod~

CALLG ARGLSTt G~LIB$GET_VM

2. 7 .1.3 JSB Entry Points - JSB instructions execute faster than CALL in­
structions. They do not set up a new stack frame, do not change the hardware
trap enables, and do not preserve the contents of registers RO through Rn
before modifying them. The value of Rn is always indicated at the end of the
procedure's JSB entry point name. Parameters are passed to JSB entry points
in registers.

A calling program must use a JSB instruction to call a procedure in the
library at its JSB entry point. For example:

MOIJF
JSB

••• t RO
MTH$SIN-Rll

Set UP inPut ParaMeter
Call F_floatins sine Procedure
Return with value in RO

In this example, MTH$SIN_R4 changes the contents of registers RO through
R4, as indicated by "R4" in the entry point name (see Section 2.3.2). The
routine does not change the contents of or reference registers R5 through Rll.

Calling Run-Time Library Procedures 2-19

Since the JSB entry point routines do not save the contents of any registers,
the calling program is responsible for saving the contents of registers R2
through Rn. This is done by specifying the entry mask bits for at least R2
through Rn in its own entry mask, so a stack unwind correctly restores all
registers from the stack. In the following example, the function
Y=PROC(A,B) returns the value Y, where Y=SIN(A)*SIN(B). Registers R2
through R5 are saved when procedure PROC is called with a CALLS or
CALLG instruction:

• ENTRY
MOl.JF
JSB
MOlJF

MOl.JF
JSB
MULF
RET

PROC, "'M <Rz, R3t Ra, RS>
@l!CAP> tRO
MTH$SIN_R4
RO, RS

@BCAP>, RO
MTH$SIN_R4
RS, RO

Sa1.ie R2: RS
RO = A
RO = SINCA>
Copy result to re~ister

not Modified bY MTH$SIN
RO = 6
RO = SIN
RO = SINCA>*SINCB>
Return

If DIGITAL should provide JSB replacement routines that change RO through
Rm, where m is greater than n, both the old and the new routines will be
maintained indefinitely with separate entry points. This means that old pro­
grams will not need to be relinked when new versions of the Run-Time
Library are released (for example, see MTH$SQRT, Chapter 4).

2. 7 .2 Passing Parameters to Library Procedures

In many cases, you have to tell a library procedure where to find input values
and store output values. You must select a data type for each parameter
when you code your program. Most procedures accept and return 32-bit
parameters.

For input parameters of byte, word.or longword values, you can supply either
a constant value, a variable name, or an expression in the library procedure
call. If you supply a variable name for the parameter, the variable data type
must be as large as or larger than the data type required. If, for example, the
called procedure expects a byte in the range 0 to 100, you can use a variable
data type of a byte, word, or longword with a value between 0 and 100.

For each output parameter, you must declare a variable of exactly the length
required to avoid extraneous data. If, for example, the called procedure re­
turns a byte value to a word-length variable, the left-most eight bits of the
variable (15:8) are not overwritten on output. Conversely, if a procedure re­
turns a longword value to a word-length variable, it modifies variables in
adjacent locations.

2. 7 .3 Return Status

Some procedures return a 32-bit status code in register RO. A return status
code is either a success (bit 0=1) or error condition value (bit 0=0). In an error
condition value, the low-order 3 bits specify the severity of the error. Bits 27
through 16 contain the facility number, and bits 15 through 3 indicate the
particular condition. The high-order 4 bits are control bits. (See Appendix C.)

2-20 Calling Run-Time Library Procedures

To test for errors, check for a 0 in bit 0. This is done with a Branch on Low Bit
Set (BLBS) or Branch on Low Bit Clear (BLBC) instruction.

To test for a particular condition value, perform a 32-bit comparison of the
return status with the appropriate return status symbol. You do this with a
compare long (CMPL) instruction.

There are three ways to define a symbol for a condition value returned by a
library procedure:

• By default. The assembler automatically declares the condition value as an
external symbol that is defined as a global symbol in the Run-Time
Library.

• Using the .EXTRN LIB$-1NPSTRTRU instruction. This causes the as­
sembler to ·generate an external symbol declaration.

• Using the $LIBDEF instruction. This causes the assembler to define all
LIB$ condition values using the default macro library.

The following example asks for the user's name. If the name is longer
than 30 characters (the space allocated to receive the name), the error
LIB$--1NPSTRTRU - 'input string truncated' is usually returned. This ex­
ample checks for that specific error while treating any other error in the usual
manner.

PROMPT: .WORD
.ADDRESS

PRO_ADR: .ASCII

STRING: .WORD
.ADDRESS

STR_ADR: .BLKB

PUSHAQ

PUSHAQ

CALLS
BLBS
CMPL

BEQL

error

10$: success

G t 0
PRO_ADR

/Na111e:

30 t (I
STR_ADR

30

PROMPT

STRING

I

Lenitht class/tYPe
Address

Strini descriptor
to receive strini

Lenitht class/tYPe
Address

Area to receive strinf

Push adr of ProMPt
descriptor
Push address of strinf
descriPtor
Get inPut stri'ni

ROt 10$ ChecK for success
ROt #LIB$_INPSTRTRU ; Errort was it

truncated strinf?
10$

Not More serious error

Successt or naMe too
lonf

2. 7 .4 Function Return Values

Function values are always 32-bit values returned in register RO, or 64-bit
values returned in registers RO/Rl.

Calling Run-Time Library Procedures 2-21

2.8 Calling a Library Procedure In BLISS

This section describes how to code BLISS calls to library procedures. A called
procedure can return one of the following:

• No value.

• A function value (typically, an integer or floating-point number). For exam­
ple, MTH$SIN returns an F_floating value.

• A return status (typically, a 32-bit condition value) indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET__INPUT returns a return status.

2.8.1 Calling Sequence Example

The following example shows how to call the procedure that outputs a record
to the user's terminal (LIB$PUT_OUTPUT) from a BLISS program.

MODULE SHOWTIMECIDENT='l-1' %TITLE'Print tiMe', MAIN=TIMEOUT>=
BEGIN
LIBRARY 'SYS$LIBRARY:STARLET'; ! Defines SysteM Seruices,etc.

MACRO
DESC[J=%CHARCOUNTC%REMAINING>, ! VAX-11 Strins DescriPtor

UPLIT BYTEC%REMAINING> z;
! definition
OWN

BIND

TIMEBUF: VECTOR[2], 64-bit SYSteM tiMe
MSGBUF: VECTORCBO,BYTEJ, Output Messase buffer
MSGDESC: VECTOR[2] INITIAL(so,MSGBUF) ;

FMTDESC=UPLITC DESCC 'At the tone, the tir11e 1A1i 11 be',
%CHARC7), I !'X,T')) ;

E}HERNAL ROUT I NE
LIB$PUT_OUTPUT: ADDRESSING_MODECGENERAL>;

ROUTINE TIMEOUT=
BEGIN
LOCAL

RSLT: WORD;

$GETTIMC TIMADR=TIMEBUF >;

Resultant strins lenSth

Get tiMe as 64-bit inteser

$FAOLC CTRSTR=FMTDESC, ForMat Descriptor
OUTLEN=RSLT, Output lensth Conly a word!)
OUTBUF=MSGDESC, Output buffer descriPtor
PRMLST= %REFCTIMEBUF>>; ! Adr of 64-bit tiMe blocK

MSGDESC[OJ = .RSLT; Modify output descriPtor
LIB$PUT_OUTPUTC MSGDESC) ! Return status
END;

END
ELUDOM

2.8.2 Passing Parameters to Library Procedures

Generally, Run-Time Library parameters are passed by reference. Thus,
when passing a variable, it appears "un-dotted" in the procedure-call param­
eter list. A constant value can be easily passed using the %REF built-in
function.

2-22 Calling Run-Time Library Procedures

For example to pass the address of a text buffer (MYBUF) and its length
(80 characters);

OWN
MYBUF: VECTOR[80t8YTEJ;

LIB$ ••• CMYBUFt %REFC80))

2.8.3 Return Status

The return status can be treated as any other BLISS value.

2.8.4 Function Return Values

Function values are always 32-bit values returned in register RO, or 64-bit
values returned in registers RO/Rl.

2.8.5 Calling JSB Entry Points from BLISS

Many of the Math Library routines have JSB linkage entry points. These
routines can be efficiently invoked directly from BLISS using LINKAGE and
EXTERNAL ROUTINE declarations.

For example:

LINKAGE
MATH_Rll JSBCREGISTER=O t ••• > :NOPRESERl,lECO t1 t2 t3 tll)

E)HERNAL ROUT I NE
MTH$SIN_Ra MATH_Ra;

IF MTH$S IN (• • •) EQL 'X.E I 0. 0 I THEN

2.9 Calling a Library Procedure in BASIC

This section describes how to code BASIC calls to library procedures using
either a CALL statement or function reference. CALL statements invoke
subroutines that do not return meaningful values. Function references, on the
other hand, return one of the following:

• A function value (typically, an integer or floating point number). For exam­
ple, MTH$COS returns an F _floating value.

• A return status (typically, a 32-bit condition value) indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET_JNPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if

Calling Run-Time Library Procedures 2-23

you are not interested in the function value or return status. However, it is
good programming practice to always check a return status for success or
failure.

2.9.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a variable
bit field (LIB$INSV) from a BASIC program. The format of the LIB$INSV
procedure is explained in Section 3.4.1.

To set the low order three bits of RET_STATUS to four, you would code the
following:

DECLARE INTEGER RET_STATUS
CALL LIB$INSV <a%1 0%1 3%1 RET_STATUS)

The following example shows how to call the procedure that enables and
disables detection of floating underflow (LIB$FLT _UNDER) from a BASIC
program. The format of the LIB$FL T _UNDER procedure is explained in
Section 6.5.2.

This procedure could be called in a BASIC program to set floating underflow
as follows:

EXTERNAL INTEGER FUNCTION LIB$FLT_UNDER
DECLARE INTEGER OLD_SET
OLD_SET = LIB$FLT_UNDER C1%)

If the old setting is of no interest, you can ignore it by treating the function
LIB$FLT_UNDER as a subroutine:

CALL LIB$FLT_UNDER C1%)

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND_ VALUE:

EXTERNAL INTEGER FUNCTION LIB$FFC
DECLARE INTEGER COND_VALUE1 BITS, POS
COND_VALUE = LIB$FFC C0%1 32%1 BITS, POS)
IF CCOND_VALUE AND 1%) = 0% THEN GO TO error

You can also test the success or failure of a function returning a return status
directly by using an IF statement:

DECLARE INTEGER BITS, POS
IF CLIB$FFC (0%1 32%1 BITS, POS) AND 1%) = 0% THEN GO TO error

2.9.2 Passing Parameters to Library Procedures

By default, BASIC uses the call by reference or call by descriptor mechanism
for passing parameters, depending on the argument's data type. In some

2-24 Calling Run-Time Library Procedures

cases, however (a function reference or call to a non-BASIC procedure, for
example), a library procedure can require you to supply arguments in a differ­
ent form. Therefore; BASIC provides three modifiers for passing parameters
when you cannot use the BASIC default mechanism. These modifiers are:

•BY VALUE

•BY REF

•BY DESC

They can appear only in actual argument lists.

The following sections describe the use of these modifiers. Note that they are
never used to call a procedure written in BASIC.

2.9.2.1 BY VALUE - This modifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

arg BY VALUE

The argument list entry (arg) is the value of the entry. Because argument
list entries are longwords, the argument value must be a constant (integer, or
F__floating), a variable, an array element, or an expression.

2.9.2.2 SY REF - The modifier forces the argument list entry to use the call·
by reference mechanism. It has the form:

arg BY REF

The argument list entry (arg) is the address of the value. The argument value
can be a numeric or string expression, an array, an array element, or a func­
tion name. BY REF is the default BASIC method for passing all numeric
values except entire arrays.

2.9.2.3 BY DESC - This modifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

arg BY DESC

The argument list entry (arg) is the address of a descriptor of the value. The
argument value must be an entire array or any string expression. BY DESC is
the default BASIC mechanism for passing strings and entire arrays.

For more information, consult the VAX-11 BASIC User's Guide.

2.9.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates either suc­
cess or failure. To test for errors, use an IF statement (see Section 2.9.1).

Calling Run-Time Library Procedures 2-25

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce­
dure descriptions.

For BASIC programs, condition value symbols are available as EXTERNAL
CONSTANTS. The user simply declares the appropriate symbolic value and
the VAX-11 linker resolves the value.

The following example shows how to call the procedure that accepts input
typed by the user from SYS$INPUT. The format of the LIB$GET_INPUT
procedure is in Chapter 3.

Note that whenever a procedure description specifies a string descriptor
parameter, the parameter being passed should always be a string constant,
variable or expression. The BASIC compiler automatically produces descrip­
tors for these parameters.

The following is a BASIC example that asks for the user's name using
LIB$GET-1NPUT:

EXTERNAL INTEGER CONSTANT LI6$_INPSTRTRU
COM STRING USER_LINE = 30
DECLARE INTEGER COND_VALUE
EXTERNAL INTEGER FUNCTION LIB$GET-INPUT

COND_tJALUE = LIB$GET _INPUT <USER-LINE t 'TY Pe Your Na111e: '>
IF COND_VALUE = LI6$_INPSTRTRU THEN

<user naMe too lons>
ELSE IF <COND_VALUE AND 1%) = 0% THEN

(More serious error>

LIB$G ET _INPUT sets the variable USER_LINE to the 30-character string
input by the user. The INTEGER condition value (COND_ VALUE) indi­
cates success or failure. In BASIC, an even condition value indicates an error
and an odd condition value indicates success. The first IF statement tests for
the return status that indicates the input string was too long and was trun­
cated. The second IF statement tests for any other errors.

The library procedure LIB$MATCH_COND (see Section 6.10.1) is useful for
matching a return status or error condition value with a condition value
symbol or any list of condition value symbols.

2.9.4 Function Return Values

The method of returning function procedure values depends on the data type
of the value, as summarized in Table 2-3.

2-26 Calling Run-Time Library Procedures

Table 2-3: Function Return Values

Data Type Return Method

Integer General Register RO
F_Floating

D_Floating RO = High-order part of result
G_Floating Rl = Low-order part of result

String An extra entry is added as the first entry of the argument list. This new first
argument entry points to a character string descriptor. At run time, storage
is allocated to contain the value of the result, and the proper address is
stored in the descriptor.

2.10 Calling a Library Procedure in COBOL

This section describes how to code COBOL calls to library procedures using
either a CALL statement or function reference. CALL statements invoke
subroutines that do not return meaningful values. Function references, on the
other hand, return one of the following:

• A function value (typically, an integer or floating point number). For exam­
ple LIB$INDEX returns an integer value.

• A return status which is a 32-bit condition value indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET_JNPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if
you are not interested in the function value or return status. However, it is
good programming practice to always check a return status for success or
failure.

2.10.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a variable
bit field (LIB$INSV) from a COBOL program. The format of the LIB$INSV
procedure is explained in Section 3.4.1.

Calling Run-Time Library Procedures 2-27

To set the low order three bits of RET-STATUS to four, you would code the
following:

WORKING-STORAGE SECTION.
01 SRC PIC S9<9> USAGE IS COMP.
01 POS PIC S9<9> USAGE IS COMP.
01 SIZ PIC S9(9) USAGE IS COMP.
01 RET-STATUS PIC S9<9> USAGE IS COMP.

PROCEDURE DIVISION.

PO.
MOVE a TO SRC.
MOVE 0 TO POS.
MOVE 3 TO SIZ.

CALL 11 LI6$INSV 11 USING SRC, POS, SIZ, RET-STATUS.

The following example shows how to call the procedure that enables and
disables detection of floating underflow (LIB$FL T _UNDER) from a COBOL
program. The format of the LIB$FLT_UNDER procedure is explained in
Section 6.5.2.

This procedure could be called in a COBOL program to enable floating under­
flow as follows:

WORKING-STORAGE SECTION.
01 NEW-SET PIC S9<9> USAGE IS COMP.
01 OLD-SET PIC S9<9> USAGE IS COMP.

PROCEDURE DIVISION.

PO.
MOVE 1 TO NEW-SET.
CALL 11 LI6$FLT_UNDER 11 USING NEW-SET GIVING OLD-SET.

2-28 Calling Run-Time Library Procedures

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND-V ALUE:

WORKING-STORAGE SECTION.
01 START-POS
01 BIZ
01 BITS
01 POS
01 COND-VALUE-1.JAR

88 COND-VALUE

PROCEDURE DIVISION.
PO.

PIC 88(8)
PIC S8C8)
PIC S8C8)
PIC S8C8)
PIC S8C8)
1.JALUE IS

MOVE 0 to START-POS.
MOIJE 32 TO SI Z •

USAGE
USAGE
USAGE
USAGE
USAGE

1 •

CALL 11 LI B$FFC US I NG START-POS t

SIZ,
BITS t

POS

IS COMP.
IS COMP.
IS COMP.
IS COMP.
IS COMP.

GIVING COND-VALUE-VAR.

IF COND-1.lALUE
THEN

GO TO error-Proo.

2.10.2 Passing Parameters to Library Procedures

By default, COBOL uses the call by reference mechanism for passing parame­
ters. In some cases, however, a function reference or call to a non-COBOL
procedure (for example, a library procedure) can require you to supply argu­
ments in a different form. Therefore, COBOL provides three qualifiers for
passing parameters when you cannot use the COBOL default mechanism.
They are:

•BY VALUE

• BY REFERENCE

• BY DESCRIPTOR

They can appear only in actual argument lists.

Calling Run-Time Library Procedures 2-29

The following sections describe the use of these qualifiers. Note that they are
never used to call a procedure written in COBOL.

2.10.2.1 BY VALUE - This qualifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

BY VALUE arg

The value of arg is passed to the calling program. If arg is a data-name, its
description in the Data Division can be:

• COMP usage with no scaling positions. The picture clause can specify no
more than nine digits.

• COMP-1 usage. This is the standard VAX-11 F_Floating value.

2.10.2.2 BY REFERENCE - This qualifier forces the argument list entry to
use the call by reference mechanism. It has the form:

BY REFERENCE arg

The address of (pointer to) arg is passed to the called program. This is the
COBOL default mechanism.

2.10.2.3 BY DESCRIPTOR - This ·qualifier forces the argument list entry to
use the call by descriptor mechanism. It has the form:

BY DESCRIPTOR arg

The address of (pointer to) the data item's descriptor is passed to the called
program.

For more information, see the VAX-11 COBOL-74 User's Guide.

2.10.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates success or
failure. To test for errors, use an IF statement (see Section 2.10.1).

2-30 Calling Run-Time Library Procedures

The following is a COBOL example that asks for the user's name using
LIB$GET_INPUT:

WORKING-STORAGE SECTION.
01 USER-LINE PIC XC30).
01 PROMPT-STR PIC }{(16) l.'ALUE IS 11 TYPe Your Nar11e: 11

01 OUT-LEN PIC S9(4) USAGE IS COMP.
01 COND-VALUE PIC S9C9) USAGE IS COMP VALUE IS o.

88 SS-NORMAL VALUE IS 1.
88 LIB-INPSTRTRU VALUE IS 1409564.

PROCEDURE DIVISION.
PO.

CALL 11 LIB$GELINPUT 11 USING BY DESCRIPTOR USER-LINE
BY DESCRIPTOR PROMPT-STR
BY REFERENCE OUT-LEN

GIVING COND-VALUE.
IF LIB-INPSTRTRU

DISPLAY "User nar11e too lons 11

ELSE
IF NOT SS-NORMAL

DISPLAY "More serious error"
ELSE

GO TO PO.

LIB$GET_INPUT sets the variable USER-LINE to the 30-character string
input by the user. The return status is returned to the variable
COND-VALUE. The first IF statement tests for the error condition that
indicates the input string was too long and was truncated. The second IF
statement tests for any other errors.

Note that in the preceding example, USER-LINE and PROMPT-STR are
passed by descriptor, while OUT-LEN is passed by reference.

2.11 Calling a Library Procedure in FORTRAN

This section describes how to code FORTRAN calls to library procedures
using either a CALL statement or function reference. CALL statements in­
voke subroutines that do not return meaningful values. Function references,
on the other hand, return one of the following:

• A function value (typically, an integer or floating point number). For exam­
ple, LIB$INDEX returns an integer value.

• A return status which is a 32-bit condition value indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET_INPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if
you are not interested in the function value or return status. However, it is
good programming practice always to check a return status for success or
failure.

Calling Run-Time Library Procedures 2-31

2.11.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a vari­
able bit field (LIB$INSV) from a FORTRAN program. The format of the
LIB$INSV procedure is explained in Section 3.4.1. To set the low order three
bits of RET_STATUS to four, you would code the following:

INTEGER*a RET_STATUS
CALL LIB$INSV ca, o, 3, RET_STATLJS)

The following example shows how to call the procedure that enables and
disables detection of floating-point underflow (LIB$FLT_UNDER) from a
FORTRAN program. The format of the LIB$FLT_UNDER procedure is ex­
plained in Section 6.5.2. This procedure could be called in a FORTRAN
program to enable floating underflow as follows:

INTEGER*a OLD_SET
OLD_SET = LIB$FLT_UNDER <1>

If the old setting is of no interest, you can ignore it by treating the function
LIB$FLT_UNDER as a subroutine:

CALL LIB$FLT_LJNDER (1)

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND_ VALUE:

INTEGER*a COND_VALUEt BITS, POS
COND_VALUE = LIB$FFC (Q, 32, BITS, POS>
IF CCOND_VALUE> GO TO error

You can also test the success or failure of a function returning a return status
directly by using an IF statement:

INTEGER*a BITSt POS
IF CLIB$FFC COt32tBITStPOS>> GO TO error

The following example passes a prompt string (by descriptor) as an input
parameter and receives a terminal line as an output string (by descriptor)
along with an output length (by reference).

CHARACTER*BO TERM_LINE INTEGER*2 LEN
IF <LIB$GET_INPUT<TERM_LINEt 'Na1r1e: ',LEN>>

1THEN GO TO error
••• = TERM-LINEC1:LEN>

2.11.2 Passing Parameters to Library Procedures

By default, FORTRAN uses the call by reference or call by descriptor mecha­
nism for passing parameters, depending on the argument's data type. In some

2-32 Calling Run-Time Library Procedures

cases, however, a function reference or call to a non-FORTRAN procedure, for
example, a library procedure, can require you to supply arguments in a differ­
ent form. Therefore, FORTRAN provides three compile-time functions for
passing parameters when you cannot use the FORTRAN default mechanism.
These compile-time functions are:

•%VAL

•%REF

• %DESCR

They can appear only in actual argument lists.

The following sections describe the use of these functions. Note that they are
never used to call a procedure written in FORTRAN.

2.11.2.1 % VAL - This function forces the argument list entry to use the call
by immediate value mechanism. It has the form:

%VAL(arg)

The argument list entry (arg) is the value of the entry. Because argument list
entries are longwords, the argument value must be a constant (integer, logi­
cal, or F _floating), a variable, an array element, or an expression.

2.11.2.2 %REF - This function forces the argument list entry to use the call
by reference mechanism. It has the form:

%REF(arg)

The argument list entry (arg) is the address of the value. The argument value
can be a numeric or character expression, array, array element, or procedure
name. %REF is the default FORTRAN method for passing all numeric values.

2.11.2.3 %DESCR - This function forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%DESCR(arg)

The argument list entry (arg) is the address of a descriptor of the value. The
argument value can be any type of FORTRAN expression. %DESCR is the
default FORTRAN mechanism for passing character arguments.

For more information, see the VAX-11 FORTRAN User's Guide.

2.11.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates success or
failure. To test for errors, use an IF statement (see Section 2.11.1).

Calling Run-Time Library Procedures 2-33

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce­
dure descriptions.

For FORTRAN programs, condition value symbols are available: (1) as
parameter definition files using the INCLUDE statement and (2) as global
symbols defined by the library.

SYS$LIBRARY contains the following condition value files:

• FORTRAN condition values - FORDEF .FOR

• General library condition values - LIBDEF .FOR

• Mathematics condition values - MTHDEF.FOR

• Signaling condition values - SIG DEF .FOR

The following example shows how to call the procedure that accepts input
typed by the user from SYS$INPUT. The format of the LIB$GET-1NPUT
procedure is in Chapter 3.

Note that whenever a procedure description specifies a string descriptor
parameter, the parameter being passed should always be a CHARACTER
constant, variable, or expression. The FORTRAN compiler automatically pro­
duces descriptors for these parameters. The following FORTRAN example
asks the user to type his or her name using LIB$G ET _INPUT. ·

INCLUDE 'SYS$LIBRARY:LIBDEF'
CHARACTER*30 USER_LINE
INTEGER*a COND_VALUE

Define LIB$_ ••• condition
1.1alue sY1r1bols

COND_VALUE = LIB$GET_INPUT <USER_LINEt 'TYPe Your Na1r1e: ')
IF <COND_VALUE .EQ. LIB$_IN~STRTRU> THEN

<user name too lonS)
ELSE IF (.NOT. COND_VALUE> THEN

(more serious error)
END IF

LIB$GET _INPUT sets the variable USER.__LINE to the 30-character string
input by the user. The INTEGER*4 condition value (COND_ VALUE) indi­
cates success or failure. In FORTRAN, a .FALSE. condition value indicates
an error and a .TRUE. condition value indicates success. The first IF state­
ment tests for the return status that indicates that the input string was too
long and was truncated. The second IF statement tests for any other errors.

The library procedure LIB$MATCH_COND (see Section 6.10.1) is useful for
matching a return status or error condition value with a condition value
symbol or any list of condition value symbols.

2.11.4 Function Return Values

The method of returning function procedure values depends on the data type
of the value, as summarized in Table 2-4.

2-34 Calling Run-Time Library Procedures

Table 2-4: Function Return Values

Data Type Return Method

Logical General Register RO
Integer
F_floating

D_floating RO= High-order part of result
G_floating Rl= Low-order part of result

F_complex RO= Real Part
Rl= Imaginary Part

H_floating An extra entry is added as the first entry of the argument list. This new first
argument entry points to the area where the result is to be stored.

Character An extra entry is added as the first entry of the argument list. This new first
argument entry points to a character string descriptor. At run time, storage
is allocated to contain the value of the result, and the proper address is
stored in the descriptor.

2.12 Calling a Library Procedure in PASCAL

You can invoke a Run-Time Library routine from a PASCAL program by
defining it as an external function and including the appropriate function
reference.

2.12.1 Calling Sequence Example

The following example shows how to invoke the procedure that returns a
pseudorandom number, MTH$RANDOM.

VAR SEEO_VAL : INTEGER;
RANO_RSLT : REAL;

FUNCTION MTHSRANDOM<VAR SEED INTEGER)

RANO_RSLT = MTHSRANDOM<SEEO_VAL);

REAL; E><TERN;

When defining a function for a Run-Time Library routine, you should note
the following:

• The mechanism by which each parameter is passed (by immediate value,
by reference, or by descriptor)

• The data types appropriate for the parameters and the result

In the pseudorandom number generator, the seed parameter is passed by
reference and the result is a real number.

Calling Run-Time Library Procedures 2-35

2.12.2 Passing Parameters to a Library Procedure

By default, PASCAL uses the by reference mechanism for passing parame­
ters. In some cases, however, a function reference or call to a non-PASCAL
procedure (for example, a library procedure) can require you to supply argu­
ments in a different form. Therefore, PASCAL provides four specifiers for
passing parameters when you cannot use the PASCAL default mechanism.
They are:

• %1MMED

•VAR

• %STDESCR

• %DESCR

The following sections describe the use of these specifiers. Note that they are
never used to call a procedure written in PASCAL.

2.12.2.1 o/olMMED - This specifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

%1MMED arg : type

The value of arg is passed to the calling program. Variables that require more
than 32 bits of storage, including all file variables, cannot be passed as imme­
diate value.

2.12.2.2 VAR- This specifier forces the argument list entry to use the call by
reference mechanism. It has the form:

VAR arg : type;

The address of arg is passed to the calling program. The actual parameter
must be a variable or a component of an unpacked structural variable; con­
stants, expressions, procedure names, and function names are not allowed.

2.12.2.3 o/oSTDESCR - This specifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%STDESCR arg : type;

The address of a string descriptor is passed to the calling program. Only string
constants, packed character arrays with subscripts from 1 to n, and packed
dynamic character arrays with subscripts of an integer or integer subscript
type can be passed by string descriptor.

2.12.2.4 o/oDESCR - This specifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%DESCR arg : type;

2-36 Calling Run-Time Library Procedures

The argument list entry contains the address of the descriptor of an array or
scalar variable. The type can be any predefined scalar type or an unpacked
array (fixed or dynamic) of a predefined scalar type.

2.12.2.5 Function and Procedure Names as Parameters - You can pass pro­
cedure and function names by the immediate mechanism to routines written
in another language, using these formats:

%IMMED PROCEDURE procedure-name-list

%IMMED FUNCTION function-name-list : type

The procedure name list specifies the name of one or more formal procedure
parameters. The function name list specifies the name of one or more formal
function parameters of the indicated type. The corresponding actual parame­
ter lists specify the names of the actual procedures and functions to be passed
as parameters.

For example:

PROCEDURE FORCALLER (%IMMED PROCEDURE UTILITY);
FORTRAN;

NOTE

The %IMMED mechanism for passing procedures and func­
tions is valid only for the formal parameter list of procedures
not written in PAS CAL.

The FORTRAN subroutine FORCALLER calls a PASCAL procedure and
requires that the name of the procedure as a parameter. A call to the
FORTRAN procedure might be:

FORCALLER <PRINTER>;

Any subprogram passed with %IMMED, should access only its own variables
and those declared at program level.

2.12.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates either suc­
cess or failure. You can also check for a particular return status, such as lack
of privileges, by comparing the return status to one of the status codes defined
by the system.

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce­
dure descriptions.

Calling Run-Time Library Procedures 2-37

VAXNMS provides three files containing condition symbol definitions. When
you declare a Run-Time Library procedure, you should specify the appropri­
ate file in the CONST section to define the condition values in your PASCAL
program. Use the %INCLUDE directive to specify the file name, as described
in the VAX-11 PASCAL Language Reference Manual. The three files are:

• General library condition values - LIBDEF.PAS

• Mathematics condition values - MTHDEF.PAS

• Signaling condition values - SIGDEF.PAS

2.12.4 Function Return Value

A function returns a value to the calling program by assigning that value to
the function's name. The value must be of a scalar or subrange type; struc­
tured types are not allowed. The method by which a value is returned depends
on its type, as pictured in Table 2-5.

Table 2-5: Function Return Values in PASCAL

Type Return Method

Integer, Real, General Register RO
Single, Character,
Boolean, Pointer,
User-defined scalar

D_floating RO: Low-order part of result
Rl: High-order part of result

2-38 Calling Run-Time Library Procedures

Chapter 3
General Utility Procedures

General utility procedures include common I/O control procedures, terminal
independent screen procedures, string manipulation procedures, data type
conversion procedures, variable bit field manipulation procedures, perform­
ance measurement procedures, date/time utility procedures, and interlocked
queue procedures.

All general utility procedures can be called explicitly from MACRO, BLISS or
any VAX native mode higher-level language. Procedures with a LIB$ or STR$
prefix are designed to be called explicitly from programs written in higher­
level languages; therefore the input parameters are passed by-reference. This
is also true for FOR$ procedures documented in this manual. Those with an
OTS$ or SCR$ prefix are usually called implicitly from programs written in
higher-level languages or explicitly from MACRO or BLISS; the input scalar
parameters are usually passed by immediate value.

Table 3-1 lists general utility procedures. The sections that follow this table
describe the procedures in detail.

Table 3-1: General Utility Procedures

Section Entry Point Name Title

Common Input/Output Control Procedures

3.1.l LIB$ASN_WTH_MBX Assign Channel with Mailbox

3.1.2 LIB$RUN_pRQGRAM Chain to Program

3.1.3 LIB$DO_CQMMAND Execute Command

3.1.4 LIB$GET_CQMMAND Get Line from SYS$COMMAND

3.1.4 LIB$GET _INPUT Get Line from SYS$INPUT

3.1.5 LIB$GET_FOREIGN Get Line from "FOREIGN" Command
Line

(continued on next page)

3-1

Table 3-1: General Utility Procedures (Cont.)

3.1.6 LIB$GET_COMMON Get String from Common

3.1.7 LIB$SYS_GETMSG Get System Message

3.1.8 LIB$CURRENCY Get Currency Symbol

3.1.8 LIB$DIGIT _SEP Get Digit Group Separator Symbol

3.1.8 LIB$LP _LINES Listing Control

3.1.8 LIB$RADDL..POINT Get Radix Point Symbol

3.1.9 LIB$PUT _OUTPUT Put Line to SYS$0UTPUT

3.1.10 LlB$PUT_COMMON Put String to Common

3.1.11 LIB$SYS_TRNLOG Translate Logical Name

Terminal Independent Screen Procedures

3.2.3 LIB$ERASE_LINE Erase Line

3.2.4 LIB$ERASE_FAGE Erase Page

3.2.5 LIB$SCREEN-1NFO Get Screen Information

3.2.6 LIB$GET _SCREEN Get Text from Screen

3.2.7 LIB$DOWN_SCROLL Move Cursor Up One Line

3.2.8 LIB$PUT _BUFFER Put Current Buffer to Screen

3.2.9 LIB$PUT _SCREEN Put Text to Screen

3.2.10 LIB$SET _BUFFER Set/Clear Buffer Mode

3.2.11 LIB$SET _CURSOR Set Cursor to Character Position

String Manipulation Procedures

3.3.2.1 STR$COMPARE Compare Two Strings

3.3.2.2 STR$COMPARE-EQL Compare Two Strings for Equal

3.3.2.3 LIB$LOCC Locate Character

3.3.2.4 LIB$LEN Return Length of String

3.3.2.5 LIB$INDEX Return Relative Position of Substring

3.3.2.5 LIB$MATCHC Return Relative Position of Substring

3.3.2.5 STR$POSITION Return Relative Position of Substring

3.3.2.6 LIB$SCANC Scan Characters

3.3.2.7 LIB$SKPC Skip Characters

3.3.2.8 LIB$SPANC Span Characters

3.3.2.9 LIB$CHAR Transform Byte to a 1-Byte String

3.3.2.10 LIB$ICHAR Transform First Character of String
. "'

(continued on next page)

3-2 General Utility Procedures

Table 3-1: General Utility Procedures (Cont.)

3.3.3.1 STR$ADD Add Two Decimal Strings

3.3.3.2 STR$MUL Multiply Two Decimal Strings

3.3.3.3 STR$RECIP Reciprocal of a Decimal String

3.3.3.4 STR$ROUND Round or Truncate a Decimal String

3.3.4.1 STR$APPEND Append a String

3.3.4.2 STR$CONCAT Concatenate Two or more Strings

3.3.4.3 LIB$SCOPY _DXDX Copy String Passed by Descriptor

3.3.4.3 OTS$SCOPY_DXDX Copy String Passed by Descriptor

3.3.4.3 STR$COPY_DX Copy String Passed by Descriptor

3.3.4.3 LIB$SCOPY_R_DX Copy String Passed by Reference

3.3.4.3 OTS$SCOPY_R_DX Copy String Passed by Reference

3.3.4.3 STR$COPY_R Copy String Passed by Reference

3.3.4.4 STR$LEN_EXTR Extract Substring by Length

3.3.4.4 STR$POS_EXTR Extract Substring from Position

3.3.4.4 STR$LEFT Extract Leftmost Substring

3.3.4.4 STR$RIGHT Extract Rightmost Substring

3.3.4.5 STR$DUPL_CHAR Generate a String

3.3.4.6 STR$PREFIX Prefix a String

3.3.4.7 STR$REPLACE Replace a Substring

3.3.4.8 STR$TRIM Trim Trailing Blanks and Tabs

3.3.5.1 LIB$MOVTC Move Translated Characters

3.3.5.2 LIB$MOVTUC Move Translated until Character

3.3.5.3 LIB$TRA._ASC_EBC Translate ASCII to EBCDIC

3.3~5.4 LIB$TRA-EBC__ASC Translate EBCDIC to ASCII

3.3.5.5 STR$TRANSLATE Translate Matched Characters

3.3.5.6 STR$UPCASE Uppercase Conversion

Formatted Input/Output Conversion Procedures

3.4.1.1 OTS$CVT _ T _D Convert Text to D_Floating

3.4.1.1 OTS$CVT_T_G Convert Text to G_Floating

3.4.1.1 OTS$CVT_T_H Convert Text to H_Floating

3.4.1.2 OTS$CVT_TLL Convert Text (integer) to Longword

3.4.1.3 OTS$CVT_TL_L Convert Text (logical) to Longword

3.4.1.4 OTS$CVT_TO_L Convert Text (octal) to Longword

3.4.1.5 OTS$CVT _ TZ_L Convert Text (hexadecimal) to Longword

(continued on next page)

General Utility Procedures 3-3

Table 3-1: General Utility Procedures (Cont.)

3.4.1.6

3.4.1.6

3.4.1.6

3.4.2.1

3.4.2.2

3.4.2.3

3.4.2.4

3.4.2.5

3.4.2.5

3.4.2.5

3.4.3.1

3.4.3.2

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.6.1

3.6.2

3.6.3

3.6.4

3.7.1

3.7.2

3.7.3

3.7.4

3.7.4

LIB$CVT __DTB Decimal to Binary Conversion

LIB$CVT _OTB Octal to Binary Conversion

LIB$CVT_HTB Hexadecimal to Binary Conversion

OTS$CVT __L_ TI Convert Longword to Text (integer)

OTS$CVT __L_TL Convert Longword to Text (logical)

OTS$CVT __L_TO Convert Longword to Text (octal)

OTS$CVT __L_TZ Convert Longword to Text (hexadecimal)

FOR$CVT_D_TD,E,F,G Convert D-11oating to text

FOR$CVT_G_TD,E,F,G Convert G_floating to text

FOR$CVT_H_TD,E,F,G Convert H-11oating to text

LIB$SYS_F AO Formatted ASCII Output

LIB$SYS_F AOL Formatted ASCII Output with LIST

Variable Bit Field Instruction Procedures

LIB$INSV Insert a Variable Bit Field

LIB$EXTV Extract and Sign-extend a Bit Field

LIB$EXTZV Extract a Zero-extended Bit Field

LIB$FFC Find First Clear Bit

LIB$FFS Find First Set Bit

Performance Measurement Procedures

LIB$FREE_TIMER

LIB$INIT _TIMER

LIB$STAT _TIMER

LIB$SHOW _TIMER

Date/Time Utility Procedures

LIB$SYS_ASCTIM

FOR$IDATE

FOR$JDATE

FOR$DATE

FOR$DATE_T_DS

Free Timer Storage

Initialize Times/Counts

Return Accumulated Times/Counts

Show Accumulated Times/Counts

Convert Binary Date/rime to ASCII String

Return Month, Day, Year as a Word Inte­
ger

Return Month, Day, Year as a Longword
Integer

Return System Date as 9-Byte String

Return System Date as Fixed-Length
String

(contmued on next page)

3-4 General Utility Procedures

Table 3-1: General Utility Procedures (Cont.)

3.7.5 FOR$SECNDS

3.7.6 FOR$TIME_T_DS

3.7.6 FOR$TIME

3.7.7 LIB$DAY

3.7.8 LIB$DATE_ TIME

Miscellaneous Procedures

3.8.1 LIB$AST _IN_pRQG

3.8.2 LIB$CRC

3.8.3 LIB$CRC_ TABLE

3.8.4 LIB$EMULATE

3.8.5 LIB$ADDX

3.8.5 LIB$SUBX

3.8.6 LIB$SIM_ TRAP

3.8.7 LIB$EMODD

3.8.7 LIB$EMODF

3.8.7 LIB$EMODG

3.8.7 LIB$EMODH

3.8.8 LIB$POLYD

3.8.8 LIB$POLYF

3.8.8 LIB$POLYG

3.8.8 LIB$POLYH

3.8.9.1 LIB$INSQHI

3.8.9.2 LIB$INSQTI

3.8.9.3 LIB$REMQHI

3.8.9.4 LIB$REMQTI

Return System Time in Seconds

Return System Time to Fixed-Length
String

Return System Time as 8-Byte String

Return Day Number as a Longword Integer

Return System Date/Time

AST in Progress

Calculate Cyclic Redundancy Check

Construct Cyclic Redundancy Check Table

Emulate VAX-11 Instructions

Multiple Precision Binary Add

Multiple Precision Binary Subtract

Simulate Floating Trap

Extended Multiply D_Floating

Extended Multiply F_floating

Extended Multiply G_Floating

Extended Multiply H_Floating

Evaluate Polynomial D_Floating

Evaluate Polynomial F _floating

Evaluate Polynomial G_Floating

Evaluate Polynomial H_Floating

Queue Entry Inserted at Head

Queue Entry Inserted at Tail

Queue Entry Removed at Head

Queue Entry Removed at Tail

3.1 Common Input and Output Control Procedures

When you log in to VAXNMS, process-permanent files identified with
the logical names SYS$INPUT, SYS$COMMAND, and SYS$0UTPUT are
created as default I/O control streams for your process. These files are
the interface between your interactive input (or batch control) and the
VAXNMS software. You can use the library procedures LIB$GET-1NPUT,

General Utility Procedures 3-5

LIB$GET_COMMAND and LIB$PUT_OUTPUT to read. a record from
SYS$INPUT, SYS$COMMAND, or write a record to SYS$0UTPUT using the
V AX-11 Record Management Services (RMS).

You can change SYS$INPUT to obtain control information from any fil~
using a DCL command. Similarly, you can change SYS$0UTPUT so that
control information is output to any file. SYS$INPUT and SYS$COMMAND
are usually identical. However, the input and the command streams can
be different (such as during the execution of an indirect command file
from an interactive terminal). In this case, SYS$COMMAND refers
to input from the terminal and SYS$INPUT refers to input from the file.
LIB$GET_COMMAND is used only when input is to come from the termi­
nal rather than an indirect command file. For example, when a program asks
a question that the user could not provide an answer for in an indirect com­
mand file.

The following software gets controlling input from SYS$INPUT and directs
controlling output to SYS$0UTPUT:

• Command interpreter

• Utilities

• Run-Time Library

• All other user-mode software

Typically, a record corresponds to a line for an interactive device. However,
no ASCII carriage-return (CR) and/or line-feed (LF) are part of the data in
the record. Formatting is handled entirely by RMS when the data is input or
output.

Because V AXNMS creates SYS$INPUT and SYS$0UTPUT as process per­
manent files, each procedure can perform its own OPEN, GET, CLOSE, and
PUT operations. Therefore, LIB$GET-1NPUT, LIB$GET_COMMAND
and LIB$PUT _OUTPUT are not image resource allocation procedures.

For the LIB$ procedures in this section that have strings as parameters, the
following severe errors can be returned as a completion status:

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES

fatal in tern al error
insufficient virtual memory
invalid string descriptor

To save space the preceding errors are listed by name only in each procedure
description. Other errors, more specific to a particular procedure are listed
and explained under each procedure description.

3-6 General Utility Procedures

LIB$ASN_WITH_MBX

3.1.1 Assign Channel with Mailbox

LIB$ASN_WTH_MBX assigns a channel to a specified device and associ­
ates a mailbox with the device. It returns both the device channel and the
mailbox channel.

Normally, when a mailbox is created, the corresponding logical name is
placed in the GROUP logical name table. This implies that any process
running in the same group and using the same logical name uses the same
mailbox. There are times when this is not desirable. For example, when a non­
transparent network connect is done, a mailbox is used to obtain the connect
confirm data and asynchronous messages from the other task. Multiple pro­
cesses running under the same group and sharing a common mailbox for their
network 'links do not work correctly. These processes read each other's mail­
box messages. LIB$ASN_ WTH_MBX avoids the problem by associating
the physical mailbox name with the channel assigned to the device.

Format

ret-status = LIB$ASN_WTH_MBX (dev-na-, max-msg, buf-quo,
dev-chn, mbx-chn)

dev-nam
Address of the device name descriptor. This string is input to the
$ASSIGN service.

max-msg
A longword integer representing the maximum size of messages that can
be sent to the mailbox. This parameter is input to the $CREMBX service.

buf-quo
A longword integer representing the number of bytes of system dynamic
memory that can be used to buffer messages sent to the mailbox. This
parameter is input to the $CREMBX service.

dev-chn
Address of a word to receive the device channel. This value is output from
the $ASSIGN service.

mbx-chn
Address of a word to receive the mailbox channel. This value is output
from the $CREMBX service.

Return Status

SS$_NORMAL
Routine successfully completed.

SS$_xyz
Any return status from a called system service. $ASSIGN, $CREMBX,
$GETCHN, and $FAO services are used.

General Utility Procedures 3-7

LIB$RUN_PROGRAM

3.1.2 Chain to Program

LIB$RUN_FROGRAM causes the current program to stop running and be­
gins execution of another program. If successful, control does not return to the
calling program. Instead, the $EXIT system service is called, the new pro­
gram image replaces the old image in the user process, and control is given to
the new image by the command interpreter. If unsuccessful, control returns to
the command interpreter.

Format

ret-status = LIB$RUN_FROGRAM (pgm-name)

pgm-name
Address of the descriptor of a character string containing the file name of
the program to be run in place of the current program. The maximum
length of the file name is 256 characters. The default file type is .EXE.

Return Status

LIB$_INV ARG
Invalid argument.

3.1.3 Execute Command

LIB$DO_COMMAND

LIB$DO_COMMAND causes the current program to stop running and then
executes the new command. If successful, control does not return to the call­
ing program. Instead, the $EXIT system service is called, and the new com­
mand is passed to the command interpreter. Note that the command can
execute an indirect file using the at-sign (@) feature of DCL.

Format

ret-status = LIB$DO_COMMAND (cmd-text)

cmd-text
Address of the descriptor of a character string containing the text of the
command to be executed. The maximum length of the command is 256
characters.

Return Status

LIB$_INV ARG
Invalid argument.

3-8 General Utility Procedures

LIB$GET_INPUT

3.1.4 Get Line from SYS$1NPUT

LIB$GET_JNPUT gets one record of ASCII text from the current controlling
input-device, specified by SYS$INPUT. LIB$GET_INPUT uses the VAX-11
RMS $GET service.

LIB$GET_INPUT opens file SYS$INPUT on the first call. The VAX-11
RMS internal stream identifier (ISI) is stored in the procedure's static storage
for subsequent calls.

If prompt-str is provided and the SYS$INPUT device is a terminal,
LIB$GET_INPUT outputs the prompt message. If the device is not a termi­
nal, the prompt-str is ignored.

LIB$GET_COMMAND is identical to LIB$GET_INPUT, except that in­
put comes from SYS$COMMAND.

Format

ret-status = LIB$GET_INPUT (get-str [,prompt-str [,out-len]])

ret-status = LIB$GET_COMMAND (get-str [,prompt-str [,out-len]])

get-str
Address of string descriptor to receive the string (fixed-length or
dynamic).

prompt-str
Address of a string descriptor specifying an optional prompt message that
is output to the controlling terminal. If no other conventions are estab­
lished, prompts are English words followed by a colon(:), one space, and
no CRLF (carriage-return/line-feed).

out-len
Optional address of a word to receive the number of bytes written into get­
str, not counting padding in the case of a fixed string. If the input string is
truncated to the size specified in the get-str descriptor, out-len is set to
this size. Therefore, out-len can always be used by the calling program to
access a valid substring of get-str.

Return Status

SS$_NORMAL
Routine successfully completed. V AX-11 RMS completion status.

LIB$_F ATERRLIB
An internal consistency check on Run-Time Library data structures has
failed. This may indicate a programming error in the Run-Time Library
or that the user has overwritten those data structures.

General Utility Procedures 3-9

LIB$-1NPSTRTRU
The input string is truncated to the size specified in the get-str descriptor
(fixed-length or unspecified string types only). Out-len is also set to this
size. This is an error (as opposed to LIB$_STRTRU which is a success)
because the truncation is not under program control.

LIB$-1NSVIRMEM
Insufficient virtual memory to allocate dynamic string.

LIB$-1NV ARG
Invalid arguments. Descriptor class field is not a recognized code or zero.

LIB$_STRIS-1NT
String is interlocked. The parameter get-str was being accessed at
non-AST level· or in a previous AST. Writing into the parameter at this
time could invalidate that previous access.

RMS$_xyz
Any VAX-11 RMS error code indicates a VAX-11 RMS error.

Examples

The following FORTRAN code fragment asks at the terminal for the user's
name and age.

CHARACTER NAME*30t AGE*2
INTEGER !AGE
IF C.NOT. LIB$GET_INPUT <NAME, 'Last Narr1e: '))GO TO 999

50 IF C.NOT. LIB$GET_INPUT <AGE, 'Ase: ')) GO TO 999
READ <AGE, 150 tERR=50 > I AGE

150 FORMAT CBNI2)

If any error occurs during the input of the name or age, control goes to
statement 999. Otherwise, the 2-character AGE string is converted to an
integer. If a formatting error occurs, the user is asked for age again.

The following is an example of what the user might see at the terminal
(lowercase characters indicate what the user typed):

LAST NAME: Jones
AGE: 3o
AGE: 30

Age was asked again because the letter o was typed instead of the number 0.

The following FORTRAN example asks for last name, first name sepa­
rately and concatenates them without any of the trailing blanks.

INTEGER*2t LLENt FLEN
CHARACTER NAME*B2t LNAME*30t FNAME*30
IF (.NOT• LI 6$GET _INPUT (LNAME, 'LAST NAME: ' tLLEN)) GOTO 999
IF (• NOT. LI B$GEL IN PUT (FNAME, IF I RST NAME: I , FLEN)) GOTO 888
NAME= LNAMEC1:LLEN)//' ,'//FNAME<l:FLEN>

3-10 General Utility Procedures

LIB$GET_FOREIGN

3.1.5 Get Line from FOREIGN Command Line

LIB$GET_FOREIGN gets the command line from the "foreign command"
line that activated the current image. A foreign command is used to run a user
program as if it were a native command. A program run by a foreign com­
mand can request the remainder of the command line (after the command
name) and can parse it for whatever options needed.

To define a foreign command, use the following DCL command:

$ CDMMand_naMe :== $filesPec

where:

command_name is the name of the foreign command you want to define and
filespec is the fully qualified file specification of the executable image to be
run when command_name is invoked.

For example:

$VULCAN :== $DBO:[SPOCKJVULCAN.EXE

The "$" prefix is required and must immediately precede the file specification.

Assuming that the command VULCAN was defined, the command line:

$VULCAN/OUTPUT=GANYMEDE TITAN.DAT

would start running the image DBO:[SPOCK]VULCAN.EXE. If that program
then calls LIB$GET_FOREIGN, it can obtain the remainder of the com­
mand line:

/OUTPUT=GANYMEDE TITAN.DAT

The user program can analyze this returned string in any manner it desires
(see Chapter 7). No interpretation is done by the command interpreter.

If the image resides in the SYS$SYSTEM: directory, the image could be
invoked by the MCR command and the command line text following the
image name would be returned. If the image were not invoked by a foreign
command or MCR, or if there were no information remaining on the command
line, and the user-supplied prompt were present, LIB$GET-1NPUT would
be called to prompt for a command line. Otherwise, a zero length string would
be returned, subject to the appropriate semantics of the destination string
class.

General Utility Procedures 3-11

Format

ret-status = LIB$GET_FOREIGN (get-str [,prompt-str [,out-len]])

get-str
Address of string descriptor to receive the command line (fixed-length or
dynamic).

prompt-str
Address of a string descriptor specifying an optional prompt message that
is output to the controlling input device, if it is a terminal. The prompt
message is sent to the terminal when there is no information in the com­
mand line. If prompt-str is omitted, no prompting is performed.

out-len
Optional address of a word to receive the number of bytes written into
get-str, not counting padding in the case of a fixed string. If the input
string is truncated to the size specified in the get-str descriptor, out-len is
set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of get-string.

Return status

SS$_NORMAL
Procedure successfully completed.

LIB$-1NPSTRTRU .
The string from SYS$INPUT was truncated to the size specified in the
get-string descriptor (static or unspecified types only).

LIB$-1NV ARG
Invalid arguments. Descriptor class is not a recognized class or zero.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

Example

The following BASIC code fragment checks an input line for data or
switches:

100 DECLARE STRING INPUT-LINE
110 DECLARE INTEGER RET_STATUSt INPUT_LEN
120 EXTERNAL INTEGER FUNCTION LIBSGET_FOREIGN

200 RET_STATUS = LIB$GET_FOREIGN<INPUT_LINEt &
"VULCAN> "t INPUT _LEN)

300 IF <RET_STATUS AND 1%) <> 0% THEN &
IF SEGS<INPUT_LINEtl'X.tl'X.) = "/" THEN &:

PRINT "SWITCHES" &:
ELSE IF INPUT-LEN <> 0% THEN &

PRINT "DATA, NO SWITCHES" &:
ELSE PR I NT "NO SW ITCHES OR DATA" &:

ELSE CALL LIB$STOP<RET_STATUS BY VALUE>

3-12 General Utility Procedures

LIB$GET_COMMON

3.1.6 Get String from Common

LIB$GET_COMMON copies the string in the common area to the destina­
tion string. The string length is taken from the first longword of the common
area. If the string is too long for the destination, the string is truncated. The
number of characters copied is returned by the optional parameter, chars­
copied (if given).

Format

ret-status = LIB$GET_COMMON (dst-str [,chars-copied])

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

chars-copied
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
chars-copied is set to this size. Therefore, chars-copied can always be used
by the calling program to access a valid substring of dst-str.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_STRTRU
Successfully completed, but the string was longer than the buffer and was
truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS--1NT

3.1. 7 Get System Message

LIB$SVS_GETMSG

LIB$SYS_GETMSG calls the System Service GETMSG with the caller's
input string. The resultant string is returned using the semantics of the
caller's string. Parameters msg-id and flags are presented to this routine by
reference and are promoted to immediate value for presentation to GETMSG.

Format

ret-status
[,out-arr]])

msg-id

LIB$SYS_GETMSG (msg-id, [msg-lenJ, dst-str [,flags

Address of a longword containing the identification of the message to be
retrieved.

General Utility Procedures 3-13

msg-len
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
msg-len is set to this size. Therefore, msg-len can always be used by the
calling program to access a valid substring of dst-str.

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

flags
Address of a longword containing the flag bits for message content. This is
an optional parameter; the default value is all 1.

Bit Value Meaning

0 1 Include text

0 Do not include text

1 1 Include identifier

0 Do not include identifier

2 1 Include severity

0 Do not include severity

3 1 Include component

0 Do not include component

out-arr
Address of a 4-byte array to receive message specific information. This is
an optional parameter.

Byte Contents

0 Reserved

1 Count of FAO arguments

2 User value

3 Reserved

Return Status

SS$_NORMAL
Procedure successfully completed.

3-14 General Utility Procedures

LIB$_STRTRU
Successfully completed, but source string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

SS$_BUFFEROVF
Successfully completed, but the resultant string overflowed the buffer
provided and has been truncated.

SS$_MSGNOTFND
Successfully completed, but the message code does not have an associated
message in file.

Example

The following BASIC code fragment gets and prints the system error mes­
sage for the return status when the value returned is not 1:

100 EXTERNAL INTEGER FUNCTION LIBSPROCt LIBSSYS_GETMSG
110 DECLARE INTEGER RET_STATUS
200 RET_STATUS = LIBSPROCCAtBtC>
300 IF <RET_STATUS AND 1%> <> 0% THEN &

&:
norrrial Path &:

ELSE IF <LIBSSYS_GETMSG<RET_STATUStt
OUT_STRINGSt1%) <> 0% THEN
PRINT OUT_STRING$

ELSE PRINT "DOUBLE ERROR - HALT"

3.1.8 Listing Control

These procedures provide the user with the capability of customizing the
printer output with respect to the currency symbol, the digit separator, the
radix point and the number of lines on each page.

General Utility Procedures 3-15

LIB$CURRENCY

3.1.8.1 Currency Symbol - LIB$CURRENCY returns the system's currency
symbol. This symbol should be used before a number to indicate that the
number represents money in the local country.

This routine works by attempting to translate the logical name
SYS$CURRENCY as a process, group, or system logical name. If the transla­
tion fails, the routine returns "$", the United States money symbol. If the
translation succeeds, the text produced is returned. Thus, a system manager
can define SYS$CURRENCY as a system-wide logical name to provide a
default for all users, and an individual user with a special need can define
SYS$CURRENCYas a process logical name to override the default.

Format

ret-status = LIB$CURRENCY (currency-str [,out-len])

currency-str
Address of the currency string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into currency-str, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the currency-str
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of currency-str.

lmpllclt Inputs

Logical name SYS$CURRENCY.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the currency string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

3-16 General Utility Procedures

LIB$DIGIT_SEP

3.1.8.2 Digit Separator Symbol - LIB$DIGIT_SEP returns the system's
digit separator symbol. This symbol should be used to separate groups of
three digits in the integer part of a number, for readability, using the customary
symbol.

This routine attempts to translate the logical name SYS$DIGIT_SEP
as a process, group, or system logical name. If, the translation fails, the
routine returns ", ", the United States digit separator. If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$DIGIT_SEP as a system-wide logical name to provide a default
for all users, and an individual user with a special need can define
SYS$DIGIT_SEP as a process logical name to override the default symbol.

Format

ret-status = LIB$DIGIT_SEP (digit-sep-str [,out-len])

digi t-sep-str
Address of the digit separator string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into digit-sep-str, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the digit-sep-str
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of digit-sep-str.

lmpllclt Inputs

Logical name SYS$DIGIT_SEP.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the digit separator string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

General Utility Procedures 3-17

LIB$LP_LINES

3.1.8.3 Number of Lines per Line Printer Page - LIB$LP _LINES computes
the default number of lines on a line printer page. This procedure can be used
by native-mode V AXNMS utilities that produce "listing" files and do
pagination.

United States standard paper stock permits 66 lines on each physical page.
From this value, the utility should deduct:

1. Three lines for top margin

2. Three lines for bottom margin

3. Three lines for listing heading information, consisting of:

a. Language-processor identification line

b. Source-program identification line

c. One blank line

The algorithm used by LIB$LP _LINES is:

1. Translate the logical name SYS$LP _LINES.

2. Convert the ASCII value obtained to a binary integer.

3. Verify that the resulting value is in the range [30:99].

4. If any of the prior steps fail, return the default U.S. paper size of 66 lines.

Format

page-len = LIB$LP _J.JNES ()

page-len
A longword to receive the default number of lines on a physical line printer
page. If the logical name translation or conversion to binary fails, a default
value of 66 is returned.

lmpllclt Inputs

Logical name SYS$LP _LINES.

3-18 General Utility Procedures

LIB$RADlx_PolNT

3.1.8.4 Radix Point Symbol - LIB$RADIX_I>OINT returns the system's
radix point symbol. This symbol should be used inside a digit string to sepa­
rate the integer part from the fraction part. This routine works by attempting
to translate the logical name SYS$RADIX-POINT as a process, group, or
system logical name.

If the translation fails, this routine returns".", the United States radix point
symbol. If the translation succeeds, the text produced is returned. Thus, a
system manager can define SYS$RADIX_I>OINT as a system-wide logical
name to provide a default for all users, and an individual user with a special
need can define SYS$RADIX_FOINT as a process logical name to override
the default.

Format

ret-status = LIB$RADJ:x_pQJNT (radix-point-str [,out-len])

radix-point-str
Address of the radix point string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into radix-point-str, not counting padding in the case of a fixed-length
string. If the input string is truncated to the size specified in the
radix-point-str descriptor, out-len is set to this size. Therefore, uut-len
can always be used by the calling program to access a valid substring of
radix-point-str.

lmpllclt Inputs

Logical name SYS$RADJ:x_pQJNT.

Return Status

SS$_NORMAL
Procedure completed successfully.

LIB$_STRTRU
Successfully completed, but the radix point string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

General Utility Procedures 3-19

LIB$PUT_OUTPUT

3.1.9 Put Line to SYS$0UTPUT

LIB$PUT_OUTPUT outputs a record (line) to the current controlling output
device, specified by SYS$0UTPUT, using the VAX-11 RMS $PUT service:
LIB$PUT_OUTPUT opens and positions at end-of-file (or creates if not
existent) SYS$0UTPUT on the first call in case it is not a process-permanent
file. The VAX-11 RMS internal stream identifier (ISi) is stored in the proce­
dure's storage space for all subsequent calls.

Format

ret-status = LIB$PUT_OUTPUT (msg-str)

msg-str
Address of a string descriptor specifying the message. VAX-11 RMS han­
dles all formatting, so that the message does not need to include such
ASCII formatting instructions as carriage return (CR).

Return Status

SS$_NORMAL
Routine successfully completed.

RMS$_abc
VAX-11 RMS error code indicates an RMS error.

Example

The following FORTRAN code fragment outputs a string:

CALL LIB$PUT _QUTPUT <'Hello There'>

3-20 General Utility Procedures

LIB$PUT_COMMON

3.1.10 Put String to Common

LIB$PUT_COMMON copies the contents of a string specified by the caller
into the common area. Optionally, it returns the actual number of characters
copied.

Format

ret-status = LIB$PUT _COMMON (src;.str [,chars-copied])

src-str
Address of the source string descriptor.

chars-copied
Optional address of a word to receive the number of characters copied.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the source string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

General Utility Procedures 3-21

LIB$SVS_TRNLOG

3.1.11 Translate Logical Name

LIB$SYS_TRNLOG uses the system service TRNLOG to translate a logical
name, returning the resultant string using the semantics of the caller's string.
Parameter dsb-msk is presented to this routine by reference and is promoted
to by immediate value for presentation to TRNLOG.

See the TRNLOG system service description in the VAX/VMS System
Services Reference Manual.

Format

ret-status = LIB$SYS_TRNLOG (logical-name, [dst-len], dst-str [,table
[,ace-mode [,dsb-msk]]])

logical-name
Address of the logical name string descriptor.

dst-len
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
dst-len is set to this size. Therefore, dst-len can always be used by the
calling program to access a valid substring of dst-str.

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

table
Address of a byte to receive the logical name table number. (This is an
optional parameter.)

ace-mode
Address of a byte to receive the access mode of entry (process table only).
(This is an optional parameter.)

dsb-msk
Address of a byte containing the table search disable mask. (This is an
optional parameter.)

Bit Set Meaning

0 Do not search system logical name table

1 Do not search group logical name table

2 Do not search process logical name table

3-22 General Utility Procedures

Return Status

SS$_NORMAL
Procedure successfully completed.

SS$_NOTRAN
Successfully completed, but input logical name string was placed 1n desti­
nation string buffer because no equivalence name was found.

LIB$_STRTRU
Successfully completed, but source string truncated on copy.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

SS$_ACCVIO
The logical name string or string descriptor cannot be read, or the output
length, output buffer, table or access mode field cannot be written, by the
caller.

SS$-1NVLOGNAM
The specified logical name string has a length of zero or has more than 63
characters.

SS$-RESULTOVF
The destination string buffer has a length of zero, or it is smaller than the
resultant string.

Example

The following BASIC code fragment translates the logical name ORION
by searching only the system table:

100 EXTERNAL INTEGER FUNCTION LIB$SYS110
DECLARE INTEGER RET_STATUS
200 RET _STATUS = LI B$SYS_ TRNLOG (11 OR ION" t t OUTSTR I NG$ t t t 3'Y.,)
210 PRINT 11 TRANSLATED: 11

; OUT-STRING$

3.2 Terminal Independent Screen Procedures

The terminal independent screen procedures provide a high-level language
interface to DIGITAL video terminals. An assembly -language interface
(SCR$) is also provided where input parameters are passed by immediate
value.

NOTE

If the terminal type is a VT52 or VTlOO, as specified by
the DCL command SET TERMINAL, an escape sequence is
output during the first access to the terminal by these
procedures to ensure that the terminal is in the correct mode. To
operate a VTlOO in VT52 mode, you should first type a
SET TERMINALNT52 command.

General Utility Procedures 3-23

3.2.1 Cursor Positioning on a Screen

Several procedures let the user control the cursor position. The top line of a
screen is line number one. The leftmost column of a screen is column number
one. When the line and column parameters are optional, both must be speci­
fied or neither.

For the erase page procedures, linen of the screen is logically contiguous with
line n+l.

No checks are made in these procedures to return an error status for cursor
position specifications which exceed the maximum number of lines or col­
umns for the terminal. No attempt is made by these procedures to create
multiple line output and, thereby, cause line wrap or prevent the loss of text
characters.

3.2.2 Screen Functions in Buffer Mode

Buffer mode has the advantage of letting the user format an entire screen of
information and present this data on the screen with one call to the queue 1/0
service. This is particularly more efficient when a communications network is
involved.

Buffer sizes can be difficult to determine accurately when a variable amount
of data composes a screen of data. Therefore, when a buffer overflow condition
is detected, the buffer is put to the screen via a queue 1/0 service function, the
buffer data size is set to zero and the current buffering mode continues.

In a modular programming environment, screen buffering can occur at several
levels. That is, a procedure can establish buffer mode then call ariother proce­
dure which also establishes buffer mode and so on.

Although each procedure which establishes buffer mode must have buffer
storage available, only one buffer is active at any point in time. As further
levels of buffering occur, the contents on one buffer are copied into the active
buffer and the previous buffer is set to indicate an empty buffer. Pointers to
the previous level buffer are made available to the user program so it can copy
(by calling LIB$PUT_BUFFER) the current buffer back to the calling pro­
gram's buffer before returning to the calling program.

The copy process indicates that the contents of the buffer are cumulative from
the time buffer mode is established. This also indicates that (if automatic
QIOs triggered by a buffer overflow condition are to be avoided) the buffer
sizes stated for called procedures must take into account the size of the data
that has been created by all the calling procedures and the size of the data
being created by all the called procedures. Similarly, the calling procedure
must allow the size of the buffer in the calling procedure to account for the
size of the data being buffered at all called procedures below the calling
procedure in addition to the size of the data being buffered in the calling
procedure.

3-24 General Utility Procedures

LIB$ERASE_LINE

3.2.3 Erase Line

LIB$ERASE_LINE and SCR$ERASE_LINE erase all of the character posi­
tions on the screen from the specified cursor position to the end of the line.

Format

ret-status = LIB$ERASE_LINE ([line-no, col-no])

ret-status = SCR$ERASE_LINE ([line-no, col-no])

line-no
Optional address of a signed word integer containing the line number
where the erase begins. The default is the current line number. For
SCR$ERASE_LINE, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the erase begins. The default is the current column number. For
SCR$ERASE_LINE, the column number is passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$-1NV ARG
Invalid argument. The number of parameters specified must be none or
two .

. LIB$-1NVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would erase the screen from col­
umn 41 of line 12 to the end of line 12:

!COL = ll1
!LINE 12
!STAT= LIB$ERASE_LINE <ILINEt!COL>

General Utility Procedures 3-25

LIB$ERASE_PAGE

3.2.4 Erase Page

LIB$ERASE_FAGE and SCR$ERASE_FAGE erase all of the character
positions on the screen from the specified cursor position to the end of the
screen.

Format

ret-status = LIB$ERASE_FAGE ([line-no, col-no])

ret-status = SCR$ERASE_FAGE ([line-no, col-no])

line-no
Optional address of a signed word integer containing the line number
where the erase begins. The default is the current line number. For
SCR$ERASE_FAGE, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the erase begins. The default is the current column number. For
SCR$ERASE_pAGE, the column number is passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$---1NV ARG
Invalid argument. The number of parameters specified must be none or
two.

LIB$---1NVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would clear the entire screen:

ICOL = 1
I LI NE 1
!STAT = LIB$ERASE_PAGE <ILINE, !COL>

3-26 General Utility Procedures

LIB$SCREEN_INFO

3.2.5 Get Screen Information

LIB$SCREEN-1NFO and SCR$SCREEN-1NFO move terminal specifica­
tions to user specified area(s). These terminal specifications include miscella­
neous flags, device type, screen width and number of lines per screen.

Format

ret-status = LIB$SCREEN_INFO (flags [,dev-type [,line-width
[,lines-per-page]]])

ret-status = SCR$SCREEN_INFO (control-block)

flags
Address of a longword to contain a bit map representing special terminal
characteristics. Currently, these values are used:

Bit Value Meaning

0 1 DIGIT AL video terminal

0 Hard copy or unknown type terminal

1:31 0 Unused at present

dev-type
Optional address of a byte to contain an integer representing the terminal
type. The terminal types are defined in the $DCDEF macro. Some of the
terminal types are:

0 Unknown type or nongraphic
64 VT52
96 VTlOO

line-width
Optional address of a word to contain an integer representing the width in
columns for which the terminal is configured. This corresponds to the
value supplied by the DCL command, SET TERMINAL/WIDTH = n.

lines-per-page
Optional address of a word to contain an integer representing the lines per
screen for which the terminal is configured. This corresponds to the value
supplied by the DCL command, SET TERMINAL/PAGE= n.

General Utility Procedures 3-27

control-block
Address of an area to contain nine bytes which correspond in order to the
flags, line-width, lines-per-page and dev-type parameters specified for
LIB$SCREEN_JNFO.

Example

The following FORTRAN code fragment would display the screen infor­
mation on the first four lines of a cleared screen:

INTEGER*2 FLAGS, DEVTYPE, LINEWIDTH, LINESPP
!LINE = 1

C I COL = 1
c
C GET SCREEN-INFO AND DISPLAY IT ON FIRST FOUR LINES OF
C A CLEARED SCREEN

!STAT = LI8$ERASE_PAGE <ILINE, ICOL>
200 !STAT = LIBSSCREEN_INFO <FLAGS, DEVTYPEt LINEWIDTHt LINESPP>

FORMAT C15H FLAGS t!Gt/1
a15H DEt.JICE TYPE = , IG ,; ,
b15H LINE WIDTH= tIGt!t
c 1 5 H L I NE S I PAGE = , I G >.

WRITE CG, 200) FLAGS, DEVTYPE, LINEWIDTH, LINESPP

LIB$GET_SCREEN
3.2.6 Get Text from Screen

LIB$GET_SCREEN and SCR$GET_SCREEN copy text (input by the ter­
minal user) from the screen into a specified destination.

Format

ret-status = LIB$GET_SCREEN (input-text [,prompt-str [,out-len]])

ret-status = SCR$GET _SCREEN (input-text [,prompt-str [,out-len]])

input-text
Address of a descriptor of a string to receive the text copied from the
screen (fixed-length or dynamic).

prompt-str
Optional address of a descriptor of a string that is displayed on the screen
starting at the current cursor position prior to accepting input from the
user terminal.

out-len
Optional address of a word to receive the number of characters written
into input-text, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the input-text
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of input-text.

Return Status

SS$_NORMAL
Routine successfully completed.

3-28 General Utility Procedures

LIB$-1NPSTRTRU
The input string is truncated to the size specified in the input-text
descriptor.

LIB$-1NV ARG
Invalid argument. Descriptor class field is not a recognized code or zero.

RMS$_xyz
Any VAX-11 RMS error code.

Example

The following FORTRAN code fragment would prompt the user with
"ENTER NAME: ,"accept up to 30 characters and put them in INPUT,
and set LENGTH equal to the number of characters input:

CHARACTER PROMPT*12t INPUT*30
DATA PROMPT/'ENTER NAME: '/
INTEGER*2 LENGTH
!COL = 1
I LINE 24
!STAT= Ll5$SET_CURSOR (!LINEt !COL>
!STAT = Ll5$GET_SCREEN (!NPUTt PROMPTt LENGTH>

NOTE

This procedure is identical to LIB$GET__INPUT, and is pro­
vided for symmetry.

LIB$DOWN_SCROLL

3.2. 7 Move Cursor Up One Line, Scroll Down if at Top

LIB$DOWN_SCROLL and SCR$DOWN_SCROLL move the cursor up one
line on the screen. If the cursor was already at the top line on the screen, all
lines are moved down one line, the top line is replaced with a blank line and
the data that was on the bottom line is lost.

Format

ret-status = LIB$DOWN_SCROLL ()

ret-status = SCR$DOWN_SCROLL ()

Return Status

SS$_NORMAL
Routine successfully completed.

'
Example

The following FORTRAN code fragment would cause the screen to be
scrolled down one line:

CALL LI5$SET_CLJRSOR (1 t 1)
CALL Ll5$DOWN_SCROLL ()

General Utility Procedures 3-29

LIB$PUT_BUFFER

3.2.8 Put Current Buffer to Screen or Previous Buffer

LIB$PUT-13UFFER and SCR$PUT_BUFFER procedures terminate the
current buffering mode and revert to the previous mode as specified by the
parameter. If the parameter is zero or omitted, buffering is terminated and
the contents of the current screen buffer are output to the screen. If the
parameter is not zero, buffering is terminated at the current level, the param­
eter is the address of a previous screen buffer to which the data from the
current buffer is copied, the current buffer is set to zero length and the previ­
ous buffer becomes the active buffer.

Format

ret-status = LIB$PUT___BUFFER ([old-buffer])

ret-status = SCR$PUT_BUFFER ([old-buffer])

old-buffer
Optional address of a longword containing zero or the address of an area
previously used as a screen buffer. If old-buffer is omitted or contains zero,
the contents of the current screen buffer are output to the screen, the data
length of the buffer is set to zero and buffer mode is terminated. If old­
buffer is not zero, it is assumed to be the address of an area previously
used as a screen buffer where the contents of the current active buffer are
to be copied and then this area becomes the new active buffer.

Return Status

SS$_NORMAL
Routine successfully completed.

Example

The following FORTRAN example demonstrates the general pattern used
to produce modular programs with the buffer mode of the terminal
independent screen procedures. Each modular program should use
LIB$SET_BUFFER and LIB$PUT_BUFFER in pairs. (See Section
3.2.10).

LIB$SET _BUFFER establishes the current buffering mode and saves the
address of the previous buffer (if any). LIB$PUT_BUFFER reverts
from the current buffering mode to the previous mode through the use
of the previous buffer address, made available by the corresponding
LIB$SET _BUFFER procedure call from the current modular program.

The previous buffering mode can imply: (1) buffering was in effect at the
time of the call to LIB$SET_BUFFER in this modular program or (2) no
buffering was in effect prior to this modular program. In the first case, the

3-30 General Utility Procedures

contentt' of the current buffer are copied to the previous buffer and the
previous buffer is reestablished as the active buffer. In the second case,
buffer mode is terminated and the contents of the buffer are output to the
terminal.

C BUFFER USED FOR THIS MODULAR PROGRAM
c

CHARACTER BUF*2000
c
C LONGWORD TO SAVE ADDRESS OF PREVIOUS ACTIVE BUFFER
c

INTEGER*ll OLDBUF

c
C ESTABLISH BUFFER MODE FOR THIS MODULAR PROGRAM
C AND SAVE PREVIOUS BUFFER ADDRESS
c

!STAT = LIB$SET_BUFFER CBUFt OLDBUF)

c
C REVERT TO PREVIOUS BUFFER MODE - EITHER REVERT TO
C OLD BUFFER OR OUTPUT CONTENTS OF BUFFER TO SCREEN
c

!STAT = LIB$PUT_BUFFER COLDBUF)

The following FORTRAN example demonstrates the use of the buffer
mode for the terminal independent screen procedure calls in a modular
manner. Both the main program and the subroutine initialize buffer
mode. The subroutine could also be called by a main program that did not
initialize buffer mode and the LIB$PUT_SCREEN procedure calls in the
subroutine would be buffered during the execution of the subroutine and
then output to the screen when the LIB$PUT_BUFFER procedure is
called in the subroutine.

In addition the main program uses the second parameter on the
LIB$SET _BUFFER procedure call as a good modular programming
practice. In general, the LIB$SET_BUFFER and LIB$PUT_BUFFER
procedures should be used in pairs to preserve a predictable buffer mode
at any point in the modular programming environment.

LIB$SET_BUFFER and LIB$PUT_BUFFER procedures should not be
called with the first parameter set to zero unless an error situation occurs
which will prevent a modular program from returning to its caller. These
procedure calls unconditionally force buffer mode to stop and the buffer to
be displayed on the screen.

General Utility Procedures 3-31

c
C SUBPROGRAM
c

c

SUBROUTINE BUFBUF <>
INTEGER*a !OLD

CHARACTER BUF2*2000

CHARACTER SUBTEXT*15
DATA SUBTEXT/'SUBROUTINE TEXT'/

Lonsword to save address of
buffer Previously in effect
Buffer to be used durins
this subroutine for screen
functions

!STAT= LIB$SET_BUFFER<NUF2, !OLD> ! Initialize bufferins
and save caller's buffer
address and COPY caller's
buffer to new buffer

C Put G lines in buffer
c

DO 500 I = 5,10
J = I - a
!STAT = LIB$PUT_SCREEN <SUBTEXT, I, J)

500 CONTINUE
c
C Revert to Previous buffer Mode
c

c

!STAT= LIB$PUT_BUFFER <IOLD>
RETURN
END

C MAIN PROGRAM
c

c

PROGRAM BUF
CHARACTER BUF1*3000

CHARACTER MAINTEXT*8
INTEGER*a OLDBUF

DATA MAINTEXT/'MAIN
ILINE=1
ICOL=1

TE}<T I I

Buffer to be used bY the Main
ProsraM for screen functions

! Lonsword to save the address
!of the Previous buffer used for
! Screen functions (if any)

I STAT
!STAT =

LIB$ERASE_PAGE <ILINE1ICOL> ! Clear the screen
LIB$SET_BUFFER <BUF1, OLDBUF> ! Initialize bufferins

\\ In this case, the Main ProsraM
is the first to
initialize bufferinS \\

C Put four lines in buffer
c

DO 1000 I = 1 , a
!STAT= LIB$PULSCREEN <MAINTE}<T, I, I>

1000 CONTINUE
CALL BUFBUFC> Call a Modular subroutine

which also uses buffer mode
c
C Put four more lines in buffer
c

DO 2000 I = 11 , 1 a
J = I - 10
!STAT= LIB$PUT_SCREEN <MAINTEXT, I, J>

2000 CONTINUE

END

!STAT = LIB$PUT_BUFFER (OLDBUF> ! Revert to Previous buffer
mode \\ for the main Prosram
the Previous buffer mode
was a non-buffered mode.
Therefore, the contents
of the buffer are forced
to the screen. \\

3-32 General Utility Procedures

NOTE

The comments enclosed in backslashes are specific to this main
program/subroutine configuration and should not be construed
as an indication of the lack of modularity of the main program.

LIB$PUT_SCREEN

3.2.9 Put Text to Screen

LIB$PUT_SCREEN and SCR$PUT_SCREEN output the specified text on
the screen beginning at a specified line and column. No carriage return or line
feed control characters are inserted.

Format

ret-status = LIB$PUT_SCREEN (text [,line-no, col-no])

ret-status = SCR$PUT_SCREEN (text [,line-no, col-no])

text
Address of a descriptor of a character string that is output to the screen.

line-no
Optional address of a signed word integer containing the line number
where the text begins. The default is the current line number. For
SCR$PUT_SCREEN, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the text begins. The default is the current column number. For
SCR$PUT_SCREEN, the column number is passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$__INV ARG
Invalid argument. The number of parameters specified must be one or
three.

LIB$__INVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would put "LINE OF TEXT" in
columns 1-12 of line 24:

CHARACTER TEXT*12
DATA TEXT/'LINE OF TEXT'/
ICDL = 1
ILINE = za
ISTAT = LI5$PUT_SCREEN <TEXT, ILINEt ICDL>

General Utility Procedures 3-33

LIB$SET_BUFFER

3.2.10 Set/Clear Buffer Mode

LIB$SET_BUFFER and SCR$SET_BUFFER provide a means of reducing
the number of queue 1/0 service calls (and possible network transfers),
thereby, improving efficiency of the screen functions. These procedures set (or
clear) buffer mode for the other terminal-independent screen procedures.
While in buffer mode, the other screen procedures do not alter the appearance
of the screen. Instead, a user-supplied buffer is maintained which represents
the sequence of the other screen output functions that have occurred since
buffer mode was last initialized. Clearing buffer mode causes the other screen
output functions to have an immediate effect on the appearance of the
terminal screen.

Format

ret-status = LIB$SET_BUFFER (buffer [,old-buffer])

ret-status = SCR$SET _BUFFER (buffer [,old-buffer])

buffer
Address of a descriptor of a modifiable fixed-length string which is used as
the buffer for storage of the characters which would normally be sent to
the terminal without buffering by the other screen output procedures until
the next LIB$SET _BUFFER or LIB$PUT _BUFFER procedure call oc­
curs. If buffer is omitted (or the argument list entry contains a zero),
buffer mode is terminated and the buffer retains the buffered characters.

old-buffer
Optional address of a longword to contain the address of the previous
buffer (if any). Old-buffer is most useful for subsequent use as an input
parameter to LIB$PUT_BUFFER.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_SCRBUFOVF
Screen buffer overflow. The buffer is less than 12 bytes in length.

LIB$-1NV ARG
Invalid argument. Zero or more than two parameters were specified.

Example

It is a good programming practice to always use LIB$SET _BUFFER
in conjunction with LIB$PUT_BUFFER. Please see the example in
the LIB$PUT_BUFFER section which uses both of these
procedures (Section 3.2.8).

3-34 General Utility Procedures

LIB$SET_CURSOR

3.2.11 Set Cursor to Character Position on Screen

LIB$SET_CURSOR and SCR$SET_CURSOR position the cursor to the
specified line and column on the screen.

Format

ret-status = LIB$SET_CURSOR (line-no, col-no)

ret-status = SCR$SET_CURSOR (line-no, col-no)

line-no
Address of a signed word integer containing the line number of the speci­
fied p0sition. For SCR$SET_CURSOR, the line number is passed by
immediate value.

col-no
Address of a signed word integer containing the column number of the
specified position. For SCR$SET _CURSOR, the column number is
passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$-1NV ARG
Invalid argument. The number of parameters specified must be two.

LIB$-1NVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would move the cursor to column
7 of line 5:

!STAT = LI5$SET_CLJRSOR C5t 7>

3.3 String Manlpulatlon Procedures

·This section describes string manipulation procedures, including character­
oriented, string arithmetic, string-oriented, and translate string routines.
Character-oriented routines include compare, locate, scan, skip, span, and
transform functions. String-oriented routines include concatenate, copy, ex­
tract, match, replace and trim functions.

Some of the LIB$ procedures are named after the VAX-11 hardware instruc­
tions whose service they provide. The order of parameters is the same as the
order in the corresponding hardware instruction.

General Utility Procedures 3-35

LIB$ procedures indicate all errors using return status, whereas STR$ and
OTS$ signal errors that are difficult to recover from and return truncated
string errors using a return status.

See Section 2.5.3 for more details about string handling conventions for LIB$,
OTS$, and STR$ procedures. Chapter 5 contains procedures for allocating
dynamic strings. Chapter 7 contains procedures for syntactically analyzing
strings.

3.3.1 String Conventions for LIB$, OTS$ and STR$ Facilities

Scalars are normally signed longwords passed by immediate value in registers
to JSB entry points and passed by reference to CALL entry points. The signed
longword allows negative values and access to all character positions.

Output string length parameters are normally unsigned words passed by im­
mediate value in registers from JSB entry points and passed by reference from
CALL entry points.

Strings are passed by descriptor. The LIB$, OTS$, and STR$ procedures
accept string descriptors for parameters specified as strings. The routines
write strings according to the semantics of the descriptor for all classes de­
fined by the VAX-11 Procedure Calling Standard. The routines can only read
strings that look like fixed-length string descriptors. That is, the length field is
a word containing the length of the string in bytes and the pointer field is a
pointer to the first character of the string. Routines that read and write a
string must have an input parameter and an output parameter. These param­
eters can reference the same string. The only modify access permitted on
strings is for STR$APPEND and STR$PREFIX, both specialized cases of
STR$CONCAT.

OTS$ and STR$ procedures signal errors that are programming errors or
prevent the routine from doing any useful work. LIB$ procedures return severe
errors as a completion status. These errors are:

LIB$ OTS$ STR$

FATERRLIB FATINTERR FATINTERR fatal internal error

INVSTRDES INVSTRDES ILLSTRCLA illegal string class

INSVIRMEM INSVIRMEM INSVIRMEM insufficient virtual memory

STRIS-1NT STRIS-1NT STRIS-1NT string is interlocked

3-36 General Utility Procedures

To save space the preceding errors are listed by name only in each procedure
description. Other errors, more specific to a particular procedure, are listed
and explained under each procedure description.

All errors are returned as a completion status by LIB$ procedures. Conse­
quently, when an output string must be truncated and its length depends
solely on input parameters (hence under control of the calling program), LIB$
procedures return a qualified success (LIB$_STRTRU) instead of an error.
This corresponds to the semantics of many higher level languages that do not
consider truncation as an error. However, when the length of an output string
is not completely under program control, such as for LIB$GET-1NPUT, a
particular error status is returned.

Since most errors are signaled by STR$ procedures, truncation is returned as
an error status with warning severity (STR$_TRU). Range errors are re­
turned as qualified success.

In two routines, the function value is not a status. STR$COMPARE returns
a logical value and STR$POSITION returns a character position. If
STR$APPEND and STR$PREFIX return, they always return success.

The longest string possible is 65,535 characters. When referring to character
positions in a string, character positions start at 1. When specifying substrings
by character positions M to N, the following evaluation rules apply.

1. If M <l, M is considered to equal 1.

2. If M > the length of the source string, the substring specified is the null
string.

3. If N > the length of the source string, N is considered to equal the length
of the source string.

4. If M > N, the substring specified is the null string.

When specifying substrings by length L, if L < 0, the substring specified is the
null string. If any of these evaluation rules apply, the range error - qualified
success status is returned (with the exception noted for STR$POSITION).

A null string is a descriptor with zero length (DSC$W_LENGTH = 0). A
descriptor with a nonzero length and a zero pointer is an error and yields
unspecified results.

3.3.2 Character Oriented Procedures

The following procedures return a single character or function value or have a
parameter that represents a single character, byte or ASCII code.

General Utility Procedures 3-37

STR$COMPARE
3.3.2.1 Compare Two Strings - STR$COMPARE compares two strings for
the same contents. If the strings are unequal in length, the shorter string is
considered as if it is blank filled to the length of the longer string before the
comparison is made. The return function value is -1 if stringl is less than
string2, 0 if stringl equals string2 and 1 if stringl is greater than string2.
Format

match= STR$COMPARE (srcl-str, src2-str)

srcl-str
Address of stringl string descriptor.

src2-str
Address of string2 string descriptor.

match
A signed longword to contain the return function value:

- J stringl < string2
0 stringl = string2
1 stringl > string2

Example

If the following BASIC code fragment were executed, the function values
would be; 1% = -1, J% = 0, K% = 1, L% = 0:

EXTERNAL INTEGER FUNCTION STR$COMPARE
I 'X. STR$COMPARE (I ABC I , I XYZ I)

J'X. STR$COM PARE (I MNO I , I MNO I)

K% STR$COMPARE('XYZ', 'ABC'>
L /., STR$COMPARE (I MND I , I MNO I)

STR$COMPARE_EQL

3.3.2.2 Compare Two Strings for Equal - STR$COMPARE_EQL compares
two strings for the same length and contents. The return function value is 0 if
the two strings are identical, and 1 if they are not.

Format

match= STR$COMPARE_EQL (srcl-str, src2-str)

srcl-str
Address of stringl string descriptor.

src2-str
Address of string2 string descriptor.

match
A longword containing the return function value:

0 length of stringl = length of string2 and
contents of stringl = contents of string2

1 length of stringl < > length of string2 or
contents of stringl <> contents of string2

3-38 General Utility Procedures

LIB$LOCC

3.3.2.3 Locate a Character - LIB$LOCC locates a character in a string by
comparing successive bytes in the string with the character specified. The
string is specified by the string descriptor. The string continues to be searched
until the character is found or the string has no more characters. The relative
position of the first equal character, or zero, is returned as an index. If the
string has a length of zero, then a zero is returned indicating that the charac­
ter was not found.

Format

index = LIB$LOCC (char-str, src-str)

char-str
Address of string descriptor of character to be found.

src-str
Address of string descriptor of string to be searched.

index
Unsigned longword containing the relative position of the first equal char­
acter or zero if no match is found.

NOTE

Only the first character of char is used, and its length is not
checked.

Examples

In FORTRAN, I is set to 3, and J to 0:

I LIB$LOCC ('CI t 'ABCDE I)
j LI B$LOCC (I z I t I ABDCE I)

The following FORTRAN function returns the number of spaces in string:

INTEGER*4 FUNCTION COUNT-SPACES <STRING>
INTEGER*4 REL_POSt END-POS
CHARACTER *<*> STRING
COUNT_SPACES = 0 ! AssuMe no sPaces
BEG-POS = 1
END-POS = LEN<BTRING)
DO WHILE <BEG_POS .LE. END_POS>

REL-POS = LIB$LOCC(I It STRING <BEG_POS:END_POS))
IF <REL-POS.EQ.0) RETURN
COUNT_SPACES = COUNT-SPACES + 1
BEG_POS = BEG_PQS + REL-POS

ENDDO
RETURN
END

General Utility Procedures 3-39

LIB$LEN

3.3.2.4 Return Length of String as Longword Value - LIB$LEN returns the
length of the string parameter as a longword value. The maximum length of a
VAXNMS string is 65,535 characters.

Format

str-len = LIB$LEN (src-str)

src-str
Address of the source string descriptor.

str-len
Length of the source string. The 16-bit length field in the source string
descriptor is copied and zero-extended to 32-bits.

Notes

The BASIC and FORTRAN intrinsic function LEN generates equivalent
in-line code at run time.

Example

Although LIB$LEN could be called in MACRO, the following code se­
quence is equivalent to a call to LIB$LEN for dynamic, fixed-length and
unspecified class strings:

SDSCDEF ; define descriptor SYMbols <DSCS ••• >

MOVZWL STRING+DSC$W_LENGTHt RO ; RO = lenSth of strins

where:

STRING is the address of the string descriptor

DSC$W_LENGTH is the offset of the word within the descriptor (0)
containing the length.

3-40 General Utility Procedures

STR$POSITION

3.3.2.5 Return Relative Position of Substring - STR$POSITION returns an
index, which is the relative position of the first occurrence of a substring in the
source string. The value returned is an unsigned integer longword. The rela­
tive character positions are numbered 1, 2, ... , n. Thus, zero is a unique
number meaning that the substring was not found.

If the substring has a zero length, one is returned by LIB$INDEX and
LIB$MATCHC indicating a found substring whether or not the source string
has a zero length, while the minimum of start-pos and the length of src-str
plus one is returned by STR$POSITION.

If the source string has a zero length and the substring has a nonzero length,
zero is returned, indicating that the substring was not found.

The order of parameters for LIB$INDEX corresponds to the practice in higher
level languages, while that of LIB$MATCHC parallels the VAX-11
MATCHC instruction.

Format

index = LIB$INDEX (src-str, sub-str)

index = LIB$MATCHC (sub-str, src-str)

index = STR$POSITION (src-str, sub-str [,start-pos])
JSB entry point: STR$POSITION-R6

src-str
Address of source string descriptor to be searched.

sub-str
Address of substring descriptor to be found.

start-pos
Optional address of a longword containing the relative starting position in
the source string to begin the search.

index
Unsigned longword indicating relative position of the first character of the
substring if found, or zero if not found.

General Utility Procedures 3-41

lmpllclt Inputs (for STR$POSITiON_R6 only)

RO

Rl

R2

Address of source string descriptor.

Address of substring descriptor.

A longword containing the relative starting position in the source string to
begin the search. Note this is required for the JSB entry point.

Notes

The FORTRAN compiler generates the call to LIB$INDEX for the
INDEX built-in function.

Examples

The following FORTRAN function returns the number of occurrences of
SUB_STR IN STRING.

FUNCTION COUNT_SUB<STRINGt SUB_STR)
CHARACTER*(*) STRING, SLJB_STR
INTEGER*4 COUNT_SUBt REL_PQS, BEG_POSt END_POS
COUNT_SUB = 0
BEG_POS = 1
END_POS = LEN<STRING)

10 REL_POS = STR$POSITIDN <STRING<BEG_POS:END_PQS) t SUB_STR)
IF CREL_POS .GT. 0) THEN

COUNT_SUB = COUNT_SUB + 1
BEG_POS = BEG_POS + REL_POS
GO TO 10

END IF
RETURN
END

In FORTRAN, I is assigned value 1, J = 3, and K = 0:

I LI B$MATCHC (I ABC I , I ABCDEF I)

j LI B$MATCHC (I CDE I , I ABCDEF I)

K LI B$MATCHC (I ~<YZ I , I ABCDEF I)

3-42 General Utility Procedures

LIB$SCANC

3.3.2.6 Scan Characters - LIB$SCAN C is used to find a specified set of
characters in the source string. It uses successive bytes of the string specified
by the source descriptor to index into a table. The byte selected from the table
is ANDed with the mask byte. The operation continues until the result of the
AND is a nonzero value. The relative position of the character in the ·source
string that terminated the operation is returned if such a character is found.
Otherwise, zero is returned. If the source string has a zero length, then a zero
is returned.

Format

index = LIB$SCANC (src-str, table-arr, mask)

src-str
Address of source string descriptor.

table-arr
Address of unsigned byte array.

mask
Address of the byte containing the mask.

index
Unsigned longword containing the relative position of the character in the
source string that terminated the operation or zero.

Example

The following FORTRAN example uses LIB$SCANC to scan a table. In
this example, J=l, K=O, L=3, M=3:

BYTE TABLEC0:255)
DATA TABLE laB*Ot 3*1, z, 6*1 t 198*2/
J=LIB$SCANC< '572AG1a' tTABLEt5)
K=LIB$SCANCC 'ABCD' tTABLEt5)
L=LIB$SCANC< '**12' tTABLEtl)
M=LIB$SCANCC '12A3' tTABLEt2)

General Utility Procedures 3-43

LIB$SKPC

3.3.2. 7 Skip Characters - LIB$SKPC compares a given string with a given
character and returns the relative position of the first nonequal character as
an index. The character is compared with successive characters of the speci­
fied string until an inequality is found or the string is exhausted. The relative
position of the unequal character or zero is returned. If the source string has a
zero length, then a zero is returned.

Format

index = LIB$SKPC (char-str, src-str)

char-str
Address of string descriptor of the character to be found.

src-str
Address of string descriptor of the string to be searched.

index
Unsigned longword returned specifying the relative position of the first
unequal character, or zero if one was not found.

Notes

Only the first character of char-str is used, and the length is not checked.

Example

In FORTRAN, I would be set to 2 and J to 0:

I = LI B$SK PC (I I t I ABC I)

J = LIB$SKPC ('A't 'AAA')
TYPE*tI tJ

3-44 General Utility Procedures

LIB$SPANC

3.3.2.8 Span Characters - LIB$SPANC is used to skip a specified set of
characters in the source string. It uses successive bytes of the string specified
by the source descriptor to index into a table. The byte selected from the table
is ANDed with mask byte. The operation continues until the result of the
AND is zero. The relative position of the character in the source string that
terminated the operation is returned if such a character is found. Otherwise,
zero is returned. If the source string has a zero length, then a zero is returned.

Format

index = LIB$SPANC (src-str, table-arr, mask)

src-str
Address of source string descriptor.

table-arr
Address of unsigned byte array.

mask
Address of the byte containing the mask.

index
Unsigned longword containing the relative position of the character in the
source string that terminated the operation or 0.

Example

The following FORTRAN example uses LIB$SPANC to index a table. In
this example, J=l, K=O, L=l, M=l:

BYTE TABLE<0:255)
DATA TABLE /48*C>, 3*1, 2, 8*1, 188*2/
J=LIB$SPANC ('572A814' ,TABLE ,5)
K=LIB$SPANC < '2048' ,TABLE,5)
L=LIB$SPANC < 'A135' ,TABLE,1)
M=LIB$SPANC (I 12A3 I ,TABLE ,2)

General Utility Procedures 3-45

LIB$CHAR

3.3.2.9 Transform Byte to First Character of String - LIB$CHAR transforms a
single 8-bit ASCII character to an ASCII string consisting of a single charac­
ter followed by trailing spaces, if needed, to fill out the string. The range of
the input byte is 0 through 255.

Format

ret-status = LIB$CHAR (one-char-str, ascii-code)

one-char-str
Address of the string descriptor (fixed-length or dynamic) to receive one
character result. (This is an output parameter.)

ascii-code
Address of the unsigned byte integer ASCII character code to be trans­
formed to an ASCII string.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Procedure successfully completed; string truncated. Fixed-length destina­
tion string descriptor could not contain all of the characters:

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

Notes

LIB$CHAR is the inverse of LIB$ICHAR.

LIB$CHAR is not binary to ASCII conversion. It merely interprets
ASCII-code as an ASCII character code and converts it to a string.

Since the output string is the first argument, this procedure can be called
as either a subroutine of two arguments or a string function of one argu­
ment. The FORTRAN compiler generates equivalent code in-line for the
CHAR built-in function rather than calling LIB$CHAR.

3-46 General Utility Procedures

Examples

The following FORTRAN code fragment prints out the number of
occurrences of each ASCII code indicated by character count in the
INTEGER*2 vector CHAR-COUNT.

CHARACTER*l LIB$CHARt INPUT*BO
INTEGER*2 CHAR-COUNT (0:255)
TYPE*' 'TYPE STRING TO BE ANALYZED:'
ACCEPT 50t INPUT

50 FORMAT (A)

DO 2 I = Ot 255
2 CHAR_COUNT(I) = 0

DO 5 I= lt LEN (INPUT)
J = !CHAR (INPUT (I:I))

5 CHAR_COUNT (J) = CHAR_COUNT (J) + 1
DO 10 I = 0 t 255

IF (CHAR-COUNT (J).GT.0) THEN
WRITE (G t100) CHAR _COUNT (!) t LI 5$CHAR (I)

100 FORMAT ('THERE WERE It 15 t I It Alt 'SI)
END IF

10 CONTINUE
END

LIB$CHAR could be called in MACRO as follows:

PUSHAB ASCll_CODE

PUSHAQ ONE_CHAR_STR

CALLS #2t LIB$CHAR

Push address of bYte
containins ASCII code as
second ParaMeter.
Push address of outPut strins
descriPtor (1st ParaMeter)

However, the following code sequence is equivalent for fixed-length
strings:

$DSCDEF ; define descr SYMbols (DSC$ •••)
MOVAQ ONE_CHAR_STRt RO

RO = adr of strins desc
MOl.lC5 # 1 t ASCII _CODE t #A I I t DSC$_LENGTH (RO) t -

@DSC$A_POINTER(RO>

General Utility Procedures 3-47

LIB$1CHAR

3.3.2.1 O Transform First Character of String to Longword Value -
LIB$ICHAR transforms the first character of a string to an 8-bit ASCII inte­
ger value extended to a longword value.

Format

first-char-value = LIB$ICHAR (src-str)

src-str
Address of the string descriptor.

first-char-value
First character of the string returned as an 8-bit ASCII value extended to
a longword value.

Notes

The FORTRAN intrinsic function ICHAR generates equivalent code in­
line. If the string has zero length, a zero is returned. Zero-length strings
are not permitted in FORTRAN.

Examples

The following FORTRAN subroutine adds 1 to the corresponding entry in
the INTEGER*2 vector CHAR-COUNT for each ASCII character occur­
ring in the character string STRING, passed as a parameter.

SUBROUTINE FLAG_CHAR (STRING)
CHARACTER *(*) STRING
INTEGER*2 CHAR_COUNT(0:255)
DO 10 I=1 t LEN(STRING)

J = LIB$ICHAR(STRING(I:I))
CHAR_COUNTCJ) = CHAR_COUNT(J) + 1

10 CONTINUE
RETURN
END

Although LIB$ICHAR can be called from MACRO, the following code
sequence is equivalent to a call to LIB$ICHAR.

$DSCDEF ; define desc SYMbols (DSC$ •••)
MOVAQ STRDSCt RO ; RO adr of strins desc
M0\1ZBL @DSC$A_POINTER(R0) tRO ; RO= 1st char in strins

3-48 General Utility Procedures

3.3.3 String Arithmetic Procedures

The following procedures perform string arithmetic on arbitrary length num­
bers represented as three separate parameters:

• A sign bit (passed by reference)

• A signed longword power of 10 (passed by reference)

• A text string consisting solely of ASCII digits (passed by descriptor)

The maximum length of the text string is 65,535 bytes. The mathematical
functions provided are add, multiply, reciprocal and truncate and round.

STR$ADD

3.3.3.1 Add Two Decimal Strings - STR$ADD adds two decimal strings
(A,B) and places the sum in the result string (C).

Format

ret-status = STR$ADD (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

a-sign-adr
Address of a bit containing the sign of operand a (0 is positive).

a-exp-adr
Address of a signed longword containing the power of 10 by which the
a-digits have to be multiplied to get the absolute value of operand a.

a-digits
Address of the a-digits string descriptor. The string must be an unsigned
decimal number.

b-sign-adr
Address of a bit containing the sign of operand b (0 is positive).

b-exp-adr
Address of a signed longword containing the power of 10 by which the
b-digits have to be multiplied to get the absolute value of operand b.

b-digits
Address of the b-digits string descriptor. The string must be an unsigned
decimal number.

c-sign-adr
Address of a bit to contain the sign of result c (0 is positive).

General Utility Procedures 3-49

c-exp-adr
Address of a signed longword to contain the power of 10 by which the
c-digits have to be multiplied to get the absolute value of result c.

c-digits
Address of the c-digits string descriptor (fixed-length or dynamic). The
string will be an unsigned decimal number.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

STR$_WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

STR$MUL

3.3.3.2 Multiply Two Decimal Strings - STR$MUL multiplies two decimal
strings (A,B) and places the product in the result string (C).

Format

ret-status = STR$MUL (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

See Section 3.3.3.1 for parameter descriptions.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

3-50 General Utility Procedures

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

STR$_WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

STR$RECIP

3.3.3.3 Reciprocal of a Decimal String - STR$RECIP takes the reciprocal of
decimal string (A) to the precision limit specified by decimal string (B) and
places the result in decimal string (C).

Format

ret-status = STR$RECIP (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

See Section 3.3.3.1 for parameter descriptions.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messageis

STR$__L1IVBY _ZER
Division by zero.

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1~~SVIRMEM
STR$_STRIS-1NT

STR$_ WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

General Utility Procedures 3-51

STR$ROUND

3.3.3.4 Round or Truncate a Declmal String - STR$ROUND rounds or trun­
cates a decimal string (A) to a specified number of significant digits and
places the result in decimal string (C).

Format

ret-status = STR$ROUND (places, trunc-flg,

places

a-sign-adr, a-exp-adr, a-digits,
c-sign-adr, c-exp-adr, c-digits)

Address of a longword containing the maximum number of decimal digits
to retain in the result.

trunc-flg
Address of a bit containing the function flag; 0 means round, 1 means
truncate.

See Section 3.3.3.1 for additional parameter descriptions.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

STR$_WRONUMARG

Wrong number of arguments.

Example

Suppose A = -1000; that is ASIGN = 1, AEXP = 3 and ADIGITS = '1'.
Suppose also B = .0002; that is BSIGN = 0, BEXP = -4 and BDIGITS = '2'.

3-52 General Utility Procedures

Then, applying the string arithmetic functions, you would get the follow­
ing results:

CSIGN CEXP CDIGITS value of C

A + J3 1 -4 '9999998' -999.9998

rounded 2,0 1 2 '10' -1000.

A*B 1 -1 '2' -.2

rounded 2,0 1 -1 '2' -.2

reciprocal of A 1 -3 'l' -.001
to precision B

rounded 2,0 1 -3 'l' -.001

A BASIC program to produce the C-elements in the preceding chart is:

100 REM STR$ ARITHMETIC SAMPLE PROGRAM
200 ASIGN% = 1%
300 AEXP% = 3%
400 ADIGITS$ = '1'
500 BSIGN% = 0%
GOO BEXP% = -4%
700 BDIGITS$ = '2 I

800 CSIGN% = 0%
800 CEXP% = 0%
1000 CDIGITS$ = '0 I

1010 PRINT 11 A = 11
; ASIGN'X,; AE}·WX.; ADIGITS$

1020 PRINT 11 B = 11
; BSIGN'X,; BE>{Pi..; BDIGITS$

1100 CALL STRSADD CASIGN%t AEXP%t ADIGITSSt &
BSIGN%t BEXP%t BDIGITS$t &
CSIGN%t CEXP%t CDIGITS$)

1200 PRINT 11 STR$ADD; C = 11
; CSIGN'X,; CE>WX.; CDIGITS$

1210 CALL STR$ROUND C2%t 0%t CSIGN%t CEXP%1 CDIGITS$t &
CSIGN%t CEXP%1 CDIGITS$)

1220 PRINT 11 STR$ROUND (210); C = 11
; CSIGN'X,; CE>WX.; CDIGITS$

1300 CALL STR$MUL <ASIGN%1 AEXP%t ADIGITS$t &
BSIGN%t BEXP%t BDIGITS$1 &
CSIGN%t CEXP%t CDIGITS$)

1400 PR I NT 11 STRSMUL; c = 11
; cs I GN'.Y..; cEx Pt..; CD I GI Tss

1410 CALL STRSROUND C2%t 0%t CSIGN%t CEXP%1 CDIGITS$t &
CSIGN%t CEXP%1 CDIGITS$)

1420 PRINT 11 STR$ROUND (2 10); C = 11
; CSIGN'X.; CEXP'X.; CDIGITS$

1500 CALL STR$RECIP <ASIGN%t AEXP%t ADIGITS$t &
BSIGN%t BEXP%t BDIGITS$t &
CSIGN%t CEXP%t CDIGITS$)

1800 PRINT 11 STR$RECIP; C = 11
; CSIGN'.Y..; CE>{P'X,; CDIGITS$

1810 CALL STRSROUND <2%1 0%t CSIGN%1 CEXP%t CDIGITS$t &
CSIGN%t CEXP%t CDIGITS$)

1820 PRINT 11 STR$ROUND (2 tO); C = 11
; CSIGN'X,; CE}-{P'X,; CDIGITS$

1800 END

3.3.4 String Oriented Procedures

The following procedures return a string or substring that is a function of one
or more input strings. See Section 3.3.3 for string arithmetic procedures.

General Utility Procedures 3-53

STR$APPEND

3.3.4.1 Append a String - STR$APPEND appends a source string to the end
of the destination string. The destination string must be dynamic.

Format

ret-status = STR$APPEND (dst-str, src-str)

dst-str
Address of the destination string descriptor (dynamic).

src-str
Address of the source string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

Messages

STR$_F ATINTERR
STR$_ILLSTRCLA
STR$_1NSVIRMEM
STR$_STRIS_INT

STR$CONCAT

3.3.4.2 Concatenate Two or More Strings - STR$CONCAT takes up to 254
input strings and concatenates them into a result string. The strings can be of
any class and data type, providing that the length field of the descriptor
indicates the length of the string in bytes. A warning status is returned if one
or more input characters was not copied to the result string. The maximum
length of a string is 65,535 bytes.

Format

ret-status
srcn-str])

dst-str

STR$CONCAT (dst-str, srcl-str, src2-str [,src3-str ... ,

Address of the destination string descriptor (fixed-length or dynamic).

srcn-str
Address of source string n descriptor.

Return Status

SS$_NORMAL
Routine successfully completed. All characters in the input strings were
copied into the destination string.

3-54 General Utility Procedures

STR$_TRU
Warning. String truncated. One or more input characters were not copied
into the destination string. This can happen when the destination is a
fixed-length string.

Messages

STR$__F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

STR$_STRTOOLON
String length exceeds 65,535 bytes.

STR$_ WRONUMARG
Wrong number of arguments.

Example

The following BASIC statements (when executed) would yield X$
'ABCD':

EXTERNAL INTEGER FUNCTION STR$CONCAT
STATUS'X, = STR$CONCAT (}-{$ t I A I t I BI t I c I t ID I)

STR$COPV_DX

3.3.4.3 Copy a Source String to a Destination String - Three sets of copy
routines are provided for copying a source string to a destination string. These
are useful for writing procedures that return strings according to the seman­
tics (fixed-length or dynamic) indicated by the calling program in the destina­
tion descriptor. The three sets follow the conventions for LIB$, OTS$, and
STR$ facilities:

• LIB. All conditions are returned as a status in RO (no signals); truncation is
a qualified success condition value (bit 0 = 1). Input scalars are passed by
reference.

• OTS. All conditions except truncation are signaled; RO:R5 contain results of
MOVC5 instruction. Input scalars are passed by immediate value.

• STR. All conditions except truncation are signaled; truncation is returned
as a warning condition value (bit 0 = O) in RO. Input scalars are passed by
reference.

Within each set there is an entry point that passes the source string by
descriptor and a second one that passes the source string by reference pre­
ceded by a length parameter. In addition equivalent JSB entry points are
provided, with RO being the first parameter, Rl the second, and R2 the third,
if any. The length parameter is passed in bits 15:0 of the appropriate register.

General Utility Procedures 3-55

For LIB$ and OTS$, the destination parameter is last; for STR$, the destina­
tion parameter is first so it can be called as a string function (ignoring trunca­
tion status) or as a status value returning function when the calling program
wishes to detect string truncation. Depending on the class of the destination
string, these actions occur:
------------ ,.-. , _____ --------------

Class Field

DSC$K_CLASS_S,Z
(fixed length, unspecified)

DSC$K_CLASS_D
(dynamic)

Formats

Source by descriptor:

Action

Copy the source string. If needed, space fill or truncate on
the right.

If the area specified by the destination descriptor is large
enough (but not too large) to contain the source string, copy
the source string and set the new length in the destination
descriptor.

If the area specified is not large enough or is too large, return
the previous destination descriptor space allocation (if any)
and then allocate the amount of space dynamically needed.
Copy the source string and set the new length and address in
one destination descriptor.

ret-status = LIB$SCOPY_DXDX (src-str, dst-str)
JSB entry point: LIB$SCOPY_DXDX6

unmoved-src = OTS$SCOPY_DXDX (src-str, dst-str)
JSB entry point: OTS$SCOPY_DXDX6

ret-status = STR$COPY_DX (dst-str, src-str)
JSB entry point: STR$COPY_DL..R8

Source by reference:

ret-status = LIB$SCOPY_R_J)X (src-len-adr, src-adr, dst-str)
JSB entry point: LIB$SCOPY_R_J)X6

unmoved-src = OTS$SCOPY_R_J)X (src-len, src-adr, dst-str)
JSB entry point: OTS$SCOPY_R_J)X6

ret-status = STR$COPY_R (dst-str, src-len-adr, src-adr)
JSB entry point: STR$COPY_R_R8

dst-str
Address of the destination string descriptor. The class field determines the
appropriate action. The length field (DSC$W_LENGTH) or both the
address (DSC$A_POINTER) and length fields can be modified if the
string is dynamic. (This is an output paramete:r;.)

3-56 General Utility Procedures

src-str
Address of the string descriptor specifying the length and address of the
source string. The descriptor class can be unspecified, fixed-length, or
dynamic. The data type field can be any data type for which the length
field is in units of bytes.

unmoved-src
Number of unmoved source string bytes, if the source string length is
greater than the destination string length; otherwise zero.

src-len-adr
Address of an unsigned word containing the length of the source string.

src-len
An unsigned word containing the length of the source string (passed by
immediate value).

lmpllclt Inputs (JSB entry):

src-str src-len-adr src-str-adr dst-str

LIB$SCOPY _DXDX6 RO Rl

OTS$SCOPY_DXDX6 RO Rl

STR$COPY_DX_R8 R1 RO

LIB$SCOPY _R_DX6 R0<15:0> Rl R2

OTS$SCOPY_R_DX6 R0<15:0> Rl R2

STR$CO PY __R____R8 Rl<15:0> R2 RO

Return Status

SS$_NORMAL
Procedure successfully completed. All characters in the input string were
copied to the destination string.

LIB$_STRTRU
Procedure successfully completed. String truncated. Fixed-length destina­
tion string descriptor could not contain all of the characters copied from
the source string.

STR$_TRU
Warning. String truncated. Fixed-length destination string descriptor
could not contain all of the characters copied from the source string.

General Utility Procedures 3-57

Messages

LIB$_INSVIRMEM, LIB$_INVSTRDES, LIB$_STRIS_INT,
LIB$_F ATERRLIB
OTS$-1NSVIRMEM, OTS$-1NVSTRDES, OTS$_STRIS-1NT,
OTS$_F ATINTERR
STR$-1NSVIRMEM, STR$-1LLSTRCLA, STR$_STRIS-1NT,
STR$_F ATINTERR

Examples

The following FORTRAN subroutine returns the data as a string using the
string semantics specified by the caller. The parameter STRING_DSC is
dimensioned as an 8-byte array instead of CHARACTER. Just
before returning to the caller, the FORTRAN subroutine copies the
CHARACTER DATE_STR to the passed STRING_DSC.

SUBROUTINE RET_DATE_STR <STRING-DSC>
BYTE STRING_DSC
CHARACTER*8 DATE_STR

CALL DATE <DATE_STR> !Copy 8-character data to DATE_STR
CALL STR$CO PY _ox ('X,DESC (STRING_ DSC) t DATE_STR)
RETURN
END

In MACRO, a typical call from procedure PROC would be:

$DSCDEF define DSC$ descr sYMbols
DSTDSC: +WORD 0 filled br STR$COPY_R

.BYTE DSC$K_DTYPE_T data tYPe is ASCII text

.BYTE DSC$K_CLASS_D class is dYnaMic strinS

.LONG O adr of strins filled in
SRC: .ASCII /Fourscore and seven Years aso/
SRCLEN= .-SRC lensth of source strins
LEN: .WORD SRCLEN

.ENTRY PROC, ··· M< > save only what PROC uses

PUSHAB SRC Par3 = adr of source strins
PUSHAW LEN Par2 = adr of src str lensth
PUSHAQ DSTDSC Par1 adr of de st descr
CALLS #3 t STR$COPY_R
BLBC RO t TRUNC test for truncation

The JSB form would be:

.ENTRY PROCt AM<R21R31R41R51RG1R71RB> ; save at least
; R2:RB in stacK on entrY

MOIJAQ DSTDSC, RO RO adr of de st strinS descr
MOIJW SRCLENt R1 R1 lensth of source strins
MO~IAB SRC t RZ R2 adr of source strins
JSB STR$COPY_R_R8 C 0 P>' source to destination
BLBC RO t TRUNC test for truncation

3-58 General Utility Procedures

STR$POS_EXTR

3.3.4.4 Extract a Substring of a String - The following procedures copy a
substring of a source string into a destination string. Each procedure has a
different method of defining the substring.

STR$LEN_EXTR defines the substring by specifying the relative starting
position in the source string and the number of characters to be copied.

STR$POS_EXTR defines the substring by specifying the relative starting
and ending positions in the source string.

STR$LEFT defines the substring by specifying the relative ending position in
the source string. The relative starting position in the source string is one.
This is a variation of STR$POS_EXTR.

STR$RIGHT defines the substring by specifying the relative starting position.
The relative ending position is equal to the length of the source string. This is
a variation of STR$POS_EXTR.

Format

ret-status = STR$LEN_EXTR (dst-adr, src-adr, start-pos, length)
JSB entry point: STR$LEN_EXTR_R8

ret-status = STR$POS_EXTR (dst-adr, src-adr, start-pos, end-pos)
JSB entry point: STR$POS_EXTR_R8

ret-status = STR$LEFT (dst-adr, src-adr, end-pos)
JSB entry point: STR$LEFT_R8

ret-status = STR$RIGHT (dst-adr, src-adr, start-pos)
JSB entry point: STR$RIGHT_R8

dst-adr
Address of destination string descriptor (fixed-length or dynamic).

src-adr
Address of source string descriptor.

start-pos
Address of a signed longword containing the relative starting position in
the source string.

end-pos
Address of a signed longword containing the relative ending position in the
source string.

length
Address of a longword containing the number of characters to be copied to
the destination string.

Implicit Inputs (JSB entries only)

RO
Address of destination string descriptor.

General Utility Procedures 3-59

Rl

R2

R3

Address of source string descriptor.

A longword containing the relative starting position in the source string
except for STR$LEFT_R8 where it is a longword containing the relative
ending position in the source string.

For STR$LEN_EXTR___R8, a longword containing the number of char­
acters to be copied to the destination string.
For STR$POS_EXTR._R8, a longword containing the relative ending
position in the source string.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$-1LLSTRPOS
Routine successfully completed. A character position parameter refer­
enced a character position outside the appropriate string. A default value
described in the string conventions was used.

STR$-1LLSTRSPE
Routine successfully completed. End-pos was less than start-pos or length
was too long for appropriate string. Default values described in the string
conventions section were used.

STR$_NEGSTRLEN
Routine successfully completed. The length parameter contained a nega­
tive value; zero was used.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters copied from the source string.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

Example

In BASIC, assuming SRC$ = 'ABCD', the following statements would
yield, M$ ='BC', N$ ='BC', 0$ ='AB', and P$ ='CD':

EXTERNAL INTEGER FUNCTION STR$LEN_EXTRt &
STR$POS_EXTRt STR$LEFTt STR$RIGHT
STATUS% STR$LEN_E}<TR (M$ t SRC$ t 2'X. t 2'X.)
STATUS% STR$POS_EXTR <N$t SRC$t 2%t 3%)
STATUS% = STR$LEFT (0$t SRC$t 2%>
STATUS%= STR$RIGHT CP$t SRC$t 3%)

3-60 General Utility Procedures

STR$DUPL_CHAR

3.3.4.5 Generate a String - STR$DUPL_CHAR generates a string contain­
ing n duplicates of the input character.

Format

ret-status = STR$DUPL_CHAR (dst-adr [,length [,char]])
JSB entry point: STR$DUPL_CHARR8

dst-adr
Address of the destination string descriptor.

length
Optional address of a signed longword containing the number of times
char will be duplicated. The default is one.

char
Optional address of a byte containing an ASCII character. The default is a
space.

lmpllclt Inputs (JSB entries only)

RO
Address of the destination string descriptor.

Rl
A signed longword containing the number of times char will be
duplicated.

R2
<8:0> byte containing an ASCII character.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_NEGSTRLEN
Routine successfully completed. The length parameter contained a nega­
tive value; zero was used.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

STR$_STRTOOLON
String length exceeds 65,535 bytes.

General Utility Procedures 3-61

Example

In BASIC, the following statements would yield X$
execution:

EXTERNAL INTEGER FUNCTION STR$0UPL_CHAR STATUS%
STR$0UPL_CHAR CX$, a%, 'A' BY REF>

'AAAA' upon

STR$PREFIX

3.3.4.6 Prefix a String- STR$PREFIX inserts the source string at the begin­
ning of the destination string. The destination string must be dynamic.

Format

ret-status = STR$PREFIX (dst-str, src-str)

dst-str
Address of the destination string descriptor (dynamic).

src-str
Address of the source string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

Messages

STR$___F A TINTERR
STR$--1LLSTRCLA
STR$--1NSVIRMEM
STR$_STRIS--1NT

Example

In BASIC, the following statements would yield D$ = 'ABCDEFG' on
execution:

EXTERNAL INTEGER FUNCTION STR$PREFIX
0$ = 'EFG I

STATUS%= STR$PREFIX (0$, 'ABCO'>

3-62 General Utility Procedures

STR$REPLACE

3.3.4. 7 Replace a Substring - STR$REPLACE copies a source string to a
destination string, replacing a substring with another substring. The replaced
substring is specified by the starting and ending positions.

Format

ret-status = STR$REPLACE (dst-str, src-str, start-pos, end-pos, rpl-str)
JSB entry point: STR$REPLACE_R8

dst-str
Address of destination string descriptor (fixed-length or dynamic).

src-str
Address of source string descriptor.

start-pos
Address of a signed longword containing the relative starting position in
the source string of the substring to be replaced.

end-pos
Address of a signed longword containing the relative ending position in the
source string of the substring to be replaced.

rpl-str
Address of the replacement string descriptor.

Implicit Inputs (JSB entries only)

RO

Rl

R2

Address of destination string descriptor.

Address of source string descriptor.

A signed longword containing the relative starting position in the source
string of the substring to be replaced.

General Utility Procedures 3-63

R3

R4

A signed longword containing the relative ending position in the source
string of the substring to be replaced.

Address of the replacement string descriptor.

Return Status

SS$_NQRMAL
Routine successfully completed.

STR$-1LLSTRPOS
Routine successfully completed. A character position parameter refer­
enced a character position outside the appropriate string. A default value
described in the string conventions was used.

STR$-1LLSTRSPE
Routine successfully completed. End-pos was less than start-pos or length
was too long for appropriate string. Default values described in the string
conventions were used.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

Example

In BASIC, the following statements would yield D$ 'AXYZD' on
execution:

EXTERNAL INTEGER FUNCTION STR$REPLACE
0$ = 'ABCD'
STATUS% = STR$REPLACE (0$t 0$, 2%t 3%t 'XYZ'>

3-64 General Utility Procedures

STR$TRIM

3.3.4.8 Trim Tralllng Blanks and Tabs - STR$TRIM copies a source string to
a destination string and deletes the trailing blank and tab characters.

Format

ret-status = STR$TRIM (dst-str, src-str [,out-len])

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

src-str
Address of the source string descriptor.

out-len
Optional address of a word to be set to the number of bytes written into
dst-str, not counting padding in the case of a fixed string. If the input
string is truncated to the size specified in the dst-str description, out-len is
set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of dst-str.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

Example

In BASIC, the following statements would yield D$ ='ABC' on execution:

EXTERNAL INTEGER FUNCTION STR$TRIM
0$ = 'ABC'
STATUS% = STRSTRIM (0$, 0$)

3.3.5 Translate String Functions

The following functions return a string that is an altered form of the source
string.

General Utility Procedures 3-65

LIB$MOVTC

3.3.5.1 Move Translated Characters - LIB$MOVTC moves the source string
character-by-character to the destination string after translating each one
using the specified translation table.

Each character in the source is used as an index into the translation table.
The byte found is then placed into the destination string. The fill character is
used if the destination string is longer than the source string. If the source is
longer than the destination, the source string is truncated. Overlap of the
source and destination strings does not affect execution.

Format

ret-status = LIB$MOVTC (src-str, fill-char, trans-tbl, dst-str)

src-str
Address of source string descriptor.

fill-char
Address of fill character descriptor.

trans-tbl
Address of translation table descriptor.

dst-str
Address of destination string descriptor (fixed-length or dynamic).

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Procedure successfully completed; string truncated. Fixed-length destina­
tion string descriptor could not contain all of the characters.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

Notes

FORTRAN passes arrays (trans-tbl) by reference as a one-origin array. In
BASIC and PASCAL, the BY REF and %REF qualifiers must be ap­
pended to the trans-tbl parameter. In BASIC arrays are zero-origin.

Only the first character of fill is used, and the length is not checked.

The fill character is not translated.

3-66 General Utility Procedures

Example

The following FORTRAN example uses LIB$MOVTC to translate ASCII
code values 65 through 68 (decimal) from their usual value to W, X, Y and
Z. The procedure will return a destination string of WXYZ #.

CHARACTER*G DEST
CHARACTER TRTABLE <0:255)
DATA TRTABLE /65*' 't'W't'}{','Y't'Z't187*' '/
CALL LI B$'MOl..lTC (I ABCDE I t I# I t TRTABLE t DEST)
END

LIB$MOVTUC

3.3.5.2 Move Translated Untll Character - LIB$MOVTUC moves the source
string character-by-character to the destination string after translating each
one using the specified translation table. Each character in the source string is
accessed and used as an index into the translation table.

If the table entry contains the specified stop character, the routine is termi­
nated with the relative position of the source character returned. If the table
entry is not the stop character, it is moved to the destination string.

If the source is longer than the destination, then truncation of the source
string occurs. If the optional fill character is present, any remaining positions
in the destination string are filled with the fill character. If the source or
destination string is exhausted (without finding the stop character), a zero
index is returned.

Format

stop-index
[,fill-char])

LIB$MOVTUC (src-str, stop-char, trans-tbl, dst-str

src-str
Address of source string descriptor.

stop-char
Address of stop string descriptor.

trans-tbl
Address of translation table descriptor.

dst-str
Address of destination string descriptor (fixed-length or dynamic).

fill-char
Address of optional fill descriptor. If included, the remainder of the desti­
nation string (after the stop character) is filled with the fill character
specified. If it is not included, the remainder of the destination string
remains intact.

General Utility Procedures 3-67

stop-index
Signed longword containing the relative position of the character in the
source string that is translated to the stop character. Zero is returned, if
the stop character is not found. Failure to allocate dst-str returns minus
one.

Notes

Only the first character in the stop-char string and fill-char string, are
used and the length is not checked. The fill character is not translated.
The results are unpredictable if the source and destination strings overlap
and have different starting addresses.

Example

The following FORTRAN example translates the ASCII symbols 48-58
into the decimal values 1 to 10:

CHARACTER*G DEST
CHARACTER TRTA6LE C0:255)
DATA TRTA6LE /47*' It'• I t'O' t'l' t'2' t

1 3 1
t

1 4 1
,

1 I 5 I , I 8 I , I 7 I , I 8 I , I 9 I , 198* I I I
CALL LI6$MOlJTLJC C 1 1-129/ 1

,
1

•
1

, TRTABLEt DEST, 1 # 1
)

END

LIB$TRA_ASC_EBC

3.3.5.3 Translate ASCII to EBCDIC - LIB$TRA__ASC_EBC translates an
ASCII string to an EBCDIC string. If the destination string is a fixed string,
its length must match the length of the input string (no filling is done). The
ASCII to EBCDIC translation table in LIB$AB_ASC_EBC can be specified
in a routine using LIB$MOVTC, but no testing for untranslatable characters
is done.

Format

ret-status = LIB$TRA__ASC_EBC (src-str, dst-str)

src-str
Address of the source (ASCII) string descriptor.

dst-str
Address of the destination (EBCDIC) string descriptor (fixed-length or
dynamic).

Implicit Inputs

The ASCII to EBCDIC translation table at LIB$AB_ASC_EBC.

Return Status

SS$_NORMAL
Routine successfully completed.

3-68 General Utility Procedures

LIB$-1NVCHA
One or more occurrences of an untranslatable character has been detected
in the course of the translation.

LIB$-1NV ARG
If the destination string is a fixed string and its length is not the same as
the source string length; no translation is attempted.

LIB$AB_ASC_EBC is the ASCII to EBCDIC translation table, based on
ANSI X3.26 - 1970. All ASCII graphics are translated to their equivalent
EBCDIC graphic except for:

ASCII graphic

[(left square bracket)

! (exclamation point)

A (circumflex)

l (right square bracket)

EBCDIC graphic

cents sign

short vertical bar

logical not

! (exclamation point)

The complete table in hexadecimal notation is:

ASCII to EBCDIC

b7 0 0 0 0 0 0 0 0 1 1
column b6 0 0 0 0 1 1 1 1 0 0

b5 0 0 1 1 0 0 1 1 0 0
b4 0 1 0 1 0 1 0 1 0 1

row
b3b2'blbO 00 01 02 03 04 05 06 07 OB 09

0 0 0 0 00 00 10 40 FO 7C D7 79 97 3F 3F
0 0 0 1 01 01 11 4F Fl Cl DB Bl 9B 3F 3F
0 0 1 0 02 02 12 7F F2 C2 D9 B2 99 3F 3F
0 0 1 1 03 03 13 7B F3 C3 E2 B3 A2 3F 3F
0 1 0 0 04 37 3C 5B F4 C4 E3 84 A3 3F 3F
0 1 0 1 05 2D 3D 6C F5 C5 E4 B5 A4 3F 3F
0 1 1 0 06 2E 32 50 F6 C6 E5 B6 A5 3F 3F
0 1 1 1 07 2F 26 7D F7 C7 E6 B7 A6 3F 3F
1 0 0 0 OB 16 lB 4D F8 CB E7 BB A7 3F 3F
1 0 0 1 09 05 19 5D F9 C9 EB 89 AB 3F 3F
1 0 1 0 10 25 3F 5C 7A D1 E9 91 A9 3F 3F
1 0 1 1 11 OB 27 4E 5E D2 4A 92 CO 3F 3F
1 1 0 0 12 OC 1 C 6B 4C D3 EO 93 6A 3F 3F
1 1 0 1 13 OD 1D 60 7E D4 5A 94 DO 3F 3F
1 1 1 0 14 OE 1E 4B 6E D5 5F 95 Al 3F 3F
1 1 1 1 15 OF lF 61 6F D6 6D 96 07 3F 3F

where byte: b7b6b5b4 b3b2blb0
~~

column row

1 1 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1

10 11 12 13 14 15

3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F

General Utility Procedures 3-69

LIB$TRA_EBC_ASC

3.3.5.4 Translate EBCDIC to ASCII - LIB$TR.A_EBC_ASC translates an
EBCDIC string to an ASCII string. If the destination string is a fixed string,
its length must match the length of the input string (no filling is done). The
EBCDIC to ASCII translation table at LIB$AB_EBC_ASC can be specified
in a routine using LIB$MOVTC, but no testing for untranslatable characters
is done.

Format

ret-status = LIB$TRA_EBC_ASC (src-str, dst-str)

src-str
Address of the source (EBCDIC) string descriptor.

dst-str
Address of the destination (ASCII) string descriptor (fixed-length or
dynamic).

Implicit Inputs

The EBCDIC to ASCII translation table at LIB$AB_EBC_ASC.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_1NVCHA
One or more occurrences of an untranslatable character has been detected
in the course of the translation.

LIB$_1NV ARG
If the destination string is a fixed string and its length is not the same as
the source string length; no translation is attempted.

LIB$AB_EBC_ASC is the EBCDIC to ASCII translation table based on
ANSI X3.26 - 1970. All EBCDIC graphics are translated to the identical
ASCII graphic except for:

EBCDIC graphic ASCII graphic

cents sign [(left square bracket)

short vertical bar ! (exclamation point)

logical not A (circumflex)

! (exclamation point) J (right square bracket)

3-70 General Utility Procedures

Untranslatable codes map into 5C (hex) (the ASCII character"\"). Mapping
them into lA (hex) (the ASCII substitute character) would be more desirable,
but could cause trouble with STREAM-ASCII files under RMS-11 which
recognizes lA (hex) as a CTRL/Z signifying an end-of-file. The complete table
in hexadecimal notation is:

b7
column b6

b5
b4

row
b3b2blb0

0000 00
0 0 0 1 01
0 0 1 0 02
0 0 1 1 03
0100 04
0 1 0 1 05
0110 06
0 1 1 1 07
1000 08
1 0 0 1 09
1010 10
1011 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

EBCDIC to ASCII

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

00 10 5C 5C 20 26 2D 5C 5C 5C 5C 5C 7B 7D 5C 30
01 11 5C ~C 5C 5C 2F 5C 61 6A 7E 5C 41 4A 5C 31
02 12 5C 16 5C 5C 5C 5C 62 6B 73 5C 42 4B 53 32
03 13 5C 5C 5C 5C 5C 5C 63 6C 7 4 5C 43 4C 54 33
5C 5C 5C 5C 5C 5C 5C 5C 64 6D 75 5C 44 4D 55 34
09 5C OA 5C 5C 5C 5C 5C 65 6E 76 5C 45 4E 56 35
5C 08 17 5C 5C 5C 5C 5C 66 6F 77 5C 46 4F 57 36
7F 5C lB 04 5C 5C 5C 5C 67 70 78 5C 47 50 58 37
5C 18 5C 5C 5C 5C 5C 5C 68 71 79 5C 48 51 59 38
5C 19 5C 5C 5C 5C 5C 60 69 72 7A 5C 49 52 5A 39
5C 5C 5C 5C 5B 5D 7C 3A 5C 5C 5C 5C 5C 5C 5C 5C
OB 5C 5C 5C 2E 24 2C 23 5C 5C 5C 5C 5C 5C 5C 5C
OC lC 5C 14 3C 2A 25 40 5C 5C 5C 5C 5C 5C 5C 5C
OD lD 05 15 28 29 5F 27 5C 5C 5C 5C 5C 5C 5C 5C
OE lE 06 5C 2B 3B 3E 3D 5C 5C 5C 5C 5C 5C 5C 5C
OF lF 07 lA 21 5E 3F 22 5C 5C 5C 5C 5C 5C 5C 5C

where byte: b7b6b5b4 b3b2blb0
~~

column row

STR$TRANSLATE

3.3.5.5 Translate Matched Characters - STR$TRANSLATE successively
compares each character in a source string to all characters in a match string.
If a source character has a match, the destination character is taken from the
translate string. Otherwise, the source character moves to the destination
string. The character taken from the translate string has the same relative
position as the matching character had in the match string. If the translate
string is shorter than the match string and the matched character position is
greater than the translate string length, the destination character is a space.

Format

ret-status = STR$TRANSLATE (des-str, src-str, trans-tbl, match-str)

des-str
Address of destination string descriptor (fixed-length or dynamic).

General Utility Procedures 3-71

src-str
Address of source string descriptor.

trans-tbl
Address of translate string descriptor.

match-str
Address of match string descriptor.

STR$UPCASE

3.3.5.6 Uppercase Conversion - STR$UPCASE converts successive charac­
ters in a source string to uppercase and writes the converted character into the
destination string. When you need to compare characters without regard to
case, you can first convert both characters to uppercase. The routine only
converts a to z. Foreign languages with accented letters should use
STR$TRANSLATE.

Format

ret-status = STR$UPCASE (des-str, src-str)

des-str
Address of destination string descriptor (fixed-length or dynamic).

src-str
Address of source string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con­
tain all of the characters.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$-1NSVIRMEM
STR$_STRIS-1NT

3-72 General Utility Procedures

Example

The following BASIC statements would result in D$ containing
'HELLO':

EXTERNAL INTEGER FUNCTION STR$UPCASE
STATUSi.. = STR$UPCASE <O$t 'Hello')

3.4 Formatted Input and Output Conversion Procedures

This section describes the formatted input and output conversion routines
available as callable procedures. Input conversion procedures convert a fixed­
length string of characters to a D_, G_, or H_floating or integer binary
value. Output conversion procedures convert a D_, G_, or H_floating or
integer binary value to the corresponding space-padded, fixed-length string of
characters. String descriptors are used to specify the length and address of all
strings.

The following floating input and output conversions are provided:

D FORTRAN D format (scientific notation with D exponent)
E FORTRAN E format (scientific notation with E exponent)
F FORTRAN F format
G FORTRAN G format (selects between E and F depending on the magni­

tude of the value)

The following integer input and output conversions are provided:

I Integer
L Logical
0 Octal
Z Hexadecimal

While these procedures may be called from FORTRAN, they are provided for
use by programs written in other languages. These procedures are called im­
plicitly by the language support procedures to perform formatted and list­
directed input/output statements. Input scalars are passed by immediate
value, rather than by reference. Output strings are assumed to be static, and
the class field in the descriptor is not checked.

NOTE

If you are interested in procedures that convert decimal, octal,
or hexadecimal strings to binary values and pass the strings by
count and address, see Section 3.4.1.6.

General Utility Procedures 3-73

OTS$_CVT_J _x

3.4.1 Input Conversions

3.4.1.1 Convert Text to Floating - OTS$CVT _ T _x converts an ASCII text
string representation of a numeric value to D_, G_, or H_floating. The
routine supports FORTRAN D, E, F and G input type conversion as well as
similar types for other languages.

For compatibility with previous releases, the name FOR$CNV _IN_DEFG is
equivalent to OTS$CVT_T_D.

The syntax of a valid ASCII input string is:

<zero or more blanks>
<"+","-",or nothing>
<zero or more decimal digits>
<" ." or nothing>
<zero or more decimal digits>
<exponent or nothing, where exponent is:

< < <"E", "e", "D", "d", "Q", "q">
<zero or more blanks>
<"+","-",or nothing>>
or
<" +", or "-"> >

<zero or more decimal digits>>
<end of string>

NOTE

There is no difference in semantics between any of the six valid
exponent letters. See discussion of flags.

Format

ret-status = OTS$CVT_T_x (inp-str, value [,digits-in-fract
[,scale-factor [,flags [,ext-bits]]]])

where "x" is D for D_floating, G for G_floating or H for H_floating.

inp-str
Address of input string descriptor.

value
Address of the floating result.

digits-in-fract
An unsigned longword containing the number of digits in the fraction if
the decimal point is in the input string. (This is an optional parameter,
passed by immediate value. If omitted, the default is zero.)

3-74 General Utility Procedures

scale-factor
A signed longword containing the scale factor. If flags bit 6 is clear, the
result value is multiplied by lO**factor unless the exponent is present. If
flags bit 6 is set, the scale factor is always applied. (This is an optional
parameter, passed by immediate value. If omitted, the default is zero.)

flags
An unsigned longword containing c~ller-supplied flags defined as follows:

Bit 0 If set, blanks are ignored. If clear, blanks are equivalent to "O".

Bit 1 If set, only E or e exponents are allowed.

Bit 2 If set, underflow will cause an error.

Bit 3 If set, don't round the value.

Bit 4 If set, tabs are ignored. If clear, tabs are illegal.

Bit 5 If set, an exponent must begin with a valid exponent letter. If
clear, the exponent letter may be omitted.

Bit 6 If set, the scale factor is always applied. If clear, it is only applied
if there is no exponent present in the string.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bi ts are clear.)

ext-bits
Address of a byte or word to receive the extra precision bits. If present, the
value is not rounded, and the first n bits after truncation are returned in
this argument. For D_floating, n equals 8 and the bits are returned as a
byte. For G_ and H_floating, n equals 11and15, respectively, and the
bits are returned as a word, left-justified. These values are suitable for use
as the extension operand in an EMOD instruction.

CAUTION

The bits returned for H_floating may not be precise because
calculations are only carried to 128 bits. However, the error
should be small. D_ and G_floating return guaranteed exact
bits; they are not rounded.

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$-1NPCONERR
Input conversion error; an invalid character in input string, or value is
outside the range that can be represented. Value is set to +0.0 (not re­
served operand -0.0).

General Utility Procedures 3-75

OTS$CVT_Jl_L

3.4.1.2 Convert Text (Signed Integer) to Longword - OTS$CVT _TLL con­
verts an ASCII text string representation of a decimal number to a signed
byte, word, or longword. The result is a longword by default, but the calling
program can specify a byte or a word value instead.

The syntax of a valid ASCII text input string is:

[+ or -][<integer-digits> J

Leading blanks are always ignored. Blanks after the sign or the first digit are
ignored if flags bit 0 is set; otherwise, blanks are treated as zeroes. Tabs are
ignored if flags bit 1 is set; otherwise, tabs are invalid. An implicit decimal
point is assumed at the right of inp-str.

For compatibility with previous releases, the name FOR$CNV _JN-1 is
equivalent to OTS$CVT_TLL.

Format

ret-status = OTS$CVT_TLL (inp-str, value [,value-size [,flags]])

inp-str
Address of the input string descriptor.

value
Address of a signed byte, word, or longword to receive the integer value,
depending on value-size. (This is an output parameter.)

value-size
A longword containing the number of bytes the value will occupy. (This is
an optional parameter, passed by immediate value. The default is four.)
Valid values are one, two and four. Invalid values return an error.

flags
An unsigned longword containing caller supplied flags defined as follows:

bit 0 If set, blanks are ignored. If clear, blanks after the first legal char­
acter are treated as zeroes.

bit 1 If set, tabs are ignored. If clear, tabs are invalid.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NQRMAL
Routine successfully completed.

OTS$-1NPCONERR
Input conversion error; an invalid character in input string, or value over­
flows byte, word, or longword, or value-size is invalid; value is set to zero.

3-76 General Utility Procedures

OTS$CVT_TL_L

3.4.1.3 Convert Text (Logical) to Longword - OTS$CVT _ TL_L converts an
ASCII text string representation of a FORTRAN-77 L format to a byte, word,
or longword value. The result is a longword by default, but the calling pro­
gram can specify a byte or a word value instead.

For compatibility with previous releases, the name FOR$CNV _JN_L is
equivalent to OTS$CVT_TL_L.

The syntax of a valid ASCII text string is:

<zero or more blanks>
< <end of string>

or
< <" ." or nothing>

Letter: <"T". "t". "F". "f">
<zero or more of any character>
<end of string>>>

The value returned by OTS$CVT_TL_L is minus one if the character de­
noted by "Letter:" is "T" or "t", zero otherwise.

Format

ret-status = OTS$CVT_TL_L (inp-str, value [,value-size])

inp-str
Address of the input string descriptor.

value
Address of a byte, word, or longword to receive the integer value, depend­
ing on value-size. (This -is an output parameter.)

value-size
A longword containing the number of bytes the value will occupy. (This is
an optional parameter, passed by immediate value. The default is four.)
Valid values are one, two and four. Invalid values return an error.

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$__INPCONERR
Invalid character in the input string or invalid value-size; value set to
zero.

General Utility Procedures 3-77

OTS$CVT_TQ_L

3.4.1.4 Convert Text (Octal) to Longword - OTS$CVT _ TQ_L converts an
ASCII text string representation of an unsigned octal value to an unsigned
byte, word, or longword. The result is a longword by default, but the calling
program can specify a byte or a word value instead. The valid input charac­
ters are the space and the digits 0 through 7. No sign is permitted.

For compatibility with previous releases, the name FOR$CNV -1N_O is
equivalent to OTS$CVT_TQ_L.

Format

ret-status = OTS$CVT_TQ_L (inp-str, value [,value-size [,flags]])

inp-str
Address of input string descriptor.

value
Address of an unsigned byte, word, or longword to receive the result,
depending on value-size.

value-size
A longword containing the number of bytes that the value ~ill occupy.
(This is an optional parameter, passed by immediate value. The default is
four.) If input size is zero or negative, an error is returned.

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, blanks are ignored; otherwise blanks are treated as zeroes.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$-1NPCONERR
Input conversion error. An invalid character, overflow, or invalid value­
size occurred.

3-78 General Utility Procedures

OTS$CVT_Tl__L

3.4.1.5 Convert Text (Hexadecimal) to Longword - OTS$CVT_TZ_L con­
verts an ASCII text string representation of an unsigned hexadecimal value to
an unsigned byte, word, or longword. The result is a longword by default, but
the calling program can specify a byte or a word value instead. Valid input
characters are the space, the digits 0 through 9, and letters A through F. No
sign is permitted. Lowercase letters a through fare acceptable.

For compatibility with previous releases, the name FOR$CNV _JN_Z is
equivalent to OTS$CVT_TZ_L.

Format

ret-status = OTS$CVT_TZ_L (inp-str, value [,value-size [,flags]])

inp-str
Address of input string descriptor.

value
Address of an unsigned byte, word, or longword to receive the result,
depending on value-size.

value-size
A longword containing the number of bytes that the value will occupy.
(This is an optional parameter, passed by immediate value. The default is
four.) If input size is zero or negative, an error is returned.

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, blanks are ignored; otherwise blanks are treated as zeroes.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$-1NPCONERR
Input conversion error. An invalid character, overflow, or invalid value­
size occurred.

General Utility Procedures 3-79

3.4.1.6 Convert Text to Binary

LIB$CVT _DTB - Decimal to Binary Conversion
LIB$CVT _HTB - Hexadecimal to Binary Conversion
LIB$CVT _OTB - Octal to Binary Conversion

LIB$CVT_xTB

These procedures return a binary representation of the ASCII text string
representation of a decimal, octal, or hexadecimal number.

NOTE

These LIB$ procedures are unusual in that they expect input
scalar parameters to be passed by immediate value and strings
by reference and blanks are invalid characters.

Format

ret-status = LIB$CVT_DTB (count, string, result)
ret-status = LIB$CVT_OTB (count, string, result)
ret-status = LIB$CVT_HTB (count, string, result)

count
Byte count of input ASCII text string.

string
Address of input ASCII text string.

result
Address to receive longword result.

Return Status

SS$_NORMAL

0

Procedure successfully completed.

Nonradix character in the input string or a sign in any position other than
the first character. Blanks and tabs are invalid characters. An overflow
from 32 bits (unsigned) will cause an error.

NOTE

See Section 3.4.1.1 for more flexible and general input conver­
sion routines.

3-80 General Utility Procedures

OTS$CVT_L_ Tl

3.4.2 Output Conversions

3.4.2.1 Convert Longword to Text (Signed Integer) - OTS$CVT_L_TI
converts a signed integer to a decimal ASCII text string. This procedure
supports FORTRAN Iw and Iw.m output and BASIC output conversion.

A separate entry point FOR$CNV _QUT _I is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L_TI (value-adr, out-str [,int-digits [,value-size
[,flags]]])

ret-status = FOR$CNV_OUT__I (value, out-str)

value-adr (0TS$CVT_L_TI only)
Address of the signed byte, word, or longword containing the integer value,
depending on value-size.

value (FOR$CNV_OUT__I only)
A longword containing the signed integer value to be converted to text
(passed by immediate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K_CLASS_S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant digits is smaller, leading zeroes are pro­
duced. If int-digits is zero and value is zero, a blank field will result. (This
is an optional parameter, passed by immediate value. The default value is
one.)

value-size
A longword containing the number of bytes occupied by the value to be
converted to text. The value-size must be either one, two or four. If value­
size is 1 or 2, the value is sign extended to a longword before conversion.
(This is an optional parameter, passed by immediate value. The default is
four.)

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, a plus sign (+) will be inserted before the first non-blank
character in the output string; otherwise, the plus sign will be
omitted.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

General Utility Procedures 3-81

Return Status

88$-.NORMAL
Routine successfully completed.

OTS$_0UTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

OTS$CVT_L_ TL

3.4.2.2 Convert Longword to Text (Loglcal)- OTS$CVT__L_TL converts an
integer to the ASCII text string representation using FORTRAN L (logical)
format.

The output string will consist of (length -1) blanks followed by:

The letter T if bit 0 is set
The letter F if bit 0 is clear

A separate entry point FOR$CNV _OUT _L is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT__L_TL (value-adr, out-str)

ret-status = FOR$CNV_OUT_L (value, out-str)

value-adr (OTS$CVT__L_TL only)
Address of the longword containing the input value to be converted to
text.

value (FOR$CNV_OUT_L only)
A longword containing the input value to be converted to text (passed by
immediate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K_CLASS_S).

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_0UTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is of zero length (DSC$W-LENGTH=0).

3-82 General Utility Procedures

OTS$CVT_L__ TO

3.4.2.3 Convert Longword to Text (Octal) - OTS$CVT _L_ TO converts an
unsigned integer to an octal ASCII text string. OTS$CVT_L_TO supports
FORTRAN Ow and Ow.m output conversion formats.

A separate entry point FOR$CNV _OUT _O is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L_TO (value-adr, out-str [,int-digits
[,value-size]])

ret-status = FOR$CNV_OUT_O (value, out-str)

value-adr (OTS$CVT_L'"-TO only)
Address of the unsigned byte, word, or longword containing the integer
value, depending on value-size.

value (FOR$CNV_OUT_O only)
A longword containing the integer value to be converted (passed by imme­
diate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K_CLASS_S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant digits is less, leading zeroes are produced.
If int-digits is zero and value is zero, a blank string results. (This is an
optional parameter, passed by immediate value. The default is one.)

value-size
A longword containing the size of value in bytes. (This is an optional
parameter, passed by immediate value. The default is four.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_0UTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

General Utility Procedures 3-83

OTS$CVT_L_ TZ

3.4.2.4 Convert Longword to Text (Hexadecimal)- OTS$CVT_L_TZ con­
verts an unsigned integer to a hexadecimal ASCII text string.
OTS$CVT_L_TZ supports FORTRAN Zw and Zw.m output conversion
formats.

A separate entry point FOR$CNV _OUT_Z is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L_TZ (value-adr, out-str [,int-digits
[,value-size]])

ret-status = FOR$CNV_OUT_Z (value, out-str)

value-adr (OTS$CVT_L_TZ only)
Address of the unsigned byte, word, or longword containing the integer
value, depending on value-size.

value (FOR$CNV_OUT_Z only)
A longword containing the integer value to be converted (passed by imme­
diate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K_CLASS_S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant digits is less, leading zeroes are produced.
If int-digits is zero and value is zero, a blank string results. (This is an
optional parameter, passed by immediate value. The default is one.)

value-size
A longword containing the size of value in bytes. (This is an optional
parameter, passed by immediate value. The default is four.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_0UTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

3-84 General Utility Procedures

\

FOR$CVT_x_ Ty

3.4.2.5 Convert Floating to Text - FOR$CVT_x_Ty are routines that con­
vert floating values to ASCII text strings. They are divided according to
VAX-11 data types and to FORTRAN format types.

FORTRAN format types are DIE (exponential), F (fixed point), and G (fixed
or exponential). VAX-11 data types are D_, G_, and H_floating.

For compatibility with previous releases, the name FOR$CNV _OUT_y is
equivalent to FOR$CVT_D_Ty.

Format

ret-status = FOR$CVT_x_Ty (value-adr, out-str, digits-in-fract [,scale­
factor [,digits-in-int [,digits-in-exp [,flags]]]])

where:

xis the VAX-11 data type, either D_, G_, or H_floating and
y is the FORTRAN format, either D, E, For G

value-adr
Address of the D_, G_, or H_floating value to be converted.

out-str
Address of the output string descriptor to receive the ASCII text string.
The string is assumed to be fixed-length (DSC$K_CLASS_S).

digits-in-fract
An unsigned longword containing the number of digits in the fraction
portion (passed by immediate value).

scale-factor
A longword containing the scale factor. The externally represented num­
ber equals the internally represented number multiplied by 10** scale­
factor. If digits-in-int is not present, scale-factor indicates the true scale
factor on F format or the digits-in-int for D, E and G formats. (This is an
optional parameter, passed by immediate value. The default is zero.)

digits-in-int
An unsigned longword containing the number of digits in the integer part
of an exponentially formatted value. Digits-in-int is ignored for F format.
(This is an optional parameter, passed by immediate value. The default is
zero.)

digits-in-exp
An unsigned longword containing the number of digits in the exponent
field. If the exponent overflows this field by one digit, the exponent letter
is removed. (This is an optional parameter, passed by immediate value.
The default is two.)

General Utility Procedures 3-85

flags
An unsigned longword containing the caller supplied flags defined as
follows:

bit 0 If set, and the value is positive, insert a plus sign (+) before the
first non-zero character in the output string.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

FOR$_0UTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

Messages

SS$_ROPRAND
Reserved operand fault. A reserved floating operand was pass~d; out-str is
not changed.

3.4.3 Convert Binary to Formatted ASCII

The Formatted ASCII Output system service ($FAO) converts binary values
into ASCII characters and returns the converted characters in an output
string. It can be used to:

• Insert variable character string data into an output string

• Convert binary values into the ASCII representations of their decimal, hex­
adecimal, or octal equivalents and substitute the results into an output
string

The Formatted ASCII Output with List Parameter system service ($FAOL)
provides an alternate way to specify input parameters for a call to the $F AO
system service.

System service routines that return strings return only fixed-length strings
and they are not blank filled. For some high-level l,anguages, it is desirable to
be able to return dynamic strings and for others, to blank fill fixed-length
strings. Likewise, high-level languages generally pass parameters by refer­
ence, while system service routines pass by immediate value. The following
procedures, LIB$SYS_F AO and LIB$SYS_F AOL, provide a convenient in­
terface for higher level languages and the corresponding system services.

3-86 General Utility Procedures

LIB$SVS_FAO

3.4.3.1 Formatted ASCII Output- LIB$SYS_FAO calls $FAO for the caller,
returning a string using the semantics of the caller's string. If called with other
than a fixed string for output, the length of the resultant string is limited to
256 bytes and truncation can occur.

See VAX/VMS System Services Reference Manual for a complete description
of $FAO.

Format

ret-status = LIB$SYS_FAO (ctr-str [,out-len], out-buf [,pl ... [,pn]])

ctr-str
Address of the ASCII control string descriptor. The control string consists
of the fixed text of the output string and FAO directives.

out-len
Address of a word to receive the output string length. This is an optional
parameter.

out-buf
Address of the fixed-length or dynamic output string descriptor to receive
the fully formatted output string.

pl - pn
Directive parameters contained in longwords. Depending on the directive,
a parameter can be a value to be converted, the address of the string to be
inserted, or a length or argument count. A maximum of 17 directive
parameters can be specified. These are optional parameters. The passing
mechanism for each of these parameters should be the one expected by the
system service.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Success, but source string was truncated on copy.

LIB$-1NSVIRMEM
Insufficient virtual memory to allocate dynamic string.

LIB$-1NVSTRDES
Invalid string descriptor.

SS$_BUFFEROVF
Successfully completed, but formatted output string overflowed the out­
put buffer and has been truncated.

SS$_BADPARAM
An invalid directive was specified in the F AO control string.

General Utility Procedures 3-87

LIB$SVS_FAOL

3.4.3.2 Formatted ASCII Output with List Parameter - LIB$SYS_F AOL calls
the system service routine $FAOL for the caller, returning the resultant string
using the semantics of the caller's string. If called with other than a fixed
string for output, the length of the resultant string is limited to 256 bytes and
truncation may occur.

See the VAX/VMS System Services Reference Manual for a complete descrip­
tion of $FAOL.

Format

ret-status = LIB$SYS_FAOL (ctr-str [,out-len], out-buf, prm-lst)

ctr-str
Address of the ASCII control string descriptor. The control string consists
of fixed text from the output string and conversion directives.

out-len
Address of a word to receive the output string length. (This is an optional
parameter.)

out-buf
Address of the fixed-length or dynamic output string descript-0r to receive
the fully formatted output string.

prm-lst
Address of an array oflongwords to be used as pl through pn. The param­
eter list can be a data structure that already exists in a program and from
which certain values are to be extracted.

Return Status

See LIB$SYS_FAO description in Section 3.4.3.1.

3.5 Variable Bit Field Instruction Procedures

The following procedures manipulate variable bit fields. The procedures are
intended primarily for higher level languages. The MACRO programmer can
perform the equivalent using a single machine instruction.

A variable bit field is specified by three scalar parameters:

• pos - the address of a signed longword containing the first bit position of the
field with respect to the base address

• size - the address of a byte containing the size of the bit field, from 0 to 32

• base - the address of the base of the bit field

3-88 General Utility Procedures

Bit fields are zero-origin, which means that the procedure regards the first bit
in the field as being the zero position. For more detailed information on
V AX-11 bit numbering and data formats, see the VAX-11 Architecture
Handbook.

LIB$1NSV

3.5.1 Insert a Variable Bit Field

LIB$INSV replaces the variable bit field specified by the base, position, and
size parameters with bits zero through size-1 of the source. If the size of the
bit field is zero, nothing is inserted.

Format

src

pos

CALL LIB$INSV (src, pos, size, base)

Address of longword containing the source field to be inserted.

Address of longword containing the first bit position of the field relative to
th~ base address.

size
Address of unsigned byte containing the size of the bit field to be inserted.

base
Address of the base of the output field in which the source is to be
inserted.

Messages

88$-ROPRAND
A reserved operand fault is signaled if a size greater than 32 is specified.

Examples

In FORTRAN, to set bits 0 through 2 of longword COND_ VALUE to 4:

INTEGER*4 COND_VALUE
CALL LIBSINSV (4t Ot 3, COND_VALUE>

In BASIC, to set bits 0 through 2 of longword COND_ VALUE to 4:

DECLARE INTEGER COND_VALUE
CALL LIBSINSV (4%t 0%t 3%t COND_VALUE>

General Utility Procedures 3-89

LIB$EXTV

3.5.2 Extract and Sign-Extend a Field

LIB$EXTV returns a sign-extended, longword field that has been extracted
from the specified variable bit field.

Format

pos

size

field = LIB$EXTV {pos, size, base)

Address of longword containing the beginning bit position (relative to the
base address).

Address of unsigned byte containing the size of the bit field to be ex­
tracted. The maximum size is 32 bits'.

base
Address of the base of the bit field to be extracted.

field
The field, sign-extended to a longword.

Messages

88$-ROPRAND
A reserved operand fault occurs if a size greater than 32 is specified.

Example

In FORTRAN, if bits 3 to 0 of VALUE contain a 3 (0011), then
8MALL_INT is set to 3 (00000003 hex) in the following example:

INTEGER*4 VALUE, SMALL-INT
SMALL_INT = LIB$EXTV (0, a, VALUE>

If bits 3 to 0 of VALUE contain all ones, SMALL_INT is set to -1
(FFFFFFFF hex) in the preceding example.

3-90 General Utility Procedures

LIB$EXTZV

3.5.3 Extract a Zero-Extended Fleld

LIB$EXTZV returns a longword, zero-extended field that has been extracted
from the specified variable bit field.

Format

pos

Field = LIB$EXTZV (pos, size, base)

Address of longword containing the beginning bit position (relative to the
base address).

size
Address of unsigned byte containing the size of the bit field to be ex­
tracted. The maximum size is 32 bits.

base
Address of the base of the bit field to be extracted.

field
The field, zero-extended to a longword.

Messages

88$-ROPRAND
A reserved operand fault occurs if a size greater than 32 is specified.

Example

In this FORTRAN example, if bits 2 to 0 of COND_VALUE contain 4
(100), then SEVERITY will be set to 4:

INTEGER*4 COND_VALUEt SEVERITY
SEVERITY = LIB$EXTZV COt 3t COND-VALUE)

General Utility Procedures 3-91

LIB$FFC

3.5.4 Find First Clear Bit

LIB$FFC searches the field specified by the start position, size, and base for
the first clear bit. If one is found, SS$_NORMAL is returned as well as the
bit position (relative to start-pos) in the find-pos parameter. If a clear bit is
not found or a size of zero is specified, a failure status is returned, and the find
position is set to the size.

Format

ret-status = LIB$FFC (start-pos, size, base, find-pos)

start-pos

size

Address of longword containing the starting bit position (relative to the
base address).

Address of unsigned byte containing the number of bits to be searched.
The maxim um size is 32 bi ts.

base
Address of longword bit field to be searched.

find-pos
Address of longword to receive bit position (relative to start-pos) of first
clear bit. (This is an output parameter.)

Return Status

88$-NORMAL
Routine successfully completed. A clear bit was found.

LIB$_NOTFOU
A clear bit was not found.

Messages

88$-ROPRAND
A reserved operand fault is signaled if a size greater than 32 is specified.

Example

In the following FORTRAN example, FPOS is set to 6, since bit 10 is the
first clear bit and search started at bit 4 in BITS.

INTEGER*a FPOSt BIT£
BITS = 2**10-1
CALL LIB$FFC Cat28tBITStFPOS>

3-92 General Utility Procedures

LIB$FFS

3.5.5 Find First Set Bit

LIB$FFS searches the field specified by the start position, size, and base for
the first set bit. If one is found, a success status is returned as well as the bit
position (relative to start-pos) in the find-pos parameter. If a set bit is not
found or a size of zero is specified, a failure status is returned and the find-pos
is set to the size.

Format

ret-status = LIB$FFS (start-pos, size, base, find-pos)

start-pos
Address of longword containing the start position (relative to the base
address).

size
Address of byte containing the number of bits to be searched. The maxi­
mum size is 32 bits.

base
Address of the longword bit field.

find-pos
Address of longword to receive the bit position (relative to start-pos) of
first set bit. (This is an output parameter.)

Return Status

SS$_NORMAL
Routine successfully completed. A set bit was found.

LIB$_NOTFOU
A set bit was not found.

Messages

SS$_ROPRAND
A reserved operand fault is signaled if a size greater than 32 is specified.

Example

In the following FORTRAN example, FPOS is set to 6, since bit 10 is the
first set bit and the search is started at bit 4:

INTEGER*4 FPOStBASE
BASE = 2**10
CALL LIB$FFS (4t 28t BASEt FPOS>

General Utility Procedures 3-93

3.6 Performance Measurement Procedures

These procedures implement the Run-Time Library Timing Facility.

LIB$INIT _TIMER gets from V AXNMS the current values of specified
times and counts, and stores them for future use by LIB$SHQW_TIMER or
LIB$STAT_TIMER.

LIB$SHOW_TIMER obtains the accumulated times/counts since the last
call to LIB$1NIT_TIMER as formatted ASCII text.

LIB$STAT_TIMER returns to its caller one of five available statistics.
Unlike LIB$SHOW_TIMER, which formats the values for output,
LIB$ST AT_ TIMER returns the values as unsigned integers to a location
specified by a parameter.

LIB$FREE_ TIMER frees the storage allocated by LIB$INJT _TIMER.

LIB$FREE_TIMER

3.6.1 Free Timer Storage

LIB$FREE_ TIMER frees the storage allocated by LIB$INIT _TIMER. If
the block referred to by "handle" was not allocated by LIB$INIT _TIMER,
an error is returned.

Format

ret-status = LIB$FREE_TIMER (handle)

handle
A longword containing a pointer to the control block in which the
times/counts are stored. The pointer must be the same value returned by a
previous call to LIB$INIT _TIMER. On a successful return, "handle" is
set to zero.

lmpllclt Inputs

It is assumed that "handle" has been returned by a previous call to
LIB$INIT _TIMER.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$-1NV ARG
Invalid argument. "Handle" is invalid.

LIB$-BADBLOADR
Bad block address. "Handle" is invalid.

3-94 General Utility Procedures

LIB$1NIT_TIMER

3.6.2 lnltlallze Times and Counts

LIB$INIT _TIMER stores the current values of specified times and counts for
use by LIB$SHOW_TIMER or LIB$STAT_TIMER. The values are. stored
in one of thre~ places, depending on the optional argument "handle."

Format

ret-status = LIB$INIT _TIMER ([handle])

handle
A longword containing a pointer to a control block where the values of
times/counts will be stored. (This is an optional parameter.)

If missing, the times/counts will be stored in OWN storage. This call is
neither AST-reentrant nor modular.

If zero, a control block will be allocated in dynamic heap storage by a call
to LIB$GET_VM. The times/counts will be stored in that block and the
address of the block returned in "handle." This method is AST-reentrant
and modular.

If non-zero, it is considered to be the address of a storage block previously
allocated by a call to LIB$INIT _TIMER. If so, the control block is
reused, and fresh times and counts are stored in it.

lmpllclt Inputs

If "handle" is nonzero, the block of storage it refers to is assumed to have
been initialized by a previous call to LIB$INIT_TIMER.

lmpllclt Outputs
Upon exit, the block of storage referred to by "handle" will contain the
times/counts.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$-1NV ARG
Invalid argument. "Handle" is nonzero and the block it refers to was not
initialized on a previous call to LIB$INIT _TIMER.

LIB$-1NSVIRMEM
"Handle" is zero, and there is insufficient virtual memory to allocate a
storage block.

General Utility Procedures 3-95

LIB$STAT_TIMER

3.6.3 Return Accumulated Times and Counts as a Statistic

LIB$STAT_TIMER returns to its caller one of five available statistics.
Unlike LIB$SHOW_TIMER, which formats the values for output,
LIB$STAT_TIMER returns the value as an unsigned longword or quadword.

Only one of the five statistics can be returned by a single call to
LIB$STAT_TIMER. "Code" must be an integer from one to five.

NOTE

The elapsed time (code = 1) is returned in the system quad­
word format. Therefore the receiving area should be 8-bytes
long. All other values are longwords.

Format

ret-status = LIB$STAT_TIMER (code-adr, value-adr [,handle-adrl)

code-adr
Address of a longword or quadword containing a value which specifies the
statistic to be returned. Allowed values are:

1 - Elapsed Time {quadword, in system time format)
2 - CPU Time (longword, in 10 millisecond increments)
3 - Buffered I/0 (longword)
4 - Direct I/O (longword)
5 - Page Faults (longword)

NOTE·

It is invalid to omit this parameter or to give a "code" of zero.

value-adr
Address of the area to store the result. All values are longword integers
except elapsed time, which is a quadword. See the VAX/VMS System
Services Reference Manual for more details on the system quadword time
format.

handle-adr
Address of a longword containing a pointer to a block of storage. (This is
an optional parameter.) If spec.ified, the pointer must be the same value
returned by a previous call to LIB$INIT_TIMER. Otherwise, OWN stor­
age is used.

lmpllclt Inputs

It is assumed that LIB$INIT _TIMER has been called and that the
"handle" argument to LIB$INIT_TIMER is the same as in the call to
LIB$STAT_TIMER.

3-96 General Utility Procedures

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$__1NV ARG
Invalid argument. Either "code" or "handle" is invalid.

LIB$SHOW_TIMER

3.6.4 Show Accumulated Times and Counts

LIB$SHOW_TIMER gets accumulated times/counts since the last call to
LIB$INIT_TIMER. In the default mode, with neither CODE nor ACTION
specified in the call, the routine outputs to SYS$0UTPUT a line giving the
following five items of information:

ELAPSED = hhhh:mm:ss.cc - Elapsed real time
CPU = hhhh:mm:ss.cc - Elapsed CPU time
BUFIO = nnnn - Count of Buffered I/O operations
DIRIO = nnnn - Count of direct I/O operations
PAGEFLTS = nnnn - Count of page faults

Optionally, one or all five statistics can be output to SYS$0UTPUT or passed
to a user-specified "action routine" for nondefault processing.

Format

ret-status = LIB$SHOW_TIMER ([[[[handle-adr], code-adr], action-adr],
user-arg])

handle-adr
Address of a longword containing a pointer to a block of storage. (This
is an optional parameter.) If specified, the pointer must be the same
value returned by a previous call to LIB$INIT_TIMER. If omitted,
the routine's OWN storage will be used. If handle-adr is omitted and
LIB$INIT_TIMER has not been called previously, elapsed time will
show the actual time-of-day, and the remaining values will be those accu­
mulated since process log-in.

code-adr
Address of a longword value specifying a particular statistic. (This is an
optional parameter.) It must be one of these values:

1 =Elapsed Time
2 =CPU Time
3 = Buffered I/0
4 = Direct I/0
5 = Page faults

If omitted or zero, all five statistics are returned on one line.

General Utility Procedures 3-97

action-adr
Address of a function procedure to call. (This is an optional parameter.)
The function should return either a success or failure condition value,
which will be returned as the value of LIB$SHOW_TIMER.

Format for "action" routine:
ret-status = (action) (out-str[, user-arg])

out-str
Address of a descriptor of a fixed-length string containing the statistics
you want. The string is formatted exactly as it would be if output to
SYS$0UTPUT. The leading character is blank.

user-arg
If passed on to LIB$SHOW_TIMER, user-arg is passed directly on to
the action routine. Note that this is passed by immediate value to both
LIB$SHOW_TIMER and the action routine.

Implicit Inputs

It is assumed that LIB$INIT _TIMER has been previously called, and that
the results of that call are stored in either OWN storage or a block pointed to
be "handle."

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$-1NV ARG
Invalid arguments. An invalid value was given for "code" or "handle."
Other codes may be returned by LIB$PUT_OUTPUT or the user's action
routine.

Example

The following FORTRAN code fragment could be used to time a loop and
output the results to the terminal:

INTEGER*ll HANDLE
HANDLE = 0
IF <.NOT. LI6$INIT-TIMER<HANDLE>> GO TO error
DO 100 •••

100 CONTINUE
IF <.NOT. LI6$SHOW-TIMER<HANDLE>> GO TO error

3. 7 Date/Time Utility Procedures

Some of the following procedures are provided primarily for use with
FORTRAN built-in functions: DATE, SECNDS, and TIME. However, you
can call them from programs written in any language. Input scalar parameters
are passed by-reference. The FORTRAN compiler generates calls to the pro­
cedure you want depending on the data type of the parameter(s).

3-98 General Utility Procedures

LIB$SVS_ASCTIM

3. 7 .1 Convert Binary Date/Time to an ASCII String

LIB$SYS_ASCTIM calls the system service ASCTIM to convert a binary
date and time value, returning the resultant ASCII string using the semantics
of the caller's string. Parameter cnv-flg is presented to this routine by refer­
ence and is promoted to by immediate value for presentation to ASCTIM.

See the ASCTIM system service description in the VAX/VMS System
Services Reference Manual.

Format

ret-status = LIB$SYS_ASCTIM ([out-len], dst-str, [user-time], [cnv-flg])

out-len
Optional addres of a word to receive the number of bytes written into
dst-str, not counting padding in the case of a fixed string. If the input
string is truncated to the size specified in the dst-str descriptor, out-len is
set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of dst-str.

dst-str
Address of a string descriptor to receive the string (fixed-length or
dynamic).

user-time
Optional address of the quadword integer value to be converted. If zero or
no address is specified, the current system date and time are returned. A
positive value represents an absolute time. A negative value represents a
delta time. If a delta time is specified, it must be less than 10,000 days.

cnv-flg
Optional address of an unsigned longword containing the conversion
indicator. A value of one causes only the hour, minute, second, and hun­
dredths of a second to be returned, depending on the length of the buffer.
A value of zero (the default) causes the full date and time to be returned,
depending on the length of the buffer.

Return Status

SS$_NORMAL
Routine succssfully completed.

LIB$_STRTRU
Routine successfully completed, but the source string was truncated.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$-1NVSTRDES
LIB$_STRIS-1NT

SS$-1VTIME
The specified delta time is greater than or equal to 10,000 days.

General Utility Procedures 3-99

FOR$1DATE

3.7.2 Return Month, Day, Year as INTEGER*2

FOR$IDATE uses the system service, Convert Binary Time to Numeric Time
($NUMTIM), to get date information. This information is converted to 16-bit
integers and stored through the addresses passed as parameters.

Format

CALL FOR$IDATE (month, day, year)

month
Address of a word to receive month integer (range: 1 to 12). (This is an
output parameter.)

day
Address of a word to receive day integer (range: 1to31). (This is an output
parameter.)

year
Address of a word to receive year of century integer (range: 0 to 99). (This
is an output parameter.)

FOR$JDATE

3.7.3 Return Month, Day, Year as INTEGER*4

FOR$JDATE uses the system service, Convert Binary Time to Numeric Time
($NUMTIM), to get date information. This information is converted to 32-bit
integers and stored through the addresses passed as parameters.

Format

CALL FOR$JDATE (month, day, year)

month

day

Address of longword to receive month integer (range: 1 to 12). (This is an
output parameter.)

Address of a longword to receive day integer (range: 1 to 31). (This is an
output parameter.)

year
Address of a longword to receive year of century integer (range: 0 to 99).
(This is an output parameter.)

3-100 General Utility Procedures

FOR$DATE

3. 7 .4 Return System Date as 9-Byte String

FOR$DATE returns the system date as a 9-byte string in the form
DD-MMM-YY (for example, Ol-Jun-78).

Format

CALL FOR$DATE (9-byte-array)

9-byte-array
Address of nine bytes where the string is to be placed. (This is an output
parameter.)

Note

The string is passed by reference rather than by descriptor.

FOR$SECNDS

3. 7 .5 Return System Time in Seconds

FOR$SECNDS returns the system time in seconds as a F _floating value
minus the value of its argument. This procedure will show the correct time
difference through midnight into the next day.

Format

time-difference = FOR$SECNDS (time-origin)

time-difference
Address of location to receive the F_floating system time in seconds.

time-origin
Address of F_floating value of reference time.

Messages

88$-FLTOVF
Floating overflow.

88$-FLTUND
Floating underflow.

General Utility Procedures 3-101

FOR$TIME

3.7.6 Return System Time as 8-Byte String

FOR$TIME returns the system time as an 8-byte string in the form
HH:MM:SS.

Format

CALL FOR$TIME (8-byte-array)

8-byte-array
Address of eight bytes where the string is to be placed. (This is an output
parameter.)

Notes

The 8-byte array is a string passed by reference.

The time of day is truncated to seconds using the system service Convert
Binary Time to ASCII string ($ASCTIM).

LIB$DAY

3.7.7 Return Day Number as a Longword Integer

LIB$DA Y returns the number of days since the system zero date of November
17, 1858. Optionally, the caller can supply a quadword by reference containing
a time in system time format to be used instead of the system time.

NOTE

If the caller supplies a quadword time, it is not verified. If it is
negative (bit 63 on), the day-number value returned is
negative.

An optional return argument is a longword integer containing the number of
10 millisecond units since midnight.

Format

ret-status = LIB$DAY (day-number [,user-time [,day-time]])

day-number
Address of a longword containing the number of days since the system zero
date.

user-time
Address of a quadword containing a time in 100 nanosecond units. (This is
an optional parameter. The default is the current system time.)

3-102 General Utility Procedures

day-time
Address of a longword containing the number of 10 millisecond units since
midnight. (This is an optional output parameter.)

Return Status

SS$_NORMAL
Routine successfully completed.

SS$_1NTOVF
The option argument user-time is present and represents a date past the
year 8600.

Example

The following BASIC code fragment shows how you could use LIB$DAY to
obtain the number of days between two dates.

100 EXTERNAL INTEGER FUNCTION SYSSBINTIMt LIB$DAY
110 COM INTEGER USER_TIMEt FILL
120 DECLARE INTEGER RET_STATUS

300 DEF FNDAY%CDAY-TIME$)
\ RET-STATUS = SYSSBINTIMCDAY_TIMEStUSER_TIME)
\ IF CRET_STATUS AND 1%) = 0% THEN

CALL LIBSSTOPCRET-STATUS BY VALUE)
320 RET-STATUS = LIB$DAYCDAY-TMP%tUSER-TIME)

\ IF CRET_STATUS AND 1%) = 0% THEN
CALL LIBSSTOPCRET-STATUS BY VALUE)

330 FNDAY% = DAY_TMP%
\ FNEND

400 INPUT "Enter t1,.10 dates(dd-11t1nf1l-YY}'Y) 11 ;DAY1$tDAY2$
410 PRINT 11 Nu1T1ber of days bet1,.1een is";

\ FNDAY%CDAY2$) - FNDAY%CDAY1$)
888 END

LIB$DATE_TIME

3. 7 .8 Return System Date and Time as a String

LIB$DATE_TIME returns. the VAXNMS system date and time in the
semantics of a user-provided string.

Format

ret-status = LIB$DATE_TIME (dst-str)

dst-str
Address of a fixed-length or dynamic destination string descriptor.

Return Status

SS$_NORMAL
Procedure successfully completed.

General Utility Procedures 3-103

LIB$_STRTRU
Success, but destination string was truncated.

LIB$-1NSVIRMEM
Insufficient virtual memory.

LIB$-1NVSTRDES
Invalid string descriptor.

3.8 Miscellaneous Procedures

3-104

The procedures in this section are those general utility procedures that do not
belong to any group of related procedures.

LIB$AST_I N_PROG

3.8.1 AST in Progress

An asynchronous system trap (AST) is a V AXNMS mechanism for providing
a software interrupt when an external event occurs, such as the. user typing
CTRL/C. When an external event occurs, the current execution is interrupted
and a user-declared AST procedure is called. While that procedure is active,
the AST is said to be in progress. When the user AST procedure returns to the
user program, the AST is disabled and execution continues where it left off.

LIB$AST_IN_pRQG is provided.for the convenience of programmers writ­
ing AST reentrant software (which takes different actions depending on
whether an AST is in progress). For example, the procedure might have two
separate statically allocated storage areas, one for AST level and one for
non-AST level.

Format

in-progress= LIB$AST_IN_pRQG ()

in-progress
Indicator of whether an AST is currently in progress (value=l) or not
(value=O).

General Utility Procedures

LIB$CRC

3.8.2 Calculate Cyclic Redundancy Check (CRC)

LIB$CRC calculates the cyclic redundancy check (CRC) for a data
stream. The CRC is returned for the data stream specified. See the VAX-11
Architecture Handbook for a description of the algorithms used in computing
the CRC.

Format

ere = LIB$CRC (table, inicrc, stream)

table
Address of CRC table, which is an array of 16 longwords.

inicrc
Address of a longword containing the initial CRC.

stream
Address of a string descriptor for the data stream.

ere
Longword containing the computed cyclic redundancy check.

Example

The following FORTRAN code segment produces a DIGITAL Data
Communications Message Protocol (DDCMP) CRC table and then com­
putes the CRC for the string 'ABCDEFG'.

OIMENSION TABLE<1G)
INTEGER*ll TABLE
CALL LIBSCRC_TABLE< '120001'0t TABLE)
INTEGER*2 CRC
CRC = LIBSCRC <TABLEt Ot 'ABCDEFG')

In this example, only the low 16 bits of the result are used.

General Utility Procedures 3-105

3-106

LIB$CRC_TABLE

3.8.3 Construct Cyclic Redundancy Check (CRC) Table

LIB$CRC_TABLE constructs a 16-longword table that uses a CRC
polynomial specification as a bit mask. This table can be passed to the
LIB$CRC procedure for generating the CRC value for a stream of characters. See
the VAX-11 Architecture Handbook for a description of how the table is
generated.

Format

CALL LIB$CRC_ TABLE (poly, table)

poly
Address of the longword containing a bit mask indicating which
polynomial coefficients are to be gen~rated.

table
Address of the 16-longword table that is to be produced. (This is an
output parameter.)

Example

See Section 3.8.2.

LIB$EMULATE

3.8.4 Emulate VAX-11 Instructions

LIB$EMULATE intercepts "opcode reserved to DIGITAL" faults generated
by attempts to execute V AX-11 instructions on processors which do not im­
plement them, and simulates execution as if the processor did support the
instruction. New instructions which are added to the V AX-11 architecture
may not be implemented on all VAX-11 processors. LIB$EMULATE will
emulate any non-privileged VAX-11 instruction if the processor does not sup­
port the instruction.

For this release of VMS, LIB$EMULATE will execute all instructions which
manipulate the G_floating, H_floating and octaword data types. See the
VAX-11 Architecture Handbook for more information on these instructions.

LIB$EMULATE is a condition handler that emulates execution of
VAX-11 instructions that are not implemented on the host processor. If
LIB$EMULATE can emulate the instruction, execution control never returns
to the routine which called it; the exception essentially disappears.

Any exceptions that arise while emulating the instruction appear as if they
were caused by the instruction itself. Floating overflow, underflow, and

General Utility Procedures

divide-by-zero exceptions will be signaled as faults rather than traps. Proces­
sors that implement these instructions always fault. See the VAX-11
Architecture Handbook for more information on faults. LIB$SIM_ TRAP
(see Section 3.8.6) can be used to convert faults to traps.

Format

ret-status = LIB$EMULATE (sig-args-adr, mch-args-adr)

sig-args-adr
Address of the signal argument vector.

mch-args-adr
Address of the mechanism argument vector.

Return Status

SS$_RESIGNAL
Resignal condition to next handler. The exception was not one
LIB$EMULATE could handle.

Notes

The preferred use of LIB$EMULATE is to establish it as a condition
handler by the appropriate method for the source language. An alternative
means is provided for users who do not want to modify the source pro­
gram. The module LIB$ESTEMU in SYS$LIBRARY:STARLET.OLB
uses the LIB$INITIALIZE facility to enable LIB$EMULATE as a condi­
tion handler before program execution begins. To use this method, link
your program with LIB$ESTEMU as follows:

$ LINK program,SYS$LIBRARY:STARLET/INCLUDE=LIB$ESTEMU

If LIB$EMULATE is established this way, the new instructions will be
available to all of 'program.'

LIB$ADDX

3.8.5 Multiple Precision Binary Procedures

The following routines can be used to perform addition and subtraction on
signed two's-complement integers of arbitrary length. The integers are located
in arrays of longwords. The higher addresses contain the higher precision
parts of the values. The highest addressed longword contain the sign and
31-bits of precision. The remaining longwords contain 32-bits of precision.
The number of longwords to be operated on is given by the optional argument,
"len-adr." The default length is two which corresponds to the VAX-11 quad­
word data type.

The result is placed in the array addressed by the third argument. Any two or
all three of the first three arguments can be the same. The operations per­
formed are:

LIB$ADDX:
LIB$SUBX:

result= a+ b
result= a - b

General Utility Procedures 3-107

3-108

Format

ret-status = LIB$ADDX (a-adr, b-adr, result-adr [,len-adr])

ret-status = LIB$SUBX (a-adr, b-adr, result-adr [,len-adr])

a-adr
Address of an array containing a multiple precision signed, two's-comple­
ment integer.

b-adr
Address of an array containing a multiple precision signed, two's-comple­
ment integer.

result-adr
Address of an array to receive the result. (This is an output parameter.)

len-adr
Address of a longword containing the length in longwords of the arrays to
be operated on. The length must be greater than one. (This is an optional
parameter, the default is two.)

Return Status

SS$_NORMAL
Routine successfully completed.

SS$-1NTOVF
Integer overflow. The result is correct, except the sign bit is lost.

LIB$-1NV ARG
Invalid argument. Length is less than two. The output array is unchanged.

Examples

In FORTRAN (where arrays by default are passed by reference):

I NTEGER*a A< 2 > , B < 2 > , C < 2 >
IF (• NOT. LI B$A00}{ (At B, C > > GO TO error

In BASIC (where arrays by default are passed by descriptor):

DIM A'X.(2'X,) t B'X,CZX.>, C'X.(2'X.>
IF LIB$ADDX <A%() BY REFt 8%() BY REFt &

C%C> BY REF> AND 1% <> 1% GOTO error

General Utility Procedures

LIB$SIM_TRAP

3.8.6 Simulate Floating Trap

LIB$SIM_ TRAP converts floating faults to floating traps. It is designed to be
enabled as a condition handler or be called by one.

LIB$SIM_TRAP intercepts floating overflow, underflow and divide-by-zero
faults. When these conditions are detected, the routine simulates the instruc­
tion causing the condition up to the point where a fault should be signaled
and signals the corresponding floating trap.

Since LIB$SIM_TRAP dissolves the condition handling for the original fal1lt
condition, the final condition signaled by the routine will be from the context
of the instruction itself, rather than from the condition handler. The signaling
path is identical to a hardware generated trap. The signal array is placed so
the end of the table will be the user's stack pointer at the completion of the
instruction (for traps), or at the beginning of the instruction (for faults). See
the VAX-11 Architecture Handbook for more information on faults and traps.

Format

ret-status = LIB$SIM_TRAP (sig-args-adr, mech-args-adr)

sig-args-adr
Address of the signal argument vector.

mech-args-adr
Address of the mechanism argument vector.

Return Status

SS$__RESIGNAL
Resignal condition to next handler. The exception was not one that
LIB$SIM_TRAP could handle.

LIB$EMODX

3.8. 7 Extended Multiply and lntegerlze Procedures

The procedures described in this section provide the high-level language users
with the capability to use the VAX hardware instructions EMODF, EMODD,
EMODG and EMODH.

The floating-point multiplier extension operand (second operand) is
concatenated with the floating-point multiplier (first operand) to gain "x"
additional low order fraction bits. The multiplicand operand is multiplied by
the extended multiplier operand. After multiplication, the integer portion is
extracted and a "y"-bit floating-point number is formed from the fractional
part of the product by truncating extra bits.

General Utility Procedures 3-109

3-110

The multiplication yields a result equivalent to the exact product truncated to
a fraction field of "y" bits. With respect to the result as the sum of an integer
and fraction of the same sign, the integer operand is replaced by the integer
part of the result and the fraction operand is replaced by the rounded frac­
tional part of the result.

"x" and "y" have the following values:

In.struction x bits y Procedure
-

EMODF 8 7:0 32 LIB$EMODF

EM ODD 8 7:0 64 LIB$EMODD

EMODG 11 15:5 64 LIB$EMODG

EMO DH 15 15:1 128 LIB$EMODH

Format

ret-status = LIB$EMODz (multiplier-adr, multext-adr, multiplicand-adr,
int-adr, fract-adr)

where z = F for F _floating, D for D_floating, G for G_floating or H for
H_floating.

multiplier-adr
Address of floating-point multiplier.

multext-adr
Address of the location containing the left-justified multiplier-extension
bits. For F _and D_floating, multext-adr points to an unsigned byte. For
G_ and H_floating, multext-adr points to an unsigned word.

multiplicand-adr
Address of floating-point multiplicand.

int-adr
Address of a longword to receive the integer portion of the result.

fract-adr
Address of a floating-point value to receive the fractional portion of the
result.

NOTE

The floating-point type referred to in the multiplier, multipli­
cand and the fractional portion of the result is either F_, D_,
G_ or H_floating depending on the CALL entry-point.

Return Status

SS$_NORMAL
Routine successfully completed.

General Utility Procedures

SS$_1NTOVF
Integer overflow. The integer operand is replaced by the low order bits of
the true result. Floating overflow is indicated by SS$_1NTOVF also.

SS$_FLTUND
Floating underflow. The integer and fraction operands are replaced by
zero.

SS$-ROPRAND
Reserved operand. The integer and fraction operands are unaffected.

LIB$POLYz

3.8.8 Evaluate Polynomial Procedures

The procedures described in this section provide the high-level language users
with the capability to use the VAX hardware instructions POLYF, POLYD,
POL YG and POL YH.

The third operand is an array of floating-point coefficients. The coefficient of
the highest order term of the polynomial is the lowest addressed element in
the array. The data type of the coefficients is the same as the argument
operand.

The evaluation is carried out by Homer's Method, and the result is stored at
the location pointed to by the fourth operand. The result computed is:

if d = degree and x = argument, then
result= C[QJ+X*(C[1J+X*(C[2J+ ... X*C[D]))

The unsigned word, degree operand, specifies the highest numbered coeffi­
cient to participate in the evaluation.

For further detail, refer to the VAX-11 Architecture Handbook for the de­
scription of POLY.

Format

ret-status = LIB$POLYz (arg-adr, degree-adr, coeff-adr, result-adr)

where z = F for F_floating, D for D_floating, G for G_floating or H for
H_floating.

arg-adr
Address of the argument "X" in polynomial. "X" is either F _, D_,
G_ or H_floating depending on the CALL entry-point.

degree-adr
Address of an unsigned word specifying the highest numbered coefficient
to participate in the evaluation. If degree is zero, the result equals C[O].

General Utility Procedures 3-111

3-112

coeff-adr
Address of an array of floating-point values. The data type of the coeffi­
cients is the same as the argument operand.

result-adr
Address of the floating-point result of the calculation. The data type of the
result is the same as the argument operand. Intermediate multiplications
are carried out using extended floating fractions (31 bits for POLYF, 63
bits for POL YD and POLYG and 127 bits for POLYH).

Return Status

SS$_NORMAL
Routine successfully completed.

SS$_FLTUND
Floating underflow. After rounding, the intermediate result is replaced by
zero and the operation continues. If both overflow and underflow occur in
the same instruction, the underflow condition is lost.

SS$_ROPRAND
Reserved operand. See the VAX-11 Architecture Handbook for details.

3.8.9 Queue Access Procedures

The following procedures are designed to give high-level languages access to
the interlocked, self-relative queue instructions INSQHI, INSQTI, REMQHI
and REMQTI. These instructions permit the user to insert a queue entry at
the head or at the tail, or remove a queue entry from the head or from the tail
of an interlocked, self-relative queue.

The remove queue instructions (REM QHI or REM QTI) have a particular
problem with high-level languages that do not have pointers (BASIC,
COBOL, and FORTRAN) since they return the address of the removed entry.
One solution is to provide an optional action routine that is called with the
address of the removed entry. Unfortunately this clean solution runs into
another problem: FORTRAN passes procedures differently (ZEM: by refer­
ence to entry mask) from the other high-level languages (BPV: by reference to
two longwords; address of the entry mask and address of the environment
value). Also BASIC and COBOL do not allow procedures as parameters.

The user is restricted to what can be passed to the action routine. The BASIC
and FORTRAN user can use the immediate value escape mechanisms to pass
the address of the removed entry.

General Utility Procedures

LIB$1NSQHI

3.8.9.1 Queue Entry Inserted at Head - LIB$INSQHI inserts a queue entry at
the head of the specified, self-relative, interlocked queue. The queues can be
in process-private, processor-private, or processor-sharable memory to imple­
ment per-process, per-processor, or across-processor queues.

Format

ret-status = LIB$INSQHI (entry, header [,retry-cnt])

entry
Address of a quadword aligned array that must be at least 8-bytes long.
Bytes following the first 8-bytes can be used for any purpose by the calling
program.

header
Address of a quadword aligned quadword. It must be initialized to zero
before first use of the queue; zero means an empty queue.

retry-cnt
Address of an unsigned longword integer containing the retry count to be
used in case of secondary interlock failure of the queue instruction in a
processor-shared memory application. This is an optional parameter, the
default value is ten.

Return Status

SS$_NORMAL
Procedure successfully completed. Entry added to front of the queue, the
resulting queue contains more than one entry.

LIB$_0NEENTQUE
Procedure successfully completed. Entry added to front of the queue, the
resulting queue contains one entry.

LIB$_SECINTF AI
Secondary interlock failed (severe error) retry-cnt times in a row. The
queue is not modified. This condition can occur only when the queue is in
memory being shared between two or more processors.

Examples

In BASIC and FORTRAN, queues can be quadword aligned in a named
COMMON block, say QUEUES, by using a linker option file to
specify PSECT alignment. The linker command should contain ... ,
FILE/OPTIONS, ... where FILE. OPT is a linker option file containing the
line:

PSECT QUEUES, QUAD

General Utility Procedures 3-113

3-114

For a FORTRAN application using processor-shared memory:

INTEGER*4 FUNCTION INSERT_Q CQENTRY>
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRYC10), QHEADERC2)
INSERT_Q = LI8$INSQHI CQENTRYt QHEADER>
RETURN
END

A BASIC application using processor-shared memory:

COM <QUEUES> QENTRYX. (8 > , QHEADERX. (1 >
EXTERNAL INTEGER FUNCTION LI8$INSQHI
IF LIB$fNSQHI CQENTRY%() BY REFt QHEADER%<> BY REF> AND 1%

THEN GOTO 1000
1000 REM INSERTED OK

LIB$1NSQTI

3.8.9.2 Queue Entry Inserted at Tall - LIB$INSQTI inserts a queue entry at
the tail of the specified, self-relative, interlocked queue. The queues can be in
process-private, processor-private, or processor-sharable memory to imple­
ment per-process, per-processor, or across-processor queues.

Format

ret-status = LIB$INSQTI (entry, header [,retry-cnt])

entry
Address of a quadword aligned array that must be at least 8-bytes long.
Bytes following the first 8-bytes can be used for any purpose by the calling
program.

header
Address of a quadword aligned quadword. It must be initialized to zero
before first use of the queue; zero means an empty queue.

retry-cnt
Address of an unsigned longword integer containing the retry count to be
used in case of secondary interlock failure of the queue instruction in a
processor-shared memory application. (This is an optional parameter, the
default value is ten.)

Return Status

SS$_NORMAL
Procedure successfully completed. Entry added to tail of the queue, the
resulting queue contains more than one entry.

LIB$_0NEENTQUE
Procedure successfully completed. Entry added to tail of the queue, the
resulting queue contains one entry.

General Utility Procedures

LIB$_SECINTFAI
Secondary interlock failed (severe error) retry-cnt times in a row. The
queue is not modified. This condition can occur only when the queue is in
memory being shared between two or more processors.

LIB$REMQHI

3.8.9.3 Queue Entry Removed at Head - LIB$REMQHI removes a queue
entry from the head of the specified, self-relative, interlocked queue. The
queues can be in process-private, processor-private, or processor-sharable
memory to implement per-process, per-processor, or across-processor queues.

Format

ret-status = LIB$REMQHI (header, remque-adr [,retry-cnt])

header
Address of a quadword aligned quadword. It must be initialized to zero
before first use of the queue; zero means an empty queue.

remque-adr
Address of a longword to receive the address of the removed entry. If the
queue was empty, remque-adr is set to the address of the header.

retry-cnt
Address of an unsigned longword integer containing the retry count to be
used in case of secondary interlock failure of the queue instruction in a
processor-shared memory application. (This is an optional parameter, the
default value is ten.)

Return Status

SS$_NORMAL
Procedure successfully completed. Entry removed from front of the queue,
resulting queue contains one or more entries.

LIB$_0NEENTQUE
Procedure successfully completed. Entry removed from front of the queue,
resulting queue is now empty.

LIB$_SECINTF AI
Secondary interlock failed (severe error) retry-cnt times in a row. The
queue is not modified. This condition can only occur when the queue is in
memory being shared between two or more processors.

LIB$_QUEW ASEMP
Queue was empty. The queue is not modified.

General Utility Procedures 3-115

3-116

LIB$REMQTI

3.8.9.4 Queue Entry Removed from Tall - LIB$REMQTI removes a queue
entry from the tail of the specified, self-relative, interlocked queue. The
queues can be in process-private, processor-private, or processor-sharable
memory to implement per-process, per-processor, or across-processor queues.

Format

ret-status = LIB$REMQTI (header, remque-adr [,retry-cnt])

header
Address of a quadword aligned quadword. It must be initialized to zero
before first use of the queue; zero means an empty queue.

remque-adr
Address of a longword to receive the address of the removed entry. If the
queue was empty, remque-adr is set ·to the address of the header.

retry-cnt
Address of an unsigned longword integer containing the retry count to be
used in case of secondary interlock failure of the queue instruction in a
processor-shared memory application. (This is an optional parameter, the
default value is ten.)

Return Status

SS$_NORMAL
Procedure successfully completed. Entry removed from tail of the queue,
the resulting queue contains one or more entries.

LIB$_0NEENTQUE
Procedure successfully completed. Entry removed from tail of the queue,
the resulting queue is empty.

LIB$_SECINTF AI
Secondary interlock failed (severe error) retry-cnt times in a row. The
queue is not modified. This condition can occur only when the queue is in
memory being shared between two or more processors.

LIB$-QUEW ASEMP
Queue was empty. The queue is not modified.

General Utility Procedures

Example

In FORTRAN, the address of the removed queue entry can be passed to
another procedure as an array using the %VAL built-in function. In the
following example, queue entries are ten longwords including the two long­
word pointers at the beginning of each entry.

COMMON/QUEUES/QHEADER
I NTEGER*ll QHEADER (2 > t I STAT
!STAT= LIB$REMQHI (QHEADERt ADDR>
IF (!STAT> THEN

CALL PROC ('X,l.JAL (ADDR> >!Process re1t101.1ed entn
GO TO •••
ELSE IF (!STAT .EQ. %LOC(L!B$_QUEWASEMP>> THEN

END IF

END

GO TO •••
ELSE IF

SUBROUTINE PROC (QENTRY>
INTEGER*ll QENTRY(10)

RETURN
END

! c:i u e u e· 1A1 a s e ltl P t }'

!secondary interlocK failed

General Utility Procedures 3-117

Chap1ter 4
Mathematics Procedures

4.1 The Mathematics Procedures

This chapter describes these mathematics procedures:

• Floating-point

• Complex functions

• Exponentiation code-support

• Complex exponentiation

• Random Number Generator

• Miscellaneous functions

In addition, it describes language-independent arithmetic expression evalua­
tion code-support procedures.

4.1.1 Entry Point Names

The names of the mathematics procedures consist of the language processor­
defined function names with MTH$ as a prefix.

In most cases, when function parameters and values are the same data type,
the first letter of the name indicates the data type. When function parameters
and values are different data types, the first letter indicates the data type of
the result, and the second letter indicates the data type of the parameter(s).

4-1

The letters used as data type prefixes are:

Letter Data Type FORTRAN Declarator

I word INTEGER*2

J longword INTEGER*4

D D-11oating REAL*8

G G__floating REAL*8

H H__floating REAL*16

c F_complex COMPLEX*8

CD D_complex COMPLEX*16

CG G_complex COMPLEX*16

F_floating data types have no letter designation.

For example, MTH$SIN returns an F_floating value of the sine of an
F_floating parameter, and MTH$DSIN returns a D_floating value of the
sine of a D_floating parameter.

Language-independent arithmetic expression evaluation procedures use the
OTS$ prefix. In addition, the data type letters are the last letters of the entry
point name, rather than the first, and the letter R indicates F_floating
values. For example, OTS$POWRJ returns an F_floating value of an
F _floating parameter raised to a longword power.

4.1.2 Calling Conventions

All mathematics procedures with an entry point name starting with MTH$
accept parameters passed by reference, except for the JSB entry points (see
Chapter 2). All MTH$ routines return values in RO or RO/Rl except those for
which the values cannot fit in 64 bits, namely D_complex, G_complex or
H_floating values. The latter procedures return their function values via the
first argument in the argument list with the nominal argument list shifted one
position to the right.

The notation JSB MTH$name_Rn, where n is the reference register number,
indicates an equivalent JSB entry point. Procedures with JSB entry points
accept a single parameter in RO, RO/Rl or RO:R3, and return a single value to
RO, RO/Rl, or RO:R3. No registers are saved; only registers RO:Rn are changed.

All mathematics procedures with an entry point name starting with OTS$
pass input parameters by immediate value, including double floating-point
and complex numbers.

NOTE

This is a violation of the VAX-11 Procedure Calling Standard,
which specifies that a maximum of 32 bits can be passed by
immediate value. However, the standard exempts code support
procedures.

4-2 Mathematics Procedures

For compactness of notation, double floating-point and complex parameters
are indicated as a single parameter passed by immediate value. Function
values are returned in RO, RO/Rl or RO:R3.

NOTE

Returning values in RO:R3 is also contrary to the VAX-11
Procedure Calling Standard.

All mathematics CALL entry points disable floating-point underflow, enable
integer overflow, cause no floating-point overflow or other arithmetic traps,
and preserve enable operations across the call. JSB entry points execute in the
context of the caller with the enable operations as set by the caller. However,
since the procedures do not cause arithmetic traps, their operation is not
affected by the setting of the arithmetic trap enables, except as noted.

4.1.3 Algorithms

If the algorithm used by a procedure is not too extensive, it is included in the
functional description. Otherwise, the algorithm is in Appendix D. The algor­
ithms in Appendix D are in the same relative sequence as the procedure
descriptions in this chapter.

4.1.4 Error Handling

Errors are indicated by both the MTR$ and OTS$ procedures using the
VAX-11 signaling mechanism (see Chapter 6). All errors are signaled as
SEVERE by calling LIB$SIGNAL, so that the default operation causes the
image to exit after printing an error message. However, a user-established
condition handler can cause execution to continue at the point of the error
by returning SS$_CONTINUE. A mathematics procedure returns to its caller
after RO/Rl have been restored from the signal mechanism vector
CHF$L_MCH_SAVRO/Rl. Thus, the user-established handler should cor­
rect CHF$L_MCH_SAVRO/Rl to the desired function value to be returned
to the caller of the mathematics procedure.

Correcting D_complex, G_complex or H_floating cannot be done with
complete generality since R2/R3 are not available in the mechanism vector.

Note that it is more reliable to correct RO and Rl to resemble RO and Rl of a
double-precision, floating-point value. Then, the correction works for both
single and double precision.

If the correction is not performed, the reserved operand -0.0 is returned.
Accessing the -0.0 as a floating-point quantity will cause a reserved operand
fault. See Chapter 6 for a complete description of how to write user handlers,
including handlers for mathematics errors.

For a small number of mathematics procedures, floating underflow is signaled
if the calling program (JSB or CALL) has enabled floating underflow faults
(or traps); such a possibility is indicated in the Messages section of the proce­
dure description.

Mathematics Procedures 4-3

All mathematics procedures access input parameters and the real and imagi­
nary parts of complex numbers using floating-point instructions. Therefore, a
reserved operand fault can occur in any mathematics procedure. To save
repetition, the resulting message (88$--ROPRAND) is not listed in the
Messages section.

4.1.5 Summary of Mathematics Procedures

Table 4-1 lists all the mathematics procedures alphabetically by English
name, ignoring the first word if it is a data type. The sections that follow the
table describe the procedures in detail.

Table 4-1: Mathematics Procedures

Call
Entry Point Type of Type of

Function Name Parameter Result Section

Absolute MTH$ABS F_floating F_floating 4.7
MTH$CABS F_complex F_floating 4.3.1

lxl MTH$DABS D_floating D_floating 4.7
MTH$CDABS D_complex D_floating 4.3.1
MTH$GABS G_floating G_floating 4.7
MTH$CGABS G_complex G_floating 4.3.1
MTH$HABS H_floating H_floating 4.7
MTH$IIABS Word Word 4.7
MTH$JIABS Longword Longword 4.7

Arc Cosine MTH$ACOS F_floating F_floating 4.2.1
MTH$DACOS D_floating D_floating 4.2.1

Arc Cos(x) MTH$GACOS G_floating G_floating 4.2.1
MTH$HACOS H_floating H_floating 4.2.1

Arc Sine MTH$ASIN F_floating F_floating 4.2.2
MTH$DASIN D_floating D_floating 4.2.2

Arc Sin (x) MTH$GASIN G_floating G_floating 4.2.2
MTH$HASIN H_floating H_floating 4.2.2

Arc Tangent MTH$ATAN F_floating F_floating 4.2.3
MTH$DATAN D_floating D_floating 4.2.3

Arc Tan (x) MTH$GATAN G_floating G_floating 4.2.3
MTH$HATAN H_floating H_floating 4.2.3

Arc Tangent with MTH$ATAN2 F_floating F_floating 4.2.4
Two Parameters MTH$DATAN2 D_floating D_floating 4.2.4

MTH$GATAN2 G_floating G_floating 4.2.4
Arc Tan (xl/x2) MTH$HATAN2 H_floating H_floating 4.2.4

Bitwise MTH$IIAND Word Word 4.7
Logical AND MTH$JIAND Longword Longword 4.7

Bitwise MTH$INOT Word Word 4.7
Complement MTH$JNOT Longword Longword 4.7

Bitwise MTH$IIEOR Word Word 4.7
Exclusive OR MTH$JIEOR Longword Longword 4.7

Bitwise MTH$IIOR Word Word 4.7
Inclusive OR MTH$JIOR Longword Longword 4.7

(continued on next page)

4-4 Mathematics Procedures

Table 4-l: Mathematics Procedures (Cont.)

Call
Entry Point Type of Type of.

Functfon Name Parameter Result Section

Bitwise MTH$IISHFT Word Word 4.7
Shift MTH$JISHFT Longword Longword 4.7

Common MTH$ALOG10 F_floating F_floating 4.2.5
Logarithm MTH$DLOG10 D_floating D_floating 4.2.5

log 10 (x) MTH$GLOG10 G_floating G_floating 4.2.5
MTH$HLOG10 H_floating H_floating 4.2.5

Complex: from MTH$CMPLX F_floating F_complex 4.3.7
Two Parameters MTH$DCMPLX D_floating D_complex 4.3.7

MTH$GCMPLX G_floating G_complex 4.3.7

Conjugate of MTH$CONJG F_complex F_complex 4.3.2
Complex Number MTH$DCONJG D_complex D_complex 4.3.2

MTH$GCONJG G_complex G_complex 4.3.2

Convert D_ MTH$CVT_D_G D_floating G_floating 4.7
to G_f1loating MTH$CVT_DA_GA D_array G_array 4.7

Convert G_ MTH$CVT_G_D G_floating D_floating 4.7
to D_floating MTH$CVT_GA_DA G_array D_array 4.7

Cosine MTH$COS F_floating F_floating 4.2.6
MTH$CCOS F_complex F_complex 4.3.3
MTH$DCOS D_floating D_floating 4.2.6
MTH$CDCOS D_complex D_complex 4.3.3
MTH$GCOS G_floating G_floating 4.2.6
MTH$CGCOS G_complex G_complex 4.3.3
MTH$HCOS H_floating H_floating 4.2.6

Division of OTS$DIVC F_complex F_complex 4.3.4
Complex: Number OTS$DIVCD_R3 D_complex D_complex 4.3.4

OTS$DIVCG_R3 G_complex G_complex 4.3.4

Double from MTH$DBLE F_floating D_floating 4.7
Single Precision MTH$GDBLE F_floating G_floating 4.7

Exponential MTH$EXP F_floating F_floating 4.2.7
e ** x MTH$CEXP F_complex F_complex 4.3.5

MTH DEXP D_floating D_floating 4.2.7
MTH$CDEXP D_complex D_complex 4.3.5
MTH$GEXP G_floating G_floating 4.2.7
MTH$CGEXP G_complex G_complex 4.3.5
MTH$HEXP H_floating H_floating 4.2.7

Exponentiation OTS$POWCC F _complex**F _complex F_complex 4.5.1
Procedures OTS$POWCDCD_R3 D_complex**D_complex D_complex 4.5.1

OTS$POWCDJ D_complex**Longword D_complex 4.5.2
(Complex) OTS$POWCGCG_R3 G_complex**G_complex G_complex 4.5.1

OTS$POWCGJ G_complex**Longword G_complex 4.5.2
OTS$POWCJ F _complex**Longword F_complex 4.5.2

Exponentiation OTS$POWDD D_float**D_float D_floating 4.4.1
Procedures OTS$POWDJ D_float**Longword D_floating 4.4.1

OTS$POWDR D_float* *F _float D_floating 4.4.1
(Real) OTS$POWGG G_float**G_float G_floating 4.4.2

OTS$POWGJ G_float**Longword G_floating 4.4.2

(continued on next page)

Mathematics Procedures 4-5

Table 4-1: Mathematics Procedures (Cont.)

Call
Entry Point Type of Type of

Function Name Parameter Result Section

OTS$POWHlLR3 H_float**H_float H_floating 4.4.3
OTS$POWHJ_R3 H_float **Longword H_floating 4.4.3
OTS$POWII Word**Word Word 4.4.4
OTS$POWJJ Longword* *Longword Longword 4.4.5
OTS$POWRD F _float* *D_float D_floating 4.4.6
OTS$POWRJ F _float* *Longword F_floating 4.4.6
OTS$POWRR F_float**F_float F_floating 4.4.6

Fix MTH$IIFIX F_floating Word 4.7
(Float-Int) MTH$JIFIX F_floating Longword 4.7

Float MTH$FLOATI Word F_floating 4.7
(Int-float) MTH$DFLOTI Word D_floating 4.7

MTH$GFLOTI Word G_floating 4.7
MTH$FLOATJ Longword F_floating 4.7
MTH$DFLOTJ Longword D_floating 4.7
MTH$GFLOTJ Longword G_floating 4.7

Greatest Integer MTH$FLOOR F_floating F_floating 4.7
Less than Input MTH$DFLOOR D_floating D_floating 4.7
Value MTH$GFLOOR G_floating G_floating 4.7

MTH$HFLOOR H_floating H_floating 4.7

Hyperbolic Cosine MTH$COSH F_floating F_floating 4.2.8
COSH(x) MTH$DCOSH D_floating D_floating 4.2.8

MTH$GCOSH G_floating G_floating 4.2.8
MTH$HCOSH H_floating H_floating 4.2.8

Hyperbolic Sine MTH$SINH F_floating F_floating 4.2.9
SINH (x) MTH$DSINH D_floating D_floating 4.2.9

MTH$GSINH G_floating G_floating 4.2.9
MTH$HSINH H_floating H_floating 4.2.9

Hyperbolic MTH$TANH F_floating F_floating 4.2.10
Tangent MTH$DTANH D_floating D_floating 4.2.10

TANH (x) MTH$GTANH G_floating G_floating 4.2.10
MTH$HTANH H_floating H_floating 4.2.10

Imaginary Part MTH$AIMAG F_complex F_floating 4.3.6
of Complex MTH$DIMAG D_complex D_floating 4.3.6

MTH$GIMAG G_complex G_floating 4.3.6

Maximum MTH$IMAXO Word Word 4.7
(Returns the MTH$AIMAXO Word F_floating 4.7
maximum value MTH$JMAXO Longword Longword 4.7
from among the MTH$AJMAXO Longword F_floating 4.7
input parameters MTH$AMAX1 F_floating F_floating 4.7
list; there must MTH$DMAX1 D_floating D_floating 4.7
be at least two MTH$GMAX1 G_floating G_floating 4.7
input parameters.) MTH$HMAX1 H_floating H_floating 4.7

MTH$IMAX1 F_floating Word 4.7
MTH$JMAX1 F_floating Longword 4.7

(continued on next page)

4-6 Mathematics Procedures

Table 4-1: Mathematics Procedures (Cont.)

Call
Entry Point Type of Type of

Function Name Parameter Result Section

Minimum MTH$IMINO Word Word 4.7
(Returns the MTH$AIMINO Word F_floating 4.7
minimum value MTH$JMINO Longword Longword 4.7
from among the MTH$AJMINO Longword F_floating 4.7
input parameter MTH$AMIN1 F_floating F_floating 4.7
list; there must MTH$DMIN1 D_floating D_floating 4.7
be at least two MTH$GMIN1 G_floating G_floating 4.7
input parameters.) MTH$HMIN1 H_floating H_floating 4.7

MTH$IMIN1 F_floating Word 4.7
MTH$JMIN1 F_floating Longword 4.7

MultiJPlication of OTS$MULCD_R3 D_complex D_complex 4.3.8
Complex Numbers OTS$MULCG_R3 G_complex G_complex 4.3.8

Natural Logarithm MTH$ALOG F_floating F_floating 4.2.11
MTH$CLOG F_complex F_complex 4.3.9

log ie (x) MTH$DLOG D_floating D_floating 4.2.11
MTH$CDLOG D_complex D_complex 4.3.9
MTH$GLOG G_floating G_floating 4.2.11
MTH$CGLOG G_complex G_complex 4.3.9
MTH$HLOG H_floating H_floating 4.2.11

Nearest Integer MTH$ANINT F_floating F_floating 4.7
MTH$DNINT D_floating D_floating 4.7

[x+.5*sign(x)l MTH$IIDNNT D_floating Word 4.7
MTH$JIDNNT D_floating Longword 4.7
MTH$GNINT G_floating G_floating 4.7
MTH$IIGNNT G_floating Word 4.7
MTH$JIGNNT G_floating Longword 4.7
MTH$HNINT H_floating H_floating 4.7
MTH$IIHNNT H_floating Word 4.7
MTH$JIHNNT H_floating Longword 4.7
MTH$ININT F_floating Word 4.7
MTH$JNINT F_floating Longword 4.7

Positive MTH$DIM F_floating F_floating 4.7
Difference MTH$DDIM D_floating D_floating 4.7

xl-(min(xl,x2)) MTH$GDIM G_floating G_floating 4.7
MTH$HDIM H_floating H_floating 4.7
MTH$IIDIM Word Word 4.7
MTH$JIDIM Longword Longword 4.7

Product of two MTH$DPROD F_floating D_floating 4.7
Floating Numbers MTH$GPROD F_floating G_floating 4.7

Random Number MTH$RANDOM Longword F_floating 4.6.1

Real Part of MTH$REAL F_complex F_floating 4.3.10
Complex Number MTH$DREAL D_complex D_floating 4.3.10

MTH$GREAL G_complex G_floating 4.3.10

(continued on next page)

Mathematics Procedures 4-7

Table 4-.1: Mathematics Procedures (Cont.)

Call
Entry Point Type of Type of

Function Name Parameter Result Section

Remainder MTH$AMOD F_floating F_floating 4.7
MTH$DMOD D_floating D_floating 4.7

xl-x2*[xl/x2J MTH$GMOD G_floating G_floating 4.7
MTH$HMOD H_floating H_floating 4.7
MTH$IMOD Word Word 4.7
MTH$JMOD Longword Longword 4.7

Sign Function MTH$SGN F_floating Longword 4.7
(Returns a 1 MTH$SGN D_floating Longword 4.7
if x is positive,
a -1 if x is
negative, and
0 if x is 0)

Sign Transfer MTH$SIGN F_floating F_floating 4.7
MTH$DSIGN D_floating D_floating 4.7

lxll*sign(x2) MTH$GSIGN G_floating G_floating 4.7
MTH$HSIGN H_floating H_floating 4.7
MTH$IISIGN Word Word 4.7
MTH$JISIGN Longword Longword 4.7

Sine MTH$SIN F_floating F_floating 4.2.12
MTH$CSIN F_complex F_complex 4.3.11

Sin(x) MTH$DSIN D_floating D_floating 4.2.12
MTH$CDSIN D_complex D_complex 4.3.11
MTH$GSIN G_floating G_floating 4.2.12
MTH$CGSIN G_complex G_complex 4.3.11
MTH$HSIN H_floating H_floating 4.2.12

Single from MTH$SNGL D_floating F_floating 4.7
double MTH$SNGLG G_floating F_floating 4.7

Square Root MTH$SQRT F_floating F_floating 4.2.13
MTH$CSQRT F_complex F_complex 4.3.12

x ** (1/2) MTH$DSQRT D_floating D_floating 4.2.13
MTH$CDSQRT D_complex D_complex 4.3.12
MTH$GSQRT G_floating G_floating 4.2.13
MTH$CGSQRT G_complex G_complex 4.3.12
MTH$HSQRT H_floating H_floating 4.2.13

Tangent MTH$TAN F_floating F_floating 4.2.14
MTH$DTAN D_floating D_floating 4.2.14

Tan (x) MTH$GTAN G_floating G_floating 4.2.14
MTH$HTAN H_floating H_floating 4.2.14

Truncated Integer MTH$AINT F_floating F_floating 4.7
[x] MTH$DINT D_floating D_floating 4.7

MTH$IIDINT D_floating Word 4.7
MTH$JIDINT D_floating Longword 4.7
MTH$GINT G_floating G_floating 4.7
MTH$IIGINT G_floating Word 4.7
MTH$JIGINT G_floating Longword 4.7
MTH$HINT H_floating H_floating 4.7
MTH$IIHINT H_floating Word 4.7
MTH$JIHINT H_floating Longword 4.7
MTH$IINT F_floating Word 4.7
MTH$JINT F_floating Longword 4.7

4-8 Mathematics Procedures

4.2 Fl~oatlng-Polnt Mathematlcal F·unctlons

This section describes all floating-point mathematical functions. In the proce­
dure names:

• No letter denotes F _floating

• D denotes D_floating

• G denotes G_floating

• H denotes H_floating

The following chart shows the data type formats:

Size Exponent Fraction Precision
Binary Binary Binary Decimal

Data Type Letter Bits Bits Bits Digitals

F_floating None 32 8 24 7

D_floating D 64 8 56 16

G_floating G 64 11 53 15

H_floating H 128 15 113 33

The function values returned by these procedures have the sam~ data type as
the input arguments. The calls are standard, by reference calls.

MTH$xACOS

4.2.1 Arc Cosine

The arc cosine procedures return the angle expressed in radians whose cosine
is given by the input parameter. See Appendix D for algorithms used in the
calculations.

Format

CALL

angle = MTH$ACOS (x-adr)
angle = MTH$DACOS (x-adr)
angle = MTH$GACOS (x-adr)
CALL MTH$HACOS (angle-adr, x-adr)

x-adr

JSB entry point

MTH$ACOS_R4
MTH$DACOS_R7
MTH$GACOS_R7
MTH$HACOS_R8

Address of the area containing the cosine, x. The absolute value of x must
be less than or equal to 1.

angle
Angle in radians; 0 to PI.

Mathematics Procedures 4-9

angle-adr
Address of an area to receive the angle in radians; 0 to PI.

Message

MTH$-1NV ARG MAT
Invalid argument: IXI > 1, LIB$SIGNAL copies the reserved operand to
the signal mechanism vector. Result is reserved operand -0.0 unless a
condition handler changes the signal mechanism vector.

MTH$xASIN

4.2.2 Arc Sine

The arc sine procedures return the angle expressed in radians whose sine is
given by the input parameter. See Appendix D for algorithms used in the
calculations.

Format

CALL JSB entry point

angle = MTH$ASIN (x-adr) MTH$ASIN_R4

angle = MTH$DASIN (x-adr) MTH$DASIN_R7

angle = MTH$GASIN (x-adr) MTH$GASIN_R7

CALL MTH$HASIN (angle-adr, x-adr) MTH$HASIN_R8

x-adr
Address of the area containing the sine, x. The absolute value of x must be
less than or equal to 1.

angle
Angle in radians; -Pl/2 to +Pl/2.

angle-adr
Address of an area to receive the angle in radians; -Pl/2 to +Pl/2.

Message

MTH$-1NV ARGMAT
Invalid argument: lxl > 1, LIB$SIGNAL copies the reserved operand to the
signal mechanism vector. Result is reserved operand -0.0 unless a condi­
tion handler changes the signal mechanism vector.

4-10 Mathematics Procedures

MTH$xATAN

4.2.3 Arc Tangent

The arc tangent procedures return the angle expressed in radians whose tan­
gent is given by the input parameter. See Appendix D for algorithms used in
the calculations.

Format

CALL

angle= MTH$ATAN (x-adr)
angle = MTH$DATAN (x-adr)
angle= MTH$GATAN (x-adr)
CALL MTH$HATAN (angle-adr, x-adr)

JSB entry point

MTH$ATAN_R4
MTH$DATAN_R7
MTH$GATAN_R7
MTH$HATAN_R8

x-adr
Address of the area containing the tangent, x.

angle
Angle in radians; -Pl/2 to +Pl/2.

angle-adr
Address of an area to receive the angle in radians; -Pl/2 to +PI/2.

MTH$ATAN2

4.2.4 Arc Tangent with Two Parameters

The arc tangent procedures with two parameters return the angle expressed
in radians whose tangent is given by two input parameters, x and y. See
Appendix D for algorithms used in the calculations.

Format

CALL

angle = MTH$ATAN2 (x-adr, y-adr)
angle = MTH$DATAN2 (x-adr, y-adr)
angle = MTH$GATAN2 (x-adr, y-adr)
CALL MTH$HATAN2 (angle-adr, x-adr, y-adr)

x-adr
Address of the area containing the dividend portion of the input parameter.

y-adr
Address of the area containing the divisor portion of the input parameter.

angle
Angle in radians.

Mathematics Procedures 4-11

angle-adr
Address of an area to receive the angle in radians.

Message

MTH$-1NVARGMAT
Invalid argument. Both x and y are zero. LIB$SIGNAL copies the reserved
operand to the signal mechanism vector. Result is reserved operand -0.0
unless a condition handler changes the signal mechanism vector.

MTH$xLOG10

4.2.5 Common Logarithm

The common logarithm procedures return the common (base 10) logarithm of
the input parameter. See Appendix D for algorithms used in the calculations.

Format

CALL

loglO = MTH$ALOG10 (x-adr)

loglO = MTH$DLOG10 (x-adr)

loglO = MTH$GLOG10 (x-adr)

JSB entry point

MTH$ALOG 10-R5

MTH$DLOG 10-R8

MTH$GLOG 10-R8

CALL MTH$HLOG10 (loglO-adr, x-adr) MTH$HLOG10-R8

x-adr
Address of area containing the input value, x.

loglO
Common logarithm of x.

loglO-adr
Address of an area to receive the common logarithm of x.

Message

MTH$_LOGZERNEG
Logarithm of zero or negative value. x <= 0.0; LIB$SIGNAL copies re­
served operand to the signal mechanism vector. Result is reserved operand
-0.0 unless a condition handler changes the signal mechanism vector.

4-12 Mathematics Procedures

MTH$xCOS

4.2.6 Cosine

The cosine procedures return the cosine of the angle input in radians. See
Appendix D for algorithms used in the calculations.

Format

CALL JSB entry point

cosine = MTH$COS (x-adr) MTH$COS-R4

cosine = MTH$DCOS (x-adr) MTH$DCOS-R7
cosine = MTH$GCOS (x-adr) MTH$GCOS__R7

CALL MTH$HCOS (cosine-adr, x-adr) MTH$HCOS-R5

x-adr
Address of the area containing the angle, x, in radians.

cosine
Cosine of x.

cosine-adr
Address of an area to receive the cosine of x.

Message

MTH$_SIGLOSMAT

Significance lost in Math Library. Occurs if the ·magnitude of the argu­
ment is so large that significance is lost from the result. The permitted
argument ranges are:

MTH$COS

MTH$DCOS

MTH$GCOS

MTH$HCOS

-2**30 < :x. < 2**30

-2**31 < :x. < 2**31

-2**31 < :x. < 2**31

-2**31 < :x. < 2**3~

Mathematics Procedures 4-13

MTH$xEXP

4.2. 7 Exponential

The exponential procedures return the exponential value of the input parame­
ter. See Appendix D for algorithms used in the calculations.

Format

CALL

exp= MTH$EXP (x-adr)
exp= MTH$DEXP (x-adr)
exp = MTH$GEXP (x-adr)
CALL MTH$HEXP (exp-adr, x-adr)

JSB entry point

MTH$EXP-R4
MTH$DEXP -R6
MTH$GEXP -R6
MTH$HEXP -R6

x-adr
Address of area containing the input parameter, x.

exp
Exponential of x.

exp-adr
Address of an area to receive the exponential of x.

Message

MTH$_FLOOVEMAT
Floating-point overflow in Math Library: x > yyy; LIB$SIGNAL copies
reserved operand to the signal mechanism vector. Result is reserved oper­
and -0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are:

MTH$EXP
MTH$DEXP
MTH$GEXP
MTH$HEXP

MTH$_FLOUNDMAT

88.028
88.028
709.08
11355.83

Floating-point underflow in Math Library: x =< yyy and caller (CALL or
JSB) has set hardware floating-point underflow enable. Result is set to
0.0. If the caller has not enabled floating-point underflow (the default), a
result of 0.0 is returned but no error is signaled. The values of yyy are:

MTH$EXP
MTH$DEXP
MTH$GEXP
MTH$HEXP

4-14 Mathematics Procedures

-89.416
-89.416
-709.79
-11356.52

MTH$xCOSH

4.2.8 Hyperbolic Cosine

The hyperbolic cosine procedures return the hyperbolic cosine of the angle
input in radians. See Appendix D for algorithms used in the calculations.

Format

CALL

cosh = MTH$COSH (x-adr)

cosh = MTH$DCOSH (x-adr)

cosh = MTH$GCOSH (x-adr)

CALL MTH$HCOSH (cosh-adr, x-adr)

x-adr
Address of the area containing the angle, x, in radians.

co sh
Hyperbolic cosine of x.

cosh-adr
Address of an area to receive the hyperbolic cosine of x.

Message

MTH$_FLOOVEMAT

Floating-point overflow in Math Library: lxl > yyy; LIB$SIGNAL copies
reserved operand to the signal mechanism vector. Result is reserved oper­
and -0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are:

MTH$COSH

MTH$DCOSH

MTH$GCOSH

MTH$HCOSH

88.028

88.028

709.08

11355.83

Mathematics Procedures 4-15

MTH$xSINH

4.2.9 Hyperbollc Sine

The hyperbolic sine procedures return the hyperbolic sine of the angle input in
radians. See Appendix D for algorithms used in the calculations.

Format

CALL

sinh = MTH$SINH (x-adr)
sinh = MTH$DSINH (x-adr)
sinh = MTH$GSINH (x-adr)
CALL MTH$HSINH (sinh-adr, x-adr)

x-adr
Address of the area containing the angle, x, in radians.

sinh
Hyperbolic sine of x.

sinh-adr
Address of an area to receive the hyperbolic sine of x.

Messages

See messages for the hyperbolic cosine.

4.2.1 O Hyperbollc Tangent

MTH$xTANH

The hyperbolic tangent procedures return the hyperbolic tangent of the angle
input in radians. See Appendix D for algorithms used in the calculations.

Format

CALL

tanh = MTH$TANH (x-adr)
tanh = MTH$DTANH (x-adr)
tanh = MTH$GTANH (x-adr)
CALL MTH$HTANH (tanh-adr, x-adr)

x-adr
Address of the area containing the angle, x, in radians.

tanh
Hyperbolic tangent of x.

tanh-adr
Address of an area to receive the hyperbolic tangent of x.

4-16 Mathematics Procedures

MTH$xLOG

4.2.11 Natural Logarithm

The natural logarithm procedures return the natural.(base e) logarithm of the
input parameter. See Appendix D for algorithms used in the calculations.

Format

CALL

natlog = MTH$ALOG (x-adr)
natlog = MTH$DLOG (x-adr)
natlog = MTH$GLOG (x-adr)
CALL MTH$HLOG (natlog-adr, x-adr)

x-adr

JSB entry point

MTH$ALOG_R5
MTH$DLOG_R8
MTH$GLOG_R8
MTH$HLOG_R8

Address of the area containing the input value, x.

natlog
Natural logarithm of x.

natlog-adr
Address of an area to receive the natural logarithm of x.

MeHage

MTH$_LOGZERNEG
Logarithm of zero or negative value: x <= 0.0; LIB$SIGNAL copies re­
served operand to the signal mechanism vector. Result is reserved operand
-0.0 unless a condition handler changes the signal mechanism vector.

MTH$xSIN

4.2.12 Sine

The sine procedures return the sine of the angle input in radians. See
Appendix D for algorithms used in the calculations.

Format

CALL

sine = MTH$SIN (x-adr)
sine= MTH$DSIN (x-adr)
sine= MTH$GSIN (x-adr)
CALL MTH$HSIN (sine-adr, x-adr)

x-adr

JSB entry point

MTH$SIN_R4
MTH$DSIN_R7
MTH$GSIN_R7
MTH$HSIN_R5

Address of the area containing the angle, x, in radians.

sine
Sine of x.

Mathematics Procedures 4-17

sine-adr
Address of an area to receive the sine of x.

Messages

See messages for the cosine procedures.

MTH$xSQRT

4.2.13 Square Root

The square root procedures return the square root of the input parameter. See
Appendix D for algorithms used in the calculations.

Format

CALL

sqrt = MTH$SQRT (x-adr)
sqrt = MTH$DSQRT (x-adr)
sqrt = MTH$GSQRT (x-adr)
CALL MTH$HSQRT (sqrt-adr, x-adr)

x-adr

JSB entry point

MTH$SQRT_R3
MTH$DSQRT-R5
MTH$GSQRT-R5
MTH$HSQRT-R8

Address of the area containing the input parameter, x.

sqrt
Square root of x.

sqrt-adr
Address of an area to receive the square root of x.

Message

MTH$_SQUROONEG
Square Root of negative number. LIB$SIGNAL copies reserved operand to
the signal mechanism vector. Result is reserved operand -0.0 unless a
condition handler changes the signal mechanism vector.

4-18 Mathematics Procedures

MTH$xTAN

4.2.14 Tangent

The tangent procedures return the tangent of the angle input in radians. See
Appendix D for algorithms used in the calculations.

Format

CALL JSB Entry Point

tangent= MTH$TAN (x-adr) MTH$TAN__R4
tangent= MTH$DTAN (x-adr) MTH$DTAN_R7
tangent= MTH$GTAN (x-adr) MTH$GTAN_R7
CALL MTH$HTAN (tangent-adr, x-adr) MTH$HTAN_R5

x-adr
Address of the area containing the angle, x, in radians.

tangent
Tangent of x.

tangent-adr
Address of an area to receive the tangent of x.

Messages

MTH$_SIGLOSMAT
Significance lost in Math Library. See messages for the cosine procedures.

MTH$_FLOOVEMAT
Floating-point overflow in Math Library.

Mathematics Procedures 4-19

4.3 Complex Functions

The following library procedures perform computations on complex numbers.
MTH$ procedures pass the complex data type by reference. This means that
the address of two contiguous floating-point numbers is passed, the first being
the real part and the second the imaginary part. OTS$ procedures pass
the complex data type by immediate value as two separate floating-point
quantities.

MTH$CxABS

4.3.1 Absolute Value

These procedures return the absolute value of a complex number as follows:

result= (ABS(MAX*SQRT((MIN/MAX)**2+1)),MAX)

where MAX is the larger of rand i, and MIN is the smaller of rand i.

Format

absolute-value = MTH$CABS (complex-number-adr)
CALL MTH$CDABS (absolute-value-adr, complex-number-adr)
CALL MTH$CGABS (absolute-value-adr, complex-number-adr)

complex-number-adr
Address of an area containing a complex number (r,i) where r and i are
both floating-point values.

absolute-value
Absolute-value of a complex-number.

absolute-value-adr
Address of an area to receive the absolute-value of a complex-number.

Messages

MTH$_FLOOVEMAT
Floating-point overflow in Math Library. Both rand i are large.

4-20 Mathematics Procedures

MTH$xCONJG

4.3.2 Conjugate of a Complex Number

These procedures return the complex conjugate of the complex input parame­
ter (r,i), that is, the complex value (r,-i) is returned.

Format

complex-conjugate = MTH$CONJG (complex-number-adr)
CALL MTH$DCONJG (complex-conjugate-adr, complex-number-adr)
CALL MTH$GCONJG (complex-conjugate-adr, complex-number-adr)

NOTE

The first parameter of the D_ or G_complex procedures is
considered the return value; however, since it cannot fit in
64-bits, it is returned as the first argument according to the
V AX-11 Procedure Calling Standard.

complex-number-adr
Address of an area containing a complex number (r,i) where r and i are
floating-point numbers.

complex-conjugate
Complex value (r,-i) expressed in F _floating notation.

complex-conjugate-adr
Address of an area to receive the complex value (r,-i).

MTH$CxCOS

4.3.3 Cosine

These procedures return the complex cosine of a complex number (r,i) as
follows:

result= (COS(i)*COSH(r), -SIN(r)*SINH(-i))

Format

complex-cosine = MTH$CCOS (complex-number-adr)
CALL MTH$CDCOS (complex-cosine-adr, complex-number-adr)
CALL MTH$CGCOS (complex-cosine-adr, complex-number-adr)

Mathematics Procedures 4-21

complex-number-adr
Address of an area containing a complex number (r,i) where r and i are
floating-point numbers.

complex-cosine
Complex cosine of the complex input number expressed in F_floating
notation.

com plex-cosine-adr
Address of an area to receive the complex cosine of the complex input
number.

Messages

MTH$_SIGLOSMAT
Significance lost in Math Library: lrl > 2**30 (F_floating) or lrl > 2**31
(D_, G_floating).

MTH$_FLOOVEMAT
Floating-point overflow in Math Library: Iii > 88.028 (F _, D_floating) or
Iii > 709.08 (G_floating).

OTS$DIVCx

4.3.4 Division of Complex Numbers

These procedures return a complex result of a complex division on complex
numbers.

The complex result is computed as follows:

1. Let (a,b) represent the complex dividend.

2. Let (c,d) represent the complex divisor.

3. Let (r,i) represent the complex quotient.

Then:

r = (ac+bd)/(cc+dd)
i = (bc-ad)/(cc+dd)

Format

complex-quotient= OTS$DIVC (dividend, divisor)
complex-quotient= OTS$DIVCD-R3 (dividend, divisor)
complex-quotient = OTS$DIVCG_R3 (dividend, divisor)

complex-quotient
For F_floating, the complex value returned in RO,Rl is (a,b)/(c,d). For
D_ and G_floating, the complex value returned in RO:R3 is (a,b)/(c,d).

dividend, divisor
The complex values of the dividend and divisor are in the argument list.

4-22 Mathematics Procedures

MTH$CxEXP

4.3.5 Exponential

This procedure returns the complex exponential of the complex number (r,i).
The result of the operation e**(r,i) is computed by:

complex-exp = (EXP(r)*COS(i), EXP(r)*SIN(i))

Format

complex-exp = MTH$CEXP (x-adr)
CALL MTH$CDEXP (complex-exp-adr,x-adr)
CALL MTH$CGEXP (complex-exp-adr,x-adr)

x-adr
Address of an area containing the input complex number (r,i) where both r
and i are floating-point numbers.

complex-exp
Complex exponential of the complex input number expressed m
F _floating notation.

complex-exp-adr
Address of an area to receive the complex exponential of x.

Messages

MTH$_SIGLOSMAT
Significance lost in Math Library: Iii > 2**30 (F_floating) or
Iii > 2**31 (D_, G_floating).

MTH$_FLOOVEMAT
Floating-point overflow in Math Library: lrl >88.028 (F_, D_floating) or
lrl > 709.08 (G_floating).

MTH$xlMAG

4.3.6 Imaginary Part of a Complex Number

These procedures return the imaginary part of a complex number.

Format

imag-part = MTH$AIMAG (complex-number-adr)
imag-part = MTH$DIMAG (complex-number-adr)
imag-part = MTH$GIMAG (complex-number-adr)

complex-number-adr
Address of an area containing the input complex number.

imag-part
The imaginary part of the input complex number.

Mathematics Procedures 4-23

MTH$xCMPLX

4.3. 7 Make Complex from Floating-Point

These procedures return a complex number from two floating-point values.

Format

complx = MTH$CMPLX (real-part-adr, imag-part-adr)
CALL MTH$DCMPLX (dcmplx-adr, real-part-adr, imag-part-adr)
CALL MTH$GCMPLX (gcmplx-adr, real-part-adr, imag-part-adr)

real-part-adr
Address of an area containing the floating-point value to become the real
part of a complex number.

imag-part-adr
Address of an area containing the floating-point value to become the im­
aginary part of a complex number.

cmplx
F_floating complex value of a complex number.

dcmplx-adr
Address of an area to receive the D_floating complex value of a complex
number.

gcmplx-adr
Address of an area to receive the G_floating complex value of a complex
number.

OTS$MVLCx

4.3.8 Multiplication

These procedures calculate the complex product of two complex values.

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.

2. Let (c,d) represent the complex multiplicand.

3. Let (r,i) represent the complex product.

Then:

r = ac-bd and i = ad+bc

Format

product = OTS$MULCD_R3 (multiplier, multiplicand)
product = OTS$MULCG_R3 (multiplier, multiplicand)

4-24 Mathematics Procedures

multiplier
The multiplier is passed by immediate value.

multiplicand
The multiplicand is passed by immediate value.

product
D_ or G_complex value returned in registers RO:R3.

MTH$CxLOG

4.3.9 Natural Logarithm

These procedures return the complex natural logarithm of the complex num­
ber (r,i) computed as follows:

CLOG(arg) = (LOG(CABS(arg)), ATAN2(arg))

Format

complex-natlog = MTH$CLOG (arg-adr)
CALL MTH$CDLOG (complex-natlog-adr, arg-adr)
CALL MTH$CGLOG (complex-natlog-adr, arg-adr)

arg-adr
Address of an area containing the complex number.

com plex-natlog
Natural logarithm of the complex number.

complex-natlog-adr
Address of an area to receive the complex natural logarithm of arg.

MTH$xREAL

4.3.10 Real Part of a Complex Number

These procedures return the real part of a complex number.

Format

real-part = MTH$REAL (complex-number-adr)
real-part= MTH$DREAL (complex-number-adr)
real-part== MTH$GREAL (complex-number-adr)

complex-number-adr
Address of an area containing the complex number.

real-part
The real part of the complex number.

Mathematics Procedures 4-25

MTH$CxSIN

4.3.11 Sine

These procedures return the complex sine of the complex number (r,i) com­
puted as follows:

complex-sine= (sin(r)*COSH(i), +COS(r)*SINH (i))

Format

complex-sine= MTH$CSIN (complex-number-adr)
CALL MTH$CDSIN (complex-sine-adr, complex-number-adr)
CALL MTH$CGSIN (complex-sine-adr, complex-number-adr)

complex-number-adr
Address of an area containing a complex number (r,i) where r and i are
floating-point numbers.

complex-sine
Complex sine of the complex input number.

com plex-sine-adr
Address of an area to receive the complex sine of the complex number.

Messages

MTH$_SIGLOSMAT
Significance lost in Math Library: lrl > 2**30 (F_floating) or lrl > 2**31
(D_ or G_floating).

MTH$_FLOOVEMAT
Floating-point overflow in Math Library: Iii > 88.028 (F_, D_floating) or
Iii > 709.08 (G_floating).

MTH$CxSQRT

4.3.12 Square Root

These procedures return the complex square root of the complex number (r,i)
computed as follows:

ROOT= SQRT ((ABS(r) + (ABS((r,i)))/2)
Q = i/(2* ROOT)

r
>=0 any
<0 >=0

CSQRT((r,i))
(ROOT,Q)
(Q, ROOT)

4-26 Mathematics Procedures

Format

complex-sqrt = MTH$CSQRT(x-adr)
CALL MTH$CDSQRT (complex-sqrt-adr, x-adr)
CALL MTH$CGSQRT (complex-sqrt-adr, x-adr)

x-adr
Address of an area containing the complex number (r,i).

complex-sqrt
The complex square root of x.

complex-sqrt-adr
Address of an area to receive the complex square root.

4.4 Elcponentiation Code-Support Procedures

The following procedures support all high-level, language-compiled
expressions that use the exponential operator** or ".BASIC, FORTRAN and
PASCAL programs call these procedures implicitly in arithmetic expressions
containing the** or " operator. These procedures raise a base of one data type
to a power of either the same data type or that of the exponent (whichever has
greater range); for example, longword has greater range than word, and
floating-point has greater range than longword. OTS$ procedures pass input
parameters including complex numbers, by immediate value. Th,erefore, com­
plex and double floating-point numbers actually occupy two longwords in the
argument list; H_Floating numbers occupy four longwords.

Table 4-2 lists the exponentiation features described in this section. (See
Section 4.5 for the complex exponentiation procedures.)

Table 4-2: Exponentiation Procedures

Procedure Operation Resulting
Name Base * * Exponent Data

OTS$POWDD D_floating ** D_floating D_floating

OTS$POWDJ D-11.oating ** Longword D_floating

OTS$POWDR D-11.oating * * F -11.oating D_floating

OTS$POWGG G-11.oating ** G-11.oating G-11.oating

OTS$POWGJ G-11.oating **Longword G_floating

OTS$POWHH_R3 H_floating ** H_floating H_floating

OTS$POWHJ_R3 H-11.oating * * Longword H_floating

OTS$POWII Word** Word Word

OTS$POWJJ Longword * * Longword Longword

OTS$POWRD F _floating * * D-11.oating D_floating

OTS$POWRJ F -11.oating * * Longword F_floating

OTS$POWRR F-11.oating ** F_floating F_floating

Mathematics Procedures 4-27

OTS$POWDx

4.4.1 O_floatlng Base

These procedures raise a D_floating base to a D_floating, longword or
F_floating power. See Appendix D for algorithms used in the calculations.

Format

result= OTS$POWDD (base, exponent)
result= OTS$POWDJ (base, exponent)
result= OTS$POWDR (base, exponent)

base
D_floating (D) base (passed by immediate value).

exponent
D_floating (D), signed longword (J) or F_floating (R) exponent (passed
by immediate value).

result
D_floating base ** specified exponent returned as a D_floating result.

Messages

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_FLOOVEMAT
Floating-point overflow in Math Library.

MTH$_FLOUNDMAT
Floating-point underflow in Math Library.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo­
nent is zero or negative.

4-28 Mathematics Procedures

OTS$POWGx

4.4.2 G_floatlng Base

These procedures raise a G_floating base to a G_floating or a longword
power. See Appendix D for algorithms used in the calculations.

Format

result = OTS$POWGG (base, exponent)
result = OTS$POWGJ (base, exponent)

base
G_floating (G) base (passed by immediate value).

exponent
G_floating (G) or signed longword (J) exponent (passed by immediate
value).

result
G_floating base ** specified exponent returned as a G_floating r.

Messages

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_FLOOVEMAT
Floating-point overflow in Math Library.

MTH$_FLOUNDMAT
Floating-point underflow in Math Library.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo­
nent is zero or negative.

Mathematics Procedures 4-29

OTS$POWHx

4.4.3 H_floatlng Base

These procedures raise an H_floating base to an H_floating or longword
power. See Appendix D for algorithms used in the calculations.

Format

result= OTS$POWHH_R3 (base, exponent)
result = OTS$POWHJ_R3 (base, exponent)

base
H_floating (H) base (passed by immediate value).

exponent
H_floating (H) or signed longword (J) exponent {passed by immediate
value).

result
H_floating base ** specified exponent returned as an H_floating result
in registers RO:R3.

Messages

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_FLOOVEMAT
Floating-point overflow in Math Library.

MTH$_FLOUNDMAT
Floating-point underflow in Math Library.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo­
nent is zero or negative.

4-30 Mathematics Procedures

OTS$POWll

4.4.4 Word Base

This procedure raises a word base to a word power. See Appendix D for
algorithms used in the calculations.

Format

result = OTS$POWII (base, exponent)

base
Word base (passed by immediate value).

exponent
Word exponent (passed by immediate value).

result
Word base ** word exponent returned as a word result.

Messages

SS$_FLTDIV
Arithmetic Trap. This error is signaled by the hardware if a floating-point
zero divide occurs.

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo-.
nent is zero or negative.

Mathematics Procedures 4-31

OTS$POWJJ

4.4.5 Longword Base

This procedure raises a signed longword base to a signed longword power. See
Appendix D for algorithms used in the calculations.

Format

result= OTS$POWJJ (base, exponent)

base
Signed longword base (passed by immediate value).

exponent
Signed longword exponent (passed by immediate value).

result
Signed longword base** longword exponent returned as a longword result.

Messages

SS$_FLTDIV
Arithmetic Trap. This error is signaled by the hardware if a floating-point
zero divide occurs.

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo­
nent is zero or negative.

OTS$POWRx

4.4.6 F_floatlng Base

These procedures raise an F _floating base to a D_floating, longword or
F_floating power. See Appendix D for algorithms used in the calculations.

Format

result= OTS$POWRD (base, exponent)
result= OTS$POWRJ (base, exponent)
result= OTS$POWRR (base, exponent)

base
F_floating (R) base (passed by immediate value).

4-32 Mathematics Procedures

exponent
D_floating (D), signed longword (J) or F_floating (R) exponent (passed
by immediate value).

result
F_floating base** D_floating exponent returned as a D_floating result.
F_floating base ** signed longword or F_floating exponent returned as
an F _floating result.

Messages

SS$_FLTOVF
Arithmetic Trap. This error is signaled by the hardware if a floating-point
overflow occurs.

MTH$_FLOOVEMAT
Floating-point overflow Math Library.

MTH$_FLOUNDMAT
Floating-point underflow Math Library.

MTH$_UNDEXP
Undefined exponentiation. This error is signaled if base is zero and expo­
nent is zero or negative.

4.5 Complex Exponentiation Procedures

The algorithms used for exponentiation of complex numbers depend on the
exponent data type. Therefore, the procedures in this section are grouped by
exponent rather than by base.

Table 4-3 lists the exponentiation features described in this section.

Table 4-3: Complex Exponentiation Procedures

Procedure Operation Resulting
Name Base ** Exponent Data

OTS$POWCC F_complex ** F_complex F_complex

OTS$POWCDCD-R3 D_complex ** D_complex D_complex

OTS$POWCGCG_R3 G_complex ** G_complex G_complex

OTS$POWCJ F_complex **Longword F_complex

OTS$POWCDJ_R3 D_complex **Longword D_complex

OTS$POWCGJ-R3 G_complex **Longword G_complex
J

Mathematics Procedures 4-33

OTS$POWCxCx

4.5.1 Complex Floating-Point Power

These procedures return the result of raising a complex base to a complex
power. The ANS FORTRAN X3.9-1978 Standard defines complex exponenti­
ation as:

X ** Y = CEXP(Y * CLOG(X))
where X and Y are type COMPLEX.

Format

result= OTS$POWCC (base, exponent)
result = OTS$POWCDCD_R3 (base, exponent)
result= OTS$POWCGCG_R3 (base, exponent)

In each format, the result, base and exponent are of the same data type.

base
F_complex (C), D_complex (CD), or G_complex (CG) base (passed by
immediate value).

exponent
F_complex (C), D_complex (CD), or G_complex (CG) exponent
(passed by immediate value).

result
F_complex, D_complex, or G_complex result.

NOTE

For OTS$POWCDCD-R3 and OTS$POWCGCG-R3, the re­
sult is returned in registers RO:R3.

Messages

MTH$-1NV ARGMAT
Invalid argument in Math Library. Base is (0.,0.).

MTH$_FLOOVEMAT
Floating-point overflow in Math Library.

MTH$_SIGLOSMAT
Significance Lost in Math Library. Absolute value of the imaginary part
of (Y * CLOG(X)) > 2**30 for F_complex or > 2**31 for D_ or
G_complex.

SS$_ROPRAND
Reserved operand.

4-34 Mathematics Procedures

OTS$POWCxJ

4.5.2 Signed Longword Integer Power

These procedures return a complex result of raising a complex base to an
integer power. The complex result is given by:

Base Exponent Result

any

(0.,0.)

>0

<=0

product (base* 2 ** i) where i is each non-zero bit in lexponentl.

Undefined exponentiation.

not (0.,0.), <0 product (base* 2 ** i) where i is each non-zero bit in lexponentl.

not (0.,0.) =0 (1.0,0.0)

Format

result = OTS$POWCJ (base, exponent)
result = OTS$POWCDJ_R3 (base, exponent)
result = OTS$POWCGJ_R3 (base, exponent)

In each format, the result and base are of the same data type.

base
F_complex (C), D_complex (CD), or G_complex (CG) base (passed by
immediate value).

exponent
Signed longword integer exponent (passed by immediate value).

result
F _, D_, or G_complex result~

NOTE

For OTS$POWCDJ_R3 and OTS$POWCGJ_R3, the result
is returned in registers RO:R3.

Messages

SS$_FLTDIV
Floating-point zero divide occurred.

SS$_FLTOVF
Floating-point overflow occurred.

MTH$_UNDEXP
Undefined exponentiation.

Mathematics Procedures 4-35

4.6 Random Number Generators

MTH$RANDOM

4.6.1 Uniform Pseudorandom Number Generator

MTH$RANDOM is a general random number generator that is multiplicative
congruential. This procedure is called again to obtain the next pseudorandom
number. The seed is updated automatically. The result is a floating-point
number that is uniformly distributed between 0.0 inclusively and 1.0 exclu­
sively. There are no restrictions on the seed, although it should be initialized
to different values on separate runs in order to obtain different random
sequences. MTH$RANDOM uses the following to update the seed passed as
the parameter:

SEED = 69069 * SEED + 1 (MOD 2**32)

The value of SEED is a 32-bit number whose high order 24 bits are converted
to F_floating and returned as the result.

Format

result = MTH$RANDOM (seed)

seed
Address of unsigned longword.

result
F_floating random number.

Notes

Because the result is never 1.0, a simple way to get a uniform random
integer selector is to multiply by the number of cases. For example, if a
uniform choice among five situations is to be made, then the following
FORTRAN sequence will work:

REAL MTHSRANDOM

GO TO < 1 ,2 ,3 ,4 ,5) 1 + INT<S.*MTH$RANOOM<SEED> >

Note that the explicit INT is necessary before adding 1 in order to
avoid a possible rounding during the normalization after the addition of
F_floating numbers.

The BASIC RND function explicitly invokes MTH$RANDOM.

4-36 Mathematics Procedures

4. 7 Processor-Defined Mathematical Procedures

Processor-defined procedures include both the intrinsic and basic external
functions defined irt ANSI FORTRAN, which are treated in a uniform
manner.

Table 4-4 presents these functions in condensed form to conserve space and
facilitate ease of use. The procedures are divided into two groups: floating/
integer conversion functions and miscellaneous functions. They are arranged
in alphabetical order by English name within each group.

All procedures in this section pass input parameters by-reference. In the
formats for each procedure, the names of the input parameter and func­
tion return values are the data types themselves - that is, word, longword,
F_floating, D_floating, G_floating and H_floating. The English name
starts with the data type of the function value if it is different from the data
type of the input parameter or parameters.

The "Notes" column at the far right of Table 4-4 lists numbers that refer to
the notes following the table. As with all procedures in this chapter, a reserved
operand fault can occur for any floating-point input parameter and thus is not
indicated in the notes.

Table 4-4: Miscellaneous Mathematics Functions

Name Function I Format

FLOATING/INTEGER CONVERSION FUNCTIONS

MTH$CVT_D_G Convert D_floating to G_floating (rounded)
g-floating = MTH$CVT_D_G (cl-floating)

MTH$CVT_DA_GA Convert D_float array to G_float array (rounded)
CALL MTH$CVT_DA_GA (d-flt-array, g-flt-array [,cntl)

MTH$CVT_G_D Convert G_floating to D_floating (exact)
cl-floating= MTH$CVT_G_D (g-floating)

MTH$CVT_GA_DA Convert G_float array to D_float array (exact)
CALL MTH$CVT_GA_DA (g-flt-array, d-flt-array [,cntl)

MTH$DBLE Convert F_floating to D_floating (exact)
cl-floating = MTH$DBLE (f-floating)

MTH$GDBLE Convert F_floating to G_floating (exact)
g-floating = MTH$GDBLE (f-floating)

MTH$IIFIX Convert to word (truncated)
word = MTH$IIFIX (f-floating)

MTH$JIFIX Convert to longword (truncated)
longword = MTH$JIFIX (f-floating)

MTH$FLOATI Convert word to F_floating (exact)
f-floating = MTH$FLOATI (word)

* The "Notes" column at the far right of Table 4-4 lists numbers that refer to the notes
following the table.

Notes*

7

2,6

2,6,7

3

3

Mathematics Procedures 4-37

Table 4-4: Miscellaneous Mathematics Functions (Cont.)

MTH$DFLOTI Convert word to D_floating (exact)
cl-floating= MTH$DFLOTI (word)

MTH$GFLOTI Convert word to G_floating (exact)
g-floating = MTH$GFLOTI (word)

MTH$FLOATJ Convert longword to F _floating (rounded)
f-floating = MTH$FLOAT J (longword)

MTH$DFLOTJ Convert longword to D_floating (exact)
cl-floating = MTH$DFLOT J (longword)

MTH$GFLOTJ Convert longword to G_floating (exact)
g-floating = MTH$GFLOT J (longword)

MTH$FLOOR Convert F _floating to greatest F _floating integer
greatest-f-float-int = MTH$FLOOR (f-floating)

MTH$DFLOOR Convert D_floating to greatest D_floating integer
greatest-cl-float-int = MTH$DFLOOR (cl-floating)

MTH$GFLOOR Convert G_floating to greatest G_floating integer
greatest-g-float-int = MTH$GFLOOR (g-floating)

MTH$HFLOOR Convert H_floating to greatest H_floating integer
CALL MTH$HFLOOR (greatest-h-float-int, h-floating)

MTH$AINT Convert F _floating to truncated F _floating
truncated-1-floating = MTH$AINT (f-floating)

MTH$DINT Convert D_floating to truncated D_floating
truncated-cl-floating = MTH$DINT (cl-floating)

MTH$IIDINT Convert D_floating to word (truncated)
word = MTH$IIDINT (cl-floating)

MTH$JIDINT Convert D_floating to longword (truncated)
longword = MTH$JIDINT (cl-floating)

MTH$GINT Convert G_floating to truncated G_floating
truncated-g-floating = MTH$GINT (g-floating)

MTH$IIGINT Convert G_floating to truncated word
truncated-word = MTH$IIGINT (g-floating)

MTH$JIGINT Convert G_floating to truncated longword
truncated-longword = MTH$JIGINT (g-floating)

MTH$HINT Convert H_floating to truncated H_floating
CALL MTH$HINT (truncated-h-floating, h-floating)

MTH$IIHINT Convert H_floating to truncated word
truncated-word = MTH$IIHINT (h-floating)

MTH$JIHINT Convert H_floating to truncated longword
truncated-longword = MTH$$JIHINT (h-floating)

MTH$IINT Convert F _floating to truncated word
truncated-word = MTH$IINT (f-floating)

MTH$JINT Convert F _floating to truncated longword
truncated-longword = MTH$JINT (f-floating)

* The "Notes" column at the far right of Table 4-4 lists numbers that refer to the notes
following the table.

4-38 Mathematics Procedures

5

2

3

3

3

3

3

2,5

3

3

3

3

Table 4-4: Miscellaneous Mathematics Functions (Cont.)

MTH$ANINT Convert F _floating to nearest F _floating integer
nearest-f-float-int = MTH$ANINT (f-floating)

MTH$DNINT Convert D_floating to nearest D_floating integer
nearest-cl-float-int = MTH$DNINT (cl-floating)

MTH$IIDNNT Convert D_floating to nearest word integer
nearest-word-integer= MTH$IIDNNT (cl-floating)

MTH$JIDNNT Convert D_floating to nearest longword integer
nearest-long-int ~ MTH$JIDNNT (cl-floating)

MTH$GNINT Convert G_floating to nearest G_floating integer
nearest-g-float-int = MTH$GNINT (g-floating)

MTH$IIGNNT Convert G_floating to nearest word integer
nearest-word-integer = MTH$IIGNNT (g-floating)

MTH$JIGNNT Convert G_floating to nearest longword integer
nearest-longword-integer = MTH$JIGNNT (g-floating)

MTH$HNINT Convert H_floating to nearest H_floating integer
CALL MTH$HNINT (nearest-h-float-int, h-floating)

MTH$IIHNNT Convert H_floating to nearest word integer
nearest-word-integer = MTH$IIHNNT (h-floating)

MTH$JIHNNT Convert H_floating to nearest longword integer
nearest-longword-integer = MTH$JIHNNT (h-floating)

MTH$ININT Convert F _floating to nearest word integer
nearest-word-integer = MTH$ININT (f-floating)

MTH$JNINT Convert F _floating to nearest longword integer
nearest-long-int = MTH$JNINT (f-floating)

MTH$SNGL Convert D_floating to F _floating (rounded)
f-floating = MTH$SNGL (cl-floating)

MTH$SNGLG Convert G_floating to F _floating (rounded)
f-floating = MTH$SNGLG (g-floating)

Miscellaneous Functions

MTH$ABS F _floating absolute value
f-absolute-value = MTH$ABS (f-floating)

MTH$DABS D_floating absolute value
d~absolute-value = MTH$DABS (cl-floating)

MTH$GABS G_floating absolute value
g-absolute value = MTH$GABS (g-floating)

MTH$HABS H_floating absolute value
CALL MTH$HABS (h-absolute-value, h-floating)

MTH$11ABS Word absolute value
absolute-value-word = MTH$IIABS (word)

MTH$JIABS Longword absolute value
absolute-value-longword = MTH$JIABS (longword)

* The "Notes" column at the far right of Table 4-4 lists numbers that refer to the notes
following the table.

2

2

3

3

5

3

3

3

2,4

2

2,6

5

3

3

Mathematics Procedures 4-39

Table 4-4: Miscellaneous Mathematics Functions (Cont.)

MTH$1IAND Bitwise AND of two word parameters
word= MTH$1IAND (word!, word2)

MTH$JIAND Bitwise AND of two longword parameters
longword= MTH$JIAND (longword!, longword2)

MTH$DIM Positive difference of two F_floating parameters
f-floating = MTH$DIM (f-floatingl, f-floating2)

MTH$DDIM Positive difference of two D_floating parameters
cl-floating = MTH$DDIM (d-floatingl, d-floating2)

MTH$GDIM Positive difference of two G_floating parameters
g-floating = MTH$GDIM (g-floatingl, g-floating2)

MTH$HDIM Positive difference of two H_floating parameters
CALL MTH$HDIM (h-floating, h-floatingl, h-floating2)

MTH$IIDIM Positive difference of two word parameters
word= MTH$IIDIM (word!, word2)

MTH$JIDIM Positive difference of two longword parameters
longword= MTH$JIDIM (longwordl, longword2)

MTH$IIEOR Bitwise exclusive OR of two word parameters
word= MTH$IIEOR (word!, word2)

MTH$JIEOR Bitwise exclusive OR of two longword parameters
longword= MTH$JIEOR (longwordl, longword2)

MTH$IIOR Bitwise inclusive OR of two word parameters
word= MTH$IIOR (word!, word2)

MTH$JIOR Bitwise inclusive OR of two longword parameters
longword= MTH$JIOR (longword!, longword2)

MTH$AIMAXO F_floating maximum of n word parameters
f-floating-max = MTH$AIMAXO (word, ...)

MTH$AJMAXO F_floating maximum of n longword parameters
f-floating-max = MTH$AJMAXO (longword, ...)

MTH$IMAXO Word maximum of n word parameters
word-max= MTH$IMAXO (word, ...)

MTH$JMAXO Longword maximum of n longword parameters
longword-max= MTH$JMAXO (longword, ...)

MTH$AMAX1 Maximum of n F _floating parameters
f-floating-max = MTH$AMAX1 (f-floating, ...)

MTH$DMAX1 Maximum of n D_floating parameters
d-floating-max = MTH$DMAX1 (cl-floating, ...)

MTH$GMAX1 Maxim um of n G_floating parameters
g-floating-max = MTH$GMAX1 (g-floating, ...)

MTH$HMAX1 Maximum of n H_floating parameters
CALL MTH$HMAX1 (h-floating-max, h-floating, ...)

MTH$IMAX1 Word maximum of n F _floating parameters
word-max = MTH$IMAX1 (f-floating, ...)

* The "Notes" column at the far right of Table 4-4 lists numbers that refer to the notes
following the table.

4-40 Mathematics Procedures

2,6

2,6

2,6

2,5,6

3

3

3

5

3

Table 4-4: Miscellaneous Mathematics Functions (Cont.)

MTH$JMAX1 Longword maximum of n F _floating parameters
longword-max= MTH$JMAX1 (f-floating, ...)

MTH$AIMINO F _floating minimum of n word parameters
f-floating-min = MTH$AIMINO (word, ...)

MTH$AJMINO F _floating minimum of n longword parameters
f-floating-min = MTH$AJMINO (longword, ...)

MTH$IMINO Minimum of n word parameters
word-min= MTH$1MINO (word, ...)

MTH$JMINO Minimum of n longword parameters
longword-min= MTH$JMINO (longword, ...)

MTH$AMIN1 Minimum of n F _floating parameters
f-floating-min = MTH$AMIN1 (f-floating, ...)

MTH$DMIN1 Minimum of n D_floating parameters
d-floating-min = MTH$DMIN1 (d-floating, ...)

MTH$GMIN1 Minimum of n G_floating parameters
g-floating-min = MTH$GMIN1 (g-floating, ...)

MTH$HMIN1 Minimum of n H_floating parameters
CALL MTH$HMIN1 (h-floating-min, h-floating, ...)

MTH$IMIN1 Word minimum of n F_floating parameters
word-min= MTH$1MIN1 (f-floating, ...)

MTH$JMIN1 Longword minimum of n F _floating parameters
longword-min = MTH$JMIN1 (f-floating, ...)

MTH$AMOD Remainder of two F_floating parameters, argl/arg2
f-floating = MTH$AMOD (f-floatingl, f-floating2)

MTH$DMOD Remainder of two D_floating parameters, argl/arg2
cl-floating = MTH$DMOD (d-floatingl, d-floating2)

MTH$GMOD Remainder of two G_floating parameters, argl/arg2
g-floating = MTH$GMOD (g-floatingl, g-floating2)

MTH$HMOD Remainder of two H_floating parameters, argl/arg2
CALL MTH$HMOD (h-floating, h-floatingl, h-floating2)

MTH$IMOD Remainder of two word parameters, argl/arg2
word= MTH$1MOD (wordl, word2)

MTH$JMOD Remainder of two longword parameters, argl/arg2
longword= MTH$JMOD (longwordl, longword2)

MTH$INOT Bitwise complement of a word parameter
word= MTH$1NOT (word)

MTH$JNOT Bitwise complement of a longword parameter
longword= MTH$JNOT (longword)

MTH$DPROD D_floating product of two F _floating parameters
cl-floating = MTH$DPROD (f-floatingl, f-floating2)

MTH$GPROD G_floating product of two F _floating parameters
g-floating = MTH$GPROD (f-floatingl, f-floating2)

* The "Notes" column at the far right of Table 4-4 lists numbers that refer to the notes
following the table.

3

3

5

3

3

2

2

2

2,5

1

1

2

2

Mathematics Procedures 4-41

Table 4-4: Miscellaneous Mathematics Functions (Cont.)

MTH$SGN F _floating sign function
longword = MTH$SGN (f-floating)

MTH$SGN D_floating sign function
longword = MTH$SGN (cl-floating)

MTH$IISHFT Bitwise shift of a word by shift-count-word places
word= MTH$IISHFT (word, shift-count-word)

MTH$JISHFT Bitwise shift of longwordl by longword2 places
longword= MTH$JISHFT (longwordl, longword2)

MTH$SIGN F _floating transfer of sign of y to sign of x
f-floating = MTH$SIGN (f-floating-y, f-floating-x)

MTH$DSIGN D_floating transfer of sign of y to sign of x
cl-floating = MTH$DSIGN (d-floating-x, d-floating-y)

MTH$GSIGN G_floating transfer of sign of y to sign of x
g-floating = MTH$GSIGN (g-floating-x, g-floating-y)

MTH$HSIGN H_floating transfer of sign of y to sign of x 5
CALL MTH$HSIGN (h-float, h-float-x, h-float-y)

MTH$1ISIGN Word transfer of sign of y to sign of x
word= MTH$IISIGN (word-y, word-x)

MTH$JISIGN Longword transfer of sign of y to sign of x
longword = MTH$JISIGN (longword-y, longword-x)

Notes

1. Divide-by-zero exceptions can occur.

2. Floating overflow exceptions can occur.

3. Integer overflow exceptions can occur.

4. Returns contents of RO if a negative parameter is input.

5. Returns value to the first parameter; value exceeds 64-bits.

6. Floating underflow exceptions can occur.

7. Returns an array of values to the output parameter. The number of
elements converted is given by the optional parameter; the default number
is 1.

4-42 Mathematics Procedures

Chapter 5
Process-Wide Resource Allocation Procedures

The process-wide resource allocation procedures provide coordinated
allocation and deallocation of process-wide resources in a single VMS process.
The process-wide resources include dynamic virtual memory, dynamic string
memory, VMS local event flags and BASIC/FORTRAN logical unit numbers.
These resources exist for the duration of the execution of the program image.
These resource-allocation procedures are provided so other procedures can use
the process-wide resources without conflicting with one another.

In general, you must use these procedures when you need to allocate
process-wide resources within your program. This allows Run-Time Library
procedures, DIGITAL-supplied procedures, and user procedures that you
write to perform properly together within a process.

Table 5-1 lists all the process-wide resource allocation procedures. The
sections that follow this table describe the procedures in detail.

Table 5-1: Process-Wide Resource Allocation Procedures

Section Entry Point Name Title

Dynamic Allocation of Virtual Memory

5.1.5 LIB$GET_VM Allocate Virtual Memory

5.1.6 LIB$FREE_ VM Deallocate Virtual Memory

5.1.7 LIB$STAT_VM Fetch VM Statistics

5.1.8 LIB$SHOW_VM Show VM Statistics

(continued on next page)

5-1

Section Entry Point Name Title

5.2.1

5.2.2

5.3.1

5.3.2

5.3.3

5.4.1

5.4.2

5.4.3

BASIC/FORTRAN Logical Unit Allocation

LIB$GET-1UN Allocate next arbitrary LUN

LIB$FREE-1UN Deallocate a specific LUN

Event Flag Allocation

LIB$GET_EF Allocate a local event flag

LIB$FREE_EF Free a local event flag

LIB$RESERVE_EF Reserve a local event flag

String Resource Allocation

LIB$SGET1_J)D Allocate One Dynamic String
OTS$SG ETl_J)D
STR$GET1_J)X

LIB$SFREE1_J)D Deallocate One Dynamic String
OTS$SFREE1_J)D
STR$FREE1_J)X

LIB$SFREEN_J)D Deallocate n Dynamic Strings
OTS$SFREEN_DD

NOTE

LIB$ procedures indicate errors by return status and pass input
scalars by reference.

OTS$ procedures indicate errors by signaling and pass input
scalars by immediate value.

STR$ procedures indicate serious errors by signaling and pass
input scalars by reference. The destination descriptor must be
dynamic. STR$ procedures should be used for new programs,
when manipulating strings because they do not assume the
string is dynamic.

5.1 Allocatlon of Vlrtual Memory

The virtual address space of an executing process consists of three regions:

1. A per-process program region that contains the image to be executed,
including both instructions and data.

2. A per-process control region that contains system control information and
the process stack.

3. A common system region that contains VAXNMS; this region is not
writable from the user access mode.

5-2 Process-Wide Resource Allocation Procedures

There are two ways to allocate storage in the program region (that is to assign
positions in main memory for the purpose of holding information):

1. Statically at link time (static storage)

2. Dynamically at run time (heap storage)

There is one way to allocate storage in the control region: dynamically at run
time in the stack frame (stack storage).

NOTE

Great care must be used with any of the preceding methods to
avoid conflict between your procedures and library procedures,
procedures written by other users, or system services. See the
VAX-11 Guide to Creating Modular Library Procedures for an
explanation of how to use each storage form in modular
fashion.

5.1.1 Static Storage

Static storage, or statically allocated storage, is the simplest form of storage.
It is allocated at link time by the Linker.

•MACRO

The .BLKB, .BLKW, .BLKL, .BLKQ, and .BLKO directives allocate static
storage in the current program section. The .BYTE, .WORD, .LONG,
.QUAD, and .OCTA directives let you initialize static storage to arbitrary
values at link time.

•BASIC

Variables in COM and MAP statements are allocated in static storage in
named, overlaid PSECTS.

•FORTRAN

All declared variables and arrays are allocated in static storage in
concatenated PSECTS. FORTRAN COMMON variables are allocated in
named, overlaid PSECTS. The DATA declaration permits you to initialize
static storage to arbitrary values at link time.

•PASCAL

Variables declared at the module or program level are allocated in static
storage in named, overlaid PSECTS.

Static storage not initialized otherwise is initialized to zero by the Linker.
(See the, VAX-11 Guide to Creating Modular Procedures for more discussion
on using storage.)

Process-Wide Resource Allocation Procedures 5-3

Static storage has some disadvantages:

1. When you write your main program or user procedure, you must specify
the maximum amount of storage you will ever need.

2. Your user procedure can have obscure bugs if it inadvertently uses values
left behind from previous calls.

3. Your user procedure may not execute properly if it is called by an
AST-level routine during your procedure's normal execution.

4. If overlaid PSECTS are used, one module can inadvertently affect
another's storage.

5.1.2 Stack Storage

Stack storage avoids the preceding disadvantages of static storage.

•MACRO

Stack space is allocated by decrementing the stack pointer (SP) by the
number of bytes required. This can happen a number of times during the
execution of a single procedure. Because each procedure has its own stack
frame, different procedures do not conflict with one another. All of the stack
space is reclaimed automatically when the procedure returns to its caller
using a return instruction (RET). On a subsequent call, the procedure must
allocate any space needed again. At that time, the contents of allocated
stack space is indeterminate. Therefore, a procedure must initialize the
stack space properly each time it is allocated.

• BASIC and PASCAL

All procedure local variables and arrays are allocated on the stack.

•FORTRAN

Stack space is not accessible to the FORTRAN programmer. (However, a
compiled program may use it for temporary storage while evaluating com­
plicated expressions.)

5.1.3 Heap Storage

A procedure can allocate heap storage dynamically at run time as it is needed.
There is no constraint on when a procedure must deallocate the storage.
However, if a user procedure is to retain heap storage after returning control
to its caller, it must allocate some static storage as well. The procedure uses
static storage to remember where the heap storage was allocated; this enables
the procedure to use the heap storage later and eventually return it to image
free storage.

• BASIC and STR$

Strings are automatically allocated in heap storage.

5-4 Process-Wide Resource Allocation Procedures

•PASCAL

The NEW function allocates heap storage.

• Other languages

Heap storage can be used by explicit calls to Run-Time Library procedures.

5.1.4 Use of System Services

The following system services let you change the size of program or control
regions and allocate or deallocate virtual memory space dynamically at run
time:

• Expand Program/Control Region ($EXPREG) - expands the program or
control region in page increments (512 bytes)

• Contract Program/Control Region ($CNTREG) - contracts the program
or control region in page increments (512 bytes)

• Create Virtual Address Space ($CRETVA) - allocates specific virtual
pages in the program or control region

• Delete Virtual Address Space ($DELTVA) - deallocates specific virtual
pages in the program or control region

However, if you use any of these four system services, your procedures may
conflict with other user-written procedures and/or DIGITAL-supplied
procedures (including those in the Run-Time Library). For example, if your
procedure assumes that the space beyond the last allocated data location is
available and you use the $CRETVA system service to allocate the next page,
you may discover that it was already allocated for some other purpose by the
linker, the Run-Time Library, VAX-11 RMS (for additional buffer space), or
by another procedure that also wanted space. Thus, your program would not
operate correctly.

Rather than using any of the preceding system services to allocate virtual
space, you should use the Allocate Virtual Memory (LIB$GET_VM) and
Deallocate Virtual Memory (LIB$FREE_ VM) procedures. These procedures
dynamically allocate and deallocate virtual space to procedures in an image.
The requested virtual space can be smaller than, equal to, or greater than a
page. You can use LIB$GET_VM and LIB$FREE_VM with:

• All Run-Time Library procedures

• All modular reentrant procedures

• All software that calls the Run-Time Library

• All user-written procedures that use the library, including the language
support procedures

• VAX-11 RMS, which also dynamically allocates buffer space in the
program region

Process-Wide Resource Allocation Procedures 5-5

To summarize:

• If you are allocating storage but not deallocating it later, you can use either
the $EXPREG System Service or LIB$GET_VM. The storage area is
maintained throughout execution.

• If you are allocating and deallocating storage, you should use LIB$G ET_ VM
for allocation and LIB$FREE_ VM for deallocation. The storage area is
returned to free storage after use.

LIB$GET_VM

5.1.5 Allocate Virtual Memory In Program Region

LIB$GET _ VM allocates a specified number of virtually contiguous bytes
somewhere in the program region and returns the virtual address of the first
byte so allocated. The number of bytes allocated is rounded up so that the
smallest possible number of whole quadwords (eight bytes) is allocated start­
ing at a quadword boundary. LIB$GET_ VM usually allocates the bytes at
the end of the program region. However, if sufficient storage space exists
elsewhere in the program region, LIB$GET_ VM will allocate that space
instead.

The space allocated in successive calls to LIB$GET_ VM may be noncontigu­
ous because another procedure can call LIB$GET_VM between your calls. In
fact, if AST interrupts occur, space may be allocated to another procedure
between execution of any pair of instructions in your program.

When virtual memory is needed, LIB$GET _ VM allocates the area and
removes reference to the area from a list of available free storage areas that
LIB$GET_VM maintains. (This list is called the image free storage list.) If
more virtual memory is required than is available in the program region,
LIB$GET_VM calls the Expand Program Region system service $EXPREG
to expand the program region in steps of 128 pages. LIB$GET _ VM links this
new area (by deallocating it) into the image free storage list. The requested
memory is then allocated from this list. The image free storage list is therefore
initialized on the first allocation call.

Format

ret-status = LIB$GET_ VM (num-bytes, base-adr)

num-bytes
Address of an unsigned longword integer specifying the number of virtu­
ally contiguous bytes to be allocated. Sufficient pages are allocated to
satisfy the request. However, the program should not reference an address
before the first byte address allocated (base-adr) or beyond the last byte
allocated (base-adr+num-bytes - 1) since that space may be assigned to
another procedure.

base-adr
Address of a longword that is set to the first virtual address of the newly
allocated contiguous block of bytes. (This is an output parameter.)

5-6 Process-Wide Resource Allocation Procedures

BASADR:
SIZE:

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$-1NSVIRMEM
Insufficient virtual memory. The request required more dynamic memory
than was available from the operating system. No partial assignment (al­
location) is made in this case.

LIB$_BADBLOSIZ
Bad block size. The block size was zero.

Notes

The calling procedure must retain the address of the allocated area. This
allows the procedure to access or deallocate it later.

LIB$GET_VM may be called at AST-level.

Examples

In FORTRAN, the address of dynamically allocated memory can be
passed to another procedure as an array using the %VAL built-in function.

INTEGER*4 DYNARRAYADR ! Pointer to array
NLONGWORDS = 500 ! Size of array in lonswords
IF <LIB$GETVM <NLONGWORDS*4' DYNARRAYADR>> THEN

CALL SUB<NLONGWORDS, %VAL<DYNARRAYADR>>

END

SUBROUTINE SUB<SIZE, ARRAY>
INTEGER*4 SIZE, ARRAY<SIZEl

RETURN
END

When SUB is called, it is passed the address of an adjustable dimensioned
array of SIZE longwords. The % VAL built-in function is needed in order
to pass the address of the dynamically allocated area rather than the
address of the longword variable DYN_ARRAY_ADR.

In MACRO, the following code allocates 100 bytes of dynamic memory:

.LONG 0 Recei1Jes address of allocated area

.LONG 100 Size to allocate in b}'tes
PUSHAL BASADR 2nd Pararl'leter = adr. of lonS11Jord

To recei1Je address of allocated area
PUSHAL SIZE 1st Parar,1ete r = adr of lons1 ... 1ord

Containins' the size to be allocated
CALLS #2, LI B$GET _tJM Allocate
BLBC RO, ERROR Branch if error

Process-Wide Resource Allocation Procedures 5-7

LIB$FREE_VM

5.1.6 Deallocate Vlrtual Memory from Program Region

LIB$FREE_ VM deallocates an entire block of virtually contiguous bytes
that had been allocated by LIB$GET_VM. The parameters passed are the
same as for LIB$GET_VM.

Format

ret-status = LIB$FREE_VM (num-bytes, base-adr)

num-bytes
Address of an unsigned longword integer specifying the number of
virtually contiguous bytes to be deallocated. Rounding of byte counts is
performed in the same manner as in LIB$GET_VM.

base-adr
Address of a longword containing the address of the first byte to be
deallocated. (This is an input parameter.)

Return Status

, SS$_NORMAL
Procedure successfully completed.

LIB$_BADBLOADR
Base_adr contained a bad block address. This might be an address that
was outside of the area allocated by LIB$GET_ VM, or the contents of
base_adr was not quadword aligned (as returned by LIB$GET_VM), or
part of the space being deallocated was previously deallocated.

Notes

This procedure returns the indicated block(s) to the image free storage list
so that it is available on a subsequent call to LIB$GET _ VM.

No partial blocks or multiple blocks can be freed.

LIB$FREE_VM can be called at AST level. Blocks obtained at non-AST
level can be freed at AST level and vice-versa.

Examples

The following FORTRAN code fragment deallocates the virtual memory
allocated in the FORTRAN example in Section 5.1.5:

CALL LIB$FREE_VM <NLONGWORDS*a, DYN_ARRAY_ADR>

5-8 Process-Wide Resource Allocation Procedures

The following MACRO code fragment deallocates the virtual memory
allocated in the MACRO example in the LIB$GET_ VM procedure
description:

PUSHAL BASADR

PUSHAL SIZE

CALLS #2t LIB$FREE_VM

Par2 = adr of lon~word

containin~ adr to deallocate
Parl = adr of lon~word

containin~ size to deallocate
deallocate virtual MeMorY

BLBC ROt ERROR

LIB$STAT_VM

5.1. 7 Fetch Virtual Memory Statistic

LIB$ST AT_ VM returns to its caller one of three statistics available from
calls to LIB$GET_VM and LIB$FREE_VM. Unlike LIB$SHOW_VM,
which produces ASCII values for output, LIB$STAT_VM returns the value
in binary form to a location specified as a parameter.

Only one of the three statistics can be returned by one call to LIB$STAT_ VM.
A "code" of zero is invalid.

Format

ret-status = LIB$STAT_VM (code, value)

code
Address of a longword containing the code that specifies which statistic is
to be returned. Allowed values are:

1 = Number of calls to LIB$GET.-VM
2 = Number of calls to LIB$FREE_VM
3 = Number of bytes allocated by LIB$GET _ VM but not yet freed

by LIB$FREE_ VM

It is invalid to omit "code" or to give a "code" of zero.

Value
Address of a longword to receive the result. All values are longword
integers.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$-1NV ARG
Invalid argument. Code was not in range 1:3 inclusive.

Process-Wide Resource Allocation Procedures 5-9

LIB$SHOW_VM

5.1.8 Show Vlrtual Memory Statistics

LIB$SHOW_VM is used to obtain the accumulated statistics from calls to
LIB$GET_VM and LIB$FREE_VM. In the default mode, with neither
"code" nor "action-routine" specified in the call, the routine will output to
SYS$0UTPUT a line giving the following three items of information:

mmm calls to LIB$GET_VM, nnn calls to LIB$FREE_VM, PPP bytes still
allocated

Optionally, only one of the three statistics can be output to SYS$0UTPUT
and/or the line of information can be passed to a user-specified "action­
routine", for processing different from the default.

Format

ret-status = LIB$SHOW_VM ([code] [,action-routine] [,user-arg])

code
Address of a longword containing the code which specifies the particular
statistic desired. This is an optional parameter. If omitted or zero, all
three statistics are returned on one line. If given, it must be one of the
following values:

1 = Number of calls to LIB$GET _ VM
2 =Number of calls to LIB$FREE_VM
3 = Number of bytes allocated by LIB$GET_VM but not yet

deallocated by LIB$FREE_ VM

action-routine
Address of a function procedure to call. This is an optional parameter. The
function should return either a success or failure condition value, which
will be returned as the return value of LIB$SHOW _ VM. The arguments
to this function follow:

ret-status = (action-routine) (out-str [,user-arg])

out-str
Address of the output string descriptor. The string is formatted exactly as
it would be if output to SYS$0UTPUT. The leading character is blank.
No embedded CR/LFs are included.

user-arg
A longword integer passed to LIB$SHOW_VM. This is an optional
parameter. If given, it is passed directly on to the action routine without
interpretation. That is, the contents of the arg list entry user-arg is copied
to the arg list entry for action-routine.

Return Status

SS$_NORMAL
Procedure successfully completed.

5-10 Process-Wide Resource Allocation Procedures

LIB$_1NV ARG
Invalid arguments. This can be caused by an invalid value for "code".

NOTE

Other codes may be returned by LIB$PUT_OUTPUT or the
user's action routine.

5.2 Logical Unit Allocation
Logical unit numbers are used in BASIC and FORTRAN to define a logical
unit upon which I/0 is done. For routines to be modular, they must have no
knowledge of their run time environment. That is, they cannot rely on a
knowledge of what logical unit numbers are being used in routines with which
they coexist. This independence is maintained by allocating and deallocating
logical units at run time.

The entire resource allocation logic and data is contained in a single module,
named LIB$LUN. LIB$LUN contains two entry points, LIB$GET _LUN and
LIB$FREE_LUN. The central data base consists of a single variable in
which individual bit positions indicate whether or not a logical unit number is
currently allocated. Logical unit numbers 100 to 119 are available to modular
programs through these entry points.

LIB$GET_LUN

5.2.1 Allocate One Logical Unit Number

LIB$GET_LUN allocates one logical unit number from a process-wide pool.
If a unit is available, its number is returned to the caller. Otherwise, an error
is returned as the function value.

Format

ret-status = LIB$GET _LUN (log-unit-num)

log-unit-num
Address of a longword that is set to the number of the allocated logical
unit or a -1, if none were available. (This is an output parameter.)

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$-1NSLUN
Insufficient logical unit numbers. No logical unit numbers were available.

Example

In BASIC, a logical unit number could be allocated as follows:

100 CALL LI5$GET_LLJN(A%>
200 IF A% >= 0% THEN
300 OPEN 'FOO' AS FILE #A%

Process-Wide Resource Allocation Procedures 5-11

LIB$FREE_LUN

5.2.2 Deallocate One Logical Unit Number

LIB$FREE_LUN is the complement of LIB$GET_LUN. When a logical
unit number allocated by calling LIB$GET_LUN is no longer needed, it
should be released for use by other routines. If successful, LIB$FREE_LUN
releases the specified logical unit number back to the pool for available
numbers.

Format

ret-status = LIB$FREE_LUN (log-unit-num)

log-unit-num
Address of a longword that contains the logical unit number to be deallo­
cated. This is the value returned to the user by LIB$GET_LUN. (This is
an input parameter.)

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_LUNALRFRE
Logical unit number already free.

LIB$_LUNRESSYS
Logical unit number reserved to system. This occurs if the specified logical
unit number is outside the range of 100 to 119.

Example

In BASIC, a logical unit number could be deallocated as follows:

100 CLOSE •AX
200 CALL LIB$FREE_LUNCA%)

5.3 Event Flag Resource Allocation Procedures

This section describes the event flag resource allocation procedures provided
by the Run-Time Library. These procedures allocate and deallocate local
event flag numbers. Using these procedures allows use of local event flags by
multiple procedures without conflicts.

5-12 Process-Wide Resource Allocation Procedures

LIB$GET_EF

5.3.1 Allocate One Local Event Flag

LIB$GET_EF allocates one local event flag from a process-wide pool. If a
flag is available for use, its number is returned to the caller. If no flags are
available, an error is returned as the function value.

The 64 local event flags are:

0 Never used by these procedures; always available

1-23 Initially marked as in use (for compatibility with the PDP-11 which
had no allocation routines)

24-31 Reserved to VMS

32-63 Initially free

Format

ret-status = LIB$GET_EF (event-flag-num)

event-flag-num
Address of a longword that is set to the number of the allocated local event
flag or -1 if none were available. (This is an output parameter.)

Return Status

SS$_NORMAL

Procedure successfully completed.

LIB$__INSEF
Insufficient event flags. There were no more event flags available for
allocation.

LIB$FREE_EF

5.3.2 Deallocate One Local Event Flag

LIB$FREE_EF is the complement of LIB$GET_EF. When a local event flag,
allocated by calling LIB$GET_EF, is no longer needed, LIB$FREE_EF
should be called to free the event flag for use by other routines.

Format

ret-status = LIB$FREE_EF (event-flag-num)

event-flag-num
Address of a longword containing the event flag number to be deallocated.
This is the value returned to the user by LIB$GET_EF. (This is an input
parameter).

Process-Wide Resource Allocation Procedures 5-13

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$-EF _ALRFRE
Event flag already free.

LIB$-EF _RES SYS
Event flag reserved to system. This occurs if the event flag number is
outside the ranges of 1-23 and 32-63.

LIB$RESERVE_EF

5.3.3 Reserve a Local Event Flag

LIB$RESERVE_EF allocates a particular local event flag number. This
differs from Lffi$GET_EF, which allocates an arbitrary event flag. Use
Lffi$FREE-EF to deallocate an event flag reserved with LIB$RESERVE_EF.

Format

ret-status = LIB$RESERVE_EF (event-flag-num)

event-flag-num

Address of a longword containing the event flag number to be allocated.
(This is an input parameter.)

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$-EF _ALRRES
Event flag already reserved.

LIB$-EF _RES SYS
Event flag reserved to system. This occurs if the event flag number is
outside the ranges of 1-23 and 32-63.

5.4 String Resource Allocation Procedures

This section describes string resource allocation procedures provided by the
Run-Time Library. These procedures accept as parameters strings of any
standard class.

5-14 Process-Wide Resource Allocation Procedures

NOTE

Chapter 3 contains procedures for copying and manipulating
strings; Chapter 7 contains procedures for syntactically analyz­
ing strings.

Dynamic strings are the most convenient type to write, since you need not
specify length (or maximum length) or position for them. The library proce­
dures that allocate dynamic strings also allocate virtual memory for them.
They are thus resource allocation procedures and must be used whenever a
dynamic string descriptor is modified.

The caller of the procedures described in this section must allocate space for
the string descriptor itself before making the call. Such allocation can be done
statically at compile time, or dynamically in local stack storage or heap
storage.

Programs that allocate dynamic string descriptors in the stack must free the
associated dynamic string areas by calling the LIB$SFREE1_DD,
OTS$SFREE1_DD, or STR$FREE1_DX procedures before executing a RET
instruction. Otherwise, the dynamic string area becomes unavailable when
the RET instruction removes the descriptors which point to the string area.
Similarly, before executing a RET instruction, a program that allocates dy­
namic string descriptors in heap storage must free the associated dynamic
string areas by calling the LIB$SREE1_DD, OTS$SFREE1_DD, or
STR$FREE1_DX procedure.

When a procedure might be unwound (see Chapter 6), it should establish
a handler that will free the associated dynamic string areas when the
SS$_UNWIND condition is signaled. The handler can free these areas by
calling the LIB$SFREE1_DD, OTS$SFREE1_DD, or STR$FREE1_DX
procedure.

The string resource allocation procedures can be called from any access mode
at AST or non-AST level.

Eight string resource allocation entry points are provided, each with slightly
different input parameters, calling techniques, or methods of indicating er­
rors. In all cases, destination strings are passed by descriptor. The following
parts of the entry point name indicate the differences among the entry points:

fac$[S]GET _abxyn

fac$
LIB$, OTS$, or STR$. Table 5-2 compares the parameter passing conven­
tions for these facilities.

Process-Wide Resource Allocation Procedures 5-15

ab
DX means any type of source descriptor.

R,_ means a source string that is passed by reference with a pair of
parameters. The first parameter is the length of the string; the second
parameter is the address of the string.

xy

n

DX means any type of destination descriptor. The class field (that is,
DSC$B_CLASS) determines what actions the procedure will take for
each type of string input (either unspecified, fixed length, or dynamic).

DD means that the destination descriptor is assumed to be dynamic and is
not checked.

A number or Rn is appended to distinguish the JSB entry point from
CALL entry points. JSB entry points modify registers RO:Rn.

Table 5-2: LIB$, OTS$, & STR$ Parameter Passing Conventions

LIB$ OTS$

CALL input scalars reference immediate value

JSB input scalars immediate value immediate value

Severe errors return status signal

Truncation errors return status value
(success or

severe)

JSB output RO-R5 status(RO) MOVC5 registers

5.4.1 Allocate One Dynamic String

LIB$SGET1_DD
OTS$SGET1_DD
STR$GET1_DX

STR$

reference

immediate value

signal

return status
(warning)

status(RO)

xxx$SGET1 _Dx

LIB$SGETJ_[JD allocates a specified number of bytes of dynamic virtual
memory to a specified string descriptor. This procedure is identical to
LIB$SCOPY_DXDX except that no source string is copied. It is provided so
you can write anything you want in the allocated area.

Format

ret-status = LIB$SGET1_DD (len, str)

JSB entry point: LIB$SGET1_DD_R6

5-16 Process-Wide Resource Allocation Procedures

len

str

Address of a word containing the unsigned number of bytes to be allo­
cated; the amount of storage allocated may automatically be rounded up.
If the number of bytes is zero, a small amount of space is allocated.

Address of a dynamic string descriptor to which the area is to be
allocated. The class field is not checked but it is set to dynamic
(DSC$B_CLASS = 2). The length field (DSC$W _LENGTH) is set to
len, and the address field (DSC$A_POINTER) is set to the string area
allocated (first byte beyond the header).

lmpllclt Inputs (JSB entry)

R0<15:0>
Unsigned number of bytes to be allocated.

Rl
Address of dynamic string descriptor to which the area is to be allocated.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_F ATERRLIB
LIB$-1NSVIRMEM
LIB$_STRIS-1NT

Note

In the event that the specified string descriptor already has dynamic
memory allocated to it, but the amount allocated is less than len, that
space is deallocated before LIB$SGET1_DD allocates new space.

Examples

See LIB$SFREE1_DD.

OTS$GETJ_[JD allocates a specified number of bytes of dynamic virtual
memory to a specified string descriptor. This procedure is identical to
OTS$SCOPY_DXDX except that no source string is copied. It is pro­
vided so you can write anything you want in the allocated area.

Format

len

CALL OTS$SGET1_DD (len, str)

JSB entry point: OTS$SGET1_DD_R6

Unsigned number of bytes to be allocated; the amount of storage allocated
may automatically be rounded up. If the number of bytes is zero, a small
number of bytes is allocated. Only the low-order word of the longword
parameter is used by the called procedure (passed by immediate value).

Process-Wide Resource Allocation Procedures 5-17

str
Address of a dynamic string descriptor to which the area is to be
allocated. The class field is not checked but it is set to dynamic
(DSC$B_CLASS = 2). The length field (DSC$W _LENGTH) is set to
len and the address field (DSC$A_POINTER) is set to the string area
allocated (first byte beyond the header).

lmpllclt Inputs (JSB entry)

R0<15:0>
Unsigned number of bytes for which areas are to be allocated.

Rl
Address of dynamic string descriptor to which the area is to be allocated.

Messages

OTS$_F ATINTERR
OTS$-1NSVIRMEM
OTS$_STRIS-1NT

Note

In the event that the specified string descriptor already has dynamic
memory allocated to it, but the amount allocated is less than len, that
space is deallocated before OTS$SGET1_DD allocates new space.

STR$GETLJJX allocates a specified number of bytes of dynamic virtual
memory to a specified string descriptor. The descriptor must be dynamic.

Format

len

str

ret-status = STR$GET1_DX (len,str)
JSB entry point: STR$GET1_DX-R4

Address of a word containing the unsigned number of bytes to be
allocated.

Address of a dynamic string descriptor to which the area is to be allocated.
The class field (DSC$B_CLASS) is checked.

lmpllclt Inputs (JSB entry)

RO <15:0>
Unsigned number of bytes to be allocated.

Rl
Address of dynamic string descriptor to which the area is to be allocated.

Return Status

SS$_NORMAL
Procedure successfully completed.

5-18 Process-Wide Resource Allocation Procedures

MeHages

STR$_F ATINTERR
STR$---1LLSTRCLA
STR$---1NSVIRMEM
STR$_S TRIS---1NT

Note

If the specified string descriptor already has dynamic memory allocated to
it, but the amount allocated is less than len, that space is deallocated
before STR$GET1_DX allocates new space.

5.4.2 Deallocate One Dynamic String

LIB$SFREE1_DD
OTS$SFREE1_DD
STR$FREE1_DX

xxx$SFREE1 _DX

LIB$SFREELJJD returns one dynamic string area to free storage. Before a
procedure deallocates a dynamic descriptor, it must use LIB$SFREE1_DD
or LIB$SFREEn_DD to deallocate the string storage space specified by the
dynamic descriptor. Otherwise, string storage is lost.

This procedure deallocates the described string space and flags the descriptor
as describing no string at all (that is, DSC$A-POINTER = 0 and
DSC$W_LENGTH = 0).

Format

ret-status = LIB$SFREE1_DD (dsc-adr)

JSB entry point: LIB$SFREE1_DD6

dsc-adr
Address of a dynamic descriptor which specifies the area to be deallo­
cated. The descriptor is assumed to be dynamic and its class field is not
checked.

Implicit Inputs (JSB entry)

RO
Address of the descriptor specifying the area to be deallocated.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_F ATERRLIB
LIB$_STRIS---1NT

Process-Wide Resource Allocation Procedures 5-19

OTS$SFREEJ_DD returns one dynamic string area to free storage.

Format

CALL OTS$SFREE1_DD (dsc-adr)

JSB entry point: OTS$SFREE1_DD6

dsc-adr
Address of a dynamic descriptor. The descriptor is assumed to be dynamic
and its class field is not checked.

Implicit Inputs (JSB entry)

RO
Address of the descriptor whose string area is to be deallocated.

Messages

OTS$_F ATINTERR
OTS$_STRIS-1NT

Note

This procedure deallocates the described string space and flags the
descriptor as describing no string at all (DSC$A-POINTER = 0 and
DSC$W_LENGTH = 0).

STR$FREEJ_DX deallocates one dynamic string.

Format

CALL STR$FREE1_DX (dsc-adr)

JSB entry point STR$FREE1_DX_R4

dsc-adr
Address of a dynamic string descriptor. The class field (DSC$B_CLASS)
is checked.

Implicit Inputs
None

Return Status

SS$_NORMAL
Procedure successfully completed.

Messages

STR$_F ATINTERR
STR$-1LLSTRCLA
STR$_STRIS-1NT

Note

This procedure deallocates the described string space and flags the
descriptor as describing no string at all (DSC$A-POINTER = 0 and
DSC$W_LENGTH = O).

5-20 Process-Wide Resource Allocation Procedures

Example

The following MACRO procedure allocates a dynamic string descriptor on
the stack, allocates 100 bytes of dynamic string memory, and frees it just
before return.

$DSCDEF
.ENTRY PROCt AM<R2tR3tR4tR5>
ASHQ #1Gt DSC$K_CLASS_Dt -CSP>

Define DSC$ ••• sYMbols
Save resisters used by JSBs
Allocate descriptor and set

; class 'field to dn1a1Tlic
MOVB #DSC$K_DTYPE_Tt DSC$B-DTYPECSP> ; Set tYPe to text
MOVZBW
MOl,IL
JSB

MOVAQ
JSB
RET

#100 t RO
SPt R1
STR$GET 1 _0}CRa

-BCFP> t RO
STR$FREE 1 _D>LRa

RO = no. of b}·tes
R1 = adr of descriPtor

; Allocate storase

RO = adr of descriptor
Deallocate storase
Return to caller

xxx$SFREEN_DD

5.4.3 Deallocate n Dynamic Strings

LIB$SFREEN_DD
OTS$SFREEN_DD

LIB$SFREEN_[JD returns one or more dynamic strings to free storage.

Before a procedure that allocates space returns to its caller, it must use
LIB$SFREE1_DD or LIB$SFREEN_DD to deallocate the string storage
space specified by any descriptors located in the stack.

This procedure deallocates the described string space and flags each
descriptor as describing no string at all (DSC$A_POINTER = 0 and
DSC$W_LENGTH = 0).

Format

ret-status = LIB$SFREEN_DD (dsc-num, first-dsc-adr)

JSB entry point: LIB$SFREEN_DD6

dsc-num
Address of a longword containing the number of adjacent descriptors to
be flagged as having no allocated area (DSC$A_POINTER = 0 and
DSC$W_LENGTH = 0) and to have their allocated area returned to free
storage.

first-dsc-adr
Address of the first descriptor of an array of descriptors. The descriptors
are assumed to be dynamic, and their class fields are not checked.

lmpllclt Inputs (JSB entry)

Process-Wide Resource Allocation Procedures 5-21

RO

Rl

Unsigned number of adjacent descriptors for which areas are to be
deallocated.

Address of the first descriptor for which an area is to be deallocated.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_F ATERRLIB
LIB$_STRIS-1NT

OTS$SFREEN_DD takes as input a vector of one or more dynamic string
areas and returns them to free storage.

Format

CALL OTS$SFREEN_DD (dsc-num, first-dsc-adr)

JSB entry point: OTS$SFREEN_DD6

dsc-num
Number of adjacent descriptors to be flagged as having no allocated area
(DSC$A__I>OINTER = 0 and DSC$W_LENGTH = 0) and to have their
allocated areas returned to free storage (passed by immediate value)

first-dsc-adr
Address of the first descriptor of an array of descriptors. The descriptors
are assumed to be dynamic, and their class fields are not checked.

lmpllclt Inputs (JSB entry)

RO

Rl

Unsigned number of adjacent descriptors for which areas are to be
deallocated.

Address of the first descriptor for which the area is to be deallocated.

Messages

OTS$_F ATINTERR
OTS$_STRIS-1NT

Notes

This procedure deallocates the described string space and flags each
descriptor as describing no string at all (DSC$A_POINTER = 0 and
DSC$W-LENGTH = 0).

5-22 Process-Wide Resource Allocation Procedures

Chapter 6
Signaling and Condition Handling Procedures

This chapter describes the signaling and condition handling procedures
as well as the related system services that together comprise the VAX-11
Condition Handling Facility. The facility is language-independent and
provides a single, unified method for:

• Printing error messages

• Indicating the occurrence of error conditions

• Changing the error behavior from the system default, such as altering or
suppressing the error message, correcting a result, or changing the flow of
control

• Enabling/disabling detection of certain hardware errors

Appendix C contains the functional specification for the VAX-11 Condition
Handling Facility. This chapter introduces condition handling in a tutorial
manner for the programmer using a language that does not have condition
handling as part of the language, and for programmers using languages that
incorporate error handling, such as BASIC. However, some of the procedures
described herein cannot be called explicitly in languages that have error han­
dlers to avoid conflict with the language-support routine.

6-1

6.1 Summary of VAX-11 Condition Handling Facility

The specific functions provided by the VAX-11 Condition Handling Facility
are:

• Establish a condition handler procedure. A condition handler is associated
with the currently executing procedure by placing an address pointing to
the handler in the executing procedure's stack frame. The condition handler
is called on errors that are not returned by means of the completion status
normally used. (See Section 6.3.)

• Remove an established condition handler procedure. If a condition handler
has been established, it can be removed by setting the address pointing to
the condition handler in the currently executing procedure's stack frame to
zero. (See Section 6.3.)

• Enable or disable the detection of certain arithmetic hardware exceptions.
Detection of floating-point underflow, integer overflow, and decimal over­
flow can be enabled or disabled under software control. (See Section 6.2 and
Section 6.5.)

• Signal a condition. Signaling a condition initiates a search for an estab­
lished condition handler from top to bottom of the procedure stack. (See
Section 6.6.)

• Print an error message. A default catch-all handler is established by the
system before it calls the main program. This handler formats and outputs
signaled conditions using the Put Message $PUTMSG system service, and
the system message file. Signaling is the standard way to output any error
message on VAX-11. (See Section 6.4 and 6.9.)

• Unwind the stack. A condition handler can indicate that when it returns,
one or more pre-signal frames are to be removed (unwound) from the stack.
During the unwinding operation, the stack is scanned. If a condition handler
is associated with a frame, that handler is called before the frame is re­
moved. Unwind allows a procedure to perform application-specific cleanup,
such as recovery from noncontinuable errors. (See Section 6.8.)

• Log error messages to an arbitrary file. The Put Message $PUTMSG system
service also permits any user-written handler to obtain a copy of the format­
ted message for any purpose, such as inclusion in a listing file. Such mes­
sage logging can be completely supplemental to the default messages the
user receives. (See Section 6.9.)

• Print a stack traceback on errors. The default operations of the LINK and
RUN commands provide a system-supplied handler to print a symbolic
stack traceback. The traceback shows the state of the procedure stack up to
the point of the occurrence of the condition. (See Section 6.4.1.)

Table 6-1 lists all the signaling and condition handling procedures. The sec­
tions that follow this table describe how to write a condition handler, then
describe the various procedures and how to use them in detail.

6-2 Signaling and Condition Handling Procedures

Table 6-1: Signaling and Condition Handling Procedures

Section Entry Point Name Title

Establishing a Condition Handler

6.3.1 LIB$ESTABLISH Establish Condition Handler

6.3.2 LIB$REVERT Delete Condition Handler

--~----·

Enable/Disable Hardware Conditions
--·----·---· ·-

6.5.1 LIB$DEC_OVER Enable/Disable Decimal Overflow

6.5.2 LIB$FLT_UNDER Enable/Disable Floating Underflow

6.5.3 LIB$INT _OVER Enable/Disable Integer Overflow

-~

Signal Generators

--
6.7.2 LIB$SIGNAL Signals Exception Condition

6.7.3 LIB$STOP Stop Execution via Signaling

Condition Handler Support

6.10.2 LIB$MATCH_COND Match Condition Value

6.10.3 LIB$FIXUP _FLT Fixup Floating Reserved Operand

6.10.4 LIB$SIG_ TO_RET Convert Any Signal to Return Status

6.2 Exception Conditions

An exception condition is a hardware- or software-detected event that changes
the normal flow of instruction execution. It usually indicates a failure, al­
though it is not restricted to error situations.

There are two standard methods for a DIGITAL- or user-written procedure to
indicate that an exception condition has occurred:

1. Return a completion code to the calling program as a function value (bit 0
clear in RO) that indicates which exception condition occurred

2. Signal the exception condition

In the first method, described in Chapter 2, the calling program explicitly
associates the error recovery action with the call to the procedure that de­
tected the error. Of the two methods, the first allows better programming
structure because each call site explicitly indicates the flow of control when an
error occurs.

Signaling and Condition Handling Procedures 6-3

In the second method, described in this chapter, the calling program associ­
ates the same error recovery action with all calls to all procedures.

Method 2 is the only way to handle hardware exceptions, and is the normal
way to output error messages of any kin_d. This method makes it possible for a
calling program to establish a condition handler to perform any of the
following:

• Change the message to a more suitable one for the application

• Suppress the message

• Correct the result

• Continue execution at the same or at a different point

A technique called signaling propagates the indication of an error condition
along the stack starting with the procedure called most recently. Therefore,
each procedure has the opportunity to perform any of the above condition
handling actions in the reverse order from that in which the procedures were
called. In other words, condition handling "nests," so that each caller can
potentially override the action of the procedure it called.

The following classes of exception conditions can occur while a program is
executing:

1. Hardware Processor detected

• Arithmetic trap in a user-written program (for example, floating
overflow)

• Arithmetic trap in a math library routine (for example, floating
underflow)

• Program fault (for example, invalid address)

• Processor error (for example, memory parity error)

2. Run-Time Library (software) detected

• Error in a user parameter to a math routine (for example, a negative
SQRT)

• Error in an 1/0 call (FORTRAN) where the user has supplied an ERR=
(for example, direct access not specified, record too small for I/O list)

• Error in an 1/0 call where the user has not supplied an ERR= (for
example, direct access not specified, record too small for 1/0 list)

• Error in a compiled code support routine due to an error in a user
operation

3. Other hardware and software detected

• 1/0 transfer error (for example, parity error)

6-4 Signaling and Condition Handling Procedures

• V AX-11 RMS detected errors

• Executive detected errors

• Application-specific errors

6.2.1 Condition Value

A condition value is a longword that includes fields to describe the software
component detecting the error, the cause of the error, and the error severity
status. It is used in both methods of indicating exception conditions.

A condition value consists of a 32-bit quantity that uniquely identifies an
exception condition. Each condition value has a unique system-wide symbol
and an associated message.

The 32-bit condition value is divided into several fields. The FAC_NO field'
(bits 27 through 17) indicates the system facility in which the condition oc­
curred. The MSG_NO field (bits 15 through 3) indicates the particular con­
dition that occurred. The SEVERITY field (bits 2 through 0) indicates
whether the condition is a success (bit 0 = 1) or a failure (bit 0 = 0) as well as
the severity. See Section C.4 of Appendix C for a more complete description of
the fields in a condition value.

Software components return condition values when they complete execution.
When a severity code of WARNING, ERROR, or SEVERE has been gener­
ated, the status code returned describes the nature of the problem. This value
can be tested to change the flow of control of a procedure and/or to generate a
message. User procedures can also generate condition values to be examined
by other procedures and by the command language interpreter. User­
generated condition values should set bits 27 and 15 so that these values will
not conflict with values generated by DIGITAL.

For more detailed information about condition values, see Section C.4 of
Appendix C.

6.2.2 Hardware Processor Detected Exception Conditions

When a hardware exception occurs, the V AXNMS executive examines any
primary and/or secondary exception vectors and calls these vectored condition
handlers if any are present. (See the Set Exception Vector ($SETEXV) sys­
tem service in the VAX/VMS System Services Reference Manual.)

NOTE

The primary vector is used by the debugger, the secondary
vector is reserved to customers for performance monitoring
and/or testing, and the last-chance vector is used by the system
and the debugger.

If a vectored condition handler is called and resignals, or is not present, the
stack is scanned frame by frame from the currently executing procedure to the

Signaling and Condition Handling Procedures 6-5

beginning of the stack. If the entire stack is scanned without finding a pointer
to a condition handler, a last-chance vectored condition handler is called. The
process of searching for handlers and calling them is referred to as signaling a
condition. (See Section 6.6.)

Figure 6-1 illustrates a stack scan for condition handlers in which the main
program calls procedure A, which calls procedure B. A stack scan will
be performed when a hardware exception occurs or a call is made to
LIB$SIGNAL or LIB$STOP.

Figure 6-1: Sample Stack Scan for Condition Handlers

PROCESS STATICALLY - - STACK SCAN
ALLOCATED STORAGE I

L ______ _ J:'
PRIMARY EXCEPTION VECTOR 1

1
I

I'

I H.~=1:,
SECONDARY EXCEPTION VECTOR\

\
\
I ,
I
\
\

\

' '
/

TOP OF STACK
- :SP

PROCEDURE B
STACK FRAME

0 :FP

I L-..--~---~

1
STACK FRAME

l ~Ro;cEDURE A

'> :==-= I
I
I • \

\
\

'
/

I

I
I
I
1

\
\

' ,,
I

MAIN
PROGRAM

STACK FRAME

0

USER
HANDLER

TRACEBACK
HANDLER

~~~-- CATCH-ALL VECTOR 

c==~ 
/ BOTTOM OF STACK 

LAST CHANCE VECTOR 

6-6 Signaling and Condition Handling Procedures 

LAST CHANCE 
HANDLER 



6.2.3 Language-Support Procedures Exception Conditions 

Some languages have specifications for actions to be taken if an exception 
condition occurs. An example of this is the optional "ERR=" construct in a 
FORTRAN OPEN statement, because it specifies an address to which control 
is to be transferred. In these cases, exceptions are indicated by returning a 
completion status rather than by using the signaling mechanism. The calling 
program contains a branch instruction, which tests the low bit of the comple­
tion status returned in RO. 

Some calls to the Run-Time Library do not or cannot specify an action to be 
taken. In this case, the Run-Time Library will signal the proper exception 
condition using the VAX-11 signaling mechanism. The same search for a 
condition handler is performed as with a hardware exception (see Section C.9 
of Appendix C and Section 6.2.2). 

The use of exception vectors, which are process-wide data locations, violates 
Run-Time Library modularity principles. Therefore, the Run-Time Library 
itself does not establish handlers using the primary, secondary, or last-chance 
exception vectors. 

6.2.4 Mathematics Procedure Exception Conditions 

All mathematics procedures return a function value in register RO or registers 
RO/Rl. This means that mathematics procedures cannot return a completion 
status, and therefore must signal all errors. In addition, all mathematics 
routines signal a mathematics procedure-specific error rather than a general 
hardware error. 

6.2.4.1 Integer Overflow and Floating Overflow - All mathematics procedures 
are programmed with a software check to avoid integer overflow and floating­
point overflow conditions. If an integer or floating-point overflow occurs in a 
CALL or JSB procedure, it signals a mathematics-specific error such as 
MTH$_FLOOVEMAT (FLOATING OVERFLOW IN MATH LIBRARY) by 
calling LIB$SIGNAL explicitly. (See Appendix B for a list of the mathematics 
procedures errors.) 

The software check is needed because JSB routines cannot set up condition 
handlers. The check permits the JSB mathematics procedures to add an extra 
stack frame so that the error message and stack traceback will appear as if a 
CALL instruction had been performed. Because of the software check, JSB 
procedures will not cause a hardware exception condition even when the call­
ing program has enabled integer overflow. Floating-point overflow detection is 
always enabled and cannot be disabled. 

NOTE 

The BASIC and FORTRAN compilers use the JSB entries in­
stead of the equivalent CALL entries for those procedures that 
have JSB entry points. 

Signaling and Condition Handling Procedures 6-7 



6.2.4.2 Floating Underflow - All mathematics procedures are programmed to 
avoid floating underflow conditions. Software checks are made to determine if 
a floating-point underflow condition would occur. If so, the software makes an 
additional check. If the immediate calling program (CALL or JSB) has en­
abled floating-point underflow traps, a mathematics-specific error condition 
is signaled. Otherwise, the result is corrected to zero and execution continues 
with no error condition. The user can enable or disable floating-point under­
flow detection at run time by calling the LIB$FLT_UNDER procedure (see 
Section 6.5.2). 

6.2.5 VAX-11 RMS and Executive Detected Errors 

An exception condition detected when a language support procedure calls 
VAX-11 RMS or some other VAXNMS service is always returned as a condi­
tion value in a function return. The language support procedure then performs 
one of the following (in order of preference): 

1. Recovers from the error 

2. Returns the error to the calling program if this has been explicitly indi­
cated (for example, in an ERR= statement) 

3. Signals the exception condition, with additional arguments, 
such as the VAX-11 RMS error status; the VAXNMS error status; the 
BASIC/FORTRAN logical unit number, the resultant file name string; 
and the user PC, following the call to the library 

6.3 Establishing a Condition Handler 

· Each procedure uses the first longword in its stack frame (longword 0) to 
specify a condition handler. When a procedure is called, the CALL instruction 
automatically initializes longword 0 to zero to indicate the absence of a 
condition handler. 

Your procedure can establish a condition handler for itself by moving 
the address pointing to the condition handler to longword 0 of your 
procedure's stack frame. LIB$ESTABLISH is used to accomplish this for 
higher level languages. LIB$REVERT deletes the handler established by 
LIB$ESTABLISH. 

LIB$ESTABLISH 

6.3.1 Establish a Condition Handler 

LIB$ESTABLISH moves the address of a condition handling routine (which 
can be a user-written or a library procedure) to longword 0 of the stack frame 
of the caller of LIB$ESTABLISH. This routine then becomes the caller's 
condition handler. At the same time, the previous contents of longword 0 are 
returned as old-handler. This can either be the address of the caller's previous 
condition handler or zero if none existed. 

6-8 Signaling and Condition Handling Procedures 



The new condition handler remains in effect for your procedure until a 
call to LIB$REVERT or control returns to the caller of the caller of 
LIB$ESTABLISH. Once this happens, LIB$ESTABLISH must be called 
again if the same (or a new) condition handler is to be associated with the 
caller of LIB$EST ABLISH. 

Format 

old-handler= LIB$ESTABLISH (new-handler) 

new-handler 
Address of routine to be set up as the condition handler. 

old-handler 
Previous contents of SF$A_HANDLER (longword O) of the caller's stack 
frame. 

Notes 

This procedure modifies caller's stack frame. 

This procedure is provided primarily for use with FORTRAN. 

Use of this procedure with other VAX languages, such as BASIC, may 
modify the behavior of your procedure in certain situations. The language­
support library depends on language-specific handlers to be established 
already. The handler address is also used to identify the stack frames of 
procedures written in these languages. 

For use of LIB$ESTABLISH with PASCAL, see the VAX-11 PASCAL 
User's Guide. 

In MACRO, the programmer merely uses the following instruction instead 
of calling LIB$EST ABLISH: 

MOVAB HANDLERt <FP> set handler address 
in current stack frame 

Example 

In FORTRAN, the following code fragment establishes the condition han­
dler procedure, HANDLER, for the current procedure activation of the 
program unit (whether it is a main program, subroutine, or function): 

E}<TERNAL HANDLER 
CALL LIB$ESTABLISH CHANDLER> 

NOTE 

In BASIC, the user should use the ON ERROR GO TO 
statement. 

Signaling and Condition Handling Procedures 6-9 



LIB$REVERT 

6.3.2 Delete Handler Associated with Procedure Activation 

LIB$REVERT deletes the condition handler established by 
LIB$EST ABLISH by clearing the address pointing to the condition handler 
from the activated procedure's stack frame. This address is returned as old­
handler. LIB$REVERT is only used if your procedure is to establish and then 
cancel a condition handler for a portion of its execution. 

Format 

old-handler= LIB$REVERT ( ) 

old-handler 
Previous contents of SF$A..__HANDLER (longword O) of the caller's stack 
frame. 

Notes 

This procedure modifies caller's stack frame. 

This procedure is provided primarily for use with FORTRAN. 

Use of this procedure with other VAX-11 languages, such as BASIC, may 
modify the behavior of your procedure in certain situations. In BASIC, the 
user should use the ON ERROR GO TO statement. 

For use of LIB$REVERT with PASCAL, see the VAX-11 PASCAL User's 
Guide. 

In MACRO, the programmer merely uses the following instruction rather 
than calling LIB$REVERT: 

CLRL 

Example 

C FP) set handler address to 0 
in current stack f raMe 

In FORTRAN, LIB$ESTABLISH and LIB$REVERT can be used to 
bracket a small section of code where a particular recoverable error could 
occur. This is a good practice, since unanticipated errors in other parts of 
the same program unit will not inadvertently invoke the handler 
procedure. 

EXTERNAL HANDLER 

CALL LIB$ESTABLISH CHANDLER> 
Y = X/B 
CALL LIB$REVERT 

END 

6-10 Signaling and Condition Handling Procedures 



HANDLER will get control only if a hardware exception occurs in the Y = 

X/B statement. 

To write a better structured program, you should save the old value and 
restore it using LIB$EST ABLISH. Then, the sequence of code can be 
embedded in a larger sequence that also has established a handler for its 
duration. Thus, the sequence should be: 

SAV_HANDLER = LI5$ESTA5LISH <HANDLER> Establish handler 

CALL LI5$ESTABLISH <SAV_HANDLER> Restore to Previous handler 

6.4 Default Handlers 

V AXNMS establishes default condition handlers any time a new image is 
started. The following default handlers are established and are shown in the 
order they are encountered while processing a signal. These three handlers are 
the only handlers that should output error messages. 

6.4.1 Traceback Handler 

The traceback handler is established on the stack after the catch-all handler. 
This enables the traceback handler to get control first. This handler performs 
three functions in the order shown: 

1. It outputs an error message using the Put Message (SYS$PUTMSG) sys­
tem service. SYS$PUTMSG formats the message using the Formatted 
ASCII Output (SYS$FAO) system service. The message is output to de­
vice SYS$ERROR (and SYS$0UTPUT if it differs from SYS$ERROR). 

2. It outputs a symbolic traceback. which shows the module and procedure 
where each nested call was made at the time of the exception. 

3. It decides whether to continue execution of the image or to force an exit 
based on the severity field of the condition value: 

Value of Bits 2:0 Error Type Action 

1 SUCCESS continue 
3 INFO continue 
0 WARNING continue 
2 ERROR continue 
4 SEVERE exit 

The traceback handler can be eliminated at link-time by using the 
/NOTRACEBACK qualifier in the link command. 

6.4.2 Catch-All Handler 

The catch-all handler is established in the first stack frame by the operating 
system and hence is called last. This handler performs the same functions as 
the traceback handler except that no stack traceback is accomplished. 
(Functions 1 and 3 in Section 6.4.1) 

Signaling and Condition Handling Procedures 6-11 



6.4.3 Last-Chance Handler 

The last-chance handler is established by a systepi exception vector. It is 
called only if the stack is invalid or all the handlers on the stack have resig­
naled. Note that if the debugger is present, the system last-chance handler 
will be replaced with the debugger's own last-chance handler. 

6.4.4 Using Default Handlers to Output Messages 

The system-supplied default handlers are the only handlers that should out­
put error messages. This means that: 

• The details of formatting and the choice of natural language is centralized. 

• The system utility programs that run as commands (such as COPY or 
PRINT) may be called as procedures. By linking with /NO TRACEBACK, 
such programs can output error messages without traceback. 

• Any set of procedures may be called by any application program to alter or 
hide the messages from the application user. For example, an application 
may choose to output a stock error message of the form: 

Internal SYsteM Errort Please Start Duer 

or 
Internal SYsteM Error, Please Call 8Yste111 0Perator 

Any applications procedures called in this manner should also signal any 
changed messages, rather than outputting them directly, so they, in turn, 
can be called by other applications that might want to change the message 
again. 

6.5 Overflow/Underflow Detection Enabling Procedures 

The following procedures permit a program to enable or disable the reporting 
of hardware detection of decimal overflow, floating-point underflow, and inte­
ger overflow. These are the only hardware detected exception conditions that 
can be disabled. Integer divide-by-zero, floating-point overflow, and floating­
point/decimal divide-by-zero cannot be disabled. When a hardware condition 
is enabled, the occurrence of the condition causes a hardware exception to 
occur; the operating system signals the exception condition as a severe error. 
When a hardware condition is disabled, the occurrence of the condition is 
ignored and the processor executes the next instruction in the sequence. 

The setting of overflow and underflow enables is independent for each proce­
dure activation, since the call instruction saves the state of the calling pro­
gram's hardware enables in the stack and then initializes the enables for the 
called procedure. A return instruction restores the calling program's enables. 

The following procedures are intended primarily for higher-level languages, 
since the MACRO programmer can achieve the same effect by the single 
Bit Set PSW (BISPSW) or Bit Clear PSW (BICPSW) instructions. 

6-12 Signaling and Condition Handling Procedures 



These procedures allow you to enable and disable detection of decimal over­
flow, floating-point underflow, and integer overflow for a portion of your pro­
cedure's execution. Note that the BASIC and FORTRAN compilers provide a 
compile-time qualifier that permits you to enable or disable integer overflow 
for your entire procedure. 

LIB$DEC_OVER 

6.5.1 Enable/Disable Decimal Overflow Detection 

LIB$DEC_OVER enables or disables decimal overflow detection for the call­
ing procedure activation. The previous setting is returned as a value. 

Format 

old-setting= LIB$DEC_OVER (new-setting) 

new-setting 
Address of byte containing the new decimal overflow enable setting. 
Bit 0 = 1 means enable, bit 0 = 0 means disable. 

old-setting 
The old decimal overflow enable setting. (The previous contents of 
SF$W_pSW[PSW$V_DV] in the caller's frame.) 

Notes 

The caller's stack frame will be modified by this procedure. 

A call to LIB$DEC_QVER affects only the current procedure activation 
and does not affect any of its callers or any procedures that it may call. 
However, the setting does remain in effect for any procedures which are 
entered through a JSB entry point. 

LIB$FL T_UNDER 

6.5.2 Enable/Disable Floating-Point Underflow Detection 

LIB$FLT_UNDER enables or disables floating-point underflow detection for 
the calling procedure activation. The previous setting is returned as a value. 

Format 

old-setting= LIB$FLT_UNDER (new-setting) 

new-setting 
Address of byte containing new floating-point underflow enable setting. 
Bit 0 = 1 means enable; bit 0 = 0 means disable. 

old-setting 
The old floating-point underflow enable setting. (The previous contents of 
the SF$W _psW[PSW$V _FUJ in the caller's frame.) 

Signaling and Condition Handling Procedures 6-13 



Notes 

The caller's stack frame will be modified by this procedure. 

LIB$FLT _UNDER affects only the current procedure activation and 
does not affect any of its callers or any procedures that it may call. How­
ever, the setting does remain in effect for any procedures entered through 
a JSB entry point. 

Examples 

In FORTRAN, the following main program enables reporting of floating­
point underflow. If a floating-point underflow occurs in the main program, 
a severe error condition is signaled, and the process exits. Any underflow 
occurring in any procedure called by the main program is undetected, 
unless that procedure also calls LIB$FL T _UNDER. 

PROGRAM MAIN 
CALL LIB$FLT_UNDER<1> 

END 

In MACRO, the equivalent main program is: 

• TITLE MAIN 
MAIN: .ENTRY MAIN, AM< ••• > 

BISPSW #M'"'<FU> enable f loatins underflow 

MDI.IL #1, RO return success 
RET ; end of main Prosram 
.END MAIN start at MAIN 

LIB$1NT_OVER 

6.5.3 Enable/Disable Integer Overflow Detection 

LIB$INT_OVER enables or disables integer overflow detection for the call­
ing procedure activation. The previous setting is returned as a value. 

Format 

old-setting= LIB$INT_OVER (new-setting) 

new-setting 
Address of byte containing the new integer overflow enable setting. 
Bit 0 = 1 means enable, bit 0 = 0 means disable. 

old-setting 
The old integer overflow enable setting. (The previous contents of 
SF$W _pswrPSW$V -1VJ in the caller's frame. 

6-14 Signaling and Condition Handling Procedures 



Notes 

The caller's stack frame will be modified by this procedure. 

LIB$INT_OVER affects only the current procedure activation and does 
not affect any of its callers or any procedures that it may call. However, 
the setting does remain in effect for any procedures which are entered 
through a JSB entry point. 

6.6 Generating Signals 

This section describes the procedures available for explicitly signaling an 
exception condition. 

Signaling is the method a procedure uses to indicate to the user or the calling 
program that an exception condition has occurred. When a program wishes to 
issue a message and optionally continue execution after handling the condi­
tion, it calls the standard procedure: 

CALL'LIB$SIGNAL (condition-value, parameters ... ) 

When a program wishes to issue a message and stop unconditionally, it calls 
the procedure: 

CALL LIB$STOP (condition-value, parameters ... ) 

In both cases, condition-value indicates the condition that is being signaled. 
However, LIB$STOP always forces the severity of condition-value to 
SEVERE. The parameter list describes the details of the exception condition. 
These are the same parameters used to issue a system message. 

Unlike most calls, LIB$SIGNAL and LIB$STOP preserve RO and Rl as well 
as the other registers. Therefore, a call to LIB$SIGNAL allows the debugger to 
display the entire state of the process at the time of the exception. This is 
useful for debugging checks and statistics gathering. 

Hardware exceptions behave in the same manner as a call to LIB$SIGNAL. 
That is, the same stack scan is used and the same parameters are passed to 
each condition handler. This allows a user to write a single condition handler 
to detect both hardware and software conditions. 

LIB$SIGNAL 

6.6.1 Signal Exception Condition 

LIB$SIGNAL is called whenever it is necessary to indicate an exception con­
dition or output a message rather than return a status code to the calling 
program. 

LIB$SIGNAL examines the primary and secondary exception vectors and 
then scans· the stack frame by frame, starting at the top of the stack. The 

Signaling and Condition Handling Procedures 6-15 



stack frames are found by using the frame pointer (FP) to chain back through 
the stack frames using the saved FP in each frame. (See the preceding Figure 
6-1.) LIB$SIGNAL calls each condition handler encountered. 

If an encountered handler returns a "continue" code (that is, any success 
completion code with bit 0 = 1), LIB$SIGNAL returns to its caller, which 
should be prepared to continue execution. 

If an encountered handler returns a "resignal" code (that is, any failure com­
pletion code with bit 0 = 0) the stack scan is continued. 

LIB$SIGNAL will, if necessary, scan up to 64K previous stack frames and 
then finally examine the last-chance exception vector. 

Format 

CALL LIB$SIGNAL (condition-value [,parameters ... ]) 

condition-value 
A standard signal name designating a VAX-11, system-wide, 32-bit con­
dition value (passed immediate value). 

parameters 
Optional additional FAO (formatted ASCII output) parameters for mes­
sage. See Section 6.6.4 for the message format (passed immediate value). 

Notes 

The argument list is copied to the signal argument list vector, and the 
Program Counter (PC) and Program Status Longword (PSL) of the caller 
are appended. 

If a handler indicates unwind by calling SYS$UNWIND, then control will 
not return to the caller of LIB$SIGNAL, thereby changing the flow of 
control. A handler can also modify the saved copy of RO/Rl in the mecha­
nism vector. If a handler does neither of these things, then all registers 
including RO/Rl and the hardware condition codes are preserved. 

Examples 

In FORTRAN, the following code fragment would signal the standard 
system message ACCESS VIOLATION: 

INCLUDE 'SYS$LIBRARY:SIGDEF' define SS$ ••• SYMbols 

CALL LIB$SIGNAL C%VAL CSS$_ACCVIO>> 

The FORTRAN compile-time function %VAL is needed because 
LIB$SIGNAL expects parameters to be passed by-value. 

6-16 Signaling and Condition Handling Procedures 



In MACRO, the equivalent code is: 

• E}<TRN 
PUSHL 

CALLS 

SS$_ACCVIO 
#SS$_ACClJ I 0 

#1 t LIB$SIGNAL 

Declare external SYMbol 
Condition value SYMbol 
for access violation 
Sisnal the condition 

In FORTRAN, the following code fragment would signal the FORTRAN 
FILE NOT FOUND message followed by unit number, file name, and user 
PC (but not VAX-11 RMS message): 

INCLUDE 'SYS$LIBRARY:FORDEF' define FOR$ ••• SYMBOLS 

CALL LI B$S I GNAL ( /.,l.JAL< FOR$_F I LNOTFOU) t 'X,VAL< 3) t 'X.t.1AL( UN IT) t 

1MONDAY.DAT') 

NOTE 

The third FAO parameter (user PC) is supplied by 
LIB$SIGNAL itself. 

In MACRO, the equivalent code is: 

• DnRN 
PUSHAQ 
PUSHL 
PUSHL 

PUSHL 

CALLS 

FOR$_FILNOTFOU 
FILE_NAME_DSC 
UNIT 
#3 

#FORLFILNOTFOU 

#ll t LIB$SIGNAL 

Declare condition value 
Address of strins descriPtor 
LoSical unit 
No. of FAD ParaMeters followins 
(uses PC suPPlied bY LIB$SIGNAL) 
Condition value 
FILE NOT FOUND 
Sisnal the condition 

In FORTRAN, the following user defined (bit 27 = 1 and bit 15 = 1) 
condition-value N is signaled: 

CALL LIB$SIGNAL (%VAL(N + 2**27 + 2**15)) 

In MACRO, the preceding example is: 

$STSDEF ; Define condition value 
; fields (STS$ ••• ) 

PUSHL #(N + STS$V_CUST_DEF + STS$V_FAC_SP> 
CALLS #1 t LIB$SIGNAL ; Sisnal the condition 

Signaling and Condition Handling Procedures 6-17 



LIB$STOP 

6.6.2 Stop Execution Via Signaling 

LIB$STOP is called whenever it is necessary to indicate an exception condi­
tion or output a message because it is impossible to continue execution or 
return a status code to the calling program. LIB$STOP scans the stack 
frame-by-frame, starting with the most recent frame calling each established 
handler (see the preceding Figure 6-1). LIB$STOP guarantees that control 
will not return to the caller. 

Format 

CALL LIB$STOP (condition-value [,parameters ... ]) 

condition-value 
A standard signal name for a VAX-11 system-wide 32-bit condition value 
(passed immediate value). 

parameters 
Optional additional FAO parameters for message. See 6.6.4 for format for 
messages (passed immediate value). 

Notes 

The argument list is copied to the signal argument list vector and the PC 
and PSL of the caller are appended. 

The severity of condition-value is forced to SEVERE before each call to a 
handler. 

If any handler attempts to continue by returning a success completion 
code, the error message ATTEMPT TO CONTINUE FROM STOP is 
printed and the user's program exits. 

If a handler indicates unwind by calling SYS$UNWIND, control will not 
return, thereby changing the flow of control. A handler can also modify the 
saved copy of RO/Rl in the mechanism vector. 

NOTE 

The only way a handler can prevent the image from exiting 
after a call to LIB$STOP is to unwind the stack using the 
SYS$UNWIND system service. 

Examples 

The same calling sequence as for LIB$SIGNAL. 

6.6.3 Slgnallng Messages 

To understand how to write a handler which obtains the error message text, 
you must understand the system-supplied default handlers (see Section 6.4) 
and the SYS$PUTMSG system service. 

6-18 Signaling and Condition Handling Procedures 



Most user-mode images (such as compilers, utilities, and user programs) need 
to send single or multi-line messages to the interactive or batch user. These 
messages can be informational and/or error messages. For example, the 
DCL COPY utility generates error sequences similar to the following in the 
event that a file cannot be opened: 

%COPY-E-OPENINt error oPenins <file name> as inPut 
-RMS-F-FNF1 file not found 

%COPY-E-OPENOUTt error oPenins <file name> as output 
-RMS-E-tPRV Privilese violation COS denies access) 

%COPY-E-OPENOUTt error oPeninS <file name> as outPut 
-RMS-F-ATWt attribute write error 
-SYSTEM-W-FCPWRITERRt file Processor write error 

6.6.4 Signal Argument List 

This section describes the method for sending messages to a user through use 
of the signaling mechanism. 

When any software detects an error, it sends a message to the user by calling 
LIB$SIGNAL or LIB$STOP. A signal argument list is made up of one or more 
message sequences. 

LIB$SIGNAL and LIB$STOP copy the signal argument list and use it to 
create a signal argument vector. The signal argument vector serves as part of 
the input parameters to the user established handlers and the system default 
handlers. It also serves as input to the system service SYS$PUTMSG, which 
outputs the message. This section describes various formats for those parts of 
the signal argument list that could be interpreted by SYS$PUTMSG. 

The system-supplied default handlers call SYS$PUTMSG to actually output 
the condition being signaled, provided that all intervening handlers have 
resignaled. SYS$PUTMSG interprets the signal argument vector as a series of 
one or more message sequences. Each message sequence starts with a 32-bit, 
VAX-11 system-wide condition value that identifies a message in the system 
message file. SYS$PUTMSG obtains the text of the message using 
SYS$GETMSG. The message text may contain embedded FAQ (Formatted 
ASCII Output) directives (see SYS$FAO system service in VAX/VMS System 
Services Reference Manual.) SYS$PUTMSG calls SYS$FAO to format the 
message, substituting the values listed below from the signal argument list. 
Finally, SYS$PUTMSG outputs the message on device SYS$0UTPUT. It 
also outputs the message on device SYS$ERROR, if SYS$ERROR is different 
from SYS$0UTPUT, and the condition value severity field is anything but 
SUCCESS; that is: INFO, WARNING, ERROR, or SEVERE. 

Signaling and Condition Handling Procedures 6-19 



Each message sequence in the signal argument list produces a line of output. 
The format of a message sequence is one of the following: 

•No FAO arguments: 

cond-val 
Note that a condition value 
of 0 results in no 
message. 

• VAX-11 RMS error with STV value: 

VAX-11 RMS condition value 

associated value (STV) 

condition value 

1 FAO arg or 88$ ... cond 
value 

• Variable number of FAO arguments: 

condition value condition value 

FAQ_count number of FAO args 
--

FAQ arg 1 

FAQ arg 2 

FAQ arg n 

Section 6.7.1 describes the format of signal argument lists as passed to a 
condition handler. 

V AX-11 RMS system services return two related completion values. The 
primary completion code is the returned value (RO or function value) and is 
also placed in the associated VAX-11 RMS FAB, or RAB (FAB$L._STS or 
RAB$L._STS). The associated value is returned in the same F AB or RAB 
(F AB$L._STV or RAB$L_STV). The meaning of this secondary value is 
based on the corresponding STS value. It could be: (1) an operating system 
condition value of the form SS$_ ... , (2) a VAX-11 RMS value such as the 
size of a record which exceeds the buffer, or (3) zero. 

Rather than have each caller determine the meaning of the STV value, 
SYS$PUTMSG performs the necessary processing. Therefore, this STV value 
must always be passed in place of the FAQ argument count. In other words, a 
V AX-11 RMS message sequence always consists of two arguments (passed by 
immediate value): an STS value and an STV value. 

6-20 Signaling and Condition Handling Procedures 



6. 7 Condition Handlers 

This section describes how to write and call condition handling procedures. 
Section 6.8 describes the various options available upon returning from a 
condition handler. More information is available in Section C.11.1 of 
Appendix C. 

The VAX-11 condition handling facility scans the stack until it finds a 
pointer to a condition handler. 

Format 

continue = handler (signal-args, mechanism-args) 

signal-args 
The address of a vector of longwords that indicate the nature of the condi­
tion. The format of the vector has the same open-ended structure 
whether the condition was signaled by the operating system, by calling 
LIB$SIGNAL, or by calling LIB$STOP. In the last two cases, signal-args 
is a copy of the argument list passed to LIB$SIGNAL or LIB$STOP, with 
the caller's PC and PSL appended. See Section 6.7.1, Signal Argument 
Vector, for a detailed description. 

mechanism-args 
The address of a vector of longwords that indicate the state of the process 
at the time of the signal. See Section 6.7.2. 

continue 
A condition value. Success (bit 0 = 1) causes execution to continue at PC 
and failure (bit 0 = 0) causes the condition to be resignaled, that is, the 
stack scan for other handlers is resumed. If the SYS$UNWIND system 
service was called, the return value is ignored and the stack is unwound. 
See Section 6.8.3. 

Notes 

Handlers can modify the contents of either the signal-args vector or the 
mechanism-args vector. Generally, a BASIC handler cannot access the 
signal and mechanism vectors. 

In high-level languages, a condition handler is a function that returns a 
longword integer value. You must provide two dummy arguments for a 
condition handler: 

1. An array to reference signal arguments 

2. An array to reference mechanism arguments 

For example, you could define a condition handler in FORTRAN as 
follows: 

INTEGER*4 FUNCTION HANDLER <SIGARGSt MCHARGS) 
I NTEGER*4 SI GARGS < 7) t MCHARGS < 5) 

Signaling and Condition Handling Procedures 6-21 



The dimension bounds for the SIGARGS array should specify as many 
entries as necessary to reference the optional arguments. (The value seven 
in this example is for the purpose of illustration only.) 

In MACRO and BLISS, the symbols CHF$L __ SIGARGLST (=4) and 
CHF$L_MCHARGLST (=8) can be used to obtain the addresses of the 
signal and mechanism argument vectors, respectively, relative to the argu­
ment pointer (AP). 

6.7.1 Signal Argument Vector 

The signal argument vector contains all of the information describing the 
nature of the hardware or software condition. It has the following open-ended 
structure, which can be from 4 to 258 longwords in length: 

--
n = no. of following longwords 

·----··-"'-
condition value 

-·-···----
Optional additional 
arguments making up one 
or more message sequences 

·~.~--~ 

PC 

PSL 

MACRO FORTRAN 

CHF$L_SIG_ARGS SIGARGS(l) 

CHF$L_SIG_NAME SIGARGS(2) 

SIGARGS(n) 

SIGARGS(n+l) 

Each longword entry contains the following: 

SIGARGS(l) Contains an unsigned integer (n) designating the 
number of longwords that follow in the vector, includ­
ing PC and PSL. For example, the first entry of a four­
longword vector would contain a three. 

SIGARGS(2) Contains a condition value indicating the condition 
being signaled. (See Section 6.2.1.) Handlers should 
always check to see if the condition is the one that 
they expect by examining the STS$V_CQND-1D 
field (bits 27:3). Bits 2:0 are the severity field and bits 
31:28 are control bits which may have been changed 
by an intervening handler and so should not be in­
cluded in the comparison. The LIB$MATCH_COND 
procedure is provided for matching the correct fields 
(see Section 6.10.1). If the condition is not expected, 
the handler should resignal by returning FALSE 
(bit 0 = 0). 

SIGARGS(3 to n-1) Contain optional arguments that provide additional 
information about the condition. These arguments 
consist of one or more message sequences. The format 
of a message sequence is described in Section 6.6.4. 

6-22 Signaling and Condition Handling Procedures 



SIGARGS(n) 

SIGARGS(n+ 1) 

Contains the PC of the next instruction to be executed 
should any handler (including the system-supplied 
handlers) return with continue TRUE. For hardware 
faults, the PC is that of the instruction that caused 
the fault.For hardware traps, the PC is that of the 
instruction following the one that caused the trap. 
For conditions signaled by calling LIB$SIGNAL or 
LIB$STOP, the PC is that location following the 
CALLS or CALLG instruction. 

Contains the PSL of the program at the time that the 
condition was signaled. See the VAX-11 Architecture 
Handbook. 

NOTE 

When called, LIB$SIGNAL and LIB$STOP copy the variable­
length parameter list passed by the caller, then append the PC 
and PSL entries to the end of the list before calling handlers. 

The formats for all conditions signaled by the operating system and some 
conditions signaled by the Run-Time Library follow: 

• The signal argument vector for the reserved operand error condition is: 

3 additional longwords 

FOR$_AOJARRDIM condition value 

PC PC of call to LIB$STOP 

PSL 

• The signal argument vector for the FORTRAN error condition 
ADJUSTABLE ARRAY DIMENSION ERROR is: 

3 additional longwords 

SS$_RQPRAND condition value 

PC PC of instruction causing fault 

PSL 

Signaling and Condition Handling Procedures 6-23 



• Signal argument vector for FORTRAN 1/0 statement errors is: 

9 

FOR$_abcmnoxyz 

3 

logical unit number 

address of file descriptor 

user PC 

RMS$_ ... 

SS$_ ... or RMS value 

PC 

PSL 

additional longwords 

FORTRAN condition value 

number of FAO args 

first F AO arg 

second FAO arg 

third FA 0 arg 

VAX-11 RMS error status 
(RMS$L_STS) 

VAX-11 RMS error or system 
condition value 

PC following call to 
LIB$SIGNAL or LIB$STOP 

NOTE 

In the future, additional F AO arguments may be added 
following the user PC with a correspondingly increased FAO 
argument count. Thus, user handlers accessing either RMS 
longword, should use the contents of SIGARGS(3) as part of 
the subscript. In FORTRAN, the VAX-11 RMS error status is 
accessed as: 

= SIGARGS (SIGARGS(3) + 4) 

If the error does not involve VAX-11 RMS and/or VAXNMS, 
the corresponding signal vector entries are 0, which are skipped 
over by SYS$PUTMSG. 

• The signal argument vector for mathematics procedures errors is: 

5 

MTH$_abcmnoxyz 

1 

user PC 

PC 

PSL 

additional longwords 

math condition value 

number of F AO args 

PC following JSB or CALL 

PC following call to 
LIB$SIGNAL 

The user PC is the PC that follows the user JSB or CALL to the mathe­
matics procedure detecting the error. The PC is that following the call to 
LIB$SIGNAL. 

6-24 Signaling and Condition Handling Procedures 



6. 7 .2 Mechanism Argument Vector 

The mechanism argument vector contains all of the information describing 
the state of the process at the time of the hardware or software signaled 
condition. It is a five-longword vector of the form: 

MACRO FORTRAN 
4 = additional longwords CHF$L_MCH_ARGS MCHARGS(l) 

frame CHF$L_MCH_FRAME MCHARGS(2) 

depth CHF$L_MCH_DEPTH MCHARGS(3) 

RO CHF$L_MCH_SAVRO MCHARGS(4) 

R1 CHF$L_MCH_SAVR1 MCHARGS(5) 

The contents of each longword entry is: 

MCHARGS(l) Contains an unsigned integer indicating the number of long­
words that follow in the vector. Currently, this is always 
four. 

MCHARGS(2) Contains the address of the stack frame of the procedure 
activation that established the handler being called. This 
address can be used as a base from which to reference the 
local stack allocated storage of the establisher as long as the 
restrictions in Section 6. 7 .3 are observed. 

MCHARGS(3) Contains the stack depth, which is the number of stack 
frames between the establisher of the condition handler and 
the frame in which the condition was signaled. In other 
words, it indicates the number of calls from the establisher 
which have not yet returned. In order that calls to LIB$SIG­
N AL and LIB$STOP appear as similar as possible to hard­
ware exception conditions, the call to LIB$SIGNAL or 
LIB$STOP is not included in the depth. 

MCHARGS(4) 
MCHARGS(5) 

The depth is 0 for an exception handled by the procedure 
activation invoking the exception. That is, the activated 
procedure containing the hardware exception or calling 
LIB$SIGNAL or LIB$STOP. The depth is 1 for an excep­
tion handled by the immediate caller of the procedure ac­
tivation in which the exception occurred, and so on. If a 
system service signals an exception, a handler established 
by the immediate caller is entered with a depth of 1. 

The depth is -2 for a handler established using the primary 
exception vector, -1 for the secondary vector, and -3 for the 
last-chance vector. 

Contain copies of the contents of RO and Rl at the time of 
the exception or the call to LIB$SIGNAL or LIB$STOP. 
When execution continues or a stack unwind occurs, these 

Signaling and Condition Handling Procedures 6-25 



values are restored to RO and Rl. Thus a handler can mod­
ify these values to change the function value returned to a 
caller. 

When writing condition handlers, you should determine whether the error 
that has occurred is the one expected. This can be done by checking the 
condition value in the signal argument vector and/or the depth in the mecha­
nism vector for the expected values. 

Examples 

$CHFDEF 
• EXTRN 
.ENTRY 
CLRL 
MOlJL 
CMPL 
BNEQ 

The following FORTRAN program establishes a handler which corrects a 
SIGNIFICANCE LOST IN MATH LIBRARY error by setting the value to 
be returned in RO or RO/Rl to 0 in the mechanism vector. It continues 
execution rather than resignaling. No error message is printed. 

EXTERNAL HANDL 
CALL LIB$ESTABLISH CHANDL) 

Y SIN(}{) 

END 

INTEGER*4 FUNCTION HANDL CSIGARGS1 MECHARGS) 
I NTEGER*4 SI GARGS < 7) , MECHARGS < 5) 
INCLUDE 'SYS$LIBRARY:MTHDEF.FOR' ! define MTH$ ••• ,Ymbols 
HANDL = 0 ! Assume Resisnal 
IF CSIGARGSC2) .EQ. MTHLSIGLOSMAT) THEN 

MECHARGSC4) 0 set imase of RO to 0 
MECHARGSC5) = 0 set imase of Rl to 0 
HANDL = 1 ! force continue instead of resisnal 

END IF 
RETURN 
END 

When the handler is called, it tests to see if the error being signaled is 
MTH$_SIGLOSMAT (SIGNIFICANCE LOST IN MATH LIBRARY). If 
it is, the handler sets the saved copy of RO/Rl in the mechanism vector to 
0, so that the function value result returned to the caller of the math 
routine will be +0.0, rather than the reserved operand -0.0. Then, rather 
than resignaling, it returns success so that execution continues. No error 
message is printed. 

The equivalent MACRO code for this handler is: 

define CHF$ ••• sYmbols 
MTHLS I GLOS MAT condition 1.1alue 
HANDL, ··· M< > 
RO assume resisnal 
CHF$L_SIGARGLST<AP>, Rl ; Rl = adr of sisnal ars 1.1ector 
CHF$L_SIG_NAMECR1>, #MTHLSIGLOSMAT 
10$ ; branch if not expected error 

6-26 Signaling and Condition Handling Procedures 



MOVL 
CLRQ 
MDI.IL 

10$: RET 

CHF$L_MCHARGSLST<AP> t R1 ; R1 = adr of r11ech ars 1Jector 
CHF$L_MCH_SAVRO<R1> ; s~t Math return value to +o.o 
*1=1 t RO ; return SS$_CONTINUE 

; resisnal or continue 

The following FORTRAN code fragment asks the user for a file name. If 
an error occurs, the FORTRAN program signals the standard FORTRAN 
I/O statement error condition, using the same format as would have been 
signaled by the Run-Time Library if ERR= had been omitted. Thus, the 
user is told exactly why the file could not be opened. 

CHARACTER*40 FILE-NAME 
INTEGER*4 RMS_STSt RMS_STVt COND_VAL 

100 TYPE *t ' TYPe File NaMe ' 
ACCEPT *t FILE_NAME 
OPEN <UNIT = 10t ERR= 200t TYPE 'OLD' t NAME= FILE_NAME> 

200 CALL ERRSNS < t RMS_STS t RMS_STl.l t COND_l,lAL) 
CALL LIB$INSV <3t0t3 COND_VAL) Set SeveritY to INFO 
CALL LIB$SIGNAL <%VAL <COND_VAL) t 
1 ·x.1.JAL<3> t No. of FAD arss 
2 'X,1.JAL < 10 > t 
3 FILE_NAMEt 
4 'X,t.lAL < 0) t 
5 /.,I.JAL ( RMS_STS) t 
7 %VAL<RMS_STV>> 
GO TO 100 

Losical Unit No. 
File Nar11e 
User PC 
RMS Error Status or 0 
VAX/VMS Statust RMS value or 0 
tn' asain 

If any open error occurs, the ERR= transfer occurs (with no signaled 
condition). Statement 200 calls ERRSNS, which returns the FORTRAN 
condition value, the V AX-11 RMS value and V AXNMS condition value. 
The severity field is then set to 3 to indicate INFO so that no stack 
traceback is printed. Finally, the condition is signaled using the same 
format as the Run-Time Library itself. However, since the condition is 
being signaled by LIB$SIGNAL instead of LIB$STOP and the severity 
has been changed from SEVERE to INFO, execution will continue after 
the message has been printed. 

In BASIC, the user condition handler (ON ERROR GO TO line-number) 
can only intercept BASIC specific errors. All other errors are automati­
cally resignaled without giving control to the BASIC error handler. The 
BASIC error number can be obtained using the BASIC built-in function, 
ERR. 

6. 7 .3 Restrictions for Accessing Data from Handlers 

In order not to affect compiler optimization, a handler and anything it calls 
are restricted to referencing only arguments explicitly passed to the handlers. 
They cannot reference COMMON or other external storage, nor can they 

Signaling and Condition Handling Procedures 6-27 



reference local storage in the procedure that established the handler. Com­
pilers that relax this rule must ensure that any variables referenced by the 
handler are always kept in memory, not in a register. 

6.8 Returning from a Condition Handler 

There are three mutually exclusive possibilities for a handler when it returns 
control to its caller, the VAX-11 Condition Handling Facility: 

1. Indicate that the condition is to be resignaled (R0<0> = 0) 

2. Indicate that execution is to continue at the point of the signal 
(R0<0> = 1) 

3. Indicate that the stack is to be unwound (call SYS$UNWIND) 

6.8.1 Reslgnaling 

All condition handlers should check for specific errors. If the signaled condi­
tion is not one of the expected errors, a handler should resignal. If a handler 
wants to resignal the condition, it returns with the function value 
SS$-RESIGNAL ("false", that is, with bit 0 clear). If a handler wants to 
alter the severity of the signal, it modifies the low three bits of the condition 
value and resignals. 

For example, if a handler changes the severity of an error from SEVERE to 
ERROR and resignals, the default action is for the error message and a stack 
traceback to be printed by the default traceback handler and for execution to 
continue. If a handler changes the severity from SEVERE or ERROR to 
INFO, the default action is for the error message to be printed and for execu­
tion to continue. If a handler wants to alter the defined control bits of the 
signal, it modifies bits 31:28 of the condition value and resignals. 

Example 

The following FORTRAN example enables floating-point underflow after 
first establishing a handler. The handler changes the severity of any 
floating-point underflow condition from SEVERE to INFO and then resig­
nals. Therefore, each floating-point underflow error gets a message, and 
then continues using the hardware fixup of zero. 

SUBROUTINE CALC 
EXTERNAL HANDLE-FU 
CALL LIB$ESTABLISH <HANDLE-FU> 
CALL LIB$FLT_UNDERC1) 

RETURN 
END 

INTEGER*a FUNCTION HANDLE_FU <SIGARGS, ME~HARGS> 

INTEGER*a SIGARGS<3>, MECHARGS CS> 
INCLUDE 'SYS$LIBRARY:SIGDEF' ! Define 88$_ ••• svMbols 
HANDLE-FU = SS$_RESIGNAL ! Always resisnal 

6-28 Signaling and Condition Handling Procedures 



IF CSlGARGSCZ> .EQ. SS$_F~TUND> THEN ! If f loatins underflow 
CALL Ll8$1NSV C3tOt3tSIGARGSCZ>> ! Set INFOt severity 

ENDIF 
RETURN Always Resisnal 
END 

When any exception occurs in CALC, HANDLE_FU is called. It first 
determines if the condition value is the floating-point underflow arithme­
tic trap (SS$_FLTUND). If so, it changes the severity to INF0(3). Then, 
it always resignals the error so that an error message is always printed. 
Execution continues only for floating underflow errors. 

NOTE 

To resignal in BASIC, a user condition handler executes the 
statement, ON ERROR GO BACK. 

6.8.2 Continuing 

If a condition handler wants execution to continue from the instruction 
following the call to LIB$SIGNAL or the instruction following a hardware 
arithmetic trap (such as integer overflow), and also wants no error mes­
sages or traceback, it must return with the function value SS$_CONTINUE 
(bit 0 = 1). If, however, the condition was signaled with a call to'LIB$STOP, 
the error message: ATTEMPT TO CONTINUE FROM STOP is printed and 
the image is exited. The only way to continue from a call to LIB$STOP is for 
the condition handler to request a stack unwind. If it wants to unwind, it calls 
SYS$UNWIND and then returns (see Section 6.8.3). In this case the handler 
function value is ignored. 

If execution is to continue after a hardware fault (such as a reserved operand 
fault) has occurred, the condition handler must correct the cause of the condi­
tion before returning the function value SS$_CONTINUE or requesting a 
stack unwind. The correction is required; otherwise, the instruction that 
caused the fault will be executed again. 

Examples 

In FORTRAN, the following procedure first enables floating-point under­
flow detection, then establishes a handler which merely tallies each 
floating-point underflow trap and continues: 

C PROGRAM TO COUNT UNDERFLOWS 
EXTERNAL CNT-HANDLERt ND-UNDERFLOWS 

CALL L18$ESTABLISH CCNT_HANDLER> 
CALL L18$FLT_LJNDER Cl> 

TYPE*• 'NuMber of Underflow TraPs:', NO_UNDERFLOWSC> 
END 

Signaling and Condition Handling Procedures 6-29 



c 

INTEGER*4 FUNCTION CNT_HANDLER CSIGARGSt MECHARGS) 
I NTEGER*4 SI GARGS C 3) , MECHARGS C 5) , UNDER-FLO_COUNT 
INCLUDE 'SYS$LIBRARY:SIGDEF' define sYsteM SYMbols 
SAVE UNDER_FLD-COUNT 
CNT_HANDLER = SS$_RESIGNAL ! AssuMe resifnal 
IF CSIGARGSC2) .EQ. SS$_FLTUND) THEN ! If float underflow 

UNDER-FLO-COUNT = UNDER_FLO_COUNT + 1 
CNT_HANDLER = SS$_CONTINUE ! Chanfe to continue 

END IF 
RETURN 

C Routine to return nuMber of underflows 
c 

ENTRY NO_UNDERFLOWS 
NO_UNDERFLOWS = UNDER_FLO_COUNT 
RETURN 
END 

If an exception occurs during the execution of the main program, the 
condition handler (CNT_HANDLER) is called. This handler must deter­
mine whether the condition being signaled is one that it was expecting. A 
floating-point underflow trap is signaled as an arithmetic exception 
(SS$_FLTUND). Thus, the handler tests for the condition value 
(SIGARGS(2)). If the condition is floating-point underflow, the handler 
counts it and continues execution at the point of the underflow. If the 
condition is anything other than floating-point underflow, it is resignaled. 
In the case of underflow, the hardware automatically corrects the result to 
be +0.0. 

In BASIC, a user condition handler cannot continue execution at the next 
instruction (see next section). 

6.8.3 Request to Unwind 

Stack unwinding is a way to remove one or more frames from the stack 
starting with the frame in which the condition occurred. It is a fairly drastic 
method of altering the flow of control. It may be used whether the condition 
was detected by hardware, or signaled by LIB$SIGNAL or LIB$STOP. 
Unwinding is the only way to continue execution after LIB$STOP has been 
called. In addition to specifying the number of pre-signal frames to be re­
moved, a return PC that is different from the one in the last frame unwound 
can be specified. 

If a handler wants to unwind, the handler, or any procedure it calls, executes 
the SYS$UNWIND system service as specified by: 
Format 

ret-status = SYS$UNWIND( [depth= handler depth + l], 
[new-PC= return PC] ) 

depth 
Address of a longword containing the number of frames to be removed, 
starting with the frame where the condition occurred. A depth of zero 
indicates the call frame that was active when the condition occurred, one 
indicates the caller of that frame, two indicates the caller of the caller of 

6-30 Signaling and Condition Handling Procedures 



the frame, and so on. If depth is. specified as zero or less, no unwind occurs. 
If no address is specified, the unwind is performed to the caller of the 
frame that established the condition handler, that is the handler depth 
plus one. 

new-PC 
The address of the instruction to receive control when the unwind is com­
plete. It is passed by-value. The default (new-PC = 0) is to continue 
execution with the instruction immediately following the CALLS or 
CALLG to the last procedure that is unwound. 

Return Status 

SS$_NORMAL 
Service successfully completed. 

SS$_NOSIGNAL 
No signal was active. 

SS$_UNWINDING 
Already unwinding. 

SS$-1NSFRAME 
Insufficient frame depth. 

Notes 

Because this is a system service, the comma is required if both optional 
arguments are omitted. 

If the handler wants to specify the function value of the last function 
to be unwound, it should modify the saved copies of RO and Rl 
(CHF$L_MCH_SAVRO, CHF$L_MCH_SAVR1) in the mechanism 
vector. RO and Rl are restored from the mechanism argument vector at 
the end of the unwind. 

Depending on the argument(s) to SYS$UNWIND, the unwinding opera­
tion will terminate as follows in FORTRAN: 

• SYS$UNWIND(,) - unwind to the establisher's caller 

• SYS$UNWIND(DEPTH,) - unwind to the establisher at the point of 
the call that resulted in the exception 

• SYS$UNWIND(DEPTH,%VAL(LOCATION)) - unwind to a specified 
activation and transfer to a specified location 

SYS$UNWIND can be called whether the condition was a software condi­
tion signaled by calling LIB$SIGNAL or LIB$STOP, or was a hardware 
exception. 

Any function value from the handler is ignored. Therefore, a handler can­
not both resignal and unwind. Consequently, the only way for a handler to 
both issue a message and unwind is to call LIB$SIGNAL and then call 
SYS$UNWIND. (See Section 6.11, Multiple Active Signals.) 

Signaling and Condition Handling Procedures 6-31 



The unwind will occur when the handler returns to its caller, the condition 
handling facility. Unwinding is done by scanning back through the stack 
and calling each handler that has been established in a frame. Each han­
dler is called with a condition value of SS$_UNWIND to perform any 
application specific cleanup. In particular, if the depth specified includes 
unwinding the establisher's frame, then the current handler will be called 
again with this unwind exception. Handlers established by the primary, 
secondary, or last-chance vectors are not called, since they are not re­
moved during an unwind operation. 

The call to the handler is of the same form as described previously with 
the following values: 

signal-args 
1 
condition_value = SS$_UNWIND 

mechanism-args 
4 
frame establisher's frame 
depth 0 (that is, unwinding self) 
RO RO that unwind will restore 
Rl Rl that unwind will restore 

When the handler returns, the return status from the handler is ignored. 
The stack is then cut back to the previous frame. 

Example 

This FORTRAN example shows a matrix inversion procedure, using the 
logical function INVERT to indicate success or failure. Thus, if the matrix 
can be inverted, the logical value returned in INVERT is . TRUE. If, 
however, the matrix is singular, and therefore cannot be inverted, the 
logical value .FALSE. is returned. A condition handler is provided to 
detect failure and return .FALSE. to the calling program. Note that the 
condition handler is an INTEGER*4 function. 

LOGICAL FUNCTION INVERT CAtN) 
DIMENSION A(NtN) 
E}<TERNAL HANDL 
CALL LI8$ESTABLISH CHANDL) ! ESTABLISH HANDLER 
INVERT = .TRUE. ! ASSUME SUCCESS 

RETURN 
END 

<INVERT THE MATRIX> 

6-32 Signaling and Condition Handling Procedures 



I NTEGER*ll FUNCTION HANDL . <SI GARGS t MECHARGS > 
I NTEGER*ll SI GARGS < 3 > t MECHARGS < 5 > 
INCLUDE 'SYS$LIBRARY:SIGDEF' 
HANDL = SS$_RESIGNAL ! ASSUME RESIGNAL 

IF (SI GARGS ( 2 > • EQ. SSLFL TOI.IF •OR. SI GARGS < 2) 
1 .EQ. SS$_FLTDIV> THEN 

MECHARGSCll> = .FALSE. 

RETURN 
END 

CALL SYS$UNWINDC'X.l.1AL<O> t'X,lJAL<O>) 
ENDIF 

If an exception occurs during the execution of INVERT, the condition 
handler (HANDL) is called. The handler must first determine whether the 
condition being signaled is one that it can deal with. A floating-point 
overflow is signaled as an arithmetic exception with additional arguments 
indicating the specific arithmetic exception. Thus, the condition handler 
tests the condition value (SIGARGS(2)) and the optional third argument 
(SIGARGS(3)). If the condition is floating overflow, the condition handler 
causes a return to INVERT with the value .FALSE. 

If the condition is floating-point underflow, the condition handler uses 
the unwind procedure to force a return to the procedure which called 
INVERT. The logical value .FALSE. is stored in the sayed RO element of 
the mechanism vector (MECHARGS(4)). This value is used as the func­
tion value for INVERT when the unwind occurs. The handler calls 
SYS$UNWIND and returns; the V AX-11 Condition Handling Facility 
then gets control and actually performs the unwind operation. Note that 
the function value from the user condition handler (HANDL =.FALSE.) 
is ignored if SYS$UNWIND is called. 

If the exception condition is not a floating overflow, the condition handler 
returns a value of .FALSE., indicating that it is not able to deal directly 
with the condition. The immediately preceding procedure activation is 
then checked for a condition handler; the search continues until an estab­
lished condition handler or the system condition handler is reached. 

In BASIC, a user condition handler can restart the current statement in 
the same module using a RESUME statement or can start at an arbitrary 
statement in the same module using a RESUME line-number statement. 

6.8.4 Summary of Interaction Between Handlers and Default 
Handlers 

All combinations of interaction between condition handler actions, the default 
condition handlers, the type of signal, and the call to signal or stop are de­
tailed in Table 6-2. 

Signaling and Condition Handling Procedures 6-33 



Table 6-2: Interaction Between Handlers and Default Handlers 

CALL to: 

LIB$SIGNAL 
or 

hardware 
exception 

LIB$STOP 

Signaled 
Condition Default Handler Handler No Handler 
Severity Handler Specifies Specifies Is Found 

<2:0> Gets Control Continue UNWIND (bad stack) 

<4 condition RET UNWIND Call 
message last 

RET chance 
handler 

EXIT 

=4 condition RET UNWIND Call 
message last 

EXIT chance 
handler 

EXIT 

force condition "CAN'T UNWIND Call 
(=4) message CONTINUE'' last 

EXIT EXIT chance 
handler 

EXIT 

In the table, CAN'T CONTINUE indicates an error which results in the error 
message ATTEMPT TO CONTINUE FROM STOP. 

6.9 User Logging of Error Messages 

A handler can obtain a copy of the text of a signaled error message in order to 
write the message into an auxiliary file such as a listing file. Thus, the user 
can receive identical messages at the terminal (or batch log file) and in the 
auxiliary file. 

To log messages, a handler calls the system service SYS$PUTMSG, specify­
ing a signal argument list and the address of an action routine. This routine is 
called by the handler with each line of the message passed as a single parame­
ter consisting of a string descriptor. To understand how to write a handler 
which obtains the error message text, you must understand the system sup­
plied default handlers and the SYS$PUTMSG system service. 

6.9.1 SYS$PUTMSG Put Message System Service 

This section describes the Put Message SYS$PUTMSG system service, which 
the system-supplied default handlers call to output all error messages to the 
user terminal or batch log file. To centralize this important function, no other 
means should be used to output error messages. Furthermore, rather than call 
this service directly, user programs should call LIB$SIGNAL or LIB$STOP to 
preserve modularity and permit calling programs to recover or change the 
error message. The signaled message arguments (Section 6.6.4) consist of one 
or more message sequences passed to SYS$PUTMSG by the system-supplied 
condition handler. 

6-34 Signaling and Condition Handling Procedures 



Each "message sequence" is processed as follows: 

1. Special setup is performed for SYS (subsystem 0) messages and VAX-11 
RMS (subsystem 1) messages. 

2. The model message text is obtained from a file by calling SYS$GETMSG. 

3. SYS$FAO is called, if necessary, to insert caller-supplied information into 
the model message. 

4. The caller's action routine (see Section 6.9.2), if present, is called. If this 
routine returns a failure code, Steps 5 and 6 are skipped. 

5. The message is sent to SYS$0UTPUT. 

6. The message is also sent to SYS$ERROR if: (1) the severity of the primary 
message is not SUCCESS, (that is, bits 2:0 of condition value are not 1); 
and (2) SYS$ERROR is different from SYS$0UTPUT. 

See the VAX/VMS System Services Refe_rence Manual for a complete descrip­
tion of SYS$PUTMSG. 

Format 

ret-status = SYS$PUTMSG (msg-list, [action-routine], [fac-namel) 

msg-list 
Address of array of longwords containing one or more message sets. The 
contents of the array is the same as that produced by the signal argument 
vector. 

action-subroutine 
Optional address of action subroutine called on each line of output. 

fac-name 
Optional address of a string descriptor for a facility name to replace the 
one specified in bits 27 to 17 of the condition value in the second longword 
of msg-list. 

Notes 

Because this is a system service, the two commas are always required even 
if both optional arguments are omitted. For example, in FORTRAN: 

INTEGER COND_VALt SIGARGSC7> 
COND_l.JAL = SYS$ PUT MSG' (SI G_ARGS t t > 

Call LIB$SIGNAL or LIB$STOP instead of SYS$PUTMSG, except when 
setting up a handler to log messages. Such a handler should return 
.FALSE. so that the condition is resignaled. 

6.9.2 Caller-Supplied Action Subroutine 

A caller to SYS$PUTMSG who wants to use the standard message mecha­
nisms but needs to perform additional message processing may specify an 

Signaling and Condition Handling Procedures 6-35 



action subroutine to be called after each message line has been formatted but 
before the message is actually output. 

The caller's action subroutine is passed the address of a string descriptor 
which contains the length and address of the formatted message. The action 
subroutine can scan the message and/or copy it into a log file. 

If the action subroutine returns a success completion code (bit 0 = 1), 
SYS$PUTMSG puts the message line in file SYS$ERROR and/or 
SYS$0UTPUT. If a failure code is returned (bit 0 = 0), the remaining 
SYS$PUTMSG processing for that single message sequence is skipped, so 
that the message is not output to SYS$0UTPUT or SYS$ERROR. User sup­
plied action routines should return a failure code so that the callers of your 
procedure can decide whether to output the message or not. 

The following FORTRAN handler receives all errors occurring in the main 
program or any procedures called by the main program, and directs the asso­
ciated error message text into file ERRLOG .DAT. Then it resignals so that 
the user also receives the error message on SYS$0UTPUT or SYS$ERROR. 

C MAIN PROGRAM 
EXTERNAL LOG_HANDL 

OPEN (UNIT=99t FILE= 'ERRLOG', STATUS 
CALL LI6$ESTABLISH (LOG_HANDL> 

END 

'NEW') 

INTEGER*4 FUNCTION LOG_HANDL <SIGARGS, MECHARGS> 
I NTEGER*4 SI GARGS < 9 > , MECHARGS ( 5 > 

C HANDLER TO JOURNAL ANY SIGNALED ERROR MESSAGES 
INCLUDE 'SYS$LIBRARY:SIGDEF' 
EXTERNAL PUT_LINE 
LOG_HANDL = .FALSE. AlwaYs resisnal 
CALL SYS$PUTMSG (SIGARGS, PUT_LINE, ) 
RETURN 
END 

C ACTION SUBROUTINE ! OutPut strins Passed to unit 
c ! 99 

LOGICAL*4 FUNCTION PUT_LINE (LINE> 
CHARACTER*<*>LINE 
PUT_LINE = .FALSE. ! AlwaYs suppress other outPut 

100 WRITE <99,200) LINE 
200 FORMAT(A) 

RETURN 
END 

In this example, the main program opens file ERRLOG .DAT. Then the condition 
handler LOG_HANDL is established. Because LOG_HANDL is established 
after ERRLOG .DAT has been opened, LOG_HANDL will not be called if an 
error occurs while opening the file. When any error condition is signaled, the 
handler LOG_HANDL is called. It passes the signal argument vector to 
SYS$PUTMSG, along with the address of the action subroutine PUT-LINE. 
SYS$PUTMSG calls PUT _LINE once for each line in the error mes­
sage. PUT_LINE writes the line on unit 99. Then it returns with an error 

6-36 Signaling and Condition Handling Procedures 



indication which causes SYS$PUTMSG not to output any lines to 
SYS$0UTPUT and SYS$ERROR. Finally, LOG_HANDL returns with a 
resignal so that the regular error message output and traceback will be per­
formed by the system supplied default handlers. The normal VAX-11 RMS 
I/O rundown will close the log file. 

Note that if an error occurs during the WRITE in statement 100, there will be 
multiple active signals (see Section 6.11). In this case, the stack scan skips 
frames which have already been scanned for the active signals, thereby avoid­
ing loops. Thus, LOG_HANDL would not be called again. Instead, one of the 
system default handlers would get control and output the error to the user. 

6.10 Signal Handling Procedures 

This section describes procedures that can be established as condition han­
dlers or called from handlers to handle signals. The programming examples 
illustrate common types of handlers. 

LIB$MATCH_COND 

6.10.1 Match Condition Values 

Each handler must examine the signal parameter list vector to determine 
which error is being signaled. If the error is not one that the handler knows 
about, the handler should resignal. A handler should not assume that only one 
kind of error can occur in the procedure which established it or any procedures 
it calls. However, because a condition value may get modified by an interven­
ing handler, each handler should only compare that part of the condition 
value that distinguishes it from another. 

LIB$MATCH_COND is provided for programmers who want to match a list 
of one or more condition values. It is designed to be used in multi-way branch 
statements available in most higher level languages. 

LIB$MATCH_COND checks for a match between the condition value ad­
dressed by cond-val and the condition values addressed by the subsequent 
parameters. Each parameter is the address of a longword containing a 
condition value. 

LIB$MATCH_COND takes a portion (STS$V_COND-1D) of the condi­
tion value pointed to by the first parameter and compares it to the same 
portion of the condition value pointed to by the second through nth parame­
ters. Furthermore, if the facility-specific bit (STS$V _F AC_SP = bit 15) is 
clear in cond-val (meaning that the condition value is system-wide rather 
than facility specific), the facility code field (STS$V_FAC_NO =bits 27:17) 
is ignored and only the STS$V _MSG-1D fields (bits 15:3) are compared. 
(See Section C.4 Condition Values for more details.) The routine returns a 0 if 
a match is not found, a 1 if the second parameter matches, a 2 if the third 
parameter matches, and so on. A check is made for null parameter entries in 
the parameter list. 

Signaling and Condition Handling Procedures 6-37 



Format 

index= LIB$MATCH_COND (cond-val, cond-val-i...) 

cond-val 
Address of a longword containing the condition value to be matched. 

cond-val-i 
Address of longwords containing condition value(s) to be compared to 
cond-val. 

index 
A 0, if no match found; i, for match between the first and (i+l)st 
parameter. 

Notes 

When LIB$MATCH_COND is called with only two parameters, the pos­
sible values for index are .TRUE. (1) or .FALSE. (0). 

Examples 

The following FORTRAN program fragment tests for File Not Found: 

INCLUDE 'SYS$LIBRARY:FORDEF.FOR' ! Declare FOR$.•• SYMbols 
IF <LIB$MATCH_COND CSIG_ARGSC2>, FOR$_FILNOTFOU>> THEN 

If a match occurs, a true value is returned, if not, a false value is returned. 

The following FORTRAN program uses a computed GOTO to dispatch on 
a condition value: 

INCLUDE 'SYS$LIBRARY:FORDEF.FOR' ! Define FOR$ ••• sYMbols 
INTEGER*4 SIG-ARGSC9> 
I = LI 5$MATCH_COND <SI G_ARGS < 2 > , FOR$_F I LNOTFOU t 

1FOR$_NO_SUCDEVt FOR$_FILNAMSPEt FOR$_0PEFAI> 
GO TO ( 100 t 200 t 300 t aoo) t I 

(if SoMe Other Error) 

100 (if File Not Found) 
200 (if No Such Device> 
300 (if File NaMe SPecification Error) 
400 Cif 0Pen Failure) 

6-38 Signaling and Condition Handling Procedures 



LIB$FIXUP_FL T 

6.10.2 Fixup Floating Reserved Operand 

LIB$FIXUP _FLT finds the reserved operand of any F _, D_, G_, or 
H_floating instruction (with exceptions stated in the next paragraph) after a 
reserved operand fault has been signaled. LIB$FIXUP _FLT changes the 
reserved operand from -0.0 to the parameter, new-operand, if present; or 
to +0.0 if new-operand is absent. 

LIB$FIXUP _FLT cannot handle the following cases and will return a status 
of SS$_RESIGNAL if any of them occur: 

1. The currently active signaled condition is not SS$_ROPRAND. 

2. The reserved operand's data type is not F_, D_, G_, or H_floating. 

3. The reserved operand is an element in a POL Yx coefficient table. 

Format 

ret-status = LIB$FIXUP _FLT (sig-args-adr, mch-args-adr [,new-operand]) 

sig-args-adr 
Address of signal argument vector. 

mch-args-adr 
Address of mechanism argument vector. 

new-operand 
Address of an F_floating value to replace the reserved operand. This is an 
optional parameter, the default value is +0.0. 

Return Status 

SS$_NORMAL 
Routine successfully completed. The reserved operand was found and has 
been fixed up. 

SS$_ACCVIO 
Access violation. An argument to LIB$FIXUP _FLT or an operand of the 
faulting instruction could not be read or written. 

SS$_RESIGNAL 
The signaled condition was not SS$_ROPRAND or the reserved operand 
was not a floating point value or was an element in a POLYx table. 

SS$_ROPRAND 
Reserved operand fault/abort. The optional argument new-operand was 
supplied but was itself an F_floating reserved operand. 

LIB$_BADSTA 
Bad Stack. The stack frame linkage has been corrupted since the time of 
the reserved operand exception. 

Signaling and Condition Handling Procedures 6-39 



Notes 

If the status value returned from LIB$FIXUP _FLT is seen by the condi­
tion handling facility, (as would be the case if LIB$FIXUP _FLT was the 
handler), any success value is equivalent to SS$_CONTINUE, which 
causes the instruction to be restarted. Any failure value is equivalent to 
SS$-RESIGNAL, which causes-the condition to be resignaled to the next 
handler. This is because the condition handler (LIB$FIXUP _FLT) failed 
to handle the condition correctly. 

Examples 

The following FORTRAN program permits 15 floating-point overflows to 
occur before exiting, thereby overriding the system default action of exit­
ing after the first overflow. The program converts the floating-point over­
flow condition value from SEVERE to ERROR and resignals. Thus, the 
error message and stack traceback is printed by the default handler, but 
execution continues. When the program references the reserved operand 
stored by the hardware on floating-point overflow, it fixes up the reserved 
operand and continues without an error message. 

C MAIN PROGRAM 
EXTERNAL HANDL 
CALL LIB$ESTABLISH (HANDL) 

CALL 

END 

establish handler 

INTEGER*4 FUNCTION HANDL (SIGARGS, MECHARG8> 
I NTEGER*4 8 I GAR GS ( 3 > , MECHARG8 ( 5 > , ERROR_COUNT 
INCLUDE '8YS$LIBRARY:8IGDEF' ! define 88$_ ••• sYMbols 
HANDL = S8$_RE8IGNAL ! AssuMe resiSnal 
IF (LIB$MATCH_COND (8IGARG8(2), 88$_FLTOVF>> THEN ! Float ouf? 

ERROR_COUNT = ERROR-COUNT + 1 
IF (ERROR_COUNT .LT. 15) THEN 

CALL LIB$INSV (2, o, 3, SIGARG8(2)) ! Set to ERROR 
ENDIF 

ELSE 
HANDL LIB$FIXUP_FLT C8IGARGS, MECHARGS> 

ENDIF 
RETURN 
END 

If an exception occurs during execution of the main program, any proce­
dure which it calls, or any procedure which they call, the condition han­
dler (HANDL) is called. The handler must first determine whether the 
condition being signaled is one that it can act upon. A floating-point 
overflow is signaled as an arithmetic trap. Thus, the condition handler 
tests the condition value (SIGARGS(2)) for a match with SS$_FLTOVF 
by calling LIB$MATCH_COND. If the condition is SS$_FLTOVF, the 
condition handler increments the count of floating-point overflows. If the 

6-40 Signaling and Condition Handling Procedures 



count is still less than 15, the severity field (bits 2 to 0) of the condition 
value are changed from SEVERE ( =4) to ERROR ( =2) using the insert 
field library procedure, LIB$INSV. Changing the severity will cause the 
program image to continue after printing the message, rather than exiting. 

If the condition being signaled was not an arithmetic exception, then 
LIB$FIXUP _FLT is called to check for a reserved operand condition and 
if so to correct the reserved operand (if present) to +0.0. If the correction 
was successful, LIB$FIXUP_FLT returns SS$_NORMAL which, when 
assigned to HANDL, causes execution to continue with no error message 
when HANDL returns. If the condition was other than the reserved operand, 
LIB$FIXUP _FLT returns an error condition which, when assigned to 
HANDL, causes the condition to be resignaled when HANDL returns. 

In MACRO the equivalent code is as follows: 

+TITLE FLT_CONT - Continue after f loatins overflow 
.ENTRY FLT_CONTt ~M< ••• > 
MOVAL HANDLt (FP> Establish Handler 

CALL ... 

MOl.JL "* 1 , RO 

RET 
+END FLT-CONT 

Call other Procedures 

return success since there 
were less than 15 errors 
return f roM Main ProsraM 

.TITLE HANDL Handler to continue for 15 overflows 
$CHFDEF def cond hand SYMbols (CHF$ ••• > 
$STSDEF &: cond 1.1alue S)'1r1bols (STS$ ••• ) 
$SSDEF define SYSteM SYMbols (SS$ ••• ) 
.PSECT $DATAt REDt WRTt NOEXE 

ERROR_COUNT: 
+LONG 0 ; error count initialized to 0 
.PSECT $CODEt REDt NOWRTt EXEt PIC 
• ENTRY HANDL, ·' M< > 
MOl.JL CHF$L_SIG_NAME(AP), R1 R1 = adr of sisnal 1.1ector 
CMPV #STS$V_COND_IDt - Pos of cond ident 

BNEQ 
INCL 
CMPL 
BGEQ 
INSl.J 

MOt.JL 
RET 

#STS$S_COND_IDt - size of cond ident 
CHF$L_SIG_NAME(R1>, - ; the sisnaled condition value 
#(SS$_FLTOVF@-STS$V_COND-ID> ; arithMetic excePtion 

NOT _FLT _Ol.JER 
ERROR_COUNT 
ERROR _COUNT , ~*15 

RESIGNAL 
#STS$K_ERRORt 
#STS$V_SEl..IER I TY, 
#STS$S_SEl.JER I TY , 
CHF$L_SIG-NAME(R1> 

SS$_RESIGNALt RO 

condition shifted risht 
to line UP with condition idt 
so severitY field is 
isnored in case it is already 
chansed by an intervenins 
handler. 
branch if not f loatins overflow 
count this f loatins overflow 
exceeded MaxiMUM liMit Yet? 
branch if it has 
severitY code of ERROR 
Position of severity field 
size of severity field 
chanse severity field of 
sisnaled condition 
RO = resisnal status 
return & resisnal SEVERE or ERROR 

Signaling and Condition Handling Procedures 6-41 



;+ 
; Here if not floatins overflow - if reserved oPerand faultt fixuP and 
; continue executinn; otherwise resisnal 

NOT _FLT _QtJER: 
CALLG CAP> t LIB$FIXUP_FLT Pass sisnal & Mech arss alons 

if floatins reserved oPerandt 

RET 

f ixuP & return RO = SS$_CONTINUE 
otherwise RO = error code so 
return 

LIB$SIG_TQ_RET 

6.10.3 Convert any Sign al to a Return Status 

LIB$SIG_TO_RET converts any signaled condition to a function value to be 
returned to the caller of the user procedure containing LIB$SIG_ TO_RET. 
It may be established as or called from a condition handler. LIB$SIG_ TO_RET 
is called with the argument list passed to a condition handler by the condition 
handling facility. The signaled condition is converted into a return to the 
program that called the procedure that established the handler. The stack is 
unwound to the caller of the establisher and the condition code is returned as 
the value in RO. 

Format 

ret-status = LIB$SIG_TO_RET (sig-args-adr, mch-args-adr) 

sig-args-adr 
Address of the signal arguments vector. 

mch-args-adr 
Address of mechanism arguments vector. 

Return Status 

SS$_NORMAL 

Procedure successfully completed; SS$_UNWIND completed. Otherwise, 
the error code from SS$_UNWIND is returned. 

Notes 

LIB$SIG_TO_RET causes the stack to be marked to be unwound as far 
back as the caller of the procedure that established the handler which was 
called on this signal. 

Example 

This FORTRAN example shows a matrix inversion procedure that uses 
the integer function INVERT to indicate success or failure. Thus, if the 
matrix can be inverted, the logical value returned is .TRUE. If, however, 
the matrix is singular (causing a division by zero) or any other error 
occurs, the standard system condition value is returned. 

6-42 Signaling and Condition Handling Procedures 



INTEGER*a FUNCTION INVERT <AtN> 
DIMENSION A <NtN> 
EXTERNAL LI6$SIG_TO_RET 
CALL LIB$ESTABLISH <LIB$SIG_TO_RET> 
I Nl.lERT = • TRUE • 

Establish handler 
Assu1t1e success 

• <Invert the Matrix with no checKs for divide by zero> 

RETURN 
END 

If an exception occurs during the execution of INVERT, the condition 
handler (LIB$SIG_TO~ET) is called. The handler copies the condition 
value being signaled to the image of RO in the mechanism vector 
(CHF$L_MCH_SAVRO). Then it calls the system service 
SYS$UNWIND with defaults set so that the stack is unwound to the caller 
of INVERT with the error condition value in RO. The caller of INVERT 
can check for success or failure by an IF test on the returned value. Thus: 

IF <.NOT. INVERT <ARRAYt 100)) THEN GO TO error 

6.11 Multiple Active Signals 

A signal is said to be active until the signaler regains control or the stack is 
unwound. A signal can occur while a condition handler or a procedure it has 
called is executing. Consider the following example. For each procedure (A, B, 
C, ... ),let the condition handler it establishes be (Ah, Bh, Ch, ... ).If A calls B 
calls C which signals "S" and Ch resignals, then Bh gets control. If Bh calls X 
calls Y which signals "T", the stack is: 

<signal T> :top of stack 
y 
x 
Bh 

<signal S> 
c 
B 
A 

which was programmed: 

A 

B- - - - - - -- -•Bh 

c x 

<signal S> y 

<slgnal T> 

The desired order to search for handlers is Yh, Xh, <Bh>h, Ah. Note that Ch 
should not be called because it is a structural descendant of B. Bh should not 
be called again because that would require it to be recursive. If it were recur­
sive, then handlers could not be coded in nonrecursive languages such 

Signaling and Condition Handling Procedures 6-43 



as FORTRAN. Instead, Bh can establish itself or another procedure as its 
handler (Bhh). 

To implement this, the following algorithm is used. The primary and second­
ary exception vectors are checked. Then, however, the search backward in the 
process stack is modified. In effect, the stack frames traversed in the first 
search are skipped over in the second search. Thus, the stack frame preceding 
the first condition handler up to and including the frame of the procedure that 
has established the handler is skipped. Despite this skipping, depth is not 
incremented. The stack frames traversed in the first and second search are 
skipped over in a third search, etc. Note that if a condition handler SIGNALs, 
it will not automatically be invoked recursively. However, if a handler itself 
establishes a handler, this second handler will be invoked. Thus, a recursive 
condition handler should start by establishing itself. Any procedures invoked 
by the handler are treated in the normal way; that is, exception signaling 
follows the stack up to the condition handler. 

For proper hierarchical operation, an exception occurring during execution of 
a condition handler established in an exception vector should be handled by 
that handler rather than propagating up the activation stack. This is the 
vectored condition handler's responsibility. It is most easily accomplished by 
the vectored handler establishing a catch-all handler. 

The following FORTRAN procedure asks the user for a file name and opens 
that file on the logical unit passed as a parameter. If any kind of OPEN error 
occurs, the usual FORTRAN, RMS, and VAXNMS error messages are 
printed, but execution continues and the user is asked again for a file name. 
Recovery from a fatal error is achieved by a handler, which signals the error 
again with LIB$SIGNAL and severity changed to INFO so that execution will 
continue and no traceback will occur. 

SUBROUTINE FILE OPEN (UNIT> 
E}<TERNAL DO_OPEN 
INTEGER*a DO_OPEN, UNIT 

10 IF .NOT. rno_OPEN (UNIT>> THEN GO TO 10 
RETURN 
END 

C PROCEDURE TO DO OPEN 
INTEGER*a FUNCTION DO-OPEN (UNIT> 
EXTERNAL HANDLE_OPEN 
INTEGER*a UNIT 
CHARACTER*15 FILE 
CALL LIB$ESTABLISH (HANDLE_OPEN> 
DO_OPEN = 1 ! AssuMe success 

100 TYPE*' 'Type File NaMe' 
ACCEPT*' FILE 
OPEN (UNIT=UNIT, TYPE='OLD' NAME=FILE> 
RETURN ! success unless handler is called 
END 

C HANDLER FOR OPEN ERRORS 
INTEGER*a FUNCTION HANDLE-OPEN (SIGARGS, MECHARGS> 
I NTEGER*a SI GARGS ( 8 > , MECHARGS ( 5 > 
CALL LIB$INSV (3, Ot 3, SIGARGS(2)) ! Set severity to INFO 
CALL LIB$SIGNAL C%VAL(7), ! 7 followins lonswords 

6-44 Signaling and Condition Handling Procedures 



%VALCSIGARGS<Z>> t Sisnaled condition value 
2 %VAL<3> t #of followinS FAD arSst assuMe 3 
3 7..~IAL<SIGARGSCll)) t Unit nu1t1ber 
ll %VALCSIGARGSC5>> t Adr of resultant file descr 
5 'X,1JAL<SIGARGSC7) > t ! User PC 
G %VALCSIGARGSC3)+ll) t ! RMS STS no Matter how Many FAD arss 
7 7,,1JAL<SIGARGSC3)+5> > ! RMS STl.I no 1t1atter hoi,.1 1t1an}' FAD arss 
MECHARGS<ll> = 0 IMaSe of RO set to indicate error 
CALL SYS$UNWIND< t> Set to un•,..dnd 

RETURN 
END 

last call Made by establisher 
Resisnal 

If an error occurs in the OPEN statement, then the condition handler 
HANDLE_OPEN is called, which calls LIB$SIGNAL with the same signal 
argument list except: (1) PC and PSL are omitted from the end, and (2) the 
severity is changed to WARNING (0). The F AO arg count is assumed to be 
three, although the count could be larger. The RMS STS and STV are ob­
tained in a manner independent of the actual number of FAO arguments, 
which could be larger than three for some conditions in the future (see Section 
6. 7 .1). Then the handler sets the image of RO to a failure code and unwinds to 
the caller of the establisher, namely to FILE_OPEN, which tests function 
value of DO_OPEN; finding it .FALSE., the handler loops back and recalls 
DO_OPEN. 

Signaling and Condition Handling Procedures 6-45 





Chapter 7 
Syntax Analysis Procedures 

This chapter describes the use of procedures that perform string syntax analy­
sis, and pass complex instructions in a computer language such as command 
languages. Table 7-1 contains the names and titles of the syntax analysis 
procedures. 

Table 7-1: String Syntax Procedures 

Section Entry Point Name Title 

7.1 LIB$TPARSE A Table-driven Finite-state Parser 

7.12 LIB$LOOKUP _KEY Scan Keyword Table 

Chapter 3 contains procedures for manipulating strings; Chapter 5 contains 
procedures for writing and allocating dynamic strings. 

This chapter describes LIB$TP ARSE from an assembly language, or BLISS 
viewpoint. LIB$TPARSE can also be called from programs written in 
FORTRAN. However, the LIB$TPARSE state tables must be generated with 
a set of assembler or BLISS macros. Appendix G contains sample programs in 
MACRO and BLISS using LIB$TPARSE. 

7.1 LIB$TPARSE - A Table-Driven Finite-State Parser 

LIB$TPARSE is a general purpose table-driven parser. It is implemented as a 
finite-state automaton, with extensions that make it suitable for a wide range 
of applications, including command lines, most programming languages, and 
commands for special purpose utilities. TPARSE has built-in features to al­
low convenient implementation of commonly used command grammars; and 
the flexibility to handle special problems. 

7-1 



7.2 Fundamentals of a Finite-State Parser 

This section presents the basic principles of a finite-state, table-driven parser. 

A finite-state machine is a processor consisting of a set of states. The total 
memory available to the processor is the knowledge of which state it is in 
currently. (As an example, think of a computer with its program in read-only 
memory and its program counter in the only writable storage.) A string of 
symbols is input to this processor. Only the first symbol in the string is visible 
to the machine. For each state, there is a list of particular symbols that can be 
accepted in that state. Each symbol accepted by a state causes the machine to 
enter some other state. As the state transition is made, the symbol that 
caused the transition is removed frorp. the front of the input string. 

The symbol in the input string which is recognized by a single state transition 
is generally referred to as a token. A token can consist of one or more charac­
ters. The machine runs through a sequence of state transitions as it processes 
the consecutive tokens of the input string. 

The complete list of symbols that appear in the state transition lists of the 
machine is called the machine's alphabet. The machine will recognize a sub­
set of all possible strings that could be generated from the alphabet. Certain 
input strings will cause the machine to enter a state whose list of acceptable 
symbols does not include the next token in the string. Such strings are not 
accepted by the machine. A string is accepted by the machine if, in processing 
the string, the machine enters a state designated as a final state. A final state 
causes the machine to halt. Any portion of the input string that has not been 
processed already remains ignored. 

A finite-state machine can be used to check if a string of characters consti­
tutes a valid input in a language (such as the command language for a utility 
program). LIB$TPARSE is a general purpose finite-state machine simulator. 
A program uses LIB$TP ARSE by calling it with the string to be analyzed and 
a tabular description of the finite-state machine (called a state table). 
LIB$TPARSE reads the string, executes the state transitions of the machine, 
and returns a status indicating whether the machine halted in a final state or 
not. A string not accepted by the machine is said to contain a syntax error. 
The location of the syntax error is the position in the string at which the 
machine halted. 

LIB$TPARSE checks a string for valid syntax. LIB$TPARSE lets its caller 
extract the meaning of a string (the semantics, as opposed to the syntax) by 
calling an optional user-written action routine each time it makes a state 
transition. 

Action routines link semantics with the syntax defined by the state transitions 
in a state table. They are also useful for providing additional memory and 
computational ability that otherwise are not available to the basic finite-state 
machine. A different action routine can be called for each state transition in 
the state table. LIB$TPARSE makes available to the action routine addi­
tional information that can be useful in determining the meaning of the state 

7-2 Syntax Analysis Procedures 



transition. This includes the characters and the position in the input string of 
the current token. The action routine can use whatever global data base the 
user wants to provide. 

7.3 The Alphabet of LIB$TPARSE 

LIB$TPARSE provides an alphabet of symbols that can be used in construct­
ing state tables. This includes all of the basic building blocks needed for 
constructing a grammar using the ASCII character set. There are also symbols 
that represent the more complex constructions found in programming and 
command language grammar. 

This section describes the types of symbols that can be recognized by 
LIB$TPARSE. It also describes how each symbol is represented in a state 
table. The complete set of macro calls used to construct a state table is 
described in a Section 7.4. 

7 .3.1 'x' - Any Particular Character 

'x' matches the particular ASCII character. In a state table, it is expressed by 
enclosing the character in single quotation marks. The character can be any 
member of the 8-bit ASCII code set. Note that this symbol type matches the 
exact code only. Uppercase and lowercase alphabetics, and codes with bit 7 
different are not equivalenced. 

7 .3.2 TPA$_ANV - Any Slngle Character 

TP A$_ANY matches any single character. (The actual matching character is 
available to the action routine.) In a state table, it is expressed as the sym­
bolic name TPA$-ANY. 

7.3.3 TPA$_ALPHA - Any Alphabetic Character 

TPA$_ALPHA matches any character in the English alphabet, that is, 
uppercase and lowercase A through Z. 

7 .3.4 TPA$_DIGIT - Any Numeric Character 

TPA$_DIGIT matches any numeric character, that is, 0 through 9. 

7.3.5 TPA$_STRING - Any Alphanumeric String 

TPA$_STRING matches any string of one or more alphanumeric characters, 
that is, uppercase or lowercase A through Z, and 0 through 9. The string can 
be any length; it is bounded on the right by the first non-alphanumeric char­
acter seen in the input string (or by the end of the string). A descriptor of the 
matching string is available to the action routine. 

Syntax Analysis Procedures 7-3 



7.3.6 TPA$_SVMBOL - Any Symbol Constituent String 

TPA$_SYMBOL matches any string of one or more characters of the stand­
ard VAX-11 symbol constituent set, that is, uppercase and lowercase A 
through Z, 0 through 9, the dollar sign($), and the underscore(_), The string 
must be bounded on the right by some character not in the symbol constituent 
set (or by the end of the string). 

7.3.7 TPA$_BLANK - Any Blank String 

TPA$_BLANK matches any string of one or more blanks and/or tabs. 

7.3.8 TPA$_0ECIMAL - Any Decimal Number 

TPA$__DECIMAL matches any decimal number (that is, any string of one or 
more digits 0 through 9) whose magnitude is less than 2**32. The binary value 
of the number, converted in decimal radix, is available to the action routine. 

7.3.9 TPA$_0CTAL - Any Octal Number 

TPA$_0CTAL matches any octal number (that is, any string of one or more 
digits 0 through 7) whose magnitude is less than 2**32. The binary value of 
the number, converted in octal radix, is available to the action routine. 

7.3.10 TPA$_HEX - Any Hexadecimal Number 

TPA$-HEX matches any hexadecimal number (that is, any string of one or 
more digits 0 through 9, A through F) whose magnitude is less than 2**32. The 
binary value of the number, converted in hexadecimal radix, is available to 
the action routine. 

7 .3.11 'keyword' - A Particular Keyword String 

'keyword' matches the string of characters enclosed in single quotes. A 
keyword can consist of one or more characters of the V AX-11 symbol cons ti tu­
en t set. Note, uppercase and lowercase alphabetics are treated as different 
characters. Programs that want to treat uppercase and lowercase as equiva­
lent should code keywords in state tables in uppercase and capitalize the 
input string before calling LIB$TPARSE. (See Section 3.3.5.1: LIB$MOVTC, 
for a description of character translation tables. See also Section 3.3.5.6: 
STR$UPCASE, for a description of a routine to translate lowercase to 
uppercase.) 

A state table can contain up to 220 keywords. The keyword, as it appears in 
the string being parsed, must be bounded on the right by a character not in 
the symbol constituent set (or by the end of the string). At the caller's option, 
keywords appearing in the string being parsed can be abbreviated. (A full 
description of the abbreviation facility appears in Section 7.9.) 

7-4 Syntax Analysis Procedures 



Keywords that are one character in length are expressed in the form 'x *' to 
distinguish them from the single-character symbol ('x'). They must be dif­
ferentiated since they are not the same in operation. For example, in the input 
string AB+C, the single character 'A' would match the first character of this 
string, whereas the keyword 'A*' would not, since B in the string is in the 
symbol constituent set. 

7.3.12 TPA$_LAMBDA - The Empty String 

TPA$_LAMBDA matches the empty string (and therefore always matches). 
As the transition is taken, no characters are removed from the input string. 
LAMBDA transitions are useful in getting action routines called under other­
wise awkward circumstances, providing unconditional GOTOs to link por­
tions of a state table together, and providing default actions in certain cases. 

7.3.13 TPA$_EOS - End of Input String 

TPA$_EOS matches the end of the input string. That is, a transition naming 
the TPA$_EOS symbol is taken if the entire input string has been processed. 

7 .3.14 !label - Complex Subexpression 

!label matches any string that is matched by entering the state table at the 
indicated label and executing state transitions until a final state is entered. 
Roughly, this corresponds to calling a subroutine in the state table. If the 
state table subroutine fails (that is, if it encounters a syntax error in the input 
string), the input string is backed up to the point at which the subroutine 
started, and the subexpression simply fails to match. The subexpression facil­
ity permits complex syntactic constructs that appear in many places in a 
grammar to appear only once in the state table. It also permits a degree of 
non-deterministic and/or push down parsing with a parser that is otherwise 
deterministic and finite-state. Subexpressions are described in more detail in 
Section 7.10. 

7.4 Coding a State Table in MACRO 

A set of assembler macros is available from the VAX/VMS system macro 
library to allow convenient and readable coding of a LIB$TPARSE state 
table. Macros exist to initialize the LIB$TPARSE macro system, define the 
states in the state table, and define the transitions to other states within each 
state. These macros generate symbol definitions and tables; they do not pro­
duce any executable code or routine calls. 

7.4.1 $1NIT_STATE - Initialize the TPARSE Macros 

The $INIT_STATE macro declares the beginning of a state table. It initial­
izes the internals of the table generator macros and declares the locations of 
the state table and the keyword table. The state table is the structure contain­
ing the definitions of the states and the transitions between them. The key­
word table contains the text of the keywords used in the state table. 

Syntax Analysis Procedures 7-5 



Format 

$INIT_STATE state-table,key-table 

state-table 
The name assigned to the state table. This label is equated to the start of 
the first state in the state table. 

key-table 
The name assigned to the keyword table. This label is equated to the start 
of the keyword table. 

Both the address of the state table and the address of the keyword table 
must be supplied in the call to LIB$TPARSE to perform a parse. The 
$INIT_STATE macro can appear multiple times in a program. Each occur­
rence defines a separate state table; no part of any state table can make 
reference to part of any other state table. 

7 .4.2 $STATE - Define a State 

The $STATE macro declares the beginning of a state. 

Format 

$STATE [label] 

label 
An optional label for the state. If present, the label is equated to the 
starting address of the state. 

7 .4.3 $TRAN - Define a State Transition 

The $TRAN macro defines a transition from the state in which it appears to 
some other (or even the same) state. The parameters of the macro define, 
among other things, the symbol type that causes the transition to be taken, 
the state to transfer to, and the action routine to call, if any. 

Format 

$TRAN type[,label] [,action] [,mask] [,msk-adr] [,parameter] 

type 
The symbol type recognized by this transition. The transition is taken if 
the characters at the front of the input string match the symbol specified. 
The symbol can be any of the constructs discussed in Section 7.3. 

The assembler will not permit all characters to be entered in the 'x' format 
(such as single quote and all of the control characters). Such characters 
can be specified as the symbol type with any assembler expression that 

7-6 Syntax Analysis Procedures 



evaluates to the ASCII code of the desired character, not including the 
single quotes. For example, a transition to match a backspace character 
could be coded as: 

BACKSPACE= 8 

$TRAN BACKSPACE, 

label 
The optional target state of this transition. If present, it must be the label 
assigned to some state in the state table. If no label is present in the 
transition, control is transferred to the next state immediately following in 
the state table. If the label is the expression TPA$_EXIT, it denotes a 
transition to the final state. A transition to TPA$_EXIT terminates the 
parsing operation in progress. If the label is the expression TP A$_F AIL, 
the parsing operation is terminated with a failure status as if a syntax 
error had occurred. 

action 
The optional address of a user-supplied action routine. If this parameter is 
present, the named action routine is called before the transition is taken. 
The calling sequence of action routines and the information available to 
them is described in Section 7 .6. 

mask 
An optional 32-bit mask value used with the msk-adr parameter. If the 
mask is present, its value is inclusive ORed into the longword specified by 
msk-adr. Use of the mask parameter allows the state table to flag the fact 
that a certain transition was taken without the expense and overhead of 
calling an action routine. 

msk-adr 
The optional address associated with the preceding mask parameter. This 
parameter specifies the address into which the mask is to be ORed. If the 
mask parameter is present, the msk-adr parameter must also be present. 

The msk-adr parameter can also be present without the preceding mask 
parameter. In this case it is used to specify an address into which informa­
tion about the matching token is stored. The information stored depends 
on the nature of the symbol. 

If the symbol is a number (that is, if the type code in the transition is 
TPA$_DECIMAL, TPA$_0CTAL, or TPA$_HEX), the 32-bit binary 
value of the number is stored at the address (an unsigned longword). 

If the symbol is a single character (that is, if the type code in the transi­
tion is 'x', TPA$_ANY, TPA$_ALPHA, or TPA$_DIGIT) the eight-bit 
matching character is stored at the address (an unsigned byte). 

If the symbol is of any other type, the 64-bit string descriptor of the 
matching token is stored at the address (an unsigned quadword; class and 
data type fields in descriptor are undefined). 

Syntax Analysis Procedures 7-7 



The use of the msk-adr alone lets a parser program extract the most 
commonly needed information from the input string without the use of 
action routines. Note that the information is stored, not ORed as is the 
preceding mask. 

parameter 
An optional 32-bit parameter which, if specified, is made available to the 
action routine. This parameter can be an identifier number, an address, or 
anything else that a user written action routine might find useful. It allows 
a single action routine to serve many transitions for which similar, but 
slightly varying, actions must be performed. Note that the parameter 
appears in the state table in its absolute form; if it is used as an address, 
the resulting parsing program containing this state table will not be PIC. 

7.4.4 $END_STATE - End the State Table 

The $END_STATE macro declares the end of the state table. Its presence is 
mandatory to permit the orderly cleanup of the TPARSE macro system. The 
$END_STATE macro has no arguments. It is coded as: 

$END_STATE 

7 .5 Coding a State Table In BLISS 

A set of BLISS macros is available in the file SYS$LIBRARY:TPAMAC.L32 
to allow convenient and readable coding of TPARSE state tables in BLISS. 
The macros are made available to the program by including the declaration: 

LIBRARY 'SYS$LIBRARY:TPAMAC'; 

in the module containing the state tables. The names and functions of the 
macros are the same as those provided for MACRO; the following sections 
detail the syntactic differences. 

7.5.1 $1NIT_STATE - lnltlallze the TPARSE Macros 

The $INIT _ST ATE macro initializes the TPARSE macro system in the 
same manner as it does for the assembler. 

Format 

$INIT_STATE (state-table, key-table); 

state-table 
The name assigned to the state table. This label is equated to the start of 
the first state in the state table. 

key-table 
The name assigned to the keyword table. This label is equated to the start 
of the keyword table. 

Both names are declared as global vectors of length zero. As with the 
assembler macros, $INIT_STATE can be invoked multiple times to declare 
multiple state tables within a single module. 

7-8 Syntax Analysis Procedures 



7.5.2 $STATE - Declare a State 

The $STATE macro is used in BLISS to declare a state in its entirety. 

Format 

$STATE ([label], 

label 

( transition ) , 
( transition ), 

( transition ) 
) ; 

Optional address of the start of the state. It is declared as a local vector of 
length zero. Note that the comma following the optional label is 
mandatory. 

transition 
Each transition appears within the parentheses in the same form as the 
transition parameter list for the assembler $TRAN macro: 

type[,label] [,action] [,mask] [,msk-adr] [,parameter] 

The individual parameters of each transition are expressed in exactly the 
same format as in the assembler macros. The one exception to this is the 
subexpression type, expressed as !label in the assembler macros. In the 
BLISS macros, this type is coded in the form (label). 

As in MACRO, not all characters can be included in quoted strings in BLISS. 
To build a transition matching such a single character, you can use the 
%CHAR lexical function as follows: 

LITERAL BACKSPACE = e; 

$STATE (labelt 
( 'X,CHAR (BACKSPACE> t • • • • • > 
) ; 

7.5.3 $TRAN and $ENO_STATE 

There are no $TRAN or $END_ST ATE macros in the BLISS macro system. 
The former is absorbed into the $STATE macro; the latter is not needed. 

7 .5.4 BLISS Coding Considerations 

The BLISS TPARSE table generator macros interact with the BLISS module 
environment in some ways that require explanation. To allow references be­
tween $STATE macros, no BEGIN or END statements are used. However, 
the macros do use PSECT declarations; all storage is generated with OWN 
declarations. Thus, if a state table appears at the front of a module with other 
module data declarations, the PSECT declarations for OWN and GLOBAL 
are modified coming out of the TP ARSE macros. They cannot be surrounded 

Syntax Analysis Procedures 7-9 



with BEGIN and END statements,. since this would constitute an expression; 
no declarations (in particular, no ROUTINE declarations) can follow any 
expression. There are four acceptable techniques of including TPARSE state 
tables in BLISS modules: 

1. Following the state table with explicit redeclarations of the OWN and 
GLOBAL PSECTs 

2. Confining the state table within a separate module 

3. Placing the state table within BEGIN and END statements after the 
declarations within a routine body 

4. Placing the state table within BEGIN and END statements at the end of a 
module 

In all cases, of course, all action routines, masks, addresses, and parameters 
must be defined with suitable declarations (which can be FORWARD or 
EXTERNAL). The TPARSE macros handle the necessary FORWARD decla­
rations for forward references to labels in the state table. 

7.6 Calling LIB$TPARSE 

LIB$TPARSE is called giving the address of a parameter block, the address of 
the state table, and the address of the keyword table. The input string is 
specified by part of the parameter block. LIB$TPARSE read~ the input 
string, interprets the transitions in the state table, and calls the action 
routines until: 

1. A transition to TPA$_EXIT or TPA$_FAIL is executed at main level 
(that is, while LIB$TPARSE is not processing a subexpression call). 

2. An error occurs at main level. The error can be either a syntax error, in 
which case all of the transitions in the current state fail to match the 
current input string, or a state table format error. 

Format 

ret-status = LIB$TPARSE (param-blk, state-table, key-table) 

param-blk 
Address of the LIB$TPARSE parameter block. This block contains infor­
mation about the state of the parse operation. It becomes the argument 
list presented to all action routines. The contents of the parameter block 
are detailed below. 

state-table 
Address of the starting state in the state table. Usually, the name appear­
ing as the first parameter of the $INIT_STATE macro is used. 

key-table 
Address of the keyword table. The name appearing as the second parame­
ter of the $INIT_STATE macro must be supplied. 

7-10 Syntax Analysis Procedures 



Return Status 

SS$_NORMAL 
Procedure successfully completed. LIB$TPARSE has executed a transi­
tion to TPA$_EXIT at main level (not within a subexpression). 

LIB$_SYNTAXERR 
Parse completed with syntax error. LIB$TPARSE has encountered a state 
at main level in which none of the transitions match the input string, or a 
transition to TPA$_F AIL was executed. 

LIB$-1NVTYPE 
State table error. LIB$TP ARSE has encountered an invalid entry in the 
state table. 

other 
If an action routine returns a failure status other than zero, and the parse 
consequently fails, LIB$TPARSE returns the status returned by the 
action routine. 

Note that LIB$TPARSE generates no signals and establishes no condition 
handler; user-written action routines can signal through LIB$TPARSE back 
to the calling program. 

7 .6.1 The LIB$TPARSE Parameter Block 

The parameter block is the impure data base upon which LIB$TPARSE oper­
ates. It contains the descriptor of the string being parsed and option flags for 
LIB$TPARSE: It also contains the data about the current token that is avail­
able to action routines. When an action routine is called, the parameter block 
becomes the argument list of the action routine, allowing efficient and ready 
reference by the routine. 

The fields in the parameter block have symbolic names. Assembly language 
programs can define these names by invoking the macro $TPADEF (automat­
ically loaded from the system macro library). The field names define the byte 
offset of the field from the start of the block, with the exception of the bit 
fields ($V _names), which are defined as bit offsets from the start of the 
containing field. In addition, bitmask values ($M__names) are available for 
the bit fields. 

The same field names are available to BLISS programs from the system 
macro library SYS$LIBRARY:STARLET.L32. Each name (except for the 
$M_names) is defined as a fixed reference macro that operates on a byte­
based block. The $M__names are defined as literals. 

The parameter block contains the following fields: 

TPA$L_CQUNT A longword containing the number of longwords 
that make up the rest of the parameter block. This 
longword functions as the argument count when the 
parameter block becomes the argument list to an 

Syntax Analysis Procedures 7-11 



TPA$L_OPTIONS 

TPA$V -BLANKS 

TPA$V -ABBRFM 

TPA$V -ABBREV 

TPA$V_AMBIG 

TPA$B_MCOUNT 

TPA$M-13LANKS 
TPA$M-ABBRFM 
TPA$M-ABBREV 
TPA$M_AMBIG 

TPA$L_STRINGCNT 

TPA$L-8TRINGPTR 

7-12 Syntax Analysis Procedures 

action routine. This field must contain the value 
TPA$K_COUNTO (whose numeric value is 8). 

A longword containing various option and flag bits. 

Setting this bit causes LIB$TPARSE to process 
blanks and tabs explicitly, rather than treating 
them as invisible separators (see Section 7 .8 on 
blank processing). 

Setting this bit causes LIB$TPARSE to allow the 
abbreviation of keywords to any length. If an abbre­
viated keyword string is ambiguous, it is matched 
by the first eligible transition listed in the state. 

Setting this bit causes LIB$TPARSE to allow the 
abbreviation of keywords in the input string to the 
shortest length that is unambiguous in that state 
(see Section 7.7 on keyword abbreviation). 

This bit is set by LIB$TPARSE when an ambigu­
ous keyword string has been detected in the current 
state. 

This byte, when non-zero, contains the minimum 
number of characters that keywords can be 
abbreviated to. Preventing ambiguity is the re­
sponsibility of the state table designer. If 
TPA$V -ABBRFM or TPA$V _ABBREV is set, 
this value is ignored. 

These names define bitmasks that correspond to 
the location of the corresponding $V _fields in the 
options longword. 

A longword containing the number of characters 
remaining in the parser input string. 

A longword containing the address of the remain­
der of the string being parsed. Together with 
TPA$L_STRINGCNT, a descriptor of the input 
string is formed. The caller initializes this descrip­
tor with the string to be parsed. When an action 
routine is called, this descriptor describes the re­
mainder of the input string. When LIB$TPARSE 
returns, this descriptor describes the portion of the 
input string that was not processed. (This occurs 
whether TPARSE returns success or failure.) 



The following elements of the parameter block are primarily of use to action 
routines called by LIB$TPARSE: 

TPA$L_TOKENCNT A longword containing the number of characters in 
the current token. 

TPA$L_ TOKENPTR A longword containing the address of the current 
token. Together with TPA$L_TOKENCNT, a de­
scriptor of the current token string is formed. The 
current token string is the set of characters of the 
input string that are being matched by the transi­
tion currently being taken. If TPARSE encounters 
a syntax error (fails to match a transition), then 
this descriptor describes whatever portion of the 
current input string would have been matched by a 
TPA$_SYMBOL symbol type; if none would have 
matched, it describes the first remaining character 
in the input string. A transition to TPA$_FAIL 
leaves the descriptor describing the token matched 
by that transition. 

TPA$B_CHAR A byte containing the character matched by a sin­
gle character symbol type ('x', TPA$_ANY, 
TPA$-ALPHA, or TPA$_DIGIT). The remainder 
of the longword is not used. 

TPA$L_NUMBER A longword containing the binary value of a nu­
meric token (TPA$_DECIMAL, TPA$_0CTAL, 
or TPA$_HEX), converted in the appropriate 
radix. 

TPA$L_pARAM A longword containing the 32-bit parameter sup­
plied by the state transition. 

The three preceding fields (TPA$L_CHAR, TPA$L_NUMBER, and 
TPA$L_pARAM) are only modified when an action routine is about to be 
called from a transition of the relevant type (or containing an explicit parame­
ter). While transitions of unrelated types are executed, the fields are not 
modified. 

TPA$K_LENGTHO This symbol represents the number of bytes in the 
basic LIB$TPARSE parameter block. A parameter 
block of at least this length (containing a count 
field of TPA$K_COUNTO in TPA$L_COUNT) 
must be presented to TPARSE as the first 
argument. 

7 .6.2 Interface to TPARSE Action Routines 

User-supplied action routines are called by LIB$TPARSE using a CALL in­
struction. When an action routine is specified by a state transition, the action 

Syntax Analysis Procedures 7-13 



routine is called when the transition is found to be able to execute successfully 
(that is, when its symbol type matches a leading portion of the input string). 
The action routine is called before the mask and/or msk-adr parameters of the 
state transition have been processed. 

The argument list presented to the action routine is the LIB$TPARSE param­
eter block. This allows an action routine written in assembly language, for 
example, to reference fields in the parameter block by their symbolic offsets 
relative to the AP register. 

The action routine returns a value to LIB$TPARSE in RO that controls execu­
tion of the state transition currently being processed. If the action routine 
returns success (low bit set in RO) then LIB$TPARSE proceeds with the 
execution of the state transition. If the action routine returns failure (low bit 
clear in RO), LIB$TPARSE rejects the transition that was being processed 
and acts as if the symbol type of that transition had not matched. It proceeds 
to evaluate other transitions in that state for eligibility. In keeping with effi­
cient design, LIB$TPARSE calls action routines with RO set to one, allowing 
most action routines to return success by simply not modifying RO. 

If an action routine returns a non-zero failure status to TPARSE and no 
subsequent transitions in that state match, TPARSE will return the status of 
the action routine, rather than the status LIB$_SYNT AXERR. 

The mechanism of allowing action routines to reject a state transition 
provides a powerful facility for implementing symbol types specific to a 
particular application. To recognize a specialized symbol type, the state table 
designer codes a state transition using a LIB$TPARSE symbol type that 
describes a superset of the set of possible tokens that is desired. The associ­
ated action routine then performs the additional discrimination necessary and 
returns success or failure to LIB$TPARSE, which then accordingly executes 
or fails the transition. Simple examples of symbol type discrimination that 
are cumbersome using a pure finite~state machine include recognizing only 
strings that are shorter than some maximum length, or accepting numeric 
values confined to some particular range. 

7.7 LIB$TPARSE State Table Processing 

In a theoretical finite-state machine, when a state is entered, the symbol types 
given by all of the transitions out of that state are compared simultaneously 
with the front of the input string. The one transition whose symbol type 
matches is then taken. Since LIB$TPARSE is executed by an ordinary 
sequential computer, the evaluation of a LIB$TPARSE state table differs 
somewhat from the theoretical model. Note also that the set of symbol types 
implemented by LIB$TPARSE matches overlapping sets of tokens. For exam­
ple, the token 123 could be matched by TPA$_DECIMAL, TPA$_0CTAL, 
TPA$_STRING, or one of several others. 

In a LIB$TPARSE state table, each state consists of a list of the transitions to 
other states. The transitions appear in the order in which they were written in 
the source program. LIB$TPARSE evaluates the transitions in the order in 

7-14 Syntax Analysis Procedures 



which they appear in the state. For each transition, it tests whether the 
symbol type specified matches the leftmost portion of the input string. If it 
does not match, it proceeds to attempt to match the next transition, until it 
runs out of transitions in the state. If a transition matches, LIB$TPARSE 
stores the optional parameter longword, if any, into the parameter block and 
calls the action routine. If the action routine returns failure, LIB$TPARSE 
continues attempting to match successive transitions. If the action routine 
returns success (or if no action routine was specified), LIB$TPARSE executes 
the transition. The mask or other value is stored at the mask address, if 
specified, and control passes to the specified target state. If no target state is 
given, control passes to the next state following in the state table. In either 
case, the remaining transitions in the state are not evaluated. 

What this means is that where there are multiple transitions out of a state 
whose symbol types match overlapping sets of tokens, they must be 
carefully ordered. For example, all keyword strings are matched by the 
TPA$_SYMBOL symbol type; keyword transitions appearing in a state fol­
lowing a TP A$_SYMBOL transition will in general never be executed. A 
good rule of thumb is to order transitions of different types in order of increas­
ing generality, as follows: 

'keyword' 
'x' 
TPA$_EOS 
TPA$_ALPHA 
TPA$_DIGIT 
TPA$_BLANK 
TPA$_0CTAL 
TPA$_DECIMAL 
TPA$_HEX 
TPA$_STRING 
TPA$_SYMBOL 
TPA$_ANY 
TPA$__LAMBDA 

Note that subexpressions are not in this list; their placement depends on the 
symbol types recognized within the subexpression. Also note that the use of 
transition rejection can alter the generality of a symbol type and affect its 
placement in the preceding order. However, the first transition listed in a 
state that is permitted to match the leftmost portion of the input string is the 
one that will be executed. 

7 .8 Blanks In the Input String 

The default mode of operation in LIB$TP ARSE is to treat blanks as invisible 
separators. That is, they can appear between any two tokens in the string 

Syntax Analysis Procedures 7-15 



being parsed without being called for by transitions in the state table. Since 
situations in which blanks are significant exist, LIB$TPARSE enables the 
explicit processing of blanks if the bit TP A$V _BLANKS is set in the options 
longword of the parameter block. The following input string illustrates the 
difference in operation: 

ABC DEF 

The string is recognized by the following sequences of state transitions, de­
pending on the state of the blanks control flag: 

TPA$V _BLANKS set TPA$V _BLANKS clear 

$STATE 
$TRAN TPA$_STRING $STATE 

$TRAN TPA$_STRING 

$STATE 
$TRAN TPA$--13LANK $STATE 

$TRAN TPA$_STRING 

$STATE 
$TRAN TPA$_STRING 

The action routines in a parsing program can set or clear the blanks control 
flag as sections of the state table in which blanks are significant are entered 
and left. LIB$TPARSE always checks the blanks control flag as it enters a 
state; if the flag is clear it removes any space or tab characters present at the 
front of the input string before it proceeds to evaluate transitions. Note that 
when the TPA$V_BLANKS flag is clear, the TPA$--13LANK symbol type 
will never match. 

7 .9 Abbreviating Keywords 

Many languages (command languages in particular) allow their keywords to 
be abbreviated. LIB$TPARSE has three abbreviation facilities to permit the 
recognition of abbreviated keywords when only the full spellings are listed in 
the state table. 

The default mode of LIB$TPARSE is exact match. All keywords in the input 
string must exactly match their spelling and length in the state table. 

By setting a value in TPA$B_MCOUNT in the LIB$TPARSE parameter 
block, the calling program (or action routine) specifies that all keywords can 
be abbreviated to the number of characters given. For example, setting the 
byte to the value four would allow the keyword DEASSIGN to appear in an 
input string as DEAS (or DEASS or DEASSI ... ). All characters of the key­
word strings in the input string are checked; incorrect spellings beyond the 
minimum abbreviation are not permitted. 

7-16 Syntax Analysis Procedures 



If TP A$V _ABBRFM is set in the options longword (by caller or action rou­
tine), LIB$TPARSE will recognize any leftmost substring of a keyword as a 
match for that keyword. No check is made for ambiguity; LIB$TPARSE will 
match the first keyword listed in the state table of which the input token is a 
subset. 

If TP A$V _ABBREV is set in the options longword (by the caller or action 
routine), TPARSE will permit any abbreviation of a keyword to be recognized 
as long as it is unambiguous among the keywords in that state. If 
LIB$TPARSE finds that the front of the input string contains an ambiguous 
keyword string, it sets the bit TPA$V _AMBIG in the options longword and 
refuses to recognize any keyword transitions in that state (other symbol types 
are still accepted). The TPA$V _AMBIG flag can be checked by an action 
routine called coming out of that state, or by the calling program should 
TPARSE return with a syntax error status. The flag is cleared upon entering 
the next state. 

Proper recognition of ambiguous keywords requires that the keywords in each 
state be arranged in alphabetical order by an ASCII collating sequence. The 
sequence runs: 

1. $ 

2. numerics 

3. uppercase alphabetics 

4. 

5. lowercase alphabetics 

Use of this feature must be made with some care, since permitting minimal 
abbreviation tends to restrict the extensibility of a language. Often, adding a 
new keyword can make a formerly valid abbreviation ambiguous. 

If both TP A$V -ABBRFM and TP A$V _ABBREV are set, then 
TPA$V-ABBRFM takes precedence. 

7 .1 O Using Subexpressions 

LIB$TPARSE subexpressions are analogous to subroutines within the state 
table. A subexpression call, indicated with the MACRO expression !label or 
the BLISS expression (label), causes LIB$TPARSE to call itself recursively, 

Syntax Analysis Procedures 7-17 



using: (1) the same parameter block and keyword table, and (2) the specified 
label as a starting state. LIB$TPARSE processes the state transitions, 
consuming the portion of the input string called for. When a transition to 
TPA$_EXIT is executed, LIB$TPARSE returns success to itself. The subex­
pression call is thus considered to match, the action routine is called, and the 
transition is taken. If the parse of the subexpression fails; LIB$TPARSE 
backs up the input string to where it was prior to the call and proceeds to 
evaluate the remaining transitions in the state. 

Subexpressions are a very powerful and useful mechanism. They are usable in 
the same way one would use subroutines in any program: to avoid replication 
of complex expressions. They can also be used in a limited form of push down 
parsing, in which the state table contains recursively nested subexpressions. 
Finally, subexpressions can be used for non-deterministic parsing, that is, 
parsing where some number of states of look-ahead is needed. This is done by 
placing each path of look-ahead in a separate subexpression and calling the 
subexpressions in the transitions of the state that needs the look-ahead. When 
a look-ahead path fails, the subexpression failure mechanism causes 
LIB$TPARSE to back out and try another one. 

Some care must be exercised in the design of subexpressions which contain 
calls to action routines or use the mask and msk-adr transition parameters. As 
the state transitions of a subexpression are processed, the specified action 
routines are called and the mask and msk-adr stores are performed. Should 
the subexpression fail, LIB$TPARSE will back up the input string and re­
sume processing in the calling state. However, any effects that the action 
routines have had on the caller's data base cannot be undone. If subexpres­
sions are simply being used as state table subroutines, this tends to be harm­
less, since in this mode of operation, when a subexpression fails, the parse will 
generally fail. This is not true of push down or non-deterministic parsing. In 
applications where subexpressions are expected to fail, action routines should 
be designed to store results in temporary storage. These results can then be 
made permanent at the main level, where the flow of control is deterministic. 

Sections 7.10.1 and 7.10.2 show two uses of subexpressions. 

7 .10.1 Use of Subexpressions and Transition Rejection 

The following example is an excerpt of a state table that parses a string 
quoted by an arbitrary character. The first character to appear is interpreted 
as a quote character. This sort of construction turns up in many text editors, 
and in some programming languages. Execution of this set of state transitions 
leaves a descriptor for the string in the two longwords at Q_DESCRIPTOR, 
and the quoting character at location Q_CHAR. 

7-18 Syntax Analysis Procedures 



Main level state table. The first transition accepts and 
stores the quotins character. 

$STATE STRING 
$TRAN TPA$_ANy,,,,Q_CHAR 

Call the subexpression to accept the quoted strinS and store 
the strins descriPtor. Note that the descriPtor spans al.I 
the characters accepted bY the subexpression. 

$STATE 
$TRAN !Q_STRING,,,,Q_DESCRIPTOR 

AccePt the trailins quote character, left behind by the 
subexpression 

$STATE 
$TRAN TPA$_ANYtNEXT 

Subexpression to scan the quoted strins. The first transition 
Matches until it is reJected by the action routine. 

$STATE 
$TRAN 
$TRAN 

Q_STRING 
TPA$_ANY,Q_STRINGtTEST_Q 
TPA$_LAMBDAtTPA$_EXIT 

The followins MACRO subroutine coMPares the current character 
with the quotins character and returns failure if it Matches. 

TEST _Q: • WORD 0 null entn· fTtas~~ 

CMPB TPA$B_CHAR CAP> ,Q_CHAR check the character 
BNEQ 10$ 
CLRL RO 

10$: RET 

note RO is already 1 
Match - reJect transition 

7 .10.2 Using Subexpressions to Parse Complex Grammars 

The following example is an excerpt from a state table that shows how subex­
pressions are used to parse complex grammars. The state table accepts a 
number followed by a keyword qualifier. Depending on the keyword, the num­
ber is interpreted as either decimal, octal, or hexadecimal. These strings are 
examples of what is accepted by executing the state table: 

10/0CTAL 
32788/DECIMAL 
77AF /HEX 

This sort of grammar is difficult to parse with a deterministic finite-state 
machine. Using a subexpression look-ahead of two states permits the state 
tables to be expressed more simply. 

Syntax Analysis Procedures 7-19 



Main state table entry. AccePt a nuMber of soMe tYPe and store 
its value at the location NUMBER. 

$STATE 
$TRAN 
$TRAN 
$TRAN 

!OCT_NUM1NEXTtttNUMBER 
!DEC_NUM1NEXTtttNUMBER 
!HEX_NUMtNEXTtttNUMBER 

Subexpressions to accePt an octal nuMber followed bY the OCTAL 
c:iualifier. 

$STATE OCT_NLJM 
$TRAN TPA$_0CTAL 
$STATE 
$TRAN '/' 
$STATE 
$TRAN 'OCTAL' tTPA$_EXIT 

SubexP~ession to accept a deciMal nuMber followed by the DECIMAL 
c:iualifier. 

$STATE DEC_NLJM 
$TRAN TPA$_0ECIMAL 
$STATE 
$TRAN I I I 

$STATE 
$TRAN 'DECIMAL' tTPA$_EXIT 

Subexpression to accept a hex nuMber followed bY the HEX 
c:iualifier. 

$STATE HEX_NUM 
$TRAN T PA$_HEX 
$STATE 
$TRAN I I I 

$STATE 
$TRAN 'HEX'tTPA$_EXIT 

Note that the TPA$_NUMBER longword is not disturbed by the transitions 
following the numeric token, allowing it to be retrieved by the main level 
subexpression call. 

7 .11 State Table Object Representation 

This section describes the binary representation of a LIB$TP ARSE state 
table. Each state consists of its transitions concatenated in memory; the state 
label is equated to the address of the first byte of the first transition. The end 
of the state is identified by a marker in the last transition. The state table is 
built by the LIB$TPARSE table macros in the PSECT _LIB$STATE$. 

Each transition in a state consists of from 2 to 23 bytes containing the 
parameters of the transition. Storage is not allocated for parameters not speci­
fied in the transition macro. This allows simple transitions to be represented 
efficiently. For example, the transition: 

$TRAN '?' 

which simply accepts the character ? and falls through to the next state is 
represented in 2 bytes. 

7-20 Syntax Analysis Procedures 



In this section, pointers described as self-relative are signed displacements . 
from the address following the end of the pointer (this is identical to branch 
displacements in the VAX instruction set). 

A state transition consists of the following elements: 

• Symbol Type - One Byte. The first byte of a transition contains the binary 
coding of the symbol type accepted by this transition. It is always present. 
The interpretation of the type byte is controlled by flag bit 0 in the flags 
byte (described in Section 7.11.2). If the flag is clear, then the type byte 
represents a single character (the 'x' construct). If the flag bit is set, then 
the type byte is one of the other type codes· (keyword, number, and so forth). 
The various symbol types accepted by TPARSE are encoded as follows: 

'x' 
'keyword' 
TPA$-ANY 
TPA$-ALPHA 
TPA$_DIGIT 
TPA$_STRING 
TPA$_SYMBOL 
TPA$-BLANK 
TPA$_DECIMAL 
TPA$_0CTAL 
TPA$_HEX 
TPA$_LAMBDA 
TPA$_EOS 
TPA$_SUBEXPR 

= ASCII code of the character (8 bits) 
= the keyword index (O up to 219) 
= 237 
= 238 
= 239 
= 240 
= 241 
= 242 
= 243 
= 244 
= 245 
= 246 
= 247 
= 248 (subexpression call) 

(other codes are reserved for expansion) 

• Flags - One Byte. This byte contains bits that describe the presence of the 
optional components of the transition. It is always present. The bits are 
used as follows: 

Bit 0 Set if the type byte is a keyword, and so forth 

Bit 1 Set if the second flags byte is present 

Bit 2 Set if this is the last transition in the state 

Bit 3 Set if a subexpression pointer is present 

Bit 4 Set if an explicit target state is present 

Bit 5 Set if the mask longword is present 

Bit 6 Set if the msk-adr longword is present 

Bit 7 Set if an action routine address is present 

Syntax Analysis Procedures 7-21 



• Second Flags Byte - One Byte. This byte is present if any of its flag bits are 
set. It contains additional flags describing the transition. They are used as 
follows: 

Bit 0 Set if the action routine parameter is present 

• Subexpression Pointer - Two Bytes. This word is present in transitions 
which are subexpression calls. It is a 16-bit signed, self-relative pointer to 
the starting state of the subexpression. 

• Parameter Longword - Four Bytes. This longword contains the 32-bit 
action routine parameter, when specified. 

• Action Routine Address - Four Bytes. This longword contains a self­
relative pointer to the action routine, when specified. 

• Bit Mask - Four Bytes. This longword contains the mask parameter, when 
specified. 

• Mask Address - Four Bytes. This longword, when specified, contains a self­
relative pointer through which the mask, or symbol type dependent data, is 
to be stored. Because the pointer is self-relative, using it to point to an 
absolute location causes the state table to be non-position independent 
code. 

• Transition Target - Two Bytes. This word, when specified, contains the 
address of the target state of the transition. The address is stored as a 16-bit 
signed, self-relative pointer. The final state TPA$-EXIT is coded as a word 
of -1; the failure state TPA$_FAIL is coded as a -2. 

• Keyword Table. This table is the structure to which the $INIT_STATE 
macro equates its second parameter. The table is a vector of 16-bit, signed 
pointers into the keyword string area, relative to the start of the keyword 
vector. As keywords are generated from the state table source, the TPARSE 
macros assign an index number to each keyword. The index number is 
stored in the symbol type byte in the transition; it locates the associated 
keyword vector entry. The keyword strings are stored in the order encoun­
tered in the state table. Each keyword string is terminated by a byte 
containing the value -1; between the keywords of adjacent states is an 
additional -1 byte to stop the ambiguous keyword scan. 

To ensure that the keyword vector is adjacent to the keyword string area, 
the keyword vector is located in PSECT _LIB$KEYO$ and the key­
word strings and stored in PSECT _LIB$KEY1$. User programs should 
not use any of the three PSECTs used by TPARSE (_LIB$STATE$, 
-LIB$KEYO$, and _Lffi$KEY1$) to avoid interfering with the state table 
structure. These PSECTs refer to each other using 16-bit displacements, so 
user PSECTS inserted between them can cause truncation errors from the 
Linker. 

7-22 Syntax Analysis Procedures 



7 .12 LIB$LOOKUP_KEY - Scan Keyword Table 

This procedure scans a table of keywords to find one that matches a caller­
specified keyword or keyword abbreviation. It is intended to be an aid for 
programmers writing utilities that have command qualifiers with values. 

LIB$LOOKUP _KEY locates a matching keyword or keyword abbreviation 
by comparing the first n characters of each keyword in the keyword table with 
the supplied string, where n is the length of the supplied string. 

When a keyword match is found, the following information is optionally re­
turned to the caller: 

• The longword value associated with the matched keyword 

• The full keyword string (any descriptor type) 

An exact match is found if the length of the keyword found is equal to the 
length of the supplied string. 

If an exact keyword match is found, no further processing is performed, and a 
normal return status is returned to the caller. Otherwise, after a match has 
been found, the rest of the keyword table is scanned. If an additional match is 
found, a "not enough characters" return status is returned to the caller. If the 
keyword table contains a keyword that is an abbreviation of another keyword 
in the table, an exact match can occur for short abbreviations. 

The keyword table, which the caller creates for this procedure, has the follow­
ing structure: 

vector 

vector-count 

address of keyword string 

associated keyword value 

keyword string , 

l counted-ASCII-string ] 

Vector-count is the num her of longwords that follow, and 
counted-ASCII-string starts with a byte that is the unsigned count of the 
number of ASCII characters that follow. 

Format 

ret-status = LIB$LOOKUP-KEY (str-dsc-adr, key-table-adr 
[,key-value-adr [,full-dsc-adr [,out-len]]]) 

str-dsc-adr 
Address of search string descriptor. 

key-table-adr 
Address of keyword table. 

Syntax Analysis Procedures 7-23 



key-value-adr 
Address of longword to receive the keyword value. (This is an optional 
output parameter.) 

full-dsc-adr 
Address of string descriptor to receive the full keyword matched. (This is 
an optional output parameter.) 

out-len 
Address of a word to receive the number of characters in the keyword, 
independent of padding. (This is an optional output parameter.) 

Return Status 

SS$_NORMAL 
Procedure successfully completed. Unique keyword match found. 

LIB$__AMBKEY 
Multiple keyword match found (that is, not enough characters specified 
for unique match). 

LIB$_UNRKEY 
No keyword match found. 

LIB$---1NV ARG 
Invalid arguments, not enough arguments, and/or bad keyword table. 

LIB$---1NSVIRMEM 
Insufficient virtual memory to return keyword string. This is only possible 
if full-dsc-adr is a dynamic string. 

Notes 

Because of the format of the keyword table, this procedure cannot be 
called easily from high-level languages. 

7-24 Syntax Analysis Procedures 



Chapter 8 
Cross-Reference Procedures 

8.1 Introduction 

The cross-reference procedures are contained in a separate, sharable image 
capable of creating a cross-reference analysis of symbols. They accept cross­
reference data, summarize it, and format it for output. Two facilities that use 
the cross-reference procedures are the V AXNMS Linker and the MACRO 
assembler. They are sufficiently general, however, to be used by any native­
mode utility. 

The user provides cross-reference information to the cross-reference proce­
dures as it is acquired. The cross-reference procedures build tables of the data 
supplied in virtual memory. When all the information has been accumulated 
in the tables, the user calls the cross-reference output routine to summarize 
the data and format output lines. The actual printing of the output file is 
performed by a user-supplied routine that the cross-reference output proce­
dure calls to print each line. Allowing a user-written routine to produce the 
output provides the user with control over the number of lines per page and 
the header lines, as well as error handling and recovery. 

The interface to the cross-reference procedures is by way of a set of control 
blocks, format definition tables, and a set of callable entry points. Macros are 
provided for assembly language and BLISS initialization of the control blocks 
and format definition tables. 

The three entry points provide the user with the following services: 

1. Entering a symbol in a cross-reference table 

2. Entering a reference to a symbol in a cross-reference table 

3, Summarizing accumulated data by symbol name and formatting output 
lines 

A user can create multiple cross-reference tables concurrently. 

8-1 



Figure 8-1 illustrates the steps required of the user to accumulate cross­
reference information and prepare it for output using the cross-reference 
procedures. 

Figure 8-1: Producing a Cross-Reference Listing 

STEP 1: Build the control blocks and the format definition tables 
used for output. 

I 
STEP 2: Call the cross-reference procedures LI 8$CRF _I NS_KEY 

and LIB$CRF _INS_REF to enter cross-reference data 
in the tables. 

1 
STEP 3: Call the cross-reference procedure LIB$CRF _OUTPUT 

when all data is accumulated to summarize cross-
reference output and format the output lines. 
LIB$CRF _OUTPUT calls the- user-supplied print routine 
once for each line of output. 

8.2 Cross-Reference Output 

LIB$CRF _OUTPUT is capable of formatting output lines for. any of three 
types of cross-reference listings: 

1. A summary of symbol names and their values, as illustrated in Figure 8-2. 

2. A summary of symbol names, their values, and the names of modules that 
refer to the symbol, as illustrated in Figure 8-3. 

3. A summary of symbol names, their values, the name of the definer, and 
the names of those modules that refer to the symbol, as illustrated in 
Figure 8-4. 

Figure 8-2: Summary of Symbol Names and Values 

SY1r1bol 
-------

6AS$INSTR 

6AS$IN_O_R 

6AS$IN_F_R 

6AS$JN_L_R 

6AS$JN_T_OX 

BAS$ I N_l.LR 

6AS$IO_ENO 

,- - - - - - - - - - - - - - - - - - I 

• Syrr1b o 1 s BY Nar11e 1 
I I 

Va 1 ue SYrTlbol 
------ -------

00002060-RU 6AS$SCRATCH 

000021FO-RU BAS$STATUS 

000021E8-RU BAS$STR_O 

000021EO-RU BAS$STR_F 

000021FB-RU BAS$STR_L 

00002108-RU BAS$UNLOCK 

00002100-RU 6AS$UPOATE 

8-2 Cross-Reference Procedures 

Va 1 ue ------

00002308-RU 

00002338-RU 

000020CO-RU 

00002068-RU 

000020C8-RU 

00002310-RU 

000022E8-RU 

(continued on next page) 



SY1t1bol 1.1a 1 ue 8>'1t1bol 1.1a 1 u e 
------- ------ ------- ------

BAS$Ll NK AGE 00001874-R BAS$UPDATE_CQUN 000022FO-RU 

BAS$LINPUT 000021A8-RU BAS$1.IAL-D 00002110-RU 

BAS$MAT_INPUT 00002288-RU BAS$1.IAL-F 00002108-RU 

Figure 8-3: Summary of Symbol Names, Values, and Name of Referring 
Modules 

8Y1t1bol 

BAS$K_DIVBY-ZER 00000030 

BAS$K_OUPKEYDET 00000088 

BAS$K_ENDFILDEV 00000008 

BAS$K_ENDQF_STA OOOOOOGC 

Reference B>' ••• 

ALLGBL 

BAS$POWDJ 

BAS$POWRJ 

ALLGBL 

ALLGBL 

BAS$$UOF_RL 

ALLGBL 

BAS$ERROR 

BAS$POWII 

BAS$POWRR 

BAS$$SIGNAL_IO 

BAS$$REC-PROC 

Figure 8-4: Summary Indicating Defining Module 

8Y1t1bol l.,la 1 ue 

LIB$FREE_VM 0001E185-R 

Ll8$GET_CQMMAND 0001E2BO-R 

Ll8$GET_CQMMON 0001E4DG-R 

Defined B>' Referenced BY ••• 

ALLGBL 

BAS$MARGIN 

BAS$}-{LATE 

STR$APPEND 

STR$0UPL_CHAR 

STR$REPLACE 

Ll8$GET_INPUT ALLGBL 

Ll8$COMMON ALLGBL 

Regardless of the format of the output, LIB$CRF _OUTPUT considers the 
output line as consisting of six different field types: 

• A KEY~ field is the first column on the page and contains a symbol name. 

• A KEY2 field is the second column of the page and consists of flags (for 
example, -R) to provide information about the symbol. 

• A V ALl field is the third column of the page and contains the value of the 
symbol. 

• A V AL2 field is the fourth column of the page and consists of flags. 

• A number of REFl and REF2 fields. Each REFl and REF2 pair provides 
flags and the name of a module that references the symbol, respectively. 

Any of these fields can be omitted from the output. 

Cross-Reference Procedures 8-3 



8.3 Table lnltlallzatlon Macros 

Three macros are used to initialize the data structures used by the cross­
reference procedures: 

1. $CRFCTLTABLE defines a table of control information. 

2. $CRFFIELD defines each field of the output format definition table. 
Multiple $CRFFIELD macro instructions can be issued in defining one 
particular field. 

3. $CRFFIELDEND indicates the end of a set of $CRFFIELD macro instruc­
tions; that is, the end of the format table. 

8.3.1 $CRFCTL TABLE Macro 

The $CRFCTLTABLE macro initializes a cross-reference control table. One 
$CRFCTLTABLE macro must be issued for each cross-reference table to be 
built. The cross-reference procedures let you accumulate information for more 
than one cross-reference at a time. Each cross-reference must have its own 
control table defined. The $CRFCTL TABLE macro instruction has the fol­
lowing format: 

label: $CRFCTL TABLE keytype,output,error, memexp,keyltable, 
key2table, vall table, val2table,refl table,ref2table 

label 

keytype 

error 

output 

memexp 

Address of the control table. A control table address is speci­
fied in all calls to the cross-reference procedures. 

Indicator for the type of key to be entered in the table. The 
following key types are defined: 

ASCIC keys are counted ASCII strings, with a maximum 
of 31 characters (symbol name). 

BIN_U32 keys are 32-bit unsigned binary values; refer to 
Section 8.4.4 for its use. 

Address of an error routine to execute if the called cross­
reference procedure encounters an error. A value of zero indi­
cates that no error routine is supplied. 

Address of a user-supplied routine that prints a formatted 
output line. The routine is called with the following arguments 
list: 

l 
Address of string descriptor for line 

Number of pages to expand region when needed (default= 50). 

8-4 Cross-Reference Procedures 



keyltable Address of the field descriptor table for the KEYl field. The 
field descriptor table is created by a number of $CRFFIELD 
macro instructions. A value of zero indicates that the field is 
not to be included in the output line. 

The remaining arguments provide the address of the field descriptor tables 
for the KEY2, VALl, VAL2, REFl, and REF2 fields of the output line, 
respectively. 

Argument names (for example, keytype) can be used as keywords in the 
macros. 

8.3.2 $CRFFIELD Macro 

One or more $CRFFIELD macros is used to define each field in the output 
line. The macro identifies the field, supplies an F AO command string to 
control the printing of the field, and provides flag information. FAO is de­
scribed in Chapter 6. The $CRFFIELD macro has the following format: 

label: $CRFFIELD bit_mask,fao_string,field_width,set_clear 

label 

bit_mask 

fao_string 

set_clear 

Address of the field descriptor table. being generated as a re­
sult of this set of one or more $CRFFIELD macro instructions. 
The label field can be omitted after the first macro of the set. 
These addresses correspond to the field descriptor table ad­
dresses in the $CRFCTL TABLE macro. 

16-bit mask with which the flags specified in calls for key 
processing are to be ANDed when determining which table 
entry to use in printing this field. Multiple $CRFFIELD macro 
instructions are used to define multiple bit patterns for a flag 
field; refer to the discussion of flags in Section 8.3.2.1. Note: 
the high order bit is reserved to the cross-reference procedures. 

F AO command string to be used when formatting this field for 
output. 

Indicator used to determine whether the bit mask is to be 
tested as set or clear when determining which flag to use, as 
follows: 

SET indicates test for set. 

CLEAR indicates test for clear. 

field_width Maximum width of the output field. 

Argument names can be used as keywords. 

8.3.2.1 Flag Usage - The KEY2, V AL2, and REFl fields of cross-reference 
output can provide special characters, or flags, to indicate additional informa­
tion about an associated KEYl, VALl, or REF2 field. For example, the char­
acter -R is appended to a symbol name (KEYl) field by the Linker to indicate 

Cross-Reference Procedures 8-5 



that the symbol is relocatable. When the user enters a key or reference, the 
cross-reference procedure stores flag information with the entry. When pre­
paring the output line, LIB$CRF _OUTPUT ANDs the flag bit mask in the 
field descriptor table with the flag stored with the entry. Any number of bit 
masks can be defined for a field. LIB$CRF_OUTPUT searches the list of 
entries for each flag field. It retains the last entry that has a matching bit 
pattern. If no match occurs, the first descriptor is used. In the following 
example, one bit pattern is defined twice: once indicating a string that is to be 
printed if the pattern is set, and once indicating that spaces are to appear if 
the pattern is clear. 

$CRFFIELD 

$CRFFIELD 

BIT_MASK=SYM$M-REL,FAO_STRING=3\ \,­
SET_CLEAR=CLEAR,FIELD_WIDTH=2 

BIT_MASK=SYM$M-REL,FAO_STRING= \-R\,­
SET _CLEAR=SET,FIELD_ WIDTH=2 

If more than one set of flags is defined for a field, each FAO string must print 
the same number of characters; otherwise, the output is not aligned in 
columns. 

The fields for the symbol name, symbol value, and referrers are always for­
matted using the first descriptor in the corresponding table. 

8.3.3 $CRFFIELDEND Macro 

The $CRFFIELDEND macro instruction specifies the end of a set of macros 
that describe one field of the output line. It is used once to end each set of 
field descriptors. It has the following format: 

$CRFFIELDEND 

8.4 Entry Points to Cross-Reference Procedures 

The cross-reference procedures have three entry points which users can call: 

1. Insert key information entry point 

2. Insert reference information entry point 

3. Summarize output and format output lines entry point 

8.4.1 Insert Key Entry Point - LIB$CRF_INS_KEY 

The user calls LIB$CRF -1NS_KEY to store information to be printed in the 
KEYl, KEY2, VALl, and VAL2 fields. When the insert key entry point is 
called, an entry for the key is made in the cross-reference table if the key is 
not already present in the table. If it is present, only the value address and 
value flag fields are updated. Figure 8-5 illustrates the format of the argument 
list used in the call. 

8-6 Cross-Reference Procedures 



Figure 8-5: Argument List for Entering a Key 

I 4 

Address of control table 

Address of key (KEY1) 

Address of value (VAL 1) 

Address of value flags (KEY2 and VAL2) 

The first argument is the address of the control table associated with this 
cross-reference. 

The second argument is the address of the key. The address of the key points 
to a counted ASCII string that contains a symbol name or the unsigned binary 
longword if BIN_U32 was specified as the key type. 

The third argument is the address of the symbol value. 

Both the key and value addresses must be permanent addresses in the user's 
symbol table. LIB$CRF-1NS_KEY does not store its own copy of the sym­
bol or value. 

The fourth argument is the address of the 16-bit value flags, used in selecting 
the contents .of the KEY2 and VAL2 fields. The flags specified in 
this argument are copied by LIB$CRF-1NS_KEY and are ANDed with the 
bit mask specified in the field descriptor tables produced by $CRFFIELD 
macro information for the KEY2 and VAL2 fields. Note: the high-order bit of 
the 16-bit value is reserved for LIB$CRF-1NS_KEY. 

8.4.2 Insert Reference Entry Point - LIB$CRF_INS_REF 

The user calls LIB$CRF -1NS_REF to insert a reference to a key in the 
cross-reference symbol table. Figure 8-6 illustrates the format of the argument 
list used in the call. 

Figure 8-6: Argument List for Entering a Reference 

I 5 

Address of control table 

Address of key (KEY1) 

Address of referrer's name (REF2) 

Address of reference flags (REF1) 

Address of reference/definition Indicator 

The first argument is the address of the control table associated with this 
cross-reference. 

The second argument is the address of the key referred to. The address 
of the key must be a permanent address in the user's symbol table. 
LIB$CRF -1NS_REF does not store its own copy of the key. 

Cross-Reference Procedures 8-7 



The third address is the address of the referrer's name. The address must 
point to a counted ASCII string with a maximum of 31 characters, not includ­
ing the byte count. Maintaining the referrer's name as a counted string per­
mits the Linker to pass a module name to identify a reference, and permits 
compilers to specify a line number to identify a reference. The reference data 
is stored by LIB$CRF-1NS--REF; this data does not have to be stored 
permanently by the user. LIB$CRF -1NS_REF sorts referrer names into 
alphabetical order and places them in the cross-reference output. 

When a table for a synopsis by value is being built, the symbol name associ­
ated with a value is specified instead of the referrer's name. That is, the 
KEYl field contains the value, and the REF2 fields contain the names of 
symbols with that value. 

The fourth argument is the address of the reference flags used in selecting the 
contents of the REFl field. The flags specified in this argument are copied by 
LIB$CRF-1NS_REF and are ANDed with the bit mask specified in the field 
descriptor table produced by the $CRFFIELD macro instruction for the 
REFl field. For example, the assembler may wish to indicate whether a refer­
ence is one that modifies a labeled location or whether the name is a macro 
name, an equated symbol, or a variable name (location label). Note: the high­
order bit of the 16-bit value is reserved for LIB$CRF-1NS--REF. 

The fifth argument is the address of the reference/definition indicator. It is 
used to distinguish between a reference to a symbol and the definition of the 
symbol. The indicator can have either of the following values: 

CRF$K--REF for a reference to a symbol 
CRF$K_J)EF for the definition of a symbol 

The only difference between processing a symbol reference and a symbol 
definition is the location where LIB$CRF-1NS--REFstores the information. 
Storing references and definitions· in differentplaces provides a means for 
printing the defining reference first in the cross-reference output line (see 
Figure 8-4, Section 8.2). 

If the user makes two calls, both specifying defining references, the second call 
overlays the first. Multiple definitions should be entered in the tables as 
references. The special print characters specified by the reference flags can be 
used to indicate that the reference is a redefinition of the key. 

If no defining field is specified for a symbol, and the user requests a definition 
field in the output, the first REFl and REF2 fields are space-filled. 

8.4.2.1 Using LIB$CRF_INS_REF to Insert a Key - If the user attempts 
to insert reference information for a key that was not specified in a 
call to LIB$CRF-1NS_KEY, LIB$CRF-1NS--REF uses the. address of 
the key (the second argument) to locate the symbol name and set the 
KEYl field. Once set, either as a result of LIB$CRF -1NS_KEY or 
LIB$CRF-1NS--REF, the KEYl field is never changed. A KEYl field set by 
LIB$CRF-1NS_REF has a space-filled VALl field associated with it unless 
it is overridden by a subsequent call to LIB$CRF-1NS_KEY. 

8-8 Cross-Reference Procedures 



8.4.3 Output Entry Point - LIB$CRF_OUTPUT 

The user calls LIB$CRF _OUTPUT to extract the information from the cross­
reference tables. Figure 8-7 shows the format of the argument list used in the 
call. 

Figure 8-7: Argument List for Output of Cross-Reference 

1 6 

Address of control table 

Address of width of output line 

Address of number of lines on first page 

Address of number of lines on subsequent pages 

Address of output mode indicator 

Address of delete/save indicator 

The address of the control table points to the control table used to enter key 
and reference information for the cross-reference. The control table contains 
the address of the user-supplied routine that prints the lines formatted by 
LIB$CRF_OUTPUT. 

The width of the output line is used by LIB$CRF _OUTPUT in formatting 
output lines. 

Specifying the number of lines on the first page and the number of lines on 
subsequent pages allows the user to reserve space to print header information 
on the first page of the cross-reference. 

The output mode indicator allows the user to select which of three output 
modes is desired: 

CRF$K_ VALUES indicates that only the value and key fields are to 
be printed. For this mode, LIB$CRF_OUTPUT 
creates multiple columns across the page. Each 
column consists of the KEYl, KEY2, V ALl, and 
VAL2 fields. A minimum of one space between 
each column is guaranteed. 

CRF$K_ V ALS_REFS requests a cross-reference summary. It has no col­
umn space saved for a defining reference. If the 
user inserted a reference with the CRF$K_DEF 
indicator, the entry is ignored. 

CRF$K_DEFS_REFS requests a cross-reference summary with the first 
REFl and REF2 fields used only for definition ref­
erences. If no definition reference is provided, the 
fields are space filled. 

Cross-Reference Procedures 8-9 



The delete/save indicator allows the user to specify whether the tables built in 
accumulating symbol information are to be saved or deleted once the cross­
reference is produced. The indicator can be either of the following: 

CRF$K_SAVE 

CRF$K_DELETE 

to preserve the tables for subsequent processing 

to delete the tables 

8.4.4 Synopsis by Value 

LIB$CRF_QUTPUT can also produce a synopsis by symbol value. The 
following differences exist between producing a synopsis by symbol and a 
synopsis by value: 

1. The KEYl field of a synopsis by value contains the value, not the symbol 
name. 

2. The VALl and VAL2 fields are omitted. 

3. The REF2 fields contain the names of symbols with the associated value, 
not the names of referrers. 

4. The control-table macro instruction ($CRFCTLTABLE) specifies a key­
type of BIN_U32 to indicate that the KEYl field is to be handled as a 
32-bit, unsigned binary value. The binary-to-ASCII conversion is done by 
FAQ using the format string for the KEYl field. 

5. Calls to LIB$CRF-1NS_KEY are made to place a symbol value in the 
cross-reference table. 

6. Calls to LIB$CRF -1NS_REF are made to place a symbol name in the 
cross-reference table. 

7. CRF$K_REFS is used in all calls to LIB$CRF -1NS_REF. 

8.5 User Example 

LNK$NAMTAB: 

This section contains an example of the use of the cross-reference procedures 
by the V AXNMS Linker. The following subsections provide sample macros 
and entry point calls. 

8.5.1 Control Table lnltlallzatlon 

The Linker defines two control tables. The first table defines the output for a 
symbol-by-name synopsis and also the cross-reference synopsis. The following 
macro instructions are used: 

$CRFCTLTABLE KEYTYPE=ASCICtERRDR=LNK$ERR-RTNt­
OUTP~T=LNK$MAPDUTtKEY1TABLE=LNK$KEY1 t­
KEY2TABLE=LNK$KEY2tVAL1TABLE=LNK$VAL1 t­
VAL2TABLE=LNK$VAL2 tREF1 TABLE=LNK$REF1 t­
REF2TABLE=LNK$REF2 

8-10 Cross-Reference Procedures 



LNK$KEY1: 

LNK$KEY2: 

LNK$l,IAL1: 

LNK$1JAL2: 

LNK$REF1: 

LNK$REF2: 

$CRFFIELD 

$CRFFIELDEND 

$CRFFIELD 

$CRFFIELDEND 

$CRFFIELD 

$CRFFIELDEND 

$CRFFIELD 

$CRFFIELD 

$CRFFIELD 

$CRFFIELDEND 

$CRFFIELD 

$CR FF I ELD 

$CRFFIELDEND 

$CRFFIELD 

$CRFFIELDEND 

BIT_MASK=Ot FAO_STRING=\!15AC\t­
SET_CLEAR=SETtFIELO_WIDTH=15 

BIT_MASK=OtFAO_STRING=\ \t­
SET_CLEAR=SETt FIELD-WIDTH=1 

BIT_MASK=OtFAO_STRING=\!XL\t­
SET_CLEAR=SETtFIELO_WIDTH=B 

BIT_MASK=Ot FAO_STRING=\!2* \t­
SET_CLEAR=SETtFIELO_WIDTH=2 
BIT_MASK=SYM$M_RELtFAO_STRING=\-R\t­
SET_CLEAR=SETtFIELD_WIDTH=2 
BIT_MASK=SYM$M_DEFt FAO_STRING=\-*\t­
SET_CLEAR=CLEARtFIELD_WIDTH=2 

BIT_MASK=OtFAO_STRING=\!G* \t­
SET_CLEAR=SETtFIELD_WIDTH=G 
BIT_MASK=SYM$M_WEAKtFAO_STRING=\!3* WK-\,_ 
SET_CLEAR=SETtFIELD_WIDTH=G 

BIT_MASK=01FAO_STRING=\!1GAC\t­
SET_CLEAR=SETtFIELD_WIDTH=1G 

A second control table defines the output for a symbol-by-value synopsis. For 
this output, the value fields are eliminated. The symbol value becomes a 
binary longword key. The symbols having this value are entered as reference 
indicators. None is specified as the defining reference. The control table uses 
the field descriptors set up previously. The following macro instructions are 
used: 

LNK $lJAL TAB: 
$CRFCTLTABLE KEYTYPE=BIN_U32t ERROR=LNK$ERR-RTNt­

OUTPUT=LNK$MAPOUT tKEY1 TABLE=LNK$l.1AL1 ,_ 
KEY2TABLE=LNK$VAL2tVAL1TABLE=Ot­
l,1AL2TABLE=O tREF1 TABLE=LNK$REF1 ,_ 
REF2TABLE=LNK$REF2 

The FAQ control strings for each field above are defined to produce an output 
of the maximum character size. For example, ! 15AC produces the variable 
symbol name left-aligned and right-filled with spaces. Another example is the 
three sets of characters to be printed for field V AL2. Each F AO control string 
produces two characters, which is the maximum size of the field. This is 
essential in producing columnar output. 

Cross-Reference Procedures 8-11 



8.5.2 Sample Calls 

After initializing the format data for the symbol tables, the Linker enters data 
into the cross-reference tables by calling LIB$CRF_JNS_KEY. 

8.5.2.1 Symbol Processing - As the Linker processes the first object module, 
MAPINITIAL, it encounters a symbol definition for $MAPFLG. The follow­
ing is an example of a call to enter the symbol, MAPINITIAL, as a key in the 
cross-reference symbol table: 

where: 

PUSHAB 
PUSHAB 
PUSHAB 
PUSHAB 
CALLS 

l.IALUE_FLAGS 
l.IALLJE_AODR 
SYMBOL_AODR 
LNK$NAMTAB 
#a,G~LIB$CRF_INS_KEY 

LNK$NAMTAB is the address of the control table. 

SYMBOL_ADDR is the address of the counted ASCII string $MAPFLG. 

VALUE_ADDR is the address of the symbol value. 

VALUE_FLAGS is the address of a word whose bits are used to select 
special characters to print beside the value. 

The Linker then calls LIB$CRF--1NS_REF to process the defining reference 
indicator: 

DEF: .LONG CRF$K_OEF 
PUSHAB DEF 

where: 

PUSHAB REF_FLAGS 
PUSHAB REF_ADDR 
PUSHAB SYMBOL_AODR 
PUSHAB LNK$NAMTAB 
CALLS #5tGALI6$CRF_INS_REF 

LNK$NAMTAB is the address of the control table. 

SYMBOL_ADDR is the address of the counted string $MAPFLG. 

REF_ADDR is the address of the referrer's counted ASCII string. 

REF_FLAGS is the address of a word whose bits are used to select 
special characters to print beside the reference. 

Further on in the input module, the Linker encounters a global symbol refer­
ence to CS$GBL. The call to store data for this reference is: 

REF: .LONG CRF$K_REF 
PUSHAB REF 
PUSHAB REF_FLAGS 
PUSHAB REF_ADDR 
PUSHAB SYMBOL_AODR 
PUSHAB LNK$NAMTAB 
CALLS #5tGALI6$CRF_INS_REF 

8-12 Cross-Reference Procedures 



The parameters are similar to the previous example, except CRF$K_REF, 
which indicates that this is not the defining reference. 

After it has performed symbol relocation for the module being bound, the 
Linker calls LIB$CRF_INS-REF to build a table ordered by value: 

PUSH AB 
PUSHAB 
PUSHAB 
PUSHAB 
PUSH AB 
CALLS 

where: 

REF 
REF-FLAGS 
REF-ADDR 
t.IAL_ADDR 
LNK$l.IALTAB 
#5tGALIB$CRF_INS_REF 

LNK$VALTAB is the address of the control table for the symbol sy­
nopsis by value. 

VAL_ADDR 

REF_ADDR 

is the address of the value (binary longword key). 

is the address of the symbol name having the value 
contained in V AL-ADDR. 

REF_FLAGS is the address of a word whose bits are used to select 
special characters to print beside the value. 

CRF$K-REF is the indicator that this is not a defining reference. 

8.5.2.2 Output - After all the input modules are entirely processed, the 
Linker requests the information for the map. It calls LIB$CRF _QUTPUT 
once for each type of output. A call to list the symbols and their values would 
be: 

LNW ID: 
LNSP1: 
LNSOP: 
SAl..'E: 
l.IAL: 

.LONG 132 

.LONG LINES_PAGE1 

.LONG LINES_OTHR_PAGE 
• LONG CRF$K_SAt.1E 
.LONG CRF$K_l.IALUES 
PUSHAB l,IAL 
PUSHAB SAl..lE 
PUSHAB LNSOP 
PUSHAB LNSP1 
PUSHAB LNWID 
PUSHAB LNK$NAMTAB 
CALLS #GtGALIB$CRF_OLJTPUT 

The type of output produced by this call is shown in Section 8.2, Figure 8-2. 

In the previous example, CRF$K_ VALUES means that no reference indica­
tors are to be printed, while CRF$K_SAVE means that the cross-reference 
table is to be saved. Alternatively, all cross-reference data can be listed. The 
following call produces such a summary and releases the storage at the same 
time: 

LNWID: 
LNSP1: 
LNSOP: 

.LONG 132 

.LONG LINES_PAGE1 

.LONG LINES_OTHR_PAGE 
(continued on next page) 

Cross-Reference Procedures 8-13 



DELETE: • LONG CRF$K_DELETE 
DEFREF: • LONG CRF$K_DEF _REF 

PUSHAB DELETE 
PUSHAB DEFREF 
PUSHAB LNSOP 
PUSHAB LNSP1 
PUSHAB LNWID 
PUSHAB LNK$NAMTAB 
CALLS #GtGALIB$CRF_OUTPUT 

The type of output produced by this call is shown in Section 8.2, Figure 8-4. 

CRF$K_DEFS_REFS indicates that the first two reference fields are to be 
used for the defining references, and CRF$K_DELETE indicates that the 
table is to be deleted. 

Another call is made to list the symbol by value synopsis, as follows: 

LNW ID: 
LNSPi: 
LNSOP: 
t.JALREF: 
DELETE: 

PUSHAB 

.LONG 132 

.LONG LINES_PAGE1 

.LONG LINES_OTHR-PAGE 

.LONG CRF$K_t.JALS_REF 

.LONG CRF$K_DELETE 
PUSHAB DELETE 
PUSHAB t.JALREF 
PUSHAB LNSOP 
PUSHAB LNSP1 
LNWID 
PUSHAB LNK$1.'ALTAB 
CALLS #GtGALI6$CRF_OUTPUT 

This is similar to the previous call in that it produces a complete cross­
reference output by value, but it does not have the defining reference fields. 

8.6 How to Link the Cross-Reference Sharable Image 

To link the cross-reference sharable image include a Linker option file with 
the following line in it: 

SYS$LIBRARY:CRFSHR/SHARE 

For example, A.COM containing: 

$LINK Xt SYS$INPUT/OPT 
!+ 
! option inPut 
!-
SYS$LIBRARY:CRFSHR/SHARE 

8-14 Cross-Reference Procedures 



Appendix A 
Summary of Run-Time Library Entry Points 

This appendix summarizes the entry points defined by the Run-Time 
Library. The entry points are described using the procedure parameter nota­
tion, a shorthand notation you can use to describe procedure parameters. 

The order of the entry points in this appendix is identical to the order of the 
procedure descriptions in this manual. 

A.1 Summary of Procedure Parameter Notation 

Procedure parameter notation provides a compact means of specifying the 
access type, data type, passing mechanism, and parameter form of each 
parameter. 

Subroutine references take the form: 

CALL Procedure__name (parl, par2, ... parn) 

Function references take the form: 

ret-status = PREFIX$PROCEDURE_NAME (parl, par2, ... parn) 

func-value = PREFIX$PROCEDURE_NAME (parl, par2, ... parn) 

where parl. .. parn, and func-value characteristics take the form: 

<parameter-name>. <access type> <data type>. <passing mechanism> 
<parameter form> 

In the example that follows, the parameter get-str has the shorthand notation 
(wt.dx) which translates to <write><text string>.<passed by descriptor><of 
any data type in descriptor>: 

ret-status.wlc.v = LIB$GET_1NPUT (get-str.wt.dx 
[,prompt-str.rt.dx [,out-len.wwu.r]]) 

A-1 



The following notation is used to define these characteristics: 

<access type> <data type> 

c Call after stack unwind a Virtual address 
f Function call (before return) arb 8-bit relative virtual address 
j JMP (after unwind) access arl 32-bit relative virtual address 
m Modify access arw 16-bit relative virtual address 
r Read-only access b Byte integer (signed) 
s Call without stack unwinding bpv Bound procedure value 
w Write-only access bu Byte logical (unsigned) 

c Single character 

cit COBOL intermediate temporary 

cp Character pointer 

d D-11oating 

de D-11oating complex 

<passing mechanism> dsc Descriptor (used by descriptors) 

f F-11oating 

d By descriptor fc F -Floating complex 

r By reference g G-11oating 

v By immediate value gc G-11oating complex 

h H-11oating 

he H-11oating complex 

I Longword integer (signed) 

le Longword return status 

lu Longword logical (unsigned) 
----~-'~"""''""""""·· -- nu Num. string, unsigned 

nl Num. string, It. separate sign 

nlo Num. string, It. overpunched sign 

nr Num. string, rt. separate sign 
<parameter form> 

nro Num. string, rt. overpunched sign 

nz Num. string; zoned sign 
- Scalar 

Octaword integer (signed) 0 
a Array reference or descriptor 

Octaword logical (unsigned) OU 
d Dynamic string descriptor 

Packed decimal string 
Non-contiguous array desc. 

p 
nca 

Quadword integer (signed) 
Procedure ref. or desc. 

q 
p 

Quadword logical (unsigned) 
Fixed-length string descriptor 

qu 
s 

t Text (character) string 
sd Scalar decimal descriptor 

Smallest addressable storage unit u 
x Class type in descriptor 

Bit (variable bit field) v 

w Word integer (signed) 

WU Word logical (unsigned) 

x Data type in descriptor 

z Unspecified 

zi Sequence of instruction 

zem Procedure entry mask 

A-2 Summary of Run-Time Library Entry Points 



The notation xy .z. means that the argument is only passed to a user-supplied 
procedure, and so can have any access type (x), data type (y) and passing 
mechanism (z). 

The order of parameters is generally: 

1. Required input· (read, jump, function access) 

2. Required input/output (modify access) 

3. Required output (write access) 

4. Optional input (read, jump, function access) 

5. Optional input/output (modify access) 

6. Optional output (write access) 

NOTE 

JSB entry points accept parameters in the preceding order in 
registers starting at RO. 

A.2 General Utlllty Procedures 

A.2.1 Common Control Input/Output Procedures 

LIB$ASN_WTH_MBX 

LIB$RUN_FROGRAM 

LIB$DO_COMMAND 

LIB$GET_COMMAND 

LIB$GET _INPUT 

LIB$GET _FOREIGN 

LIB$GET_COMMON 

LIB$SYS_GETMSG 

LIB$CURRENCY 

LIB$DIGIT_SEP 

Assign channel with Mailbox 
ret-status.wlc.v = LIB$ASN_WTH_MBX (dev-nam.rt.dx, max-msg.rl.v, 
buf-quo.rl.v, dev-chn.ww.r, mbx-chn.ww.r) 

Chain to Program 
ret-status.wlc.v = LIB$RUN_FROGRAM (pgm-name.rt.dx) 

Execute Command 
ret-status.wlc.v = LIB$DO_COMMAND (cmd-text.rt.dx) 

Get Command Line from SYS$COMMAND 
ret-status.wlc.v = LIB$GET_COMMAND (get-str.wt.dx [,prompt-str.rt.dx 
[,out-len. wwu.r]]) 

Get Command Line from SYS$INPUT 
ret-status.wlc.v = LIB$GET-1NPUT (get-str.wt.dx [,prompt-str.rt.dx 
[,out-len. wwu.r]]) 

Get Foreign Command Line 
ret-status.wlc.v = LIB$GET_FOREIGN (get-str.wt.dx [,prompt-str.rt.dx 
[,out-len.wwu.r]]) 

Get String from Common 
ret-status.wlc.v = LIB$GET_COMMON (dst-str.wt.dx [,chars-copied.ww.rl) 

Get system message 
ret-status.wlc.v = LIB$SYS_GETMSG (msg-id.rl.r, [msg-len.ww.r], 
dst-str. wt.dx [,flags.rl.r [,out-arr. wa.ra]]) 

Get currency symbol 
ret-status.wlc.v = LIB$CURRENCY (currency-str.wt.dx [,out-len.wwu.r]) 

Get digit separator symbol 
ret-status.wlc.v = LIB$DIGIT_SEP (digit-sep-str.wt.dx [,out-len.wwu.rl) 

Summary of Run-Time Library Entry Points A-3 



LIB$LP _LINES 

LIB$RADJ:x_pQINT 

LIB$PUT_OUTPUT 

LIB$PUT _CQMMON 

LIB$SYS_TRNLOG 

Get default number of lines on a line-printer page 
page-len. wl. v = LIB$LP _LINES ( ) 

Get system's radix point symbol 
ret-status.wlc. v = LIB$RADJ:x_pQINT (radix-point-str. wt.dx 
[, out-len. wwu .r]) 

Put Line to SYS$0UTPUT 
ret-status.wlc.v = LIB$PUT_OUTPUT (msg-str.rt.dx) 

Put String to Common 
ret-status.wlc.v = LIB$PUT_CQMMON (src-str.rt.dx [,chars-copied.ww.r]) 

Translate Logical name 
ret-status.wlc.v = LIB$SYS_TRNLOG (logical-name.rt.dx [,dst-len], 
dst-str.wt.dx [,table.wb.r] [,acc-mode.wb.r] [,dsb-msk.rbu.r]) 

A.2.2 Terminal Independent Screen Procedures 

LIB$ERASE_LINE 

LIB$ERASE_pAGE 

LIB$SCREEN--1NFO 

LIB$GET _SCREEN 

LIB$DOWN_SCROLL 

LIB$PUT_BUFFER 

LIB$PUT _SCREEN 

LIB$SET_BUFFER 

LIB$SET _CURSOR 

Erase Line 
ret-status.wlc.v = LIB$ERASE-LINE ([line-no.rw.r, col-no.rw.r]) 
ret-status.wlc.v = SCR$ERASE_LINE ([line-no.rw.v, col-no.rw.v]) 

Erase Page 
ret-status.wlc.v = LIB$ERASE_pAGE ([line-no.rw.r, col-no.rw.r]) 
ret-status.wlc.v-= SCR$ERASE_pAGE ([line-no.rw.v, col-no.rw.v]) 

Get Screen Information 
ret-status.wlc.v = LIB$SCREEN--1NFO (flags.wl.r [,dev-type.wb.r 
[,line-width.ww.r [,lines-per-page.ww.r]]]) 
ret-status.wlc.v = SCR$SCREEN--1N_FO (control-block.wl.r) 

Get Text from Screen 
ret-status.wlc.v = LIB$GET_SCREEN (input-text.wt.dx [,prompt-str.rt.dx 
[,out-len. wwu.r]]) 
ret-status.wlc.v = SCR$GET_SCREEN (input-text.wt.dx [,prompt-str.rt.dx 
[,out-len. wwu.r]]) 

Move Cursor up one line, Scroll down if at top 
ret-status. wlc. v = LIB$DOWN_SCROLL () 
ret-status.wlc.v = SCR$DOWN_SCROLL () 

Put Current Buffer to Screen or Previous Buffer 
ret-status.wlc.v = LIB$PUT_BUFFER ([old-buffer.wt.ds]) 
ret-status.wlc.v = SCR$PUT_BUFFER ([old-buffer.wt.ds]) 

Put Text to Screen 
ret-status;wlc.v = LIB$PUT_SCREEN (text.rt.dx [,line-no.rw.r, 
col-no.rw .r]) 
ret-status.wlc.v = SCR$PUT_SCREEN (text.rt.dx [,line-no.rw.v, 
col-no.rw. v]) 

Set/Clear Buffer Mode 
ret-status.wlc.v = LIB$SET_BUFFER (buffer.mt.ds [,old-buffer.wl.r]) 
ret-status.wlc.v = SCR$SET_BUFFER (buffer.mt.ds [,old-buffer.wl.r]) 

Set Cursor to character position on screen 
ret-status.wlc.v = LIB$SET_CURSOR (line-no.rw.r, col-no.rw.r) 
ret-status.wlc.v = SCR$SET_CURSOR (line-no.rw.v, col-no.rw.v) 

A-4 Summary of Run-Time Library Entry Points 



A.2.3 String Manlpulatlon Procedures 

STR$COMPARE 

STR$COMPARE_EQL 

LIB$LOCC 

LIB$LEN 

LIB$INDEX 

LIB$MATCHC 

STR$POSITION 

JSB 

LIB$SCANC 

LIB$SKPC 

LIB$SPANC 

LIB$CHAR 

LIB$ICHAR 

STR$ADD 

STR$MUL 

STR$RECIP 

STR$ROUND 

STR$APPEND 

STR$CONCAT 

Compare two strings 
match.wlu.v = STR$COMPARE (srcl-str.rt.dx, src2-str.rt.dx) 

Compare two strings for equal 
match.wlu.v = STR$COMPARE_EQL (srcl-str.rt.dx, src2-str.rt.dx) 

Locate Character 
index.wlu.v = LIB$LOCC (char-str.rt.dx, src-str.rt.dx) 

Return Length of String as Longword Value 
str-len.wlu.v = LIB$LEN (src-str.rt.dx) 

Return Relative Position of Substring 
index.wlu.v = LIB$INDEX (src-str.rt.dx, sub-str.rt.dx) 

Match Characters 
index.wlu.v = LIB$MATCHC (sub-str.rt.dx, src-str.rt.dx) 

Return Relative Position of Substring 
index.wlu.v = STR$POSITION (src-str.rt.dx, sub-str.rt.dx 
[,start-pos.rl.r]) 
index.wlu.v = STR$POSITION_R6 (src-str.rt.dx, sub-str.rt.dx, 
start-pos.rl.v) 

Scan Characters 
index.wlu.v = LIB$SCANC (src-str.rt.dx, table-arr.rbu.ra, mask.rbu.r) 

Skip Character 
index.wlu.v = LIB$SKPC (char-str.rt.dx, src-str.rt.dx) 

Span Characters 
index.wlu.v = LIB$SPANC (src-str.rt.dx, table-arr.rbu.ra, mask.rbu.r) 

Transform Byte to First Character of a String 
ret-status.wlc.v = LIB$CHAR (one-char-str.wt.dx, ascii-code.rbu.r) 

Transform First Character of String to Longword value 
first-char-value.wlu.v = LIB$ICHAR (src-str.rt.dx) 

Add Two Decimal Strings 
ret-status.wlc.v = STR$ADD (asign.rv.r, aexp.rl.r, adigits.rnu.dx, 
bsign.rv.r, bexp.rl.r, bdigits.rnu.dx, csign.wl.r, cexp.wl.r, cdigits.wnu.dx) 

Multiply Two Decimal Strings 
ret-status.wlc.v = STR$MUL (asign.rv.r, aexp.rl.r, adigits.rnu.dx, 
bsign.rv.r, bexp.rl.r, bdigits.rnu.dx, csign.wl.r, cexp.wl.r, 
cdigits.wnu.dx) 

Reciprocal of a Decimal String 
ret-status.wlc.v = STR$RECIP (asign.rv.r, aexp.rl.r, adigits.rnu.dx, 
bsign.rv.r, bexp.rl.r, bdigits.rnu.dx, csign.wl.r, cexp.wl.r, 
cdigits. wnu.dx) 

Round or Truncate a Decimal String 
ret-status.wlc.v = STR$ROUND (places.rl.r, trunc-flg.rv.r, asign.rv.r, 
aexp.rl.r, adigits.rnu.dx, csign.wl.r, cexp.wl.r, cdigits.wnu.dx) 

Append a String 
ret-status.wlc.v = STR$APPEND (dst-str.wt.dx, src-str.rt.dx) 

Concatenate Two or more Strings 
ret-status.wlc.v == STR$CONCAT (dst-str.wt.dx, srcl-str.rt.dx, 
src2-str.rt.dx [,src3-str.rt.dx ... ,srcn-str.rt.dx]) 

Summary of Run-Time Library Entry Points A-5 



LIB$SCOPY _DXDX 

JSB 

OTS$SCOPY_DXDX 

JSB 

STR$COPY _DX 

JSB 

LIB$SCOPY_R_DX 

JSB 

OTS$SCOPY _R_DX 

JSB 

STR$COPY_R 

JSB 

STR$LEN_EXTR 

JSB 

STR$POS_EXTR 

JSB 

STR$LEFT 

JSB 

STR$RIGHT 

JSB 

STR$DUPL_CHAR 

JSB 

STR$PREFIX 

STR$REPLACE 

Copy Any Class String Passed by Descriptor to Any Class String 
ret-status.wlc.v = LIB$SCOPY_DXDX (src-str.rt.dx, dst-str.wt.dx) 
ret-status.wlc.v = LIB$SCOPY_DXDX6 (src-str.rt.dx, dst-str.wt.dx) 

Copy Any Class String Passed by Descriptor to Any Class String 
unmoved-src.wlu.v = OTS$SCOPY_DXDX (src-str.rt.dx, dst-str.wt.dx) 
unmoved-src.wlu.v = OTS$SCOPY_DXDX6 (src-str.rt.dx, dst-str.wt.dx) 

Copy any Class String Passed by Descriptor 
ret-status. wlc. v = STR$COPY _DX ( dst-str. wt.dx, src-str .rt.dx) 
ret-status.wlc.v = STR$COPY_D~ (dst-str.wt.dx, src-str.rt.dx) 

Copy Any Class String Passed by Reference to Any Class String 
ret-status.wlc.v = LIB$SCOPY_R_DX (src-len.rwu.r, src-adr.ra.v, 
dst-str.wt.dx) 
ret-status.wlc.v = LIB$SCOPY_R_DX6 (src-len.rwu.v, src-adr.ra.v, 
dst-str.wt.dx) 

Copy Any Class String Passed by Reference to Any Class String 
unmoved-src.wlu.v = OTS$SCOPY_R_DX (src-len.rwu.v, src-adr.ra.v, 
dst-str.wt.dx) 
unmoved-src.wlu.v = OTS$SCOPY_R_DX6 (src-len.rwu.v, src-adr.ra.v, 
dst-str.wt.dx) 

Copy any Class String Passed by Reference 
ret-status.wlc.v = STR$COPY_R (dst-str.wt.dx, src-len.rwu.r, src-adr.ra.v) 
ret-status.wlc.v = STR$COPY_R_R8 (dst-str.wt.dx, src-len.rwu.v, 
src-adr.ra.v) 

Extract a substring of a string 
ret-status.wlc.v = STR$LEN_EXTR (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.r, length.rl.r) 
ret-status.wlc.v = STR$LEN_EXTR._R8 (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.v, length.rl.v) 

Extract a substring of a string 
ret-status.wlc.v = STR$POS_EXTR (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.r, end-pos.rl.r) 
ret-status.wlc.v = STR$POS_EXTR._R8 (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.v, end-pos.rl.v) 

Extract a substring of a string 
ret-status.wlc.v = STR$LEFT (dst-str.wt.dx, src-str.rt.dx, end-pos.rl.r) 
ret-status.wlc.v = STR$LEFT_R8 (dst-str.wt.dx, src-str.rt.dx, end-pos.rl.v) 

Extract a substring of a string 
ret-status.wlc.v = STR$RIGHT (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.r) 
ret-status.wlc.v = STR$RIGHT_R8 (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.v) 

Generate a String 
ret-status. wlc. v = STR$DUPL_CHAR ( dst-str. wt.dx [,length.rl.r 
[,char.rbu.r]J) 
ret-status.wlc.v = STR$DUPL_CHARR8 (dst-str.wt.dx, length.rl.v, 
char.rbu.v) 

Prefix a String 
ret-status.wlc.v = STR$PREFIX (dst-str.wt.dx, src-str.rt.dx) 

Replace a Substring 
ret-status.wlc.v = STR$REPLACE (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.r, end-pos.rl.r, rpl-str.rt.dx) 

A-6 Summary of Run-Time Library Entry Points 



JSB 

STR$TRIM 

LIB$MOVTC 

LIB$MOVTUC 

LIB$TRA_ASC_EBC 

LIB$TRA._EBC_ASC 

STR$TRANSLATE 

STR$UPCASE 

ret-status.wlc.v = STR$REPLACE_R8 (dst-str.wt.dx, src-str.rt.dx, 
start-pos.rl.v, end-pos.rl.v, rpl-str.rt.dx) 

Trim trailing blanks and tabs 
ret-status.wlc.v = STR$TRIM (dst-str.wt.dx, src-str.rt.dx 
[,out-len. wwu.r]) 

Move Translated Characters 
ret-status.wlc.v = LIB$MOVTC (src-str.rt.dx, fill-char.rt.dx, 
trans-tbl.rt.dx, dst-str.wt.dx) 

Move Translated until Character 
stop-index.wlu.v = LIB$MOVTUC (src-str.rt.dx, stop-char.rt.dx, 
trans-tbl.rt.dx, dst-str. wt.dx [,fill-char .rt. dx]) 

Translate ASCII to EBCDIC 
ret-status.wlc.v = LIB$TRA_ASC_EBC (src-str.rt.dx, dst-str.wbu.dx) 

Translate EBCDIC to ASCII 
ret-status.wlc.v = LIB$TRA_EBC_ASC (src-str.rbu.dx, dst-str.wt.dx) 

Translate Matched Characters 
ret-status.wlc.v = STR$TRANSLATE (dst-str.wt.dx, src-str.rt.dx, 
trans-tbl.rt.dx, match-str.rt.dx) 

Uppercase Conversion 
ret-status.wlc.v = STR$UPCASE (dst-str.wt.dx, src-str.rt.dx) 

A.2.4 Formatted Input Conversion Procedures 

OTS$CVT_T_z 

FOR$CNV_JN_DEFG 

OTS$CVT_TLL 

FOR$CNV _JN_J 

OTS$CVT_TL_L 

FOR$CNV _JN_L 

OTS$CVT _ TO_L 

FOR$CNV _JN_O 

OTS$CVT _ TZ_L 

Convert text to floating (where z = D, G, ·or H) 
ret-status.wlc.v = OTS$CVT_T_z (inp-str.rt.dx, value.wz.r 
[,digits-in-fract.rlu. v [,scale-factor .rl. v [,flags.rlu. v 
[,ext-bits.wz.r]]]]) 

FORTRAN Data Types D, E, F, G Floating-point Input Conversion 
ret-status.wlc.v = FOR$CNV _JN_DEFG (inp-str.rt.dx, value.wd.r, 
[,digits-in-fract.rl. v [,scale-factor .rl. vll) 

Convert text (signed integer) to Longword (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_Tl-1 (inp-str.rt.dx, value.wz.r 
[, value-size.rl. v [,flags.rlu. vll) 

FORTRAN Integer I Format Input Conversion 
ret-status.wlc.v = FOR$CNV _JN_J (inp-str.rt.dx, value.wl.r) 

Convert text (logical) to Longword (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT~TL_L (inp-str.rt.dx, value.wz.r 
[,value-size. rl. v 1) 

FORTRAN Logical L Format Input Conversion 
ret-status.wlc.v = FOR$CNV_JN_L (inp-str.rt.dx, value.wl.r) 

Convert text (octal) to Longword (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_TO_L (inp-str.rt.dx, value.wz.r 
[,value-size.rl.v [,flags.rlu.vll) 

FORTRAN Octal 0 Format Input Conversion 
ret-status.wlc.v = FOR$CNV_JN_O (inp-str.rt.dx, value.wl.r) 

Convert text (hexadecimal) to Longword (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_TZ_L (inp-str.rt.dx, value.wz.r 
[, value-size.rl. v [,flags.rlu. vll) 

Summary of Run-Time Library Entry Points A-7 



FOR$CNV _IN_Z 

LIB$CVT-.DTB 

LIB$CVT_OTB 

LIB$CVT _HTB 

FORTRAN Hexadecimal. Z Format Input Conversion 
ret-status.wlc.v = FOR$CNV _IN_Z (inp-str.rt.dx, value.wl.r) 

Decimal to Binary Conversion 
ret-status.wlc.v = LIB$CVT_DTB (count.rl.v, string.rt.r, result.wl.r) 

Octal to Binary Conversion 
ret-status.wlc.v = LIB$CVT_OTB (count.rl.v, string.rt.r, result.wl.r) 

Hexadecimal to Binary Conversion 
ret-status.wlc.v = LIB$CVT_HTB (count.rl.v, string.rt.r, result.wl.r) 

A.2.5 Formatted Output Conversion Procedures 

OTS$CVT _L_ TI 

FOR$CNV _OUT _I 

OTS$CVT _L_ TL 

FOR$CNV _OUT __L 

OTS$CVT__L_TO 

FOR$CNV _OUT_O 

OTS$CVT_L_TZ 

FOR$CNV _OUT _Z 

FOR$CVT_z_TD 

FOR$CNV _OUT_D 

FOR$CVT_z_TE 

FOR$CNV _OUT-E 

FOR$CVT_z_TF 

Convert Longword to Text (signed integer) (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_L_TI (value.rz.r, out-str.wt.ds 
[,int-digits.rl. v [, value-size.rl. v [,flags.rlu.v]]]) 

FORTRAN Integer I Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT-1 (value.rl.v, out-str.wt.ds) 

Convert Longword to Text (logical) 
ret-status.wlc.v = OTS$CVT_L_TL (value.rl.r, out-str.wt.ds) 

FORTRAN Logical L Output Conversion 
ret-status.wlc.v = FOR$CNV _OUT__L (value.rl.v, out-str.wt.ds) 

Convert Longword to Text (octal) (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_L_TO (value.rz.r, out-str.wt.ds 
[,int-digits.rl. v [, value-size.rl. v]]) 

FORTRAN Octal 0 Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT_O (value.rl.v, out-str.wt.ds) 

Convert Longword to Text (hexadecimal) (where z = b, w, or 1) 
ret-status.wlc.v = OTS$CVT_L_TZ (value.rz.r, out-str.wt.ds 
[,int-digits.rl. v [, value-size.rl. v]]) 

FORTRAN Hexadecimal Z Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT_Z (value.rl.v, out-str.wt.ds) 

Convert Floating to Text (D format) (where z = D, G, or H) 
ret-status.wlc.v = FOR$CVT_z_TD (value.rz.r, out-str.wt.ds, 
digits-in-fract.rlu. v [,scale-factor .rl. v [,digits-in-int.rlu. v 
[,digits-in-exp.rlu. v [,flags.rlu. v]]]]) 

FORTRAN D Format Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT_D (value.rd.r, out-str.wt.ds 
[,digits-in-fract.rlu. v [,scale-factor.rl. v]]) 

Convert Floating to Text (E format) (where z = D, G, or H) 
ret-status.wlc.v = FOR$CVT_z_TE (value.rz.r, out-str.wt.ds, 
digits-in-fract.rlu. v [,scale-factor .rl. v [,digits-in-int.rlu. v 
[,digits-in-exp.rlu. v [,flags.rlu. v]]]]) 

FORTRAN E Format Output Conversion 
ret-status.wlc.v = FOR$CNV _OUT_E (value.rd.r, out-str.wt.ds 
[,digits-in-fract.rlu. v [,scale-factor .rl. v]]) 

Convert Floating to Text (F format) (where z = D, G, or H) 
ret-status.wlc.v = FOR$CVT_z_TF (value.rz.r, out-str.wt.ds, 
digits-in-fract.rlu. v [,scale-factor .rl. v [,digits-in-int.rlu. v 
[,digits-in-exp.rlu.v [,flags.rlu.v]]]]) 

A-8 Summary of Run-Time Library Entry Points 



FOR$CNV _OUT_F 

FOR$CVT_z_TG 

FOR$CNV _OtJT_G 

LIB$SYS_F AO 

LIB$SYS_F AOL 

FORTRAN F Format Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT_F (value.rd.r, out-str.wt.ds 
[,digits-in-fract.rlu.v [,scale-factor.rl.v]]) 

Convert Floating to Text (G format) (where z = D, G, or H) 
ret-status.wlc.v = FOR$CVT_z_TG (value.rz.r, out-str.wt.ds, 
digits-in-fract.rlu. v [,scale-factor .rl. v [, digits-in-int.rlu. v 
[,digits-in-exp.rlu. v [,flags.rlu. v]]]]) 

FORTRAN G Format Output Conversion 
ret-status.wlc.v = FOR$CNV_OUT_G (value.rd.r, out-str.wt.ds 
[,digits-in-fract.rlu.v [,scale-factor.rl.v]]) 

Formatted ASCII output 
ret-status.wlc.v = LIB$SYS_FAO (ctr-str.rt.dx, [out-len.ww.r], 
out-buf.wt.dx [,pl.xy.z ... [,pn.xy.zll) 

Formatted ASCII output with List parameter 
ret-status.wlc.v = LIB$SYSJAOL (ctr-str.rt.dx, [out-len.ww.r], 
out-buf.wt.dx, prm-lst.ra.r) 

A.2.6 Variable Bit Fleld Instruction Procedures 

LIB$INSV 

LIB$EXTV 

LIB$EXTZV 

LIB$FFC 

LIB$FFS 

Insert a Variable Bit Field 
CALL LIB$INSV (src.rl.r, pos.rl.r, size.rbu.r, base.wv.r) 

Extract and Sign-extend a Field 
field.wlu.v = LIB$EXTV (pos.rl.r, size.rbu.r, base.ra.v) 

Extract a Zero-extended Field 
field.wlu.v = LIB$EXTZV (pos.rl.r, size.rbu.r, base.ra.v) 

Find First Clear Bit 
ret-status.wlc.v = LIB$FFC (start-pos.rl.r, size.rbu.r, base.ra.r, 
find-pos.wl.r) 

Find First Set Bit 
ret-status.wlc.v = LIB$FFS (start-pos.rl.r, size.rbu.r, base.ra.r, 
find-pos. wl.r) 

A.2. 7 Performance Measurement Procedures 

LIB$FREE_TIMER 

LIB$INIT_ TIMER 

LIB$STAT _ TJMER 

LIB$SHOW _TIMER 

Free Timer Storage 
ret-status.wlc.v = LIB$FREE_TIMER (handle.ml.v) 

Initialize Times and Counts 
ret-status.wlc.v = LIB$INIT_TIMER ([handle.ml.vl) 

Return Accumulated Times and Counts as a Statistic 
ret-status.wlc.v = LIB$STAT_TIMER (code.rl.r, value.wx.r 
[,handle.rl.r]) 

Show Accumulated Times and Counts 
ret-status.wlc.v = LIB$SHOW_TIMER ([[[[handle.rl.r], code.rl.r], 
action.flc.rp], user-arg.rl.v]) 

A.2.8 Date/Time Utlllty Procedures 

LIB$SYS-.ASCTIM Convert Binary Date/rime to an ASCII String 
ret-status.wlc.v = LIB$SYS_ASCTIM (length.ww.r, dst-str.wt.dx, 
[, user-time.rq .r [,cnvflg .rlu.rll) 

Summary of Run-Time Library Entry Points A-9 



FOR$IDATE 

FOR$JDATE 

FOR$DATE 

FOR$SECNDS 

FOR$TIME 

LIB$DAY 

LIB$DATE_TIME 

Return Month, Day, Year as INTEGER*2 
CALL FOR$IDATE (month.ww.r, day.ww.r, year.ww.r) 

Return Month, Day, Year as INTEGER*4 
CALL FOR$JDATE (month.wl.r, day.wl.r, year.wl.r) 

Return System Date as 9-Byte String 
CALL FOR$DATE (9-byte-array.wb.ra) 

Return System Time in Seconds 
time-difference.wf.v = FOR$SECNDS (time-origin.rf.r) 

Return System Time as 8-Byte String 
CALL FOR$TIME (8-byte-array.wb.ra) 

Return Day Number as a Longword Integer 
ret-status.wlc.v = LIB$DAY (day-number.wl.r [,user-time.rq.r 
[,day-time. wl.rJ]) 

Return the System Date and Time as a String 
ret-status.wlc.v = LIB$DATE_TIME (dst-str.wt.dx) 

A.2.9 Miscellaneous General Utlllty Procedures 

LIB$AST _IN_pRQG 

LIB$CRC 

LIB$CRC_TABLE 

LIB$EMULATE 

LIB$ADDX 

LIB$SUBX 

LIB$SIM_ TRAP 

LIB$EMODF 

LIB$EMODD 

LIB$EMODG 

LIB$EMODH 

LIB$POLYF 

AST in Progress 
in-progress.wlu.v = LIB$AST_IN_pRQG ( ) 

Calculate Cyclic Redundancy Check 
crc.wlu.v = LIB$CRC (table.rlu.ra,inicrc.rlu.r, stream.rt.dx) 

Construct Cyclic Redundancy Check Table 
CALL LIB$CRC_TABLE (poly.rlu.r, table.wl.ra) 

Emulate VAX-11 Instructions 
ret-status.wlc.v = LIB$EMULATE (sig-args.ma.r. mech-args.ma.r) 

Multiple Precision Binary Add 
ret-status.wlc.v = LIB$ADDX (a.rl.ra, b.rl.ra, result.wl.ra 
[,len.rl.rl) 

Multiple Precision Binary Subtract 
ret-status.wlc.v = LIB$SUBX (a.rl.ra, b.rl.ra, result.wl.ra 
[,len.rl.r]) 

Simulate Floating Trap 
ret-status.wlc.v = LIB$SIM_TRAP (sig-args.ma.r, mech-args.ma.r) 

Extended Multiply and Integerize (F_floating) 
ret-status.wlc.v = LIB$EMODF (multiplier.rf.r, multext.rb.r, 
multiplicand.rf.r, int. wl.r, fract. wf.r) 

Extended Multiply and Integerize (D_floating) 
ret-status.wlc.v = LIB$EMODD (multiplier.rd.r, multext.rb.r, 
multiplicand.rd.r, int.wl.r, fract.wd.r) 

Extended Multiply and Integerize (G_floating) 
ret-status.wlc.v = LIB$EMODG (multiplier.rg.r, multext.rb.r, 
multiplicand.rg.r, int.wl.r, fract.wg.r) 

Extended Multiply and Integerize (H_floating) 
ret-status.wlc.v = LIB$EMODH (multiplier.rh.r, multext.rb.r, 
multiplicand.rh.r, int.wl.r, fract.wh.r) 

Evaluate Polynomial (F_floating) 
ret-status.wlc.v = LIB$POLYF (arg.rf.r, degree.rw.r, coeff.rf.ra, 
result.wf.r) 

A-10 Summary of Run-Time Library Entry Points 



LIB$POLYD 

LIB$POLYG 

LIB$POLYH 

LIB$INSQHI 

LIB$INSQTI 

LIB$REMQHI 

LIB$REMQTI 

Evaluate Polynomial (D_floating) 
ret-status.wlc.v = LIB$POLYD (arg.rd.r, degree.rw.r, coeff.rd.ra, 
result.wd.r) 

Evaluate Polynomial (G_floating) 
ret-status.wlc.v = LIB$POLYG (arg.rg.r, degree.rw.r, coeff.rg.ra, 
result.wg.r) 

Evaluate Polynomial (H_floating) 
ret-status.wlc.v = LIB$POLYH (arg.rh.r, degree.rw.r, coeff.rh.ra, 
result. wh.r) 

Queue Entry Inserted at Head 
ret-status.wlc.v = LIB$INSQHI (entry.mq.ra, header.mq.r 
[,retry-cnt.rlu.rl) 

Queue Entry Inserted at Tail 
ret-status.wlc.v = LIB$INSQTI (entry.mq.ra, header.mq.r 
[,retry-cnt.rlu.rl) 

Queue Entry Removed at Head 
ret-status.wlc.v = LIB$REMQHI (header.mq.r, remque-adr.wl.r 
[,retry-cnt.rlu.rl) 

Queue Entry Removed at Tail 
ret-status.wlc.v = LIB$REMQTI (header.mq.r, remque-adr.wl.r 
[,retry-cnt.rlu.rl) 

A.3 Mathematics Procedures 

MTH$ACOS 

MTH$DACOS 

MTH$GACOS 

MTH$HACOS 

MTH$ASIN 

MTH$DASIN 

MTH$GASIN 

A.3.1 Floating-Point Mathematical Functions 

JSB 

JSB 

JSB 

JSB 

JSB 

JSB 

JSB 

Arc Cosine (F _floating) 
acos.wf.v = MTH$ACOS (x.rf.r) 
acos.wf.v = MTH$ACOS-R4 (x.rf.v) 

Arc Cosine (D_floating) 
dacos.wd.v = MTH$DACOS (x.rd.r) 
dacos.wd.v = MTH$DACOS_R7 (x.rd.v) 

Arc Cosine (G_floating) 
gacos.wg.v = MTH$GACOS (x.rg.r) 
gacos.wg.v = MTH$GACOS_R7 (x.rg.v) 

Arc Cosine (H_floating) 
CALL MTH$HACOS (hacos.wh.r, x.rh.r) 
hacos.wh.v = MTH$HACOS_R8 (x.rh.v) 

Arc Sine (F_floating) 
asin.wf.v = MTH$ASIN (x.rf.r) 
asin.wf.v = MTH$ASIN_R4 (x.rf.v) 

Arc Sine (D_floating) 
dasin.wd.v = MTH$DASIN (x.rd.r) 
dasin.wd.v = MTH$DASIN_R7 (x.rd.v) 

Arc Sine ( G-11oating) 
gasin.wg.v = MTH$GASIN (x.rg.r) 
gasin.wg.v = MTH$GASIN_R7 (x.rg.v) 

Summary of Run-Time Library Entry Points A-11 



MTH$HASIN Arc Sine (H_floating) 
CALL MTH$HASIN (hasin.wh.r, x.rh.r) 

JSB hasin. wh. v = MTH$HASIN_R8 (x.rh. v) 

MTH$ATAN Arc Tangent (F _floati:r.g) 
atan.wf.v = MTH$A'fAN (x.rf.r) 

JSB atan.wf.v = MTH$ATAN_R4 (x.rf.v) 

MTH$DATAN Arc Tangent (D_floating) 
datan.wd.v = MTH$DATAN (x.rd.r) 

JSB datan.wd.v = MTH$DATAN_R7 (x.rd.v) 

MTH$GATAN Arc Tangent (G_floating) 
gatan.wg.v = MTH$GATAN (x.rg.r) 

JSB gatan.wg.v = MTH$GATAN_R7 (x.rg.v) 

MTH$HATAN Arc Tangent (H_floating) 
CALL MTH$HATAN (hatan.wh.r, x.rh.r) 

JSB hatan.wh.v = MTH$HATAN_R8 (x.rh.v) 

MTH$ATAN2 Arc Tangent - 2 parameters (F_floating) 
atan2.wf.v = MTH$ATAN2 (x.rf.r, y.rf.r) 

MTH$DATAN2 Arc Tangent - 2 parameters (D-,-lloating) 
datan2.wd.v = MTH$DATAN2 (x.rd.r, y.rd.r) 

MTH$GATAN2 Arc Tangent - 2 parameters (G_floating) 
gatan2.wg.v = MTH$GATAN2 (x.rg.r, y.rg.r) 

MTH$HATAN2 Arc Tangent - 2 parameters (H_floating) 
CALL MTH$HATAN2 (hatan2.wh.r, x.rh.r, y.rh.r) 

MTH$ALOG10 Common Logarithm (F _floating) 
aloglO.wf.v = MTH$ALOG10 (x.rf.r) 

JSB aloglO;wf.v = MTH$ALOG10_R5 (x.rf.v) 

MTH$DLOG10 Common Logarithm (D_floating) 
dloglO.wd.v = MTH$DLOG10 (x.rd.r) 

JSB dloglO.wd.v = MTH$DLOG10-R8 (x.rd.v) 

MTH$GLOG10 Common Logarithm (G_floating) 
gloglO.wg.v = MTH$GLOG10 (x.rg.r) 

JSB gloglO.wg.v = MTH$GLOG10-R8 (x.rg.v) 

MTH$HLOG10 Common Logarithm (H_floating) 
CALL MTH$HLOG10 (hloglO.wh.r, x.rh.r) 

JSB hloglO.wh.v = MTH$HLOG10-R8 (x.rh.v) 

MTH$COS Cosine (F _floating) 
cosine.wf.v = MTH$COS (x.rf.r) 

JSB cosine.wf.v = MTH$COS_R4 (x.rf.v) 

MTH$DCOS Cosine (D_floating) 
dcosine.wd.v = MTH$DCOS (x.rd.r) 

JSB dcosine.wd.v = MTH$DCOS_R7 (x.rd.v) 

MTH$GCOS Cosine (G_floating) 
gcosine.wg.v = MTH$GCOS (x.rg.r) 

JSB gcosine.wg.v = MTH$GCOS-R7 (x.rg.v) 

MTH$HCOS Cosine (H_floating) 
CALL MTH$HCOS (hcosine.wh.r, x.rh.r) 

JSB hcosine.wh.v = MTH$HCOS_R5 (x.rh.v) 

MTH$EXP Exponential (F _floating) 
exp.wf.v = MTH$EXP (x.rf.r) 

JSB exp.wf.v = MTH$EXP _R4 (x.rf.v) 

A-12 Summary of Run-Time Library Entry Points 



MTH$DEXP Exponential (D_floating) 
dexp.wd.v = MTH$DEXP (x.rd.r) 

JSB dexp.wd.v = MTH$DEXP _R6 (x.rd.v) 

MTH$GEXP Exponential ( G_floating) 
gexp.wg.v = MTH$GEXP (x.rg.r) 

JSB gexp.wg.v = MTH$GEXP _R6 (x.rg.v) 

MTH$HEXP Exponential (H_floating) 
CALL MTH$HEXP (hexp.wh.r, x.rh.r) 

JSB hexp.wh.v = MTH$HEXP _R6 (x.rh.v) 

MTH$COSH Hyperbolic Cosine (F _floating) 
cosh.wf.v = MTH$COSH (x.rf.r) 

MTH$DCOSH Hyperbolic Cosine (D_floating) 
dcosh.wd.v = MTH$DCOSH (x.rd.r) 

MTH$GCOSH Hyperbolic Cosine (G_floating) 
gcosh.wg.v = MTH$GCOSH (x.rg.r) 

MTH$HCOSH Hyperbolic Cosine (H_floating) 
CALL MTH$HCOSH (hcosh.wh.r, x.rh.r) 

MTH$SINH Hyperbolic Sine (F _floating) 
sinh.wf.v = MTH$SINH (x.rf.r) 

MTH$DSINH Hyperbolic Sine (D_floating) 
dsinh.wd.v = MTH$DSINH (x.rd.r) 

MTH$GSINH Hyperbolic Sine (G_floating) 
gsinh.wg.v = MTH$GSINH (x.rg.r) 

MTH$HSINH Hyperbolic Sine (H_floating) 
CALL MTH$HSINH (hsinh.wh.r, x.rh.r)· 

MTH$TANH Hyperbolic Tangent (F _floating) 
tanh.wf.v = MTH$TANH (x.rf.r) 

MTH$DTANH Hyperbolic Tangent (D_floating) 
dtanh.wd.v = MTH$DTANH (x.rd.r) 

MTH$GTANH Hyperbolic Tangent (G_floating) 
gtanh.wg.v = MTH$GTANH (x.rg.r) 

MTH$HTANH Hyperbolic Tangent (H_floating) 
CALL MTH$HTANH (htanh.wh.r, x.rh.r) 

MTH$ALOG Natural Logarithm (F_floating) 
log.wf.v = MTH$ALOG (x.rf.r) 

JSB log.wf.v = MTH$ALOG_R5 (x.rf.v) 

MTH$DLOG Natural Logarithm (D_floating) 
dlog.wd.v = MTH$DLOG (x.rd.r) 

JSB dlog.wd.v = MTH$DLOG_R8 (x.rd.v) 

MTH$GLOG Natural Logarithm (G_floating) 
glog.wg.v = MTH$GLOG (x.rg.r) 

JSB glog.wg.v = MTH$GLOG_R8 (x.rg.v) 

MTH$HLOG Natural Logarithm (H_floating) 
CALL MTH$HLOG (hlog.wh.r, x.rh.r) 

JSB hlog.wh.v = MTH$HLOG_R8 (x rh.v) 

MTH$SIN Sine (F _floating) 
sine.wf.v = MTH$SIN (x.rf.r) 

JSB sine.wf.v = MTH$SIN_R4 (x.rf.v) 

Summary of Run-Time Library Entry Points A-13 



MTH$DSIN Sine (D_floating) 
dsine.wd.v = MTH$DSIN (x.rd.r) 

JSB dsine.wd.v = MTH$DSIN_R7 (x.rd.v) 

MTH$GSIN Sine ( G_floating) 
gsine.wg.v = MTH$GSIN (x.rg.r) 

JSB gsine.wg.v = MTH$GSIN_R7 (x.rg.v) 

MTH$HSIN Sine (H_floating) 
CALL MTH$HSIN (hsine.wh.r, x.rh.r) 

JSB hsine.wh.v = MTH$HSIN_R5 (x.rh.v) 

MTH$SQRT Square Root (F _floating) 
sqrt.wf.v = MTH$SQRT (x.rf.r) 

JSB sqrt.wf.v = MTH$SQRT_R3 (x.rf.v) 

MTH$DSQRT Square Root (D_floating) 
dsqrt.wd.v = MTH$DSQRT (x.rd.r) 

JSB dsqrt.wd.v = MTH$DSQRT_R5 (x.rd.v) 

MTH$GSQRT Square Root ( G_floating) 
gsqrt.wg.v = MTH$GSQRT (x.rg.r) 

JSB gsqrt.wg.v = MTH$GSQRT_R5 (x.rg.v) 

MTH$HSQRT Square Root (H_floating) 
CALL MTH$HSQRT (hsqrt.wh.r, x.rh.r) 

JSB hsqrt.wh.v = MTH$HSQRT_R8 (x.rh.v) 

MTH$TAN Tangent (F _floating) 
tangent.wf.v = MTH$TAN (x.rf.r) 

JSB tangent.wf.v = MTH$TAN_R4 (x.rf.v) 

MTH$DTAN Tangent (D_floating) 
dtangent.wd.v = MTH$DTAN (x.rd.r) 

JSB dtangent.wd.v = MTH$DTAN_R7 (x.rd.v) 

MTH$GTAN Tangent (G_floating) 
gtangent.wg.v = MTH$GTAN (x.rg.r) 

JSB gtangent.wg.v = MTH$GTAN_R7 (x.rg.v) 

MTH$HTAN Tangent (H_floating) 
CALL MTH$HTAN (htangent.wh.r, x.rh.r) 

JSB htangent.wh.v = MTH$HTAN_R5 (x.rh.v) 

A.3.2 Complex Functions 

MTH$CABS Absolute Value (F _floating) 
absolute-value.wf.v = MTH$CABS (complex-number.rfc.r) 

MTH$CDABS Absolute Value (D_floating) 
CALL MTH$CDABS (absolute-value.wd.r, complex-number.rdc.r) 

MTH$CGABS Absolute Value (G_floating) 
CALL MTH$CGABS (absolute-value.wg.r, complex-number.rgc.r) 

MTH$CONJG Conjugate of a F_complex number 
complex-conjugate.wfc.v = MTH$CONJG (complex-number.rfc.r) 

MTH$DCONJG Conjugate of a D_complex number 
CALL MTH$DCONJG (result.wdc.r, complex-number.rdc.r) 

MTH$GCONJG Conjugate of a G_complex number 
CALL MTH$GCONJG (result.wgc.r, complex-number.rgc.r) 

MTH$CCOS Cosine (F _complex) 
complex-cosine.wfc.v = MTH$CCOS (complex-number.rfc.r) 

A-14 Summary of Run-Time Library Entry Points 



MTH$CDCQS Cosine (D_complex) 
CALL MTH$CDCOS (result.wdc.r, complex-number.rdc.r) 

MTH$CGCOS Cosine (G_complex) 
CALL MTH$CGCOS (result.wgc.r, complex-number.rgc.r) 

OTS$DIVC Division of F _complex numbers 
complex-quotient.wfc.v = OTS$DIVC (dividend.rfc.v, divisor.rfc.v) 

OTS$DIVCD_R3 Division of D_complex numbers 
complex-quotient.wdc.v = OTS$DIVCD_R3 (dividend.rdc.v, divisor.rdc.v) 

OTS$DIVCG_R3 Division of G_complex numbers 
complex-quotient.wgc.v = OTS$DIVCG_R3 (dividend.rgc.v, divisor.rgc.v) 

MTH$CEXP Exponentiation (F _complex) 
complex-exp.wfc.v = MTH$CEXP (x.rfc.r) 

MTH$CDEXP Exponentiation (D_complex) 
CALL MTH$CDEXP (result.wdc.r, x.rdc.r) 

MTH$CGEXP Exponentiation ( G_complex) 
CALL MTH$CGEXP (result.wgc.r, x.rgc.r) 

MTH$AIMAG Imaginary Part of a F_complex number 
aimag.wf.v = MTH$AIMAG (complex-number.rfc.r) 

MTH$DIMAG Imaginary Part of a D_complex number 
dimag.wd.v = MTH$DIMAG (complex-number.rdc.r) 

MTH$GIMAG Imaginary Part of a G_complex number 
gimag.wg.v = MTH$GIMAG (complex-number.rgc.r) 

MTH$CMPLX Make F _complex from F _floating 
cmplx.wfc.v = MTH$CMPLX (real-part.rf.r, imag-part.rf.r) 

MTH$DCMPLX Make D_complex from D_floating 
CALL MTH$DCMPLX (dcmplex.wdc.r, real-part.rd.r, imag-part.rd.r) 

MTH$GCMPLX Make G_complex from G_floating 
CALL MTH$GCMPLX (gcmplex.wgc.r, real-part.rg.r, imag-part.rg.r) 

OTS$MULCD_R3 Multiplication of D_complex numbers 
product.wdc.v = OTS$MULCD_R3 (multiplier.rdc.v, multiplicand.rdc.v) 

OTS$MULCG_R3 Multiplication of G_complex numbers 
product.wgc.v = OTS$MULCG_R3 (multiplier.rgc.v, multiplicand.rgc.v) 

MTH$CLOG Natural Logarithm (F _complex) 
complex-nat-log.wfc.v = MTH$CLOG (arg.rfc.r) 

MTH$CDLOG Natural Logarithm (D_complex) 
CALL MTH$CDLOG (result.wdc.r, arg.rdc.r) 

MTH$CGLOG Natural Logarithm (G_complex) 
CALL MTH$CGLOG (result.wgc.r, arg.rgc.r) 

MTH$REAL Real Part of a F_complex number 
real-part.wf.v = MTH$REAL (complex-number.rfc.r) 

MTH$DREAL Real Part of a D_complex number 
dreal-part.wd.v = MTH$DREAL (complex-number.rdc.r) 

MTH$GREAL Real Part of a G_complex number 
greal-part.wg.v = MTH$GREAL (complex-number.rgc.r) 

MTH$CSIN Sine (F_complex) 
complex-sine.wkv = MTH$CSIN (complex-number.rfc.r) 

MTH$CDSIN Sine (D_complex) 
CALL MTH$CDSIN (result.wdc.r, complex-number.rdc.r) 

Summary of Run-Time Library Entry Points A-15 



MTH$CGSIN Sine (G_complex) 
CALL MTH$CGSIN (result.wgc.r, complex-number.rgc.r) 

MTH$CSQRT Square Root (F_complex) 
complex-sqrt.wfc.v = MTH$CSQRT (x.rfc.r) 

MTH$CDSQRT Square Root (D_complex) 
CALL MTH$CDSQRT (result.wdc.r, x.rdc.r) 

MTH$CGSQRT Square Root (G_complex) 
CALL MTH$CGSQRT (result.wgc.r, x.rgc.r) 

A.3.3 Exponentiation Procedures 

OTS$POWDD D_floating base to D_floating power 
result.wd.v = OTS$POWDD (base.rd.v, exponent.rd.v) 

OTS$POWDJ D_floating base to longword power 
result.wd.v = OTS$POWDJ (base.rd.v, exponent.rl.v) 

OTS$POWDR D_floating base to F _floating power 
result.wd.v = OTS$POWDR (base.rd.v, exponent.rf.v) 

OTS$POWGG G_floating base to G_floating power 
result.wg.v = OTS$POWGG (base.rg.v, exponent.rg.v) 

OTS$POWGJ G_floating base to longword power 
result.wg.v = OTS$POWGJ (base.rg.v, exponent.rl.v) 

OTS$POWHH__R3 H_floating base to H_floating power 
result.wh.v = OTS$POWHH_R3 (base.rh.v, exponent.rh.v) 

OTS$POWHJ_R3 H_floating base to longword power 
result.wh.v = OTS$POWHJ_R3 (base.rh.v, exponent.rl.v) 

OTS$POWII Word base to word power 
result.ww.v = OTS$POWII (base.rw.v, exponent.rw.v) 

OTS$POWJJ Longword base to longword power 
result.wl.v = OTS$POWJJ (base.rl.v, exponent.rl.v) 

OTS$POWRD F _floating base to D_floating power 
result.wd.v = OTS$POWRD (base.rf.v, exponent.rd.v) 

OTS$POWRJ F _floating base to longword power 
result.wf.v = OTS$POWRJ (base.rf.v, exponent.rl.v) 

OTS$POWRR F _floating base to F _floating power 
result.wf.v = OTS$POWRR (base.rf.v, exponent.rf.v) 

A.3.4 Complex Exponentiation Procedures 

OTS$POWCC F_complex base to F_complex power 
result.wfc.v = OTS$POWCC (base.rfc.v, exponent.rfc.v) 

OTS$POWCDCD__R3 D_complex base to D_complex power 
result.wdc.v = OTS$POWCDCD_R3 (base.rdc.v, exponent.rdc.v) 

OTS$POWCGCG_R3 G_complex base to G_complex power 
result.wgc.v = OTS$POWCGCG_R3 (base.rgc.v, exponent.rgc.v) 

OTS$POWCJ F_complex base to longword power 
result.wfc.v = OTS$POWCJ (base.rfc.v, exponent.rl.v) 

A-16 Summary of Run-Time Library Entry Points 



OTS$POWCDJ_R3 n_complex base to longword power 
result.wdc.v = OTS$POWCDJ_R3 (base.rdc.v, exponent.rl.v) 

OTS$POWCGJ_R3 G_complex base to longword power 
result.wgc.v = OTS$POWCGJ_R3 (base.rgc.v, exponent.rl.v) 

A.3.5 Random Number Generators 

MTH$RANDOM Universal Pseudo-Random Number Generator 
result.wf.v = MTH$RANDOM (seed.mlu.r) 

A.3.6 Floating/Integer Conversion Procedures 

MTH$CVT_D_G 

MTH$CVT_DA_GA 

MTH$CVT_G_D 

MTH$CVT_GA_DA 

MTH$DBLE 

MTH$GDBLE 

MTH$IIFIX 

MTH$JIFIX 

MTH$FLOATI 

MTH$DFLOTI 

MTH$GFLOTI 

MTH$FLOATJ 

MTH$DFLOTJ 

MTH$GFLOTJ 

MTH$FLOOR 

MTH$DFLOOR 

JSB 

Convert D_floating to G_floating (rounded) 
g-floating.wg.v = MTH$CVT_D_G (d-floating.rd.r) 

Convert D_floating array to G_floating array (rounded) 
CALL MTH$CVT_DA_GA (d-floating.rd.ra, g-floating.wg.ra [,count.rl.vl) 

Convert G_floating to D_floating (exact) 
d-floating.wd.v = MTH$CVT_G_D (g-floating.rg.r) 

Convert G_floating array to D_floating array (exact) 
CALL MTH$CVT_GA_DA (g-floating.rg.ra, d-floating.wd.ra [,count.rl,vl) 

Convert F_floating to D_floating (exact) 
d-floating.wd.v = MTH$DBLE (f-floating.rf.r) 

Convert F_floating to G_floating (exact) 
g-floating.wg.v = MTH$GDBLE (f-floating.rf.r) 

Convert F_floating to word (truncated) 
word.ww.v = MTH$IIFIX (f-floating.rf.r) 

Convert F_floating to longword (truncated) 
longword.wl.v = MTH$JIFIX (f-floating.rf.r) 

Convert word to F_floating (exact) 
f-floating.wf.v = MTH$FLOATI (word.rw.r) 

Convert word to D_floating (exact) 
d-floating.wd.v = MTH$DFLOTI (word.rw.r) 

Convert word to G_floating (exact) 
g-floating.wg.v = MTH$GFLOTI (word.rw.r) 

Convert longword to F_floating (exact) 
f-floating.wf.v = MTH$FLOATJ (longword.rl.r) 

Convert longword to D_floating (exact) 
d-floating.wd.v = MTH$DFLOTJ (longword.rl.r) 

Convert longword to G_floating (exact) 
g-f~oating.wg.v = MTH$GFLOTJ (longword.rl.r) 

Convert F _floating to greatest F _floating integer 
result-int.wf.v = MTH$FLOOR (input.rf.r) 
result-int.wf.v = MTH$FLOOR_Rl (input.rf.v) 

Convert D_floating to greatest D_floating integer 
result-int.wd.v = MTH$DFLOOR (input.rd.r) 

JSB result-int.wd.v = MTH$DFLOOR_R3 (input.rd.v) 

Summary of Run-Time Library Entry Points A-17 



MTH$GFLOOR 

MTH$HFLOOR 

MTH$AINT 

MTH$DINT 

MTH$IIDINT 

MTH$JIDINT 

MTH$GINT 

MTH$IIGINT 

MTH$JIGINT 

MTH$HINT 

MTH$IIHINT 

MTH$JIHINT 

MTH$IINT 

MTH$JINT 

MTH$ANINT 

MTH$DNINT 

MTH$IIDNNT 

MTH$JIDNNT 

MTH$GNINT 

MTH$IIGNNT 

MTH$JIGNNT 

Convert G_floating to greatest G_floating integer 
result-int.wg.v = MTH$GFLOOR (input.rg.r) 

JSB result-int.wg.v = MTH$GFLOOR.__R3 (input.rg.v) 

Convert H_floating to greatest H_floating integer 
CALL MTH$HFLOOR (result-int.wh.r, input.rh.r) 

JSB result-int.wh.v = MTH$HFLOOR.__R7 (input.rh.v) 

Convert F_floating to truncated F_floating 
truncated-f-floating.wf.v = MTH$AINT (f-floating.rf.r) 

JSB truncated-f-floating.wf.v = MTH$AINT_R2 (f-floating.rf.v) 

JSB 

JSB 

JSB 

Convert D_floating to truncated D_floating 
truncated-d-floating.wd.v = MTH$DINT (d-floating.rd.r) 
truncated-d-floating.wd.v = MTH$DINT_R4 (d-floating.rd.v) 

Convert D_floating to word (truncated) 
word.ww.v = MTH$IIDINT (d-floating.rd.r) 

Convert D_floating to longword (truncated) 
longword.wl.v = MTH$JIDINT (d-floating.rd.r) 

Convert G_floating to G_floating (truncated) 
truncated-g-floating.wg.v = MTH$GINT (g-floating.rg.r) 
truncated-g-floating.wg.v = MTH$GINT_R4 (g-floating.rg.v) 

Convert G_floating to word (truncated) 
truncated-word.ww.v = MTH$IIGINT (g-floating.rg.r) 

Convert G_floating to longword (truncated) 
truncated-longword.wl.v = MTH$JIGINT (g-floating.rg.r) 

Convert H_floating to H_floating (truncated) 
CALL MTH$HINT (truncated-h-floating.wh.r, h-floating.rh.r) 
truncated-h-floating.wh.v = MTH$HINT_R8 (h-floating.rh.v) 

Convert H_floating to truncated word 
truncated-word.ww.v = MTH$IIHINT (h-floating.rh.r) 

Convert H_floating to truncated longword 
truncated-longword.wl.v = MTH$JIHINT (h-floating.rh.r) 

Convert F_floating to word (truncated) 
truncated-word.ww.v = MTH$IINT (f-floating.rf.r) 

Convert F _floating to longword (truncated) 
truncated-longword.wl.v = MTH$JINT (f-floating;rf.r) 

Convert F_floating to nearest F_floating integer 
nearest-f-float-int.wf.v = MTH$ANINT (f-floating.rf.r) 

Convert D_floating to nearest D_floating integer 
nearest-d-float-int.wd.v = MTH$DNINT (d-floating.rd.r) 

Convert D_floating to nearest word integer 
nearest-word-int.ww.v = MTH$1IDNNT (d-floating.rd.r) 

Convert D_floating to nearest longword integer 
nearest-long-int.wl.v = MTH$JIDNNT (d-floating.rd.r) 

Convert G_floating to nearest G_floating integer 
nearest-g-float-int.wg.v = MTH$GNINT (g-floating.rg.r) 

Convert G_floating to nearest word integer 
nearest-word-int.ww.v = MTH$IIGNNT (g-floating.rg.r) 

Convert G_floating to nearest longword integer 
nearest-long-int.wl.v = MTH$JIGNNT (g-floating.rg.r) 

A-18 Summary of Run-Time Library Entry Points 



MTH$HNINT 

MTH$IIHNNT 

MTH$JIHNNT 

MTH$ININT 

MTH$JNINT 

MTH$SNGL 

MTH$SNGLG 

MTH$ABS 

MTH$DABS 

MTH$GABS 

MTH$HABS 

MTH$IIABS 

MTH$JIABS 

MTH$IIAND 

MTH$JIAND 

MTH$DIM 

MTH$DDIM 

MTH$GDIM 

MTH$HDIM 

MTH$IIDIM 

MTH$JIDIM 

MTH$IIEOR 

Convert H_floating to nearest H_floating integer 
CALL MTH$HNINT (nearest-h-float-int.wh.v, h-floating.rh.r) 

Convert H_floating to nearest word integer 
nearest-word-int.ww.v = MTH$IIHNNT (h-floating.rh.r) 

Convert H_floating to nearest longword integer 
nearest-long-int.wl.v = MTH$JIHNNT (h-floating.rh.r) 

Convert F _floating to nearest word integer 
nearest-word-int.ww.v = MTH$ININT (f-floating.rf.r) 

Convert F_floating to nearest longword integer 
nearest-long-int.wl.v = MTH$JNINT (f-floating.rf.r) 

Convert D_floating to F _floating (rounded) 
f-floating.wf.v = MTH$SNGL (d-floating.rd.r) 

Convert G_floating to F _floating (rounded) 
f-floating.wf.v = MTH$SNGLG (g-floating.rg.r) 

A.3. 7 Miscellaneous Functions 

F_floating Absolute Value 
absolute-value.wf.v = MTH$ABS (f-floating.rf.r) 

D_floating Absolute Value 
d-absolute-value.wd.v = MTH$DABS (d-floating.rd.r) 

G_floating Absolute Value 
g-absolute-value.wg.v = MTH$GABS (g-floating.rg.r) 

H_floating Absolute Value 
CALL MTH$HABS (h-absolute-value.wh.r, h-floating.rh.r) 

Word Absolute Value 
absolute-value.ww.v = MTH$IIABS (word.rw.r) 

Longword Absolute Value 
absolute-value.wl.v = MTH$JIABS (longword.rl.r) 

Bitwise AND of two word parameters 
word-value.ww.v = MTH$IIAND (wordl.rw.r, word2.rw.r) 

Bitwise AND of two longword parameters 
longword-value.wl.v = MTH$JIAND (longwordl.rl.r, longword2.rl.r) 

Positive Difference of two F _floating parameters 
f-floating.wf.v = MTH$DIM (f-floatingl.rf.r, f-floating2.rf.r) 

Positive Difference of two D_floating parameters 
d-floating.wd.v = MTH$DDIM (d-floatingl.rd.r, d-floating2.rd.r) 

Positive Difference of two G-floating parameters 
g-floating.wg.v = MTH$GDIM (g-floatingl.rg.r, g-floating2.rg.r) 

Positive Difference of two H_floating parameters 
CALL MTH$HDIM (h-floating.wh.r, h-floatingl.rh.r, h-floating2.rh.r) 

Positive Difference of two word parameters 
word.ww.v = MTH$IIDIM (wordl.rw.r, word2.rw.r) 

Positive Difference of two longword parameters 
longword.wl.v = MTH$JIDIM (longwordl.rl.r, longword2.rl.r) 

Bitwise Exclusive OR of two word parameters 
word.ww.v = MTH$IIEOR (wordl.rw.r, word2.rw.r) 

Summary of Run-Time Library Entry Points A-19 



MTH$JIEOR 

MTH$IIOR 

MTH$JIOR 

MTH$AIMAXO 

MTH$AJMAXO 

MTH$IMAXO 

MTH$JMAXO 

MTH$AMAX1 

MTH$DMAX1 

MTH$GMAX1 

MTH$HMAX1 

MTH$IMAX1 

MTH$JMAX1 

MTH$AIMINO 

MTH$AJMINO 

MTH$IMINO 

MTH$JMINO 

MTH$AMIN1 

MTH$DMIN1 

MTH$GMIN1 

MTH$HMIN1 

MTH$IMIN1 

MTH$JMIN1 

Bitwise Exclusive OR of two longword parameters 
longword.wl.v = MTH$JIEOR (longwordl.rl.r, longword2.rl.r) 

Bitwise Inclusive OR of two word parameters 
word.ww.v = MTH$IIOR (wordl.rw.r, word2.rw.r) 

Bitwise Inclusive OR of two longword parameters 
longword.wl.v = MTH$JIOR (longwordl.rl.r, longword2.rl.r) 

F _floating Maximum of n word parameters 
f-floating-max.wf.v = MTH$AIMAXO (word.rf.r, ... ) 

F _floating Maximum of n longword parameters 
f-floating-max.wf.v = MTH$AJMAXO (longword.rf.r, ... ) 

Word Maximum of n word parameters 
word-max.wf.v = MTH$IMAXO (word.rf.r, ... ) 

Longword Maximum of n longword parameters 
longword-max.wf.v = MTH$JMAXO (longword.rf.r, ... ) 

F_floating Maximum of n F_floating parameters 
f-floating-max.wf.v = MTH$AMAX1 (f-floating.rf.r, ... ) 

D_floating Maximum of n D_floating parameters 
d-floating-max.wf.v = MTH$DMAX1 (d-floating.rf.r, ... ) 

G_floating Maximum of n G_floating parameters 
g-floating-max.wg.v = MTH$GMAX1 (g-floating.rg.r, ... ) 

H_floating Maximum of n H_floating parameters 
CALL MTH$HMAX1 (h-floating-max.wh.r, h-floating.rh.r, ... ) 

Word Maximum of n F_floating parameters 
word-max.ww.v = MTH$IMAX1 (f-floating.rf.r, ... ) 

Longword Maximum of n F _floating parameters 
longword-max.wl.v = MTH$JMAX1 (f-floating.rf.r, ... ) 

F _floating Minimum of n word parameters 
f-floating-min.wf.v = MTH$AIMINO (word.rw.r, ... ) 

F_floating Minimum of n longword parameters 
f-floating-min.wf.v = MTH$AJMINO (longword.rl.r, ... ) 

Word Minimum of n word parameters 
word-min.ww.v = MTH$IMINO (word.rw.r, ... ) 

Longword Minimum of n longword parameters 
longword-min.wl.v = MTH$JMINO (longword.rl.r, ... ) 

F_floating Minimum of n F_floating parameters 
f-floating-min.wf.v = MTH$AMIN1 {f-floating.rf.r, ... ) 

D_floating Minimum of n D_floating parameters 
d-floating-min.wd.v = MTH$DMIN1 (d-floating.rd.r, ... ) 

G_floating Minimum of n G_floating parameters 
g-floating-min.wg.v = MTH$GMIN1 {g-floating.rg.r, ... ) 

H_floating Minimum of n H_floating parameters 
CALL MTH$HMIN1 (h-floating-min.wh.r, h-floating.rh.r, ... ) 

Word Minimum of n F_floating parameters 
word-min.ww.v = MTH$IMIN1 (f-floating.rf.r, ... ) 

Longword Minimum of n F _floating parameters 
longword-min.wl.v = MTH$JMIN1 (f-floating.rf.r, ... ) 

A-20 Summary of Run-Time Library Entry Points 



MTH$AMOD 

MTH$DMOD 

MTH$GMOD 

MTH$HMOD 

MTH$IMOD 

MTH$JMOD 

MTH$INOT 

MTH$JNOT 

MTH$DPROD 

M'rH$GPROD 

MTH$SGN 

MTH$SGN 

MTH$IISHFT 

MTH$JISHFT 

MTH$SIGN 

MTH$DSIGN 

MTH$GSIGN 

MTH$HSIGN 

MTH$IISIGN 

MTH$JISIGN 

Remainder of two F_floating parameters, argl/arg2 
f-floating.wf.v = MTH$AMOD (f-floatingl.rf.r, f-floating2.rf.r) 

Remainder of two D_floating parameters, argl/arg2 
d-floating.wd.v = MTH$DMOD (d-floatingl.rd.r, d-floating2.rd.r) 

Remainder of two G_floating parameters, argl/arg2 
g-floating.wg.v = MTH$GMOD (g-floatingl.rg.r, g-floating2.rg.r) 

Remainder of two H_floating parameters, argl/arg2 
CALL MTH$HMOD (h-floating.wh.r, h-floatingl.rh.r, h-floating2.rh.r) 

Remainder of two word parameters, argl/arg2 
word.ww.v = MTH$IMOD (wordl.rw.r, word2.rw.r) 

Remainder of two longword parameters, argl/arg2 
longword.wl.v = MTH$JMOD (longwordl.rl.r, longword2.rl.r) 

Bitwise Complement of a word parameter 
word.ww.v = MTH$INOT (word.rw.r) 

Bitwise Complement of a longword parameter 
longword.wl.v = MTH$JNOT (longword.rl.r) 

D_floating Product of two F _floating parameters 
d-floating.wd.v = MTH$DPROD (f-floatingl.rf.r, f-floating2.rf.r) 

G_floating Product of two F _floating parameters 
g-floating.wg.v = MTH$GPROD (f-floatingl.rf.r, f-floating2.rf.r) 

F _floating sign function 
longword.wl.v = MTH$SGN (f-floating.rf.r) 

D_floating sign function 
longword.wl.v = MTH$SGN (d-floating.rd.r) 

Bitwise Shift of a word 
word.ww.v = MTH$IISHFT (wordl.rwu.r, shift-count.rw.r) 

Bitwise Shift of a longword 
longword.wl.v = MTH$JISHFT (longwordl.rlu.r, shift-count.rl.r) 

F _floating Transfer of Sign of y to Sign of x 
f-floating.wf.v = MTH$SIGN (f-floating-x.rf.r, f-floating-y.rf.r) 

D_floating Transfer of Sign of y to Sign of x 
d-floating.wd.v = MTH$DSIGN (d-floating-x.rd.r, d-floating-y.rd.r) 

G_floating Transfer of Sign of y to Sign of x 
g-floating.wg.v = MTH$GSIGN (g-floating-x.rg.r, g-floating-y.rg.r) 

H_floating Transfer of Sign of y to Sign of x 
CALL MTH$HSIGN (h-floating.wh.r, h-floating-x.rh.r, h-floating-y.rh.r) 

Word Transfer of Sign of y to Sign of x 
word.ww.v = MTH$IISIGN (word-x.rw.r, word-y.rw.r) 

Longword Transfer of Sign of y to Sign of x 
longword.wl.v = MTH$JISIGN (longword-x.rl.r, longword-y.rl.r) 

A.4 Resource Allocation Procedures 

A.4.1 Dynamic Allocation of Virtual Memory Procedures 

LIB$GET_VM Allocate Virtual Memory in Program Region 
ret-status.wlc = LIB$GET_ VM (num-bytes.rlu.r, base-adr.wa.r) 

Summary of Run-Time Library Entry Points A-21 



LIB$FREE_ VM 

LIB$STAT_VM 

LIB$SHOW_VM 

LIB$GET_LUN 

LIB$FREE_LUN 

LIB$GET_EF 

LIB$FREE_EF 

LIB$RESERVE_EF 

Deallocate Virtual Memory from Program Region 
ret-status.wlc = LIB$FREE_ VM (num-bytes.rlu.r, base-adr.ra.r) 

Fetch Virtual Memory Statistics 
ret-status.wlc = LIB$STAT_ VM (code.rl.r, value.wl.r) 

Show Virtual Memory Statistics 
ret-status.wlc = LIB$SHOW_ VM ([code.rl.r [,action.flc.rp 
[, user-arg.xy .z]]]) 

Allocate One Logical Unit Number 
ret-status.wlc = LIB$GET_LUN (base-adr.wl.r) 

Deallocate One Logical Unit Number 
ret-status.wlc = LIB$FREE_LUN (base-adr.rl.r) 

Allocate One Event Flag 
ret-status.wlc = LIB$GET_EF (base-adr.wl.r) 

Deallocate One Event Flag 
ret-status.wlc = LIB$FREE_EF (base-adr.rl.r) 

Reserve One Event Flag 
ret-status.wlc = LIB$RESERVE_EF (base.adr.rl.r) 

A.4.2 String Resource Allocation Procedures 

Note that all LIB$ procedures indicate errors by return status, and all OTS$ 
and STR$ procedures indicate errors by signaling. 

LIB$SGET1_DD 

JSB 

OTS$SGET1_DD 

JSB 

STR$GET1_DX 

JSB 

LIB$SFREE1_DD 

JSB 

OTS$SFREE1_DD 

JSB 

STR$FREE1_DX 

JSB 

LIB$SFREEN_DD 

JSB 

OTS$SFREEN_DD 

JSB 

Allocate One Dynamic String 
ret-status.wlc = LIB$SGET1_DD (len.rwu.r, str.mqu.r) 
ret-status.wlc = LIB$SGET1_DD __ R6 (len.rwu.v, str.mqu.v) 

Allocate One Dynamic String 
ret-status.wlc = OTS$SGET1_DD (len.rwu.r, str.mqu.r) 
ret-status.wlc = OTS$SGET1_DD_R6 (len.rwu.v, str.mqu.v) 

Allocate One Dynamic String 
ret-status.wlc = STR$GET1_DX (len.rwu.r, str.mqu.r) 
ret-status.wlc = STR$GET1_nx__.R4 (len.rwu.v, str.mqu.v) 

Deallocate One Dynamic String 
ret-status.wlc = LIB$SFREE1_DD (dsc-adr.mqu.r) 
ret-status.wlc = LIB$SFREE1_DD6 (dsc-adr.mqu.v) 

Deallocate One Dynamic String 
ret-status.wlc = OTS$SFREE1_DD (dsc-adr.mqu.r) 
ret-status.wlc = OTS$SFREE1_DD6 (dsc-adr.mqu.v) 

Deallocate One Dynamic String 
ret-status.wlc = STR$FREE1_DX (dsc-adr.mqu.r) 
ret-status.wlc = STR$FREE1_DX-R4 (dsc-adr.mqu.v) 

Deallocate n Dynamic Strings 
ret-status.wlc = LIB$SFREEN_DD (dsc-num.rlu.r, first-dsc-adr.mqu.r) 
ret-status.wlc = LIB$SFREEN_DD6 (dsc-num.rlu.v, first-dsc-adr.mqu.v) 

Deallocate n Dynamic Strings 
ret-status.wlc = OTS$SFREEN_DD (dsc-num.rlu.r, first-dsc-adr.mqu.r) 
ret-status.wlc = OTS$SFREEN_DD6 (dsc-num.rlu.v, first-dsc-adr.mqu.v) 

A-22 Summary of Run-Time Library Entry Points 



A.5 Signaling and Condition Handling Procedures 

A.5.1 Establlshlng a Condition Handler 

LIB$ESTABLISH Establish a Condition Handler for FORTRAN 
old-handler.flc.rp = LIB$ESTABLISH (new-handler.flc.rp) 

LIB$REVERT Delete Condition Handler for FORTRAN 
old-handler.wa.v = LIB$REVERT ( ) 

A.5.2 Enable/Disable Hardware Conditions 

LIB$DEC_OVER Enable/Disable Decimal Overflow 
old-setting.wlu.v = LIB$DEC_OVER (new-setting.rbu.r) 

LIB$FLT_UNDER Enable/Disable Floating Underflow 
old-setting.wlu.v = LIB$FLT_UNDER (new-setting.rbu.r) 

LIB$INT _OVER Enable/Disable Integer Overflow 
old-setting.wlu.v = LIB$INT_OVER (new-setting.rbu.r) 

A.5.3 Signal Generators 

LIB$SIGNAL Signals Exception Condition 
CALL LIB$SIGNAL (condition-value.rlc.v [, parameters.rl.v, ... ]) 

LIB$STOP Stop Execution via Signaling 
CALL LIB$STOP (condition-value.rlc.v [, parameters.rl.v, ... ]) 

A.5.4 Signal Handlers 

LIB$MATCH_COND Match Condition Value 
index.wlu.v = LIB$MATCH_COND (cond-val.rlc.r, cond-val-i.rlc.r, ... ) 

LIB$FIXUP _FLT 

LIB$SIG_ TO-RET 

Fix Up Floating Reserved Operand 
ret-status.wlc = LIB$FIXUP _FLT (sig-args-adr.rl.ra, 
mch-args-adr.rl.ra [, new-operand.rf.rl) 

Convert any Signal to Return Status 
ret-status.wlc = LIB$SIG_TO-RET (sig-args-adr.rl.ra, mch-args-adr.rl.ra) 

A.6 Syntax Analysis Procedures 

LIB$TPARSE 

LIB$LOOKUP _KEY 

Table-Driven Finite-State Parser 
ret-status.wlc = LIB$TPARSE (param-blk.mz.r,state-table.rz.r, 
key-table.rz.r) 

Scan Keyword Table 
ret-status.wlc = LIB$LOOKUP _KEY (string-descr-adr.rt.dx, 
key-table-adr.rlu.ra [,key-value-adr.wlu.r [,full-descr-adr.wt.dx 
[,outlen. ww .rlll) 

Summary of Run-Time Library Entry Points A-23 



A.7 Cross-Reference Procedures 

LIB$CRF -1NS_KEY 

LIB$CRF -1NS-REF 

LIB$CRF_OUTPUT 

Place Symbol Value in Cross-Reference Table 
ret-status.wlc = LIB$CRF-1NS_KEY (output-format-table.rl.r, key.rl.r, 
value.rl.r, flags.rl.r) 

Place Symbol Name in Cross-Reference Table 
ret-status.wlc = LIB$CRF-1NS-REF (output-format-table.rl.r, key.rl.r, 
ref-ind.rl.r, ref-flags.rl.r, def-ind.rl.r) 

Output Cross-Reference Table 
ret-status.wlc = LIB$CRF_OUTPUT (output-format-table.rl.r, 
line-width.rl.r, pagl-lines.rl.r, pagn-lines.rl.r, prt-ind.rl.r, 
sav-ind.rl.r) 

A-24 Summary of Run-Time Library Entry Points 



Appendix B 
Run-Time Library Error Messages 

8.1 Introduction 

Condition value symbols are returned to signal successful procedure 
completion or to show that an error occurred during procedure execution. 
Each condition value symbol is a unique, system-wide global symbol with a 
32-bit condition value. 

The first two or three letters of a condition value symbol indicate the facility 
detecting the error as follows: 

LIB$_ 
MTH$_ 
OTS$_ 
STR$_ 
SS$_ 

General Procedures 
Mathematics Procedures 
Language-Independent Support Procedures 
String Procedures 
V AXNMS Operating System 

The remaining letters in the symbol are made up of the first three letters of 
each of the first three words in the message (not counting articles and preposi­
tions). Two-letter words are filled out with an underline character. 

Many errors also have language-specific error numbers. 

8.2 The Error Signaling Sequence 

The system establishes a number of default handlers before the main program 
is called. When an error condition is signaled, the process stack is scanned 
from the last item on the stack to the first item on the stack, and each 

B-1 



condition handler established is .called in turn. One of the system default 
handlers then prints the error message and proceeds with one of the following 
actions depending upon the severity of the error: 

Error Severity Action 

INFO Continues image at point of condition 

SUCCESS Continues image at point of condition 

WARNING Continues image at point of condition 

ERROR Continues image at point of condition 

SEVERE Exits the image 
-

Most errors are signaled as SEVERE. Thus, the default action for most errors 
is to exit the image. Independent of error severity, procedures that encounter 
these errors are either "continuable" or "noncontinuable." If the error mes­
sages that follow specify "continuable," the procedure can continue execution 
when the error occurs by calling LIB$SIGNAL, which will signal an exception 
condition. If the error messages specify "noncontinuable," execution halts as 
the Run-Time Library calls LIB$STOP. 

User-written condition handlers are called before any system default 
handlers. Thus, a user-written handler can override or alter the affect of a 
default handler. If a user-written handler changes the severity of an error in a 
continuable procedure to ERROR or WARNING and resignals the image to 
continue, the image will continue to execute after the default handler prints 
the message. If a user-written handler returns SS$CONTINUE on an error in 
a continuable procedure, the image continues execution at the point of the 
exception with no further stack scan and no error message printed. 

A user-written handler cannot alter the affect of a system default handler on 
an error in a noncontinuable procedure. The only way a user-written handler 
can avoid image exit in this case is by an appropriate stack unwind that will 
continue the image at a point other than at the point of the exception. (See 
Chapter 6 for a more complete description of user control of error handling.) 

B.3 Exceptions 

Although most signaled errors are SEVERE with the procedure being 
noncontinuable, the following errors are SEVERE with the procedure being 
continuable: 

Condition Value 
Symbol Message 

MTH$_abcdefghi All Mathematics Procedure errors except 
MTH$_WRONUMARG and MTH$-1NVARGMAT 

SS$_]) ECO VF Decimal Overflow 

SS$_FLTDIV Arithmetic trap, floating divide by zero 

SS$_FLTDIV_F Arithmetic fault, floating divide by zero 

(continued on next page) 

B-2 Run-Time Library Error Messages 



Condition Value 
Symbol Message 

SS$_FLTOVF Arithmetic trap, floating overflow 

SS$_FLTOVF_F Arithmetic fault, floating overflow 

SS$_FLTUND Arithmetic trap, floating underflow 

SS$_FL TUND_F Arithmetic fault, floating underflow 

SS$-1NTDIV Integer Zero Divide 

SS$-1NTOVF Integer Overflow 

SS$_SUBRNG Subscript Out of Range 

The following error has a severity of ERROR and the procedure is 
continuable: 

FOR$_0UTCONERR Output Conversion Error 

B.4 Error Message Descriptions 

The following error descriptions are grouped by facility and arranged alpha­
betically by condition value symbol. The description in uppercase text next to 
the condition value symbol is the actual message printed. The next line in the 
error description shows the severity of the error,. and whether or not execution 
can be continued at the point where the error was detected. The paragraph 
following each message explains the error condition and suggests what recov­
ery action the user can take. This same paragraph is also available interac­
tively using the system command: 

HELP ERROR 

HELP ERROR facility 

Prints the error message format and lists the 
facility names for which there is additional 
information 

Prints brief description of the facility and lists 
the error codes for which there is additional 
information 

HELP ERROR facility code Prints the actual error message, an explana­
tion of the error condition, and may suggest a 
recovery action the user can take 

Figure B-1 is a sample dialogue showing how to use the HELP command. 

Figure B-1: Sample Dialogue of the HELP ERROR Command 

$ HELP ERRORS 

ERRORS 

Errors are disPlaYed in the forMat: 
%facilitY-1-codet text (continued on next page) 

Run-Time Library Error Messages B-3 



'"'here: 
11 facilitY 11 is the naMe of the faciiitY which Produced the 
error Ce.s. FOR for FORTRAN>. 
11 1 11 is a one letter code indicatins the severitY of the error. 
The severities are: 

I - Infor111ation 
S - Success 
W - Warnins 
E - Error 
F - Se1.1ere Error 

11 code 11 is an abbreviation for the Messase text. 

Further helP for soMe of the More comMon errors can be found by 
tYPinS: HELP ERROR facility c~de 

For More inforMation, see the VAX/VM~ SYstem Messases and Recovery 
Procedures Manual+ 

Additional inforMation available:· 

FOR LIB MTH OTS SYSTEM 
$ HELP ERROR SYSTEM 

ERRORS 

SYSTEM 

VAX/VMS and hardware senerated messases 

Additional information available: 

ACCVIO FLTDIV FLTDIV_F 
FLTUND FLTUND_F INTDIV 

FLTOVF 
I NTOVF 

FLTOVF_F 
SUBRNG 

$ HELP ERROR SYSTEM FLTDIV_F 

$ 

ERRORS 

SYSTEM 

FL TDIV_F 

arithMetic fault, floatins divide bY zero 

Durins a floatinS-Point arithMetic operation an attempt was 
made to divide by zero. 

B.5 General Library Return Status Condition Values 

The Run-Time Library does not signal the following symbolic condition val­
ues. Rather, these values are returned as 32-bit VAX-11 procedures return 
status condition values. User programs can signal them by calling 
LIB$SIGNAL or LIB$STOP, in which case the following messages in upper­
case will appear. 

LIB$-.AMBKEY xxx IS AN AMBIGUOUS KEYWORD 

The keyword does not contain sufficient characters to 
obtain a unique match in the keyword table passed as 
a parameter. 

B-4 Run-Time Library Error Messages 



LIB$_ATTCONSTO ATTEMPT TO CONTINUE FROM STOP 

A condition handling procedure attempted to con­
tinue from a call to LIB$STOP; that is, it attempted 
to continue after an error in a noncontinuable 
procedure. 

LIB$_BADBLOADR BAD BLOCK ADDRESS 

LIB$_BADBLOSIZ 

LIB$_BADSTA 

LIB$FREE_ VM has been called with an address of 
an invalid block of storage. Either the address is not 
in the range previously allocated by LIB$GET_ VM 
or the low bits are not clear for the assigned 
alignment. 

BAD BLOCK SIZE 

LIB$GET_ VM has been called with zero or too large 
a block size. 

BAD STACK 

An improper format encountered on the process stack 
was inaccessible during scanning. The user program 
has probably written on the stack. Recompiling 
FORTRAN procedures with /CHECK:BOUNDS 
qualifier may find an array reference out of bounds. 

LIB$_EF_ALRFRE EVENT FLAG ALREADY FREE 

The event flag specified by LIB$FREE_EF is already 
free. 

LIB$_EF_ALRRES EVENT FLAG ALREADY RESERVED 

LIB$_EF_RESSYS 

LIB$_F ATERRLIB 

LIB$-1NPSTRTRU 

The event flag specified by LIB$RESERVE_EF is 
already reserved. 

EVENT FLAG RESERVED TO SYSTEM 

The event flag specified by LIB$FREE_EF or 
LIB$RESERVE_EF is outside the ranges of 1-23 and 
32-63. 

FATAL ERROR IN LIBRARY 

An internal consistency check has failed in the 
Run-Time Library. This usually indicates a program­
ming error in the Run-Time Library and should be 
reported to DIG IT AL. 

INPUT STRING TRUNCATED 

An input string accepted by LIB$GET-1NPUT has 
been truncated in order to fit the string descriptor 
passed to it. 

Run-Time Library Error Messages B-5 



LIB$-1NSEF 

LIB$-1NSLUN 

LIB$-1NSVIRMEM 

LIB$-1NTLOGERR 

LIB$-1NV ARG 

LIB$-1NVSTRDES 

LIB$-1NVSCRPOS 

LIB$-1NVTYPE 

LIB$_LUNALRFRE 

LIB$_LUNRESSYS 

LIB$_NOTFOU 

INSUFFICIENT EVENT FLAGS 

There are no event flags available for allocation. 

INSUFFICIENT LOGICAL UNIT NUMBERS 

There are no logical unit numbers available for 
allocation. 

INSUFFICIENT VIRTUAL MEMORY 

A call to LIB$GET_ VM has failed because the user 
program has exceeded the image quota for virtual 
memory. This quota can be increased by a suitably 
privileged command. 

INTERNAL LOGIC ERROR 

A general library procedure has detected an internal 
logic error. Such a condition should be reported to 
DIGITAL. 

INVALID ARGUMENTS(S) 

A calling program has passed one or more invalid ar­
guments to a general library procedure. Consult the 
description of the procedure for the proper argument 
format. 

INVALID STRING DESCRIPTOR 

A string descriptor passed to a general library proce­
dure did not contain a valid DSC$B_CLASS field. 

INVALID SCREEN POSITION VALUES 

Line-number or Column-number was equal to zero. 

INVALID LIB$TPARSE STATE TABLE ENTRY 

The state table passed to the LIB$TPARSE proce­
dure was not valid and was unable to be processed. 

LOGICAL UNIT NUMBER ALREADY FREE 

The logical unit number that is specified by 
LIB$FREE_LUN is already free. 

LOGICAL UNIT NUMBER RESERVED TO SYSTEM 

The logical unit number that is specified by 
LIB$FREE_LUN is outside the range of 100 to 119. 

NOT FOUND 

LIB$FFS or LIB$FFC did not find set or clear bit 

B-6 Run-Time Library Error Messages 



LIB$_pUSSTAOVE 

LIB$-SIGNO--ARG 

PUSHDOWN STACK OVERFLOW 

The image pushdown stack has overflowed. Relink 
program specifying a larger stack. 

SIGNAL WITH NO ARGUMENTS 

LIB$SIGNAL or LIB$STOP has been called with no 
arguments. This condition is signaled. 

LIB$_SYNTAXERR STRING SYNTAX ERROR DETECTED BY 
LIB$TPARSE 

LIB$_UNRKEY 

LIB$-USEFLORES 

The string passed to the LI$TPARSE procedure was 
unable to be parsed due to syntax error. 

xxx IS AN UNRECOGNIZED KEYWORD 

The keyword is not contained in the keyword table 
passed as a parameter. 

USE OF FLOATING RESERVED OPERAND 

The executing image has accessed a reserved floating­
point operand. 

B.6 Mathematical Procedures Runtime Errors 

The following messages result from incorrect calls to mathematical 
procedures. A user-supplied handler can set the reserved operand result by 
modifying the image of RO or RO/Rl in the signal mechanism vector, 
(CHF$L_MCH_SAVRO, CHF$L_MCH_SAVR1). See Chapter 6 for a de­
tailed description of condition handling. 

MTH$_FLOOVEMAT FLOATING OVERFLOW IN MATH LIBRARY 
SEVERE continuable 

An overflow condition was detected during execution 
of a mathematical procedure. The result returned is 
the reserved operand: minus zero, if execution is 
continued by a condition handling procedure. If the 
result is used in a subsequent operation, error 
SS$_ROPRAND occurs. 

MTH$_FLOUNDMAT FLOATING UNDERFLOW IN MATH LIBRARY 
SEVERE continuable 

An underflow condition was detected during execu­
tion of a Mathematical Library procedure and the 
caller was enabled for floating underflow traps. (See 
description of LIB$FLT_UNDER procedure.) The 
result returned is zero, if execution is continued by a 
condition handling procedure. 

Run-Time Library Error Messages B-7 



MTH$-1NVARGMAT INVALID ARGUMENT TO MATH LIBRARY 
SEVERE noncontinuable 

One of the mathematical procedures has been called 
with an invalid argument. 

MTH$_LOGZERNEG LOGARITHM OF ZERO OR NEGATIVE VALUE 
SEVERE continuable 

An attempt was made to take the logarithm of zero or 
a negative number. The result returned is the reserved 
operand: minus zero if execution is continued by a 
condition handling procedure. If the result is used in a 
subsequent operation, error SS$_ROPRAND occurs. 

MTH$_SIGLOSMAT SIGNIFICANCE LOST IN MATH LIBRARY 
SEVERE continuable 

Occurs if the magnitude of the argument is so large 
that significance .is lost from the result. The permitted 
argument ranges are: 

SIN, COS -2**30 < X < 2**30 
DSIN, DCOS -2**31 < X < 2**31 
GSIN, GCOS -2**31 < X < 2**31 
HSIN, HCOS -2**31 < X < 2**31 

MTH$_SQUROONEG SQUARE ROOT OF NEGATIVE VALUE 

MTH$_UNDEXP 

SEVERE continuable 

An attempt was made to evaluate the square root of a 
negative value. The result returned is the reserved 
operand: minus zero if execution is continued by a 
condition handling procedure. If the result is used in a 
subsequent operation, SS$_ROPRAND occurs. 

UNDEFINED EXPONENTIATION 
SEVERE continuable 

An attempt was made to perform an exponentiation 
which is mathematically undefined; that is, 0. **0. 
The result returned is the reserved operand: minus 
zero for floating-point operations, and 0 for integer 
operations if execution is continued by a condi­
tion handling procedure. If the reserved operand 
result is used in a subsequent operation, error 
SS$_ROPRAND occurs. 

MTH$_WRONUMARG WRONG NUMBER OF ARGUMENTS 
SEVERE noncontinuable 

An attempt was made to call a library procedure with 
an improper number of arguments. 

B-8 Run-Time Library Error Messages 



B. 7 Language-lndepe.ndent Errors 

The following errors are language-independent. The fifth argument returned 
by ERRSNS is the indicated 32-bit VAX-11 condition value: 

OTS$__FATINTERR FATAL INTERNAL ERROR IN RUN-TIME LIBRARY 
SEVERE noncontinuable 

An explicit or implicit call to the Run-Time "Library 
has resulted in the failure of an internal consistency 
check. This usually indicates a programming error in 
the Run-Time Library and should be reported to 
DIGITAL. 

OTS$-1NPCONERR INPUT CONVERSION ERROR 
SEVERE noncontinuable 

Either an invalid character or overflow occurred. 

OTS$_1NTDATCOR INTERNAL DATA CORRUPTED IN RUN-TIME 
LIBRARY 

OTS$-1NVSTRDES 

SEVERE noncontinuable 

On a call to the Run-Time Library, a data base con­
sistency check failed. A user program can cause this 
by referencing outside of a dimensioned array or re­
questing input to an address outside the program. Try 
recompiling with the /CHECK:BOUNDS qualifier to 
check all array references. 

INVALID STRING DESCRIPTOR 
SEVERE noncontinuable 

A string descriptor passed to a language support pro­
cedure did not contain a valid DSC$B_CLASS field. 

OTS$-10_CONCLO 1/0 CONTINUED TO CLOSED FILE 
SEVERE noncontinuable 

I/0 transfer attempted to a closed file. The 1/0 was 
initiated while the file was open. 

OTS$_0UTCONERR OUTPUT CONVERSION ERROR 
SEVERE noncontinuable 

Output Conversion error. The output string is of zero 
length. 

OTS$_USEFLORES USE OF FLOATING RESERVED OPERAND 
WARNING continuable 

The executing image has accessed a reserved floating 
operand. 

Run-Time Library Error Messages B-9 



B.8 String Procedures Run-Time Errors 

The following messages result from invalid calls to the STR$ facility: 

STR$_DIVBY_ZER DIVISION BY ZERO 
SEVERE noncontinuable 

The string arithmetic routines attempted to take the 
reciprocal of a string whose numeric value was 0. 

STR$_FATINTERR FATAL INTERNAL ERROR 

STR$-1LLSTRCLA 

STR$-1LLSTRPOS 

STR$-1LLSTRSPE 

SEVERE noncontinuable 

An internal consistency check has failed. This usually 
indicates an internal error in the Run-Time Library 
and should be reported to DIGITAL. 

ILLEGAL STRING CLASS 
SEVERE noncontinuable 

The class code found in the class field of a descriptor 
is not a string class code supported by the V AXNMS 
Procedure Calling and Condition Handling Standard. 

ILLEGAL STRING POSITION 
SUCCESS continuable 

Successfully completed except one of the character­
position parameters to a string routine pointed to a 
character-position before the beginning of the input 
string (was less than 1 but 1 was used) or after the end 
of the input string (was greater than the length of the 
input string but the length of the input string was 
used). 

ILLEGAL STRING SPECIFICATION 
SUCCESS continuable 

Successfully completed except the character-position 
parameters specifying a substring of a string 
parameter were inconsistent because the ending 
character-position was less than the starting charac­
ter-position, a null string was used. 

STR$-1NSVIRMEM INSUFFICIENT VIRTUAL MEMORY 
SEVERE noncontinuable 

An attempt to allocate heap storage for use as dy­
namic strings or string temporaries failed. 

STR$_NEGSTRLEN NEGATIVE STRING LENGTH 
SUCCESS continuable 

Successfully completed except that a length parame­
ter to a string routine had a negative value, lengths of 
strings must always be positive or 0.0 was used. 

B-10 Run-Time Library Error Messages 



STR$-STRIS-1NT STRING IS INTERLOCKED 
SEVERE noncontinuable 

Code being executed at AST level attempted writing 
into a string that was being written into or whose 
length· was being used for length computation imme­
diately before the interrupt. 

STR$_STRTOOLON STRING IS TOO LONG (GREATER THAN 65535) 

STR$_TRU 

FATAL noncontinuable 

An attempt was made to create a string that was 
longer than allowed by the String Facility or the des­
criptors in the VAXNMS Procedure Calling and 
Condition Handling Standard. The maximum length 
string supported is 65,535. 

TRUNCATION 
WARNING continuable 

An attempt was made to place more characters into a 
string than it could contain. The value was truncated 
on the right to fit. 

STR$_WRONUMARG WRONG NUMBER OF ARGUMENTS 
SEVERE noncontinuable 

A String facility entry was called without the correct 
number of arguments. 

B.9 Hardware Trap Conditions 

The following messages result from arithmetic overflow and underflow 
conditions: 

SS$_DECOVF 

SS$_FLTDIV 

DECIMAL OVERFLOW 
SEVERE continuable 

During an arithmetic operation, a decimal value has 
exceeded the largest representable decimal number. 
The result of the operation is set to the correctly 
signed least significant digit. This does not occur in 
FORTRAN. 

ARITHMETIC TRAP, FLOATING/DECIMAL DIVIDE 
BY ZERO 

SEVERE continuable 

During a floating-point arithmetic operation, an at­
tempt was made to divide by zero. The result of the 
operation is set to minus zero which is a reserved oper­
and and the PC is advanced to the next instruction. If 
the result is used in a subsequent operation error 

Run-Time Library Error Messages B-11 



SS$_FLTDIV _F 

SS$_FLTOVF 

SS$_FLTOVF_F 

SS$_FLTUND 

SS$_FLTUND_F 

88$-ROPRAND occurs. During a decimal string op­
eration, the divisor was 0. The result is set to 
UNPREDICTABLE. 

ARITHMETIC FAULT, FLOATING DIVIDE BY ZERO 
SEVERE continuable 

During a floating-point arithmetic operation, an at­
tempt was made to divide by zero. This condition is a 
fault which means that the PC is pointing to the in­
struction that faulted. Attempting to continue with­
out changing either the input operands or the PC will 
result in the same exception. 

ARITHMETIC TRAP, FLOATING OVERFLOW 
SEVERE continuable 

During an arithmetic operation, a floating-point value 
has exceeded the largest representable floating-point 
number. The result of the operation is set to minus 
zero which is a reserved operand and the PC is ad­
vanced to the next instruction. If the result is used in 
a subsequent operation error code 88$-ROPRAND 
occurs. The result is also set to minus zero. 

ARITHMETIC FAULT, FLOATING OVERFLOW 
SEVERE continuable 

During an arithmetic operation, a floating-point value 
has exceeded the largest representable floating-point 
number. This condition is a fault which means that 
the PC is pointing to the instruction that faulted. At­
tempting to continue without changing either the in­
put operands or the PC will result in the same 
exception. 

ARITHMMETIC TRAP, FLOATING UNDERFLOW 
SEVERE continuable 

During an arithmetic operation, a floating-point value 
has become less than the smallest representable 
floating-point number, and has been replaced with a 
value of zero and the PC is advanced to the next in­
struction. (Note: usually this trap is disabled and so 
does not generate an exception condition. It can be 
enabled and disabled at run-time for the duration of a 
single program unit by calling LIB$FLT_UNDER.) 

ARITHMETIC FAULT, FLOATING UNDERFLOW 
SEVERE continuable 

During an arithmetic operation, a floating-point value 
has become less than the smallest representable 

B-12 Run-Time Library Error Messages 



SS$-1NTOVF 

SS$-1NTDIV 

SS$_SUBRNG 

floating-point number, and has been replaced with a 
value of zero .. This condition is a fault which means 
that the PC is pointing to the instruction that faulted. 
Attempting to continue without changing either the 
input operands or the PC will result in the same 
exception. 

INTEGER OVERFLOW 
SEVERE continuable 

During an arithmetic operation an integer's value has 
exceeded byte, word or longword range. The result of 
the operation is the correct low-order part. Note that 
by default this trap is enabled. It can be enabled or 
disabled at run time for the duration of a single 
program unit by calling LIB$INT _OVER. It can be 
disabled at compile time by using the qualifier 
/CHECK:NOOVERFLOW. 

INTEGER ZERO DIVIDE 
SEVERE continuable 

During an integer mode arithmetic operation an at­
tempt was made to divide by zero. The result is set to 
the dividend which is equivalent to division by one. 

SUBSCRIPT OUT OF RANGE 
SEVERE continuable 

An array reference has been detected which is outside 
the array as described by the array declarator. Execu­
tion continues. (This checking is performed only 
for program units compiled with the qualifier 
/CHECK:BOUNDS in effect.) 

Run-Time Library Error Messages B-13 





Appendix C 
VAX-11 Procedure Calling and Condition Handling 
Standard 

8 Feb 80 - Version 7 .0 

This appendix is the VAX-11 Procedure Calling Standard used with the 
VAX-11 hardware procedure call mechanism. This standard applies to: 

1. All externally callable interfaces in DIGITAL-supported, standard system 
software 

2. All intermodule CALLs to major V AX-11 components 

3. All external procedure CALLs generated by standard DIGITAL language 
processors 

This standard does not apply to calls to internal (or local) routines, or lan­
guage support routines. Within a single module, the language processor or 
programmer can use a variety of other linkage and argument-passing 
techniques. 

The standard defines and supports passing arguments by immediate value, by 
reference and by descriptor. However, the immediate value mechanism is only 
intended for use by VAXNMS system services and within programs written 
in BLISS or MACRO. 

The procedure CALL mechanism depends on agreement between the calling 
and called procedures to interpret the argument list. The argument list does 
not fully describe itself. 

This standard specifies the following attributes of the interfaces between 
modules: 

• Calling sequence - the instructions at the call site and at the entry point 

C-1 



• Argument (or parameter) list - the structure of the list describing the 
arguments to the called procedure 

• Function value return - the form and conventions for the return of the 
function value as a value or as a condition value to indicate success or 
failure 

• Register usage - which registers are preserved and who is responsible for 
preserving them 

• Stack usage - rules governing the use of the stack 

• Argument data types - the data types of arguments that can be passed 

• Argument (or parameter) descriptor formats - how descriptors are passed 
for the more complex arguments 

• Condition handling - how exception conditions are signaled and how they 
can be handled in a modular fashion 

• Stack unwinding - how the current thread of execution can be aborted 
cleanly 

The goals in developing the VAX-11 Procedure Calling Standard were: 

• The standard must be applicable to all inter-module callable interfaces in 
the VAX-11 software system. Specifically, the standard must consider the 
requirements of MACRO, BLISS, BASIC, FORTRAN, PASCAL, COBOL 
and CALLs to the operating system and library procedures. The needs of 
other languages that DIGITAL may support in the future must be met by 
the standard or by compatible revision to it. 

• The standard should not include capabilities for lower-level components 
(such as BLISS, MACRO, operating system) that cannot be invoked from 
the higher-level languages. 

• The calling program and called procedure can be written in different 
languages. The standard attempts to reduce the need for use of language 
extensions for mixed language programs. 

• The procedure mechanism must be sufficiently economical in both space 
and time to be used and usable as the only calling mechanism within 
VAX-11. 

• The standard should contribute to the writing of error-free, modular, and 
maintainable software. Effective sharing and re-use of VAX-11 software 
modules are significant goals. 

• The standard must allow the called procedure a variety of techniques for 
argument handling. The called procedure can: 

1. Reference arguments indirectly through the argument list 

2. Copy atomic data types, strings and array 

3. Copy addresses of atomic data types, strings and arrays 

C-2 VAX-11 Procedure Calling and Condition Handling Standard 



• The standard should provide the programmer with some control over fixing, 
reporting, and flow of control on hardware and software exceptions. 

• The standard should provide subsystem and application writers with the 
ability to override system messages to provide a more suitable application 
oriented interface. 

• The standard should add no space or time overhead to procedure calls and 
returns that do not establish handlers and should minimize time overhead 
for establishing handlers at the cost of increased time overhead when 
exceptions occur. 

Some possible attributes of a procedure-calling mechanism were considered 
and rejected. Specific non-goals for the VAX-11 procedure CALL mechanism 
include: 

• It is not necessary for the procedure mechanism to provide complete check­
ing of argument data types, data structures, and parameter access. The 
V AX-11 protection and memory-ma11agement system is not dependent 
upon "correct" interactions between user-level calling and called proce­
dures. Such extended checking may be desirable in some circumstances, 
but system integrity is not dependent upon it. 

• The VAX-11 procedure mechanism need not provide complete information 
for an interpretive DEBUG facility. The definition of the DEBUG facility 
includes a DEBUG symbol table which contains the required descriptive 
information. 

The following definitions apply to this standard: 

• A procedu~e is a closed sequence of instructions that is entered from and 
returns control to the calling program. 

• A function is a procedure that returns a single value according to the stand­
ard conventions for value returning. If additional values are returned, they 
are returned via the argument list. 

• A subroutine is a procedure that does not return a known value according to 
the standard conventions for value returning. If values are returned, they 
are returned via the argument list. 

• An address is a 32-bit VAX-11 address positioned in a longword item. 

• Immediate value is a mechanism for passing input parameters in which the 
actual value is provided in the longword argument list entry by the calling 
program. 

• Reference is a mechanism for passing parameters in which the address of 
the parameter is provided in the longword argument list by the calling 
program. 

• Descriptor is a mechanism for passing parameters in which the address of a 
descriptor is provided in the longword argument list entry. The descriptor 
contains the address of the parameter, the data type, size and additional 
information needed to describe fully the data passed. 

VAX-11 Procedure Calling and Condition Handling Standard C-3 



• An exception condition is a hardware or sOftware detected event that alters 
the normal flow of instruction execution. It usually indicates a failure. 

• A condition value is a 32-bit value used to identify an exception condition 
uniquely. A condition value may be returned to a calling program as a 
function value or signaled using the VAX-11 Signaling mechanism. 

• Language support procedures are called implicitly to implement higher 
level language constructs. They are not intended to be called explicitly from 
user programs. 

• Library procedures are called explicitly using the equivalent of a CALL 
statement or function reference. 

C.1 Calling Sequence 

At the option of the calling program, the called procedure is invoked using 
either the CALLG or CALLS instruction: 

CALLG 
CALLS 

arglst, proc 
argent, proc 

CALLS pushes the argument count argent onto the stack as a longword and 
sets the argument pointer (AP) to the top of the stack. The complete sequence 
using CALLS is: 

push 

push 
CALLS 

argn 

argl 
#n,proc 

If the called procedure returns control to the calling program, control must 
return to the instruction immediately following the CALLG or CALLS in­
struction. Skip returns and GOTO returns are only allowed during stack 
unwind operations. 

The called procedure returns control to the calling program by executing the 
return instruction, RET. 

C.2 Argument List 

The argument list is the primary means of passing information to and receiv­
ing results from a procedure. 

C.2.1 Argument List Format 

The argument list is a sequence of longwords: 

0 1 n :arglst 

arg 1 
~ 

arg 2 
... 

arg n 
-·~ 

C-4 VAX-11 Procedure Calling and Condition Handling Standard 



The first longword contains the argument count as an unsigned integer in the 
low byte. The 24 high-order bits are reserved to DIGITAL and must be zero. 
To access the argument count, the called procedure must ignore the reserved 
bits and access the count with a MOVZBL, TSTB, or equivalent instruction. 

The remaining longwords can be: 

1. An uninterpreted 32-bit value (immediate value mechanism) if the called 
procedure expects less than 32 bits, it accesses the low-order bits and 
ignores the unwanted high-order bits. 

2. An address (reference mechanism) typically a pointer to a scalar data 
item, an array, or a procedure. 

3. An address of a descriptor (descriptor mechanism). See Section C.8 for 
descriptor formats. 

The standard permits immediate value, reference, descriptor, or combinations 
of these mechanisms. Interpretation of each argument list entry depends on 
agreement between the calling and called procedures. High-level languages 
use the reference or descriptor mechanism for passing input parameters. 
V AXNMS System Services and MACRO or BLISS programs can use all 
three mechanisms. 

A procedure with no arguments is called with a list consisting of a 0 argument 
count longword. This is accomplished as follows: 

CALLS #0, proc 

A missing or null argument, for example CALL SUB(A,,B), is represented by 
an argument list entry consisting of a longword 0. Some procedures allow 
trailing null arguments to be omitted, others require all arguments. See each 
procedure's specification for details. 

The argument list must be treated as read-only data by the called procedure. 

C.2.2 Argument Lists and High-Level Languages 

High-level language functional notations for procedure calls are mapped into 
VAX-11 argument lists according to the following rules: 

1. Arguments are mapped from left to right to increasing argument list 
offsets. The left-most (first) argument has an address of Arglst+4, the next 
has an address of Arglst+8, .... 

2. Each argument position corresponds to a single VAX-11 argument list 
entry. 

C.2.2.1 Order of Argument Evaluation - Since most high-level languages do 
not specify the order of evaluation (with respect to side effects) of arguments, 
those language processors can evaluate arguments in any convenient order. 

In constructing an argument list on the stack, a language processor can 
evaluate arguments from right to left and push their values on the stack. If 

V AX-11 Procedure Calling and Condition Handling Standard C-5 



call-by-reference semantics are used, argument expressions can be evaluated 
from left to right, with pointers to the expression values or descriptors being 
pushed from right to left. 

The choice of argument evaluation order and code generation strategy is cons­
trained only by the definition of the particular language. Programs should not 
be written that depend on the order of evaluation of arguments. 

C.2.2.2 Language Extensions for Argument Transmission - The VAX-11 
procedure standard permits arguments to be passed by immediate value, by 
reference, or by descriptor. All language processors, except MACRO and 
BLISS, pass arguments by reference or descriptor. 

Language extensions are needed to reconcile the different argument passing 
mechanisms. Each language processor gives the user explicit control of argu­
ment passing mechanism in the calling program. For example, FORTRAN 
provides the following intrinsic compile-time functions: 

%VAL(arg) Immediate Value Mechanism - Corresponding argument 
list entry is the 32-bit value of the argument, arg, as defined 
in the language. 

%REF(arg) Reference Mechanism - Corresponding argument list entry 
contains the address of the value of the argument, arg, as 
defined in the language. 

%DESCR(arg) Descriptor Mechanism - Corresponding argument list entry 
contains the address of a VAX-11 descriptor of the argu­
ment, arg, as defined in this appendix and the language. 

These intrinsic functions can be used in the syntax of a procedure call to 
control generation of the argument list. For example: 

CALL SUB 1<'X,VAL<123 > , %REF< X > , %DESCR <A> > 

In other languages the same effect might be achieved by appropriate attrib­
utes of the declaration of SUBl made in the calling program. Thus, the user 
might write: 

CALL SUB1<1231X1A> 

after making the external declaration for SUBl. 

C.3 Function Value Return 

A function value is returned in register RO if its data type is representable in 
32 bits or registers RO and Rl if representable in 64 bits. Two separate 32-bit 
entities cannot be returned in RO and Rl because high level languages cannot 
process them. 

If the function value needs more than 64 bits, the actual-argument list and 
the formal-argument list are shifted one entry. The new, first entry is reserved 

C-6 VAX-11 Procedure Calling and Condition Handling Standard 



for the function value. In this case one of the following mechanisms is used to 
return the function value: 

1. If the maximum length of the function value is known (for example, 
octaword integer, H_floating, or fixed-length string), the calling program 
can allocate the required storage and pass the address of the storage or a 
descriptor for the storage as the first argument. 

2. The calling program can allocate a dynamic string descriptor. The called 
procedure then allocates storage for the function value and updates the 
contents of the dynamic string descriptor using VAX-11 Run-Time 
Library procedures. 

Some procedures, such as operating system calls and many library proce­
dures, return a success/fail value as a longword function value in RO. Bit 0 of 
the value is set (Boolean true) for a success and clear (Boolean false) for a 
failure. The particular success or failure status is encoded in the remaining 31 
bits, as described in the next section. 

C.4 Condition Value 

VAX-11 uses condition values for the following: 

• To report the success or failure of a called procedure 

• To describe an exception condition when it occurs 

• To· identify system messages 

• To report program success or failure for command language testing 

A condition value is a longword that includes fields to describe the software 
component generating the value, the reason the value was generated and the 
error severity status. The format of the condition value is: 

3 
1 

cntrl 

2 2 
8 7 

condition identification 

2 
7 

·1 facility number 

1 1 
6 5 

message number 

3 2 0 

2 0 

I I s I 

3 

VAX-11 Procedure Calling and Condition Handling Standard C-7 



condition identification 
Identifies the condition uniquely on a system-wide basis. 

facility 
Identifies the software component generating the condition value. Bit 27 is 
set for customer facilities and clear for DIGITAL facilities. 

message number 
A status identification that is, a description of the hardware eX.ception 
that occurred or a software-defined value. Message numbers with bit 15 
set are specific to a single facility. Message numbers with bit 15 clear are 
system wide status codes. 

severity 
The severity code bit 0 is set for success (logical true) and clear for failure 
(logical false), bits 1 and 2 distinguishes degrees of success or failure. The 
three bits, 0 through 2, taken as an unsigned integer, are interpreted as 
follows: 

STS$K_WARNING 
STS$K_SUCCESS 
STS$K_ERROR 
STS$K-1NFO 
STS$K_SEVERE 

0 =warning 
1 =success 
2 =error 
3 = information 
4 = severe_error 
5, 6, 7 reserved for 
DIGITAL 

Section C.4.1 describes the severity code more fully. 

cntrl 
Four control bits. Bit 28 inhibits the message associated with the condi­
tion value from being printed by the $EXIT system service. This bit is set 
by the system default handler after it has output an error message using 
the $PUTMSG system service. It should also be set in the condition value 
returned by a procedure as a function value, if the procedure has also 
signaled the condition (so that the condition has been either printed or 
suppressed). Bits 29 through 31 must be zero; they are reserved for future 
use by DIGITAL. 

Software symbols are defined for these fields as follows: 

Mnemonic Value Meaning Field 

STS$V _COND-1D 3 position of 27:3 } 
STS$S_COND-1D 25 size of 27:3 -condition identification 
STS$M_COND-1D mask mask for 27: 3 

STS$V -1NHIB_MSG 1@28 position for 28 } 
STS$S-1NHIB_MSG 1 size for 28 -inhibit message on image exit 
STS$M-1NHIB_MSG mask mask for 28 

STS$V-FAC_NO 16 position of 27:16} 
STS$SJAC_NO 12 size of 27:16 -facility number 
STS$MJAC_NO mask mask for 27:16 

C-8 VAX-11 Procedure Calling and Condition Handling Standard 



Mnemonic Value Meaning Field 

STS$V _CUST _DEF 27 position for 27 
}-customer facility STS$S_CUST _DEF 1 size for 27 

STS$M_CUST _DEF 1@27 mask for 27 

STS$V_MSG_NO 3 position of 15:3 } 
STS$S_MSG_NO 13 size of 15:3 -message number 
STS$M_MSG_NO mask mask for 15:3 

STS$V _F AC_SP 15 position of 15 
} -facility specific STS$S_F AC_SP 1 size for 15 

STS$M_FAC_SP 1@15 mask for 15 

STS$V_CODE 3 position of 14:3 
}-message code STS$S_CODE 12 size of 14:3 

STS$M_CODE mask mask for 14:3 

STS$V _SEVERITY 0 position of 2:0 
}-severity STS$S_SEVERITY 3 size of 2:0 

STS$M_SEVERITY 7 mask for 2:0 

STS$V _SUCCESS 0 position of 0 
}-success STS$S_SUCCESS 1 size of 0 

STS$M_SUCCESS 1 mask for 0 

C.4.1 Interpretation of Severity Codes 

A severity code of 0 indicates a warning. This code is used whenever a proce­
dure produces output, but the output might not be what the user expected; for 
example, a compiler modification of a source program. 

A severity code of 1 indicates that the procedure generating the condition 
value completed successfully, that is, as expected. 

A severity code of 2 indicates that an error has occurred, but that the proce­
dure did produce output. Execution can continue but the results produced by 
the component generating the condition value are not all correct. 

A severity code of 3 indicates that the procedure generating the condition 
value was successfully completed, but has some parenthetical information to 
be included in a message if the condition was signaled. 

A severity code of 4 indicates that a severe_error occurred and the compo­
nent generating the condition value was unable to produce output. 

When designing a procedure the choice of severity code for its condition values 
should be based on the following default interpretations. The calling program 
typically performs a low bit test, so it treats warnings, errors, and 
severe_errors as failures, and success and information as successes. If the 
condition value is signaled (see Section C.10.3), the default handler treats 
severe_errors as reason to terminate and all the others as the basis for at­
tempting to continue. When the program image exits, the command inter­
preter by default treats errors and severe_errors as the basis for stopping the 
job, and warnings, information, and successes as the basis for continuing. 

VAX-11 Procedure Calling and Condition Handling Standard C-9 



The following table summarizes the default interpretation of condition values: 

Default at 
Severity Routine Signal Program Exit 

success normal continue continue 

information normal continue continue 

warning failure continue continue 

error failure continue stop job 

severe_error failure exit stop job 
-· ..._._._ __. 

The default for signaled messages is to output a message to file 
SYS$0UTPUT. In addition, for severities other than success 
(STS$K_SUCCESS) a copy of the message is made on file SYS$ERROR. At 
program exit, success and information completion values do not generate 
messages, while warning, error, and severe_error condition values generate 
messages to both files SYS$0UTPUT and SYS$ERROR, unless bit 28 
(STS$V-1NHIB_MSG) is set. 

Unless there is a good basis for another choice, a procedure should use either 
success or severe_error as its severity for each condition value. 

C.4.2 Use of Condition Values 

VAX-11 software components return condition values when they complete 
execution. When a severity code of warning, error, or severe_error is gener­
ated, the status code describes the nature of the problem. This value can be 
tested to change the flow of control of a procedure and/or be used to generate a 
message. User procedures can also generate condition values to be examined 
by other procedures and by the command interpreter. User-generated values 
should set bit 27 and bit 15 so these condition values will not conflict with 
values generated by DIGITAL. 

C.5 Register Usage 

The following registers have defined uses: 

Register Use 

PC Program counter. 

SP Stack pointer. 

FP Current stack frame pointer. Must always point at current frame. No modifi-
cation is permitted within a procedure body. 

AP Argument pointer. When a call occurs, AP must point to a valid argument 
list. A procedure without parameters points to an argument list consisting of 
a single longword containing the value 0. 

(continued on next page) 

C-10 VAX-11 Procedure Calling and Condition Handling Standard 



Register Use 

Rl Environment value. When a call to a procedure that needs an environment 
value occurs, the calling program must set Rl to the environment value. See 
bound procedure value in Section C. 7 .3. 

RO,Rl Function value return registers. These registers are not to be preserved by any 
called procedure. They are available to any called procedure as temporary 
registers. 

Registers R2 through Rl 1 are to be preserved across procedure calls. The 
called procedure can use registers R2 through Rll provided it saves and res­
tores them using the procedure entry mask mechanism. The entry mask 
mechanism must be used so that any stack unwinding done by the condition 
handling mechanism will correctly restore all registers. In addition, PC, SP, 
FP, and AP are always preserved by the CALL instructions and restored by 
the RET instruction. However, AP can be used as a temporary register by a 
called procedure. 

C.6 Stack Usage 

The stack frame created by the CALLG/CALLS instructions for the called 
procedure is: 

condition handler (0) :(SP):(FP) 
mask/PSW 
AP 
FP 
PC 
R2 (optional) 

Rll (optional) 

FP always points at the condition handler longword of the stack frame, (see 
Section C.9). Other use of FP within a procedure is prohibited. 

The contents of the stack located at addresses higher than the mask/PSW 
longword belong to the calling program they should not be read or written by 
the called procedure, except as specified in the argument list. The contents of 
the stack located at addresses lower than SP belong to interrupt and 
exception routines, they are continually and unpredictably 
modified. 

The c~Jled procedure allocates local storage by subtracting the required num­
ber of bytes from the SP provided on entry. This local storage is automatically 
freed by the RET instruction. 

Bit 28 of the mask/PSW longword is reserved to DIGITAL for future exten­
sions to the stack frame. 

V AX-11 Procedure Calling and Condition _Handling Standard C-11 



C. 7 Argument Data Types 

Each data type implemented for a higher level language uses one of the 
following VAX data types for procedure parameters and elements of file re­
cords. When existing data types are not sufficient to satisfy the semantics of a 
language, new data types will be added to this standard. 

This section also indicates the spelling and punctuation that is used for the 
name of each data type. In running text, the data type names are not capital­
ized, except as shown. Also, they are not normally indicated in bold face, 
italics, or underlined. 

Data types fall into three categories: atomic, string, and miscellaneous. These 
data types can generally be passed by immediate value (if 32 bits or less), by 
reference or by descriptor. The encoding given in this section is used whenever 
it is necessary to identify data types, such as in a descriptor. Unless explicitly 
stated otherwise, all data types represent signed quantities. 

NOTE 

The unsigned quantities throughout this standard do not allo­
cate space for the sign. All bit or character positions are used 
for significant data. 

C.7.1 Atomic Data Types 

The following atomic data types are defined and have the following encoding: 

·-
Symbol Code Name/Description 

DSC$K_DTYPE_Z 0 unspecified 
The calling program has specified no data type. The 
called procedure should assume the argument is of the 
correct type. 

DSC$K_DTYPE_ V 1 bit 
Ordinarily a bit string (see Section C.8, Argument 
Descriptor Formats). 

DSC$K_DTYPE_BU 2 byte logical 
8-bit unsigned quantity. 

DSC$K_DTYPE_ WU 3 word logical 
16-bit unsigned quantity. 

DSC$K_DTYPE_LU 4 longword logical 
32-bit unsigned quantity. 

DSC$K_DTYPE_QU 5 quadword logical 
64-bit unsigned quantity. 

DSC$K_DTYPE_ou 25 octaword logical 
128--bit unsigned quantity. 

DSC$K_DTYPE_B 6 byte integer 
8-bit signed 2's-complement integer. 

·-
(continued on next page) 

C-12 VAX-11 Procedure Calling and Condition Handling Standard 



Symbol 

DSC$K_DTYPE_ W 

DSC$K_DTYPE_L 

DSC$K_DTYPE_Q 

DSC$K_DTYPE_O 

DSC$K_DTYPE__F 

DSC$K_DTYPE_D 

DSC$K_DTYPE_G 

DSC$K_DTYPE_H 

DSC$K_DTYPE__FC 

DSC$K_DTYPE_DC 

DSC$K_DTYPE_GC 

DSC$K_DTYPE_HC 

DSC$K_DTYPE_CIT 

Code Name/Description 

7 word integer 
16-bit signed 2's-complement integer. 

8 longword integer 
32-bit signed 2's-complement integer. 

9 quadword integer 
64-bit signed 2's-complement integer. 

26 octaword integer 
128-bit signed 2's-complement integer. 

10 F-floating 
32-bit F _floating quantity representing a single­
precision number. 

11 D_floating 
64-bit D_floating quantity representing a double­
precision number. 

27 G-floating 
64-bit G_floating quantity representing a double­
precision number. 

28 H-floating 
128-bit H_floating quantity representing a quadruple­
precision number. 

12 F _floating complex 
Ordered pair of F _floating quantities, representing a 
single-precision complex number. The lower addressed 
quantity is the real part, the higher addressed quantity 
is the imaginary part. 

13 D_floating complex 
Ordered pair of D_floating quantities, representing a 
double-precision complex number. The lower addressed 
quantity is the real part, the higher addressed quantity 
is the imaginary part. 

29 G-floating complex 
Ordered pair of G_floating quantities, representing a 
double-precision complex number. The lower addressed 
quantity is the real part, the higher addressed quantity 
is the imaginary part. 

30 H-floating complex 
Ordered pair of H_floating quantities, representing a 
quadruple-precision complex number. The lower ad­
dressed quantity is the real part, the higher addressed 
quantity is the imaginary part. 

31 COBOL Intermediate Temporary 
A floating-point datum with an 18-digit normalized dec­
imal fraction and a 2-decimal-digit exponent. The frac­
tion is a packed decimal string. The exponent is a 16-bit 
2's-complement integer (See section C.7.4 for more 
detail). 

VAX-11 Procedure Calling and Condition Handling Standard C-13 



C.7.2 String Data Types 

The following string types are ordinarily described by a string descriptor. The 
data type codes that follow occur in those descriptors: 

Symbol Code Name/Description 

DSC$K_DTYPE_ T 14 ASCII text 
A sequence of 8-bit ASCII characters. 

DSC$K_DTYPE_NU 15 numeric string, unsigned 

DSC$K_DTYPE_NL 16 numeric string, left separate sign 

DSC$K_DTYPE_NLO 17 numeric string, left overpunched sign 

DSC$K_DTYPE_NR 18 numeric string, right separate sign 

DSC$K_DTYPE_NRO 19 numeric string, right overpunched sign 

DSC$K_DTYPE_NZ 20 numeric string, zoned sign 

DSC$K_DTYPE_p 21 packed decimal string 

C. 7 .3 Miscellaneous Data Types 

The following miscellaneous data types are defined and have the following 
encoding: 

Symbol Code Name/Description 

DSC$K_DTYPE_ZI 22 sequence of instructions 

DSC$K_DTYPE_ZEM 23 procedure entry mask 

DSC$K_DTYPE_DSC 24 descriptor 
This data type allows a descriptor to be a data type, 
thus, levels of descriptors are allowed. 

DSC$K_DTYPE_BPV 32 bound procedure value 
A two longword entity in which the first longword 
contains the address of a procedure entry mask and 
the second longword is the environment value. The 
environment value is determined in a language spe-
cific manner when the original bound procedure 
value is generated. When the bound procedure is 
called, the calling program loads the second long-
word into Rl. When the environment value is not 
needed, this data type can be passed using the 
immediate value mechanism. In this case, the 
argument list entry contains the address of the 
procedure entry mask and the second longword is 
omitted. 

The type codes 33 through 191 are reserved to DIGITAL. Codes 192 through 
255 are reserved for DIGITAL's Computer Special Systems Group and for 
customers for their own use. 

C-14 VAX-11 Procedure Calling and Condition Handling Standard 



C. 7 .4 COBOL Intermediate Temporary Data Type 

A COBOL intermediate temporary datum is 12 contiguous bytes starting on 
an arbitrary byte boundary. It is specified by its address, A. 

1 1 1 1 1 
5 4 3 2 1 

k16> 

k12> 

k8> 

f<4> 

kO> 

1 
0 9 8 7 6 5 4 

exponent 

k15> 0 

f<11> f<14> 

f<7> k10> 

k3> k6> 

sign f<2> 

3 2 1 

f<17> 

k13> 

k9> 

k5> 

k1> 

0 

:A 

:A+2 

:A+4 

:A+6 

:A+8 

:A+lO 

A COBOL intermediate temporary datum represents a floating-point 
datum with a normalized 18-digit packed decimal fraction and a 16-bit 
2's-complement integer exponent. Bytes 0 and 1 are the exponent. Bytes 2 
through 11 contain the normalized packed decimal fraction. The sign of the 
datum is the sign of the fraction. If the fraction is zero, the value of the datum 
is zero. 

If the exponent is from -99 to +99, operations can be performed on this 
datum. If the exponent is outside this range, a reserved operand.condition is 
signalled (see section C.9). If a calculated datum has an exponent greater 
than +99, the exact result with the low-order 15 bits of the true exponent is 
stored in the result datum and an overflow condition is signalled. 

If a calculated datum has an exponent less than -99, the exact result with the 
low-order 15 bits of the true exponent is stored in the result datum and an 
underflow condition is signalled. The condition handler can take the appropri­
ate action. Condition mnemonics have a COB$_ prefix and are documented 
with the COBOL part of the Run-Time Library. An exponent value of-32768 
is taken as reserved and should be used to encode reserved operands such as 
uninitialized datum, indeterminate value, etc. By convention, if the fraction 
of a result is 0, the exponent is set to 0. Fractions are generated with preferred 
sign codes and avoid -0. 

C.8 Argument Descriptor Formats 

A uniform descriptor mechanism is defined for use by all procedures that 
conform to the VAX-11 Procedure Calling Standard. Descriptors are uni­
formly typed and the mechanism is extensible. When existing descriptors are 
not sufficient to satisfy the semantics of a language, new descriptors will be 
added to this standard. 

NOTE 

Unless explicitly stated otherwise, all fields in descriptors rep­
resent unsigned quantities and are read-only from the point of 
view of the called procedure. 

VAX-11 Procedure Calling and Condition Handling Standard C-15 



C.8.1 Descriptor Prototype 

Each class of descriptor consists of at least 2 longwords in the following 
format: 

CLASS I DTYPE l LENGTH :Descriptor 

POINTER 

-- ---1 

Symbol Description 

DSC$W-1ENGTH A one-word field specific to the descriptor class typically a 16-bit 
<0,15:0> (unsigned) length. 

DSC$B__J)TYPE A one-byte data type code (see C.7). 
<0,23:16> 

DSC$B_CLASS A none-byte descriptor class code (see C.8.2 through C.8.11). 
<0,31:24> 

DSC$A-POINTER A longword containing the address of the first byte of the data ele-
<l,31:0> ment described. 

Note that the descriptor can be placed in a pair of registers with a MOVQ 
instruction and then the length and address can be used directly. This gives a 
word length, so the class and type are placed as bytes in the rest of that 
longword. When the class field is zero, no more than the above information 
can be assumed. 

C.8.2 Scalar, String Descriptor (DSC$K_CLASS_S) 

A single descriptor form is used for scalar data and fixed length strings. Any 
VAX data type can be used with this description. 

1 DTYPE l LENGTH :Descriptor 

POINTER 

Symbol Description 
~'-

DSC$W-1ENGTH Length of data item in bytes, unless the DSC$B__J)TYPE field 
contains the value 1 (bit) or 21 (packed decimal). Length of data 
item is in bits for bit string. Length of data item is the number of 
4-bit digits (not including the sign) for packed decimal string. 

DSC$B__J)TYPE A one-byte data type code (see Section C.7). 

DSC$B_CLASS 1 = DSC$K_CLASS_S. 

DSC$A-POINTER Address of first byte of data storage. 

If the string must be extended in a string comparison or is being copied to a 
fixed length string containing a greater length, the ASCII space character (hex 
20) is used as the fill character. 

C.8.3 Dynamic String Descriptor (DSC$K_CLASS_D) 

A single descriptor form is used for dynamically allocated strings. When a 
string is written, either or both the length field and the pointer field can be 

C-16 VAX-11 Procedure Calling and Condition Handling Standard 



changed. The VAX-11 Run-Time Library provides procedures for changing 
fields. As an input parameter this format is interchangeable with class 1 
(DSC$K_CLASS_S). 

2 l DTYPE l LENGTH : Descriptor 

POINTER 

Symbol Description 

DSC$W-1ENGTH Length of data item in bytes, unless the DSC$B_DTYPE field 
contains the value 1 (bit) or 21 (packed decimal). Length of dat.a 
item is in bits for bit string. Length of data item is the number of 
4-bit digits (not including the sign) for packed decimal string. 

DSC$B_DTYPE A one-byte data type code (see Section C. 7). 

DSC$B_CLASS 2 = DSC$K_CLASS_D. 

DSC$A._POINTER Address of first byte of data storage. 

C.8.4 Varying String Descriptor 

Reserved for use by DIGITAL. 

C.8.5 Array Descriptor (DSC$K_CLASS~A) 

The array descriptor is used to describe contiguous arrays of atomic data 
types or contiguous arrays of fixed length strings. An array descriptor consists 
of three contiguous blocks. The first block contains the descriptor prototype 
information and is part of every array descriptor. The second and third blocks 
are optional. If the third block is present, so is the second. A complete array 
descriptor has the form: 

4 DTYPE LENGTH : Descriptor 

POINTER 

DIMCT AFLAGS DIGITS SCALE Block 1 - Prototype 

ARSIZE 

AO 

M1 

... Block 2 - Multipliers 

M(n-1) 

Mn 

L1 

U1 

... Block 3 - Bounds 

Ln 

Un 

VAX-11 Procedure Calling and Condition Handling Standard C-17 



C-18 

Symbol 

DSC$W ---LENGTH 

DSC$B_DTYPE 

DSC$B_CLASS 

DSC$A__FOINTER 

DSC$B_SCALE 

DSC$B_DIGITS 

DSC$B__AFLAGS 
<2,23:16> 

Reserved 
<2,19:16> 

DSC$V _F1-REDIM 
<2,20> 

DSC$V _F1-COLUMN 
<2,21> 

DSC$V __FL_COEFF 
<2,22> 

DSC$V _F1-BOUNDS 
<2,23> 

DSC$B_DIMCT 
<2,31:24> 

DSC$L--ARSIZE 
<3,31:0> 

DSC$A._.AO 
<4,31:0> 

DSC$L_Mi 
<4+i,31:0> 

DSC$L---Li 
<3+n+2*i,31:0> 

DSC$1-Ui 
<4+n+2•i,31:0> 

Description 

Length of data item in bytes, unless the 
DSC$B_DTYPE field contains the value 1 (bit) or 21 
(packed decimal). Length of data item is in bits for bit 
string. Length of data item is the number of 4-bit digits (not 
including the sign) for packed decimal string. 

A one byte data type code (see Section C.7). 

4 = DSC$K_CLASS--A. 

Address of first actual byte of data storage. 

Signed power of ten multiplier to convert the internal form to 
external form. For example, if internal number is 123 and 
scale is +l, then the external number is 1230. 

If non-zero, unsigned number of decimal digits in the 
internal representation. If zero, the number of digits can be 
computed based on DSC$W ---LENGTH. 

Array flag bits: 

Must be zero. 

If set, the array can be redimensioned, that is, 
DSC$A._.AO, DSC$L_Mi, DSC$L--=-Li, and DSC$L_Ui 
may be changed. The redimensioned array cannot exceed the 
size allocated to the array (DSC$L__ARSIZE). 

If set, the nelements of the array are stored by columns 
(FORTRAN). That is, the leftmost subscript (first 
dimension) is varied most rapidly, and the rightmost 
subscript (nth dimension) is varied least rapidly. If not set, 
the elements are stored by rows (most other languages). That 
is, the rightmost subscript is varied most rapidly and the 
leftmost subscript is varied least rapidly. 

If set, the multiplicative coefficients in Block 2 are present. 
Must be set if DSC$V_F1-BOUNDS is set. 

If set, the bounds information in Block 3 is present and 
requires that DSC$V _FL_COEFF be set. 

Number of dimensions, n. 

Total size of array (in bytes unless the DSC$B_ TYPE field 
contains the value 1 or 21, see description for 
DSC$W---LENGTH). A redimensioned array may use less 
than the total size allocated. 

Address of element A(0,0, ... ,0). This need not be within the 
actual array. It is the same as DSC$A_POINTER for 
zero-origin arrays. 

Addressing coefficients. ( Mi = Ui-Li+l ) 

Lower bound (signed) of ith dimension. 

Upper bound (signed) of ith dimension. 

VAX-11 Procedure Calling and Condition Handling Standard 



The following formulas specify the effective address, E, of an array element. 
Modification is required if DSC$B_DTYPE contains a 1 or 21 because 
DSC$W _LENGTH is given in bits or 4-bit nibbles rather than bytes. 

The effective address, E, for element A(l): 

E = AO + 1*LENGTH 
=POINTER + [I - Ll]*LENGTH 

The effective address, E, for element A(ll,12) with DSC$V _F'L_COLUMN 
clear: 

E = AO + [11*M2 + 121 *LENGTH 
=POINTER + [[11-L11*M2 + 12 - L21*LENGTH 

The effective address, E, for element A(ll,12) with DSC$V _FL_COLUMN 
set: 

E = AO + [12*Ml + 111 *LENGTH 
=POINTER+ ([12-L21*Ml + 11 - Lll*LENGTH 

The effective address, E, for element A(ll, ... ,In) with 
DSC$V_FL_COLUMN clear: 

E = AO + [[[[ ... [11] *M2 + ... ] *M(n-2) + l(n-2)1*M(n-1) 
+ l(n-l)]*Mn + ln]*LENGTH 

=POINTER+ [[[[ ... [11 - Ll]*M2 + ... ]*M(n-2) + l(n-2) 
- L(n-2)]*M(n-1) + l(n-1) - L(n-l)]*Mn +In - Ln]*LENGTH 

The effective address, E, for element A(ll, ... ,In) with 
DSC$V_FL_COLUMN set: 

E =AO + [[[[ ... [ln]*M(n-1) + ... 1*M3 + 13]*M2 + 121*Ml + 11]*LENGTH 
=POINTER+ [[[[ ... [In - Ln]*M(n-1) + ... ]*M3 + 13 - L31*M2 
+ 12 - L2] *Ml + 11 - Ll] *LENGTH 

C.8.6 Procedure Descriptor (DSC$K_CLASS_· P) 

The descriptor for a procedure specifies its entry address and function value 
data type, if any. A procedure descriptor has the form: 

5 TYPE I LENGTH 

POINTER 

Symbol Description 

DSC$W_LENGTH Length associated with the function value. 

DSC$B_DTYPE Function value data type code (see Section C. 7). 

DSC$B_CLASS 5 = DSK$K_CLAss_p, 

DSC$A-POINTER Address of entry mask to routine. 

Procedures return a function value in RO, Rl/RO, or using the first argument 
list entry depending on the size of the data type (see Section C.3). 

VAX-11 Procedure Calling and Condition Handling Standard C-19 



C.8. 7 Procedure Incarnation Descriptor (DSC$K_CLASS_PI) 

Obsolete. 

C.8.8 Label Descriptor (DSC$K_CLASS_J) 

Reserved for use by the V AX-11 Debugger. 

C.8.9 Label Incarnation Descriptor (DSC$K_CLASS_JI) 

Obsolete. 

C.8.10 Declmal Scalar String Descriptor (DSC$K_CLASS_SD) 

Decimal size and scaling information for scalar data and simple strings is 
given in a single descriptor form as follows: 

9 TYPE LENGTH 

POINTER 

RESERVED DIGITS SCALE 

Symbol Description 

DSC$W_LENGTH Length of data item in bytes, unless the DSC$B_DTYPE field 
contains the value 1 (bit) or 21 .(packed decimal). Length of data 
item is in bits for bit string. Length of data item is the number of 
4-bit digits (not including the sign) for packed decimal string. 

DSC$B_DTYPE A one byte data type code (see Section C.7). 

DSC$B_CLASS 9 = DSC$K_CLASS_SD. 

DSC$A__POINTER Address of first byte of data storage. 

DSC$B_SCALE Signed power of ten multiplier to convert the internal form to exter-
nal form. For example, if internal number is 123 and scale is +1, 
then the external number is 1230. 

DSC$B_DIGITS If non-zero, unsigned number of decimal digits in the internal repre-
sentation. If zero, the number of digits can be computed based on 
DSC$W_LENGTH. 

Reserved Reserved for future use. Must be zero. 
<2,31:16> 

C.8.11 Non-Contiguous Array Descriptor 

(DSC$K_CLASS_NCA) 

The non-contiguous array descriptor describes an array where the storage of 
the array elements is allocated with a fixed, non-zero number of bytes 
separating elements. The difference between the addresses of two adjacent 
elements is termed the stride. 

C-20 VAX-11 Procedure Calling and Condition Handling Standard 



The DSC$K_CLASS_A array descriptor is the preferred array descriptor for 
passing arrays between separately compiled modules. If an array is contigu­
ous, that is, the stride of the most rapidly varying dimension is equal to the 
data element size, the array descriptor with DSC$B_CLASS equal to 4 is to 
be used (see Section C.8.5). 

The non-contiguous array descriptor consists of 3 contiguous blocks. The 
first block contains the descriptor prototype information. A complete non­
contiguous array descriptor has the form: 

10 DTYPE LENGTH :Descriptor 

POINTER 

DIMCT AFLAGS DIGITS SCALE Block 1 - Prototype 

ARSIZE 

AO 

S1 

S(n-1 )3 

Sn 

L1 

U1 

Ln 

Un 

Symbol 

DSC$W_LENGTH 

DSC$B_DTYPE 

DSC$B_CLASS 

DSC$A_POINTER 

DSC$B_SCALE 

DSC$B_DIGITS 

Block 2 - Strides 

Block 3 - Bounds 

Description 

Length of data item in bytes, unless the 
DSC$B_DTYPE field contains the value 1 (bit) or 21 
(packed decimal). Length of data item is in bits for bit 
string. Length of data item is the number of 4-bit digits (not 
including the sign) for packed decimal string. 

A one byte data type code (see Section C.7). 

10 = DSC$K_CLASS_NCA. 

Address of first actual byte of data storage. 

Signed power of ten multiplier to convert the internal form to 
the external form. For example, if the internal number is 123 
and scale is + 1, then the external number is 1230. 

If non-zero, unsigned number of decimal digits in the 
internal representation. If zero, the number of digits can be 
computed based on DSC$W _LENGTH. 

VAX-11 Procedure Calling and Condition Handling Standard C-21 



Symbol 

DSC$B_AFLAGS 
<2,23:16> 

Reserved 
<2,19:16> 

DSC$V__FL__REDIM 
<2,20> 

DSC$V _FL.__COLUMN 
<2,21> 

DSC$V _FL.__COEFF 
<2,22> 

DSC$V _FL.__BOUNDS 
<2,23> 

DSC$B_DIMCT 
<2,31:24> 

DSC$L_ARSIZE 
<3,31:0> 

DSC$A_AO 
<4,31:0> 

DSC$L_Si 
<4+i,31:0> 

DSC$L-11 
<3+n+2*i,31:0> 

DSC$L_Ui 
<4+n+2*i,31:0> 

Description 

Array flag bi ts. 

Must be zero. 

Must be zero. 

If set, the elements of the array are stored by columns 
(FORTRAN). That is, the leftmost subscript (first 
dimension) is varied most rapidly, and the rightmost 
subscript (nth dimension) is varied least rapidly. If not set, 
the elements are stored by rows (most other languages). That 
is, the rightmost subscript is varied most rapidly and the 
leftmost subscript is varied least rapidly. 

Always set, the strides in Block 2 must be present. 

Always set, the bounds in Block 3 must be present. 

Number of dimensions, n. 

Must be zero. 
(Reserved for future standardization by DIGITAL) 

Address of element A(0,0, ... ,0). This need not be within the 
actual array. It is the same as DSC$A-POINTER for 
zero-origin arrays. DSC$A_AO = POINTER - ( ShLl + 
S2*L2 + ... +Sn*Ln) 

Stride of the ith dimension. The difference between the 
addresses of successive elements of the ith dimension. 

Lower bound (signed) of the ith dimension. 

Upper bound (signed) of the ith dimension. 

The following formulas specify the effective address, E, of an array element. 
Modification is required if DSC$B_DTYPE equals 1 or 21 because 
DSC$W _LENGTH is given in bits or 4-bit nibbles rather than bytes. 

The effective address, E, of A(l): 

E =AO+ Shi 
=POINTER+ Sl*[I - LlJ 

The effective address, E, of A(ll,12): 

E = AO + 81*11 + 82*12 
= POINTER + 81*[11 - LlJ + S2*[12 - L2] 

The effective address, E, of A(ll, ... ,In): 

E = AO + 81*11 + ... + Sn*In 
= POINTER + 81*[11 - LlJ + ... + Sn*[ln - LnJ 

C-22 VAX-11 Procedure Calling and Condition Handling Standard 



C.8.12 Reserved Descriptors 

Descriptor classes 11 through 191 are reserved for DIGITAL. Classes 192 
through 255 are reserved for DIGITAL's Computer Special System group 
and customers. 

C.9 VAX-11 Conditions 

A condition is either: 

• A hardware-generated synchronous exception 

• A software event that is to be processed in a manner analogous to a hard­
ware exception. 

Floating-point overflow trap, memory access violation exception, and reserved 
operation exception are examples of hardware-generated conditions. An out­
put conversion error, an end-of-file, or the filling of an output buffer are 
examples of software events that might be treated as conditions. 

Depending on the condition and on the program, four types of action can be 
taken when a condition occurs: 

1. Ignore the condition. For example, if an underflow occurs in a floating­
point operation, continuing from the point of the exception with a zero 
result may be satisfactory. 

2. Take some special action and then continue from the point at which the 
condition occurred. For example, if the end of a buffer is reached while a 
series of data items are being written, the special action is to start a new 
buffer. 

3. End the operation and branch from the sequential flow of control. For 
example, if the end of an input file is reached, the branch exits from a loop 
that is processing the input data. 

4. Treat the condition as an unrecoverable error. For example, when the 
floating divide by zero exception condition occurs, the program exits, after 
writing (optionally) an appropriate error message. 

When an unusual event orcondition value to the caller indicating what has 
happened (see Section C.4). The caller tests the condition value and takes the 
appropriate action. 

When an exception is generated by the hardware, a branch out of the pro­
gram's flow of control occurs automatically. In this case, and for certain 
software generated events, it is more convenient to handle the condition as 
soon as it is detected rather than to program explicit tests. 

C.9.1 Condition Handlers 

To handle hardware- or software-detected exceptions, the VAX-11 Condition 
Handling Facility allows the programmer to specify a condition handler pro­
cedure to be called when an exception condition occurs. This same handler 
procedure may also be used to handle software-detected conditions. 

V AX-11 Procedure Calling and Condition Handling Standard C-23 



An active procedure can establish a condition handler to be associated with it. 
The presence of a condition handler is indicated by a nonzero address in the 
first longword of the procedure's stack frame. When an event occurs that is to 
be treated using the condition handling facility, the procedure detecting the 
event signals the event by calling the facility and passing a condition value 
describing the condition that occurred. This condition value has the format 
and interpretation as described in Section C.4. All hardware exceptions are 
signaled. 

When a condition is signaled, the condition handling facility looks for a condi­
tion handler in the current procedure's stack frame. If a handler is found, it is 
entered. If no handler is associated with the current procedure, the immedi­
ately preceding stack frame is examined. Again, if a handler is found it is 
entered. If a handler is not found, the search of previous stack frames contin­
ues until the default condition handler established by the system is reached or 
the stack runs out. 

The default condition handler prints messages indicated by the signal argu­
ment list by calling the Put Message (SYS$PUTMSG) system service, fol­
lowed by an optional symbolic stack traceback. Success conditions with 
STS$K-SUCCESS result in messages to file SYS$0UTPUT only. All other 
conditions, including informational messages (STS$K-1NFO), produce mes­
sages on files SYS$0UTPUT and SYS$ERROR. 

For example, if a procedure needs to keep track of the occurrence of the 
floating-point underflow exception, it can establish a condition handler to 
examine the condition value passed when the handler is invoked. Then when 
the floating-point underflow exception occurs, the condition handler will be 
entered and will log the condition. The handler will return to the instruction 
immediately following the instruction causing the underflow. 

If floating-point operations occur in many procedures of a program, the condi­
tion handler can be associated with the program's main procedure. When the 
condition is signaled, successive stack frames are searched until the stack 
frame for the main procedure is found, at which time the handler will he 
entered. If a user program has not associated a condition handler with any of 
the procedures that are active at the time of the signal, successive stack 
frames will be searched until the frame for the system program invoking the 
user program is reached. A default condition handler that prints an error 
message will then be entered. 

C.9.2 Condition Handler Options 

Each procedure activation potentially has a single condition handler associ­
ated with it. This condition handler will be entered whenever any condition is 
signaled within that procedure. (It can also be entered as a result of signals 
within active procedures called by the procedure.) Each signal includes a 
condition value (see Section C.4), which describes the condition causing the 
signal. When the condition handler is entered, the condition value should be 

C-24 VAX-11 Procedure Calling and Condition Handling Standard 



examined to determine the cause of the signal. After the handler has pro­
cessed the condition or chosen to ignore it, it can: 

• Return to the instruction immediately following the signal. Note that it is 
not always possible to make such a return. 

• Resignal the same or a modified condition value. A new search for a condi­
tion handler will begin with the immediately preceding stack frame. 

• Signal a different condition. 

• Unwind the stack. 

C.1 O Operations Involving Condition Handlers 

The functions provided by the VAX-11 Condition Handling Facility are to: 

1. Establish a condition handler. A condition handler is associated with the 
current procedure by placing the handler's address in the current proce­
dure's activation stack frame. 

2. Revert to the caller's handling. If a condition handler has been estab­
lished, it can be removed by clearing its address in the current procedure 
activation's stack frame. 

3. Enable or disable certain arithmetic exceptions. The following hardware 
exceptions can be enabled or disabled by software: floating-point under­
flow, integer overflow, and decimal overflow. No signal occurs when the 
exception is disabled. 

4. Signal a condition. Signaling a condition initiates the search for an estab­
lished condition handler. 

5. Unwind the stack. Upon exit from a condition handler it is possible to 
remove one or more frames occurring before the signal from the stack. 
During the unwinding operation, the stack is scanned and if a condition 
handler is associated with a frame, that handler is entered before the 
frame is removed. Unwinding the stack allows a procedure to-perform 
application specific cleanup operations before exiting. 

C.10.1 Establish a Condition Handler 

Each procedure activation has a condition handler potentially associated with 
it using longword 0 in its stack frame. Initially, longword 0 contains 0, 
indicating no handler. A handler is established by moving the address of the 
handler's procedure entry point mask to the establisher's stack frame. 

In addition, VAX/VMS provides three statically allocated exception vectors 
for each access mode of a process. These vectors are available to declare 
condition handlers that take precedence over any handlers declared at the 
procedure level. These are used, for example, to allow a debugger to monitor 
all exceptions and for the system to establish a last chance handler. Since 
these handlers do not obey the procedure nesting rules, they should not be 
used by modular code. Instead the stack based declaration should be used. 

VAX-11 Procedure Calling and Condition Handling Standard C-25 



The code to establish a condition handler is: 

MOVAB handler_entry_point,O(FP) 

C.10.2 Revert to the Caller's Handling 

Reverting to the caller's handling deletes the condition handler associated 
with the current procedure activation. This is done by clearing the handler 
address in the stack frame. 

The code to revert to the caller's handling is: 

CLRL O(FP) 

C.10.3 Signal a Condition 

The signal operation is the method used for indicating the occurrence of an 
exception condition. To issue a message and be able to continue execution 
after handling the condition, a program calls the LIB$SIGNAL procedure as 
follows: 

CALL LIB$SIGNAL (condition_value, arg_list...) 

To issue a message, but not continue execution, a program calls LIB$STOP, 
as follows: 

CALL LIB$STOP (condition_value, arg_list...) 

In both cases, condition_value indicates the condition that is signaled. 
However, LIB$STOP sets the severity of the condition_value to be a 
severe_error. The remaining arguments describe the details of the exception. 
These are the same arguments used to issue a system message. 

Note that unlike most calls, LIB$SIGNAL and LIB$STOP preserve RO and 
Rl as well as the other registers. Therefore, a debugger can insert a call to 
LIB$SIGNAL to display the entire state of the process at the time of the 
exception. It also allows signals to be coded in MACRO without changing the 
register usage. This feature of preserving RO and Rl is is useful for debugging 
checks and gathering statistics. Hardware and system service exceptions be­
have like calls to LIB$SIGNAL. 

The signal procedure examines the two exception vectors, and then up to 64K 
previous stack frames, and finally the last-chance exception vector, if neces­
sary. The current and previous stack frames are found by using FP and chain­
ing back through the stack frames using the saved FP in each frame. The 
exception vectors have three address locations per access mode. 

As a part of image start-up, the system declares a default last-chance handler. 
This handler is used as a last resort when the normal handlers are not per­
forming correctly. The debugger can replace the default system last-chance 
handler with its own. 

In some frame before the call to the main program, the system establishes a 
default catch-all condition handler that issues system messages. In a 

C-26 VAX-11 Procedure Calling and Condition Handling Standard 



subsequent frame before the call to the main program, the system usually 
establishes a traceback handler. These system-supplied condition handlers 
use condition_value to get the message and then use the remainder of the 
argument list to format and output the message through the system service, 
SYS$PUTMSG. 

If the severity field of the condition_ value (bits 0 through 2) does not indicate 
a severe_error (that is, a value of 4) these default condition handlers return 
with SS$_CONTINUE. If the severity is severe_error, these default han­
dlers exit the program image with the condition value as the final image 
status. 

The stack search ends when the old FP is 0 or is not accessible, or when 64K 
frames have been examined. If no condition handler is found, or all handlers 
returned with a SS$_RESIGNAL, then the vectored last-chance handler is 
called. 

If a handler returns SS$_CONTINUE, and LIB$STOP was not called, con­
trol returns to the signaler. Otherwise LIB$STOP issues a message that an 
attempt was made to continue from a noncontinuable exception and exits 
with the condition value as the final image status. 

Table C-1 lists all combinations of interaction between condition handler 
actions, the default condition handlers, the type of signals, and the call to 
signal or stop. In the table, "cannot continue" indicates an error which results 
in the message: ATTEMPT TO CONTINUE FROM STOP. 

Table C-1: Interaction between Handlers and Default Handlers 

Signaled 
Condition Default Handler HamJler No Handler 
Severity Handler Specifies Specifies Is Found 

Call to: <2:0> Gets Control Continue UNWIND (stack bad) 

<4 condition RET UNWIND Call 
message last 

LIB$SIGNAL 
RET chance 

handler 
or 

EXIT 
hardware 
exception =4 condition RET UNWIND Call 

message last 
EXIT chance 

handler 
EXIT 

force condition "cannot UNWIND Call 
(=4) message continue" last 

LIB$STOP EXIT EXIT chance 
handler 

EXIT 

VAX-11 Procedure Calling and Condition Handling Standard C-27 



C.11 Properties of Condition Handlers 

C.11.1 Condition Handler Parameters and Invocation 

If a condition handler is found on a software detected exception, the handler is 
called with an argument list consisting of: 

continue = handler (signal_args, mechanism_args) 

Each argument is a reference to a longword vector. The first longword of each 
vector is the number of remaining longwords in the vector. The symbols 
CHF$L_SIGARGLST (=4) and CHF$L_MCHARGLST (=8) can be used to 
access the condition handler arguments relative to AP. 

Signal_args is the condition argument list from the call to LIB$SIG N AL 
or LIB$STOP expanded to include the PC and PSL of the next instruc­
tion to execute on a continue. In particular, the second longword is the 
condition_value being signaled. 

Because bits 0 through 2 of the condition_value indicate severity and do not 
indicate which condition is being signaled, the handler should examine only 
the condition identification, that is, condition value (bits 3 through 27). The 
setting of bits 0 through 2 varies depending upon the environment. In fact, 
some handlers may simply change the severity of a con di ti on and resignal. 
The symbols CHF$L_SIG-ARGS (=0) and CHF$L_SIG_NAME (=4) can 
be used to refer to the elements of the signal vectors. 

Mechanism_args is a five-longword vector: 

4 

frame 

depth 

RO 

R1 

CHF$L_MCH_ARGS 

CHF$L_MCH_FRAME 

CHF$L_MCH_DEPTH 

CHF$L_MCH_SAVRO 

CHF$L_MCH_SAVR1 

The frame is the contents of the FP in the establisher's context. This can be 
used as a base to access the local storage of the establisher if the restrictions 
described in Section C.11.2 are met. 

The depth is a positive count of the number of procedure activation stack 
frames between the frame in which the exception occurred and the frame 
depth that established the handler being called. Depth has the value 0 for 
an exception handled by the procedure activation invoking the exception 
(that is, containing the instruction causing the hardware exception or calling 
LIB$SIGNAL). Depth has positive values for procedure activations calling 
the one having the exception (1 for the immediate caller, etc.). 

If a system service gives an exception, the immediate caller of the service is 
notified at depth = 1. Depth has value -2 when the condition handler is 
established by the primary exception vector, -1 when it is established by the 
secondary vector, and -3 when it is established by the last-chance vector. 

C-28 V AX-11 Procedure Calling and Condition Handling Standard 



The contents of RO and Rl are . the same as at the time of the call to 
LIB$SIGNAL or LIB$STOP. 

For hardware detected exceptions, the condition-value indicates which excep­
tion vector was taken and the next 0 or several longwords are additional 
parameters. The remaining two longwords are the PC and PSL: 

n 

condition-value 

none or some 
additional 
arguments 

PC 

PSL 

n 

CHF$LSIG_ARGS 

CHF$LSIG_NAME 

If one of the default condition handlers established by the system is entered, it 
calls the system service, SYS$PUTMSG, to interpret the signal argument list 
and output the indicated information or error message. See the description of 
SYS$PUTMSG in the VAX/VMS Systems Services Reference Manual for the 
format of the signal argument list. 

C.11.2 Use of Memory 

A condition handler and procedures it calls are restricted to referring to 
explicitly passed arguments only. Handlers cannot refer to common or other 
external storage, and they cannot reference local storage in the procedure that 
established the handler. The existence of handlers does not affect compiler 
optimization. Compilers that do not follow this rule must ensure that any 
variables referred to by the handler are always in memory. 

C.11.3 Returning from a Condition Handler 

Condition handlers are invoked by the VAX-11 Condition Handling Facility. 
Therefore, the return from the condition handler is to the condition handling 
facility. 

To continue from the instruction following the signal, the handler must return 
with the function value SS$_CONTINUE ("true," that is, with bit 0 set). If, 
however, the condition was signaled with a call to LIB$STOP, the image will 
exit. To resignal the condition, the condition handler returns with the func­
tion value SS$__RESIGNAL ("false," that is, with bit 0 clear). To alter the 
1severity of the signal, the handler modifies the low-order three bits of the 
condition-value longword in the signal-args vector and resignals. If the condi­
tion handler wants to alter the defined control bits of the signal, the handler 
modifies bits 31:28 of condition-value and resignals. To unwind, the handler 
calls SYS$UNWIND and then returns. In this case, the handler function 
value is ignored. 

VAX-11 Procedure Calling and Condition Handling Standard C-29 



C.11.4 Request to Unwind 

To unwind, the handler or any procedure it calls can perform: 

success = SYS$UNWIND 
( [depadr = handler depth + 1], 

[new_pc = return PC] ) 

The argument depadr specifies the address of a longword that contains the 
number of presignal frames (depth) to be removed. If that number is less than 
or equal to 0 then nothing is to be unwound. The default (address= 0) is to 
return to the caller of the procedure that established the handler that issued 
the $UNWIND service. To unwind to the establisher, the depth from the call 
to the handler should be specified. When the handler is at depth 0, it can 
achieve the equivalent of an unwind operation to an arbitrary place in its 
establisher by altering the PC in its signal-args vector and returning with 
SS$_CONTINUE instead of performing an unwind. 

The argument new_pc specifies the location to receive control when the 
unwinding operation is complete. The default is to continue at the instruction 
following the call to the last procedure activation removed from the stack. 

The function value SUCCESS is a standard success code (SS$_NORMAL), 
or indicates failure with one of the following return status condition values: 

• No signal active (SS$_NOSIGNAL) 

•Already unwinding (SS$_UNWINDING) 

• Insufficient frames for depth (SS$-1NSFRAME) 

The unwinding operation occurs when the handler returns to the condition 
handling facility. Unwinding is done by scanning back through the stack and 
calling each handler that has been associated with a frame. The handler is 
called with exception SS$_UNWIND to perform any application specific 
cleanup. In particular, if the depth specified includes unwinding the estab­
lisher's frame, the current handler will be recalled with this unwind exception. 

The call to the handler takes the same form as previously described, with the 
following values: 

signal_args 
1 
condition_value = SS$_UNWIND 

mechanism_args 
4 
frame 
depth 
RO 
Rl 

establisher's frame 
0 (that is, unwinding self) 
RO that unwind will· restore 
Rl that unwind will restore 

After each handler is called, the stack is cut back to the previous frame. 

C-30 VAX-11 Procedure Calling and Condition Handling Standard 



Note that the exception vectors are not checked because they are not being 
removed. Any function value from the handler is ignored. To specify the value 
of the top level "function" being unwound, the handler should modify RO 
and Rl in the mechanism_args vector. They will be restored from the 
mechanism_args vector at the end of the unwind. Depending on the 
arguments to SYS$UNWIND, the unwinding operation will be terminated as 
follows: 

• SYS$UNWIND(0,0) - unwind to the establisher's caller with the estab­
lisher function value restored from RO and Rl in the mechanism-args vector. 

• SYS$UNWIND( depth,O) - unwind to the establisher at the point of the 
call that resulted in the exception. The contents of RO and Rl are restored 
from RO and Rl. in the mechanism_args vector. 

• SYS$UNWIND(depth,location) - unwind to the specified procedure ac­
tivation and transfer to a specified location with the contents of RO and Rl 
from RO and Rl in the mechanism_args vector. 

SYS$UNWIND can be called whether the condition was a software exception 
signaled by calling LIB$SIGNAL or LIB$STOP, or was a hardware exception. 
Calling SYS$UNWIND is the only way to continue execution after a call to 
LIB$STOP. 

C.11.5 Slgnaler's Registers 

Because the handler is called, and can in turn call routines, the actual values 
of the registers that were in use at the time of the signal or exception can be 
scattered on the stack. To find the registers R2 through FP, a scan of stack 
frames must be performed starting with the current frame and ending with 
the call to the handler. During the scan, the last frame found to save a register 
contains that register's contents at the time of the exception. If no frame 
saved the register, the register is still active in the current procedure. The 
frame of the call to the handler can be identified by the return address of 
SYS$CALL_HANDL+4. Thus, the registers are: 

RO, Rl 
R2 .. Rll 
AP 
FP 
SP 
PC,PSL 

in mechanism_args 
last frame saving it 
old AP of SYS$CALL_HANDL+4 frame 
old FP of SYS$CALL._HANDL+4 frame 
equal to end of signal-args vector+4 
at end of signal-args vector 

C.12 Multiple Active Signals 

A signal is said to be active until the signaler gets control again or is unwound. 
A signal can occur while a condition handler or a procedure it has called is 
executing in response to a previous signal. For example, procedure (A, B, C, 
... ) establishes a condition handler (Ah, Bh, Ch, ... ).If A calls Band B calls C 

VAX-11 Procedure Calling and Condition Handling Standard C-31 



which signals S and Ch resignals, then Bh gets control. If Bh calls procedure 
X and X calls procedure Y and Y signals T the stack is: 

<Slgnal T> 
y 

x 
Bh 

<signal S> 
c 
B 
A 

which was programmed: 

A 

c 
<Signal S> 

x 
y 

<signal T> 

The handlers are searched for in the order: Yh, Xh, Bhh, Ah. Note that Ch is 
not called because it is a structural descendant of B. Bh is not called again 
because that would require it to be recursive. Recursive handlers could not be 
coded in nonrecursive languages such as FORTRAN. Instead, Bh can estab­
lish itself or another procedure as its handler (Bhh). 

The following algorithm is used on the second and subsequent signals which 
occur before the handler for the original signal returns to the condition han­
dling facility. The primary and secondary exception vectors are checked. 
Then, however, the search backward in the process stack is modified. In 
effect, the stack frames traversed in the first search are skipped over in the 
second search. Thus, the stack frame preceding the first condition handler up 
to and including the frame of the procedure that has established the handler 
is skipped. Despite this skipping, depth is not incremented. The stack frames 
traversed in the first and second search are skipped over in a third search, etc. 
Note that if a condition handler signals, it will not automatically be invoked 
recursively. However, if a handler itself establishes a handler, this second 
handler will be invoked. Thus, a recursive condition handler should start by 
establishing itself. Any procedures invoked by the handler are treated in the 
normal way that is, exception signaling follows the stack up to the condition 
handler. 

If an unwinding operation is requested while multiple signals are active, all 
the intermediate handlers are called for the operation. For example, in the 
above diagram, if Ah specifies unwinding to A, the following handlers will be 
called for the unwind: Yh, Xh, Bhh, Ch, and Bh. 

For proper hierarchical operation, an exception that occurs during execution 
of a condition handler established in an exception vector should be handled 
by that handler rather than propagating up the activation stack. To prevent 
such propagation, the vectored condition handler should establish a handler 
in its stack frame to handle all exceptions. 

C-32 V AX-11 Procedure Calling and Condition Handling Standard 



C.13 Change History 

The following changes have been made to the VAX-11 Procedure Calling and 
Condition Handling Standard from revision 4 in the VAX-11 Run-Time 
Library Reference Manual (AA-D036A-TE, August 1978). 

Rev 6 to Rev 7: 

1. Editorial changes. 

2. Clarified the names of the data types, including spelling. 

3. Indicated that the Procedure Incarnation Description (Class = 6) and 
Label Incarnation Description (Class = 8) are obsolete since they are not 
used by any currently planned languages. 

4. Indicated that the Label Descriptor (Class = 7) is reserved for use by the 
VAX-11 Debugger. 

5. Changed ARSIZE field in non-contiguous array descriptor to 'must be 
zero' since it is not meaningful for arr~ys that are actually non-contiguous. 

Rev 5 to Rev 6: 

1. Added REDIM flag to array descriptor. 

2. Added descriptor data type. 

3. Added non-contiguous array. 

4. Added COBOL intermediate temporary data type. 

5. Indicated that the by-value mechanism is for calling the operating system 
or for use in programs written in MACRO or BLISS. In order to reduce 
confusion with languages implementing by-value semantics (which now 
must use the reference mechanism), the term by-value mechanism has 
been changed to immediate value mechanism. 

6. Removed the references to specific languages, except examples and histor­
ical references. 

7. Clarified that the use of CALLG vs CALLS is an option of the calling 
program. 

8. Indicated that language extensions to force mechanism could be achieved 
in external declaration. 

9. Added bound procedure value data type. 

10. Added protocol for calling a procedure requiring an environment value in 
Rl. (bound procedure value) 

11. Clarified that AP is a free temporary. 

12. Divided data types into 3 categories: atomic, string, and 
miscellaneous. 

Rev 4 to Rev 5: 

1. Added octaword, G_floating, H_floating data types. 

2. Added Decimal Scalar String Descriptor. 

VAX-11 Procedure Calling and Condition Handling Standard C-33 





Appendix D 
Algorithms for Mathematics Procedures 

This appendix presents the algorithms of the mathematics procedures de­
scribed in Chapter 4. 

D.1 Floating Mathematical Functions 

D.1.1 Arc Cosine 

ACOS(X) is computed as: 

If X = 0, then ACOS(X) = Pl/2 
If X = 1, then ACOS(X) = 0 
If X = -1, then ACOS(X) = PI 
If 0 < X < 1, then ACOS(X) = ATAN(SQRT(l-X**2)/X) 
If -1 < X <0, then ACOS(X) = ATAN(SQRT(l-X**2)/X) + PI 
If 1 < IXI, error 

DACOS(X) is computed as: 

If X = 0, then DACOS(X) = Pl/2 
If X = 1, then DACOS(X) = 0 
If X = -1, then DACOS(X) = PI 
If 0 < X < 1, then DACOS(X) = DATAN(DSQRT(l-X**2)/X) 
If -1 < X < 0, then DACOS(X) = DATAN(DQSRT(l-X**2)/X) + PI 
If 1 < IXI, error 

GACOS(X) is computed as: 

If X = 0, then GACOS(X) = Pl/2 
If X = 1, then GACOS(X) = 0 
If X = -1, then GACOS(X) = PI 
If 0 < X < 1, then GACOS(X) = GATAN(GSQRT(l-X**2)/X) 
If -1 < X < 0, then GACOS(X) = GATAN(GSQRT(l-X**2/X) + PI 
If 1 < IXI, error 

D-1 



HACOS(X) is computed as: 

If X = 0, then HACOS(X) = Pl/2 
If X = 1, then HACOS(X) = 0 
If X = -1, then HACOS(X) = PI 
If 0 < X < 1, then HACOS(X) = HATAN(HSQRT(l-X**2)/X) 
If -1 < X < 0, then HACOS(X) = HATAN(HSQRT(l-X**2)/X) + PI 
If 1 < IXI, error 

D.1.2 Arc Sine 

ASIN(X) is computed as: 

If X = 0, then ASIN (X) = 0 
If X = 1, then ASIN(X) = Pl/2 
If X = -1, then ASIN(X) = -Pl/2 
If 0 < IXI < 1, then ASIN(X) = ATAN(X/SQRT(l-X**2)) 
If 1 < IXI, error 

DASIN(X) is computed as: 

If X = 0, then DAS IN (X) = 0 
If X = 1, then DASIN(X) = Pl/2 
If X = -1, then DASIN(X) = -Pl/2 
If 0 < IXI < 1, then DASIN(X) = DATAN(X/DSQRT(l-X**2)) 
If 1 < IXI, error 

GASIN(X) is computed as: 

If X = 0, then GASIN(X) = 0 
If X = 1, then GASIN(X) = Pl/2 
If X = -1, then GASIN(X) = -Pl/2 
If 0 < IXI < 1, then GASIN(X) = GATAN(X/GSQRT(l-X**2)) 
If 1 < IXI, error 

HASIN(X) is computed as: 

If X = 0, then HASIN (X) = 0 
If X = 1, then HASIN(X) = Pl/2 
If X = -1, then HASIN(X) = -PI/2 
If 0 < IXI < 1, then HASIN(X) = HATAN(X/HSQRT(l-X**2)) 
If 1 < IXI, error 

D.1.3 Arc Tangent 

ATAN(X) is computed as: 

1. If X < 0, then 
Begin 

End 

Perform Steps 2, 3, and 4 with arg = IXI 
Negate the result since ATAN(X) = -ATAN(-X) 
Return 

D-2 Algorithms for Mathematics Procedures 



2. If X > 1, then 
Begin 

End 

Perform Steps 3 and 4 with Arg = 1/IXI 
Negate result and add a bias of Pl/2 since 
ATAN(IXI) = Pl/2 - ATAN(l/IXI) 
Return 

3. At this point the argument is 1 >= X >= 0 
If IXI > TAN(PV12), then: 
Begin 

End 

Perform Step 4 with arg = (X * SQRT(3) - 1)/ 
(SQRT(3) + X) 

Add Pl/6 to the result 
Return 

Note: (X * SQRT(3) -1)/(X + SQRT(3)) >= TAN(Pl/12) for 

IXI >= TAN(PV12) 

4. Finally, the argument is IXI >= TAN (Pl/12) 
Begin 

End 

ATAN(X) = X * SUM(C[i] * X**(2*i)), i = 0:4 
Return 

The coefficients C[i] are drawn from Hart #4941. 

DATAN(X) is computed as: 

1. If X < 0, then 
Begin 

End 

Perform Steps 2, 3, and 4 with Arg = IXI 
Negate the result since DATAN(X) = -DATAN(-X) 
Return 

2. At this point the argument is positive or has been made positive. 
IfX > 1, then: 
Begin 

End 

Perform Steps 3 and 4 with arg = 1/IXI. 
Negate result and add a bias of Pl/2 since 
DATAN(IXI) = Pl/2 - DATAN(l/IXI) 
Return 

3. At this point the argument is 1 >= X >= 0 
If IXI > DTAN(PV12 then: 
Begin 

End 

Perform Step 4 with Arg = (X*DSQRT(3) - 1)/ 
(DSQRT(3) + X) 
Add PV6 to the result 
Return 

Algorithms for Mathematics Procedures D-3 



Note: (X*DSQRT(3) -1)/(X + DSQRT(3)) >= DTAN(Pl/12 for 
IXI >= DTAN(Pl/12) 

4. Finally, the argument is IXI >= DTAN(Pl/12): Begin 
DATAN(X) = X * SUM(C[i] * X**(2*i)), i = 0:8 
Return 

End 

The coefficient C[i]'s are drawn from Hart #4941. 

GATAN(X) is computed as: 

1. If X < 0, then 
Begin 

End 

Perform Steps 2, 3, and 4 with Arg = IXI 
Negate the result since GATAN(X) = -GATAN(-X) 
Return 

2. At this point the argument is positive or has been made positive. 
If X > 1, then: 
Begin 

End 

Perform Steps 3 and 4 with arg = 1/IXI. 
Negate result and add a bias of Pl/2 since 
GATAN(IXI) = Pl/2 - GATAN(l/IXI) 
Return 

3. At this point the argument is 1 >= X >= 0 
If IXI > GTAN(Pl/12 then: 
Begin 

End 

Perform Step 4 with Arg = (X*GSQRT(3) - 1)/ 
(GSQRT(3) + X) 
Add Pl/6 to the result 
Return 

Note: (X*GSQRT(3) -1)/(X + GSQRT(3)) >= GTAN(Pl/12) for 
IXI >= GTAN(Pl/12) 

4. Finally, the argument is IXI >= GTAN(Pl/12): 
Begin 

End 

GATAN(X) = X * SUM(C[i] * X**(2*i)), i = 0:8 
Return 

The coefficient C[i]'s are drawn from Hart #4941. 

HATAN(X) is computed as: 

1. If X = 0 then return HATAN(O) = 0 
If X < 0 then 
Begin 

D-4 Algorithms for Mathematics Procedures 



End 

Perform steps 2 and 3 with ~rg = IXI 
Negate the result since HATAN(X) = -HATAN(-X) 
Return 

2.. At this point the argument is positive or has been made positive. 
If X = 1 then return HATAN(l) = PI/4 
If X > 1 then 
Begin 

End 

Perform step 3 with arg = l/IXI 
Negate result and add a bias of PI/2 since HATAN(IXI) = 

PI/2 - HATAN(l/IXI) 
Return 

3. At this point the argument is 0 <= X < 1. 
Compute HATAN(X) = HATAN(XHI) + HATAN(XL0/(1 + X**XHI)) 
where: 

XHI = INT(X*16)/16 
XLO=X-XHI 

HATAN(XL0/(1 + X*XHI)) =polynomial approximation of degree 11 

D.1.4 Arc Tangent with Two Parameters 

ATAN2(X, Y) is computed as: 

If Y = 0 or X/Y > 2**25, ATAN(X,Y) = PI/2 * (sign X) 
If Y > 0 and X/Y =< 2**25, ATAN2(X,Y) = ATAN(X/Y) 
If Y < 0 andX/Y =< 2**25, ATAN2(X,Y) =PI* (sign X) 

+ ATAN(X/Y) 

DAT AN2(X, Y) is computed as: 

If Y = 0 or X/Y > 2**57, DATAN2(X,Y) = PI/2 * (Sign X) 
If Y > 0 and X/Y =< 2**57, DATAN2(X,Y) = DATAN(X/Y) 
If Y < 0 and X/Y =< 2**57, DATAN2(X,Y) =PI * (Sign X) 

+ DATAN(X/Y) 

GATAN2(X,Y) is computed as: 

If Y = 0 or X/Y > 2**57, GATAN2(X,Y) = PI/2 * (Sign X) 
If Y > 0 and X/Y =< 2**57, GATAN2(X,Y) = GATAN(X/Y) 
If Y < 0 and X/Y =< 2**57, GATAN2(X, Y) = PI * (Sign X) 

+ GATAN(X/Y) 

HAT AN2(X, Y) is computed as: 

If Y = 0 or X/Y > 2**114, HATAN2(X,Y) = PI/2 * (Sign X) 
If Y > 0 and X/Y =< 2**114, HATAN2(X,Y) = HATAN(X/Y) 
If Y < 0 and X/Y =< 2**114, HATAN2(X, Y) = PI * (Sign X) 

+ HATAN(X/Y) 

Algorithms for Mathematics Procedures D-5 



D.1.5 Common Logarithm 

ALOG lO(X) is computed as: 

ALOGlO(E) * ALOG(X) 

DLOG lO(X) is computed as: 

DLOG lO(E) * DLOG(X) 

GLOGlO(X) is computed as: 

GLOGlO(E) * GLOG(X) 

HLOGlO(X) is computed as: 

HLOGlO(E) * HLOG(X) 

where: 

E = 2.718, the base of the natural log system. 

See the description of Natural Logarithm (Section D.1.11) for the complete 
algorithm. 

D.1.6 Cosine 

COS(X) is computed as: 

SIN (X + PI/2) 

See the description of SIN(X) (Section D.1.12) for the complete algorithm. 

DCOS(X) is computed as: 

DSIN(X+PI/2) 

See the description of DSIN(X) (Section D.1.12) for the complete algorithm. 

GCOS(X) is computed as: 

GSIN(X+PI/2) 

See the description of GSIN(X) (Section D.1.12) for the complete algorithm. 

HCOS(X) is computed as: 

HSIN(X+PI/2) 

See the description of HSIN(X) (Section D.1.12) for the complete algorithm. 

D.1. 7 Exponential 

EXP(X) is computed as: 

If X > 88.028, overflow occurs 
If X <= -89.416, EXP(X) = 0 
If IXI < 2**-28, EXP(X) = 1 

D-6 Algorithms for Mathematics Procedures 



Otherwise: 

EXP(X) = 2**Y * 2**Z * 2**W 

where: 

Y = INTEGER(X*LOG2(E) 
V = FRAC(X*LOG2(E)) * 16 
Z = INTEGER(V)/16 
W = FRAC(V)/16 

2**W =polynomial approximation of degree 4 

DEXP(X) is computed as: 

If X > 88.028, overflow occurs 
If X <= -89.416, DEXP(X) = 0 
If IXI < 2**-28, DEXP(X) = 1 

Otherwise: 

DEXP(X) = 2**Y * 2**Z * 2**W 

where: 

Y = INTEGER(X*LOG2(E) 
V = FRAC(X*LOG2(E)) * 16 
Z = INTEGER(V)/16 
W = FRAC(V)/16 

2**W = polynomial approximation of degree 8 

GEXP(X) is computed as: 

If X > 709.08, overflow occurs 
If X <= -709.79, GEXP(X) = 0 
If IXI < 2**-28, GEXP(X) = 1 

Otherwise: 

GEXP(X) = 2**Y * 2**Z * 2**W 

where: 

Y = INTEGER(X*LOG2(E) 
V = FRAC(X*LOG2(E)) * 16 
Z = INTEGER(V)/16 
W = FRAC(V)/16 

2**W =polynomial approximation of degree 8 

HEXP(X) is computed as: 

If X > 11355.83, overflow occurs 
If X <= -11356.52, HEXP(X) = 0 
If IXI < 2**-114, HEXP(X) = 1 

Algorithms for Mathematics Procedures D-7 



Otherwise: 

HEXP(X) = 2**Y * 2**Z * 2**W 

where: 

Y = INTEGER(X*HLOG2(E)) 
V = FRAC(X*HLOG2(E)) * 16 
Z = INTEGER(V)/16 
W = FRAC(V)/16 

2**W =polynomial approximation of degree 14 

D.1.8 Hyperbolic Cosine 

COSH(X) is computed as: 

If IXI < 2**-11, COSH(X) = 1 

If 2**-11 =< IXI < 0.25, 
COSH(X) = polynomial approximation of degree 3 

If 0.25 =< IXI =< 87.0, 
COSH(X) = (EXP(X) + EXP(-X))/2 

If 87 .0 < IXI and IXI - LOG(2) < 87, 
COSH(X) = EXP(IXI - LOG(2)) 

If 87.0 < IXI and IXI - LOG(2) >= 87, then overflow 

DCOSH(X) is computed as: 

If IXI < 2**-27, DCOSH(X) = 1 

If 2**-27 =< IXI < 0.25, 
DCOSH(X) =polynomial approximation of degree 5 

If 0.25 =< IXI =< 87 .0, 
DCOSH(X) = (DEXP(X) + DEXP(-X) )/2 

If 87 .0 < IXI and IXI - LOG(2) < 87, 
DCOSH(X) = DEXP(IXI - LOG(2)) 

If 87.0 < IXI and IXI - LOG(2) >= 87, then overflow 

GCOSH(X) is computed as: 

If IXI < 2**-27, GCOSH(X) = 1 

If 2**-27 =< IXI < 0.25, 
GCOSH(X) = polynomial approximation of degree 5 

If 0.25 =< IXI =< 709.0, 
GCOSH(X) = (GEXP(X) + GEXP(-X))/2 

If 709.0 < IXI and IXI - LOG(2) < 709, 
GCOSH(X) = GEXP(IXI - LOG(2)) 

If 709.0 < IXI and IXI - LOG(2) >= 709, then overflow 

D-8 Algorithms for Mathematics Procedures 



HCOSH(X) is computed as: 

If IXI < 2**-56, HCOSH(X) = 1 

If 2**-56 < IXI < 0.25, 
HCOSH(X) = polynomial approximation of degree 13 

If 0.25 =< IXI <= 11355.0, 
HCOSH(X) = (HEXP(X) + HEXP(-X))/2 

If 11355.0 < IXI and IXI - HLOG(2) < 11355.0 
HCOSH(X) = HEXP(IXI - HLOG(2)) 

If 11355.0 < IXI and IXI - HLOG(2) >= 11355.0, then overflow 

D.1.9 Hyperbolic Sine 

SINH(X) is computed as: 

If IXI < 2**-11, SINH(X) = X 

If 2**-11 =< IXI < 0.25, 
SINH(X) =polynomial approximation of degree 3 

If 0.25 =< IXI =< 87 .0, 
SINH(X) = (EXP(X) - EXP(-X))/2 

If 87 .0 < IXI and IXI - LOG(2) < 87, 
SINH(X) = sign(X) * EXP(IXI - LOG(2)) 

If 87 .0 < IXI and IXI - LOG(2) >= 87, then overflow 

DSINH(X) is computed as: 

If IXI < 2**-27, DSINH(X) = X 

If 2**-27 =< IXI < 0.25, 
DSINH(X) =polynomial approximation of degree 5 

If 0.25 =< IXI =< 87.0, 
DSINH(X) = (DEXP(X) - DEXP(-X))/2 

If 87 .0 < IXI and IXI - LOG(2) < 87, 
DSINH(X) = sign(X) * DEXP(IXI - LOG(2)) 

If 87 .0 < IXI and IXI - LOG(2) >= 87, then overflow 

GSINH(X) is computed as: 

If IXI < 2**-27, GSINH(X) = X 

If 2**-27 =< IXI < 0.25, 
GSINH(X) =polynomial approximation of degree 5 

If 0.25 =< IXI =< 709.0, 
GSINH(X) = (GEXP(X) - GEXP(-X))/2 

If 709.0 < IXI and IXI - LOG(2) < 709, 
GSINH(X) = sign(X) * GEXP(IXI - LOG(2)) 

Algorithms for Mathematics Procedures D-9 



If 709.0 < IXI and !XI - LOG(2) >= 709, then overflow 

HSINH(X) is computed as: 

If IXI < 2**-56, HSINH(X) = X 

If 2**-56 <= IXI < 0.25, 
HSINH(X) =polynomial approximation of degree 12 

If 0.25 <= IXI <= 11355.0, 
HSINH(X) = (HEXP(X) - HEXP(-X) )/2 

If 11355.0 < IXI and IXI - HLOG(2) < 11355.0, 
HSINH(X) = sign(X) * HEXP(IXI - HLOG(2)) 

If 11355.0 < IXI and IXI - HLOG(2) >= 11355.0, then overflow 

D.1.10 Hyperbolic Tangent 

TANH(X) is computed as: 

If IXI =< 2**-14, then TANH(X) = X 

If 2**-14 < IXI =< 0.25, then TANH(X) = SINH(X) I COSH(X) 

If 0.25 < IXI < 16.0, then 
TANH(X) = (EXP(2*X) - 1)/(EXP(2*X) + 1) 

If 16.0 =< IXI, then TANH(X) = sign(X) * 1 

DT ANH(X) is computed as: 

If IXI =< 2**-14, then DTANH(X) = X 

If 2**-14 < IXI =< 0.25, then DTANH(X) = DSINH(X)/DCOSH(X) 

If 0.25 < IXI < 16.0, then 
DTANH(X) = (DEXP(2*X) - l)/(DEXP(2*X) + 1) 

If 16.0 =< IXI, then DTANH(X) = sign(X) * 1 

GTANH(X) is computed as: 

If IXI =< 2**-14, then GTANH(X) = X 

If 2**-14 < IXI =< 0.25, then GTANH(X) = GSINH(X)/GCOSH(X) 

If 0.25 < IXI < 16.0, then 
GTANH(X) = (GEXP(2*X) - 1)/(GEXP(2*X) + 1) 

If 16.0 =< IXI, then GTANH(X) = sign(X) * 1 

HTANH(X) is computed as: 

If IXI <= 2**-59, then HTANH(X) = X 

If 2**-59 < IXI <= 0.25, then HTANH(X) = HSINH(X)/HCOSH(X) 

If 0.25 < IXI < 16.0, then 
HTANH(X) = (HEXP(2*X) - 1)/(HEXP(2*X) + 1) 

If 16.0 <= IXI, then HTANH(X) = sign(X) * 1 

D-10 Algorithms for Mathematics Procedures 



D.1.11 Natural Logarithm 

ALOG(X) is computed as: 

If X =< 0, an error is signaled 

Therefore, let X = Y * (2** A) 
where 

1/2 =< y < 1. 

Then, LOG(X) = A * LOG(2) + LOG (Y) 

If IX-11 =< 0.25, let W = (X-1)/(X+l) 

Then, LOG (X) = W * SUM(C[il * W**(2*i)) 

Otherwise, let W = (Y-SQRT(2)/2)/(Y +SQRT(2)/2) 

Then, LOG(X) = A * LOG(2) - 1/2 * LOG(2) + 
W * SUM C[i] * W**2(2*i) 

The coefficients are drawn from Hart #2662. 
The polynomial approximation used is of degree 3. 

DLOG(X) is computed as: 

If X =< 0, an error is signaled 

Therefore, let X = Y * (2** A) 
where: 

1/2 =< y < 1 

Then, DLOG(X) = A * DLOG(2) + DLOG(Y) 

If IX-11 <= 0.25, then let W = (X-1)/(X+l) 

Then DLOG(X) = W * SUM (C[i] * W**(2*i)) 

Otherwise, let W = (Y - DSQRT(2)/2)/(Y + DSQRT(2)/2) 

Then DLOG(X) = A * DLOG(2) - 1/2 * DLOG(2) + 

W * SUM(Clil * W**(2*i) 

The coefficients are drawn from Hart #2662. 
The polynomial approximation used is of degree 6. 

GLOG(X) is computed as: 

If X =< 0, an error is signaled 

Therefore, let X = Y * (2** A) 
where: 

1/2 =< y < 1 

Then, GLOG(X) = A * GLOG(2) + GLOG(Y) 

If IX-11 <= 0.25, then let W = (X-1)/(X+l) 

Then GLOG(X) = W * SUM (Clil * W**(2*i)) 

Algorithms for Mathematics Procedures D-11 



Otherwise, let W = (Y - GSQRT(2)/2)/(Y + GSQRT(2)/2) 

Then GLOG(X) = A * GLOG(2) - 1/2 * GLOG(2) + 
W * SUM(C[il * W**(2*i) 

The coefficients are drawn from Hart #2662. 
The polynomial approximation used is of degree 6. 

HLOG(X) is computed as: 

If X <= 0, an error is signaled 

Therefore, let X = Y * (2** A) 
where: 

1/2 <= y < 1 

Then, HLOG(X) = A * HLOG(2) + HLOG(Y) 

D.1.12 Sine 

= A * HLOG(2) + HLOG(YHI + YLO) 

where: 
YHI = INTEGER(Y*32)/32 
YLO=Y-YHI 

=A * HLOG(2) + HLOG(YHI * (1+ YLO/YHI)) 

= A * HLOG(2) + HLOG(YHI + HLOG(l + YLO/YHI) 

where: 
HLOG(l + YLO/YHI) = polynomial approximation of 

degree 22 

SIN (X) is computed as: 

If IXI < 2**-14, return X for SIN, 1 for COS 

If 2**-14 < IXI <1/2, calculate SIN/COS from series approximations 
listed below 

If 1/2 < IXI < 2**23, let I = INTEGER ( IXI I (Pl/4)) 
Y = FRAC ( IXI /(Pl/4)) 

The low three bits of I determine the octant in which the reduced argument 
lies. An eight-way branch indexed by these bits is made for evaluation of the 
desired function by special series approximations. There are three separate 
ways in which the branch is made: one for COS, one for SIN with a positive 
argument, and one for SIN with a negative argument. 

All evaluations are carried out so that the last step is an addition of two 
numbers, with an alignment shift of at least four bits. The larger number is 
either exactly machine representable, or available with at least four quad bits 
so that the error bound for the final rounded result is just slightly greater than 
1/2 the least significant bit. 

D-12 Algorithms for Mathematics Procedures 



Approximations 

Octant 
bits SIN(pos. arg.) COS(pos. · arg.) SIN(neg. arg.) 

000 SIN (y * PI/4) COS (y * Pl/4) -SIN (y * PI/4) 

001 COS (1-y) * Pl/4 SIN (1-y) * Pl/4 -COS (1-y) * PI/4 

010 COS (y * Pl/4) -SIN (y * PI/4) -COS (y * Pl/4) 

011 SIN (1-y) * Pl/4 -COS (1-y) * PI/4 -SIN (1-y) * PI/4 

100 -SIN (y * PI/4) -COS (y * PI/4) SIN (y * Pl/4) 

101 -COS (1-y) * PI/4 -SIN (1-y) * Pl/4 COS (1-y) * PI/4 

110 -COS (y * PI/4) SIN (y * PI/4) COS (y * PI/4) 

111 -SIN (1-y) * Pl/4 COS (1-y) * PI/4 SIN (1-y) * PI/4 

If IXI >= 2**30, the error message is: 
"MTH$_SIGLOSMAT - SIGNIFICANCE LOST IN MATH LIBRARY." 

DSIN(X) is computed as: 

Let Q =INTEGER( IXI /(PI/2)) 
where: 

Q = 0 for first quadrant 
Q = 1 for second quadrant 
Q = 2 for third quadrant 
Q = 3 for fourth quadrant 

Let Y =FRACTION( IXI /(PV2)) 

If IYI < 2**-28, the sine is computed as: 

DSIN (X) = S * (PV2) 
s = y if Q = 0 
S = 1-Y if Q = 1 
S = -Y if Q = 2 
S = Y-1 if Q = 3 

For all other cases: 

DSIN (X) = P(Y*PV2) if Q = 0 
DSIN(X) = P((l-Y)*PV2) if Q = 1 
DSIN(X) = P(-Y*PV2) if Q = 2 
DSIN(X) = P((Y-l)*PV2) if Q = 3 

where: 
P(Y) = Y*SUM(C[i1*(Y**(2*i))) for i = 0:8 

The polynomial approximation used is of degree 8. 

Algorithms for Mathematics Procedures D-13 



The relative error is less than or equal to 10**-18.6. The result is guaran­
teed to be within the closed interval -1.0 to +1.0. 

No loss or precision occurs if IXI < 2 * PI *256. 

If IXI >= 2**31, the message: MTH$_SIGLOSMAT - "SIGNIFICANCE 
LOST IN MATH LIBRARY" is printed. 

GSIN (X) is computed as: 

Let Q =INTEGER( IXI /(Pl/2)) 
where: 

Q = 0 for first quadrant 
Q = 1 for second quadrant 
Q = 2 for third quadrant 
Q = 3 for fourth quadrant 

Let Y =FRACTION( IXI /(Pl/2)) 

If IYI < 2**-28, the sine is computed as: 

GSIN (X) = S * (Pl/2) 

S=Y 
S = 1-Y 
S = -Y 
S = Y-1 

if Q = 0 
if Q = 1 
if Q = 2 
if Q = 3 

For all other cases: 

GSIN (X) = P(Y*Pl/2) if Q = 0 
GSIN(X) = P((l-Y)*Pl/2) if Q = 1 
GSIN (X) = P(-Y*Pl/2) if Q = 2 
GSIN(X) = P((Y-l)*Pl/2) if Q = 3 

where: 
P(Y) = Y*SUM(C[iJ*(Y**(2*i))) for i = 0:8 

The polynomial approximation used is of degree 8. 

The relative error is less than or equal to 10**-18.6. The result is guaran­
teed to be within the closed interval -1.0 to +1.0. 

No loss of precision occurs if IXI < 2 * PI *256. 

If IXI >= 2**31, the message: MTH$_SIGLOSMAT - "SIGNIFICANCE 
LOST IN MATH LIBRARY" is printed. 

HSIN(X) is computed as: 

Let Q = INTEGER(IXl/(Pl/2)) 
where: 

MOD(Q,4) = 0 for first quadrant 
MOD(Q,4) = 1 for second quadrant 
MOD(Q,4) = 2 for third quadrant 
MOD(Q,4) = 3 for fourth quadrant 

D-14 Algorithms for Mathematics Procedures 



Let Y = FRACTION(IXl/(PV2)) 

If IYI < 2**-56, the sine is computed as: 

HSIN (X) = S * (Pl/2) 
where: 

S=Y 
S = 1-Y 
S =-Y 
S = Y-1 

if MOD(Q,4) = 0 
if MOD(Q,4) = 1 
if MOD(Q,4) = 2 
if MOD(Q,4) = 3 

Otherwise: 

HSIN(X) = P(Y*PV2) if MOD(Q,4) = 0 
HSIN(X) = P((l-Y)*Pl/2) if MOD(Q,4} = 1 
HSIN(X) = P(-Y*PV2) if MOD(Q,4) = 2 
HSIN(X) = P((Y-l)*Pl/2) if MOD(Q,4) = 3 

where: 
P(Y) = Y*SUM(C[i]*(Y**(2*i))) for i = 0:14 

The result is guaranteed to be in the closed interval -1.0 to +1.0 

If IXI >= 2**31, the message: MTH$_SIGLOSMAT - "SIGNIFICANCE 
LOST IN MATH LIBRARY" is printed. 

D.1.13 Square Root 

SQRT(X) is computed as: 

If X < 0, an error is signaled. 

Let X = 2**K * F 
where: 

K is the exponential part of the floating-point data 
F is the fractional part of the floating-point data 

If K is even: 

X = 2**(2*P) * F, 
SQRT(X) = 2**P *SQRT (F), 

1/2 =< F < 1 

where: 
P = K/2 

If K is odd, 

X = 2**(2*P+l) * F = 2**(2*P+2) * (F/2), 
SQRT(X) = 2**(P+l) * SQRT(F/2), 

1/4 =< F/2 < 1/2 

Let F' = A *F + B, when K is even: 

A = 0.453730314 (octal) 
B = 0.327226214 (octal) 

Algorithms for Mathematics Procedures D-15 



Let F' = A *(F/2) + B, when K is odd: 

A= 0.650117146 (octal) 
B = 0.230170444 (octal) 

Let K' = P, when K is even 
Let K' = P+l, when K is odd 

Let Y[OJ = 2**K' * F' be a straight line approximation within the given 
interval using coefficients A and B which minimize the absolute error at 
the midpoint and endpoint. 

Starting with Y[OJ, two Newton-Raphson iterations are performed: 

Y[n+l] = 1/2 * (Y[n] + X/Y[n]) 

The relative error is < 10**-8. 

DSQRT(X) is computed as: 

If X < 0, an error is signaled. 

Let X = 2**K * F where: 

K is the exponential part of the floating-point data 
F is the fractional part of the floating-point data 

If K is even: 

X = 2**(2*P) * F, 
DSQRT(X) = 2**P * DSQRT (F), 

1/2 =< F < 1 

If K is odd: 

X = 2**(2*P+l) * F = 2**(2*P+2) * (F/2), 
DSQRT(X) = 2**(P+l) * DSQRT(F/2), 

1/4 =< F/2 < 1/2 

Let F' = A *F + B, when K is even: 
A = 0.453730314 (octal) 
B = 0.327226214 (octal) 

Let F' = A*(F/2) + B, when K is odd: 

A= 0.650117146 (octal) 
B = 0.230170444 (octal) 

Let K' = P, when K is even. 
Let K' = P+l, when K is odd. 

Let Y[OJ = 2**K' * F' be a straight line approximation within the given 
interval using coefficients A and B which minimize the absolute error at 
the midpoint and endpoint. 

Starting with Y[OJ, three Newton-Raphson iterations are performed: 

Y[n+l] = 1/2 * (Y[n] + X/Y[n]) 

The relative error is < 10**-17. 

D-16 Algorithms for Mathematics Procedures 



GSQRT(X) is computed as: 

If X < 0, an error is signaled. 

Let X = 2**K * F where: 

K is the exponential part of the floating-point data 
F is the fractional part of the floating-point data 

If K is even: 

X = 2**(2*P) * F, 
GSQRT(X) = 2**P * GSQRT (F), 

1/2 =< F < 1 

If K is odd: 

X = 2**(2*P+l) * F = 2**(2*P+2) * (F/2), 
GSQRT(X) = 2**(P+l) * GSQRT(F/2), 

1/4 =< F/2 < 1/2 

Let F' = A*F + B, when K is even: 

A= 0.453730314 (octal) 
B = 0.327226214 (octal) 

Let F' = A *(F/2) + B, when K is odd: 

A= 0.650117146 (octal) 
B = 0.230170444 (octal) 

Let K' = P, when K is even. 
Let K' = P+l, when K is odd. 

Let Y[OJ = 2**K' * F' be a straight line approximation within the given 
interval using coefficients A and B which minimize the absolute error at 
the midpoint and endpoint. 

Starting with Y[OJ, three Newton-Raphson iterations are performed: 

Y[n+l] = 1/2 * (Y[n] + X/Y[n]) 

The relative error is< 10**-17. 

HSQRT(X) is computed as: 

If X < 0, signal error. 
If X = 0, return HSQRT(X) = 0. 

Let X = 2**K * F where: 

K is the exponential part of the floating-point data 
F is the fractional part of the floating-point data 

If K is even: 

X = 2**(2*P) * F, 
HSQRT(X) = 2**P * HSQRT(F), 

1/2 <= F < 1 

Algorithms for Mathematics Procedures D-17 



If K is odd: 

X = 2**(2*P+l) * F = 2**(2*P+2) * (F/2), 
HSQRT(X) = 2**(P+l) * HSQRT(F/2), 

1/4 <= F/2 < 1/2 

Let F' = A *F + B, when K is even: 

A = 0.453730314 (octal) 
B = 0.327226214 (octal) 

Let F' = A *(F/2) + B, when K is odd: 

A= 0.650117146 (octal) 
B = 0.230170444 (octal) 

Let K' = P, when K is even. 
Let K' = P+l, when K is odd. 

Let Y[OJ = 2**K' * F' be a straight line approximation within the given 
interval using coefficients A and B which minimize the absolute error at 
the midpoint and endpoint. 

Starting with Y[OJ, five Newton-Raphson iterations are performed: 

Y[n+l] = (1/2) * ( Y[n] + X/Y[n]) 

D.1.14 Tangent 

TAN (X) is computed as: 

1) Calculate SIN 

If error from SIN, then return with reserved operand. 
If SIN (X) = 0, then return TAN (X) = 0. 

2) Calculate Cosine 

No need to check for reserved operand, as error would be caught in 
Step 1. 
No need to check for zero, as it would be caught in Step 3. 

3) Calculate SIN/COS 

Hardware trap occurs if divide-by-zero or overflow error occurs. 

DTAN(X) is computed as: 

1) Calculate DSIN 

If error from DSIN, then return with reserved operand. 
If DSIN (X) = 0, then return DT AN (X) = 0. 

2) Calculate DCOS 

No need to check for reserved operand, as error would be caught in 
Step 1. 
No need to check for zero, as it would be caught in Step 3 as a 
hardware trap. 

D-18 Algorithms for Mathematics Procedures 



3) Calculate DSIN/DCOS 

Hardware trap is signaled if divide by zero or overflow error occurs. 

GTAN(X) is computed as: 

1) Calculate GSIN 

If error from GSIN, then return with reserved -operand. 
If GSIN (X) = 0, then return GTAN (X) = 0. 

2) Calculate GCOS 

No need to check for reserved operand, as error would be caught in 
Step 1. 
No need to check for zero, as it would be caught in Step 3 as a 
hardware trap. 

3) Calculate GSIN/GCOS 

Hardware trap is signaled if divide by zero or overflow error occurs. 

HTAN(X) is computed as: 

1) Calculate HSIN 

If error from HSIN, then return with reserved operand. 
If HSIN(X) = 0, then return HTAN(X) = 0. 

2) Calculate HCOS 

No need to check for reserved operand, as error would be caught in 
Step 1. 
No need to check for zero, as it would be caught in Step 3 as a 
hardware trap. 

3) Calculate HSIN/HCOS 

Hardware trap is signaled if divide by zero or overflow error occurs. 

D.2 Exponentiation Functions 

D.2.1 Floating Base to Floating Power 

OTS$POWDD is computed as: 

The D_f1oating result for this function is given by: 

Base 

=0 

=O 

=0 

<0 

Exponent 

>0 

=0 

<0 

Any 

Result 

0.0 

Undefined Exponentiation 

Undefined Exponentiation 

Undefined Exponentiation 
(continued on next page) 

Algorithms for Mathematics Procedures D-19 



Base Exponent 

DEXP(exponent * DLOG(base)) 

LO 

DEXP(exponent * DLOG(base)) 

Floating-point overflow can occur. 

Result 

Undefined exponentiation occurs if the base is 0 and the exponent is 0 or 
negative, or if the base is negative. 

OTS$POWDR is computed as: 

Convert the F_floating exponent to D_floating and then calculate the 
D_floating result using the same code as OTS$POWDD. 

OTS$POWRD is computed as: 

Convert the F _floating base to D_floating and then calculate the D_ 
floating result using the same code as· OTS$POWDD. 

OTS$POWGG is computed as: 

The G_floating result for this function is given by: 

Base Exponent Result 

=0 >0 0.0 

=0 =0 Undefined Exponentiation 

=0 <0 Undefined Exponentiation 

<0 Any Undefined Exponentiation 

>0 >0 GEXP(exponent * GLOG(base)) 

>0 =0 1.0 

>0 <0 GEXP(exponent * GLOG(base)) 

Floating-point overflow can occur. 

Undefined exponentiation occurs if the base is 0 and the exponent is 0 or 
negative, or if the base is negative. 

OTS$POWHH is computed as: 

The H_floating result for this function is given by the same algorithm as 
OTS$POWGG except HEXP and HLOG are substituted for GEXP and 
GLOG. 

D-20 Algorithms for Mathematics Procedures 



OTS$POWRR is computed as: 

The F_f1oating result for this function is given by: 

Base Exponent Result 

=0 >0 0.0 

=0 =0 Undefined Exponentiation 

=0 <0 Undefined Exponentiation 

<0 Any Undefined Exponentiation 

>0 >0 EXP( exponent * ALOG(base)) 

>0 =0 1.0 

>0 <0 EXP(exponent * ALOG(base)) 

Floating-point overflow can occur. 

Undefined exponentiation occurs if the base is 0 and the exponent is 0 or 
negative, or if the base is negative. 

D.2.2 Floating Base to Integer Power 

OTS$POWDJ 
OTS$POWGJ 
OTS$POWHJ_R3 
OTS$POWRJ 

All of the above functions use the same basic algorithm. However, the internal 
calculations and the floating-point result are computed at the same precision 
level as the base value. 

The floating-point result is given by: 

Base Exponent 

Any >0 

>0 =0 
=0 =0 
<0 =0 

>0 <0 

=0 <0 

<0 <0 

Result 

Product (base * 2**i) where i is each nonzero bit position in 
lexponentl 

1.0 
Undefined exponentiation 
1.0 

1.0 I product (base* 2**i) where i is each nonzero bit position in 
lexponentl 

Undefined exponentiation 

1.0 I Product (base * 2**i) where i is each nonzero bit position in 
lexponentl 

Floating-point overflow can occur. 

Undefined exponentiation occurs if the base is 0 and the exponent is 0 or 
negative. 

Algorithms for Mathematics Procedures D-21 



D.2.3 Integer Base to Integer Power 

OTS$POWII 
OTS$POWJJ 

All of the above functions use the same basic algorithm. However, the internal 
calculations and the signed integer result are computed at the same precision 
level as the base value. 

The signed integer result is given by: 

Base Exponent Result 

Any >0 Product (base * 2**i) where i is each non-zero bit position in 
exponent 

>0 =0 1 
=0 =0 Undefined exponentiation 
<0 =0 1 

>1 <0 0 
=1 <0 1 
=0 <0 Undefined Exponentiation 

=-1 <0 and even 1 
=-1 <0 and odd -1 
<-1 <0 1 

Integer overflow can occur. 

Undefined exponentiation occurs if the base is 0 and the exponent is 0 or 
negative. 

D-22 Algorithms for Mathematics Procedures 



Appendix E 
Image Initialization and Termination 

Normally, both user and library procedures are written so that they are self­
initializing. This means that they can process information with no special 
action required by the calling program. Initialization is automatic because 
either: 1) the procedure's statically allocated data storage is initialized at 
compile or link time, or 2) a statically allocated flag is tested and set on each 
call so that initialization occurs only on the first call. 

Any special initialization - such as a call to other procedures or to system 
services - can be performed on the first call before the main program is 
initialized. For example, you can establish a new environment to alter the way 
errors are handled or messages are printed. 

Such special initialization is required only rarely; however, it need not be 
done by requiring the caller of the procedure to make an explicit initialization 
call. The Run-Time Library provides a system declaration mechanism that 
performs all such initialization calls before the main program is called. Spe­
cial initialization is thus invisible to subsequent callers of the procedure. 

This Appendix describes the system declaration mechanism, including 
LIB$INITIALIZE, which performs calls to any initialization procedure de­
clared by the user. This mechanism is also available to Run-Time Library so 
that user procedures that require special initialization can be added to the 
library. However, use of LIB$INITIALIZE is discouraged and should be used 
only when no other method is suitable. One major problem with the 
LIB$INITIALIZE mechanism is that it cannot be used by procedures in a 
sharable image. 

E.1 Image lnltlallzatlon 

Before the main program or main procedure is called, a number of system 
initialization procedures are called as specified by a one, two, or three long­
word initialization list set up by the linker. This list consists of the addresses 

E-1 



of the debugger (if present) the LIB$INITIALIZE procedure (if present) and 
the entry point of the main program or main procedure, in that order. The 
following initialization steps take place: 

1. The image activator maps the user program image into the address space 
of the process and sets up useful information such as the program name. 
Then it starts up the command interpreter. 

2. The command interpreter sets up an argument list (see Section E.2) 
and calls the next procedure in the initialization list (debugger, 
LIB$INITIALIZE, main program, or main procedure). 

3. The debugger, if present, initializes itself and calls the next procedure in 
the initialization list (LIB$INITIALIZE, main program, or main 
procedure) . 

4. LIB$INITIALIZE, if present, is a . library procedure that calls each 
library and user initialization procedure declared using the system 
LIB$INITIALIZE mechanism (see Section E.4). Then it calls the main 
program or main procedure. 

5. The main program or main procedure executes, and at the user's discre­
tion, accesses its argument list to scan the command or obtain information 
about the image. The main program or main procedure can then call other 
procedures. 

6. Eventually, the main program or main procedure terminates by executing 
a return instruction (RET) with RO set to a standard completion code to 
indicate success or failure, where bit 0 equals 1 for success or 0 for failure. 
See Chapter 6 and Appendix C for a description of condition values. 

7. The completion code is returned to LIB$INITIALIZE (if present), the 
debugger (if present) and finally to the command interpreter which issues 
a $EXIT system service with the completion status as a parameter. Any 
declared exit handlers are called at this point. (See Declare Exit Handler 
$DCLEXH System Service - in the VAX/VMS System Services Reference 
Manual.) 

Main programs should not call the $EXIT system service directly. If they do, 
other programmers cannot reuse them as callable procedures. 

Figure E-1 illustrates the sequence of calls and returns in a typical image 
initialization. Each box is a procedure activation as represented on the image 
stack. The top of the stack is at the top of the figure. Each upward arrow 
represents the result of a CALLS or CALLG instruction which creates a 
procedure activation on the stack to which control is being transferred. Each 
downward arrow represents the result of a RET (return) instruction. A RET 
instruction removes the procedure activation from the stack and causes con­
trol to be transferred downward to the next box. 

E-2 Image Initialization and Termination 



Figure E-1: Sequence of Events during Image Initialization 

DEBUGGER 
(if present) 

COMMAND 
INTERPRETER 

IMAGE 
ACTIVATOR 

LIBRARY 
PROCEDURE 

MAIN PROGRAM* 

*These procedures are (or can be) user supplied, 

A user program can alter the image initialization sequence by making 
a PSECT contribution to PSECT LIB$INITIALIZE and declaring 
EXTERNAL LIB$INITIALIZE. This adds the optional initialization 
steps shown in Figure E-1 termed: PSECT contribution to 
LIB$1NITIALIZE. (A PSECT is a portion of a program with a given protec­
tion and set of storage management attributes. Program sections that have 
the same attributes are gathered together by the linker to form an image 
section. See Section E.4.)- If the initialization procedure also performs a co­
routine call back to LIB$INITIALIZE, the optional steps termed: Co-routine 
call back to LIB$INITIALIZE shown in Figure E-1 are added to the image 
initialization sequence (see Section E.5). 

E.2 lnltlallzatlon Argument List 

The parameter list passed from the command interpreter, the debugger, 
and/or LIB$INITIALIZE to the main program is the same for each procedure 
activation, and consists of: 

(start-adr-adr, cli-co-rout, ... ) 

start-adr-adr 
the absolute virtual address of the entry in the initialization vector which 
used to perform the call (modify access, passed by immediate value). 

Image Initialization and Termination E-3 



cli-co-rout 
the address of the command interpreter coroutine to obtain command 
arguments (function call access, passed by reference). 

Useful image information such as the program name (See the VAX/VMS 
Operator's Guide). 

The debugger and/or LIB$INITIALIZE can call the next procedure in the 
initialization chain using the following coding sequence: 

ADDL 
MOVL 
CALLG 

#at aCAP> 
@a CAP> t RO 
CAP> t <RO> 

step to next initialization list entry 
RO=next address to call 
call next initialization Procedure 

This coding sequence violates the VAX-11 Procedure Calling Standard (see 
Appendix C) by modifying the contents of an argument list entry. However, 
the argument list can be expanded in the future without requiring any change 
to either the debugger or to LIB$INITIALIZE. 

E.3 Declaring Initialization Procedures 

Any library or user program module can declare an initialization procedure. 
This procedure will be called when the image is started. The declaration is 
made by making a contribution to PSECT LIB$INITIALIZE which contains 
a list of procedure entry point addresses to be called before the main program 
or main procedure is called. The following MACRO example declares an 
initialization procedure by placing the procedure entry address INIT_FROC 
in the list: 

.EXTRN LIB$INITIALIZE ; cause library initialization 
; disPatcher to be loaded 

.PSECT LIB$INITIALIZEt NOPICt USRt CONt RELt GBLt NOSHRt­
NOEXEt RDt NOWRTt LONG 

.LONG 

• PSECT 

INIT_PROC ; contribute entrY Point address of 
; initialization routine • 

The .EXTRN declaration links the initialization procedure dispatcher, 
LIB$INITIALIZE into your program's image. The reference contains a defini­
tion of the special global symbol LIB$INITIALIZE which is the procedure 

E-4 Image Initialization and Termination 



entry point address of the dispatcher. The linker stores the value of this 
special global symbol in the initialization list along with the starting address 
of the debugger and main program. The GBL specification ensures that the 
PSECT LIB$INITIALIZE contribution will not be affected by any clustering 
performed by the linker. 

E.4 Dispatching to lnltlallzation Procedures 

The LIB$INITIALIZE dispatcher calls each initialization procedure in the list 
with the following argument list: 

CALL init-proc 
(init-co-routine, cli-co-rout, ... ) 

init-co-routine 
Address of library coroutine to be called to effect a coroutine linkage with 
LIB$INITIALIZE (function call access, passed by reference). 

cli-co-rout 
Address of the command interpreter coroutine used to obtain command 
language arguments (function call access, passed by reference). 

The rest of the argument list to be passed to the main program (see 
Section E.3). 

Note that this argument list is the same as the one passed to the main 
program except for the first parameter. 

E.5 lnitlallzatlon Procedure Options 

An initialization procedure has a number of options: 

1. It can set up an exit handler by calling the Declare Exit Handler 
$DCLEXH system service, although this is generally done with a stati­
cally allocated first-time flag. 

2. It can initialize statically allocated storage, although this is preferably 
done at image activation time using compile-time and link-time data 
initialization declarations, or using a first-time call flag in its statically 
allocated storage. 

3. It can call the initialization dispatcher (instead of returning to it) by 
calling init-co-routine. This achieves a coroutine linkage. Control will re­
turn to the initialization procedure when the main program returns con­
trol. Then, the initialization procedure should also return control to pass 
back the completion code returned by the main program (to the debugger 
and/or command interpreter). 

4. It can establish a condition handler in the current frame before performing 
the previous step above. This will leave the initialization procedure condi­
tion handler on the image stack for the duration of the image execution. 

Image Initialization and Termination E-5 



Since this will occur after the command interpreter has set up the catch­
all stack frame handler, and after the debugger has set up its stack frame 
handler, the initialization procedure handler can override either of these 
handlers since it will receive signals before they do. (See Chapter 6 for a 
description of condition handlers.) 

For example, the following MACRO code fragment shows an initialization 
procedure establishing a handler, calling the init-co-routine procedure (to 
effect a coroutine call), getting control after the main program returns, and 
returning to the normal exit processing: 

INIT-PROC:: 
.WORD 
MOlJAL 

... M< > 
HANDLER, C FP) 

no resisters used 
establish handler 
PerforM any other initialization 

CAL LG CAP>, @INILCO_ROUTINE<AP> 

10$: 

RET 

HANDLER: 
.WORD 

MOlJL 

RET 

... M< ••• > 

••• , RO 

continue initialization which 
then calls Main ProsraM or 
P r o .c e d u r e • 
Return here when Main ProsraM 
returns with RO = coMPletion 
status return to norMal exit 
Processins with RO = coMPletion 
status 

condition handler 
resister 1r1as~t 

handle condition 
could unwind to 10$ 
Set coMPletion status with a 
condition 1Jalue 
resisnal or continue dePendins 
on RO beins SS$_RESIGNAL or 
SS$_CONTINUE. 

The FORTRAN language support procedures use the same mechanism 
to declare the initialization procedure, COM_STARTUP, if the PDP-11 
FORTRAN IV-PLUS compatibility routines, ERRSET or ERRTST, are 
called by the user program. COM_STARTUP establishes a condition han­
dler, COM_HANDLER, and makes a coroutine call to LIB$INITIALIZE. To 
isolate and modularize this technique, the ERRSET and ERRTST procedures 
are contained in a single module which also contains COM_STARTUP and 
COM_HANDLER as local rather than global procedures. 

E.6 Image Termination 

Main programs and main procedures terminate by executing a return instruc­
tion (RET). This returns control to the caller, which may have been 
LIB$INITIALIZE, the debugger, or the command interpreter. The completion 
code, SS$_NORMAL, which has the value 1, should be used to indicate 
normal successful completion. 

Any other condition value can be used to indicate success or failure comple­
tion. This condition value is used as the parameter to the exit ($EXIT) 

E-6 Image Initialization and Termination 



system service by the command interpreter. If the severity field 
(STS$V _SEVERITY) is SEVERE or ERROR, the continuation of a batch 
job or command procedure is affected. See Appendix C for a description of the 
format and interpretation of condition values in various contexts. 

Main programs are discouraged from calling the $EXIT system service di­
rectly. This allows them to be more like ordinary modular procedures and 
hence usable by other programmers as callable procedures. 

Image Initialization and Termination E-7 





Appendix F 
CALLG, CALLS Instructions 

A CALLG or a CALLS MACRO instruction can be used to call procedures 
written in any language. In the CALLG instruction, the argument list can be 
allocated anywhere in memory. In the CALLS instruction, the argument list 
is allocated on top of the stack. The called procedure is unaware of which 
instruction is actually used. 

F.1 CALLG Instruction 

Figure F-1 illustrates a CALLG instruction. In the example shown, Procedure 
X calls Procedure Y. The stack and parameter lists are shown in three states: 
(a) before X calls to Y, (b) after X calls to Y, and (c) after Y returns. 

Figure F-1: CALLG Instruction Sequence 
Note: Any parameter list shown that is 
not on top of the stack is at an arbitrary 
location which maybe anywhere in 
memory, including elsewhere on the 
stack. 

------CALLG ARG,Y~ ------RET-----..... 

(a) BEFORE CALLG TOY (b) AFTER CALLG TOY (c) AFTER RETURN TO CALLER X 

PAR 1 

PARM 

PAR 1 

TOP OF STACK 

LOCAL DATA 
TO PROCEDURE X 

:(SP) 

0 :(FP) 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

PAR 1 

PAR 1 

PAR N 

TOP OF STACK 

SAVED HARDWARE 
STATE OF X 

(CALLER OF Y) 

LOCAL DATA 
TO PROCEDURE X 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

PAR 1 

TOP OF STACK 

LOCAL DATA 
TO PROCEDURE X 

:(SP) 

0 :(FP) 
t--------1 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

F-1 



Part (a) shows the stack before X calls Y. The argument pointer (AP) points 
to X's parameter list, and the hardware state of the caller of Xis on the stack. 
(The hardware state contains the processor status word, argument pointer, 
frame pointer, and stack pointer at the time when the CALLG is executed.) 
The CALLG instruction in this example is: CALLG ARG, Y where ARG points 
to the parameter list to be passed to Y, and names Y as the procedure to be 
called. When the CALLG instruction is executed in Part (b) the hardware 
state of Procedure X (Procedure Y's caller) is pushed onto the stack and the 
contents of the argument pointer are changed froni the address of the X 
parameter list to that of the Y parameter list. Procedure Y can then access its 
parameter list using the AP general register. After procedure Y executes, a 
return to its caller is made in Part (c). As this occurs, all of Procedure Y's 
related hardware states are popped off the stack and the argument pointer 
(AP) is restored to the address of X's parameter list. (The procedure lists 
remain in the same arbitrary locations throughout, which may be elsewhere 
on the stack or anywhere else in memory.) 

The following object code shows how LIB$INSV (PAR1,PAR2,PAR3,PAR4) is 
invoked by way of a CALLG instruction. Note that the first item in ARGLST, 
the parameter list count, contains the total number of parameters in the list 
(and that Procedure Y used in the preceeding description is equivalent to 
LIB$INSV in this example). 

ARGLST: .LONG a Arsu111ent 1 is t count 
.ADDRESS PARl Address of field 
.ADDRESS PAR2 Address of position 
.ADDRESS PAR3 Address of size 
.ADDRESS PARl! Address of lons1,.1ord 

to receive field 

CAL LG ARGLSTt LIB$INSV ; Call LIB$INSV 

F.2 CALLS Instruction 

Figure F-2 illustrates a CALLS instruction. In the example shown, Procedure 
X calls Procedure Y. The stack and parameter lists are shown in the 
same three states that are shown for the CALLG instruction in the preceding 
Figure F-1. 

Part (aa) of the CALLS instruction shows that Procedure X has pushed all of 
the parameter list entries onto the stack except for the parameter list count N. 
(Since N appears in the CALLS instruction, it is not put on the stack yet.) 
Note that the parameter list is pushed on in reverse order, that is, Parameter N 
is pushed on first and Parameter 1 is pushed on last. The CALLS instruction 
is: CALLS N,Y. When the CALLS instruction is executed, in Part (bb), the 
parameter list count N is pushed onto the stack followed by the saved hard­
ware state of Procedure X (the caller of Y). The contents of the argument 
pointer (AP) are set to the address of Procedure Y's parameter list. Procedure Y 
can then read the parameter list passed to it. After the return to Procedure X 
in Part (cc), both the Y parameter list and the associated hardware state are 
removed from the stack, and the argument pointer (AP) is restored to the 
address of Procedure X's parameter list. 

F-2 CALLG, CALLS Instructions 



Figure F-2: CALLS Instruction Sequence 

________.,CALLS #N, Y ------- ------RET 

(aa) BEFORE CALL;S TOY (bb) AFTER CALLS TOY ~TURN TO CALLER X 

PAR 1 

PARM 

tx·s PARA~ETER 
LIST 

J :;;j"" 
Y'S PARAMETER 

LIST LOCAL DATA 
TO PROCEDURE X 

0 :(FP) 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

PAR 1 

PARM 

!X'S PARAMETE 
LIST 

R 

< 

/ 
Y'S PARAMETE 

LIST 
R 

0 

SAVED HARDWARE 
STATE OF X 

(CALLER OF Y) 

} 
PAR 1 

PAR 2 . . . 
PAR N 

LOCAL DATA 
TO PROCEDURE X 

0 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

~ ----

PAR 1 

:(AP) 

0 :(FP) 

SAVED HARDWARE 
STATE OF 

CALLER OF X 

The following object code shows how LIB$INSV is invoked by way of a 
CALLS instruction. Note that the parameter list count ( 4 in this example) 
appears in the CALLS instruction. The hardware automatically places this 
value on the top of the stack: 

PUSHAL PARll P1..1sh address of lonS1iJord 
to recei1Je field 

PUSHAL PAR3 P1.1 sh address of size 
PUSHAL PAR2 Push address of Position 
PUSHAL PAR1 P1..1sh address of field 
CALLS #lit LI 6$ I NSl.1 Call LI B$I NSIJ 

CALLG, CALLS Instructions F-3 





Appendix G 
Sample Programs Using LIB$TPARSE 

This appendix contains two sample programs using LIB$TPARSE. 

G.1 Sample MACRO Program Using LIB$TPARSE 

;+ 

;+ 

.TITLE CREATE-DIR - Create Directory File 

.IDENT 11 X0000 11 

This is a saMPle ProsraM that accepts and Parses the coMMand line 
of the CREATE/DIRECTORY COMMand. This ProsraM contains the VAX/VMS 
call to acqµire the coMMand line froM the COMMand interPreter 
and Parse it with TPARSEt leauins the necessary inforMation in 
its slobal data base. The coMMand line has the followins forMat: 

CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLDJ 
/OWNER_UIC=[2437t25J 
/ENTRIES=100 
/PROTECTION=CSYSTEM:RtOWNER:RWEDtGROUP:RtWORLD:R> 

The three qualifiers are optional. AlternatiuelYt the coMMand 
MaY take the forM 

CREATE/DIR DEVICE:[202t31J 

usins anY of the optional qualifiers. 

; Global datat control blockst etc • 

• PSECT IMPUREtWRTtNOEXE 

Define control block offsets 

$CLI DEF 
$TPADEF 

G-1 



; Define Parser f las bits for f lass lonfword 

UIC_FLAG 
ENTRIES-FLAG 
PROT_FLAG 
; 

= 1 
= 2 
= a 

/UIC seen 
/ENTRIES seen 
/PROTECTION seen 

; coMMand interpreter request descriptor block to Set the line 

REQ_COMMAND: 
$CLIREQDESCt-

RQTYPE = CLl$K_GETCMD 

TPARSE ParaMeter blocK 

TPARSE_BLOCK: 
.LONG 
.LONG 

.BLKL 

TPA$K_COUNTO 
TPA$M_ABBREV!­
TPA$M_BLANKS 
TPA$K_LENGTH0-8 

Parser slobal data 

PARSER-FLAGS: 
DEVICE-STRING: 
ENTRY_COUNT: 
FILE_PROTECT: 
UIC_GROUP: 
UIC-MEMBER: 
FILE_OWNER: 
NAME_COUNT: 
DIRNAMEl: 
DIRNAME2: 
DIRNAME3: 
DIRNAME4: 

DIRNAMEB: 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

.BLKL 

1 
2 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 

2 

.SBTTL Main ProsraM 
;+ 

Lonsword count 
Allow abbreviation 
Process spaces exPlicitlY 
ReMainder set at run tiMe 

Keyword flass 
Device strins descriPtor 
Space to Preallocate 
Directory file Protection 
TeMP for UIC srouP 
TeMP for UIC MeMber 
Actual file owner UIC 
NuMber of direc~ory naMes 
NaMe descriPtor 1 
NaMe descriPtor 2 
NaMe descriPtor 3 
NaMe descriptor a 

NaMe descriPtor 8 

This is the Main ProsraM of th~ CREATE/DIRECTORY utility. It Sets 
the COMMand line froM the coMMand interpreter and Parses it • 

• PSECT CODEtEXEtNOWRT 
CREATE-DIR:: 

.WORD AM<R2tR3tR4tRS> ; Save resisters 

Call the coMMand interpreter to obtain the coMMand line. 

CLRQ 
PUSHAL 
CALLS 

-<SP> 
REQ_COMMAND 
#3t@CLI$A_LJTILSERV<AP> 

2 zero arss 
and request blocK 
Call back the interpreter 

COPY the inPut strins descriptor into the TPARSE control block 
and call LI6$TPARSE. Note that iMPure storase is assuMed to be zero. 

MOlJZWL 

MOlJL 

PUS HAL 
PUS HAL 

REQ_COMMAND+CLl$W_RQSIZEt­
TPARSE_BLOCK+TPA$L_STRINGCNT 
REQ_COMMAND+CLI$L_RQADDRt­
TPARSE-BLOCK+TPA$L_STRINGPTR 
UFD_KEY 
UFD_STATE 

G-2 Sample Programs Using LIB$TPARSE 



PUSHAL 
CALLS 
8L8C 

TPARSE_8LOCK 
•3 1LI8$TPARSE 
R01SYNTAX-ERR 

Parsind is coMPlete. 

MOVL 
RET 

<Process the coMMand) 

Return success 

.SBTTL Parser State Table 
$INIT_STATE UFD-STATE1UFD-KEY 

Read over the coMMand naMe (to the first blank in the coMMand). 

$STATE 
$TRAN 
$TRAN 

START 
TPA$_8LANK118LANKS_OFF 
TPA$_ANY1START 

Read device naMe strind and trailind colon. 

$STATE 
$TRAN 
$STATE 
$TRAN 

TPA$_SYMBOL,,,,oEVICE_STRING 

I: I 

Read directory strindt which is either a UIC strins or a seneral 
directory strins. 

$STATE 
$TRAN 
$TRAN 

! UIC, 1MAKE_UIC 
!NAME 

Scan for oPtions until end of line is reached 

$STATE 
$TRAN 
$TRAN 
$STATE 
$TRAN 
$TRAN 
$TRAN 

OPTIONS 
I I I 

TPA$_EOS1TPA$_EXIT 

'OWNER_UIC' 1PARSE_u1c,,u1c_FLAG1PARSER-FLAGS 
'ENTRIES' 1PARSE-ENTRIES11ENTRIES_FLAG1PARSER_FLAGS 
'PROTECTION' 1PARSE-PROT11PROT_FLAGS1PARSER_FLAGS 

Get file owner UIC 

$STATE 
$TRAN 
$TRAN 
$STATE 
$TRAN 

PARSE_UIC 
I: I 

I: I 

! UIC 10PTIONS 

Get nuMber of di~ectorY entries 

$STATE 
$TRAN 
$TRAN 
$STATE 
$TRAN 

PARSE-ENTRIES 
I : I 

I: I 

TPA$_OECIMAL10PTIONS111ENTRY-COUNT 

Sample Programs Using LIB$TPARSE G-3 



Get directory file Protection. Note that the bit masKs senerate the 
Protection in COMPiement forM. It will be uncomPlemented by the main 
Prosrar11. 

$STATE 
$TRAN 
$TRAN 
$STATE 
$TRAN 

$STATE 
$TRAN 
$TRAN 
$TRAN 
$TRAN 
$STATE 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 
$TRAN 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 
$TRAN 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 
$TRAN 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 
$TRAN 
$TRAN 
$TRAN 

$STATE 
$TRAN 
$TRAN 

PARSE_PROT 
I: I 

I: I 

I (I 

NEXT_PRO 
I SYSTEM I , SY PR 
I OWNER I , OWPR 
I GROUP I , GRPR 
I WORLD I , WOPR 
SYPR 
I: I 

I: I 

SY PRO 
'R' tSYPRQ,,hX0001 rFILE_PROTECT 
'W' tSYPRDtthX0002tFILE_PROTECT 
'E' tSYPRQ,,hxoooa,FILE_PROTECT 
'D' rSYPRQ,,hXOOOB,FILE_PROTECT 
TPA$_LAM6DAtENDPRO 

OWPR 
I: I 

I: I 

OWPRO 
'R' tOWPRQ,,hX0010,FILE_PROTECT 
'W' tOWPRQ,,hX0020,FILE_PROTECT 
'E' tOWPRO,,hxooao,FILE_PROTECT 
'D' tOWPROtthXOOBOtFILE_PROTECT 
TPA$_LAMBDAtENDPRO 

GRPR 
I: I 

I: I 

GR PRO 
'R' tGRPRQ,,hxo100,FILE_PROTECT 
'W' tGRPRQ,,hxo200,FILE_PROTECT 
'E' tGRPRQ,,hxoaoo,FILE_PROTECT 
'D' tGRPRQ,,Axoeoo,FILE_PROTECT 
TPA$_LAMBDAtENDPRO 

WOPR 
I: I 

I: I 

WO PRO 
'R' tWOPRQ,,AX1000,FILE_PROTECT 
'W' tWOPRQ,,hX2000tFILE_PROTECT 
'E' tWOPRQ,,Axaooo,FILE-PROTECT 
'D' tWOPRQ,,Axeooo,FILE_PROTECT 
TPA$_LAMBDAtENDPRO 

END PRO 
I, I tNEXT _PRO 
I) I tOPTIONS 

SubexPression to Parse a UIC strins. 

G-4 Sample Programs Using LIB$TPARSE 



$STATE 
$TRAN 
$STATE 
$TRAN 
$STATE 
$TRAN 
$STATE 
$TRAN 
$STATE 
$TRAN 

UIC 
I [ I 

TPA$_QCTALttttUIC_GROUP 

It I 

TPA$_QCTALttttUIC_MEMBER 

'J' tTPA$_EXITtCHECK_LJIC 

Subexpression to Parse a seneral directory strins 

$STATE NAME 
$TRAN I [I 

$STATE NAMED 
$TRAN TPA$_STRINGttSTORE-NAME 
$STATE 
$TRAN '• 'tNAMEO 
$TRAN 'J' tTPA$_EXIT 
$END_ STATE 

• SB TTL 
.PSECT 

Parser Action Routines 
CODEtEXEtNOWRT 

Shut off exPlicit blank Processins after Passini the COMMand naMe. 

BLANKS_OFF: 
.WORD 
BBCC 

10$: RET 

0 ; No resisters saved (or used) 
#TPA$l.l_BLANKS t TPA$L_OPT IONS (AP) t 10$ 

; ChecK the UIC for lesal value ranse. 

CHECK_UIC: 
.WORD 
TSTW 
BNEQ 
TSTW 
BNEQ 
MOl.IW 
MOl.IW 
RET 

10$: CLRL 
RET 

0 
UIC_GROUP+2 
10$ 
UIC_MEMBER+2 
10$ 
UIC_GROUPtFILE_OWNER+2 
UIC_MEMBERtFILE_OWNER 

RO 

No resisters saved (or used> 
UIC COMPonents are 16 bits 

Store actual UIC 
After chec~\ins 

l.lalue out of ranse - fail 
The transition 

Store a directory naMe coMPonent. 

STORE-NAME: 
.WORD 
MDI.IL 
CMPL 
BGEQU 
INCL 
MOVAQ 
MOVQ 
CMPL 
BGTRU 
RET 

10$: CLRL 
RET 

0 
NAME-COUNTtRl 

10$ 
NAME-COUNT 
DIRNAME1 [Rl J tRl 
TPA$L_ TOKENCNT (AP) t ( R 1 > 
(Rl>t#8 
10$ 

RO 

No resisters saved (or used) 
Get count of naMes so far 
MaxiMUM of 8 PerMitted 

Count this na111e 
Address of next descriptor 
Store the descriptor 
Check the lenSth of the naMe 
Maxirrtu111 is 8 

Error in directory naMe 

Convert a UIC into its equivalent directory file naMe. 

MAKE-LI IC: 
.WORD 0 No resisters saved (or used> 

Sample Programs Using LIB$TPARSE G-5 



10$: 

TSTB 
6NEQ 
TSTB 
6NEQ 
MOVL 
MO VAL 
$FAOL 

RET 
CLRL 
RET 

FAD-STRING: 
STRING_START: 
STRING_END: 

UIC_GROUP+1 
1 (1$ 

UIC_MEM6ER+1 
1 (1$ 

#GtDIRNAME1 
UIC_STRINGtDIRNAME1+a 
CTRSTR=FAO_STRINGt­
OUT6UF=DIRNAME1 t­

PRMLST=UIC_GRDUP 

RO 

Check UIC for bYte values. 
Sinne UIC tYPe directories 
Are restricted to this forM 

Directory naroe is G bYtes 
Point to strins buffer 
Convert UIC to octal strins 

Ranse error - fail it 

.LONG STRING_END-STRING_START 
• ASCII I ! 06 ! 06 I 

.END CREATE-DIR 

G.2 Sample BLISS Program Using LIB$TPARSE 

MODULE CREATE-DIR ( ! Creat·e directory file 
I DENT = I xoooo I t 

MAIN = CREATEDIR) 
BEGIN 

+ 

!+ 
! 

This is a saMPle ProsraM that accePts and Parses the cororoand line 
of the CREATE/DIRECTORY coroMand. Note that this is not in fact 
froro the VAX CREATE/DIRECTORY utility! It is a hYPothetical 
exaMPle Prosraro. This Prosraro contains the operatins sYstero call 
to acquire the cororoand line froM the CLI and Parse it with 
TPARSEt leauins the necessary inforMation in its slobal data 
base. The cororoand line is of the followins forMat: 

CREATE/DIR DEVICE:CMARANTZ.ACCOUNT.OLDJ 
/UIC=C2a37t25J 
/ENTRIES=100 
/PROTECTIDN=<SYSTEM:RtOWNER:RWEDtGROUP:RtWORL~:R) 

The three qualifiers are optional. AlternativelYt the cororoand 
MaY take the forro 

CREATE/DR DEVICE:C202t31J 

usins anY of the oPtional qualifiers. 

! Global data• control blockst etc. 

!-

LIBRARY 'SYS$LIBRARY:STARLET'; 
LIBRARY 'SYS$LIBRARY:TPAMAC'; 

Macro to roake the TPARSE control block addressable as a block 
throush the arSuMent Pointer. 

G-6 Sample Programs Using LIB$TPARSE 



MACRO 
TPARSE-ARGS = 

BUILTIN AP; 
MAP AP : REF BLOCK [ tBYTEJ; 
% ; 

Declare routines in this Module. 

FORWARD ROUTINE 
CREATE-DIRt 
BLANKS_OFFt 
CHECK-UIC t 
STORE_NAME t 
MAKE_UIC; 

Mail Prosra1T1 
No exPlicit blank Processin• 
Validate and asseMble UIC 
Store next directory naMe 
Make UIC into directory naMe 

Define Parser flas bits for f lass lonsword 

LITERAL 
UIC-FLAG 
ENTRIES-FLAG 
PROT_FLAG 

= 0 t 

= 1 t 

= 2; 

/UIC seen 
/ENTRIES seen 
/PROTECTION seen 

CLI request descriptor block to set the coMMand line 

OWN 
REQ-COMMAND = $CLIREQDESC < 

RQTYPE = CLI$K_GETCMD 
) ; 

TPARSE ParaMeter block 

OWN 
TPARSE-BLOCK : BLOCK [TPA$K-LENGTHOt BYTE) 

INITIAL <TPA$K-COUNTOt ! Lonsword count 
TPA$M_ABBREV ! Allow abbreviation 
OR TPA$M_BLANKS); ! Process spaces exPlicitlY 

Parser slobal data 

OWN 
PARSER-FLAGS 
DEVICE-STRING 
ENTRY _COUNT t 
FILE-PROTECTt 
UIC-GROUPt 
UIC-MEMBERt 
FILE-OWNERt 
NAME-COUNTt 
UIC-STRING 
NAME_lJECTOR 
DIRNAME1 
DIRNAME2 
DIRNAME3 
DIRNAMELJ 
DIRNAME5 
DIRNAMEG 
DIRNAME7 
DIRNAMEB 

BITVECTOR [32J t ! KeYword f lass 
VECTOR [2Jt Device strins descriptor 

Space to Preallocate 
DirectorY file Protection 
TeMP for UIC sroup 
TeMP for UIC MeMber 
Actual file owner UIC 
NuMber of directory naMes 

VECTOR [8, BYTEJ t ! Buffer for strins 
BLOCKVECTOR [Ot 2J; ! Vector of descriPtors 
VECTOR [2J, NaMe descriPtor 1 
VECTOR [2J, .Na1'fle descriptor 2 
VECTOR [2J, NaMe descriPtor 3 
VECTOR [2J t NaMe descriPtor a 
VECTOR [2J t NaMe descriptor 5 
VECTOR [2J t NaMe descriPtor G 
VECTOR [2J t NaMe descriPtor 7 
VECTOR [2J; NaMe descriPtor 8 

Structure Macro to reference the descriPtor fields in the vector of 
descriptors. 

MACRO 
STRING-COUNT 
STRING_ADDR 

= 0 t 0 t 32 t O'X, t 

= 1 t 0 t 32 t 0%; 
Co•.mt field 
Address field 

Sample Programs Using LIB$TPARSE G-7 



!+ 

! TPARSE state table to Parse the coMMand line 

!-

$IN IT _STATE CUFO_STATEt UFO-KEY>; 

! Read over the command name (to the first blank in the command). 

$STATE CSTARTt 
< TPA$_BLANK t t BLANKS_OFF > t 
<TPA$_ANYt START> 
) ; 

Read ~evice name strins and trailins colon. 

$STATE < t 
CTPA$_SYMBOLtttt DEVICE_STRING> 
) ; 

$STATE < t 
(I: I) 

) ; 

Read directory strinSt which is either a UIC strins or a Seneral 
directory strins. 

$STATE C t 
CCUIC),, MAKE_UIC>t 
<<NAME>) 
) ; 

Scan for options until end of line is reached 

$STATE C OPT IONS t 
( I I I) t 

CTPA$_EOSt TPA$_EXIT> 
) ; 

( I u I c I t PARSE_U I ct t 1 ,, u IC-FLAG t PARSER_FLAGS) t 
<'ENTRIES' t PARSE_ENTRIEStt 1hENTRIES_FLAGt PARSER-FLAGS> t 
C 'PROTECTION' t PARSE_PROTtt 1APROT_FLAGSt PARSER-FLAGS> 
) ; 

Get file owner UIC 

$STATE CPARSE_UICt 
(I: I) t 

( I: I ) 

) ; 

$STATE ( t 
< CUIC> t OPTIONS> 
) ; 

Get number of directory entries 

$STATE CPARSE_ENTRIESt 
(I: I) t 

( I: I ) 

) ; 

G-8 Sample Programs Using LIB$TPARSE 



$STATE C t 
CTPA$_DECIMALt OPTIONSttt ENTRY-COUNT> 
) ; 

Get directory file Protection. Note that the bit Masks denerate the 
Protection in coMPleMent forM+ It will be uncoMPleMented by the Main 
Prodra1T1. 

$STATE CPARSE-PROTt 
( I : I ) t 

( I: I ) 

) ; 

$STATE C , 
(I (I) 

) ; 

$STATE CNEXT_PROt 
( I SYSTEM I , SYPR) , 
( I OWNER I , OWPR) , 
('GROUP I, GRPR>, 
( I WORLD I , WOPR) 
) ; 

$STATE <SYPRt 

$STATE 

$STATE 

$STATE 

(I: I) t 

( I: I) 

) ; 

CSYPROt 
('RI, SY PRO,, 
('WI, SY PRO,, 
( IE I , SY PRO,, 
('DI, SY PRO t , 

CTPA$_LAMBDAt 
) ; 

COWPRt 
(I: I) t 

( I: I) 
) ; 

COWPROt 

'X.X I 0001 I , FI LE-PROTECT) t 

'X.){ I 0002 I t FI LE_ PROTECT> t 

'X,}{ I 0004 I t FI LE_ PROTECT) t 

'X.X I 0008 I t FI LE_ PROTECT) t 

END PRO> 

C 'R' t OWPROtt 'X.X'001C>' t FILE-PROTECT> t 

c 'W', ow PRO,, ·x.x 1 0020', FILE_ PROTECT>, 
C'E't OWPROtt 'X.X'0040't FILE-PROTECT>t 
( ID I t OW PRO t t 'X,){ I 0080 I t FI LE-PROTECT) t 

CTPA$_LAMBDAt ENDPRO> 
) ; 

$STATE CGRPRt 

$STATE 

( I : I ) t 

( I: I) 

) ; 

CGRPROt 
('RI t GR PRO t t 

('WI t GR PRO t t 

('EI t GR PRO t t 

( ID I t GR PRO t t 

C TPA$_LAMBDA t 

) ; 

%X'0100't FI LE-PROTECT> t 

'X.X '0200 It FI LE-PROTECT> t 

7..X '0400 It FI LE-PROTECT> t 

'X.X I 0800 I , FI LE-PROTECT> t 

ENDPRO> 

Sample Programs Using LIB$TPARSE G-9 



$STATE CWOPRt 
(I: I) f 

( I: I) 

) ; 

$STATE CWOPRO, 
('RI f WO PRO, , 
('WI f WOPR011 
('EI f WO PRO,, 
('DI f WO PRO, , 
C TPA$_LAMBDA, 
) ; 

$STATE CENDPRO, 

:x.x I 1000 I f 
:x.x '2000 If 
x.x 'aooo' , 
·xx 'eooo', 
ENDPRO> 

( I f I f NEXT_ PRO) , 
(')',OPTIONS> 
) ; 

FI LE_ PROTECT> , 
FI LE_ PROTECT> , 
FI LE_ PROTECT> , 
FI LE_ PROTECT) , 

SubexPression to Parse a UIC strins. 

$STATE CUIC, 
( I [ I ) 

) ; 

$STATE ( , 
<TPA$_0CTAL,,,, UIC_GROUP> 
) ; 

$STATE < , 
(If I) 

) ; 

$STATE < , 
<TPA$_0CTAL,,,, UIC_MEMBER> 
) ; 

$STATE < , 
(']', TPA$_EXIT, CHECK_LJIC> 
) ; 

Subexpression to ~arse a Seneral directory strins 

$STATE <NAME, 
( I [ I ) 

) ; 

$STATE <NAMEO, 
CTPA$_STRING,, STORE-NAME> 
) ; 

$STATE < , 
( I. I , NAMEO) , 
(I] If TPA$_EXIT) 
) ; 

PSECT OWN = $OWN$; 
PSECT GLOBAL = $GLOBAL$; 
GLOBAL ROUTINE CREATE-DIR <START_ADOR, CLI-CALLBACK> 

!+ 

!-

This is the Main ProsraM of the CREATE/DIRECTORY utility. It Sets 
the coMMand line froM the CLI and Par~es it with TPARSE. 

G-10 Sample Programs Using LIB$TPARSE 



LOCAL 
STATUS; Status f roM LIB$TPARSE 

EXTERNAL ROUTINE 
LIB$TPARSE ADDRESSING-MODE <GENERAL); 

Call the CLI to obtain the coMMand line. 

C • CL I _CALLBACK> C REQ_COMMAND t 0, 0 > ; 

CoPY the inPut strins descriPtor into the TPARSE control block 
and call TPARSE. Note that iMPure storase is assuMed to be zero. 

TPARSE_BLOCKCTPA$L_STRINGCNTJ = .REQ_COMMANDCCLI$W_RQSIZEJ; 
TPARSE_BLOCKCTPA$L_STRINGPTRJ = .REQ_COMMANDCCLI$L_RQADDRJ; 
STATUS= LIB$TPARSE CTPARSE-BLOCKt UFD_STATEt UFD_KEY>; 
IF NOT .STATUS 
THEN 

<Handle syntax error> 

Parsins is coMPlete. The utility MaY now so about its business. 

RETURN 1; 
END; End of routine CREATE-DIR 

!+ 
! 
! Parser action routines 

!-

Shut off explicit blanK Processins after Passins the coMMand naMe. 

ROUTINE BLANKS_OFF = 
BEGIN 
TPARSE_ARGS; 

APCTPA$V_BLANKSJ = o; 
1 
END; 

Check the UIC for lesal value ranse. 

ROUTINE CHECK_UIC = 
BEGIN 
TPARSE_ARGS; 

IF .UIC_GROUP<16t16> NEQ 0 
OR .UIC-MEMBER<16t16> NEQ 0 
THEN RETURN o; 

Sample Programs Using LIB$TPARSE G-11 



FILE_OWNER<0,16> = .UIC-MEMBER; 
FILE_OWNER<lGtlG> = .UIC_GROUP; 
1 
END; 

Store a directory naMe coMPonent. 

ROUTINE STORE-NAME 
BEGIN 
TPARSE_ARGS; 

IF .NAME_COUNT GEQU 8 
OR .APCTPA$L_TOKENCNTJ GTRU 8 
THEN RETURN 0; 
NAME_COUNT = .NAME_COUNT + 1; 
NAME_VECTOR C.NAME_COUNT, STRING_COUNTJ = .APCTPA$L_TOKENCNTJ; 
NAME_VECTOR C.NAME_COUNT, STRING_ADDRJ = .APCTPA$L_TOKENPTRJ; 
1 
END; 

Convert a UIC into its equivalent directory file naMe. 

ROUTINE MAKE_UIC 
BEGIN 
TPARSE_ARGS; 

END 

IF .UIC_GROUP<a,a> NEQ 0 
DR .UIC_MEMBER<B,8> NEQ 0 
THEN RETURN o; 
DIRNAMEl [OJ = 0; 
DIRNAME1[1J = UIC_STRING; 
$FAOL CCTRSTR = UPLIT CG, UPLIT BYTE C'!DB!DB')), 

OUTBUF DIRNAMEl, 
PRMLST = UIC_GROUP 
) ; 

END; 

ELUDOM End of Module CREATE_DIR 

G-12 Sample Programs Using LIB$TPARSE 



Index 

A 
Absolute value, complex number, 4-20 
Access types, See also Parameter access types 

parameter characteristics, A-2 
Add two decimal strings, STR$ADD, 3-49 
Algorithms 

mathematics procedures, 4-3 
Allocated string length 

returning dynamic output strings, 2-14 
Allocation of virtual memory, 5-2, A-21 

using system services, 5-5 
Alphabet, LIB$TPARSE, 7-3 to 7-5 
Append a string, STR$APPEND, 3-54 
Arc cosine 

algorithms, D-1 
procedures, 4-9 

Arc sine 
algorithms, D-2 
procedures, 4-10 

Arc tangent 
algorithms, D-2 
procedures, 4-11 

Arc tangent with two parameters 
algorithms, D-5 
procedures, 4-11 

Argument list 
format, C-4 
high-level languages, C-5 
language extensions for argument passing, 

C-6 
order of evaluation. C-5 

ASCII, 3-68 to 3-71 
ASCII space character 

use in input string parameter, 2-13 
use in output string parameters, 2-14 

ASCII to EBCDIC translation table, 
LIB$AB_ASC_EBC, 3-68 

$ASCTIM, 3-99, 3-102 
Assembly languages, 1-5 

MACRO, 1-1, 1-5 
Assign channel with mailbox, 

LIB$ASN_WTH_MBX, 3-7 
AST in progress, LIB$AST_IN_pROG, 3-104 
Atomic data types, C-12 

B 
BAS$ 

BASIC-specific support procedures, 1-4 

facility name, 2-6 
BASIC, 1-1 

calling sequence, 2-24 
function return values, 2-26 
passing dynamic string parameters, 2-13 
passing fixed-length string parameters, 2-13 
passing parameters, 2-24 
passing parameters by descriptor, 2-25 
passing parameters by immediate value, 2-10, 

2-25 
passing parameters by reference, 2-10, 2-25 
return status, 2-25 

BASIC-specific support procedures, BAS$, 2-6 
BLISS, 1-1 

calling sequence, 2-22 
coding a state table, 7-8 
entry points, JSB, 2-6 
function return values, 2-23 
JSB entry points, 2-6, 2-23 
passing parameters, 2-22 
passing parameters by immediate value, 2-10 
passing parameters by reference, 2-10 
return status, 2-23 

c 
CALL, 2-5 

procedure call, 2-1 
CALL entry points, 2-3 

optional parameters, 2-5 
Call summary, 2-2 
CALLG, C-4 

instruction, E-2, F-1 
in MACRO, 2-19 
procedure call, 2-3 

Calling conventions 
mathematics procedures, 4-2 

Calling library procedures, 2-1 
in BASIC, 2-23 to 2-27 
in BLISS, 2-22 to 2-23 
calling other library procedures, 2-2 
calling V AXNMS, 2-2 
in COBOL, 2-27 to 2-31 
in FORTRAN, 2-31 to 2-35 
in MACRO, 2-18 to 2-21 
in PASCAL, 2-35 to 2-38 
procedure call summary, 2-2 
restrictions, 2-2 

Index-1 



Calling sequence, 2-2, C-4 
in BASIC, 2-24 
in BLISS, 2-22 
in COBOL, 2-27 
in FORTRAN, 2-32 
in MACRO, 2-18 
in PASCAL, 2-35 

Calling the Run-Time Library, 2-2f 
CALLS, C-4 

instruction, E-2, F-3 
in MACRO, 2-19 
passing parameters by descriptor in MACRO, 

2-11 
procedure call, 2-3 

Chain to program, LIB$RUN_pROGRAM, 3-8 
Change history 

VAX-11 Procedure Calling Standard, C-33 
Class code field 

passing input parameter strings, 2-13 
passing string parameters, 2-12 

$CNTREG, 5-5 
COB$ 

COBOL-specific support procedures, 1-4 
facility name, 2-6 

COBOL, 1-1 
calling sequence, 2-27 
passing parameters, 2-29 
passing parameters by descriptor, 2-30 
passing parameters by immediate value, 2-30 
passing parameters by reference, 2-30 
return status, 2-30 

COBOL intermediate temporary data types, 
C-15 

COBOL-specific support procedures, COB$, 2-6 
Common control 1/0 procedures, 3-5 to 3-23, 

A-3 
Common logarithm 

algorithms, D-6 
procedures, 4-12 

Compare two strings for equal, 
STR$COMPARE_EQL, 3-38 

Compare two strings, STR$COMPARE, 3-38 
Compiler-generated procedures, 1-1 
Completion codes, 1-9 
Completion value, 1-5 
Complex exponentiation 

mathematics procedures, 4-33t, A-16 
Complex functions 

mathematics procedures, 4-20, A-14 
Complex, make from floating-point, 4-24 
Concatenate two or more strings, 

STR$CONCAT, 3-54 
Condition handler 

deleting, LIB$REVERT, 6-10 

Index-2 

establishing, LIB$ESTABLISH, 6-8 
Condition handlers 

in BASIC, 6-21 
in BLISS, 6-22 
continuing execution, 6-29 
default handlers, 6-11 
establishment of, 6-8 
in FORTRAN, 6-21 
in MACRO, 6-22 
mechanism argument vectors, 6-25 
memory usage, C-29 
options, C-24 
properties, C-28 
request to unwind, 6-30, C-30 
resignaling, 6-28 
restrictions for data access, 6-27 
returning from, 6-28, C-29 
signal argument vectors, 6-22 
signal handling procedures, 6-37 
SS$_CONTINUE, 6-29 
SS$-RESIGNAL, 6-28 
stack scan, 6-6 
user established, 6-8 to 6-11 
user-written, B-2 
VAX-11 Condition Handling Facility, C-23 
writing, 6-21 

Condition value symbols, 2-6, B.:..1 
examples, 2-7 
facility numbers, 2-5 
general form, 2-6 

Condition values, 6-5 
definition, C-7 
facility numbers, 2-5 
format, C-7 
severity codes, C-9 
use of, C-10 

Conjugate, complex number, 4-21 
Control table initialization, 8-11 
Conventions, See Naming conventions. 
Convert binary date/time to 

ASCII, LIB$SYS_ASCTIM, 3-99 
Convert binary to formatted ASCII procedures, 

3-86 to 3-88 
Convert floating to text, FOR$CVT_x_Ty, 

3-85 
Convert longword to text (hex), 

OTS$CVT__L_TZ, 3-84 
Convert longword to text (integer), 

OTS$CVT __L_ TI, 3-81 
Convert longword to text (logical), 

OTS$CVT__L_TL, 3-82 
Convert longword to text (octal), 

OTS$CVT__L_TO, 3-83 



Convert siw:ial to return status, 
LIB$SIG_TO-RET, 6-42 

Convert text (decimal) to binary, 
LIB$CVT _DTB, 3-80 

Convert text (hex) to binary, LIB$CVT-HTB, 
3-80 

Convert text (hex) to longword, 
OTS$CVT_TZ_L, 3-79 

Convert text (integer) to longword, 
OTS$CVT_TI_L, 3-76 

Convert text (logical) to longword, 
OTS$CVT_TL_L, 3-77 

Convert text (octal) to binary, 
LIB$CVT_OTB, 3-80 

Convert text (octal) to longword, 
OTS$CVT_TO_L, 3-78 

Convert text to floating, OTS$CVT _ T _x, 

3-74 
Copy a source string to a destination string, 

3-55 to 3-58 
Copy source string by descriptor 

LIB$SCOPY_DXDX, 3-56 
OTS$SCOPY_DXDX, 3-56 
STR$COPY_DX, 3-56 

Copy source string by reference 
LIB$SCOPY_R_DX, 3-56 
OTS$SCOPY_R_DX, 3-56 
STR$COPY_R, 3-56 

Cosine 
algorithms, D-6 
complex number, 4-21 
procedures, 4-13 

CRC 
calculate, LIB$CRC, 3-105 
construct table, LIB$CRC_ TABLE, 3-106 

$CRETV A, 5-5 
CRFCTLTABLE, 8-4 
CRFFIELDEND, 8-6 
Cross-reference listings 

steps in producing, 8-2 
synopsis by value, 8-10 
types of, 8-2 

Cross-reference procedures, 1-7, A-24 
entry points, 8-6 
how to link, 8-14 
interface, 8-1 
output, 8-13 
output listings, 8-2 
table initialization macros, 8-4 
user examples, 8-10 to 8-14 

Currency symbol, LIB$CURRENCY, 3-16 
Cursor positioning on a screen, 3-24 

D 
Data forms. See Parameter data forms 
Data types. See also Parameter data types 

parameter characteristics, A-2 
VAX-11 Procedure Calling Standard, 

C-12 to C-15 
Date 

return system, as 9-byte string, FOR$DATE, 
3-101 

Date/time 
return system, as a string, 

LIB$DATE_TIME, 3-103 
Date/time utility procedures, 3-98 to 3-104, A-9 
Day number 

return as a longword integer, LIB$DAY, 3-102 
$DCLEXH, E-2, E-5 
Decimal overflow 

exception condition, 6-12 
Default handlers, 6-11, C-24 

catch-all, 6-11 
last-chance, 6-12 
outputting messages, 6-12 
trace back, 6-11 

Definitions 
VAX-11 Procedure Calling Standard, C-3 

$DELTVA, 5-5 
%DESCR, 2-33, C-6 
Descriptor formats 

contiguous arrays, C-17 
decimal scalar strings, C-20 
dynamic strings, C-16 
fixed-length strings, C-16 
label incarnations, C-20 
labels, C-20 
noncontiguous arrays, C-20 
passing strings as parameters, 2-12 
procedure incarnations, C-20 
procedures, C-19 
prototype, C-16 
reserved classes, C-23 
scalar data, C-16 
varying strings, C-17 
VAX-11 Procedure Calling Standard, C-15 to 

C-23 
Descriptor mechanism 

passing parameters in BASIC, 2-11, 2-25 
passing parameters in COBOL, 2-30 
passing parameters in FORTRAN, 2-11, 2-33 
passing parameters in high-level languages, 

2-11 
passing parameters in MACRO, 2-11 
passing parameters in PASCAL, 2-11, 2-36 

Index-3 



Digit S.eparator symbol, LIB$DIGIT _SEP, 3-17 

DIGITAL facility naming registry, 2-5 
Division, complex numbers, 4-22 
Dynamic string 

allocation, LIB$SGET1-DD, 5-16 
allocation, OTS$SGET1-DD, 5-16 
allocation, STR$GET1-DX, 5-16 
freeing one, LIB$SFREE1-DD, 5-19 
freeing one, OTS$SFREE1-DD, 5-19 
freeing one, STR$FREE1-DX, 5-19 

Dynamic strings 
freeing n, LIB$SFREEN_DD, 5-21 
freeing n, OTS$SFREEN-DD, 5-21 
returning of output parameter strings, 2-14 

E 
EBCDIC, 3-68 to 3-71 
EBCDIC to ASCII translation table, 

LIB$AB-EBC_ASC, 3-70 
Emulate VAX-11 instructions, 

LIB$EMULATE, 3-106 
Enable/disable decimal overflow, 

LIB$DEC_QVER, 6-13 
Enable/disable floating underflow, 

LIB$FLT_UNDER, 6-13 
Enable/disable hardware conditions, 6-12, A-23 
Enable/disable integer overflow, 

LIB$INT_QVER, 6-14 
$END_STATE 

format, 7-8 
Entry point 

CALL, 1-4 
JSB, 1-4 

Entry point name, 2-3 
Entry point names, 2-5 to 2-6 

mathematics procedures, 4-1 
Entry point naming conventions, 2-5 
Entry points 

cross-reference procedures, 8-6 
JSB, 2-6, 1-4 

Erase line 
LIB$ERASE_LINE, 3-25 
SCR$ERASE-LINE, 3-25 

Erase page 
LIB$ERASE_FAGE, 3-26 
SCR$ERASE_FAGE, 3-26 

Error handling 
mathematics procedures, 4-3 

Error messages 
descriptions, B-3 
general utility procedures, B-4 to B-7 
hardware trap conditions, B-11 to B-13 

lndex-4 

HELP file, B-3 
language-independent support procedures, 

B-9 
mathematics procedures, B-7 to B-8 
$PUTMSG, 6-34 
STR$ facility procedures, B-10 
user logging of, 6-34 

Error severity, B-2 
Error signaling, B-1 

exceptions, B-2 
Errors 

from Run-Time Library Procedures, 2-17 
Establishing a condition handler, A-23 

VAX-11 Condition Handling Facility, C-25 
Evaluate polynomial procedures, 

LIB$POLYz, 3-111 
Event flag 

allocation of local, LIB$GET-EF, 5-13 
freeing local, LIB$FREE-EF, 5-13 
reserving local, LIB$RESERVE-EF, 5-14 

Event flags, local, allocation of, 5-12, A-22 
Exception conditions, 6-3 

decimal overflow, 6-12 
ERR= construct, 6-7 
floating-point underflow, 6-12 
generating signals, 6-15 
hardware processor detected, 6-4, 6-5, 6-12, 

C-23, C-29 
integer overflow, 6-12 
language-support procedures, 6-7, 6-8 
LIB$SIGNAL, 6-6 
LIB$STOP, 6-6 
mathematics procedures, 6-7 
other hardware & software detected, 6-4 
Run-Time Library (software) detected, 6-4 
signaling messages, 6-18 
software detected, C-23, C-28 
system services, 6-8 
VAX-11 Condition Handling Facility, C-23 
VAX-11 RMS, 6-8 

Exception vectors, 6-7 
last-chance, 6-5 
primary, 6-5 
secondary, 6-5 

Execute Command, LIB$DQ_CQMMAND, 3-8 
$EXIT, C-8, E-2, E-6 
Exponential 

algorithms, D-6 
complex number, 4-23 
procedures, 4-14 

Exponentiation code-support 
algorithms, D-19 to D-22 
mathematics procedures, 4-27t, A-16 



$EXPREG, 5-5 
Extended multiply/integerize procedures, 

LIB$EMODz, 3-109 
Extract a substring of a string 

STR$LEFT, 3-59 
STR$LEN_EXTR, 3-59 
STR$POS_EXTR, 3-59 
STR$RIGHT, 3-59 

Extract a zero-extended field, LIB$EXTZV, 
3-91 

Extract and sign-extend a field, LIB$EXTV, 
3-90 

F 
Facility names, 2-6. See also Facility numbers 
BAS$, BASIC-specific support procedures, 2-6 

COB$, COBOL-specific support procedures, 
2-6 

FOR$, FORTRAN-specific support 
procedures, 2-6 

LIB$, general utility procedures, 2-6 
MTH$, mathematics procedures, 2-6 
OTS$, language-independent support 

procedures, 2-6 
PAS$, PAS CAL-specific support procedures, 

2-6 
STR$, string procedures, 2-6 

Facility number 
use in condition value symbols, 2-5 
use in condition values, 2-5 
use in messages, 2-5 
use in procedure return status codes, 2-5 
use in signaled conditions, 2-5 

Facility symbols, 2-6. See also Facility names 
$FAO, 3-86 to 3-88, 6-11, 6-16, 6-18 
$FAOL, 3-88 
Fill characters in passing parameters, 2-13 
Find first clear bit, LIB$FFC, 3-92 
Find first set bit, LIB$FFS, 3-93 
Finite-state machine, 7-2 
Finite-state parsers 

alphabet, 7-2 
fundamentals of, 7-2 
state transition, 7-2 
token, 7-2 

Fixup floating reserved operand, 
LIB$FIXUP _FLT, 6-39 

Flag usage 
cross-reference procedures, 8-5 

Floating overflow 
software check, 6-7 

Floating-point functions 
algorithms, D-1 to D-19 
mathematics procedures, 4-9, A-11 

Floating-point underflow 
exception condition, 6-12 

Floating underflow 
software check, 6-8 

FOR$ 
facility name, 2-6 
FORTRAN-specific support procedures, 1-4 

FOR$CNV-1N_DEFG, 3-74, A-7 
FOR$CNV-1N-1, 3-76, A-7 
FOR$CNV-1N_L, 3-77, A-7 
FOR$CNV-1N_O, 3-78, A-7 
FOR$CNV-1N_Z, 3-79, A-8 
FOR$CNV_OUT_y, 3-85 
FOR$CNV_OUT_D, A-8 
FOR$CNV_OUT_E, A-8 
FOR$CNV_OUT_F, A-9 
FOR$CNV_OUT_G, A-9 
FOR$CNV_OUT-1, 3-81, A-8 
FOR$CNV_OUT_L, 3-82, A-8 
FOR$CNV_OUT_O, 3-83, A-8 
FOR$CNV_OUT_Z, 3-84, A-8 
FOR$CVT_x_TD, A-8 
FOR$CVT_x_TE, A-8 
FOR$CVT_x_TF, A-8 
FOR$CVT_x_TG, A-9 
FOR$CVT_x_Ty, 3-85 
FOR$DATE, 3-101, A-10 
FOR$IDATE, 3-100, A-10 
FOR$JDATE, 3-100, A-10 
FOR$SECNDS, 3-101, A-10 
FOR$TIME. 3-102, A-10 
Formatted ASCII output, LIB$SYS_F AO, 

3-87 
Formatted ASCII output with list, 

LIB$SYS_FAOL, 3-88 
Formatted 1/0 conversion procedures, 3-73 to 

3-88 
FORTRAN, 1-1 

calling sequence, 2-32 
function return values, 2-34 
passing fixed-length string parameters, 2-13 
passing parameters, 2-32 
passing parameters by descriptor, 2-33 
passing parameters by immediate value, 2-10, 

2-33 
passing parameters by reference, 2-10, 2-33 
return status, 2-33 

FORTRAN calling sequence 
CALL statement, 2-3 
example, 2-3 
function reference, 2-3 

FORTRAN-specific support procedures, FOR$, 
2-6 

Function and procedure names as parameters 
in PASCAL, 2-37 

Index-5 



Function return values 
in BASIC, 2-26 
in BLISS, 2-23 
in FORTRAN, 2-34 
in MACRO, 2-21 
in PASCAL, 2-38 
VAX-11 Procedure Calling Standard, C-6 

Function value, 1-5 
description of, 1-8 

G 
General utility procedures, 1-6, 3-lt to 3-5t 

common control 1/0, 3-5, A-3 
date/time, 3-98, A-9 
error messages, B-4 to B-7 
formatted 1/0 conversion, 3-73, A-7 
LIB$, 2-6 
miscellaneous, 3-104, A-10 
performance measurements, 3-94, A-9 
string manipulation, 3-35, A-5 
terminal independent screen, 3-23, A-4 
variable bit field instructions, 3-88, A-9 

Generate a string, STR$DUPLCHAR, 3-61 
Generating signals 

exception conditions, 6-15 
signal argument list, 6-19 

Get Line from foreign command line, 
LIB$GET-FOREIGN, 3-11 

Get line from SYS$COMMAND, 
LIB$GET_COMMAND, 3-9 

Get line from SYS$INPUT, 
LIB$GET-1NPUT, 3-9 

Get screen information 
LIB$SCREEN-1NFO, 3-27 
SCR$SCREEN-1NFO, 3-27 

Get string from common, 
LIB$GET_COMMON, 3-13 

Get system message, LIB$SYS_GETMSG, 
3-13 

Get text from screen 
LIB$GET_SCREEN, 3-28 
SCR$GET_SCREEN, 3-28 

$GETMSG, 3-13 

H 
Hardware trap conditions 

error messages, B-11 to B-13 
Heap storage 

allocation of, in BASIC, 5-4 
allocation of, in PASCAL, 5-5 
allocation of, in STR$, 5-4 

Index-6 

HELP file, error messages, B-3 
High-level languages 

BASIC, 1-1 
COBOL, 1-1 
FORTRAN, 1-1 
parameter passing mechanisms, 2-10 
PASCAL, 1-1 
passing parameters, 2-12 
supported languages, 1-1 

Hyperbolic cosine 
algorithms, D-8 
procedures, 4-15 

Hyperbolic sine 
algorithms, D-9 
procedures, 4-16 

Hyperbolic tangent 
algorithms, D-10 
procedures, 4-16 

1/0 Procedures, common control, 2-12 to 2-17 
Image activator, 1-2 
Image initialization, 2-1, E-1 

argument list, E-3 
declaring procedures, E-4 
dispatching procedures, E-5 
establishing a handler, E-5 
procedure options, E-5 
self-initializing, E-1 
special, E-1 

Image resources, 1-5 
Image termination, E-1, E-6 
Imaginary part, complex number, 4-23 
Immediate value mechanism 

passing parameters in BASIC, 2-10, 2-25 
passing parameters in BLISS, 2-10 
passing parameters in COBOL, 2-30 
passing parameters in FORTRAN, 2-10, 2-33 
passing parameters in MACRO, 2-10 
passing parameters in PASCAL, 2-10, 2-36 

Implicit inputs 
description of, 1-9 

Implicit outputs 
description of, 1-9 

Implicit procedure calls by compilers, 2-12 
Initialization 

restrictions on calling library procedures, 2-2 
Initialization procedures, 2-1 
$INIT_STATE 

format, 7-5, 7-8 
Input conversion procedures, 3-74 to 3-80, A-7 
Input scalar parameters, 2-12 
Input strings, passing parameters, 2-13 



Insert a variable bit field, LIB$INSV, 3-89 
Insert key, LIB$CRF-1NS_KEY, 8-6 
Insert reference, LIB$CRF-1NS_REF, 8-7 
Integer overflow .. 

exception condition, 6-12 
software check, 6-7 

Interface 
cross-reference procedures, 8-1 
user-action routines, 7-13 

J 
JSB 

procedure call, 2-3 
JSB entry points, 1-4, 2-3 

in BLISS, 2-23 
in MACRO, 2-19 
optional parameters, 2-5 

L 
Language-independent procedures, 1-1, 1-8 
Language-independent support procedures 

error messages, B-9 
Language-independent support procedures, 

OTS$, 2-6 
Language-specific procedures, 1-7 
Language-support procedures, 1-7 

exception conditions, 6-7, 6-8 
Languages 

assembly languages, 1-5 
high-level languages, 1-1 
native-mode languages, 1-4 

Last-chance handler 
default handler, 6-12 

LIB$ 
facility name, 2-6 
general utility procedures, 1-4 
string conventions, 3-36 

LIB$AB_ASC_EBC, 3-68 
LIB$AB_EBC_ASC, 3-70 
LIB$ADDX, 3-107, A-10 
LIB$ASN_WTH_MBX, 3-7, A-3 
LIB$AST-1N_FROG, 3-104, A-10 
LIB$CHAR, 3-46 to 3-48, A-5 
LIB$CRC, 3-105, A-10 
LIB$CRC_TABLE, 3-106, A-10 
LIB$CRF_JNS_KEY, 8-2, 8-6, A-24 
LIB$CRF -1NS_REF, 8-2, 8-7, A-24 
LIB$CRF_OUTPUT, 8-2, 8-9, A-24 
LIB$CURRENCY, 3-16, A-3 
LIB$CVT_DTB, 3-80, A-8 
LIB$CVT_HTB, 3-80, A-8 
LIB$CVT _OTB, 3-80, A-8 
LIB$DATE_TIME, 3-103, A-10 
LIB$DAY, 3-102, A-10 

LIB$DEC_OVER, 6-13, A-23 
LIB$DIGIT_SEP, 3-17, A-3 
LIB$DOWN_SCROLL, 3-29, A-4 
LIB$DO_COMMAND, 3-8, A-3 
LIB$EMODz, 3-109, A-10 
LIB$EMULATE, 3-106, A-10 
LIB$ERASE_LINE, 3-25, A-4 
LIB$ERASE_FAGE, 3-26, A-4 
LIB$ESTABLISH, 6-8, A-23 

example, 6-9 
in FORTRAN, 6-9 
in MACRO, 6-9 
in other V AX-11 languages, 6-9 
in PASCAL, 6-9 

LIB$EXTV, 3-90, A-9 
LIB$EXTZV, 3-91, A-9 
LIB$FFC, 3-92, A-9 
LIB$FFS, 3-93, A-9 
LIB$FIXUP _FLT, 6-39, A-23 

condition values, 6-41 
FORTRAN example, 6-40 

LIB$FLT_UNDER, 6-8, 6-13, A-23 
LIB$FREE_EF, 5-13, A-22 
LIB$FREE_LUN, 5-12, A-22 
LIB$FREE_TIMER, 3-94, A-9 
LIB$FREE_ VM, 5-8, 5-9, A-22 
LIB$GET_COMMAND, 3-9, A-3 
LIB$GET_COMMON, 3-13, A-3 
LIB$GET_EF, 5-13, A-22 
LIB$GET_FOREIGN, 3-11, A-3 
LIB$GET-1NPUT, 3-9, 3-29, A-3 
LIB$GET_LUN, 5-11, A-22 
LIB$GET_SCREEN, 3-28, A-4 
LIB$GET_VM, 5-6, 5-9, A-21 
LIB$ICHAR, 3-46 to 3-48, A-5 
LIB$INDEX, 3-41, A-5 
LIB$INITIALIZE, E-1 to E-3, E-6 
LIB$INIT_TIMER, 3-94, A-9 
LIB$INSQHI, 3-113, A-11 
LIB$INSQTI, 3-114, A-11 
LIB$INSV, 3-89, A-9 

example, F-2, F-4 
LIB$INT _OVER, 6-14, A-23 
LIB$LEN, 3-40, A-5 
LIB$LOCC, 3-39, A-5 
LIB$LOOKUP _KEY, 7-1, 7-23, A-23 

calling format, 7-23 
LIB$LP _LINES, 3-18, A-4 
LIB$MATCHC, 3-41, A-5 
LIB$MATCH_COND, 6-22, 6-37, A-23 

FORTRAN example, 6-38 
LIB$MOVTC, 3-66, A-7 
LIB$MOVTUC, 3-67, A-7 
LIB$POLYz, 3-111, A-10 

Index-7 



LIB$PUT _BUFFER, 3-30 to 3-32, A-4 
LIB$PUT_COMMON, 3-21, A-4 
LIB$PUT_OUTPUT, 3-20, A-4 
LIB$PUT_SCREEN, 3-31 to 3-33, A-4 
LIB$RADI:x_pOJNT, 3-19, A-4 
LIB$REMQHI, 3-115, 3-117, A-11 
LIB$REMQTI, 3-116, A-11 
LIB$RESERVE__EF, 5-14, A-22 
LIB$REVERT, 6-10, A-23 

in BASIC, 6-10 
example, 6-10 
in FORTRAN, 6-10 
in MACRO, 6-10 
in other V AX-11 languages, 6-10 
in PASCAL, 6-10 

LIB$RUN_FROGRAM, 3-8, A-3 
LIB$SCANC, 3-43, A-5 
LIB$SCOPY__DXDX, 3-56, 5-16, A-6 
LIB$SCOPY__DXDX6, 3-56, A-6 
LIB$SCOPY __R_DX, 3-56, A-6 
LIB$SCOPY__R_DX6, 3-56, A-6 
LIB$SCREEN__INFO, 3-27, A-4 
LIB$SET_BUFFER, 3-30 to 3-32, 3-34, A-4 
LIB$SET _CURSOR, 3-35, A-4 
LIB$SFREE1__DD, 5-19, A-22 
LIB$SFREE1__DD6, 5-19, A-22 
LIB$SFREEN_])D, 5-21, A-22 
LIB$SFREEN__DD6, 5-21, A-22 
LIB$SGET1__DD, 5-16, A-22 
LIB$SGET1__DD_R6, 5-16, A-22 
LIB$SHOW_TIMER, 3-94, A-9 
LIB$SHOW_VM, 5-9, A-22 
LIB$SIGNAL, 6-6, 6-15, 6-21, A-23, B-4, C-26, C-31 

example, 6-16 
LIB$SIG_TO-RET, 6-42, A-23 

FORTRAN example, 6-42 
LIB$SIM_TRAP, 3-107, 3-109, A-10 
LIB$SKPC, 3-44, A-5 
LIB$SPANC, 3-45, A-5 
LIB$STAT_TIMER, 3-94, A-9 
LIB$STAT_VM, 5-9, A-22 
LIB$STOP, 6-6, 6-18, 6-21, A-23, B-4, C-26, C-31 
LIB$SUBX, 3-107, A-10 
LIB$SYS_ASCTIM, 3-99, A-9 
LIB$SYS_FAO, 3-87, A-9 
LIB$SYS_F AOL, 3-88, A-9 
LIB$SYS_GETMSG, 3-13, A-3 
LIB$SYS_TRNLOG, 3-22, A-4 
LIB$TPARSE, 7-1, A-23 

action routines, 7-2 
alphabet, 7-3 
BLISS example, G-6 
calling, 7-2 
calling action routines, 7-13 
calling format, 7-10 

lndex-8 

composition of state table, 7-14 
MACRO example, G-1 
parameter block description, 7-11 
parameter block fields, 7-11 to 7-13 
state table processing, 7-14 
subexpressions, 7-17 

LIB$TRA_ASC__EBC, 3-68, A-7 
LIB$TRA__EBC_ASC, 3-70, A-7 
LIB$_AMBKEY, B-4 
LIB$_ATTCONSTO, B-5 
LIB$_BADBLOADR, B-5 
LIB$_BADBLOSIZ, B-5 
LIB$_BADSTA, B-5 
LIB$ __ EF_ALRFRE, B-5 
LIB$_EL_ALRRES, B-5 
LIB$_FATERRLIB, B-5 
LIB$__1NPSTRTRU, B-5 
LIB$__1NSEF, B-6 
LIB$__1NSLUN, B-6 
LIB$__1NSTYPE, B-6 
LIB$__1NSVIRMEM, B-6 
LIB$__1NTLOGERR, B-6 
LIB$__1NV ARG, B-6 
LIB$__1NVSCRPOS, B-6 
LIB$__1NVSTRDES, B-6 
LIB$---LUNALRFRE, B-6 
LIB$---LUNRESSYS, B-6 
LIB$__NOTFOU, B-6 
LIB$_FUSSTAOVE, B-7 
LIB$_SIGNO_ARG, B-7 
LIB$_SYNTAXERR, B-7 
LIB$_UNRKEY, B-7 
LIB$ __ USEFLORES, B-7 
Library facility prefixes, 2-3, 2-5 
Library naming conventions, 2-5, 2-5 to 2-7 
Library procedure call summary, 2-2 
Library procedures, E-1 
Lines per line printer page, number of 

LIB$LP ---LINES, 3-18 
LINK 

command, 1-2 
/include, 1-2 

Linking 
cross-reference sharable image, 8-14 

Locate a character, LIB$LOCC, 3-39 
Logarithm, common 

algorithms, D-6 
procedures, 4-12 

Logarithm, natural 
algorithms, D-11 
complex number, 4-25 
procedures, 4-17 

Logical unit number 
allocation of, LIB$GET---LUN, 5-11 
freeing, LIB$FREE---LUN, 5-12 



M 
MACRO, 1-1 

CALLG instruction, 2-19 
calling sequence, 2-18 
CALLS instruction, 2-19 
coding a state table, 7-5 
entry points, JSB, 2-6, 2-19 
function return values, 2-21 
JSB entry points, 2-6, 2-19 
passing parameters, 2-20 
passing parameters by immediate value, 2-10 
passing parameters by reference, 2-11 
return status, 2-20 

MACRO calling sequence 
CALLG, 2-3, 2-18 to 2-21 
CALLS, 2-3, 2-18 to 2-21 
example, 2-3 
JSB, 2-3 

Main procedure, 2-1 
Main program, 2-1 
Matching condition values, 

LIB$MATCH_COND, 6-37 
Mathematics procedures, 1-6, 4-4t to 4-8t 

algorithms, D-1 to D-22 
complex exponentiation, 4-33 to 4-35, A-16 
complex functions, 4-20 to 4-27, A-14 
error messages, B-7 to B-8 
exception conditions, 6-7 
exponentiation code-support, 4-27 to 4-33, 

A-16 
floating-point functions, 4-9 to 4-19, A-11 
MTH$, 2-6 
processor-defined, 4-37 to 4-42, A-17 
random number generators, 4-36, A-17 

Mechanism argument vectors, C-28 
examples, 6-26 
in FORTRAN, 6-25 
in MACRO, 6-25 
stack unwinding, C-31 

Medium-level languages 
BLISS, 1-1 

Messages 
facility numbers, 2-5 

Miscellaneous data types, C-14 
Miscellaneous general utility procedures, 3-104 

to 3-117, A-10 
Month, day, year 

return as INTEGER*2, FOR$IDATE, 3-100 
return as INTEGER*4, FOR$JDATE, 3-100 

Move cursor up one line 
LIB$DOWN_SCROLL, 3-29 
SCR$DOWN_SCROLL, 3-29 

Move translated characters, LIB$MOVTC, 3-66 
Move translated until character, 

LIB$MOVTUC, 3-67 
MTH$ 

facility name, 2-6 
mathematics procedures, 1-4 

MTH$ABS, 4-39, A-19 
MTH$ACOS, 4-9, A-11, D-1 
MTH$ACOS_R4, 4-9, A-11 
MTH$AIMAG, 4-23, A-15 
MTH$AIMAXO, 4-40, A-20 
MTH$AIMINO, 4-41, A-20 
MTH$AINT, 4-38, A-18 
MTH$AINT_R2, A-18 
MTH$AJMAXO, 4-40, A-20 
MTH$AJMINO, 4-41, A-20 
MTH$ALOG, 4-17, A-13, D-11 
MTH$ALOG 10, 4-12, A-12, D-6 
MTH$ALOG 10_R5, 4-12, A-12 
MTH$ALOG_R5, 4-17, A-13 
MTH$AMAX1, 4-40, A-20 
MTH$AMIN1, 4-41, A-20 
MTH$AMOD, 4-41, A-21 
MTH$ANINT, 4-39, A-18 
MTH$ASIN, 4-10, A-11, D-2 
MTH$ASIN_R4, 4-10, A-11 
MTH$ATAN, 4-11, A-12, D-2 
MTH$ATAN2, 4~11, A-12, D-5 
MTH$ATAN_R4, 4-11, A-12 
MTH$CABS, 4-20, A-14 
MTH$CCOS, 4-21, A-14 
MTH$CDABS, 4-20, A-14 
MTH$CDCOS, 4-21, A-15 
MTH$CDEXP, 4-23, A-15 
MTH$CDLOG, 4-25, A-15 
MTH$CDSIN, 4-26, A-15 
MTH$CDSQRT, 4-27, A-16 
MTH$CEXP, 4-23, A-15 
MTH$CGABS, 4-20, A-14 
MTH$CGCOS, 4-21, A-15 
MTH$CGEXP, 4-23, A-15 
MTH$CGLOG, 4-25, A-15 
MTH$CGSIN, 4-26, A-16 
MTH$CGSQRT, 4-27, A-16 
MTH$CLOG, 4-25, A-15 
MTH$CMPLX, 4-24, A-15 
MTH$CONJG, 4-21, A-14 
MTH$COS, 4-13, A-12, D-6 
MTH$COSH, 4-15, A-13, D-8 
MTH$COS_R4, 4-13, A-12 
MTH$CSIN, 4-26, A-15 
MTH$CSQRT, 4-27, A-16 

Index-9 



MTH$CVT_DA_GA, 4-37, A-17 
MTH$CVT_D_G, 4-37, A-17 
MTH$CVT_GA_DA, 4-37, A-17 
MTH$CVT_G_D, 4-37, A-17 
MTH$DABS, 4-39, A-19 
MTH$DACOS, 4-9, A-11, D-1 
MTH$DACOS-R7, 4-9, A-11 
MTH$DASIN, 4-10, A-11, D-2 
MTH$DASIN-R7, 4-10, A-11 
MTH$DATAN, 4-11, A-12, D-3 
MTH$DATAN2, 4-11, A-12, D-5 
MTH$DATAN-R7, 4-11, A-12 
MTH$DBLE, 4-37, A-17 
MTH$DCMPLX, 4-24, A-15 
MTH$DCONJG, 4-21, A-14 
MTH$DCOS, 4-13, A-12, D-6 
MTH$DCOSH, 4-15, A-13, D-8 
MTH$DCOS-R7, 4-13, A-12 
MTH$DDIM, 4-40, A-19 
MTH$DEXP, 4-14, A-13, D-7 
MTH$DEXP-R6, 4-14, A-13 
MTH$DFLOOR, 4-38, A-17 
MTH$DFLOOR-R3, A-17 
MTH$DFLOTI, 4-38, A-17 
MTH$DFLOTJ, 4-38, A-17 
MTH$DIM, 4-40, A-19 
MTH$DIMAG, 4-23, A-15 
MTH$DINT, 4-38, A-18 
MTH$DINT-R4, A-18 
MTH$DLOG, 4-17, A-13, D-11 
MTH$DLOG10, 4-12, A-12, D-6 
MTH$DLOG10_R8, 4-12, A-12 
MTH$DLOG_R8, 4-17, A-13 
MTH$DMAX1, 4-40, A-20 
MTH$DMIN1, 4-41, A-20 
MTH$DMOD, 4-41, A-21 
MTH$DNINT, 4-39, A-18 
MTH$DPROD, 4-41, A-21 
MTH$DREAL, 4-25, A-15 
MTH$DSIGN, 4-42, A-21 
MTH$DSIN, 4-17, A-14, D-13 
MTH$DSINH, 4-16, A-13, D-9 
MTH$DSIN-R7, 4-17, A-14 
MTH$DSQRT, 4-18, A-14, D-16 
MTH$DSQRT-R5, 4-18, A-14 
MTH$DTAN, 4-19, A-14, D-18 
MTH$DTANH, 4-16, A-13, D-10 
MTH$DTAN-R7, 4-19, A-14 
MTH$EXP, 4-14, A-12, D-6 
MTH$EXP-R4, 4-14, A-12 
MTH$FLOATI, 4-37, A-17 
MTH$FLOATJ, 4-38, A-17 
MTH$FLOOR, 4-38, A-17 
MTH$FLOOR_JU, A-17 

Index-10 

MTH$GABS, 4-39, A-19 
MTH$GACOS, 4-9, A-11, D-1 
MTH$GACOS_R7, 4-9, A-11 
MTH$GASIN, 4-10, A-11, D-2 
MTH$GASIN_R7, 4-10, A-11 
MTH$GATAN, 4-11, A-12, D-4 
MTH$GATAN2, 4-11, A-12, D-5 
MTH$GATAN_R7, 4-11, A-12 
MTH$GCMPLX, 4-24, A-15 
MTH$GCONJG, 4-21, A-14 
MTH$GCOS, 4-13, A-12, D-6 
MTH$GCOSH, 4-15, A-13, D-8 
MTH$GCOS_R7, 4-13, A-12 
MTH$GDBLE, 4-37, A-17 
MTH$GDIM, 4-40, A-19 
MTH$GEXP, 4-14, A-13, D-7 
MTH$GEXP _R6, 4-14, A-13 
MTH$GFLOOR, 4-38, A-18 
MTH$GFLOOR.___R3, A-18 
MTH$GFLOTI, 4-38, A-17 
MTH$GFLOTJ, 4-38, A-17 
MTH$GIMAG, 4-23, A-15 
MTH$GINT, 4-38, A-18 
MTH$GINT-R4, A-18 
MTH$GLOG, 4-17, A-13, D-11 
MTH$GLOG 10, 4-12, A-12, D-6 
MTH$GLOG 10-R8, 4-12, A-12 
MTH$GLOG_R8, 4-17, A-13 
MTH$GMAX1, 4-40, A-20 
MTH$GMIN1, 4-41, A-20 
MTH$GMOD, 4-41, A-21 
MTH$GNINT, 4-39, A-18 
MTH$GPROD, 4-41, A-21 
MTH$GREAL, 4-25, A-15 
MTH$GSIGN, 4-42, A-21 
MTH$GSIN, 4-17, A-14, D-14 
MTH$GSINH, 4-16, A-13, D-9 
MTH$GSIN-R7, 4-17, A-14 
MTH$GSQRT, 4-18, A-14, D-17 
MTH$GSQRT-R5, 4-18, A-14 
MTH$GTAN, 4-19, A-14, D-19 
MTH$GTANH, 4-16, A-13, D-10 
MTH$GTAN_R7, 4-19, A-14 
MTH$HABS, 4-39, A-19 
MTH$HACOS, 4-9, A-11, D-2 
MTH$HACOS_R8, 4-9, A-11 
MTH$HASIN, 4-10, A-12, D-2 
MTH$HASIN_R8, 4-10, A-12 
MTH$HATAN, 4-11, A-12, D-4 
MTH$HATAN2, 4-11, A-12, D-5 
MTH$HATAN_R8, 4-11, A-12 
MTH$HCOS, 4-13, A-12, D-6 
MTH$HCOSH, 4-15, A-13, D-9 
MTH$HCOS-R5, 4-13, A-12 



MTH$HDIM, 4-40, A-19 
MTH$HEXP, 4-14, A-13, D-7 
MTH$HEXP __R6, 4-14, A-13 
MTH$HFLOOR, 4-38, A-18 
MTH$HFLOOR-R7, A-18 
MTH$HINT, 4-38, A-18 
MTH$HINT__R8, A-18 
MTH$HLOG, 4-17, A-13, D-12 
MTH$HLOG 10, 4-12, A-12, D-6 
MTH$HLOG 10__R8, 4-12, A-12 
MTH$HLOG__R8, 4-17, A-13 
MTH$HMAX1, 4-40, A-20 
MTH$HMIN1, 4-41, A-20 
MTH$HMOD, 4-41, A-21 
MTH$HNINT, 4-39, A-19 
MTH$HSIGN, 4-42, A-21 
MTH$HSIN, 4-17, A-14, D-14 
MTH$HSINH, 4-16, A-13, D-10 
MTH$HSIN--R5, 4-17, A-14 
MTH$HSQRT, 4-18, A-14, D-17 
MTH$HSQRT _RS, 4-18, A-14 
MTH$HTAN, 4-19, A-14, D-19 
MTH$HTANH, 4-16, A-13, D-10 
MTH$HTAN__R5, 4-19, A-14 
MTH$IIABS, 4-39, A-19 
MTH$IIAND, 4-40, A-19 
MTH$IIDIM, 4-40, A-19 
MTH$IIDINT, 4-38, A-18 
MTH$IIDNNT, 4-39, A-18 
MTH$IIEOR, 4-40, A-19 
MTH$1IFIX, 4-37, A-17 
MTH$IIGINT, 4-38, A-18 
MTH$IIGNNT, 4-39, A-18 
MTH$IIHINT, 4-38, A-18 
MTH$IIHNNT, 4-39, A-19 
MTH$IINT, 4-38, A-18 
MTH$IIOR, 4-40, A-20 
MTH$IISHFT, 4-42, A-21 
MTH$IISIGN, 4-42, A-21 
MTH$IMAXO, 4-40, A-20 
MTH$IMAX1, 4-40, A-20 
MTH$IMINO, 4-41, A-20 
MTH$IMIN1, 4-41, A-20 
MTH$IMOD, 4-41, A-21 
MTH$ININT, 4-39, A-19 
MTH$INOT, 4-41, A-21 
MTH$JIABS, 4-39, A-19 
MTH$JIAND, 4-40, A-19 
MTH$JIDIM, 4-40, A-19 
MTH$JIDINT, 4-38, A-18 
MTH$JIDNNT, 4-39, A-18 
MTH$JIEOR, 4-40, A-20 
MTH$JIFIX, 4-37, A-17 
MTH$JIGINT, 4-38, A-18 

MTH$JIGNNT, 4-39, A-18 
MTH$JIHINT, 4-38, A-18 
MTH$JIHNNT, 4-39, A-19 
MTH$JINT, 4-38, A-18 
MTH$JIOR, 4-40, A-20 
MTH$JISHFT, 4-42, A-21 
MTH$JISIGN, 4-42, A-21 
MTH$JMAXO, 4-40, A-20 
MTH$JMAX1, 4-41, A-20 
MTH$JMINO, 4-41, A-20 
MTH$JMIN1, 4-41, A-20 
MTH$JMOD, 4-41, A-21 
MTH$JNINT, 4-39, A-19 
MTH$JNOT, 4-41, A-21 
MTH$RANDOM, 4-36, A-17 
MTH$REAL, 4-25, A-15 
MTH$SGN, 4-42, A-21 
MTH$SIGN, 4-42, A-21 
MTH$SIN, 4-17, A-13, D-12 
MTH$SINH, 4-16, A-13, D-9 
MTH$SIN_R4, 4-17, A-13 
MTH$SNGL, 4-39, A-19 
MTH$SNGLG, 4-39, A-19 
MTH$SQRT, 4-18, A-14, D-15 
MTH$SQRT--R3, 4-18, A-14 
MTH$TAN, 4-19, A-14, D-18 
MTH$TANH, 4-16, A-13, D-10 
MTH$TAN-R4, 4-19, A-14 
MTH$-FLOOVEMAT, B-7 
MTH$JLOUNDMAT, B-7 
MTH$-1NVARGMAT, B-8 
MTH$__LOGZERNEG, B-8 
MTH$_SIGLOSMAT, B-8 
MTH$_SQUROONEG, B-8 
MTH$_UNDEXP, B-8 
MTH$_WRONUMARG, B-8 
Multiple active signals, 6-43, C-31 

FORTRAN example, 6-44 
Multiple precision binary procedures 

LIB$ADDX, 3-107 
LIB$SUBX, 3-107 

Multiplication, complex numbers, 4-24 
Multiply two decimal strings, STR$MUL, 3-50 

N 
Naming conventions 

entry point names, 2-5 
library, 2-5 
VAX-11 global symbols, 2-5 

Natural logarithm 
algorithms, D-11 
complex number, 4-25 
procedures, 4-17 

$NUMTIM, 3-100 

Index-11 



0 
Optional parameters 

CALL entry points, 2-5 
JSB entry points, 2-5 
omission, 2-5 

Order of parameters, A-3 
OTS$ 

facility name, 2-6 
language-independent support procedures, 

1-4 
string conventions, 3-36 

OTS$CVT_L_TI, 3-81, A-8 
OTS$CVT_L_TL, 3-82, A-8 
OTS$CVT_L_TO, 3-83, A-8 
OTS$CVT_L_TZ, 3-84, A-8 
OTS$CVT_TLL, 3-76, A-7 
OTS$CVT_TL_L, 3-77, A-7 
OTS$CVT_TO_L, 3-78, A-7 
OTS$CVT_TZ_L, 3-79, A-7 
OTS$CVT_T_x, 3-74, A-7 
OTS$DIVC, 4-22, A-15 
OTS$DIVCD-R3, 4-22, A-15 
OTS$DIVCG-R3, 4-22, A-15 
OTS$MULCD-R3, 4-24, A-15 
OTS$MULCG-R3, 4-24, A-15 
OTS$POWCC, 4-34, A-16 
OTS$POWCDCD-R3, 4-34, A-16 
OTS$POWCDJ-R3, 4-35, A-17 
OTS$POWCGCG-R3, 4-34, A-16 
OTS$POWCGJ-R3, 4-35, A-17 
OTS$POWCJ, 4-35, A-16 
OTS$POWDD, 4-28, A-16, D-19 
OTS$POWDJ, 4-28, A-16, D-21 
OTS$POWDR, 4-28, A-16, D-20 
OTS$POWGG, 4-29, A-16, D-20 
OTS$POWGJ, 4-29, A-16, D-21 
OTS$POWHH, D-20 
OTS$POWHH-R3, 4-30, A-16 
OTS$POWHJ-R3, 4-30, A-16, D-21 
OTS$POWII, 4-31, A-16, D-22 
OTS$POWJJ, 4-32, A-16, D-22 
OTS$POWRD, 4-32, A-16, D-20 
OTS$POWRJ, 4-32, A-16, D-21 
OTS$POWRR, 4-32, A-16, D-21 
OTS$SCOPY_DXDX, 3-56, 5-17, A-6 
OTS$SCOPY_DXDX6, 3-56, A-6 
OTS$SCOPY_R_DX, 3-56, A-6 
OTS$SCOPY_R_DX6, 3-56, A-6 
OTS$SFREE1_DD, 5-19, A-22 
OTS$SFREE1_DD6, 5-20, A-22 
OTS$SFREEN_DD, 5-21, A-22 
OTS$SFREEN_DD6, 5-22, A-22 
OTS$SGET1_DD, 5-16, A-22 

Index-12 

OTS$SGET1_DD_R6, 5-17, A-22 
OTS$J ATINTERR, B-9 
OTS$-1NPCONERR, B-9 
OTS$-1NTDATCOR, B-9 
OTS$-1NVSTRDES, B-9 
OTS$-10_CONCLO, B-9 
OTS$_0UTCONERR, B-9 
OTS$_USEFLORES, B-9 
Output conversion procedures, 3-81 to 3-86, 

A-8 
Output length parameter 

returning dynamic output strings, 2-15 
Output, LIB$CRF_OUTPUT, 8-9 
Output scalar parameters, 2-12 
Overflow 

returning dynamic output strings, 2-14 

p 
Parameter access types, 2-7 

function call, 2-7 
JMP, 2-7 
modify, 2-7 
read-only, 2-7 
write-only, 2-7 

Parameter characteristics 
access types, 2-3 
data types, 2-3 
parameter access types, 2-7 
parameter data types, 2-7 
parameter forms, 2-7 
parameter passing mechanisms, 2-9 to 2-11 
passing mechanisms, 2-4, 2-7 
procedure parameter forms, 2-4 

Parameter data forms, 2-11 
arrays, 2-11 
combined with parameter passing 
mechanisms, 2-12 

dynamic strings, 2-11 
fixed-length strings, 2-12 
procedure descriptors, 2-12 
procedure references, 2-12 
scalars, 2-11 

Parameter data types, 2-7 
partial list, 2-8 

Parameter forms, 1-4, 2-7 
parameter characteristics, A-2 

Parameter list entries, 2-13 
Parameter passing conventions, 5-16 
Parameter passing mechanisms, 1-4 

combined with parameter data forms, 2-12 
by descriptor, 2-9 
by reference, 2-9, 2-10 
summary of, 2-17t 



Parameter .qualifiers used by library facilities, 
2-12 

Parameters 
description of, 1-8 

PAS$ 
facility name, 2-6 
PASCAL-specific support procedures, 1-4 

PASCAL, 1-1 
calling sequence, 2-35 
function and procedure names as parameters, 

2-37 
function return values, 2-38 
passing fixed-length string parameters, 2-13 
passing parameters, 2-36 
passing parameters by descriptor, 2-36 
passi11g parameters by immediate value, 2-10, 

2-36 
passing parameters by reference, 2-10, 2-36 
return status, 2-37 

PASCAL-specific support procedures, PAS$, 
2-6 

Passing array parameters, 2-12 
by descriptor, 2-12 
by reference, 2-12 

Passing input parameter strings, 2-13 
two-longword descriptor, 2-13 

Passing input scalar parameters 
to general utility procedures (LIB$), 2-12 
by immediate value, 2-12 
to mathematics procedures (MTH$), 2-12 
by reference, 2'.""" 12 

Passing mechanisms, 2-7. See also Parameter 
passing mechanisms 

parameter characteristics, A-2 
Passing output scalar parameters 

by reference, 2-12 
Passing parameters. See also Parameter passing 

mechanisms 
in BASIC, 2-24 
in BLISS, 2-22 
in COBOL, 2-29 
in FORTRAN, 2-32 
in MACRO, 2-20 
in PASCAL, 2-36 

Passing parameters by descriptor 
in high-level languages, 2-11 
in MACRO, 2-11 

Passiµg parameters to library procedures 
passing procedure address, 2-2 

Passing scalar parameters, 2-12, 2-12, 2-12. See 
also Passing input scalar parameters 

Passing string parameters, 2-12 to 2-15 
class code fields, 2-12 

by descriptor, 2-12 
descriptor formats, 2-12 
of dynamic length, 2-12 
of fixed-length, 2-12 
of unspecified string class, 2-12 

Performance measurement procedures, 3-94 to 
3-98, A-9 

Position-independent procedures, 1-1 
Prefix a string, STR$PREFIX, 3-62 
Procedure call summary, 2-2 to 2-5 
Procedure calling sequence. See Calling 

sequence 
Procedure calls 

CALL, 2-1 
RETURN, 2-1 

Procedure library naming conventions, 2-3 
Procedure parameter characteristics, 2-7 to 

2-12 
Procedure parameter forms. See Parameter 

forms 
Procedure parameter notation 

summary, A-1 
Procedure parameter passing mechanisms, 2-9f 
Procedure return status codes. See Return 

status codes 
Procedures 

BAS$, BASIC-specific support, 1-4 
COB$, COBOL-specific support, 1-4 
compiler-generated procedures, 1-1 
definition of, 1-1 
error codes from library procedures, 2-17 
FOR$, FORTRAN-specific support, 1-4 
language-independent support procedures, 

1-1 
LIB$, general utility, 1-4 
MTH$, mathematics, 1-4 
OTS$, language-independent support, 1-4 
PAS$, PASCAL-specific support, 1-4 
position-independent procedures, 1-1 
reentrant procedures, 1-1 
status code, 2-1 
STR$, string manipulation, 1-4 
supplied by DIGITAL, 2-2 
VAX-11 Procedure Calling Standard, 1-1 

Process-wide resource allocation procedures, 
5-lt 

event flags, 5-12 to 5-14, A-22 
logical unit numbers, 5-11, A-22 
strings, 5-14 to 5-22, A-22 
virtual memory, 5-2 to 5-11, A-21 

Processor-defined mathematics procedures, 
4-37t to 4-42t, A-17 

Program development, l-3t 

Index-13 



Program development cycle, 1-2 
PSECT 

LIB$INITIALIZE, E-3 
Put current buffer to screen 

LIB$PUT _BUFFER, 3-30 to 3-32 
SCR$PUT _BUFFER, 3-30 to 3-32 

Put line to SYS$0UTPUT, 
LIB$PUT_OUTPUT, 3-20 

Put string to common, LIB$PUT_COMMON, 
3-21 

Put text to screen 
LIB$PUT_SCREEN, 3-33 
SCR$PUT_SCREEN, 3-33 

$PUTMSG, 6-2, 6-11, 6-18, 6-34, C-8, C-24, 
C-27 

caller-supplied action subroutine, 6-35 
FORTRAN example, 6-36 

Q 
Queue access procedures, 3-112 to 3-117 
Queue entry inserted at head, LIB$INSQHI, 

3-113 
Queue entry inserted at tail, LIB$INSQTI, 

3-114 
Queue entry removed at head, LIB$REMQHI, 

3-115 
Queue entry removed at tail, LIB$REMQTI, 

3-116 

R 
Radix Point Symbol, LIB$RADI:x_pQINT, 

3-19 
Random number generators 

mathematics procedures, 4-36, A-17 
Real part, complex number, 4-25 
Reciprocal of a decimal string, STR$RECIP, 

3-51 
Record Management Services (RMS), 1-2 
Reentrant procedures, 1-1 
%REF, C-6 
Reference mechanism 

passing parameters in BASIC, 2-10, 2-25 
passing parameters in BLISS, 2-10 
passing parameters in COBOL, 2-30 
passing parameters in FORTRAN, 2-10, 2-33 
passing parameters in MACRO, 2-10 
passing parameters in PASCAL, 2-10, 2-36 

Register usage 
VAX-11 Condition Handling Facility, C-31 
VAX-11 Procedure Calling Standard, C-10 

Relative position of substring 
LIB$INDEX, 3-41 
LIB$MATCHC, 3-41 
STR$POSITION, 3-41 

Index-14 

Replace a substring, STR$REPLACE, 3-63 
Resignaling condition handlers, 6-28 
Resource allocation procedures, 1-6 
Resource allocation procedures, process-wide, 

5-lt 
Restrictions 

on calling library procedures, 2-2 
on initialization, 2-2 

RETURN 
procedure call, 2-1 

Return status 
description of, 1-9 
in BASIC, 2-25 
in BLISS, 2-23 
in COBOL, 2-30 
in FORTRAN, 2-33 
in MACRO, 2-20 
in PASCAL, 2-37 

Return status codes, 2-6 
examples, 2-7 
facility numbers, 2-5 
general form, 2-6 

Return status symbols. See Return status codes 
Returning dynamic output strings 

allocated string length, 2-14 
responses to overflow, 2-14 

Returning dynamic strings, 2-14 -
Returning fixed-length strings, 2-14 
Returning from condition handlers, 6-28, C-29 
Returning output parameter strings, 2-13 
Returning unspecified strings, 2-14 
Revert to the caller 's handler, C-26 
RMS, Record Management Services, 1-2 
Round a decimal string, STR$ROUND, 3-52 
RUN 

command, 1-4 
Run-time environment, 1-1 
Run-Time Library 

timing facility, 3-94 

s 
Sample calls, 8-12 
Scan characters, LIB$SCANC, 3-43 
Scan keyword table, LIB$LOOKUP _KEY, 

7-23 
SCR$, 3-23 
SCR$DOWN_SCROLL, 3-29, A-4 
SCR$ERASE_LINE, 3-25, A-4 
SCR$ERASE_pAGE, 3-26, A-4 
SCR$GET_SCREEN, 3-28, A-4 
SCR$PUT_BUFFER, 3-30 to 3-32, A-4 
SCR$PUT_SCREEN, 3-33, A-4 



SCR$SCREEN-1NFO, 3-27, A-4 
SCR$SET_BUFFER, 3-34, A-4 
SCR$SET _CURSOR, 3-35, A-'4 
Screen functions in buffer mode, 3-24 
Set buffer mode 

LIB$SET-BUFFER, 3-34 
SCR$SET-BUFFER, 3-34 

Set cursor to character position 
LIB$SET_CURSOR, 3-35 
SCR$SET_CURSOR, 3-35 

$SETEXV, 6-5 
Severity codes 

interpretation of, C-9 
Signal argument vectors, C-28 

FORTRAN error, 6-23 
FORTRAN I/0, 6-24 
in FORTRAN, 6-22 
in MACRO, 6-22 
mathematics error, 6-24 
reserved operand error, 6-23 

Signal generators, A-23 
Signal handlers, A-23 
Signal handling procedures 

condition handlers, 6-37 
conversion to return status, 6-42 
fixup floating reserved operand, 6-39 
matching condition values, 6-37 

Signaled conditions 
facility numbers, 2-5 

Signaling & condition handling procedures, 1-6, 
6-1, 6-3t 

enable/disable hardware conditions, A-23 
establishing a condition handler, A-23 
signal generators, A-23 
signal handlers, A-23 

Signaling an exception condition 
LIB$SIGNAL, 6-15 
VAX-11 Condition Handling Facility, C-26 

Signaling messages 
exception conditions, 6-18 
LIB$SIGNAL, 6-19 
LIB$STOP, 6-19 
signal argument list, 6-19 

Simulate floating trap, LIB$SIM_TRAP, 
3-109 

Sine 
algorithms, D-12 
complex number, 4-26 
procedures, 4-17 

Skip characters, LIB$SKPC, 3-44 
Software checks 

mathematics procedures, 6-8 

Span characters, LIB$SPANC, 3-45 
Square root 

algorithms, D-15 
complex number, 4-26 
procedures, 4-18 

,SS$_CONTINUE, C-27, C-30 
BASIC, 6-30 
error message, 6-29 
FORTRAN example, 6-29 
function value, 6-29 

SS$_DECOVF, B-11 
SS$_FLTDIV, B-11 
SS$_FLTDIV_F, B-12 
SS$_FLTOVF, B-12 
SS$_FLTOVF_F, B-12 
SS$_FLTUND, B-12 
SS$_FLTUND_F, B-12 
SS$-1NSFRAME 

return status, 6-31 
SS$-1NTDIV, B-13 
SS$-1NTOVF, B-13 
SS$_NORMAL, E-6 

return status, 6-31 
SS$_NOSIGNAL 

return status, 6-31 
SS$-RESIGNAL, 6-40, C-27 

BASIC alternative, 6-29 
FORTRAN example, 6-28 
function value, 6-28 

SS$_SUBRNG, B-13 
SS$_UNWINDING, C-30 

return status, 6-31 
Stack frame, 1-4 
Stack storage 

allocation of, in BASIC, 5-4 
allocation of, in FORTRAN, 5-4 
allocation of, in MACRO, 5-4 
allocation of, in PAS CAL, 5-4 

Stack unwinding 
definition of, 6-30 
LIB$SIGNAL, 6-30 
LIB$STOP, 6-30 
$UNWIND, 6-30 

Stack usage 
VAX-11 Procedure Calling Standard, C-11 

Standard entry point naming conventions, 2-6 
$STATE 

format, 7-6, 7-9 
State table, object representation 

syntax analysis procedures, 7-20 
State transition, 7-2 

composition of, 7-21 

Index-15 



Static storage 
allocation of, in BASIC, 5-3 
allocation of, in FORTRAN, 5-3 
allocation of, in MACRO, 5-3 
allocation of, in PASCAL, 5-3 

Status code 
procedures, 2-1 

Stop execution via signaling, LIB$STOP, 6-18 
STR$ 

error messages, B-10 
facility name, 2-6 
string conventions, 3-36 
string manipulation procedures, 1-4 

STR$ADD, 3-49, A-5 
STR$APPEND, 3-54, A-5 
STR$COMPARE, 3-38, A-5 
STR$COMPARE_EQL, 3-38, A-5 
STR$CONCAT, 3-54, A-5 
STR$COPY_DX, 3-56, A-6 
STR$COPY_J)X-RS, 3-56, A-6 
STR$COPY_R, 3-56, A-6 
STR$COPY_R_R8, 3-56, A-6 
STR$DUP1-CHAR, 3-61, A-6 
STR$DUP1-CHARR8, 3-61, A-6 
STR$FREE1_J)X, 5-19, A-22 
STR$FREE1_DX_R4, 5-20, A-22 
STR$GET1_J)X, 5-16, A-22 
STR$GET1_J)X_R4, 5-18, A-22 
STR$LEFT, 3-59, A-6 
STR$LEFT_R8, 3-59, A-6 
STR$LEN_EXTR, 3-59, A-6 
STR$LEN_EXTR._R8, 3-59, A-6 
STR$MUL, 3-50, A-5 
STR$POSITION, 3-41, A-5 
STR$POSITION_R6, 3-41, A-5 
STR$POS_EXTR, 3-59, A-6 
STR$POS_EXTR._R8, 3-59, A-6 
STR$PREFIX, 3-62, A-6 
STR$RECIP, 3-51, A-5 
STR$REPLACE, 3-63, A-6 
STR$REPLACE_R8, 3-63, A-6 
STR$RIGHT, 3-59, A-6 
STR$RIGHT_R8, 3-59, A-6 
STR$ROUND, 3-52, A-5 
STR$TRANSLATE, 3-71, 3-72, A-7 
STR$TRIM, 3-65, A-7 
STR$UPCASE, 3-72, A-7 
STR$_DIVBY_ZER, B-10 
STR$_FATINTERR, B-10 
STR$-1LLSTRCLA,B-10 
STR$-1LLSTRPOS, B-10 
STR$-1LLSTRSPE, B-10 
STR$-1NSVIRMEM, B-10 
STR$_NEGSTRLEN, B-10 
STR$_STRIS-1NT, B-11 

lndex-16 

STR$_STRTOOLON, B-11 
STR$_TRU, B-11 
STR$_WRONUMARG, B-11 
String arithmetic procedures, 3-49' 

sample program, 3-53 
String conventions, 3-36 
String data types, C-14 
String descriptor, 2-13 

classes in passing input parameter strings, 
2-13 

String function values 
returning output parameter strings, 2-13 

String length, returned as longword, LIB$LEN, 
3-40 

String manipulation procedures, 3-35 to 3-73, 
A-5 

character oriented, 3-37 
string arithmetic, 3-49 
string oriented, 3-53 
translate string functions, 3-65 

String passing techniques 
summary of, 2-16t 

String procedures, STR$, 2-6 
String resource allocation procedures, 5-14, 

A-22 
use in returning dynamic strings, 2-15 

String truncation , 
in output parameter strings, 2-14 

Strings 
syntax analysis, 7-1 

Strings of dynamic length 
passed as parameters, 2-12 

Strings of fixed length 
passed as parameters, 2-12 

Strings of unspecified class 
passed as parameters, 2-12 

Subexpressions 
complex grammars, 7-19 
transition rejection, 7-18 

Symbol definition, 8-8 
Symbol processing, 8-12 
Symbol reference, 8-8 
Syntax analysis procedures, 1-7 

abbreviating keywords, 7-16 
blanks in input string, 7-15 
BLISS coding considerations, 7-9 
calling BLISS macros, 7-8 
coding a state table in BLISS, 7-8 
coding a state table in MACRO, 7-5 
$END_STATE, assembler macro, 7-8 
$INIT_STATE, assembler macro, 7-5 
$INIT_STATE, BLISS macro, 7-8 
interface to action routines, 7-13 
LIB$TPARSE state table processing, 7-14 
$STATE, assembler macro, 7-6 



$STATE. BLISS macro, 7-9 
state table, object representation, 7-20 
subexpressions, 7-17 
table-driven finite-state parser, A-23 
$TRAN, assembler macro, 7-6 

SYS$COMMAND, 3-6, 3-9 
SYS$CURRENCY, 3-16 
SYS$DIGIT_SEP, 3-17 
SYS$ERROR, 6-11, C-10, C-24 
SYS$INPUT, 3-6, 3-9 
SYS$LP _LINES, 3-18 
SYS$0UTPUT, 3-6, 3-20, 6-11, C-10, C-24 
SYS$RADix_pQINT, 3-19 
System message file, . 6-2 
System service 

$ASCTIM, 3-99, 3-102 
$CNTREG, 5-5 
$CRETV A, 5-5 
$DCLEXH, E-2 
$DELTVA, 5-5 
$EXIT, C-8, E-2 
$EXPREG, 5-5 
$FAO, 3-86 to 3-88, 6-11 
$FAOL, 3-88 
$GETMSG, 3-13 
$NUM'TIM, 3-100 
$PUTMSG, 6-2, 6-11, 6-18, 6-34, C-8, C-24, 

C-27 
$SETEXV, 6-5 
$TRNLOG, 3-22 
$UNWIND, 6-18, C-30 

System services 
exception conditions, 6-8 
use of in allocating virtual memory, 5-5 

T 
Table-driven finite-state parser, A-23 
Table-driven parser, LIB$TPARSE, 7-1 
Table initialization macros 

CRFCTLTABLE, 8-4 
CRFFCross-reference procedures, flag usage, 

8-5 
CRFFIELDEND, 8-6 

Tangent 
algorithms, D-18 
procedures, 4-19 

Terminal independent screen procedures, 3-23 
to 3-35, A-4 

Time 
return system, as 8-byte string, FOR$TIME, 

3-102 
return system, in seconds, FOR$SECNDS, 

3-101 

Timer storage 
free, LIB$FREE_ TIMER, 3-94 

Times/counts 
initialize, LIB$INIT_TIMER, 3-95 
return accumulated, LIB$STAT_TIMER, 

3-96 
show accumulated, LIB$SHQW_TIMER, 

3-97 
Timing facility 

Run-time Library, 3-94 
Token, 7-2 
$TRAN 

format, 7-6 
Transfer vector, 1-2 
Transform byte to first character, LIB$CHAR, 

3-46 
Transform first character to longword, 

LIB$ICHAR, 3-48 
Transition rejection 

parsers, 7-18 
Translate ASCII to EBCDIC, 

LIB$TRA-ASC_EBC, 3-68 
Translate ASCII to EBCDIC, 

LIB$TRA-EBC_ASC, 3-70 
Translate logical name, LIB$SYS_ TRNLOG, 

3-22 
Translate matched characters, 

STR$TRANSLATE, 3-71 
Translate string functions, 3-65 
Trim trailing blanks and tabs, STR$TRIM, 

3-65 
$TRNLOG, 3-22 
Two-longword descriptor, 2-13 

passing input parameter strings, 2-13 

$UNDWIND 
INVERT, 6-32 

u 

$UNWIND, 6-18, 6-21, C-30 
BASIC alternative, 6-33 
format, 6-30 
FORTRAN example, 6-32 
return status, 6-31 
SS$-1NSFRAME, 6-31 
SS$_NORMAL, 6-31 
SS$_NQSIGNAL, 6-31 
SS$_UNWINDING, 6-31 
stack unwinding, 6-30 

Uppercase conversion, STR$UPCASE, 3-72 
User procedures, E-1 
User program, definition, 2-2 

Index-17 



v 
%VAL, 5-7, C-6 
Variable bit field instruction procedures, 3-88 to 

3-93, A-9 
VAX-11 Condition Handling Facility, 6-1, C-23 

functions, 6-2 
functions provided by, C-25 
register usage, C-31 
VAX-11 Conditions, C-23 

V AX-11 global symbol naming conventions, 2-5 
VAX-11 Procedure Calling Standard, 1-1, 2-1, 

2-12, 4-2, C-1, E-4 
argument list, C-4 
calling sequence, C-4 
change history, C-33 
condition values, C-7 
data types, C-12 
definitions, C-3 
descriptor formats, C-15 
function return values, C-6 
goals, C-2 
module interface attributes, C-1 
nongoals, C-3 
register usage, C-10 
stack usage, C-11 

VAX-11 RMS, 6-8 
condition value, 6-20 

VAXNMS normal code, 2-7 
VAX/VMS success code, 2-7 
Virtual addresses, 1-2 
Virtual memory 

allocation of, A-21 
allocation of, LIB$GET _ VM, 5-6 
allocation of using system services, 5-5 
dynamic string allocation, 5-15 
fetch statistics, LIB$STAT_ VM, 5-9 
freeing, LIB$FREE_ VM, 5-8 
show statistics, LIB$SHOW_VM, 5-10 

lndex-18 . 



Reader's Comments 

VAX-11 Run-Time 
Reference Manual 

AA-00368-TE 

Note: This form is for document comments only; Digital will use comments submitted on this form at 
the company's discretion. If you require a written reply and are eligible to receive one under 
Software Performanc·e Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for 
improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

D Assembly language programmer 
D Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D Oili~(p~a~~ecify) __________ ~------~~~~~-

Na~ D~ 

Organization _______________________________ _ 

Street-----------------------------~---~ 

CitY----------------- State 
Zip Code 

or 
Country 



- - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

mnmnama 111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

ATTN: Commercial Engineering Publications MK1-2/ H3 

DIGITAL EQUIPMENT CORPORATION 

CONTINENTAL BOULEVARD 

MERRIMACK N.H. 03054 

No Postage 

Necessary 

if Mailed in the 

United States 

- - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - -- -


