dlilgliltlall

VAX-11
Run-Time Library
Reference Manual
Order No. AA-D036B-TE

April 1980

This document contains detailed descriptions of all general purpose
procedures in the VAX-11 Common Run-Time Procedure Library.
It also contains information about calling library procedures, includ-
ing programming techniques. The information in this book is not
introductory in nature.

VAX-11
Run-Time Library
Reference Manual
Order No. AA-D036B-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V02
SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First printing, August 1978
Revised April 1980

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corpora-
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

Copyright © 1978 Digital Equipment Corporation
Copyright © 1979, 1980 Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS

7/80-14

Contents

Preface

Chapter 1

Chapter 2

Page
Introduction
1.1 Run-Time Library Capabilities. 1-1
1.2 Linking with the Run-Time Library 1-2
1.3 Library Calling Conventions 1-4
1.4 Organization of the Run-Time Library 1-5
1.4.1 General Purpose Procedures. 1-6
1.4.1.1 General Utility Procedures. 1-6
1.4.1.2 Mathematics Procedures. 1-6
1.4.1.3 Resource Allocation Procedures. 1-6
1.4.1.4 Signaling and Condition Handling Procedures. 1-6
1.4.1.5 Syntax Analysis Procedures 1-7
1.4.1.6 Cross-Reference Procedures 1-7
1.4.2 Language Support Procedures. 1-7
1.4.2.1 Language-Specific Procedures 1-7
1.4.2.2 Language-Independent Support Procedures. 1-8
1.5 Procedure Descriptions, 1-8
Calling Run-Time Library Procedures
2.1 How to Call Library Procedures 2-1
2.2 Call Summary e e e e e e e e e 2-2
2.3 Library Naming Conventions. 2-b
2.3.1 Entry Point Names. 2-5
2.3.2 JSB Entry Point Names 2-6
2.3.3 Library Return Status and Condition Value Symbols. 2-6
2.4 Procedure Parameter Characteristics 2-17
2.4.1 Parameter Access Types 2-7
2.4.2 ParameterData Types 2-8
2.4.3 Parameter Passing Mechanisms. 2-9
2.4.3.1 Passing Parameters by Immediate Value 2-10
2.4.3.2 Passing Parameters by Reference. 2-10
2.4.3.3 Passing Parameters by Descriptor 2-11
2.44 Parameter DataForms 2-11
2.5 Combinations of Data Forms/Passing Mechanisms 2-12
2.56.1 Passing Scalars as Parameters 2-12
2.5.2 Passing Arrays as Parameters. 2-12
2.5.3 Passing Strings as Parameters 2-12
2.5.3.1 Passing Input Parameter Strings to the Library 2-13
2.5.3.2 Returning Output Parameter Strings from the Library. .2-13
2.5.3.3 Summary of String Passing Techniques. 2-15
2.5.4 Summary of Parameter Passing Mechanisms. 2-16

il

iy

2.6
2.7

2.8

2.9

2.10

2.11

2.12

Errors from Run-Time Library Procedures 2-17

Calling a Library Procedure in MACRO 2-18
2.7.1 Calling Sequence Examples. 2-18
2.7.1.1 CALLS Instruction Example. 2-19
2.7.1.2 CALLG Instruction Example. 2-19
2713 JSBEntryPoints 2-19
2.7.2 Passing Parameters to Library Procedures 2-20
273 Return Status Lo 2-20
2.74 Function Return Values 2-21
Calling a Library Procedure in BLISS 2-22
2.8.1 Calling Sequence Example 2-22
2.8.2 Passing Parameters to Library Procedures 2-22
283 ReturnStatus 0o 2-23
2.8.4 Function Return Values 2-23
2.8.5 Calling JSB entry points from BLISS 2-23
Calling a Library Procedure in BASIC 2-23
2.9.1 Calling Sequence Examples. 2-24
2.9.2 Passing Parameters to Library Procedures 2-24
2921 BYVALUE. 2-25
2922 BYREF, 2-25
2923 BYDESC. 2-25
293 Return Statuso e 2-25
294 Function Return Values 2-26
Calling a Library Procedure in COBOL. 2-27
2.10.1 Calling Sequence Examples. 2-27
2.10.2 Passing Parameters to Library Procedures 2-29
21021 BYVALUE. 2-30
2.10.2.2 BYREFERENCE. 2-30
2.10.2.3 BY DESCRIPTOR 2-30
2.10.3 Return Status00 2-30
Calling a Library Procedure in FORTRAN 2-31
2.11.1 Calling Sequence Examples. 2-32
2.11.2 Passing Parameters to Library Procedures 2-32
21121 %VAL 2-33
21122 %REF 2-33
2.11.23 %DESCR. o 2-33
2.11.3 Return Status 0.0 2-33
2.11.4 Function Return Values 2-34
Calling a Library Procedure in PASCAL 2-35
2.12.1 Calling Sequence Example 2-35
2.12.2 Passing Parameters to a Library Procedure 2-36
21221 IMMED. 0. 2-36
21222 VAR 2-36
21223 %STDESCR 2-36
21224 %DESCR.o 2-36
2.12.2.5 Function and Procedure Names as Parameters 2-37

2.12.3
2.12.4

Return Status v o o e e e e 2-37
Function Return Value 2-38

Chapter 3 General Utility Procedures

3.1

3.2

3.3

Common Control Input and Output Procedures. 3-5
3.1.1 Assign Channel with Mailbox. 3-17
3.1.2 ChaintoProgram v v . 3-8
3.1.3 Execute Command. 3-8
3.1.4 Get Line from SYS$INPUT. 3-9
3.1.5 Get Line from FOREIGN Command Line 3-11
3.1.6 Get String from Common. 3-13
3.1.7 Get System Messaget e e 3-13
3.1.8 Listing Control. 3-15
3.1.8.1 Currency Symbol 3-16
3.1.8.2 Digit Separator Symbol 3-17
3.1.8.3 Number of Lines per Line Printer Page. 3-18
3.1.8.4 Radix Point Symbol 3-19
3.1.9 Put Line to SYS$OUTPUT. 3-20
3.1.10 Put Stringto Common 3-21
3.1.11 Translate Logical Name 3-22
Terminal Independent Screen Procedures. 3-23
3.2.1 Cursor Positioningona Screen 3-24
3.2.2 Screen Functions in Buffer Mode 3-24
323 EraseLine. oo 3-25
324 ErasePage.o 3-26
3.2.5 Get Screen Information. 3-27
3.2.6 Get Text from Screen 3-28
3.2.7 Move Cursor Up One Line, Scroll Down ifat Top 3-29
3.2.8 Put Current Buffer to Screen or Previous Buffer 3-30
329 PutTexttoScreen. 3-30
3.2.10 Set/Clear Buffer Mode 3-34
3.2.11 Set Cursor to Character Position on Screen 3-35
String Manipulation Procedures 3-35
3.3.1 String Conventions for LIB$, OTS$ and STR$ Facilities 3-36
3.3.2 Character Oriented Procedures 3-37
3.3.2.1 Compare Two Strings 3-38
3.3.2.2 Compare Two Strings for Equal 3-38
3.3.2.3 Locate a Character 3-39
3.3.2.4 Return Length of String as Longword Value. 3-40
3.3.2.5 Return Relative Position of Substring. 3-41
3.3.2.6 Scan Characters. 3-43
3.3.277 Skip Characters. « . v v v v v v 3-44
3.3.2.8 Span Characters. 3-45
3.3.2.9 Transform Byte to First Character of String 3-46
3.3.2.10 Transform First Character of String to Longword Value . 3-48
3.3.3 String Arithmetic Procedures 3-49
3.3.3.1 Add Two Decimal Strings 3-49
3.3.3.2 Multiply Two Decimal Strings 3-50

vi

3.4

3.5

3.6

3.7

3.3.3.3 Reciprocal of a Decimal String. 3-51

3.3.3.4 Round or Truncate a Decimal String 3-52
3.3.4 String Oriented Procedures 3-53
3.34.1 Appenda String., 3-54
3.3.4.2 Concatenate Two or More Strings 3-54
3.3.4.3 Copy a Source String to a Destination String 3-55
3.3.4.4 Extract a Substring of a String. 3-59
3.3.45 GenerateaString. 3-61
3.34.6 PrefixaString 3-62
3.34.7 ReplaceaSubstring. 3-63
3.3.4.8 Trim Trailing Blanks and Tabs 3-65
3.3.5 Translate String Functions 3-65
3.3.5.1 Move Translated Characters 3-66
3.3.5.2 Move Translated Until Character I
3.3.5.3 Translate ASCIIto EBCDIC. 3-68
3.3.56.4 Translate EBCDICto ASCII. 3-70
3.3.5.5 Translate Matched Characters 3-71
3.3.5.6 Uppercase Conversion 3-72
Formatted Input and Output Conversion Procedures 3-73
3.4.1 InputConversions v v v v v v e e 3-74
3.41.1 Convert Text to Floating. 3-74
3.4.1.2 Convert Text (Signed Integer) to Longword 3-76
3.4.1.3 Convert Text (Logical) to Longword i
3.4.1.4 Convert Text (Octal) to Longword 3-78
3.4.1.5 Convert Text (Hexadecimal) to Longword. 3-79
3.4.1.6 Convert TexttoBinary 3-80
3.4.2 OQutput Conversions 3-81
3.4.2.1 Convert Longword to Text (Signed Integer). 3-81
3.4.2.2 Convert Longword to Text (Logical) 3-82
3.4.2.3 Convert Longword to Text (Octal) 3-83
3.4.24 Convert Longword to Text (Hexadecimal). 3-84
3.4.25 Convert Floating to Text. 3-85
3.4.3 Convert Binary to Formatted ASCIT. 3-86
3.4.3.1 Formatted ASCII Output 3-87
3.4.3.2 Formatted ASCII Output with List Parameter 3-88
Variable Bit Field Instruction Procedures. 3-88
3.5.1 Insert a Variable Bit Field 3-89
3.56.2 Extract and Sign-Extenda Field 3-90
3.5.3 Extract a Zero-Extended Field 3-91
354 Find First Clear Bit 3-92
355 FindFirstSetBit 3-93
Performance Measurement Procedures 3-94
3.6.1 Free Timer Storage.« v v v v v .. 3-94
3.6.2 Initialize Times and Counts. 3-95
3.6.3 Return Accumulated Times and Counts as a Statistic 3-96
3.6.4 Show Accumulated Times and Counts. 3-97
Date/Time Utility Procedures 3-98

3.8

3.7.1 Convert Binary Date/Time to an ASCII String. 3-99

3.7.2 Return Month, Day, Year as INTEGER*2. 3-100
3.7.3 Return Month, Day, Year as INTEGER*4. 3-100
3.7.4 Return System Date as 9-Byte String 3-101
3.7.5 Return System Time in Seconds 3-101
3.7.6 Return System Time as 8-Byte String. 3-102
3.7.7 Return Day Number as a Longword Integer 3-102
3.7.8 Return System Date and Time as a String. 3-103
Miscellaneous Procedures 3-104
3.81 ASTinProgress« v v v v oo 3-104
3.8.2 Calculate Cyclic Redundancy Check (CRC) 3-105
3.8.3 Construct Cyclic Redundancy Check (CRC) Table 3-106
3.8.4 Emulate VAX-11 Instructions. 3-106
3.8.6 Multiple Precision Binary Procedures 3-107
3.8.6 Simulate Floating Trap. 3-109
3.8.7 Extended Multiply and Integerize Procedures 3-109
3.8.8 Evaluate Polynomial Procedures 3-111
3.8.9 Queue Access Procedures. 3-112

3.8.9.1 Queue Entry Inserted at Head 3-113

3.8.9.2 Queue Entry Inserted at Tail. 3-114

3.8.9.3 Queue Entry Removed at Head 3-115

3.8.9.4 Queue Entry Removed from Tail. 3-116

Chapter 4 Mathematics Procedures

4.1

4.2

4.3

The Mathematics Procedures 4-1
4.1.1 Entry Point Names., 4-1
4.1.2 Calling Conventions 4-2
413 Algorithms. oo 4-3
414 ErrorHandling. 4-3
4.1.5 Summary of Mathematics Procedures 4-4
Floating-Point Mathematical Functions 4-9
421 ArcCosine. e 4-9
422 ArcSine. 0 e e e e e e e e e e e 4-10
423 ArcTangent. e 4-11
4,2.4 Arc Tangent with Two Parameters 4-11
42,5 Common Logarithm 4-12
426 CosiNe. . . . « . v v e e e e e e e e e e e e e e e 4-13
42,7 Exponential 000 4-14
4.2.8 HyperbolicCosine 4-15
4,29 HyperbolicSine 000000 4-16
4.2.10 Hyperbolic Tangent 4-16
4.2.11 Natural Logarithm 4-17
4212 Sine. e e e e e e e e e 4-17
4213 Square Root 4-18
4214 Tangent 000w e e e e e e 4-19
Complex Functions 0 4-20
4.3.1 Absolute Value.00 4-20
4.3.2 Conjugate of a Complex Number 4-21

Vil

Chapter 5

viii

433 Cosine. v v e e e e e e e e 4-21

4.3.4 Division of Complex Numbers 4-22
435 Exponential L0000 4-23
4.3.6 Imaginary Part of a Complex Number. 4-23
4.3.7 Make Complex from Floating-Point. 4-24
4.3.8 Muiltiplicationo 4-24
439 Natural Logarithm 4-25
4.3.10 Real Part of a Complex Number 4-25
4311 Sine. e e e e e 4-26
4312 SquareRoot oo 4-26
4.4 Exponentiation Code-Support Procedures. 4-27
441 D_floatingBase., 4-28
442 G_floatingBase. 4-29
443 H_floatingBase., 4-30
444 WordBase. e 4-31
445 LongwordBase. 4-32
446 F_floatingBase. 4-32
4.5 Complex Exponentiation Procedures 4-33
4.5.1 Complex Floating-Point Power 4-34
4.5.2 Signed Longword Integer Power. 4-35
4.6 Random Number Generators. 4-36
4.6.1 Uniform Pseudorandom Number Generator 4-36
4.7 Processor-Defined Mathematical Procedures4-37

Process-Wide Resource Allocation Procedures

5.1 Allocation of Virtual Memory 5-2
5.1.1 StaticStorage00 o e e e e 5-3
51.2 Stack Storage 000000 5-4
5.1.3 Heap Storage oo v e 5-4
5.1.4 Useof System Services. o 0. 5-5
5.1.5 Allocate Virtual Memory in Program Region. 5-6
5.1.6 Deallocate Virtual Memory from Program Region 5-8
5.1.7 Fetch Virtual Memory Statistic. 5-9
5.1.8 Show Virtual Memory Statistics 5-10

5.2 Logical Unit Allocation 5-11
5.2.1 Allocate One Logical Unit Number 5-11
5.2.2 Deallocate One Logical Unit Number 5-12

5.3 Event Flag Resource Allocation Procedures 5-12
5.3.1 Allocate One Local Event Flag 5-13
5.3.2 Deallocate One Local Event Flag 5-13
5.3.3 ReservealocalEventFlag. 5-14

5.4 String Resource Allocation Procedures 5-14
5.4.1 Allocate One Dynamic String. 5-16
5.4.2 Deallocate One Dynamic String. 5-19
5.4.3 Deallocate n Dynamic Strings. 5-21

Chapter 6 Signaling and Condition Handling Procedures

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Summary of VAX-11 Condition Handling Facility 6-2
Exception Conditions 6-3
6.2.1 Condition Value 6-5
6.2.2 Hardware Processor Detected Exception Conditions 6-5
6.2.3 Language-Support Procedures Exception Conditions 6-7
6.2.4 Mathematics Procedure Exception Conditions 6-7
6.2.4.1 Integer Overflow and Floating Overflow. 6-7
6.2.4.2 Floating Underflow 6-8
6.2.6 VAX-11 RMS and Executive Detected Errors 6-8
Establishing a Condition Handler 6-8
6.3.1 Establish a Condition Handler 6-8
6.3.2 Delete Handler Associated with Procedure Activation 6-10
Default Handlers 6-11
6.4.1 Traceback Handler. 6-11
6.4.2 Catch-AllHandler. 6-11
6.4.3 Last-Chance Handler. 6-12
6.4.4 Using Default Handlers to Output Messages. 6-12
Overflow/Underflow Detection Enabling Procedures 6-12
6.5.1 Enable/Disable Decimal Overflow Detection 6-13
6.5.2 Enable/Disable Floating-Point Underflow Detection 6-13
6.5.3 Enable/Disable Integer Overflow Detection. ». 6-14
Generating Signals oL, 6-15
6.6.1 Signal Exception Condition. 6-15
6.6.2 Stop Execution via Signaling 6-18
6.6.3 Signaling Messages. 6-18
6.6.4 Signal Argument List.o 6-19
Condition Handlers 6-21
6.7.1 Signal Argument Vector 6-22
6.7.2 Mechanism Argument Vector 6-25
6.7.3 Restrictions for Accessing Data from Handlers. 6-27
Returning from a Condition Handler 6-28
6.8.1 Resignaling 6-28
6.8.2 Continuing. e 6-29
6.8.3 RequesttoUnwind. 6-30
6.8.4 Summary of Interaction Between Handlers and Default Handlers . 6-33
User Logging of Error Messages 6-34
6.9.1 SYS$PUTMSG Put Message System Service 6-34
6.9.2 Caller-Supplied Action Subroutine 6-35
Signal Handling Procedures 6-37
6.10.1 Match Condition Values 6-37
6.10.2 Fixup Floating Reserved Operand. 6-39
6.10.3 Convert any Signal to a Return Status 6-42
Multiple Active Signalso 6-43

ix

Chapter 7 Syntax Analysis Procedures

Chapter 8

7.1
7.2
7.3

7.4

7.5

7.6

7.7
7.8
7.9
7.10

7.11
7.12

LIBSTPARSE — A Table-Driven Finite-State Parser. 7-1
Fundamentals of a Finite-State Parser 7-2
The Alphabet of LIB§TPARSE. 7-3
7.3.1 ‘<’ - Any Particular Character 7-3
7.3.2 TPAS$_ANY - Any Single Character 7-3
7.3.3 TPA$_ALPHA - Any Alphabetic Character. 7-3
7.3.4 TPA$_DIGIT - Any Numeric Character 7-3
7.3.5 TPA$__STRING - Any Alphanumeric String 7-3
7.3.6 TPA$_SYMBOL - Any Symbol Constituent String 7-4
7.3.7 TPA$_BLANK - Any Blank String. 7-4
7.3.8 TPA$_DECIMAL - Any Decimal Number T-4
7.3.9 TPA$_OCTAL - Any Octal Number 7-4
7.3.10 TPA$__HEX - Any Hexadecimal Number. 7-4
7.3.11 ‘keyword’ - A Particular Keyword String 7-4
7.3.12 TPA$_LAMBDA - The Empty String 7-5
7.3.13 TPA$_EOS - End of Input String 7-5
7.3.14 !label - Complex Subexpression. 7-5
Coding a State Tablein Macro. 7-5
7.4.1 SINIT_STATE - Initialize the TPARSE Macros 7-5
7.4.2 $STATE - Definea State 7-6
7.4.3 $TRAN - Define a State Transition. 7-6
7.4.4 $END__STATE - End the State Table 7-8
Coding a State Table in BLISS 7-8
7.5.1 SINIT_STATE - Initialize the TPARSE Macros 7-8
7.56.2 $STATE - Declare aState 7-9
7.5.3 $TRAN and $END_STATE 7-9
7.5.4 BLISS Coding Considerations. 7-9
Calling LIBSTPARSE« v i i i 7-10
7.6.1 The LIBSTPARSE Parameter Block. 7-11
7.6.2 Interface to TPARSE Action Routines. 7-13
LIB$TPARSE State Table Processing 7-14
Blanks in the Input String. 7-156
Abbreviating Keywords00 7-16
Using Subexpressions e e 7-17
7.10.1 Use of Subexpressions and Transition Rejection 7-18
7.10.2 Using Subexpressions to Parse Complex Grammars 7-19
State Table Object Representation 7-20
LIBSLOOKUP_KEY — Scan Keyword Table 7-23

Cross—-Reference Procedures

8.1
8.2
8.3

Introduction. L . e e e e e e e e 8-1
Cross-Reference Output 8-2
Table Initialization Macros« . o oo 8-4
8.3.1 $CRFCTLTABLE Macro. v v v v v v v v v . 8-4
8.3.2 S$CRFFIELD Macro v v v v v v v v v v v v 8-5

8.4

8.5

8.6

8321 FlagUsage 8-5

8.3.3 S$CRFFIELDEND Macro 8-6
Entry Points to Cross-Reference Procedures. 8-6
8.4.1 Insert Key Entry Point — LIB§CRF_INS_KEY 8-6
8.4.2 Insert Reference Entry Point — LIB$CRF_INS_REF. 8-7
8.4.2.1 Using LIB$CRF_INS_REF toInsert aKey 8-8
8.4.3 Output Entry Point — LIB§CRF_OUTPUT 8-9
8.4.4 SynopsisbyValue 8-10
User Example. 8-10
8.5.1 Control Table Initialization. 8-10
852 SampleCalls., 8-12
8.5.2.1 Symbol Processing.8-12
856522 Output., 8-13
How to Link the Cross-Reference Sharable Image. 8-14

Appendix A Summary of Run-Time Library Entry Points

Al
A2

A3

A4

A5

A6

Summary of Procedure Parameter Notation. A-1
General Utility Procedures. A-3
A.2.1 Common Control Input/Output Procedures A-3
A.2.2 Terminal Independent Screen Procedures A-4
A.2.3 String Manipulation Procedures. A-5
A.2.4 Formatted Input Conversion Procedures. A-7
A.2.5 Formatted Output Conversion Procedures A-8
A.2.6 Variable Bit Field Instruction Procedures A-9
A.2/7 Performance Measurement Procedures. A-9
A.2.8 Date/Time Utility Procedures. A-9
A.2.9 Miscellaneous General Utility Procedures A-10
Mathematics Procedures. A-11
A.3.1 Floating-Point Mathematical Functions A-11
A.3.2 Complex Functions. A-14
A.3.3 Exponentiation Procedures A-16
A.3.4 Complex Exponentiation Procedures. A-16
A.3.5 Random Number Generators A-17
A.3.6 Floating/Integer Conversion Procedures A-17
A.3.7 Miscellaneous Functions A-19
Resource Allocation Procedures. A-21
A.4.1 Dynamic Allocation of Virtual Memory Procedures. A-21
A.4.2 String Resource Allocation Procedures. A-22
Signaling and Condition Handling Procedures. A-23
A.5.1 Establishing a Condition Handler. A-23
A5.2 Enable/Disable Hardware Conditions A-23
A.5.3 Signal Generatorso A-23
Ab54 SignalHandlers, A-23
Syntax Analysis Procedures” A-23

xi

A7

Cross-Reference Procedures A-24

Appendix B Run-Time Library Error Messages

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9

Introduction. L B-1
The Error Signaling Sequence B-1
Exceptions B-2
Error Message Descriptions B-3
General Library Return Status Condition Values B4
Mathematical Procedures Runtime Errors B-7
Language-Independent Errors B-9
String Procedures Run-Time Errors B-10
Hardware Trap Conditions. B-11

Appendix C Vax-11 Procedure Calling and Condition Handling Standard

xil

C.1 Calling Sequence e C+4
C2 ArgumentList, C-4
C.2.1 Argument List Format C+4
C.2.2 Argument Lists and High-Level Languages C-5
C.2.2.1 Order of Argument Evaluation C-5
C.2.2.2 Language Extensions for Argument Transmission C-6
C.3 Function ValueReturn C-6
C.4 Condition Value. e C-7
C.4.1 Interpretation of Severity Codes. C-9
C.4.2 Use of Condition Values C-10
Ch5 RegisterUsage C-10
C6 StackUsage. C-11
C.7 Argument Data Types. C-12
C.7.1 Atomic Data Types. C-12
C.7.2 StringDataTypes v v v v v C-14
C.7.3 Miscellaneous Data Types C-14
C.7.4 COBOL Intermediate Temporary Data Type. C-15
C.8 Argument Descriptor Formats C-15
C.8.1 Descriptor Prototype C-16
C.8.2 Scalar, String Descriptor (DSC$K_CLASS_S) C-16
C.8.3 Dynamic String Descriptor (DSC$K_CLASS_D). C-16
C.8.4 Varying String Descriptor. C-17
C.8.5 Array Descriptor (DSC$K_CLASS_A). C-17
C.8.6 Procedure Descriptor (DSC$K_CLASS_P). C-19
C.8.7 Procedure Incarnation Descriptor (DSC$K_CLASS_PI). . . . C-20
C.8.8 Label Descriptor (DSC$K_CLASS_J) C-20
C.8.9 Label Incarnation Descriptor (DSC$K_CLASS_JI) C-20
C.8.10 Decimal Scalar String Descriptor (DSC$K_CLASS_SD) . . . C-20
C.8.11 Non-Contiguous Array Descriptor (DSC$K__CLASS_NCA) . . C-20
C.8.12 Reserved Descriptors C-23
C.9 VAX-11Conditions v v v v e e e e C-23
C.9.1 Condition Handlers. C-23
C.9.2 Condition Handler Options C-24
C.10 Operations Involving Condition Handlers C-25

C.11

C.12
C.13

C.10.1 Establish a Condition Handler C-25

C.10.2 Revert to the Caller’s Handling C-26
C.10.3 Signala Condition C-26
Properties of Condition Handlers. C-28
C.11.1 Condition Handler Parameters and Invocation. C-28
C11.2 Useof Memory. v v v v v v v C-29
C.11.3 Returning from a Condition Handler C-29
C.114 Request toUnwind. C-30
C.11.5 Signaler’s Registers. C-31
Multiple Active Signals C-31
Change History C-33

Appendix D Algorithms for Mathematics Procedures

D.1

D.2

Floating Mathematical Functions D-1
D.1.1 ArcCosine. D-1
D.1.2 ArcSine. D-2
D13 ArcTangent. e e D-2
D.1.4 Arc Tangent with Two Parameters D-5
D.1.5 Common Logarithm D-6
D.1.6 Cosine. e e e e D-6
D.1.7 Exponentialo oo D-6
D.1.8 Hyperbolic Cosine D-8
D.19 HyperbolicSine 0oL D-8
D.1.10 Hyperbolic Tangent D-10
D.1.11 Natural Logarithm D-11
D112 Sine. e e e D-12
D.1.13 Square Rooto e D-15
D.1.14 Tangent D-18
Exponentiation Functions D-19
D.2.1 Floating Base to Floating Power. D-19
D.2.2 TFloating Base to Integer Power D-21
D.2.3 Integer Base to Integer Power. D-22

Appendix E Image Initialization and Termination

E.1
E.2
E.3
E4
E5
E.6

Image Initialization E-1
Initialization Argument List E-3
Declaring Initialization Procedures E-4
Dispatching to Initialization Procedures E-5
Initialization Procedure Options E-5
Image Termination E-6

Appendix F CALLG, CALLS Instructions

F.1
F.2

CALLG Instruction ST [|
CALLS Instruction e F-2

Appendix G Sample Programs Using LIBSTPARSE

Figures

Tables

xiv

G.1 Sample MACRO Program Using LIBTPARSE G-1
G.2 Sample BLISS Program Using LIBTPARSE G-6
1-1 Development of a Program that Calls the Run-Time Library 1-3
1-2 The VAX-11 Run-Time Procedure Library 1-5
2-1 Calling the Run-Time Library 2-2
2-2 Procedure Parameter Passing Mechanisms 2-9
6-1 Sample Stack Scan for Condition Handlers. 6-6
8-1 Producing a Cross-Reference Listing 8-2
8-2 Summary of Symbol Names and Values 8-2
8-3 Summary of Symbol Names, Values, and Names of Referring Modules. . 8-3
8-4 Summary Indicating Defining Module 8-3
8-5 Argument List for Enteringa Key 8-7
8-6 Argument List for Entering a Reference. 8-7
8-7 Argument List for Output of Cross-Reference. 8-9
B-1 Sample Dialogue of the HELP ERROR Command B-3
E-1 Sequence of Events during Image Initialization E-3
F-1 CALLG Instruction Sequence v F-1
F-2 CALLS Instruction Sequence. o o o ‘F-3
2-1 String Passing Techniques Used by the Run-Time Library 2-16
2-2 Valid Run-Time Library Parameter Passing Mechanism. 2-17
2-3 Function Return Valuesin BASIC 2-27
2-4 Function Return Values in FORTRAN 2-35
2-5 Function Return Values in PASCAL 2-38
3-1 General Utility Procedures., 3-1
4-1 Mathematics Procedures.o 4-4
4-2 Exponentiation Procedures. 4-27
4-3 Complex Exponentiation Procedures 4-33
4-4 Miscellaneous Mathematical Functions. 4-37
5-1 Process-Wide Resource Allocation Procedures. 5-1
5-2 LIB$, OTS$, & STR$ Parameter Passing Conventions. 5-16
6-1 Signaling and Condition Handling Procedures. 6-3
6-2 Interaction Between Handlers and Default Handlers. 6-34
7-1 String Syntax Procedures 7-1
C-1 Interaction Between Handlers and Default Handlers. C-27

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 Text Management System.

036ALL

Preface

Document Objectives

The VAX-11 Run-Time Library comprises two types of procedures: general
purpose and language-support. This manual introduces the entire library and
describes the callable interface to the general utility procedures. The VAX-11
Guide to Creating Modular Library Procedures describes how to write modu-
lar procedures.

This manual introduces the library, describes the calling and naming conven-
tions, and presents all procedures of a general nature. Each procedure is
documented with a functional description including algorithms and examples,
where appropriate, and instructions for access in all VAX-11 supported
languages.

Intended Audience

This manual is intended for system and application programmers who are
already familiar with VAX/VMS system concepts but require a detailed
knowledge of the Run-Time Library. Readers are assumed to be familiar with
the VAX/VMS operating system, and proficient in a language supported by
VAX/VMS.

Document Structure

The first two chapters of this manual are tutorial, prov.iding an overview of
the Run-Time Library.

e Chapter 1 is an introduction to the library, detailing how it can be used and
how it is organized.

XU

* Chapter 2 explains how to call library procedures and describes the naming
conventions and procedure parameters.

Chapters 3 through 8 contain reference material, providing detailed descrip-
tions of each library procedure:

e Chapter 3 describes the general utility procedures.
® Chapter 4 contains the mathematics procedures.
¢ Chapter 5 details the resource allocation procedures.

e Chapter 6 presents the signaling and condition handling procedures, and
information on how you can control the handling of error conditions and the
printing of error messages by writing your own condition handlers.

e Chapter 7 describes syntax analysis procedures.

e Chapter 8 describes cross-reference procedures.

The appendixes provide useful background information:

e Appendix A lists all general purpose entry points in the Run-Time Library,
including coding information for the parameters.

* Appendix B lists all error messages and condition symbols returned from or
signaled by library procedures.

o Appendix C is the VAX-11 Procedure Calling Standard.
* Appendix D contains algorithms for the mathematics procedures.

e Appendix E explains image initialization and termination and how users
can control them.

e Appendix F explains in detail the operation of CALLS and CALLG
instructions.

e Appendix G contains detailed MACRO and BLISS examples using the syn-
tax analysis procedures.

Associated Documents

xUL

The following document in association with this manual comprise the
VAX-11 Run-Time Library Documentation:

e VAX-11 Guide to Creating Modular Library Procedures

The following documents are associated with this manual:

e VAX-11 MACRO User’s Guide
e VAX-11 MACRO Language Reference Manual
o VAX-11 BLISS-32 User’s Guide

e BLISS Language Guide

VAX-11 BASIC User’s Guide

VAX-11 BASIC Language Reference Manual
VAX-11 COBOL-74 User’s Guide

VAX-11 COBOL-74 Language Reference Manual
VAX-11 FORTRAN User’s Guide

VAX-11 FORTRAN Language Reference Manual
VAX-11 PASCAL User’s Guide

VAX-11 PASCAL Language Reference Manual
VAX/VMS System Services Reference Manual

For a complete list of all VAX-11 documents, including brief descriptions of
each, see the VAX-11 Information Directory.

Conventions
Unless otherwise noted:

¢ all numeric values are represented in decimal notation

¢ all commands terminate with a carriage return

Variable information is indicated by lowercase characters; literal information,
which you must enter exactly as shown, is indicated by uppercase characters.

Brackets ([]) in procedure descriptions indicate optional arguments. An equal
sign after an optional parameter indicates the default value if you omit the
parameter.

Ellipses (...) indicate parameters that can be repeated one or more times.

Unless otherwise specified, the term:

¢ MACRO means VAX-11 MACRO
¢ BLISS means BLISS-32
e BASIC means VAX-11 BASIC
¢ COBOL means VAX-11 COBOL-74
¢ FORTRAN means VAX-11 FORTRAN
e PASCAL means VAX-11 PASCAL
¢ Run-Time Library means VAX-11 Common Run-Time Procedure Library

¢ Linker means VAX-11 Linker

xULL

Summary of Technical Changes

XULLL

This manual documents the VAX-11 Run-Time Library Reference Manual
Version 2.0. This section summarizes the technical changes from Version 1.0.

Languages
Added examples and instructions for calling Run-Time Library procedures
from BASIC, COBOL, and PASCAL.

Miscellaneous

Chapters 3,4 and 5 have been rearranged and restructured to accommodate
the many new procedures. Appendices A and D have correspondingly been
reordered. See the Index for an enumeration of the procedure names.

General Utility Procedures

Added new procedures for performance measurement, I/O control, interlocked
queue instructions, formatted I/O conversion, terminal independent screen
functions, emulate G__floating, H__floating, and O (octaword) instructions,
simulate floating traps on machines which have floating faults, date/time
utility procedures, translation tables and routines.

String Facility
Added new STRS$ facility with string arithmetic and many additional string
manipulation procedures (see Chapters 3 and 5). This facility has:

¢ CALL entry points, with scalar arguments passed by reference
e JSB entry points, with scalar arguments passed by immediate value

e Support for all string data types specified in the VAX-11 Procedure Calling
Standard

e Mechanism for being called directly from higher-level languages

Math Library

Added G__ and H__ floating mathematical functions and D__ and
G_complex mathematical routines. Added a new JSB entry point
(MTH$SQRT_R3) to improve the accuracy of the single-precision
square root. Other JSB entry points (MTH$ACOS__R4, MTHS$ASIN__R4,
MTH$DACOS_R7, MTH$DASIN__R7, MTH$DEXP__R6) have been im-
proved so they use fewer registers without impacting execution speed.

FLOOR routines were added which return a truncated (towards minus infin-
ity) integer part of a number in a floating-point representation. SGN routines
were added which return -1, 0, or 1 depending on the sign of the floating-point
input.

Resource Allocation
Added new routines for allocation of dynamic strings, event flags, and logical
unit numbers.

Syntax Analysis
Added a new example in BLISS and moved both examples (MACRO and
BLISS) to a new Appendix G.

Cross-reference
Added Chapter 8 which contains instructions and examples for using the
cross-reference procedures.

Error messages

Added new error messages for LIB$, MTH$ and STR$ and removed the FOR$
messages. The FOR$ error messages are in the VAX-11 FORTRAN User’s
Guide.

VAX-11 Procedure Calling Standard
Appendix C has been updated with many new data types and other features.
A complete revision history can be found at the end of the appendix.

Algorithms
Added new algorithms for G__ and H__floating math functions and for
D__ and G__complex math procedures.

USEROPEN
The appendix on USEROPEN has been removed. The old Appendix G
(detailing CALLS and CALLG) is now Appendix F.

All chapters and appendixes have been revised to bring this manual up to the
VAX/VMS V2.0 level.

xix

Chapter 1
Introduction

The VAX-11 Run-Time Library (or simply, the Run-Time Library) contains
sets of general purpose and language support procedures. MACRO, BLISS, or
high-level language user programs call these procedures in any combination to
perform tasks required for program execution. Because all procedures follow
the VAX-11 Modular Programming Standard, a common run-time environ-
ment is provided for user programs.

The common run-time environment means that any program written in
MACRO, BLISS, or a supported high-level language (BASIC, COBOL,
FORTRAN, PASCAL) can call any procedure in the Run-Time Library. This
environment lets your program contain procedures written in different lan-
guages, thus increasing program flexibility.

A procedure is a set of related instructions that performs a particular task. It
is an executable program unit, and can be a main program, subroutine, or
function. A procedure has an entry point, a parameter (or argument) list, a
return point, and, optionally, a function value or completion status.

Run-Time Library procedures are written using the VAX-11 Procedure
Calling Standard. They are reentrant and position-independent. In addition,
VAX/VMS system services are callable procedures that can be used
with Run-Time Library procedures. (See the VAX/VMS System Services
Reference Manual.)

1.1 Run-Time Library Capabilities
The Run-Time Library provides the following capabilities:

¢ Language-independent support procedures that perform common language
services only once, rather than once for each language.

e Compiler-generated procedures written in any language that can be called
from procedures written in any other language. Each procedure can use its

1-1

language-specific features fully without affecting other procedures. In cer-
tain cases, one language can use some of the features of the other languages.

e File, data type, and procedure-call compatibility between the languages
supported by VAX/VMS. File and error handling compatibility between the
VAX-11 and the 16-bit PDP-11 is also provided.

¢ Capability to add new languages.

¢ File input/output (I/O) that interfaces solely with VAX-11 Record Manage-
ment Services (RMS).

e For each VAX-11 native-mode language, the ability of the Run-Time
Library to produce files compatible with files produced by the correspond-
ing PDP-11 and VAX-11 compatibility-mode language.

e The ability for each VAX-11 native-mode language to process files pro-
duced by programs written in other languages.

¢ Use of all procedures from both the Asynchronous System Trap (AST) and
nonAST levels in the same image (two levels maximum). Thus, all proce-
dures are reentrant.

1.2 Linking with the Run-Time Library

1-2

Figure 1-1 shows the program development cycle for a user program that calls
the library.

The Run-Time Library is part of the system library automatically searched
when user programs are linked. Run-Time Library procedures execute en-
tirely in user mode and work only when called by native-mode user programs.

Normally, the image activator incorporates sections of the Run-Time Library
into an executable image at run time when you type the RUN command. You
can also link copies of procedures from the library directly to your image by
typing the LINK command with the /INCLUDE qualifier.

When a user program calls the Run-Time Library, the program refers to a
storage location in the library that points to the starting address of the proce-
dure to be executed. This storage location is called a transfer vector.

Transfer vectors permit a single, position-independent copy of the library
procedure to be associated with different virtual addresses in the user images
sharing the procedures. This is done by allocating a global section to the
Run-Time Library to make it a sharable image.

Introduction

Figure 1-1: Development of a Program that Calls the Run-Time Library

Interactive Input

¢

>

Editor
\ Source
Module(s)
Language / filenam. XXX
Translator
or __,,/
Assembler
Object
Module(s)
filenam.LIS
filenam.0OBJ
Executable
/ Image(s)
Linker Lag
filenam . EXE
filenam.MAP

Note: A sharable image
is brought into physical
memory only if the
executable image that
requires it is the first-time
use known to the image
activator.

RUN filenam . EXE

!

Common Run-Time
Procedure
Library

Files
LiB$

MTH$
STR$
oTS$
BASS$
COB$

USER PROCESS

Executable
Image

— —— — = "

l Common Run-Time '
| Procedure I
Library

L

FOR$
~__PASS

Program

Qutput

Introduction

Edit Time
Program is
entered & edited

Compile Time
Edited program
is translated into
an object file.

Link Time

The appropriate
library entry points
are made known

to the object module
to form an executable
image;

virtual space is
reserved in the

image for the procedure
to execute

Run Time

With the executable
image aware of the
proper addresses of
the relevant library
procedures in its
virtual address
space, the

image

can call library
procedures at

run time

1-3

The sharable image is mapped into the address space of an executable image,
which is in turn activated by the RUN command. At run time, a call instruc-
tion in the user program passes control to a transfer vector that in turn
branches to the called library procedure. This mechanism lets many users
share the same image: the procedure’s code can be in different places in
several users’ address space simultaneously.

The transfer vectors and the mapping of global sections into a process’s ad-
dress space at run time also permit a new version of the library to be installed
without relinking the user images. This is possible because the location of
transfer vectors remains the same— only their contents change for each new
version.

1.3 Library Calling Conventions

1-4

The Run-Time Library conforms to the VAX-11 Procedure Calling Standard
(see Appendix C). Therefore, its procedures can be called by all native-mode
languages. Chapter 2 describes the explicit calls you can use to any procedure.

Each procedure has a call entry point. Frequently used procedures also have a
jump-to-subroutine (JSB) entry point. JSB instructions execute faster than
call instructions, but they have some limitations: for example, they do not
create a stack frame, and thus execute in the environment of the caller.

Each procedure belongs to a library facility, which is a set of related proce-
dures. Each procedure’s facility is indicated by a four-character prefix to the
procedure’s name. For example, the MTHS$SIN procedure belongs to the
mathematics facility, as indicated by MTHS$. Each facility has its own error
messages, parameter passing mechanisms, and specific parameter forms. The
facilities currently in the library are:

o LIB$ - General purpose procedures such as utility, resource allocation,
signaling and condition handling

e MTH$ - Mathematics procedures

e STR$ - String manipulation procedures

e OTS$ - Language-independent support procedures
e BAS$ - BASIC-specific support procedures

e COB$ - COBOL-specific support procedures

e FOR$ - FORTRAN-specific support procedures

e PAS$ - PASCAL-specific support procedures

To execute properly, each library procedure requires you to supply parame-
ters. Each parameter must be of the data type and form required by the
procedure and must be passed in the proper order by the correct mechanism.
For many procedures, some of the parameters are optional. You can select
your own parameter names, but you must code them as outlined in Chapter 2.

Introduction

Some procedures return a completion value or a function value. Procedures
called from a high-level language receive this as the value of the function.
Procedures called in assembly language (MACRO) can access this value in
register RO or RO/R1.

Some procedures allocate image resources (for example virtual memory). Any
library procedure that needs such resources automatically calls the necessary
library resource allocation procedures. Your programs should also call these
procedures when they need image resources.

1.4 Organization of the Run-Time Library

Figure 1-2 illustrates the organization of the Run-Time Library. The library
consists of two major parts: general purpose procedures. and language support
procedures. General purpose procedures are documented in Chapters 3
through 8. Appendix A of this manual summarizes these Run-Time Library
entry points.

Figure 1-2: The VAX-11 Run-Time Procedure Library

MATHEMATICS PROCESS-WIDE SIGNALING SPECIAL
GENERAL PROCEDURES RESOURCE & APPLICATION
UTILITY MTHS$ ALLOCATION CONDITION PROCEDURES
PROCEDURES OTS$ PROCEDURES HANDLING LiBS
LIBS LIBS PROCEDURES
STR$ STR$ LIB$
0TS$ OTS$

GENERAL PURPOSE

LANGUAGE -SPECIFIC
SUPPORT PROCEDURES
¢ COMPILED CODE SUPPORT
* FILE PROCESSING
* FORMAT PROCESSING
* |/0 PROCESSING
BAS$
coBs$
FOR$
PAS$

LANGUAGE-INDEPENDENT
SUPPORT PROCEDURES
(COMMON TO MORE THAN
ONE NATIVE-MODE
LANGUAGE)

OTS$

LANGUAGE SUPPORT

Introduction 1-5

1-6

1.4.1 General Purpose Procedures

The following sections summarize general purpose procedures. Normally, user
programs call these procedures using explicit CALL statements or function
references (see Chapter 2).

1.4.1.1 General Utility Procedures — General utility procedures include pro-
cedures for getting a record from a logical device, string manipulation, input
and output conversion, and date/time functions.

Chapter 3 details these procedures.

1.4.1.2 Mathematics Procedures — Mathematics procedures perform com-
mon arithmetic, algebraic, and trigonometric functions; for example, taking
the sine of an angle. They are written in MACRO to use the speed and
accuracy of the VAX-11 floating-point instructions. The frequently used
mathematics procedures have both JSB and standard call entry points.

Chapter 4 details these procedures.

1.4.1.3 Resource Allocation Procedures — Resource allocation procedures
allocate the following process resources:

e Virtual memory — one procedure to allocate and another to deallocate
arbitrary sized blocks of the program region

e VMS event flags — one procedure to allocate and another to deallocate
event flags

* BASIC/FORTRAN logical unit numbers — one procedure to allocate and
another to deallocate logical unit numbers

e Character strings — procedures to copy and convert both fixed length and
dynamic strings; procedures to allocate and deallocate dynamic strings

Chapter 5 details these procedures.

1.4.1.4 Signaling and Condition Handling Procedures — Signaling and condi-
tion handling procedures signal exception conditions and support condition
handlers so that you can control errors and change system default responses.
Specifically, the signaling and condition handling procedures let you:

¢ Communicate errors between user programs, the Run-Time Library, and
VAX/VMS

® Alter the default condition handling mechanisms, including the printing of
error messages

¢ Establish and write special condition handlers to correct, report, and con-
trol errors

Introduction

¢ Enable and disable hardware traps

e Establish and remove condition handlers associated with a procedure
activation

Chapter 6 details these procedures.

1.4.1.5 Syntax Analysis Procedures — Syntax analysis procedures analyze
strings. The library includes a table-driven parser called LIBSTPARSE, and a
keyword recognizing procedure called LIBSMATCH__KEY.

Chapter 7 details these procedures.

1.4.1.6 Cross-Reference Procedures — The cross-reference procedures are
contained in a separate sharable image. They can create a cross-reference
analysis of symbols. The procedures accept cross-reference data, summarize

it, and format it for output. The interface to the cross-reference procedures is
through a set of control blocks and format definition tables.

Chapter 8 details these procedures.

1.4.2 Language Support Procedures

Language support procedures are generally called implicitly by compiler-
generated code, as a result of a statement in the higher-level language. The
language support procedures consist of:

¢ Procedures that support a specific language compiler

¢ Procedures that support more than one native-mode language compiler

1.4.2.1 Language-Specific Procedures — The language-specific procedures
support the in-line code generated by the language compilers. Some language-
specific procedures are of general utility such as input/output conversion and
date/time. For example, to perform a Language A function from a Language B
program, you may find it easier to write a short Language A procedure to
perform the function, and to call that procedure from your Language B pro-
gram. Chapter 3 documents language-specific procedures, which generally
include:

¢ File processing support procedures
e Auxiliary input/output procedures
¢ System procedures

¢ Compiled-code support procedures

¢ Compatibility procedures

Introduction 1-7

1.4.2.2 Language-independent Support Procedures — Language-independ-
ent support procedures consist of all procedures used by more than one native-
mode language compiler. These include:

¢ Initialization and termination procedures

e Error and exception condition procedures

e Data type conversion procedures

1.5 Procedure Descriptions

1-8

Chapters 3 through 8 describe each library procedure. Sections in these chap-
ters are arranged by major category (for example, Performance Measurement
Procedures). Each section presents the procedures in related groups or alpha-
betically by functional description. In addition, Appendix A summarizes the
procedure names and calling sequences.

Each procedure description consists of the following categories, as applicable:
Format

Shows the high-level language format of the procedure, giving the proce-
dure name and parameter order. JSB entry points (if any) are also listed.

Parameters

Describes each parameter. A parameter to the left of the entry point name
in the format is written by the procedure; parameters to the right are read
and sometimes written by the procedure. For example:

old-setting = LIBSFLT__UNDER (new-setting)
In this call, the procedure writes old-setting and reads new-setting.

In the format, required input parameters occur first, followed by required
output parameters (if any). Required input and output parameters are
followed by optional input and output parameters.

Function Value

Library procedures return: (1) nothing (a subroutine) (2) a function value
or (3) a return status that indicates whether the procedure completed

successfully.
In case (1), the format begins with CALL No function value or status
code is returned, and the contents of registers RO/R1 are unspecified at
completion.

In case (2) or (3), the parameter to the left of the equal sign is either: (a) a
descriptive name indicating the nature of the function value returned in
RO or RO/R1, or (b) ret-status indicating a return status in RO.

Introduction

Function values follow the parameters.

Implicit Inputs (JSB Entry)

Includes any parameters passed in registers for JSB entries.
Implicit Outputs (JSB Entry)

Includes any parameters passed in registers for JSB entries.
Return Status

Lists the possible completion codes that the procedure returns in register
RO or RO/R1. The successful returns are listed first, in alphabetical order,
followed by error return status codes, also in alphabetical order. Success-
ful completion (bit 0 = 1) is always shown by “procedure successfully
completed.” If an error status is returned, the severity field of the condi-
tion value is always SEVERE (bits 2:0 = 4) unless ERROR (bits 2:0 = 2) or
WARNING (bits 2:0 = 0) is the first word of the explanation.

Messages

Lists the error messages produced when procedures signal error conditions.
Unless stated otherwise, all error messages are signaled as SEVERE by
calling LIB$STOP.

Notes

Describes any actions taken or side effects performed by the procedure
that are not covered under one of the other headings. When an action is
identical for all procedures in a given library facility, the action is listed in
the chapter introduction only.

Examples

Gives a simple example(s) using the procedure in a short program segment
to clarify the passing mechanisms in the various languages.

Introduction 1-9

Chapter 2
Calling Run-Time Library Procedures

User programs call Run-Time Library procedures using the VAX-11 Proce-
dure Calling Standard (see Appendix C). All of the programming languages
that generate VAX-11 native-mode code provide mechanisms for coding the
procedure calls. Sections 2.2 through 2.6 describe general aspects of calling
procedures on VAX/VMS. Sections 2.7 through 2.12 describe how to call
library procedures using MACRO, BLISS, BASIC, COBOL, FORTRAN and
PASCAL. '

When you code instructions to call a library procedure, you must furnish
whatever parameters the procedure requires.

When the procedure completes execution, it returns control to the calling
program. If the procedure returns a status code, the calling program should
analyze the code to determine the success or failure of the procedure so it can,
if necessary, change the flow of execution.

2.1 How to Call Library Procedures

A process is created when you log in and exists until you log out. Each time
you run a program, VAX/VMS activates an executable image in your process
that contains the program to be executed. The program consists of user proce-
dures, one of which is the main program. The term ‘“main program” or ‘“‘main
procedure” refers to the first user program or procedure called after image
initialization. However, before the main program or main procedure is called,
VAX/VMS calls a number of initialization procedures. (See Appendix E for
more information on initialization procedures.)

Figure 2-1 shows the calling relationship among a main program, user proce-
dures, library procedures, and VAX/VMS. In this figure, “CALL” indicates a
request for information or for some action; “RETURN” indicates that the
information requested was returned to the caller, or that the action requested
was performed.

User procedures can call both other user procedures and library procedures.
From the point of view of the library, user procedures are procedures outside
the library that can call the library. User procedures can be DIGITAL sup-
plied, such as a compiler or a utility, or they can be customer written. The

term ‘‘user program’ refers to all of one user’s procedures, including the main
program.

Figure 2-1: Calling the Run-Time Library

OPERATING SYSTEM

CALL RETURN CALL RETURN
Y
_LIBRARY _|
Y PROCEDURE |
T % caLL RETURN
USER
PROCEDURE
CALL RETURN

| B A J

MAIN PROGRAM
(A USER PROCEDURE)

Library procedures can call other library procedures or VAX/VMS; however,
they cannot call user procedures except in the following instances:

® When initialization is required before the main program gets control (see
Appendix E)

e When users establish their own condition handlers (see Chapter 6)

e When a user procedure passes the address of a procedure as a parameter to
the library to be called later by the library

2.2 Call Summary

Each procedure requires a specific calling sequence, as shown in the format
section of each procedure description in Chapters 3 through 8. A calling se-
quence takes the general form of:

e Call type
e Library facility prefix
¢ Procedure name

e Parameter list

2-2 Calling Run-Time Library Procedures

¢ The MACRO calling sequences are:

CALLS #n,fac$procedure-name
CALLG parameter-list, fac$procedure-name
JSB fac$procedure-name

Section 2.7 provides a complete explanation of how to code calls to library
procedures using MACRO. Some examples of MACRO calls are:

CALLS #24G LIB$GET.INPUT
CALLG ARGLST G LIB$GET..UM
J6B MTH$SIN_R4

¢ The FORTRAN calling sequences are:

CALL statement fac$procedure-name (parameter-list)
function reference fac$procedure-name (parameter-list)

Section 2.11 provides a complete explanation of how to code calls to library
procedures using FORTRAN. Some examples of FORTRAN calls are:

CALL LIB%MOUTC (SRC» FILL,» TABLE,» DEST)
STATUS = LIB$GET.INPUT (STRING:, 'NAME: ')

As these calling sequences and examples show, the call forms vary from lan-
guage to language. For example, MACRO does not distinguish between func-
tions and subroutines in its CALLS and CALLG instructions, and higher-level
languages provide no explicit JSB call form. In addition, some procedures
provide both call (CALLS/CALLG) and JSB entry points.

Each procedure is identified by a unique entry point name, consisting of the
library facility prefix (LIB$, MTHS, etc.) plus the procedure name, (for exam-
ple, MTHS$SIN). Section 2.3 provides more detailed information on library
naming conventions.

Parameters passed to a procedure must be coded in the order shown in the
descriptions in Chapters 3 through 8. Each parameter has four characteristics:
access type, data type, passing mechanism, and parameter form (see
Appendix A).

The access types include:

¢ Function call (before return)

e JMP (after unwind) access

¢ Modify (Read and Write) access
¢ Read-only access

® Write-only access

The data types include:

e Absolute virtual address

¢ Bit (variable bit field)

Calling Run-Time Library Procedures 2-3

* Byte integer (signed)

¢ Byte logical (unsigned)

e F__floating complex

e D__floating complex

¢ G__floating complex

¢ Data type in descriptor

e F__floating

¢ D__floating

e G__floating

¢ H__floating

¢ Longword condition value
e Longword integer (signed)
¢ Longword logical (unsigned)
¢ Quadword integer (signed)
e Text (character) string

e Word integer (signed)

¢ Word logical (unsigned)

The passing mechanisms include:

¢ By descriptor
¢ By reference

e By immediate value

The parameter forms include:

e Array reference or descriptor

e Dynamic string descriptor

¢ Fixed-length string descriptor

® Procedure reference or descriptor
e Scalar

e String form specified in descriptor

The procedure descriptions in Chapters 3 through 8 provide specific informa-
tion on parameter characteristics, while Section 2.4 provides general informa-
tion on the same topic. Section 2.5 describes valid combinations of passing
mechanisms and data forms.

2-4 Calling Run-Time Library Procedures

The caller of a library procedure can omit optional parameters at the end of
the parameter list by passing a shortened list. (This differs from a call to
VAX/VMS System Services.) Thus, the format for a library procedure with
two optional parameters would be:

CALL fac#$name (rParameterl [sparameter? [srparameterd3dl])

The following calls could be made to this procedure in FORTRAN:

CALL fac%vname (A:B,C)
CALL facdname (A:B)
CALL fac%$name (AsB»)
CALL fac$name (As:C)
CALL fac#name (A)
CALL fac#name (A:)
CALL facdname (Ass)

NOTE

Optional parameters apply only to the CALL entry points. JSB
entry points do not have optional parameters; all specified re-
gisters are used.

2.3 Library Naming Conventions

This section explains the naming conventions that the Run-Time Library
follows for its entry point names, return status codes, and condition value
symbols.

2.3.1 Entry Point Names

The Run-Time Library entry point naming conventions follow the VAX-11
global symbol naming conventions. A global symbol takes the general form:

fac$symbol
where:
fac is a two- or three-character facility name.

symbol is a one- to eleven-character symbol.

The facility names are maintained in a system-wide, DIGITAL registry. A
unique, 12-bit facility number is assigned to each facility name for use in:
(1) condition value symbols, and (2) condition values in procedure return
status codes, signaled conditions, and messages. All library entry point names
begin with a facility prefix. The high order bit of the 12-bit facility number is
zero for facilities assigned by DIGITAL and one for those assigned by
Computer Special Services (CSS) and customers.

Calling Run-Time Library Procedures 2-5

2-6

The library facility prefixes are:

Facility Facility

Name Number Facility
LIBS 21 General utility procedures—for use with all languages including

MACRO

MTHS$ 22 Mathematics procedures
OTS$ 23 Language-independent support procedures
FORS$ 24 FORTRAN-specific support procedures
COBS$ 25 COBOL-specific support procedures
BAS$ 26 BASIC-specific support procedures
PAS$ 33 PASCAL-specific support procedures
STR$ 36 String procedures

2.3.2 JSB Entry Point Names

JSB entry point names follow the standard entry point naming conventions
except that they include the number of the highest register accessed or modi-
fied. This helps ensure agreement between the caller and the called procedure
about the number of registers that the called procedure is going to change (see
Section 2.7.1.3). For example:

JEB MTH$S5INLR4 i F_floating sine uses RO to R4

NOTE

JSB entry points are available only to MACRO and BLISS
programs, not high-level languages.

2.3.3 Library Return Status and Condition Value Symbols

Library return status and condition value symbols have the general form:
fac$__abcmnoxyz

where:

fac is the three-letter facility symbol (LIB, MTH, STR, OTS, BAS,
FOR, PAS).

abc are the first three letters of the first word of the associated
message.

mno are the first three letters of the next word.

xyz are the first three letters of the third word, if any.

Calling Run-Time Library Procedures

Note that articles and prepositions are not considered significant words in this
format. If a significant word is only two letters long, an underscore character
is used to fill out the third space. The VAX/VMS normal or success code is
used to indicate successful completion. Some examples follow:

LIB$_INSVIRMEM Insufficient virtual memory
FOR$_NO_SUCDEV No such device

SS$_NORMAL Routine successfully completed
MTHS$_FLOOVEMAT Floating overflow in Math Library procedure
BAS$_SUBOUTRAN Subscript out of range

2.4 Procedure Parameter Characteristics

The Run-Time Library lets you pass parameters of various types and forms to
its procedures. However, some procedures accept certain types of parameters.

Each parameter has the following characteristics:

e Access type (read, write, modify ...)
e Data type (floating, longword ...)
¢ Passing mechanism (by immediate value, by reference, by descriptor)

¢ Parameter form (scalar, array, string ...)

The calling program must ensure that parameters passed to a called
procedure are of the type and form that the procedure accepts. For your
convenience, Appendix A uses an abbreviated notation to indicate these char-
acteristics. The following sections describe the four parameter characteristics.

2.4.1 Parameter Access Types
The following parameter access types are available:

¢ Read-only access — parameter is read but not written; at the calling pro-
gram’s option, the parameter can be in read-only storage.

e Write-only access — parameter is written without regard to its original
value.

¢ Modify access — parameter can be modified, that is, both read and written.

¢ Function call — parameter is an address of a function to be (optionally)
called before the procedure returns to its caller.

¢ JMP access — parameter is an address to be (optionally) jumped to after
stack is unwound to the frame of the calling program; no data type field is
given because the parameter is a sequence of instructions (for example, in
FORTRAN, ERR=).

Calling Run-Time Library Procedures 2-7

2-8

2.4.2 Parameter Data Types

The procedure descriptions in Chapters 3 through 8 indicate the expected
data types for each parameter. The following parameter data types are used
by the Run-Time Library:

¢ Byte integer (8-bit signed 2’s complement integer)

* Byte logical (8-bit unsigned quantity)

® Word integer (16-bit signed 2’s complement integer)

e Word logical (16-bit unsigned quantity)

¢ Longword integer (32-bit signed 2’s complement integer)

¢ Longword logical (32-bit unsigned quantity)

¢ Longword condition value

® Absolute 32-bit virtual address

® Quadword integer (64-bit signed 2’s complement integer)
¢ Quadword logical (64-bit unsigned quantity)

e Octaword integer (128-bit signed 2’s complement integer)
e Octaword logical (128-bit unsigned quantity)

¢ F__floating (32-bit F_floating quantity)

e D__floating (64-bit D__floating quantity)

e G__floating (64-bit G__floating quantity)

e H__floating (128-bit H__floating quantity)

e F__floating complex (ordered pair of F__floating quantities representing a
single-precision complex number — the lower (first) addressed quantity
represents the real part, the higher (second) addressed quantity represents
the imaginary part)

e D__floating complex (ordered pair of D__floating quantities representing a
double-precision complex number — the lower (first) addressed quantity
represents the real part, the higher (second) addressed quantity represents
the imaginary part)

e G_floating complex (ordered pair of G__floating quantities representing a
double-precision quantities representing a double-precision complex num-
ber — the lower (first) addressed quantity represents the real part, the
higher (second) addressed quantity represents the imaginary part)

o ASCII text string (a sequence of 8-bit ASCII characters)

* Procedure entry mask

Calling Run-Time Library Procedures

2.4.3 Parameter Passing Mechanisms

Each procedure has a parameter list of 32-bit longwords; each longword speci-
fies a separate parameter. A called procedure interprets each parameter using
one of three standard passing mechanisms: by immediate value, by reference,
and by descriptor. Figure 2-2 illustrates the three passing mechanisms.

Figure 2-2: Procedure Parameter Passing Mechanisms

PARAMETER LIST

PAR 1

PAR 2

ACTUAL VALUE

PARN

PAR 1

PAR 2

POINTER TO
ACTUAL VALUE

{(AP)

((AP)

(a) PARAMETER PASSED BY-IMMEDIATE VALUE

(b) PARAMETER PASSED BY-REFERENCE

DATA

PROCEDURE PARAMETER
PASSING MECHANISMS

ACTUAL VALUE

DESCRIPTOR

PAR N
N :(AP)
PAR 1 (c) PARAMETER PASSED BY-DESCRIPTOR
PAR 2 DESCRIPTOR
POINTER TO
CLASS | DTYPE LENGTH

DATA

o] oO

m

POINTER

PAR N

Note: PAR 1, PAR 2, PAR N
can be passed by-immediate value,
by-reference, or by-descriptor
in any of the above examples.

LENGTH

Calling Run-Time Library Procedures 2-9

2.4.3.1 Passing Parameters by Immediate Value — When parameters are
passed using the immediate value mechanism, the parameter list entry con-
tains the actual, uninterpreted 32-bit value of the parameter. Usually,
parameters passed by immediate value are constants. For example, to pass
100 by immediate value, the caller puts 100 directly in the parameter list.
However, when a variable is passed by immediate value, the variable’s value
is copied to the parameter list. For example, to pass variable X, the caller
must copy the current value of X to the parameter list.

Since higher-level languages normally pass scalar parameters by reference,
the %VAL argument list built-in function or equivalent must be used to call
procedures that accept parameters by immediate value. For example:

* BLISS LIB#SIGNAL (S84 _INTOVF)
* BASIC CALL LIB#SIGNAL(SS4_INTOVF BY VALUE)
* FORTRAN CALL LIB$SIGNAL (ZVAL (SS$_INTOVF))

¢ PASCAL LIB$SIGNAL(ZIMMED(S8S$_INTOVF))
The equivalent MACRO code is:

PUSHL #58% _INTOVF i Push longword by immediate wvalue

CALLS #1 G LIB$SIGNAL i Call LIB$SIGNAL

NOTE

The Run-Time Library is intended to be called from higher-
level languages, so most library procedures do not use the
immediate value mechanism.

2.4.3.2 Passing Parameters by Reference — When parameters are passed
using the reference mechanism, the parameter list entry contains the address
of (that is, points to) the location that contains the value of the parameter.
For example, if variable X is allocated to location 1000, which currently con-
tains the value 100, the parameter list entry will contain 1000.

The following high-level language statements pass a parameter to
LIB$FLT_UNDER by reference:

e BLISS LIB$FLT_UNDER (ZREF (1))
¢ BASIC CALL LIBSFLT_UNDER(1%)
* FORTRAN cCALL LIB$FLT_UNDER(1)
e PASCAL LIB$FLT_UNDER(1)

2-10 Calling Run-Time Library Procedures

The equivalent MACRO code is:

ONE = +LONG i i Address of londword

+

+

PUSHAL ONE i Push address of longword
CALLS #1 G LIBSFLT.UNDER 3 Call LIB&FLT_.UNDER

2.4.3.3 Passing Parameters by Descriptor — When parameters are passed
using the descriptor mechanism, the parameter list entry contains the address
of a VAX-11 descriptor of the parameter. This form is used to pass more
complicated data than can be passed using the preceding forms. All descrip-
tors include the following fields to describe data:

DSC$W_LENGTH data length in bytes
DSC$B_DTYPE data type
DSC$B_CLASS descriptor class field
DSC$A_POINTER address of start of data

Appendix C describes these fields in greater detail.

The following high-level language statements pass a parameter by descriptor:

* BASIC CALL LIBSPUT.OUTPUT(‘HELLO")
* FORTRAN cCaLL LIB$PUT_OUTPUT('HELLD")

e PASCAL LIBSPUT_OUTPUT(4STDESCR(‘HELLO ")
The equivalent MACRO code is:

MEGDBC: WORD LEN DESCRIPTOR: DSCHW._LENGTH

3
+BYTE 14 i DSCHB..DTYPE
+BYTE 1 i DSCeB._CLASS
+ADDRESS MSG i DSCHAPOINTER
MGG +ASCII/Hello/ i String itself
LEN = ,.M8G i Define the lendth of the string
PUSHARQ MSGDSC y Push address of descrirptor
CALLS #1,G"LIB&PUT.QUTPUT v Call procedure

2.4.4 Parameter Data Forms
Possible data forms for Run-Time Library parameters are:

¢ Scalars (numbers) - a numeric representation of a value
® Arrays - a one or more dimensional arrangement of data

® Dynamic strings - a string whose length and address can be changed when
the string is written

Calling Run-Time Library Procedures 2-11

¢ Fixed-length strings - a string whose length and address does not change
when the string is written

® Procedure references or descriptors — a descriptor or reference to a procedure
to be passed as a parameter

2.5 Combinations of Data Forms/Passing Mechanisms

2-12

Each library facility uses a subset of parameter qualifiers permitted by the
VAX-11 Procedure Calling Standard. Table 2-2 (in Section 2.5.4) summa-
rizes the subset of combinations of data forms and passing mechanisms that
each library facility accepts. Section 2.5.1 discusses scalars, Section 2.5.2
discusses arrays, and Section 2.5.3 discusses strings.

2.5.1 Passing Scalars as Parameters

Input scalar parameters are passed by reference to general utility procedures
(LIB$) and mathematics procedures (MTHS$); these procedures are most
likely to be called explicitly from a high-level language program. Input scalar
parameters are passed by immediate value to language-support procedures
(OTS$, BAS$, COB$, FORS$, and PAS$); these procedures are most likely to
be called implicitly from code generated by a language compiler.

Output scalar parameters are always passed by reference to Run-Time Library
procedures.

2.5.2 Passing Arrays as Parameters

Arrays are passed by reference or by descriptor to Run-Time Library proce-
dures depending on the facility.

2.5.3 Passing Strings as Parameters

Strings are always passed by descriptor to Run-Time Library procedures. The
three classes of strings supported by the Run-Time Library are: unspecified,
fixed length, and dynamic. The descriptor format is the same for all three
string types, except for the class code field. The descriptor and the class code
field (bits 31:24) are one of the following:

String Class Symbol Value
Unspecified DSC$K_CLASS__Z 0
Fixed length DSC$K_CLASS_S 1
Dynamic DSC$K__CLASS__D 2

Fixed-length strings are allocated at compile, link, or run time by the calling
program. The called procedure cannot change the length or address of the

Calling Run-Time Library Procedures

string. This means that the descriptor for a fixed-length string can be in read-
only memory. Fixed-length strings can be more efficient (as long as you avoid
excessive space filling), but they require you to specify the length of each
string in your program. FORTRAN and PASCAL support fixed-length strings
only.

Dynamic strings are allocated at run time using library resource allocation
procedures. Therefore, both the length and the address change during execu-
tion and no space filling is needed. Dynamic strings are usually more conven-
ient, since you do not need to specify their length in your program. However,
the dynamic allocation usually takes more execution time. BASIC supports
both fixed-length and dynamic strings.

2.5.3.1 Passing Input Parameter Strings to the Library — The parameter list
entry for an input string is the address of a two longword descriptor. The
descriptor can be any of the three classes of string descriptor, since their
formats are identical, except for the class code field. The called procedure
uses the length (DSC$W__LENGTH) and address (DSC$A_POINTER) of
the string, as specified in the descriptor. When an input string is compared
with another string for each class of descriptor, the shorter string is extended
with the ASCII space character (hexadecimal 20) as the fill character.

2.5.3.2 Returning Output Parameter Strings from the Library — Library proce-
dures do not return strings as they do other function values. Instead, the
parameter to accept the string function value is passed as the first parameter,
and other parameters are shifted to the right by one position. For example:

char-string = LIB$func (a, b, c)
is equivalent to:
CALL LIB$func (char-string, a, b, c)

In addition, the caller must allocate the space for and fill in the fields of the
output string descriptor at compile, link, or run time.

In languages that support the concept of a string function (such as BASIC and
FORTRAN), the following two examples are equivalent, although the first
more clearly illustrates the function concept:

BASIC FORTRAN
DECLARE STRING STR CHARACTER*10 8TR
STR = LIB$func(ABO) STR = LIB$func(A,B.,C)
DECLARE STRING STR CHARACTER*10 STR

CALL LIB%func(STRA+B,C) CALL LIB&func(STRA+B+(C)

In languages that do not support the concept of a string function (such as
MACRO, BLISS and PASCAL), a procedure that returns strings must be
called using an explicit CALL statement. In the following example, a descrip-
tor address for each parameter is pushed onto the stack and a CALLS call is

Calling Run-Time Library Procedures 2-13

2-14

made. Note that the actual descriptors for each parameter would appear
elsewhere in the program and would resemble the form shown in the MACRO
example in Section 2.4.3.3.

PUSHAQ C_.DESCR i Push descr address of C

PUSHAQ B..DESCR i Push descr address of B

PUSHAQ A.LDESCR i Push descr address of A

PUSHAR CHAR_STR_.DESCR § Push descr address of char-str
CALLS #4, LIB$func i Call LIB#func

Procedures can use other parameters to return additional strings passed by
descriptor. Run-Time Library procedures return strings using the following
methods. The FORTRAN specific (FOR$) procedures assume that the
caller passes a fixed length string descriptor, and thus use only the
first method. General utility procedures (LIB$) and language independent
support procedures (OTS$) examine the class field code of the descriptor
(DSC$K__CLASS) passed by the caller and return the string using either of
these methods:

1. Returning fixed-length or unspecified strings (DSC$K_CLASS__S,
DSC$K__CLASS__Z). The contents of the parameter list entry is the
address of the two-longword descriptor with a class field of zero or
one. In the descriptor, the calling program specifies the length
(DSC$W_LENGTH) and address (DSC$A_POINTER) of the area
where the string is to be written. The called procedure copies.the string to
the indicated area and, if necessary, trailing ASCII space characters (hex-
adecimal 20) are used to fill out the string. If insufficient space is avail-
able, one of the following events occurs, depending on the procedure:

a. The string is truncated on the right; there is no error indication
(normal BASIC and FORTRAN technique).

b. The string is truncated on the right and a success or error condition
value is returned (STRS$ facility).

¢. The string is set to asterisks and an error condition is returned
(FORTRAN error technique).

2. Returning dynamic strings (DSC$K_CLASS_D).

The parameter list entry contains the address of the two longword descrip-
tor. In the descriptor, the caller can optionally specify the address of a
previously allocated dynamic string area in the DSC$A_POINTER field.
The two bytes immediately preceding the first byte of the string area
contain the number of bytes allocated to the area; that is, the number of
bytes following the first byte. If the string to be returned fits in the
area already allocated (specified by the word preceding the string
itself), the new string is copied to the old area and the length field
(DSC$W_LENGTH) is changed in the descriptor.

If the string to be returned does not fit in the space allocated, the space is
returned to free storage and a new block is allocated. If the address of the

Calling Run-Time Library Procedures

area (DSC$A_POINTER) is 0, no space is returned and a new block is
allocated. Both the length (DSC$W_LENGTH) and address fields
(DSC$A_POINTER) are modified in the descriptor, and the string is
copied to the newly allocated area.

Note that DSC$A_POINTER is set to the address of the first byte of the
string, and the allocated length is stored in the precedingtwo bytes. Thus,
a dynamic string appears the same as any other string when passed as an
input parameter.

User programs that allocate dynamic strings should always use the string
resource allocation procedures provided by the VAX-11 Run-Time
Library rather than attempt to control dynamic string area descriptors
directly. This is because the arrangement and size of control information
that affects a dynamic string is subject to change with new releases of the
Run-Time Library.

Dynamic strings are the usual string form in BASIC. Dynamic strings are not
generally available to FORTRAN and PASCAL programmers. However, a
calling program can pass a dynamic string to a FORTRAN program. The
FORTRAN procedure makes a copy of the descriptor setting the class field to
DSC$K__CLASS__S. If the string is an input parameter, the results are the
same. If the string is an output parameter, the FORTRAN procedure call uses
the current length of the string, space filling if necessary. If the string is too
long, it is truncated. When a dynamic string is passed as an output parame-
ter, the caller must ensure that the string is of sufficient length before calling
any procedure that expects a fixed-length string.

Procedures which return a string as an output parameter where there is no
way for the caller to know the length of the returned string should have an
optional output length parameter. This parameter should be an unsigned,
16-bit integer to contain the output string length. If the output string is a
fixed-length string, the optional length parameter would reflect the number of
characters written not counting the fill characters, if any.

For example, LIBSGET__INPUT has the optional parameter, out-len (see
Chapter 3). If LIBSGET_INPUT were called with a fixed-length, five charac-
ter string and a record containing ‘ABC’ were read, then out-len would have a
value of three and the output string would be ‘ABC ’. But, if the record read
contained the value ‘ABCDEFG’, out-len would have a value of five, and the
output string would be ‘ABCDE’.

STR$COPY_DX does not need the optional length parameter, because the
output string length is known by the caller. If the output string is dynamic,
the length is the same as the input string length. If the output string is fixed-
length, the length is the minimum of the two lengths before the transfer.

2.5.3.3 Summary of String Passing Techniques — Table 2-1 shows the string
passing techniques used by library facilities in the Run-Time Library.

Calling Run-Time Library Procedures 2-15

Table 2-1: String Passing Techniques Used by the Run-Time Library

String Type String Descriptor Fields

Class Length Pointer Facility

Input Parameter to Procedures

Input String Ignored Read Read LIB,0OTS
Passed by Descriptor STR,lan*

Output Parameter from Procedures (class assumed by called procedure)

Output String Ignored Read Read lan
Passed by Descriptor
(fixed-length)

Output String Ignored Always Can be LIB,0OTS
Passed by Descriptor Written Written STR
(dynamic)

Output Parameter from Procedures (class specified by calling program)

Output String Read Read Read LIB,0TS
(unspecified) STR
(DSC$K__CLASS__7)
Output String Read Read Read LIB,0TS
(fixed-length) STR
(DSC$K__CLASS__S)
Output String Read Always Can Be LIB,0TS
(dynamic) Written Written STR

(DSC$K__CLASS_D)

*where lan is a language-specific facility.

2.5.4 Summary of Parameter Passing Mechanisms

Table 2-2 summarizes parameter passing mechanisms that can be used with
each data form for each library facility.

2-16 Calling Run-Time Library Procedures

Table 2-2: Valid Run-Time Library Parameter Passing Mechanisms

Data forms By Immediate Value By Reference By Descriptor
Scalars OTS,lan* LIB,MTH -
Input Output - OTS,lan,LIB -
Arrays - OTS,lan,LIB lan
Input - 0TS, lan,LIB lan
Output
Strings - - LIB,lan,0TS
Input
Output - - LIB,lan,0TS
Fixed length - - LIB,0TS,STR
Dynamic
*where lan is a language-specific facility.

Any deviations from the information in Table 2-2 are documented parentheti-
cally in the parameter descriptions.

2.6 Errors From Run-Time Library Procedures

A procedure can indicate errors to its caller by either returning a condition
value as a completion code or signaling the error. When the completion code is
returned as a value in RO, the caller can test RO and choose a recovery path.
When the completion code is signaled, the caller must establish a handler to
get control before taking action. (See Chapter 6 for a description of signaling
and condition handling.)

Each facility has a convention for returning errors to its callers:

LIB Always communicates errors by a condition value.

MTH
0TS

Indicates errors by signaling.

STR Returns errors in both forms. Severe errors, those judged to be pro-
gramming errors, or conditions which prevent the procedure from
doing any useful work are signaled. Errors that can be corrected using
default values or those judged to be not serious are returned as a
status code.

Calling Run-Time Library Procedures 2-17

2.7 Calling a Library Procedure in MACRO

2-18

This section describes how to code MACRO calls to library procedures using a
CALLS, CALLG, or JSB instruction. Procedures have either CALL or JSB
entry points or both. Procedure descriptions in Chapters 3 through 8 give the
entry points for each procedure. You can use either a CALLS or a CALLG
instruction to invoke a procedure with a CALL entry point; you must use a
JSB procedure to invoke a procedure with a JSB entry point. All MACRO
calls are explicit.

2.7.1 Calling Sequence Examples

CALLS and CALLG are hardware instructions.

Parameters are passed to CALLS and CALLG entry points by a pointer to the
parameter list. The only difference between CALLS and CALLG instructions
is:

e For CALLS, the caller pushes the parameter list onto the stack (in reverse
order) before performing the call. (The list is automatically removed from
the stack upon return.)

e For CALLG, the caller specifies the address of the parameter list, which can
be anywhere in memory. The list remains in memory upon return.

The effect of either call instruction on the called procedure is identical.

Either a CALLS or CALLG instruction specifies the address of the entry point
of the procedure being called. The entry point consists of an entry mask,
followed by the instructions to implement the procedure. An entry mask is a
16-bit word whose bits represent the registers to be saved on a procedure call
that uses the CALLS or CALLG instructions; these registers are subsequently
restored by a corresponding RET (return) instruction.

The called procedure must specify in its entry mask any of the registers, R2
through R11, that are written or modified. This ensures that the contents of
R2 through R11 are preserved from the point of view of the calling program.
The CALLS, CALLG, and the RET instructions automatically save and re-
store registers R12 (the argument pointer, AP), R13 (the frame pointer, FP),
and R14 (the stack pointer, SP). Registers R0 and R1 are temporary registers,
will not be preserved, and should not be specified in the entry mask.

Both CALLS and CALLG instructions also save the state of the caller’s trap
enables, that is, integer overflow, decimal overflow, and floating underflow.
They then set them as indicated by the entry mask, thus isolating the called
procedure from the calling program.

Appendix F contains detailed information about the operation of CALLS and
CALLG instructions and the VAX-11 procedure stack architecture. This in-
formation is particularly pertinent to user control of signaling and condition
handling.

Calling Run-Time Library Procedures

2.7.1.1 CALLS Instruction Example — The following example shows
how the procedure that allocates virtual memory in the program region
(LIB$GET__VM) could be called from a MACRO program. The format of the
LIB$GET_VM procedure is described in Section 5.1.5.

A call to LIBSGET__VM using a CALLS instruction in MACRO is:

PUSHAL START i Push address of londgword to receive
address of blocK

PUSHAL LEN i Push address of londgword containing
number of bytes desired

CALLS #2) G LIB$GET.UM § Allocate memory

BLBC RO+ error i Branch if memory not available

Upon return from LIB§GET__VM, the calling program branches to an appro-
priate error routine if any errors occurred. (Note that because the stack grows
toward location 0 (that is, the top of the stack), parameters are pushed onto
the stack in reverse order from the order shown in the procedure formats.)

2.7.1.2 CALLG Instruction Example — The following example of a CALLG
instruction is equivalent to the preceding CALLS example:

ARGLST: JLONG 2 i Argument list count
+ADDRESS LEN i Address of londword containing
number of bvtes desired
+ADDRESS START i Address of longword to receive

address of block

+

CALLG ARGLST s G LIB$GET.UM

2.7.1.3 JSB Entry Points — JSB instructions execute faster than CALL in-
structions. They do not set up a new stack frame, do not change the hardware
trap enables, and do not preserve the contents of registers RO through Rn
before modifying them. The value of Rn is always indicated at the end of the
procedure’s JSB entry point name. Parameters are passed to JSB entry points
in registers.

A calling program must use a JSB instruction to call a procedure in the
library at its JSB entry point. For example:

MOVF vaer RO i Set up inPut Parameter
J&B MTH$SIN_R4 3 Call F.floating sine Procedure
i Return with value in RO

In this example, MTH$SIN__R4 changes the contents of registers RO through

R4, as indicated by “R4” in the entry point name (see Section 2.3.2). The
routine does not change the contents of or reference registers R5 through R11.

Calling Run-Time Library Procedures 2-19

2-20

Since the JSB entry point routines do not save the contents of any registers,
the calling program is responsible for saving the contents of registers R2
through Rn. This is done by specifying the entry mask bits for at least R2
through Rn in its own entry mask, so a stack unwind correctly restores all
registers from the stack. In the following example, the function
Y=PROC(A,B) returns the value Y, where Y=SIN(A)*SIN(B). Registers R2
through R5 are saved when procedure PROC is called with a CALLS or
CALLG instruction:

JENTRY PROC, "M <R2, R3y R4y RS> 1§ Save R2:R3

MOVF B4(AP) sRO i RO = A

JeB MTH$SIN_R4 i RO = SINC(A)

MOVF RO+ RS i Copy result to redister
i not modified by MTH$SIN

MOVF BB(AP)» RO i RO = B

JeB MTH$SIN_R4 i RO = SIN(B)

MULF RSy RO i RO = SIN(AY*SIN(B)

RET i Return

If DIGITAL should provide JSB replacement routines that change R0 through
Rm, where m is greater than n, both the old and the new routines will be
maintained indefinitely with separate entry points. This means that old pro-

grams will not need to be relinked when new versions of the Run-Time
Library are released (for example, see MTH$SQRT, Chapter 4).

2.7.2 Passing Parameters to Library Procedures

In many cases, you have to tell a library procedure where to find input values
and store output values. You must select a data type for each parameter
when you code your program. Most procedures accept and return 32-bit
parameters.

For input parameters of byte, word.or longword values, you can supply either
a constant value, a variable name, or an expression in the library procedure
call. If you supply a variable name for the parameter, the variable data type
must be as large as or larger than the data type required. If, for example, the
called procedure expects a byte in the range 0 to 100, you can use a variable
data type of a byte, word, or longword with a value between 0 and 100.

For each output parameter, you must declare a variable of exactly the length
required to avoid extraneous data. If, for example, the called procedure re-
turns a byte value to a word-length variable, the left-most eight bits of the
variable (15:8) are not overwritten on output. Conversely, if a procedure re-
turns a longword value to a word-length variable, it modifies variables in
adjacent locations.

2.7.3 Return Status

Some procedures return a 32-bit status code in register RO. A return status
code is either a success (bit 0=1) or error condition value (bit 0=0). In an error
condition value, the low-order 3 bits specify the severity of the error. Bits 27
through 16 contain the facility number, and bits 15 through 3 indicate the
particular condition. The high-order 4 bits are control bits. (See Appendix C.)

Calling Run-Time Library Procedures

To test for errors, check for a 0 in bit 0. This is done with a Branch on Low Bit
Set (BLBS) or Branch on Low Bit Clear (BLBC) instruction.

To test for a particular condition value, perform a 32-bit comparison of the
return status with the appropriate return status symbol. You do this with a
compare long (CMPL) instruction.

There are three ways to define a symbol for a condition value returned by a
library procedure:

* By default. The assembler automatically declares the condition value as an
external symbol that is defined as a global symbol in the Run-Time
Library.

¢ Using the . EXTRN LIB$_INPSTRTRU instruction. This causes the as-
sembler to generate an external symbol declaration.

¢ Using the $LIBDEF instruction. This causes the assembler to define all
LIB$ condition values using the default macro library.

The following example asks for the user’s name. If the name is longer
than 30 characters (the space allocated to receive the name), the error
LIB$__INPSTRTRU - ‘input string truncated’ is usually returned. This ex-
ample checks for that specific error while treating any other error in the usual
manner.

PROMPT : +MWORD B0 i Lendthy class/tvre
+ADDRESS PRO.ADR i Address
PRO_ADR: +ASCII /Name: / i String descriptor
i to receive string
STRING: +WORD 30,0 i Lendth: class/trpe
+ADDRESS STR_ADR i Address
STR..ADR: BLKB 30 i Area to receive string

PUSHAQ PROMPT i Push adr of Promet

i descrirptor

3 Push address of string
i descripPtor

L)
L)
PUSHA® STRING i
k3
CALLS #2 G LIB$GET.INPUT § Get inpPut string
L)
b
¥

BLBS ROy 10% 3 Check for success
CMPL RO, #LIB$_INPSTRTRU 5 Errors was it
i truncated string?
BEQL 104
error i Nos» more seripus error
104 sucCcess i Successy Or name too

i long

2.7.4 Function Return Values

Function values are always 32-bit values returned in register RO, or 64-bit
values returned in registers RO/R1.

Calling Run-Time Library Procedures 2-21

2.8 Calling a Library Procedure in BLISS

This section describes how to code BLISS calls to library procedures. A called
procedure can return one of the following:

¢ No value.

¢ A function value (typically, an integer or floating-point number). For exam-
ple, MTHS$SIN returns an F__floating value.

® A return status (typically, a 32-bit condition value) indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET__INPUT returns a return status.

2.8.1 Calling Sequence Example

The following example shows how to call the procedure that outputs a record
to the user’s terminal (LIBSPUT__OUTPUT) from a BLISS program.

MODULE SHOWTIME(IDENT=’1-1’ YTITLE‘Print time’s» MAIN=TIMEOUT)=

BEGIN
LIBRARY 'SYS$LIBRARY:STARLET’S ! Defines 8Svstem Servicessietc.
MACRO

DESCLI1=%CHARCOUNT(ZREMAINING) » ! WAX-11 String Descriprtor

UPLIT BYTE(ZREMAINING) %3
I definition

DWN
TIMEBUF: VECTORLZ21.» | B4-bit svstem time
MSGBUF: VECTORLBO:BYTED, I Output messade buffer
MSGDESC: VECTORLZ2] INITIAL(BOyMSGBUF)i

BIND
FMTDESC=UPLIT(DESC(’At the tone,» the time will be’

ACHARC(7) y VAT 03
EXTERNAL ROUTINE
LIB$PUT_.OUTPUT: ADDRESSING_MODE (GENERAL)§

ROUTINE TIMEOUT=

BEGIN
LOCAL

RSLT: WORD3 ! Resultant string lendgth
$GETTIM(TIMADR=TIMEBUF)3} ' Get time as B4d-bit inteder

$FAOL(CTRSTR=FMTDESC
ODUTLEN=RSLT »
OUTBUF=MSGDESC »
PRMLST= YREF(TIMEBUF)

Format Descriptor

Duteput lendgth (only a word!)
Outeput buffer descrirtor

i ! Adr of B4-bit time block

f— e e e e o

MSGDESCLOY = ,RSLTS Modify outPput descrirtor
LIB$PUT_.QUTPUT(MSGDESC) Return status
END j

END

ELUDOM

2.8.2 Passing Parameters to Library Procedures

Generally, Run-Time Library parameters are passed by reference. Thus,
when passing a variable, it appears “un-dotted’ in the procedure-call param-
eter list. A constant value can be easily passed using the %REF built-in
function.

2-22 Calling Run-Time Library Procedures

For example to pass the address of a text buffer (MYBUF) and its length
(80 characters):

OWN
MYBUF: VECTORLBO:BYTEDS

+

+

LIB%... (MYBUF,» ZREF(80Q))

2.8.3 Return Status

The return status can be treated as any other BLISS value.

2.8.4 Function Return Values

Function values are always 32-bit values returned in register RO, or 64-bit
values returned in registers RO/R1.

2.8.5 Calling JSB Entry Points from BLISS

Many of the Math Library routines have JSB linkage entry points. These
routines can be efficiently invoked directly from BLISS using LINKAGE and
EXTERNAL ROUTINE declarations.

For example:

LINKAGE
MATH_R4 = JSB(REGISTER=0+ +++):NOPRESERVE(01:+2,3+4)

+

EXTERNAL ROUTINE
MTH$SIN.R4 : MATH.R4}

+

IF MTH$SINC +.4) EQL %E‘0.0’ THEN

2.9 Calling a Library Procedure in BASIC

This section describes how to code BASIC calls to library procedures using
either a CALL statement or function reference. CALL statements invoke
subroutines that do not return meaningful values. Function references, on the
other hand, return one of the following:

¢ A function value (typically, an integer or floating point number). For exam-
ple, MTH$COS returns an F__floating value.

e A return status (typically, a 32-bit condition value) indicating that the
procedure has either successfully executed or failed. For example,
LIB$GET__INPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if

Calling Run-Time Library Procedures 2-23

2-24

you are not interested in the function value or return status. However, it is
good programming practice to always check a return status for success or
failure.

2.9.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a variable
bit field (LIBSINSV) from a BASIC program. The format of the LIB§INSV
procedure is explained in Section 3.4.1.

To set the low order three bits of RET__STATUS to four, you would code the
following:

DECLARE INTEGER RET.STATUS
CALL LIB®INSY (4%, 0%, 3%y RET_.STATUS)

The following example shows how to call the procedure that enables and
disables detection of floating underflow (LIB$FLT__UNDER) from a BASIC
program. The format of the LIBSFLT__UNDER procedure is explained in
Section 6.5.2.

This procedure could be called in a BASIC program to set floating underflow
as follows:

EXTERNAL INTEGER FUNCTION LIB$FLT_UNDER
DECLARE INTEGER OLD_-SET
OLD_SET = LIB$FLT_UNDER (1%)

If the old setting is of no interest, you can ignore it by treating the function
LIB$FLT_UNDER as a subroutine:

CALL LIB$FLT_UNDER (1%)

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND_VALUE:

EXTERNAL INTEGER FUNCTION LIBS$FFC

DECLARE INTEGER COND.VALUE, BITS, POS
COND_YALUE = LIBS$FFC (0% 32%: BITS, POS)

IF (COND_YALUE AND 1%) = 0% THEN GO TO error

You can also test the success or failure of a function returning a return status
directly by using an IF statement:

DECLARE INTEGER BITS, POS
IF (LIB$FFC (0%, 32%, BITS, POS) AND 1%) = O% THEN GO TO error

2.9.2 Passing Parameters to Library Procedures

By default, BASIC uses the call by reference or call by descriptor mechanism
for passing parameters, depending on the argument’s data type. In some

Calling Run-Time Library Procedures

cases, however (a function reference or call to a non-BASIC procedure, for
example), a library procedure can require you to supply arguments in a differ-
ent form. Therefore, BASIC provides three modifiers for passing parameters
when you cannot use the BASIC default mechanism. These modifiers are:

e BY VALUE
¢ BY REF
e BY DESC

They can appear only in actual argument lists.

The following sections describe the use of these modifiers. Note that they are
never used to call a procedure written in BASIC.

2.9.2.1 BY VALUE — This modifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

arg BY VALUE

The argument list entry (arg) is the value of the entry. Because argument
list entries are longwords, the argument value must be a constant (integer, or
F__floating), a variable, an array element, or an expression.

2.9.2.2 BY REF — The modifier forces the argument list entry to use the call:
by reference mechanism. It has the form:

arg BY REF

The argument list entry (arg) is the address of the value. The argument value
can be a numeric or string expression, an array, an array element, or a func-
tion name. BY REF is the default BASIC method for passing all numeric
values except entire arrays.

2.9.2.3 BY DESC — This modifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

arg BY DESC

The argument list entry (arg) is the address of a descriptor of the value. The
argument value must be an entire array or any string expression. BY DESC is
the default BASIC mechanism for passing strings and entire arrays.

For more information, consult the VAX-11 BASIC User’s Guide.

2.9.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates either suc-
cess or failure. To test for errors, use an IF statement (see Section 2.9.1).

Calling Run-Time Library Procedures 2-25

2-26

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce-
dure descriptions.

For BASIC programs, condition value symbols are available as EXTERNAL
CONSTANTS. The user simply declares the appropriate symbolic value and
the VAX-11 linker resolves the value.

The following example shows how to call the procedure that accepts input
typed by the user from SYS$INPUT. The format of the LIBSGET__INPUT
procedure is in Chapter 3.

Note that whenever a procedure description specifies a string descriptor
parameter, the parameter being passed should always be a string constant,
variable or expression. The BASIC compiler automatically produces descrip-
tors for these parameters.

The following is a BASIC example that asks for the user’s name using
LIB$GET__INPUT:

EXATERNAL INTEGER CONSTANT LIB$_INPSTRTRU
COM STRING USER_LINE = 30

DECLARE INTEGER COND_VALUE

EXTERNAL INTEGER FUNCTION LIB$GET_INPUT

COND_VALUE = LIB$GET_INPUT (USER_LINE, ‘Tvrpe Your Name: ‘')
IF COND.VALUE = LIB$.INPSTRTRU THEN

(user name too long)
ELSE IF (COND_VALUE AND 1%) = 0% THEN

(more serious error)

LIB$GET__INPUT sets the variable USER__LINE to the 30-character string
input by the user. The INTEGER condition value (COND__VALUE) indi-
cates success or failure. In BASIC, an even condition value indicates an error
and an odd condition value indicates success. The first IF statement tests for
the return status that indicates the input string was too long and was trun-
cated. The second IF statement tests for any other errors.

The library procedure LIBSMATCH__COND (see Section 6.10.1) is useful for
matching a return status or error condition value with a condition value
symbol or any list of condition value symbols.

2.9.4 Function Return Values

The method of returning function procedure values depends on the data type
of the value, as summarized in Table 2-3.

Calling Run-Time Library Procedures

Table 2-3: Function Return Values

Data Type | Return Method

Integer General Register RO
F__Floating

D__Floating | RO = High-order part of result
G_Floating | R1 = Low-order part of result

String An extra entry is added as the first entry of the argument list. This new first
argument entry points to a character string descriptor. At run time, storage
is allocated to contain the value of the result, and the proper address is
stored in the descriptor.

2.10 Calling a Library Procedure in COBOL

This section describes how to code COBOL calls to library procedures using
either a CALL statement or function reference. CALL statements invoke
subroutines that do not return meaningful values. Function references, on the
other hand, return one of the following:

* A function value (typically, an integer or floating point number). For exam-
ple LIBSINDEX returns an integer value.

® A return status which is a 32-bit condition value indicating that the

procedure has either successfully executed or failed. For example,
LIB$GET_INPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if
you are not interested in the function value or return status. However, it is
good programming practice to always check a return status for success or
failure.

2.10.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a variable
bit field (LIBSINSV) from a COBOL program. The format of the LIBSINSV
procedure is explained in Section 3.4.1.

Calling Run-Time Library Procedures 2-27

To set the low order three bits of RET-STATUS to four, you would code the
following:

WORKING-STORAGE SECTION,

01 SRC PIC S§9(9) USAGE IS COMP.
o1 POS PIC 59(89) USAGE IS COMP.
o1 51Z PIC S9(9) USAGE IS COMP.
01 RET-STATUS PIC §9(9) USAGE IS COMP,

+

L]

PROCEDURE DIVISION,

PO
MOVE 4 TO SRC.
MOVE 0 TO POS.
MOVE 3 TO SIZ.

CALL "LIB#$INSVU" USING SRC+ POS,» SIZ+ RET-STATUS,

The following example shows how to call the procedure that enables and
disables detection of floating underflow (LIB§FLT__UNDER) from a COBOL
program. The format of the LIBSFLT__UNDER procedure is explained in
Section 6.5.2.

This procedure could be called in a COBOL program to enable floating under-
flow as follows:

WORKING-STORAGE SECTIDN,
01 MNEW-SET PIC S9(9) USAGE IS COMP.
01 OLD-SET PIC S9(8) USAGE IS COMP.

.

PROCEDURE DIVISION,
PQ.
MOVE 1 TO NEW-SET.
CALL "LIB$FLT_-UNDER" USING NEW-SET GIVING OLD-SET.

2-28 Calling Run-Time Library Procedures

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND-VALUE:

WORKING-STORAGE SECTION.

01 START-POS PIC 59(9) USAGE 1§ COMP,
01 81z PIC 59(9) USAGE IS COMP,
01 BITS PIC S9(9) USAGE IS5 COMP,
01 POS PIC 58(9) USAGE 15 COMP.

01 COND-VALUE-YAR PIC S9(9) USAGE IS COMP.
88 COND-VALUE VALUE IS 1.

PROCEDURE DIVISION.
PO,

+

MOVE O to START-POS,
MOVE 32 TO0 S1Z,
CALL "LIB%FFC USING START-POS,
SI1Z2
BITS
POS
GIVING COND-VALUE-VAR,

IF COND-VALUE

THEN
GO TO error-Proc.

2.10.2 Passing Parameters to Library Procedures

By default, COBOL uses the call by reference mechanism for passing parame-
ters. In some cases, however, a function reference or call to a non-COBOL
procedure (for example, a library procedure) can require you to supply argu-
ments in a different form. Therefore, COBOL provides three qualifiers for
passing parameters when you cannot use the COBOL default mechanism.
They are:

* BY VALUE
e BY REFERENCE
e BY DESCRIPTOR

They can appear only in actual argument lists.

Calling Run-Time Library Procedures 2-29

2-30

The following sections describe the use of these qualifiers. Note that they are
never used to call a procedure written in COBOL.

2.10.2.1 BY VALUE — This qualifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

BY VALUE arg

The value of arg is passed to the calling program. If arg is a data-name, its
description in the Data Division can be:

¢ COMP usage with no scaling positions. The picture clause can specify no
more than nine digits.

* COMP-1 usage. This is the standard VAX-11 F__Floating value.

2.10.2.2 BY REFERENCE — This qualifier forces the argument list entry to
use the call by reference mechanism. It has the form:

BY REFERENCE arg

The address of (pointer to) arg is passed to the called program. This is the
COBOL default mechanism.

2.10.2.3 BY DESCRIPTOR — This qualifier forces the argument list entry to
use the call by descriptor mechanism. It has the form:

BY DESCRIPTOR arg

The address of (pointer to) the data item’s descriptor is passed to the called
program.

For more information, see the VAX-11 COBOL-74 User’s Guide.

2.10.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates success or
failure. To test for errors, use an IF statement (see Section 2.10.1).

Calling Run-Time Library Procedures

The following is a COBOL example that asks for the user’s name using
LIB$GET__INPUT:

WORKING-STORAGE SECTION,
01 USER-LINE PIC X(30).
01 PROMPT-8TR PIC X(16) VALUE IS "Tvepe Your Name: ",
01 OUT-LEN PIC S8(4) USAGE IS COMP.
01 COND-VALUE PIC S9(8) USAGE IS COMP VALUE I8 0,
88 SS5-NORMAL VALUE IS 1.
88 LIB-INPSTRTRU VALUE IS 1409564,

+

PROCEDURE DIVISION.
PO,
CALL "LIB$GET_INPUT" USING BY DESCRIPTOR USER-LINE
BY DESCRIPTOR PROMPT-8TR
BY REFERENCE QUT~LEN
GIVING COND-VALUE.
IF LIB~INPSTRTRU
DISPLAY "User name too long"
ELSE
IF NOT SS-NORMAL
DISPLAY "More serious error"
ELSE
GO TO PO,

LIB$SGET__INPUT sets the variable USER-LINE to the 30-character string
input by the wuser. The return status is returned to the variable
COND-VALUE. The first IF statement tests for the error condition that
indicates the input string was too long and was truncated. The second IF
statement tests for any other errors.

Note that in the preceding example, USER-LINE and PROMPT-STR are
passed by descriptor, while OUT-LEN is passed by reference.

2.11 Calling a Library Procedure in FORTRAN

This section describes how to code FORTRAN calls to library procedures
using either a CALL statement or function reference. CALL statements in-
voke subroutines that do not return meaningful values. Function references,
on the other hand, return one of the following:

¢ A function value (typically, an integer or floating point number). For exam-
ple, LIBSINDEX returns an integer value.
e A return status which is a 32-bit condition value indicating that the

procedure has either successfully executed or failed. For example,
LIB$GET_INPUT returns a return status.

You can invoke a subroutine as if it were a function; this normally returns a
meaningless value. You can also invoke a function as if it were a subroutine if
you are not interested in the function value or return status. However, it is

good programming practice always to check a return status for success or
failure.

Calling Run-Time Library Procedures = 2-31

2-32

2.11.1 Calling Sequence Examples

The following example shows how to call the procedure that inserts a vari-
able bit field (LIB$INSV) from a FORTRAN program. The format of the
LIBSINSV procedure is explained in Section 3.4.1. To set the low order three
bits of RET_STATUS to four, you would code the following:

INTEGER#*#4 RET_STATUS
CALL LIB$INSY (4, 0y 3y RET_STATUS)

The following example shows how to call the procedure that enables and
disables detection of floating-point underflow (LIB§FLT_UNDER) from a
FORTRAN program. The format of the LIBSFLT__UNDER procedure is ex-
plained in Section 6.5.2. This procedure could be called in a FORTRAN
program to enable floating underflow as follows:

INTEGER*4 OLD_SET
OLD_SET = LIB4FLT_UNDER (1)

If the old setting is of no interest, you can ignore it by treating the function
LIB$FLT_UNDER as a subroutine:

CALL LIB$FLT_UNDER (1)

The following example shows how to call the procedure that finds the first
clear bit in a given bit field (LIB$FFC). This procedure returns a 32-bit
condition value, represented in the example as COND_VALUE.:

INTEGER*4 COND_VALUE., BITS, POS
COND.YVALUE = LIB&FFC (0, 32 BITS,» P0OS)
IF (COND_VALUE) GO TO error

You can also test the success or failure of a function returning a return status
directly by using an IF statement:

INTEGER*4 BITS, POS
IF (LIB$FFC (0,32yBITSE,P0S)) GO TO error

The following example passes a prompt string (by descriptor) as an input
parameter and receives a terminal line as an output string (by descriptor)
along with an output length (by reference).

CHARACTER#*#BO TERM_LINE INTEGER*Z LEN
IF (LIB$GET_INPUT(TERM_LINE, ‘Name: ‘) LEN))

1THEN GO TO error

vee = TERM_LINE(1:LEN)

2.11.2 Passing Parameters to Library Procedures

By default, FORTRAN uses the call by reference or call by descriptor mecha-
nism for passing parameters, depending on the argument’s data type. In some

Calling Run-Time Library Procedures

cases, however, a function reference or call to a non-FORTRAN procedure, for
example, a library procedure, can require you to supply arguments in a differ-
ent form. Therefore, FORTRAN provides three compile-time functions for
passing parameters when you cannot use the FORTRAN default mechanism.
These compile-time functions are:

* %VAL
* %REF
* %DESCR

They can appear only in actual argument lists.

The following sections describe the use of these functions. Note that they are
never used to call a procedure written in FORTRAN.

2.11.2.1 %VAL — This function forces the argument list entry to use the call
by immediate value mechanism. It has the form:

%VAL(arg)

The argument list entry (arg) is the value of the entry. Because argument list
entries are longwords, the argument value must be a constant (integer, logi-
cal, or F__floating), a variable, an array element, or an expression.

2.11.2.2 %REF — This function forces the argument list entry to use the call
by reference mechanism. It has the form:

%REF (arg)

The argument list entry (arg) is the address of the value. The argument value
can be a numeric or character expression, array, array element, or procedure
name. %REF is the default FORTRAN method for passing all numeric values.

2.11.2.3 %DESCR — This function forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%DESCR(arg)

The argument list entry (arg) is the address of a descriptor of the value. The
argument value can be any type of FORTRAN expression. %DESCR is the
default FORTRAN mechanism for passing character arguments.

For more information, see the VAX-11 FORTRAN User’s Guide.

2.11.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates success or
failure. To test for errors, use an IF statement (see Section 2.11.1).

Calling Run-Time Library Procedures 2-33

2-34

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce-
dure descriptions.

For FORTRAN programs, condition value symbols are available: (1) as
parameter definition files using the INCLUDE statement and (2) as global
symbols defined by the library.

SYS$LIBRARY contains the following condition value files:

e FORTRAN condition values - FORDEF.FOR

¢ General library condition values - LIBDEF.FOR
¢ Mathematics condition values - MTHDEF.FOR
e Signaling condition values - SIGDEF.FOR

The following example shows how to call the procedure that accepts input
typed by the user from SYS$SINPUT. The format of the LIB§GET__INPUT
procedure is in Chapter 3.

Note that whenever a procedure description specifies a string descriptor
parameter, the parameter being passed should always be a CHARACTER
constant, variable, or expression. The FORTRAN compiler automatically pro-
duces descriptors for these parameters. The following FORTRAN example
asks the user to type his or her name using LIBSGET__INPUT.-

INCLUDE ‘SYS$LIBRARY:LIBDEF’ I Define LIB%$..+++ condition
CHARACTER*30 USER._LINE I value svymbols
INTEGER*4 COND_VALUE

COND_VALUE = LIB$GET_INPUT (USER_.LINEs 'Tvre Your Name: ')
IF (COND.VALUE +EQ., LIB$_.INPSTRTRU) THEN
(user name too lond)
ELSE IF (,.,NOT. COND_VALUE) THEN
(more serious error)
ENDIF

LIBSGET_INPUT sets the variable USER__LINE to the 30-character string
input by the user. The INTEGER*4 condition value (COND_VALUE) indi-
cates success or failure. In FORTRAN, a .FALSE. condition value indicates
an error and a .TRUE. condition value indicates success. The first IF state-
ment tests for the return status that indicates that the input string was too
long and was truncated. The second IF statement tests for any other errors.

The library procedure LIBSMATCH__COND (see Section 6.10.1) is useful for
matching a return status or error condition value with a condition value
symbol or any list of condition value symbols.

2.11.4 Function Return Values

The method of returning function procedure values depends on the data type
of the value, as summarized in Table 2-4.

Calling Run-Time Library Procedures

Table 2-4: Function Return Values

Data Type Return Method

Logical General Register RO
Integer
F__floating

D__floating RO= High-order part of result
G__floating R1= Low-order part of result

F_complex RO= Real Part
R1= Imaginary Part

H__floating An extra entry is added as the first entry of the argument list. This new first
argument entry points to the area where the result is to be stored.

{ Character An extra entry is added as the first entry of the argument list. This new first
argument entry points to a character string descriptor. At run time, storage
is allocated to contain the value of the result, and the proper address is
stored in the descriptor.

2,12 Calling a Library Procedure in PASCAL

You can invoke a Run-Time Library routine from a PASCAL program by
defining it as an external function and including the appropriate function
reference.

2.12.1 Calling Sequence Example

The following example shows how to invoke the procedure that returns a
pseudorandom number, MTH$RANDOM.

VAR SEED_VAL : INTEGERS
RAND_RSLT : REALS

4+

FUNCTION MTH$RANDOM(YAR SEED : INTEGER) : REALS EXTERN3)

+

+
RAND.RSLT = MTH$RANDOM(SEED.VAL)]

When defining a function for a Run-Time Library routine, you should note
the following:

¢ The mechanism by which each parameter is passed (by immediate value,
by reference, or by descriptor)

* The data types appropriate for the parameters and the result

In the pseudorandom number generator, the seed parameter is passed by
reference and the result is a real number.

Calling Run-Time Library Procedures = 2-35

2-36

2.12.2 Passing Parameters to a Library Procedure

By default, PASCAL uses the by reference mechanism for passing parame-
ters. In some cases, however, a function reference or call to a non-PASCAL
procedure (for example, a library procedure) can require you to supply argu-
ments in a different form. Therefore, PASCAL provides four specifiers for
passing parameters when you cannot use the PASCAL default mechanism.
They are:

e %IMMED

e VAR

* %STDESCR
e %2DESCR

The following sections describe the use of these specifiers. Note that they are
never used to call a procedure written in PASCAL.

2.12.2.1 %IMMED — This specifier forces the argument list entry to use the
call by immediate value mechanism. It has the form:

%IMMED arg : type

The value of arg is passed to the calling program. Variables that require more
than 32 bits of storage, including all file variables, cannot be passed as imme-
diate value.

2.12.2.2 VAR — This specifier forces the argument list entry to use the call by
reference mechanism. It has the form:

VAR arg : type;

The address of arg is passed to the calling program. The actual parameter
must be a variable or a component of an unpacked structural variable; con-
stants, expressions, procedure names, and function names are not allowed.

2.12.2.3 %STDESCR — This specifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%STDESCR arg : type;

The address of a string descriptor is passed to the calling program. Only string
constants, packed character arrays with subscripts from 1 to n, and packed
dynamic character arrays with subscripts of an integer or integer subscript
type can be passed by string descriptor.

2.12.2.4 %DESCR — This specifier forces the argument list entry to use the
call by descriptor mechanism. It has the form:

%DESCR arg : type;

Calling Run-Time Library Procedures

The argument list entry contains the address of the descriptor of an array or
scalar variable. The type can be any predefined scalar type or an unpacked
array (fixed or dynamic) of a predefined scalar type.

2.12.2.5 Function and Procedure Names as Parameters — You can pass pro-
cedure and function names by the immediate mechanism to routines written
in another language, using these formats:

%IMMED PROCEDURE procedure-name-list
%IMMED FUNCTION function-name-list : type

The procedure name list specifies the name of one or more formal procedure
parameters. The function name list specifies the name of one or more formal
function parameters of the indicated type. The corresponding actual parame-
ter lists specify the names of the actual procedures and functions to be passed
as parameters.

For example:

PROCEDURE FORCALLER (%IMMED PROCEDURE UTILITY);
FORTRAN;

NOTE

The %IMMED mechanism for passing procedures and func-
tions is valid only for the formal parameter list of procedures
not written in PASCAL.

The FORTRAN subroutine FORCALLER calls a PASCAL procedure and
requires that the name of the procedure as a parameter. A call to the
FORTRAN procedure might be:

FORCALLER (PRINTER)

Any subprogram passed with ZIMMED, should access only its own variables
and those declared at program level.

2.12.3 Return Status

You should always check the return status (when there is one) to make sure
that the procedure executed correctly. The return status indicates either suc-
cess or failure. You can also check for a particular return status, such as lack
of privileges, by comparing the return status to one of the status codes defined
by the system.

To test for a particular return condition, perform a 32-bit comparison of the
return status with the appropriate return status symbol listed in the proce-
dure descriptions.

Calling Run-Time Library Procedures = 2-37

2-38

VAX/VMS provides three files containing condition symbol definitions. When
you declare a Run-Time Library procedure, you should specify the appropri-
ate file in the CONST section to define the condition values in your PASCAL
program. Use the %INCLUDE directive to specify the file name, as described
in the VAX-11 PASCAL Language Reference Manual. The three files are:

¢ General library condition values ~ LIBDEF.PAS
e Mathematics condition values - MTHDEF.PAS
¢ Signaling condition values - SIGDEF.PAS

2.12.4 Function Return Value

A function returns a value to the calling program by assigning that value to
the function’s name. The value must be of a scalar or subrange type; struc-
tured types are not allowed. The method by which a value is returned depends
on its type, as pictured in Table 2-5.

Table 2-5: Function Return Values in PASCAL

Type Return Method

Integer, Real, General Register RO
Single, Character,
Boolean, Pointer,
User-defined scalar

D__floating RO: Low-order part of result
R1: High-order part of result

Calling Run-Time Library Procedures

Chapter 3
General Utility Procedures

General utility procedures include common I/O control procedures, terminal
independent screen procedures, string manipulation procedures, data type
conversion procedures, variable bit field manipulation procedures, perform-
ance measurement procedures, date/time utility procedures, and interlocked
queue procedures.

All general utility procedures can be called explicitly from MACRO, BLISS or
any VAX native mode higher-level language. Procedures with a LIB$ or STR$
prefix are designed to be called explicitly from programs written in higher-
level languages; therefore the input parameters are passed by-reference. This
is also true for FOR$ procedures documented in this manual. Those with an
OTS$ or SCRS$ prefix are usually called implicitly from programs written in
higher-level languages or explicitly from MACRO or BLISS; the input scalar
parameters are usually passed by immediate value.

Table 3-1 lists general utility procedures. The sections that follow this table
describe the procedures in detail.

Table 3-1: General Utility Procedures

Section Entry Point Name Title

Common Input/Output Control Procedures
3.1.1 LIB$SASN_WTH__MBX Assign Channel with Mailbox
3.1.2 LIBSRUN_PROGRAM Chain to Program
3.1.3 LIB$DO__COMMAND Execute Command
3.1.4 LIB§GET_COMMAND Get Line from SYS$COMMAND
3.1.4 LIB$GET__INPUT Get Line from SYS$INPUT
3.1.5 LIB$GET_FOREIGN get Line from “FOREIGN” Command
ine

(continued on next page)

3-1

3-2

Table 3-1:

General Utility Procedures (Cont.)

3.1.6 LIB$§GET_COMMON Get String from Common
3.1.7 LIB$SYS_GETMSG Get System Message
3.18 LIB$§CURRENCY Get Currency Symbol
3.1.8 LIB$DIGIT__SEP Get Digit Group Separator Symbol
3.1.8 LIB$LP_LINES Listing Control
3.1.8 LIBSRADIX _POINT Get Radix Point Symbol
3.1.9 LIB$PUT_OUTPUT Put Line to SYS$OUTPUT
3.1.10 LIB$PUT_COMMON Put String to Common
3.1.11 LIB$SYS_TRNLOG Translate Logical Name
Terminal Independent Screen Procedures
3.2.3 LIBSERASE__LINE Erase Line
3.24 LIBSERASE__PAGE Erase Page
3.2.5 LIB$SCREEN_INFO Get Screen Information
3.2.6 LIB$GET_SCREEN Get Text from Screen
3.2.7 LIB$DOWN__SCROLL Move Cursor Up One Line
3.2.8 LIB$PUT__BUFFER Put Current Buffer to Screen
3.2.9 LIB$PUT_SCREEN Put Text to Screen
3.2.10 LIB$SET__BUFFER Set/Clear Buffer Mode
"3.2.11 LIB$SET.__CURSOR Set Cursor to Character Position
String Manipulation Procedures
3.3.21 STR$COMPARE Compare Two Strings
3.3.2.2 STR$COMPARE__EQL Compare Two Strings for Equal
3.3.23 LIB$LOCC Locate Character
3.3.24 LIB$LEN Return Length of String
3.3.25 LIBSINDEX Return Relative Position of Substring
3.3.2.5 LIB$MATCHC Return Relative Position of Substring
3.3.2.5 STR$POSITION Return Relative Position of Substring
3.3.2.6 LIB$SCANC Scan Characters
3.3.2.7 LIB$SKPC Skip Characters
3.3.2.8 LIB$SPANC Span Characters
3.3.2.9 LIB$CHAR Transform Byte to a 1-Byte String
3.3.2.10 LIBSICHAR Transform First Character of String

General Utility Procedures

(continued on next page)

Table 3-1: General Utility Procedures (Cont.)

3.3.3.1 STR$ADD Add Two Decimal Strings
3.3.3.2 STR$MUL Multiply Two Decimal Strings
3.3.3.3 STR$RECIP Reciprocal of a Decimal String
3.3.34 STR$ROUND Round or Truncate a Decimal String
3.3.4.1 STRSAPPEND Append a String
3.3.4.2 STR$CONCAT Concatenate Two or more Strings
3.3.4.3 LIB$SCOPY__DXDX Copy String Passed by Descriptor
3.3.4.3 OTS$SCOPY_DXDX Copy String Passed by Descriptor
3.3.4.3 STR$COPY__DX Copy String Passed by Descriptor
3.3.4.3 LIB$SCOPY_R_DX Copy String Passed by Reference
3.3.43 OTS$SCOPY__R_DX Copy String Passed by Reference
3.3.4.3 STR$COPY__R Copy String Passed by Reference
3344 STR$LEN__EXTR Extract Substring by Length
3.3.4.4 STR$POS_EXTR Extract Substring from Position
3344 STRS$LEFT Extract Leftmost Substring
3.3.4.4 STR$RIGHT Extract Rightmost Substring
3.3.4.5 STR$DUPL__CHAR Generate a String
3.3.4.6 STR$PREFIX Prefix a String
3.3.4.7 STR$REPLACE Replace a Substring
3.3.4.8 STR$TRIM Trim Trailing Blanks and Tabs
3.3.5.1 LIBSMOVTC Move Translated Characters
3.35.2 LIB$MOVTUC Move Translated until Character
3.3.5.3 LIB$TRA __ASC_EBC Translate ASCII to EBCDIC
3.3.5.4 LIB$TRA_EBC__ASC Translate EBCDIC to ASCII
3.3.5.5 STR$TRANSLATE Translate Matched Characters
3.3.5.6 STR$UPCASE Uppercase Conversion

Formatted Input/Output Conversion Procedures
3.4.1.1 OTS$CVT__T_D Convert Text to D__Floating
3.4.1.1 OTS$CVT__T__G Convert Text to G__Floating
34.1.1 OTS$CVT_T__H Convert Text to H__Floating
3.4.1.2 OTS$CVT__TL_L Convert Text (integer) to Longword
3.4.1.3 OTS$CVT__TL__L Convert Text (logical) to Longword
3.4.14 OTS$CVT_TO__L Convert Text (octal) to Longword
3.4.1.5 OTS$CVT_TZ_L Convert Text (hexadecimal) to Longword

(continued on next page)

General Utility Procedures 3-3

Table 3-1

General Utility Procedures (Cont.)

3.4.1.6
3.4.1.6
3.4.1.6

3.4.2.1
3.4.2.2
3.4.2.3
3.4.24

3.4.2.5
3.4.25
3.4.2.5

343.1
3.4.3.2

LIB$CVT_DTB
LIB$CVT_OTB
LIB$CVT_HTB

OTS$CVT__L_TI

OTS$CVT__L_TL
OTS$CVT_L_TO
OTS$CVT_L__TZ

FOR$CVT_D__TD,E,F,G
FOR$CVT__G_TD,E,F,G
FOR$CVT_H__TD,EF,G

LIB$SYS__FAO
LIB$SYS_FAOL

Decimal to Binary Conversion
Octal to Binary Conversion

Hexadecimal to Binary Conversion

Convert Longword to Text (integer)
Convert Longword to Text (logical)
Convert Longword to Text (octal)

Convert Longword to Text (hexadecimal)

Convert D__floating to text
Convert G__floating to text
Convert H__floating to text

Formatted ASCII Output
Formatted ASCII Output with LIST

Variable Bit Field Instruction Procedures

3.5.1
3.5.2
3.56.3
3.5.4
3.5.5

LIB$INSV
LIBSEXTV
LIB$EXTZV
LIB$FFC
LIBSFFS

Insert a Variable Bit Field

Extract and Sign-extend a Bit Field
Extract a Zero-extended Bit Field
Find First Clear Bit

Find First Set Bit

Performance Measurement Procedures

3.6.1
3.6.2
3.6.3
3.6.4

3.7.1
3.7.2

3.7.3

3.74
3.74

LIB$FREE_TIMER
LIBSINIT _TIMER
LIB$STAT_TIMER
LIB$SHOW_TIMER

Date/Time Utility Procedures

LIB$SYS__ASCTIM
FORSIDATE

FOR$JDATE

FORSDATE
FOR$DATE_T_DS

Free Timer Storage
Initialize Times/Counts
Return Accumulated Times/Counts

Show Accumulated Times/Counts

Convert Binary Date/Time to ASCII String

Return Month, Day, Year as a Word Inte-
ger

Return Month, Day, Year as a Longword
Integer

Return System Date as 9-Byte String

Return System Date as Fixed-Length
String

3-4 General Utility Procedures

(continued on next page)

Table 3-1: General Utility Procedures (Cont.)

3.7.5 FOR$SECNDS Return System Time in Seconds
3.7.6 FORS$TIME__T__DS Return System Time to Fixed-Length
String
3.7.6 FORSTIME Return System Time as 8-Byte String
3.7.1 LIB$DAY Return Day Number as a Longword Integer
3.7.8 LIB$DATE_TIME Return System Date/Time
Miscellaneous Procedures
3.8.1 LIBSAST_IN_PROG AST in Progress
3.8.2 LIB$CRC Calculate Cyclic Redundancy Check
3.8.3 LIB$CRC_TABLE Construct Cyclic Redundancy Check Table
384 LIBSEMULATE Emulate VAX-11 Instructions
3.8.5 LIB$SADDX Multiple Precision Binary Add
3.8.5 LIB$SUBX Multiple Precision Binary Subtract
3.8.6 LIB$SIM__TRAP Simulate Floating Trap
3.8.7 LIBSEMODD Extended Multiply D__Floating
3.8.7 LIBSEMODF Extended Multiply F__floating
3.8.7 LIBSEMODG Extended Multiply G__Floating
3.8.7 LIBSEMODH Extended Multiply H__Floating
3.8.8 LIB$POLYD Evaluate Polynomial D__Floating
3.8.8 LIB$POLYF Evaluate Polynomial F__floating
3.8.8 LIB$POLYG Evaluate Polynomial G_Floating
3.8.8 LIB$POLYH Evaluate Polynomial H__Floating
3.8.9.1 LIBSINSQHI Queue Entry Inserted at Head
3.8.9.2 LIB$INSQTI Queue Entry Inserted at Tail
3.8.9.3 LIBSREMQHI Queue Entry Removed at Head
3.8.9.4 LIBSREMQTI Queue Entry Removed at Tail

3.1 Common Input and Output Control Procedures

When you log in to VAX/VMS, process-permanent files identified with
the logical names SYS$INPUT, SYS$COMMAND, and SYS$OUTPUT are
created as default I/0O control streams for your process. These files are
the interface between your interactive input (or batch control) and the
VAX/VMS software. You can use the library procedures LIB§GET_INPUT,

General Utility Procedures 3-5

3-6

LIBSGET_COMMAND and LIB§PUT_OUTPUT to read a record from
SYSS$INPUT, SYS$COMMAND, or write a record to SYS$OUTPUT using the
VAX-11 Record Management Services (RMS).

You can change SYSSINPUT to obtain control information from any file
using a DCL command. Similarly, you can change SYS$OUTPUT so that
control information is output to any file. SYS$INPUT and SYS$COMMAND
are usually identical. However, the input and the command streams can
be different (such as during the execution of an indirect command file
from an interactive terminal). In this case, SYS$COMMAND refers
to input from the terminal and SYS$INPUT refers to input from the file.
LIB$GET_COMMAND is used only when input is to come from the termi-
nal rather than an indirect command file. For example, when a program asks
a question that the user could not provide an answer for in an indirect com-
mand file.

The following software gets controlling input from SYS$INPUT and directs
controlling output to SYS§OUTPUT:

e Command interpreter
e Utilities
¢ Run-Time Library

e All other user-mode software

Typically, a record corresponds to a line for an interactive device. However,
no ASCII carriage-return (CR) and/or line-feed (LF) are part of the data in
the record. Formatting is handled entirely by RMS when the data is input or
output.

Because VAX/VMS creates SYSSINPUT and SYS$OUTPUT as process per-
manent files, each procedure can perform its own OPEN, GET, CLOSE, and
PUT operations. Therefore, LIBSGET_INPUT, LIB$§GET_COMMAND
and LIB$PUT_OUTPUT are not image resource allocation procedures.

For the LIB$ procedures in this section that have strings as parameters, the
following severe errors can be returned as a completion status:

LIB$_FATERRLIB fatal internal error
LIB$_INSVIRMEM insufficient virtual memory
LIB$__INVSTRDES invalid string descriptor

To save space the preceding errors are listed by name only in each procedure
description. Other errors, more specific to a particular procedure are listed
and explained under each procedure description.

General Utility Procedures

LIBSASN_WITH__MBX

3.1.1 Assign Channel with Mailbox

LIBSASN_WTH__MBX assigns a channel to a specified device and associ-
ates a mailbox with the device. It returns both the device channel and the
mailbox channel.

Normally, when a mailbox is created, the corresponding logical name is
placed in the GROUP logical name table. This implies that any process
running in the same group and using the same logical name uses the same
mailbox. There are times when this is not desirable. For example, when a non-
transparent network connect is done, a mailbox is used to obtain the connect
confirm data and asynchronous messages from the other task. Multiple pro-
cesses running under the same group and sharing a common mailbox for their
network links do not work correctly. These processes read each other’s mail-
box messages. LIBSASN_WTH__MBX avoids the problem by associating
the physical mailbox name with the channel assigned to the device.

Format

ret-status = LIBSASN_WTH__MBX (dev-na-, max-msg, buf-quo,
dev-chn, mbx-chn)

dev-nam
Address of the device name descriptor. This string is input to the
$ASSIGN service.

max-msg
A longword integer representing the maximum size of messages that can
be sent to the mailbox. This parameter is input to the SCREMBX service.

buf-quo
A longword integer representing the number of bytes of system dynamic
memory that can be used to buffer messages sent to the mailbox. This
parameter is input to the SCREMBX service.

dev-chn
Address of a word to receive the device channel. This value is output from
the $ASSIGN service.

mbx-chn
Address of a word to receive the mailbox channel. This value is output
from the SCREMBX service.

Return Status

SS$_NORMAL
Routine successfully completed.

SS$__xyz
Any return status from a called system service. $ASSIGN, $CREMBX,
$GETCHN, and $FAO services are used.

General Utility Procedures 3-7

3-8

LIBSRUN__PROGRAM

3.1.2 Chain to Program

LIB$RUN_PROGRAM causes the current program to stop running and be-
gins execution of another program. If successful, control does not return to the
calling program. Instead, the $EXIT system service is called, the new pro-
gram image replaces the old image in the user process, and control is given to
the new image by the command interpreter. If unsuccessful, control returns to
the command interpreter.

Format
ret-status = LIBSRUN_PROGRAM (pgm-name)

pgm-name
Address of the descriptor of a character string containing the file name of
the program to be run in place of the current program. The maximum
length of the file name is 256 characters. The default file type is .EXE.

Return Status

LIB$_INVARG
Invalid argument.

LIBSDO_COMMAND

3.1.3 Execute Command

LIB$DO_COMMAND causes the current program to stop running and then
executes the new command. If successful, control does not return to the call-
ing program. Instead, the $EXIT system service is called, and the new com-
mand is passed to the command interpreter. Note that the command can
execute an indirect file using the at-sign (@) feature of DCL.

Format
ret-status = LIB$DO_COMMAND (cmd-text)

cmd-text
Address of the descriptor of a character string containing the text of the
command to be executed. The maximum length of the command is 256
characters.

Return Status

LIB$__INVARG
Invalid argument.

General Utility Procedures

LIBSGET__INPUT

3.1.4 Get Line from SYSSINPUT

LIB$GET_INPUT gets one record of ASCII text from the current controlling
input-device, specified by SYSSINPUT. LIBSGET_INPUT uses the VAX-11
RMS $GET service.

LIBSGET_INPUT opens file SYS$INPUT on the first call. The VAX-11
RMS internal stream identifier (ISI) is stored in the procedure’s static storage
for subsequent calls.

If prompt-str is provided and the SYSSINPUT device is a terminal,
LIB$GET_INPUT outputs the prompt message. If the device is not a termi-
nal, the prompt-str is ignored.

LIBSGET_COMMAND is identical to LIB§GET_INPUT, except that in-
put comes from SYSSCOMMAND.

Format
ret-status = LIBSGET_INPUT (get-str [,prompt-str [,out-len]])
ret-status = LIB§GET__COMMAND (get-str [,prompt-str [,out-len]])

get-str
Address of string descriptor to receive the string (fixed-length or
dynamic).

prompt-str
Address of a string descriptor specifying an optional prompt message that
is output to the controlling terminal. If no other conventions are estab-
lished, prompts are English words followed by a colon(:), one space, and
no CRLF (carriage-return/line-feed).

out-len
Optional address of a word to receive the number of bytes written into get-
str, not counting padding in the case of a fixed string. If the input string is
truncated to the size specified in the get-str descriptor, out-len is set to
this size. Therefore, out-len can always be used by the calling program to
access a valid substring of get-str.

Return Status

SS$_NORMAL
Routine successfully completed. VAX-11 RMS completion status.

LIB$_FATERRLIB
An internal consistency check on Run-Time Library data structures has
failed. This may indicate a programming error in the Run-Time Library
or that the user has overwritten those data structures.

General Utility Procedures 3-9

LIB$_INPSTRTRU
The input string is truncated to the size specified in the get-str descriptor
(fixed-length or unspecified string types only). Out-len is also set to this
size. This is an error (as opposed to LIB$_STRTRU which is a success)
because the truncation is not under program control.

LIB$__INSVIRMEM
Insufficient virtual memory to allocate dynamic string.

' LIB$_INVARG
Invalid arguments. Descriptor class field is not a recognized code or zero.

LIB$_STRIS__INT
String is interlocked. The parameter get-str was being accessed at
non-AST level or in a previous AST. Writing into the parameter at this
time could invalidate that previous access.

RMS$__xyz
Any VAX-11 RMS error code indicates a VAX-11 RMS error.

Examples

The following FORTRAN code fragment asks at the terminal for the user’s
name and age.

CHARACTER NAME*30, AGE*Z

INTEGER IAGE

IF (.NOT. LIB#GET_INPUT (NAME., ‘Last Name: ‘)) GO TO 889
50 IF (.NOT, LIB%GET_INPUT (AGE, ‘Age: ‘)) GO TO 998

READ (AGE150,ERR=50) IAGE
150 FORMAT (BNIZ)

If any error occurs during the input of the name or age, control goes to
statement 999. Otherwise, the 2-character AGE string is converted to an
integer. If a formatting error occurs, the user is asked for age again.

The following is an example of what the user might see at the terminal
(lowercase characters indicate what the user typed):

LAST NAME: .dones
AGE: 3o
AGE: 30

Age was asked again because the letter o was typed instead of the number 0.

The following FORTRAN example asks for last name, first name sepa-
rately and concatenates them without any of the trailing blanks.

INTEGER*2+ LLEN, FLEN

CHARACTER NAME*G2Z, LNAME*30, FNAME#*30

IF(.NOT, LIB$GET_INPUT(LNAME., ‘LAST NAME: ’‘,»LLEN)) GOTO 8989
IF(,NOT. LIB$GET_INPUT(FNAME,» ‘FIRST NAME: ‘,FLEN)) GOTO 988
NAME = LNAME(I1:LLEN)//'+'//FNAME(1:FLEN)

3-10 General Utility Procedures

LIBSGET__FOREIGN

3.1.5 Get Line from FOREIGN Command Line

LIB$GET__FOREIGN gets the command line from the ‘“foreign command”
line that activated the current image. A foreign command is used to run a user
program as if it were a native command. A program run by a foreign com-
mand can request the remainder of the command line (after the command
name) and can parse it for whatever options needed.

To define a foreign command, use the following DCL command:

% command_name == $filesrec

where:

command.__name is the name of the foreign command you want to define and
filespec is the fully qualified file specification of the executable image to be
run when command__name is invoked.

For example:
$ UULCAN :== $DBO:[SPOCKIVULCAN.EXE
The “$” prefix is required and must immediately precede the file specification.

Assuming that the command VULCAN was defined, the command line:

SYULCAN/OUTPUT=GANYMEDE TITAN.DAT

would start running the image DB0:[SPOCK]VULCAN.EXE. If that program
then calls LIBS§GET__FOREIGN, it can obtain the remainder of the com-
mand line:

/0UTPUT=GANYMEDE TITAN.DAT

The user program can analyze this returned string in any manner it desires
(see Chapter 7). No interpretation is done by the command interpreter.

If the image resides in the SYS$SYSTEM: directory, the image could be
invoked by the MCR command and the command line text following the
image name would be returned. If the image were not invoked by a foreign
command or MCR, or if there were no information remaining on the command
line, and the user-supplied prompt were present, LIBSGET_INPUT would
be called to prompt for a command line. Otherwise, a zero length string would
be returned, subject to the appropriate semantics of the destination string
class.

General Utility Procedures 3-11

3-12

Format
ret-status = LIBSGET__FOREIGN (get-str [,prompt-str [,out-len]])

get-str
Address of string descriptor to receive the command line (fixed-length or
dynamic).

prompt-str
Address of a string descriptor specifying an optional prompt message that
is output to the controlling input device, if it is a terminal. The prompt
message is sent to the terminal when there is no information in the com-
mand line. If prompt-str is omitted, no prompting is performed.

out-len
Optional address of a word to receive the number of bytes written into
get-str, not counting padding in the case of a fixed string. If the input
string is truncated to the size specified in the get-str descriptor, out-len is
set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of get-string.

Return status

SS$__NORMAL
Procedure successfully completed.

LIB$_INPSTRTRU)
The string from SYS$INPUT was truncated to the size specified in the
get-string descriptor (static or unspecified types only).

LIB$__INVARG
Invalid arguments. Descriptor class is not a recognized class or zero.

LIB$__FATERRLIB
LIB$_INSVIRMEM
LIB$__INVSTRDES
LIB$_STRIS__INT

Example

The following BASIC code fragment checks an input line for data or
switches: ‘

100 DECLARE STRING INPUT.LINE
110 DECLARE INTEGER RET_STATUS, INPUT_LEN
120 EXTERNAL INTEGER FUNCTION LIB$GET_FOREIGN

200 RET_STATUS = LIB$GET_FOREIGN(INPUT_LINE, 8
"UULCANX> " »INPUT_LEN)

300 IF (RET_STATUS AND 17) <> 0% THEN
IF SEG$(INPUT.LINE»1%1%) = "/" THEN
PRINT "SWITCHES"
ELSE IF INPUT_-LEN <> O% THEN
PRINT "DATA, NO SWITCHES"
ELSE PRINT "NO SWITCHES OR DATA"
ELSE CALL LIB$STOP(RET_STATUS BY VALUE)

General Utility Procedures

LIBSGET_COMMON
3.1.6 Get String from Common

LIB$GET__COMMUON copies the string in the common area to the destina-
tion string. The string length is taken from the first longword of the common
area. If the string is too long for the destination, the string is truncated. The
number of characters copied is returned by the optional parameter, chars-
copied (if given).

Format
ret-status = LIB§GET__COMMON (dst-str [,chars-copied])

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

chars-copied
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
chars-copied is set to this size. Therefore, chars-copied can always be used
by the calling program to access a valid substring of dst-str.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_STRTRU
Successfully completed, but the string was longer than the buffer and was
truncated.

LIB$__FATERRLIB
LIB$__INSVIRMEM
LIB$_INVSTRDES
LIB$__STRIS__INT

LIB$SSYS_GETMSG

3.1.7 Get System Message

LIB$SYS_GETMSG calls the System Service GETMSG with the caller’s
input string. The resultant string is returned using the semantics of the
caller’s string. Parameters msg-id and flags are presented to this routine by
reference and are promoted to immediate value for presentation to GETMSG.

Format

ret-status = LIB$SYS_GETMSG (msg-id, [msg-len], dst-str [,flags
[,out-arr]])

msg-id
Address of a longword containing the identification of the message to be
retrieved.

General Utility Procedures 3-13

3-14

msg-len
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
msg-len is set to this size. Therefore, msg-len can always be used by the
calling program to access a valid substring of dst-str.

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

flags
Address of a longword containing the flag bits for message content. This is
an optional parameter; the default value is all 1.

Bit | Value Meaning
0 1 Include text
0 Do not include text
1 1 Include identifier
0 Do not include identifier
2 1 Include severity
0 Do not include severity
3 1 Include component
0 Do not include component
out-arr

Address of a 4-byte array to receive message specific information. This is
an optional parameter.

Byte Contents
0 Reserved
1 Count of FAO arguments
2 User value
3 Reserved

Return Status

SS$_NORMAL
Procedure successfully completed.

General Utility Procedures

LIB$_STRTRU
Successfully completed, but source string was truncated.

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS_INT

SS$_BUFFEROVF
Successfully completed, but the resultant string overflowed the buffer
provided and has been truncated.

SS$_MSGNOTFND
Successfully completed, but the message code does not have an associated
message in file.

Example

The following BASIC code fragment gets and prints the system error mes-
sage for the return status when the value returned is not 1:

100 EXTERNAL INTEGER FUNCTION LIB%PROC, LIB$SYS.GETMSG
110 DECLARE INTEGER RET.STATUS
200 RET_STATUS = LIB$PROC(AB,C)

300 IF (RET.STATUS AND 1%) < 0% THEN &:
' &

normal path B:

ELSE IF (LIB$SYS_GETMSG(RET.STATUS &
OUT_STRINGS »1%) <> 0% THEN &

PRINT OUT_STRING%
ELSE PRINT "DOUBLE ERROR - HALT"

3.1.8 Listing Control

These procedures provide the user with the capability of customizing the
printer output with respect to the currency symbol, the digit separator, the
radix point and the number of lines on each page.

General Utility Procedures 3-15

LIBSCURRENCY

3.1.8.1 Currency Symbol — LIBSCURRENCY returns the system’s currency
symbol. This symbol should be used before a number to indicate that the
number represents money in the local country.

This routine works by attempting to translate the logical name
SYS$CURRENCY as a process, group, or system logical name. If the transla-
tion fails, the routine returns “$”, the United States money symbol. If the
translation succeeds, the text produced is returned. Thus, a system manager
can define SYSSCURRENCY as a system-wide logical name to provide a
default for all users, and an individual user with a special need can define
SYS$CURRENCY as a process logical name to override the default.

Format
ret-status = LIBSCURRENCY (currency-str [,out-len])

currency-str
Address of the currency string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into currency-str, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the currency-str
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of currency-str.

Implicit Inputs
Logical name SYS$CURRENCY.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the currency string was truncated.

LIB$__FATERRLIB
LIB$__INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS_INT

3-16 General Utility Procedures

LIB$DIGIT__SEP

3.1.8.2 Digit Separator Symbol — LIB$DIGIT_SEP returns the system’s
digit separator symbol. This symbol should be used to separate groups of
three digits in the integer part of a number, for readability, using the customary
symbol.

This routine attempts to translate the logical name SYS$DIGIT_SEP
as a process, group, or system logical name. If, the translation fails, the
routine returns “,”, the United States digit separator. If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$DIGIT_SEP as a system-wide logical name to provide a default
for all users, and an individual user with a special need can define
SYS$DIGIT__SEP as a process logical name to override the default symbol.

Format
ret-status = LIB$DIGIT__SEP (digit-sep-str [,out-len])

digit-sep-str
Address of the digit separator string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into digit-sep-str, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the digit-sep-str
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of digit-sep-str.

Implicit inputs
Logical name SYS$DIGIT_SEP.
Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the digit separator string was truncated.

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS__INT

General Utility Procedures 3-17

3-18

LIBSLP_LINES

3.1.8.3 Number of Lines per Line Printer Page — LIB$LP__LINES computes
the default number of lines on a line printer page. This procedure can be used
by native-mode VAX/VMS utilities that produce “listing” files and do
pagination.

United States standard paper stock permits 66 lines on each physical page.
From this value, the utility should deduct: '

1. Three lines for top margin

2. Three lines for bottom margin

3. Three lines for listing heading information, consisting of:
a. Language-processor identification line
b. Source-program identification line

c. One blank line

The algorithm used by LIB$LP__LINES is:

Translate the logical name SYS$LP__LINES.
Convert the ASCII value obtained to a binary integer.
Verify that the resulting value is in the range [30:99].

Ll A

If any of the prior steps fail, return the default U.S. paper size of 66 lines.

Format
page-len = LIBSLP__LINES ()

page-len
A longword to receive the default number of lines on a physical line printer
page. If the logical name translation or conversion to binary fails, a default
value of 66 is returned.

Implicit Inputs
Logical name SYS$LP__LINES.

General Utility Procedures

LIBSRADIX__POINT

3.1.8.4 Radix Point Symbol — LIB$RADIX__POINT returns the system’s
radix point symbol. This symbol should be used inside a digit string to sepa-
rate the integer part from the fraction part. This routine works by attempting
to translate the logical name SYS$RADIX__POINT as a process, group, or
system logical name.

If the translation fails, this routine returns “.”, the United States radix point
symbol. If the translation succeeds, the text produced is returned. Thus, a
system manager can define SYS$RADIX__POINT as a system-wide logical
name to provide a default for all users, and an individual user with a special
need can define SYS$RADIX__POINT as a process logical name to override
the default.

Format
ret-status = LIBSRADIX__POINT (radix-point-str [,out-len))

radix-point-str
Address of the radix point string descriptor (fixed-length or dynamic).

out-len
Optional address of a word to receive the number of characters written
into radix-point-str, not counting padding in the case of a fixed-length
string. If the input string is truncated to the size specified in the
radix-point-str descriptor, out-len is set to this size. Therefore, out-len
can always be used by the calling program to access a valid substring of
radix-point-str.

Implicit Inputs
Logical name SYS$RADIX__POINT.
Return Status

SS$_NORMAL
Procedure completed successfully.

LIB$__STRTRU
Successfully completed, but the radix point string was truncated.

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS_INT

General Utility Procedures 3-19

3-20

LIBSPUT__OUTPUT

3.1.9 Put Line to SYSSOUTPUT

LIB$PUT_OUTPUT outputs a record (line) to the current controlling output
device, specified by SYS$OUTPUT, using the VAX-11 RMS $PUT service.
LIBSPUT_OUTPUT opens and positions at end-of-file (or creates if not
existent) SYS$OUTPUT on the first call in case it is not a process-permanent
file. The VAX-11 RMS internal stream identifier (ISI) is stored in the proce-
dure’s storage space for all subsequent calls.

Format
ret-status = LIBSPUT_OUTPUT (msg-str)

msg-str
Address of a string descriptor specifying the message. VAX-11 RMS han-
dles all formatting, so that the message does not need to include such
ASCII formatting instructions as carriage return (CR).

Return Status

SS$__NORMAL
Routine successfully completed.

RMS$__abc
VAX-11 RMS error code indicates an RMS error.

Example

The following FORTRAN code fragment outputs a string:

CALL LIB$PUT_OUTPUT (‘Hello There’)

General Utility Procedures

LIBSPUT__COMMON

3.1.10 Put String to Common

LIB$PUT__COMMON copies the contents of a string specified by the caller
into the common area. Optionally, it returns the actual number of characters

copied.
Format

ret-status = LIB$PUT_COMMON (src-str [,chars-copied])

src-str
Address of the source string descriptor.

chars-copied
Optional address of a word to receive the number of characters copied.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Successfully completed, but the source string was truncated.

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS__INT

General Utility Procedures 3-21

3-22

LIBSSYS_TRNLOG

3.1.11 Translate Logical Name

LIB$SYS__TRNLOG uses the system service TRNLOG to translate a logical
name, returning the resultant string using the semantics of the caller’s string.
Parameter dsbh-msk is presented to this routine by reference and is promoted
to by immediate value for presentation to TRNLOG.

See the TRNLOG system service description in the VAX/VMS System
Services Reference Manual.

Format

ret-status = LIB§SYS_TRNLOG (logical-name, [dst-len], dst-str [,table
[,acc-mode [,dsb-msk]]])

logical-name
Address of the logical name string descriptor.

dst-len
Optional address of a word to receive the number of characters written
into dst-str, not counting padding in the case of a fixed-length string. If
the input string is truncated to the size specified in the dst-str descriptor,
dst-len is set to this size. Therefore, dst-len can always be used by the
calling program to access a valid substring of dst-str.

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

table
Address of a byte to receive the logical name table number. (This is an
optional parameter.)

acc-mode
Address of a byte to receive the access mode of entry (process table only).
(This is an optional parameter.)

dsb-msk
Address of a byte containing the table search disable mask. (This is an
optional parameter.)

Bit Set Meaning
0 Do not search system logical name table
1 Do not search group logical name table
2 Do not search process logical name table

General Utility Procedures

Return Status

SS$__NORMAL
Procedure successfully completed.

SS$__NOTRAN ,
Successfully completed, but input logical name string was placed in desti-
nation string buffer because no equivalence name was found.

LIB$_STRTRU
Successfully completed, but source string truncated on copy.

LIB$_FATERRLIB
LIB$__INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS_INT

SS$__ACCVIO
The logical name string or string descriptor cannot be read, or the output
length, output buffer, table or access mode field cannot be written, by the
caller.

SS$_INVLOGNAM
The specified logical name string has a length of zero or has more than 63
characters.

SS$_RESULTOVF

The destination string buffer has a length of zero, or it is smaller than the
resultant string.

Example

The following BASIC code fragment translates the logical name ORION
by searching only the system table:

100 EXTERNAL INTEGER FUNCTION LIB$SYS110

DECLARE INTEGER RET.STATUS

200 RET.STATUS = LIB$SYS_TRNLOG("QRION",» OUTSTRINGS s 3%)
210 PRINT "TRANSLATED:"3§ OUT.STRINGS

3.2 Terminal Independent Screen Procedures

The terminal independent screen procedures provide a high-level language
interface to DIGITAL video terminals. An assembly language interface
(SCRS$) is also provided where input parameters are passed by immediate
value.

NOTE

If the terminal type is a VT52 or VT100, as specified by
the DCL command SET TERMINAL, an escape sequence is
output during the first access to the terminal by these
procedures to ensure that the terminal is in the correct mode. To
operate a VT100 in VT52 mode, you should first type a
SET TERMINAL/VT52 command.

¢ General Utility Procedures 3-23

3-24

3.2.1 Cursor Positloning on a Screen

Several procedures let the user control the cursor position. The top line of a
screen is line number one. The leftmost column of a screen is column number
one. When the line and column parameters are optional, both must be speci-
fied or neither.

For the erase page procedures, line n of the screen is logically contiguous with
line n+1.

No checks are made in these procedures to return an error status for cursor
position specifications which exceed the maximum number of lines or col-
umns for the terminal. No attempt is made by these procedures to create
multiple line output and, thereby, cause line wrap or prevent the loss of text
characters.

3.2.2 Screen Functions in Buffer Mode

Buffer mode has the advantage of letting the user format an entire screen of
information and present this data on the screen with one call to the queue I/O
service. This is particularly more efficient when a communications network is
involved.

Buffer sizes can be difficult to determine accurately when a variable amount
of data composes a screen of data. Therefore, when a buffer overflow condition
is detected, the buffer is put to the screen via a queue I/O service function, the
buffer data size is set to zero and the current buffering mode continues.

In a modular programming environment, screen buffering can occur at several
levels. That is, a procedure can establish buffer mode then call another proce-
dure which also establishes buffer mode and so on.

Although each procedure which establishes buffer mode must have buffer
storage available, only one buffer is active at any point in time. As further
levels of buffering occur, the contents on one buffer are copied into the active
buffer and the previous buffer is set to indicate an empty buffer. Pointers to
the previous level buffer are made available to the user program so it can copy
(by calling LIB$PUT_BUFFER) the current buffer back to the calling pro-
gram’s buffer before returning to the calling program.

The copy process indicates that the contents of the buffer are cumulative from
the time buffer mode is established. This also indicates that (if automatic
QIOs triggered by a buffer overflow condition are to be avoided) the buffer
sizes stated for called procedures must take into account the size of the data
that has been created by all the calling procedures and the size of the data
being created by all the called procedures. Similarly, the calling procedure
must allow the size of the buffer in the calling procedure to account for the
size of the data being buffered at all called procedures below the calling
procedure in addition to the size of the data being buffered in the calling
procedure.

General Utility Procedures

LIBSERASE__LINE

3.2.3 Erase Line

LIBSERASE__LINE and SCR$ERASE__LINE erase all of the character posi-
tions on the screen from the specified cursor position to the end of the line.

Format

ret-status = LIBSERASE__LINE ([line-no, col-no])
ret-status = SCR$ERASE__LINE ({line-no, col-no))

line-no
Optional address of a signed word integer containing the line number
where the erase begins. The default is the current line number. For

SCRSERASE__LINE, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the erase begins. The default is the current column number. For
SCR$ERASE__LINE, the column number is passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_INVARG
Invalid argument. The number of parameters specified must be none or
two.

LIB$_INVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would erase the screen from col-
umn 41 of line 12 to the end of line 12:

B$ERASE_LINE (ILINE,»ICOL)

General Utility Procedures 3-25

3-26

LIBSERASE__PAGE

3.2.4 Erase Page

LIBSERASE_PAGE and SCR$ERASE__PAGE erase all of the character
positions on the screen from the specified cursor position to the end of the
screen.

Format
ret-status = LIBSERASE__PAGE ([line-no, col-no])
ret-status = SCR$ERASE__PAGE ([line-no, col-no])

line-no
Optional address of a signed word integer containing the line number
where the erase begins. The default is the current line number. For
SCR$ERASE__PAGE, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the erase begins. The default is the current column number. For
SCR$ERASE__PAGE, the column number is passed by immediate value.

Return Status

SS$__NORMAL
Routine successfully completed.

LIB$_INVARG
Invalid argument. The number of parameters specified must be none or
two.

LIB$_INVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would clear the entire screen:

IcoL = 1
ILINE
ISTAT

i
LIB$ERASE_PAGE (ILINE. ICOL)

General Utility Procedures

LIBSSCREEN__INFO

3.2.5 Get Screen Information

LIB$SCREEN__INFO and SCR$SCREEN__INFO move terminal specifica-
tions to user specified area(s). These terminal specifications include miscella-
neous flags, device type, screen width and number of lines per screen.

Format
ret-status = LIB$SCREEN_INFO (flags [,dev-type [line-width
[,lines-per-pagelll)
ret-status = SCR$SCREEN__INFO (control-block)

flags

Address of a longword to contain a bit map representing special terminal
characteristics. Currently, these values are used:

Bit Value Meaning
0 1 DIGITAL video terminal
0 Hard copy or unknown type terminal
1:31 0 Unused at present
dev-type

Optional address of a byte to contain an integer representing the terminal
type. The terminal types are defined in the $DCDEF macro. Some of the
terminal types are:

0 Unknown type or nongraphic
64 VT52
96 VT100

line-width
Optional address of a word to contain an integer representing the width in
columns for which the terminal is configured. This corresponds to the

value supplied by the DCL: command, SET TERMINAL/WIDTH = n.

lines-per-page
Optional address of a word to contain an integer representing the lines per
screen for which the terminal is configured. This corresponds to the value
supplied by the DCL command, SET TERMINAL/PAGE = n.

General Utility Procedures 3-27

control-block
Address of an area to contain nine bytes which correspond in order to the
flags, line-width, lines-per-page and dev-type parameters specified for
LIB$SCREEN__INFO.

Example

The following FORTRAN code fragment would display the screen infor-
mation on the first four lines of a cleared screen:

INTEGER*2 FLAGS, DEVUTYPEs» LINEWIDTH, LINESPP

ILINE = 1
C IcoL = 1
C
C GET SCREEN_INFO AND DISPLAY IT ON FIRST FOUR LINES OF
C A CLEARED SCREEN

ISTAT = LIB$ERASE_PAGE (ILINE, ICOL)
200 ISTAT = LIB$SCREEN_INFO (FLAGS, DEVTYPEs LINEWIDTH: LINESPP)

FORMAT (135H FLAGS = 3 IBs/

alSH DEVICE TYPE = »IB:/»

b15H LINE WIDTH = 4+IGs/»

cl13H LINES/PAGE = ,IB)

WRITE (B, 200) FLAGS, DEVTYPE, LINEWIDTH, LINESPP

LIBSGET_SCREEN
3.2.6 Get Text from Screen

LIB$GET__SCREEN and SCR$GET_SCREEN copy text (input by the ter-
minal user) from the screen into a specified destination.

Format
ret-status = LIB$GET_SCREEN (input-text [,prompt-str [,out-len]])
ret-status = SCR$GET_SCREEN (input-text [,prompt-str [,out-len]])

input-text
Address of a descriptor of a string to receive the text copied from the
screen (fixed-length or dynamic).

prompt-str
Optional address of a descriptor of a string that is displayed on the screen
starting at the current cursor position prior to accepting input from the
user terminal. '

out-len
Optional address of a word to receive the number of characters written
into input-text, not counting padding in the case of a fixed-length string.
If the input string is truncated to the size specified in the input-text
descriptor, out-len is set to this size. Therefore, out-len can always be used
by the calling program to access a valid substring of input-text.

Return Status

SS$_NORMAL
Routine successfully completed.

3-28 General Utility Procedures

LIB$__INPSTRTRU
The input string is truncated to the size specified in the input-text
descriptor.

LIB$_INVARG
Invalid argument. Descriptor class field is not a recognized code or zero.

RMS$__xyz
Any VAX-11 RMS error code.

Example

The following FORTRAN code fragment would prompt the user with
“ENTER NAME: ,” accept up to 30 characters and put them in INPUT,
and set LENGTH equal to the number of characters input:

CHARACTER PROMPT*12, INPUT*30
DATA PROMPT/'ENTER NAME: '/
INTEGER*2 LENGTH

ICOL = 1

ILINE = 24

ISTAT = LIB$SET_CURSOR (ILINE, ICOL)

ISTAT = LIB$GET_SCREEN (INPUT,» PROMPT, LENGTH)

NOTE
This procedure is identical to LIBSGET__INPUT, and is pro-
vided for symmetry.

LIBSDOWN__SCROLL

3.2.7 Move Cursor Up One Line, Scroll Down if at Top

LIB$DOWN__SCROLL and SCR$DOWN__SCROLL move the cursor up one
line on the screen. If the cursor was already at the top line on the screen, all
lines are moved down one line, the top line is replaced with a blank line and
the data that was on the bottom line is lost.

Format
ret-status = LIBSDOWN__SCROLL ()
ret-status = SCR$DOWN__SCROLL ()
Return Status

SS$_NORMAL
Routine successfully completed.

E;(ample

The following FORTRAN code fragment would cause the screen to be
- scrolled down one line:

CALL LIB$SET.CURSOR (1, 1)
CALL LIB$DOWN_SCROLL €)

General Utility Procedures 3-29

3-30

LIBSPUT_BUFFER

3.2.8 Put Current Buffer to Screen or Previous Buffer

LIB$PUT__BUFFER and SCR$PUT_BUFFER procedures terminate the
current buffering mode and revert to the previous mode as specified by the
parameter. If the parameter is zero or omitted, buffering is terminated and
the contents of the current screen buffer are output to the screen. If the
parameter is not zero, buffering is terminated at the current level, the param-
eter is the address of a previous screen buffer to which the data from the
current buffer is copied, the current buffer is set to zero length and the previ-
ous buffer becomes the active buffer.

Format
ret-status = LIB§PUT__BUFFER ([old-buffer])
ret-status = SCR$PUT_BUFFER ([old-buffer])

old-buffer

Optional address of a longword containing zero or the address of an area
previously used as a screen buffer. If old-buffer is omitted or contains zero,
the contents of the current screen buffer are output to the screen, the data
length of the buffer is set to zero and buffer mode is terminated. If old-
buffer is not zero, it is assumed to be the address of an area previously
used as a screen buffer where the contents of the current active buffer are
to be copied and then this area becomes the new active buffer.

Return Status

SS$_NORMAL
Routine successfully completed.

Example

The following FORTRAN example demonstrates the general pattern used
to produce modular programs with the buffer mode of the terminal
independent screen procedures. Each modular program should use
LIB$SET_BUFFER and LIB$PUT_BUFFER in pairs. (See Section
3.2.10).

LIB$SET_BUFFER establishes the current buffering mode and saves the
address of the previous buffer (if any). LIB$PUT_BUFFER reverts
from the current buffering mode to the previous mode through the use
of the previous buffer address, made available by the corresponding
LIB$SET__BUFFER procedure call from the current modular program.

The previous buffering mode can imply: (1) buffering was in effect at the
time of the call to LIBSSET_BUFFER in this modular program or (2) no
buffering was in effect prior to this modular program. In the first case, the

General Utility Procedures

aooon o000

oOoOa

contentg of the current buffer are copied to the previous buffer and the
previous buffer is reestablished as the active buffer. In the second case,
buffer mode is terminated and the contents of the buffer are output to the
terminal.

BUFFER USED FOR THIS MODULAR PROGRAM
CHARACTER BUF*Z000
LONGWORD TO SAVE ADDRESS OF PREVIOUS ACTIVE BUFFER

INTEGER*4 QOLDBUF

+
+

+

ESTABLISH BUFFER MODE FOR THIS MODULAR PROGRAM
AND SAVE PREVIOUS BUFFER ADDRESS

ISTAT = LIB$SET_.BUFFER (BUF,» OLDBUF)

+
4+

4

REVERT TO PREVIOUS BUFFER MODE - EITHER REVERT TO
OLD BUFFER OR OUTPUT CONTENTS OF BUFFER TO SCREEN

ISTAT = LIB$PUT_BUFFER (OLDBUF)

+
+

+

The following FORTRAN example demonstrates the use of the buffer
mode for the terminal independent screen procedure calls in a modular
manner. Both the main program and the subroutine initialize buffer
mode. The subroutine could also be called by a main program that did not
initialize buffer mode and the LIB§PUT__SCREEN procedure calls in the
subroutine would be buffered during the execution of the subroutine and
then output to the screen when the LIB§PUT.__BUFFER procedure is
called in the subroutine.

In addition the main program uses the second parameter on the
LIB$SET_BUFFER procedure call as a good modular programming
practice. In general, the LIB$SET__BUFFER and LIB$PUT_BUFFER
procedures should be used in pairs to preserve a predictable buffer mode
at any point in the modular programming environment.

LIB$SET_BUFFER and LIB$§PUT__BUFFER procedures should not be
called with the first parameter set to zero unless an error situation occurs
which will prevent a modular program from returning to its caller. These
procedure calls unconditionally force buffer mode to stop and the buffer to
be displayed on the screen.

General Utility Procedures 3-31

3-32

SUBPROGRAM

oo

SUBROUTINE BUFBUF ()
INTEGER*4 I0LD

!
!
CHARACTER BUFZ*2000 !
]
1

CHARACTER SUBTEXT*15

DATA SUBTEXT/ ‘SUBROUTINE TEXT'

ISTAT = LIB$SET_BUFFER(NUFZ2, I
!
!
!

C
C Put B lines in buffer
[
DO 500 I = 5,410
J =1 -4
ISTAT = LIB$PUT_SCREEN
500 CONTINUE
C
C Revert to Previous buffer mode
C
ISTAT = LIB$PUT.BUFFER (IOLD)
RETURN
END
C
C MAIN PROGRAM
C
PROGRAM BUF
CHARACTER BUF1%*3000 1
!
CHARACTER MAINTEXT*9
INTEGER*4 OLDBUF !
!
DATA MAINTEXT/ 'MAIN TEXT’/ !
ILINE=1
ICOL=1
ISTAT = LIB$ERASE_PAGE (ILINE
ISTAT = LIB$SET_BUFFER (BUF1,
]
|
1
C
C Put four lines in buffer
C
DO 1000 I = 1.4
ISTAT = LIB$PUT_SCREEN
1000 CONTINUE
CALL BUFBUF() !
1
C
C Put four more lines in buffer
C
DO 2000 I = 11,14
J=1-10
ISTAT = LIB%PUT_SCREEN
2000 CONTINUE
ISTAT = LIB$PUT.BUFFER (OLDBUF
!
!
!
|
!
!
END

General Utility Procedures

Longword to save address of
buffer previously in effect
Buffer to be used during
this subroutine for screen
functions

/

oLD) ! Initialize buffering
and save caller’s buffer
address and copy caller’s
buffer to new buffer

(SUBTEXT s I J)

used by the main
functions

Buffer to be
rprodram for screen

Longword to save the address
of the Previous buffer used for
Screen functions (if anv)

1coL) ! Clear the screen

OLDBUF) I Initialize buffering

A\ In this case, the main Prodram
is the first to
initialize buffering \\

(MAINTEXT» I+ 1)

Call a modular subroutine
which also uses buffer mode

(MAINTEXT,» I+ J)

) I Revert to Previous buffer
mode \\ for the main Prodram
the previous buffer mode

was a non-buffered mode.
Therefores the contents

of the buffer are forced

to the screen. \\

NOTE

The comments enclosed in backslashes are specific to this main
program/subroutine configuration and should not be construed
as an indication of the lack of modularity of the main program.

LIBSPUT_SCREEN

3.2.9 Put Text to Screen

LIB$PUT__SCREEN and SCR$PUT__SCREEN output the specified text on
the screen beginning at a specified line and column. No carriage return or line
feed control characters are inserted.

Format
ret-status = LIB§PUT_SCREEN (text [,line-no, col-no))
ret-status = SCR$PUT__SCREEN (text [,line-no, col-no])

text
Address of a descriptor of a character string that is output to the screen.

line-no
Optional address of a signed word integer containing the line number
where the text begins. The default is the current line number. For
SCR$PUT_SCREEN, the line number is passed by immediate value.

col-no
Optional address of a signed word integer containing the column number
where the text begins. The default is the current column number. For
SCR$PUT_SCREEN, the column number is passed by immediate value.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_INVARG
Invalid argument. The number of parameters specified must be one or
three.

LIB$__INVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would put “LINE OF TEXT” in
columns 1-12 of line 24:

CHARACTER TEXT*12

DATA TEXT/'LINE OF TEXT'/
IcoL = 1
ILINE = 24
ISTAT = LIB$PUT_SCREEN (TEXT. ILINE, ICOL)

General Utility Procedures 3-33

3-34

LIBSSET__BUFFER

3.2.10 Set/Clear Buffer Mode

LIB$SET__BUFFER and SCR$SET__BUFFER provide a means of reducing
the number of queue I/O service calls (and possible network transfers),
thereby, improving efficiency of the screen functions. These procedures set (or
clear) buffer mode for the other terminal-independent screen procedures.
While in buffer mode, the other screen procedures do not alter the appearance
of the screen. Instead, a user-supplied buffer is maintained which represents
the sequence of the other screen output functions that have occurred since
buffer mode was last initialized. Clearing buffer mode causes the other screen
output functions to have an immediate effect on the appearance of the
terminal screen.

Format
ret-status = LIB§SET__BUFFER (buffer [,old-buffer])
ret-status = SCR$SET_BUFFER (buffer [,old-buffer])

buffer
Address of a descriptor of a modifiable fixed-length string which is used as
the buffer for storage of the characters which would normally be sent to
the terminal without buffering by the other screen output procedures until
the next LIB$SET__BUFFER or LIB§PUT__BUFFER procedure call oc-
curs. If buffer is omitted (or the argument list entry contains a zero),
buffer mode is terminated and the buffer retains the buffered characters.

old-buffer
Optional address of a longword to contain the address of the previous
buffer (if any). Old-buffer is most useful for subsequent use as an input
parameter to LIBSPUT__BUFFER.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_SCRBUFOVF
Screen buffer overflow. The buffer is less than 12 bytes in length.

LIB$__INVARG
Invalid argument. Zero or more than two parameters were specified.
Example
It is a good programming practice to always use LIB§SET_BUFFER
in conjunction with LIB$PUT_BUFFER. Please see the example in

the LIB$PUT_BUFFER section which uses both of these
procedures (Section 3.2.8).

General Utility Procedures

LIBSSET_CURSOR

3.2.11 Set Cursor to Character Position on Screen

LIB$SET_CURSOR and SCR$SET_CURSOR position the cursor to the
specified line and column on the screen.

Format
ret-status = LIB§SET_CURSOR (line-no, col-no)
ret-status = SCR$SET_CURSOR (line-no, col-no)

line-no
Address of a signed word integer containing the line number of the speci-
fied position. For SCR$SET_CURSOR, the line number is passed by

immediate value.

col-no
Address of a signed word integer containing the column number of the
specified position. For SCR$SET_CURSOR, the column number is

passed by immediate value.
Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_INVARG
Invalid argument. The number of parameters specified must be two.

LIB$_INVSCRPOS
Invalid screen position values. Line-no or col-no was zero.

Example

The following FORTRAN code fragment would move the cursor to column
7 of line 5:

ISTAT = LIB%GET.CURSOR (5, 7)

3.3 String Manipulation Procedures

‘This section describes string manipulation procedures, including character-
oriented, string arithmetic, string-oriented, and translate string routines.
Character-oriented routines include compare, locate, scan, skip, span, and
transform functions. String-oriented routines include concatenate, copy, ex-
tract, match, replace and trim functions.

Some of the LIB$ procedures are named after the VAX-11 hardware instruc-
tions whose service they provide. The order of parameters is the same as the
order in the corresponding hardware instruction.

General Utility Procedures 3-35

LIB$ procedures indicate all errors using return status, whereas STR$ and
OTSS$ signal errors that are difficult to recover from and return truncated
string errors using a return status.

See Section 2.5.3 for more details about string handling conventions for LIB$,
OTS$, and STR$ procedures. Chapter 5 contains procedures for allocating
dynamic strings. Chapter 7 contains procedures for syntactically analyzing
strings.

3.3.1 String Conventions for LIB$, OTS$ and STR$ Facilities

Scalars are normally signed longwords passed by immediate value in registers
to JSB entry points and passed by reference to CALL entry points. The signed
longword allows negative values and access to all character positions.

Output string length parameters are normally unsigned words passed by im-
mediate value in registers from JSB entry points and passed by reference from
CALL entry points.

Strings are passed by descriptor. The LIB$, OTS$, and STR$ procedures
accept string descriptors for parameters specified as strings. The routines
write strings according to the semantics of the descriptor for all classes de-
fined by the VAX-11 Procedure Calling Standard. The routines can only read
strings that look like fixed-length string descriptors. That is, the length field is
a word containing the length of the string in bytes and the pointer field is a
pointer to the first character of the string. Routines that read and write a
string must have an input parameter and an output parameter. These param-
eters can reference the same string. The only modify access permitted on
strings is for STR$APPEND and STR$PREFIX, both specialized cases of
STR$CONCAT.

OTS$ and STR$ procedures signal errors that are programming errors or
prevent the routine from doing any useful work. LIB$ procedures return severe
errors as a completion status. These errors are:

LIB$ OTS$ STR$
FATERRLIB FATINTERR FATINTERR fatal internal error
INVSTRDES INVSTRDES ILLSTRCLA illegal string class
INSVIRMEM INSVIRMEM INSVIRMEM insufficient virtual memory
STRIS_INT STRIS__INT STRIS_INT string is interlocked

3-36 General Utility Procedures

To save space the preceding errors are listed by name only in each procedure
description. Other errors, more specific to a particular procedure, are listed
and explained under each procedure description.

All errors are returned as a completion status by LIB$ procedures. Conse-
quently, when an output string must be truncated and its length depends
solely on input parameters (hence under control of the calling program), LIB$
procedures return a qualified success (LIB$__STRTRU) instead of an error.
This corresponds to the semantics of many higher level languages that do not
consider truncation as an error. However, when the length of an output string
is not completely under program control, such as for LIB§GET__INPUT, a
particular error status is returned.

Since most errors are signaled by STR$ procedures, truncation is returned as
an error status with warning severity (STR$_TRU). Range errors are re-
turned as qualified success.

In two routines, the function value is not a status. STRECOMPARE returns
a logical value and STR$POSITION returns a character position. If
STRSAPPEND and STR$PREFIX return, they always return success.

The longest string possible is 65,535 characters. When referring to character
positions in a string, character positions start at 1. When specifying substrings
by character positions M to N, the following evaluation rules apply.

1. If M <1, M is considered to equal 1.

2. If M > the length of the source string, the substring specified is the null
string.

3. If N > the length of the source string, N is considered to equal the length
of the source string.

4, If M > N, the substring specified is the null string.

When specifying substrings by length L, if L < 0, the substring specified is the
null string. If any of these evaluation rules apply, the range error - qualified
success status is returned (with the exception noted for STR$POSITION).

A null string is a descriptor with zero length (DSC$W_LENGTH = 0). A
descriptor with a nonzero length and a zero pointer is an error and yields
unspecified results.

3.3.2 Character Oriented Procedures

The following procedures return a single character or function value or have a
parameter that represents a single character, byte or ASCII code.

General Utility Procedures 3-37

3-38

STRSCOMPARE

3.3.2.1 Compare Two Strings — STR$COMPARE compares two strings for
the same contents. If the strings are unequal in length, the shorter string is
considered as if it is blank filled to the length of the longer string before the
comparison is made. The return function value is -1 if stringl is less than
string2, 0 if stringl equals string2 and 1 if stringl is greater than string2.

Format
match = STR$COMPARE (srcl-str, src2-str)

srcl-str
Address of stringl string descriptor.

src2-str
Address of string2 string descriptor.

match
A signed longword to contain the return function value:

-1 stringl < string2

0 stringl = string2

1 stringl > string2
Example

If the following BASIC code fragment were executed, the function values
would be; 1% = -1, J% =0, K% =1, L% = 0:

ATERNAL INTEGER FUNCTION STR$COMPARE

1% = STR$COMPARE(’/ABC’, ‘XYZ')
J4 = STR$COMPARE(’MNO’ s ‘MNO’)
K% = STR$COMPARE('XYZ', ‘ABC’)
L% = STR$COMPARE(’MNO’, ‘MNO ')

STRSCOMPARE _EQL

3.3.2.2 Compare Two Strings for Equal — STR$COMPARE__EQL compares
two strings for the same length and contents. The return function value is 0 if
the two strings are identical, and 1 if they are not.

Format

match = STR$COMPARE__EQL (srcl-str, src2-str)

srcl-str
Address of stringl string descriptor.

src2-str
Address of string2 string descriptor.

match
A longword containing the return function value:

0 length of stringl = length of string2 and
contents of stringl = contents of string2

1 length of stringl <> length of string2 or
contents of stringl <> contents of string2

General Utility Procedures

LIBSLOCC

3.3.2.3 Locate a Character — LIB$LOCC locates a character in a string by
comparing successive bytes in the string with the character specified. The
string is specified by the string descriptor. The string continues to be searched
until the character is found or the string has no more characters. The relative
position of the first equal character, or zero, is returned as an index. If the
string has a length of zero, then a zero is returned indicating that the charac-
ter was not found.

Format
index = LIB$LOCC (char-str, src-str)

char-str
Address of string descriptor of character to be found.

src-str
Address of string descriptor of string to be searched.

index
Unsigned longword containing the relative position of the first equal char-
acter or zero if no match is found.

NOTE
Only the first character of char is used, and its length is not
checked.
Examples

In FORTRAN, I is set to 3, and J to 0:

I
J

LIB&LOCC ¢(’C’,» ‘ABCDE’)
LIiBsLOCC ('Z’y 'ABDCE")

H o

The following FORTRAN function returns the number of spaces in string:

INTEGER*4 FUNCTION COUNT.SPACES (STRING)
INTEGER*4 REL_-POS» END_.POS
CHARACTER *(%) STRING

COUNT._.SPACES = 0 ! Assume no sSPaces
BEG.POS = 1
END.POS = LEN(STRING)

DO WHILE (BEG_POS .LE. END_POS)
REL..POS = LIB&LOCC(’ ‘» STRING (BEG-POS:END_-PDS))
IF (REL.POS.EQ.0) RETURN
COUNT_SPACES = COUNT_SPACES + 1
BEG.POS = BEG_POS + REL..POS
ENDDO
RETURN
END

General Utility Procedures 3-39

3-40

LIBSLEN

3.3.2.4 Return Length of String as Longword Value — LIB$LEN returns the
length of the string parameter as a longword value. The maximum length of a
VAX/VMS string is 65,535 characters.

Format

str-len = LIBSLEN (src-str)

src-str
Address of the source string descriptor.

str-len
Length of the source string. The 16-bit length field in the source string

descriptor is copied and zero-extended to 32-bits.

Notes

The BASIC and FORTRAN intrinsic function LEN generates equivalent
in-line code at run time.

Example

Although LIB$LEN could be called in MACRO, the following code se-
quence is equivalent to a call to LIBSLEN for dynamic, fixed-length and
unspecified class strings:

$DSCDEF i define descrirptor svmbols (DSC$..4)
MOVZWL STRING+DSCHW.LENGTH, RO i RO = lendth of string
where:

STRING is the address of the string descriptor

DSC$W_LENGTH is the offset of the word within the descriptor (0)
containing the length.

General Utility Procedures

STRSPOSITION

3.3.2.5 Return Relative Position of Substring — STR$POSITION returns an
index, which is the relative position of the first occurrence of a substring in the
source string. The value returned is an unsigned integer longword. The rela-
tive character positions are numbered 1, 2, ..., n. Thus, zero is a unique
number meaning that the substring was not found.

If the substring has a zero length, one is returned by LIB$INDEX and
LIBSMATCHC indicating a found substring whether or not the source string

has a zero length, while the minimum of start-pos and the length of src-str
plus one is returned by STR$POSITION.

If the source string has a zero length and the substring has a nonzero length,
zero is returned, indicating that the substring was not found.

The order of parameters for LIBSINDEX corresponds to the practice in higher
level languages, while that of LIB$MATCHC parallels the VAX-11
MATCHC instruction.

Format
index = LIB$INDEX (src-str, sub-str)
index = LIBSMATCHC (sub-str, src-str)

index = STR$POSITION (src-str, sub-str [,start-pos])
JSB entry point: STR$POSITION_R6

src-str
Address of source string descriptor to be searched.

sub-str
Address of substring descriptor to be found.

start-pos
Optional address of a longword containing the relative starting position in
the source string to begin the search.

index
Unsigned longword indicating relative position of the first character of the
substring if found, or zero if not found.

General Utility Procedures 3-41

3-42

10

Implicit Inputs (for STR$POSITION__R6 only)

RO
Address of source string descriptor.

R1
Address of substring descriptor.

R2

A longword containing the relative starting position in the source string to
begin the search. Note this is required for the JSB entry point.

Notes

The FORTRAN compiler generates the call to LIBJINDEX for the
INDEX built-in function.

Examples

The following FORTRAN function returns the number of occurrences of
SUB_STR IN STRING.

FUNCTION COUNT_SUB(STRING, SUB_STR)

CHARACTER *{(%) STRING, SUB_STR

INTEGER*4 COUNT_.SUB, REL_POS, BEG_POS, END_POS
COUNT_SUB = 0O

BEG_POS = 1

END_POS = LEN(STRING)

REL_POS = STR%POSITION (STRING(BEG.POS:END.POS)s SUB.STR)
IF (REL-POS .GT. O) THEN

COUNT_SUB = COUNT_SUB + 1
BEG_POS = BEG_POS + REL_POS
GO 7O 10

ENDIF

RETURN

END

In FORTRAN, I is assigned value 1, J = 3, and K = 0:

LIB$MATCHC (’ABC’, ’‘ABCDEF’)
LIB$MATCHC (‘'CDE’, 'ABCDEF’)

I
J
K LIB$MATCHC ('XYZ’', ‘ABCDEF’)

General Utility Procedures

LIBSSCANC

3.3.2.6 Scan Characters — LIB$SCANC is used to find a specified set of
characters in the source string. It uses successive bytes of the string specified
by the source descriptor to index into a table. The byte selected from the table
is ANDed with the mask byte. The operation continues until the result of the
AND is a nonzero value. The relative position of the character in the source
string that terminated the operation is returned if such a character is found.
Otherwise, zero is returned. If the source string has a zero length, then a zero
is returned.

Format

index = LIB$SCANC (src-str, table-arr, mask)

src-str
Address of source string descriptor.

table-arr :
Address of unsigned byte array.

mask
Address of the byte containing the mask.

index
Unsigned longword containing the relative position of the character in the
source string that terminated the operation or zero.

Example

The following FORTRAN example uses LIBSSCANC to scan a table. In
this example, J=1, K=0, L=3, M=3:

BYTE TABLE(0:235)

DATA TABLE /48%0, 3%1, 2, B*1, 198%2/
J=LIB$SCANC('S72AB14"' s TABLE +3)
K=LIB$SCANC('ABCD’ sTABLE »5)
L=LIB$SCANC('*%12',TABLE 1)
M=LIB$S5CANC('12A3'»TABLE »2)

General Utility Procedures 3-43

3-44

LIB$SKPC

3.3.2.7 Skip Characters — LIB$SKPC compares a given string with a given
character and returns the relative position of the first nonequal character as
an index. The character is compared with successive characters of the speci-
fied string until an inequality is found or the string is exhausted. The relative
position of the unequal character or zero is returned. If the source string has a
zero length, then a zero is returned.

Format

index = LIB$SKPC (char-str, src-str)

char-str
Address of string descriptor of the character to be found.

src-str
Address of string descriptor of the string to be searched.

index
Unsigned longword returned specifying the relative position of the first
unequal character, or zero if one was not found.

Notes

Only the first character of char-str is used, and the length is not checked.

Example

In FORTRAN, I would be set to 2 and J to 0:

I = LIB%SKPC (' ‘s 'ABC’)
J = LIB4SKPC ('A’y ‘AAA’)
TYPE* 1,4

General Utility Procedures

LIBSSPANC

3.3.2.8 Span Characters — LIB$SPANC is used to skip a specified set of
characters in the source string. It uses successive bytes of the string specified
by the source descriptor to index into a table. The byte selected from the table
is ANDed with mask byte. The operation continues until the result of the
AND is zero. The relative position of the character in the source string that
terminated the operation is returned if such a character is found. Otherwise,
zero is returned. If the source string has a zero length, then a zero is returned.

Format
index = LIB$SPANC (src-str, table-arr, mask)

src-str
Address of source string descriptor.

table-arr
Address of unsigned byte array.

mask
Address of the byte containing the mask.

index
Unsigned longword containing the relative position of the character in the
source string that terminated the operation or 0.

Example

The following FORTRAN example uses LIB$SPANC to index a table. In
this example, J=1, K=0, L=1, M=1:

BYTE TABLE(0:25835)

DATA TABLE /48%0, 3%1, 2, B*1, 198%2/
J=LIB$SPANC ('S72AG14' »TABLE »3)
K=LIB$EPANC ('2048',»TABLE3)
L=LIB$SPANC ('A135',,TABLE 1)
M=LIB$SPANC (’12A3' sTABLE 2)

General Utility Procedures 3-45

3-46

LIBSCHAR

3.3.2.9 Transform Byte to First Character of String — LIBSCHAR transforms a
single 8-bit ASCII character to an ASCII string consisting of a single charac-
ter followed by trailing spaces, if needed, to fill out the string. The range of
the input byte is 0 through 255.

Format
ret-status = LIB$CHAR (one-char-str, ascii-code)

one-char-str
Address of the string descriptor (fixed-length or dynamic) to receive one
character result. (This is an output parameter.)

ascii-code
Address of the unsigned byte integer ASCII character code to be trans-
formed to an ASCII string.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$__STRTRU
Procedure successfully completed; string truncated. Fixed-length destina-
tion string descriptor could not contain all of the characters.’

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS__INT

Notes
LIB$CHAR is the inverse of LIB§ICHAR.

LIB$CHAR is not binary to ASCII conversion. It merely interprets
ASCII-code as an ASCII character code and converts it to a string.

Since the output string is the first argument, this procedure can be called
as either a subroutine of two arguments or a string function of one argu-
ment. The FORTRAN compiler generates equivalent code in-line for the
CHAR built-in function rather than calling LIB§CHAR.

General Utility Procedures

Examples

The following FORTRAN code fragment prints out the number of

occurrences of each ASCII code indicated by character count in the
INTEGER*2 vector CHAR_COUNT.

CHARACTER#*1 LIB%CHAR, INPUT*B8O
INTEGER*2 CHAR_COUNT (0:255)
TYPE *» ‘TYPE STRING TO BE ANALYZED: '’
ACCEPT 50 INPUT
50 FORMAT (A)
Do 21 = 0O, 255
CHAR_COUNT(I) = O
DO 5 I = 1y LEN (INPUT)
J = ICHAR (INPUT (I:I))
S CHAR_COUNT (J) = CHAR_COUNT (J) + 1
DO 10 I = 0y 255
IF (CHAR.COUNT (I).GT.0) THEN
WRITE (G,100) CHAR.COUNT (1), LIB$CHAR (I)
100 FORMAT ('THERE WERE’, IS, * ‘» Aly '87)
END IF
10 CONTINUE
END

3

LIB$CHAR could be called in MACRO as follows:

PUSHAB ASCII..CODE push address of bvte
containing ASCII code as
second Parameter,

push address of outPut string

descrirPptor (1lst Parameter)

PUSHA® ONE.CHAR.STR

B I L]

CALLS #2y LIB$CHAR

However, the following code sequence is equivalent for fixed-length
strings:

$DSCDEF # define descr symbols (DSC$ +44)
MOVAQ ONE_CHAR.STR: RO
i RO = adr of strindg desc
MOVCS #1, ASCII.CODE, #A’ ' DOGCH_LENGTH(RO) ,» -
BDSCHAPOINTER(RO)

General Utility Procedures 3-47

3-48

LIBSICHAR

3.3.2.10 Transform First Character of String to Longword Value —
LIB$ICHAR transforms the first character of a string to an 8-bit ASCII inte-
ger value extended to a longword value.

Format

first-char-value = LIB$SICHAR (src-str)

src-str
Address of the string descriptor.

first-char-value

First character of the string returned as an 8-bit ASCII value extended to
a longword value.

Notes

The FORTRAN intrinsic function ICHAR generates equivalent code in-

line. If the string has zero length, a zero is returned. Zero-length strings
are not permitted in FORTRAN.

Examples

The following FORTRAN subroutine adds 1 to the corresponding entry in
the INTEGER*2 vector CHAR-COUNT for each ASCII character occur-
ring in the character string STRING, passed as a parameter.

SUBROUTINE FLAG_CHAR (8TRING)

CHARACTER *(%*) STRING

INTEGER*2 CHAR_COUNT(0:235)

DD 10 I=1s LEN(STRING)
J = LIB$ICHAR(STRING(I:I))
CHAR_COUNT(J) = CHAR_COUNT(J) + 1

10 CONTINUE
RETURN
END

Although LIB$ICHAR can be called from MACRO, the following code
sequence is equivalent to a call to LIBSICHAR.

$DSCDEF i define desc svymbols (DSC$ +..)
MOVAQ STRDSC,» RO i RO = adr of strind desc
MOVZBL @DSCHA_POINTER(RO) sRO § RO = 1st char in string

General Utility Procedures

3.3.3 String Arithmetic Procedures

The following procedures perform string arithmetic on arbitrary length num-
bers represented as three separate parameters:

¢ A sign bit (passed by reference)
¢ A signed longword power of 10 (passed by reference)

* A text string consisting solely of ASCII digits (passed by descriptor)

The maximum length of the text string is 65,535 bytes. The mathematical
functions provided are add, multiply, reciprocal and truncate and round.

STR$ADD

3.3.3.1 Add Two Decimal Strings — STR$ADD adds two decimal strings
(A,B) and places the sum in the result string (C).

Format

ret-status = STR$ADD (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

a-sign-adr
Address of a bit containing the sign of operand a (0 is positive).

a-exp-adr ;
Address of a signed longword containing the power of 10 by which the
a-digits have to be multiplied to get the absolute value of operand a.

a-digits
Address of the a-digits string descriptor. The string must be an unsigned
decimal number.

b-sign-adr
Address of a bit containing the sign of operand b (0 is positive).

b-exp-adr
Address of a signed longword containing the power of 10 by which the
b-digits have to be multiplied to get the absolute value of operand b.

b-digits
Address of the b-digits string descriptor. The string must be an unsigned
decimal number.

c-sign-adr
Address of a bit to contain the sign of result ¢ (0 is positive).

General Utility Procedures 3-49

3-50

c-exp-adr
Address of a signed longword to contain the power of 10 by which the
c-digits have to be multiplied to get the absolute value of result c.

c-digits
Address of the c-digits string descriptor (fixed-length or dynamic). The
string will be an unsigned decimal number.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

STR$_WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

STRSMUL

3.3.3.2 Multiply Two Decimal Strings — STR$MUL multiplies two decimal
strings (A,B) and places the product in the result string (C).

Format

ret-status = STR$MUL (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

See Section 3.3.3.1 for parameter descriptions.
Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

General Utility Procedures

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS_INT

STR$_WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

STRSRECIP

3.3.3.3 Reclprocal of a Decimal String — STR$RECIP takes the reciprocal of
decimal string (A) to the precision limit specified by decimal string (B) and
places the result in decimal string (C).

Format

ret-status = STRSRECIP (a-sign-adr, a-exp-adr, a-digits,
b-sign-adr, b-exp-adr, b-digits,
c-sign-adr, c-exp-adr, c-digits)

See Section 3.3.3.1 for parameter descriptions.
Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

STR$_DIVBY_ZER
Division by zero.

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

STR$_WRONUMARG
Wrong number of arguments.

Example

See Section 3.3.3.4.

General Utility Procedures 3-51

3-52

STRSROUND

3.3.3.4 Round or Truncate a Decimal String — STR$ROUND rounds or trun-
cates a decimal string (A) to a specified number of significant digits and
places the result in decimal string (C).

Format

ret-status = STRSROUND (places, trunc-flg,
a-sign-adr, a-exp-adr, a-digits,
c-sign-adr, c-exp-adr, c-digits)

places
Address of a longword containing the maximum number of decimal digits
to retain in the result.

trunc-flg
Address of a bit containing the function flag; 0 means round, 1 means
truncate.

See Section 3.3.3.1 for additional parameter descriptions.

Return Status

SS$__NORMAL
Routine successfully completed.

STR$__TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS_INT

STR$_WRONUMARG
Wrong number of arguments.
Example

Suppose A = -1000; that is ASIGN = 1, AEXP = 3 and ADIGITS = ‘1’.
Suppose also B = .0002; that is BSIGN = 0, BEXP = -4 and BDIGITS = ‘2’.

General Utility Procedures

Then, applying the string arithmetic functions, you would get the follow-
ing results:

CSIGN | CEXP CDIGITS value of C
A+B 1 -4 9999998’ -999.9998
rounded 2,0 1 2 ‘10° -1000.
A*B 1 -1 ‘2’ -2
rounded 2,0 1 -1 A -2
reciprocal of A 1 -3 1 -.001
to precision B
rounded 2,0 1 -3 ‘T -.001

A BASIC program to produce the C-elements in the preceding chart is:

100
200
300
400
500
60O
700
800
900
1000
1010
1020
1100

1200
1210
1220
1300
1400
1410
1420
1500
1600
1610

16820
1800

REM STR% ARITHMETIC SAMPLE PROGRAM

ASIGNZ = 1%

AEXPYZ = 3%

ADIGITSES = ‘1°

BSIGNZ = O%

BEXPZ = -4

BDIGITE% = ‘27

CSIGNYZ = 0%

CEXPZ = O%

CDIGITS$ = ‘0O

PRINT "A = "3 ABIGNZLS A

PRINT "B = "3i BSIGNZS B

CALL STR$ADD (ASTGNY »
BSIGNY +
CSIGNYZ

PRINT "STR&ADDS C = "3

CALL STR$ROUND (2% O%»

PRINT "STR$ROUND (240)3

CALL STR$MUL (ASIGNZ »
BSIGNY »
CSIGNY

PRINT "STR&MULS C = "3

CALL STR$ROUND (2%, O%»

PRINT "STR$ROUND (2,0)3
CALL STR$RECIP (ASIGNY .

BSIGNY »

CSIGNY
PRINT “STR$RECIP; C = "
CALL STR$ROUND (2%, 0%,
PRINT "STR&ROUND (2,0)3
END

EXPZ3
EXP%3
AEXPY
BEXPZ +
CEXP%
CEIGNZS
CSIGNZ
CSIGNYZ »
C = "3
AEXPZ »
BEXPZ »
CEXPZ
CHIGNYS
CHIGNY +
CSIGNY +
C = "3
AEXPY
BEXPZ +
CEXPY

i CSIGNYS

CSIGNY »
CSIGNY% »
Co= "3

3.3.4 String Oriented Procedures

ADIGITS%
BDIGITE$

ADIGITS%, &
BDIGITS%, &
CDIGITSS)
CEXPZ: CDIGITS®

CEXP%Z, CDIGITS®, &

CEXPZ, CDIGITES)
CSIGNZs CEXPZ3 CDIGITS®
ADIGITS$ s &

BDIGITS$ s &
CDIGITSS)
CEXPZ4: CDIGITSS

CEXP%Z,» CDIGITSS, &

CEXPZ,y CDIGITS$)
CEIGNY s CEXPZ3 CDIGITGS
ADIGITS%, &

BDIGITS%,» &
CDIGITS%)

CEXPZS CDIGITSS
CEXPZ,» CDIGITS%,» &
CEXPZ+ CDIGITSS)
CSIGNZ 3 CEXPZ%ZY CDIGITS%

The following procedures return a string or substring that is a function of one
or more input strings. See Section 3.3.3 for string arithmetic procedures.

General Utility Procedures

3-53

3-54

STRSAPPEND

3.3.4.1 Append a String — STRSAPPEND appends a source string to the end
of the destination string. The destination string must be dynamic.

Format
ret-status = STRSAPPEND (dst-str, src-str)

dst-str
Address of the destination string descriptor (dynamic).

src-str
Address of the source string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

STRSCONCAT

3.3.4.2 Concatenate Two or More Strings — STR$CONCAT takes up to 254
input strings and concatenates them into a result string. The strings can be of
any class and data type, providing that the length field of the descriptor
indicates the length of the string in bytes. A warning status is returned if one
or more input characters was not copied to the result string. The maximum
length of a string is 65,535 bytes.

Format

ret-status = STR$CONCAT (dst-str, srcl-str, src2-str [,src3-str ...,
sren-str])

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

srcn-str
Address of source string n descriptor.

Return Status

SS$_NORMAL
Routine successfully completed. All characters in the input strings were
copied into the destination string.

General Utility Procedures

STR$_TRU
Warning. String truncated. One or more input characters were not copied
into the destination string. This can happen when the destination is a
fixed-length string.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

STR$_STRTOOLON
String length exceeds 65,535 bytes.

STR$_WRONUMARG
Wrong number of arguments.

Example

The following BASIC statements (when executed) would yield X$ =
‘ABCD’:

EXTERNAL INTEGER FUNCTION STR&CONCAT
STATUSYZ = STR&CONCAT (X%, ‘A’ ‘B’y ‘C’sy ‘D7)

STR$COPY__DX

3.3.4.3 Copy a Source String to a Destination String — Three sets of copy
routines are provided for copying a source string to a destination string. These
are useful for writing procedures that return strings according to the seman-
tics (fixed-length or dynamic) indicated by the calling program in the destina-
tion descriptor. The three sets follow the conventions for LIB$, OTS$, and
STRS$ facilities:

e LIB. All conditions are returned as a status in RO (no signals); truncation is
a qualified success condition value (bit 0 = 1). Input scalars are passed by
reference.

e OTS. All conditions except truncation are signaled; RO:R5 contain results of
MOVCS5 instruction. Input scalars are passed by immediate value.

e STR. All conditions except truncation are signaled; truncation is returned
as a warning condition value (bit 0 = 0) in RO. Input scalars are passed by
reference.

Within each set there is an entry point that passes the source string by
descriptor and a second one that passes the source string by reference pre-
ceded by a length parameter. In addition equivalent JSB entry points are
provided, with RO being the first parameter, R1 the second, and R2 the third,
if any. The length parameter is passed in bits 15:0 of the appropriate register.

General Utility Procedures 3-55

3-56

For LIB$ and OTS$, the destination parameter is last; for STRS$, the destina-
tion parameter is first so it can be called as a string function (ignoring trunca-
tion status) or as a status value returning function when the calling program
wishes to detect string truncation. Depending on the class of the destination
string, these actions occur:

Class Field Action
DSC$K__CLASS__S,Z Copy the source string. If needed, space fill or truncate on
(fixed length,unspecified) the right.
DSC$K__CLASS_.D If the area specified by the destination descriptor is large
(dynamic) enough (but not too large) to contain the source string, copy
the source string and set the new length in the destination
descriptor.

If the area specified is not large enough or is too large, return
the previous destination descriptor space allocation (if any)
and then allocate the amount of space dynamically needed.
Copy the source string and set the new length and address in
one destination descriptor.

Formats
Source by descriptor:

ret-status = LIB3SCOPY__DXDX (src-str, dst-str)
JSB entry point: LIB§SCOPY__DXDX6

unmoved-src = OTS$SCOPY_DXDX (src-str, dst-str)
JSB entry point: OTS$SCOPY_DXDX6

ret-status = STR$COPY__DX (dst-str, src-str)
JSB entry point: STR$COPY__DX__R8

Source by reference:

ret-status = LIB$SCOPY_R__ DX (src-len-adr, src-adr, dst-str)
JSB entry point: LIB§SCOPY_R__DX6

unmoved-src = OTS$SCOPY_R_DX (src-len, src-adr, dst-str)
JSB entry point: OTS$SCOPY__R_DX6

ret-status = STR$COPY__R (dst-str, src-len-adr, src-adr)
JSB entry point: STR$COPY__R_R8

dst-str
Address of the destination string descriptor. The class field determines the
appropriate action. The length field (DSC$W_LENGTH) or both the
address (DSC$A_POINTER) and length fields can be modified if the
string is dynamic. (This is an output parameter.)

General Utility Procedures

src-str
Address of the string descriptor specifying the length and address of the
source string. The descriptor class can be unspecified, fixed-length, or
dynamic. The data type field can be any data type for which the length
field is in units of bytes.

unmoved-src

Number of unmoved source string bytes, if the source string length is

greater than the destination string length; otherwise zero.

src-len-adr
Address of an unsigned word containing the length of the source string.

src-len

An unsigned word containing the length of the source string (passed by

immediate value).

Implicit Inputs (JSB entry):

sre-str | src-len-adr src-str-adr dst-str
LIB$SCOPY_DXDX6 RO R1
OTS$SCOPY__DXDX6 RO R1
STR$COPY_DX__R8 R1 RO
LIB$SCOPY_R__DX6 R0<15:0> R1 R2
OTS$SCOPY_R_DX6 R0<15:0> R1 R2
STR$COPY_R__R8 R1<15:0> R2 RO

Return Status

SS$_NORMAL
Procedure successfully completed. All characters in the input string were
copied to the destination string.

LIB$_STRTRU
Procedure successfully completed. String truncated. Fixed-length destina-
tion string descriptor could not contain all of the characters copied from
the source string.

STR$_TRU
Warning. String truncated. Fixed-length destination string descriptor
could not contain all of the characters copied from the source string.

General Utility Procedures 3-57

Messages

LIB$ _INSVIRMEM, LIB$_INVSTRDES, LIB$_STRIS__INT,
LIB$_FATERRLIB

OTS$_INSVIRMEM, OTS$_INVSTRDES, OTS$_STRIS_INT,
OTS$_FATINTERR

STR$_INSVIRMEM, STR$_ILLSTRCLA, STR$_STRIS__INT,
STR$_FATINTERR

Examples

The following FORTRAN subroutine returns the data as a string using the
string semantics specified by the caller. The parameter STRING_DSC is
dimensioned as an 8-byte array instead of CHARACTER. Just
before returning to the caller, the FORTRAN subroutine copies the
CHARACTER DATE__STR to the passed STRING__DSC.

SUBROUTINE RET.DATE_.STR (STRING_DSC)
BYTE STRING_DSC(8)
CHARACTER*9 DATE.STR

.

CALL DATE (DATE.STR) ICopy 9-character data to DATE.STR
CALL STR$COPY_DX (ZDESC(STRING.DSC),» DATE_STR)

RETURN

END

In MACRO, a typical call from procedure PROC would be:

*DSCDEF i define DSC% descr svmbols
DSTDSC: +WORD © i filled by STR$COPY.R
+BYTE DSC$K_.DTYPE.T i data tvepe is ASCII text
+BYTE DSC$K_CLASS.D i class is dvynamic string
+LONG O i adr of string filled in
SRC: +ASCII /Fourscore and seven vears ado/
SRCLEN= , -8RC i lendth of source string

LEN: +WORD SRCLEN

+ENTRY PROC» "M = i save only what PROC uses

+

PUSHAB SRC

i par3 = adr of source string
PUSHANW LEN i Ppar2 = adr of src str lendth
PUSHAQ DSTDSC i parl = adr of dest descr
CALLS #3, STR$COPY..R
BLBC RO TRUNC i test for truncation

The JSB form would be:

+ENTRY PROC)» "M<{R2)R3IIR4IR5+1RG6IR7+RB>» § save at least
i R2:RB in stacK on entry

+

+

MOVAR DSTDSC s RO

i RO = adr of dest string descr
MOUMK SRCLEN, R1 i R1 = lendth of source string
MOVAB SRCys RZ i R2 = adr of source string
JGB STR$COPY._.R..R8 i copy source to destination
BLBC RO TRUNC i test for truncation

3-58 General Utility Procedures

STR$POS_EXTR

3.3.4.4 Extract a Substring of a String — The following procedures copy a
substring of a source string into a destination string. Each procedure has a
different method of defining the substring.

STRSLEN_EXTR defines the substring by specifying the relative starting
position in the source string and the number of characters to be copied.

STR$POS_EXTR defines the substring by specifying the relative starting
and ending positions in the source string.

STRS$LEFT defines the substring by specifying the relative ending position in
the source string. The relative starting position in the source string is one.
This is a variation of STR$POS__EXTR.

STRS$RIGHT defines the substring by specifying the relative starting position.
The relative ending position is equal to the length of the source string. This is
a variation of STR$POS_EXTR.

Format

ret-status = STRSLEN_EXTR (dst-adr, src-adr, start-pos, length)
JSB entry point: STR$SLEN__EXTR.__R8

ret-status = STR$POS__EXTR (dst-adr, src-adr, start-pos, end-pos)
JSB entry point: STR$POS_EXTR__RS8

ret-status = STRSLEFT (dst-adr, src-adr, end-pos)
JSB entry point: STRSLEFT__R8

ret-status = STRSRIGHT (dst-adr, src-adr, start-pos)
JSB entry point: STR$RIGHT__R8

dst-adr
Address of destination string descriptor (fixed-length or dynamic).

src-adr
Address of source string descriptor.

start-pos
Address of a signed longword containing the relative starting position in
the source string.

end-pos
Address of a signed longword containing the relative ending position in the
source string.

length
Address of a longword containing the number of characters to be copied to
the destination string.

Implicit Inputs (JSB entries only)

RO
Address of destination string descriptor.

General Utility Procedures 3-59

3-60

R1
Address of source string descriptor.

R2
A longword containing the relative starting position in the source string
except for STRSLEFT__R8 where it is a longword containing the relative
ending position in the source string.

R3
For STRSLEN_EXTR.__RS8, a longword containing the number of char-
acters to be copied to the destination string.
For STR$POS_EXTR__R8, a longword containing the relative ending
position in the source string.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$__ILLSTRPOS
Routine successfully completed. A character position parameter refer-
enced a character position outside the appropriate string. A default value
described in the string conventions was used.

STR$_ILLSTRSPE
Routine successfully completed. End-pos was less than start-pos or length
was too long for appropriate string. Default values described in the string
conventions section were used.

STR$__NEGSTRLEN
Routine successfully completed. The length parameter contained a nega-
tive value; zero was used.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters copied from the source string.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

Example

In BASIC, assuming SRC$ = ‘ABCD’, the following statements would
yield, M$ = ‘BC’, N$ = ‘BC’, O$ = ‘AB’, and P$ = ‘CD’:

EXTERNAL INTEGER FUNCTION STR$LEN_EXTR, &
STR$POS_EXTR» STR$LEFT» STR$RIGHT

STATUSY = STR$LEN_EXTR (M$, SRC%, Z%, 2%)
STATUSY = STREPOS_EXTR (N$.: SRC%., 2%, 3%)
STATUSZ = STR$LEFT (0%, SRC%,s 27)
STATUSYZ = STR$RIGHT (P$s SRC%s 3%)

General Utility Procedures

STR$DUPL__CHAR

3.3.4.5 Generate a String — STR$DUPL__CHAR generates a string contain-
ing n duplicates of the input character.

Format

ret-status = STR$DUPL__CHAR (dst-adr [,length [,char]})
JSB entry point: STR$DUPL__CHARRS

dst-adr
Address of the destination string descriptor.

length
Optional address of a signed longword containing the number of times
char will be duplicated. The default is one.

char
Optional address of a byte containing an ASCII character. The default is a
space.

Implicit Inputs (JSB entries only)

RO
Address of the destination string descriptor.

R1
A signed longword containing the number of times char will be
duplicated.

R2
<8:0> byte containing an ASCII character.

Return Status

SS$__NORMAL
Routine successfully completed.

STR$_NEGSTRLEN
Routine successfully completed. The length parameter contained a nega-
tive value; zero was used.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS_INT

STR$._STRTOOLON
String length exceeds 65,535 bytes.

General Utility Procedures 3-61

3-62

Example

In BASIC, the following statements would yield X$ = ‘AAAA’ upon
execution:

EXTERNAL INTEGER FUNCTION STR$DUPL_.CHAR STATUSY% =
STR$DUPL_.CHAR (X%, 4%, 'A’ BY REF)

STRSPREFIX

3.3.4.6 Prefix a String — STR$PREFIX inserts the source string at the begin-
ning of the destination string. The destination string must be dynamic.

Format
ret-status = STR$PREFIX (dst-str, src-str)

dst-str
Address of the destination string descriptor (dynamic).

src-str
Address of the source string descriptor.

Return Status

SS$__NORMAL
Routine successfully completed.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

Example

In BASIC, the following statements would yield D$ = ‘ABCDEFG’ on
execution:

EXTERNAL INTEGER FUNCTION STR$PREFIX
D$ = ‘EFG’
STATUS% = STR$PREFIX (D$, ‘ABCD’)

General Utility Procedures

STRSREPLACE

3.3.4.7 Replace a Substring — STR$REPLACE copies a source string to a
destination string, replacing a substring with another substring. The replaced
substring is specified by the starting and ending positions.

Format

ret-status = STR$REPLACE (dst-str, src-str, start-pos, end-pos, rpl-str)
JSB entry point: STR$REPLACE__R8

dst-str
Address of destination string descriptor (fixed-length or dynamic).

src-str
Address of source string descriptor.

start-pos
Address of a signed longword containing the relative starting position in
the source string of the substring to be replaced.

end-pos
Address of a signed longword containing the relative ending position in the
source string of the substring to be replaced.

rpl-str

Address of the replacement string descriptor.

Implicit Inputs (JSB entries only)

RO
Address of destination string descriptor.

R1
Address of source string descriptor.

R2
A signed longword containing the relative starting position in the source
string of the substring to be replaced.

General Utility Procedures 3-63

3-64

R3

A signed longword containing the relative ending position in the source
string of the substring to be replaced.

R4
Address of the replacement string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_ILLSTRPOS
Routine successfully completed. A character position parameter refer-

enced a character position outside the appropriate string. A default value
described in the string conventions was used.

STR$__ILLSTRSPE
Routine successfully completed. End-pos was less than start-pos or length
was too long for appropriate string. Default values described in the string
conventions were used.

STR$_TRU

Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

Messages

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

Example

In BASIC, the following statements would yield D$ = ‘AXYZD’ on
execution:

EXTERNAL INTEGER FUNCTION STR$REPLACE
D$ = 'ABCD’
STATUSY = STR$REPLACE (D%, D%, 2%, 3%+ ‘XYZ')

General Utility Procedures

STR$TRIM

3.3.4.8 Trim Trailing Blanks and Tabs — STR$TRIM copies a source string to
a destination string and deletes the trailing blank and tab characters.

Format
ret-status = STR$TRIM (dst-str, src-str [,out-len])

dst-str
Address of the destination string descriptor (fixed-length or dynamic).

src-str
Address of the source string descriptor.

out-len
Optional address of a word to be set to the number of bytes written into
dst-str, not counting padding in the case of a fixed string. If the input
string is truncated to the size specified in the dst-str description, out-len is
set to this size. Therefore, out-len can always be used by the calling
program to access a valid substring of dst-str.

Return Status

SS$__NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

Messages

STR$__FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

Example

In BASIC, the following statements would yield D$ = ‘ABC’ on execution:

EXTERNAL INTEGER FUNCTION STR&TRIM
D¢ = ‘ABC’
STATUSY = STR$TRIM (D%, D%$)

3.3.5 Translate String Functions

The following functions return a string that is an altered form of the source
string.

General Utility Procedures 3-65

3-66

LIBSMOVTC

3.3.5.1 Move Translated Characters — LIBSMOVTC moves the source string
character-by-character to the destination string after translating each one
using the specified translation table.

Each character in the source is used as an index into the translation table.
The byte found is then placed into the destination string. The fill character is
used if the destination string is longer than the source string. If the source is
longer than the destination, the source string is truncated. Overlap of the
source and destination strings does not affect execution.

Format
ret-status = LIBSMOVTC (src-str, fill-char, trans-tbl, dst-str)

src-str
Address of source string descriptor.

fill-char
Address of fill character descriptor.

trans-tbl
Address of translation table descriptor.

dst-str
Address of destination string descriptor (fixed-length or dynamic).

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Procedure successfully completed; string truncated. Fixed-length destina-
tion string descriptor could not contain all of the characters.

LIB$_FATERRLIB
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRIS__INT

Notes

FORTRAN passes arrays (trans-tbl) by reference as a one-origin array. In
BASIC and PASCAL, the BY REF and %REF qualifiers must be ap-
pended to the trans-tbl parameter. In BASIC arrays are zero-origin.

Only the first character of fill is used, and the length is not checked.

The fill character is not translated.

General Utility Procedures

Example

The following FORTRAN example uses LIBSMOVTC to translate ASCII
code values 65 through 68 (decimal) from their usual value to W, X, Y and
Z. The procedure will return a destination string of WXYZ #.

CHARACTER*G DEST
CHARACTER TRTABLE (0:253)

DATA TRTABLE /BS*’ /W’y /X s/ »'2/,187%' '/
CALL LIB#MOVUTC (’ABCDE’,» ‘#’, TRTABLE,» DEST)
END

LIBSMOVTUC

3.3.5.2 Move Translated Until Character — LIBSMOVTUC moves the source
string character-by-character to the destination string after translating each
one using the specified translation table. Each character in the source string is
accessed and used as an index into the translation table.

If the table entry contains the specified stop character, the routine is termi-
nated with the relative position of the source character returned. If the table
entry is not the stop character, it is moved to the destination string.

If the source is longer than the destination, then truncation of the source
string occurs. If the optional fill character is present, any remaining positions
in the destination string are filled with the fill character. If the source or
destination string is exhausted (without finding the stop character), a zero
index is returned.

Format

stop-index = LIBSMOVTUC (src-str, stop-char, trans-tbl, dst-str
[,fill-char])

src-str
Address of source string descriptor.

stop-char
Address of stop string descriptor.

trans-tbl
Address of translation table descriptor.

dst-str
Address of destination string descriptor (fixed-length or dynamic).

fill-char
Address of optional fill descriptor. If included, the remainder of the desti-
nation string (after the stop character) is filled with the fill character
specified. If it is not included, the remainder of the destination string
remains intact.

General Utility Procedures 3-67

3-68

stop-index
Signed longword containing the relative position of the character in the
source string that is translated to the stop character. Zero is returned, if
the stop character is not found. Failure to allocate dst-str returns minus
one.

Notes

Only the first character in the stop-char string and fill-char string, are
used and the length is not checked. The fill character is not translated.
The results are unpredictable if the source and destination strings overlap
and have different starting addresses.

Example

The following FORTRAN example translates the ASCII symbols 48-58
into the decimal values 1 to 10:

CHARACTER*B DEST
- CHARACTER TRTABLE (0:255)

DATA TRTABLE /47%" 4/ /40 /1 y'2/ /37447
1/37+/B7+/7'4+/'87,797,188%" '/

CALL LIB$MOVTUC (‘1-128/'y ‘.’ TRTABLE,» DEST ‘%)
END

LIBSTRA_ASC_EBC

3.3.5.3 Translate ASCIl to EBCDIC — LIB$TRA__ASC__EBC translates an
ASCII string to an EBCDIC string. If the destination string is a fixed string,
its length must match the length of the input string (no filling is done). The
ASCII to EBCDIC translation table in LIBSAB__ASC__EBC can be specified
in a routine using LIB$MOVTC, but no testing for untranslatable characters
is done.

Format
ret-status = LIB$TRA_ASC__EBC (src-str, dst-str)

src-str
Address of the source (ASCII) string descriptor.

dst-str
Address of the destination (EBCDIC) string descriptor (fixed-length or
dynamic).

Implicit Inputs
The ASCII to EBCDIC translation table at LIBSAB_ASC__EBC.
Return Status

SS$_NORMAL
Routine successfully completed.

General Utility Procedures

LIB$_INVCHA
One or more occurrences of an untranslatable character has been detected

in the course of the translation.

LIB$_INVARG
If the destination string is a fixed string and its length is not the same as
the source string length; no translation is attempted.

LIBSAB__ASC_EBC is the ASCII to EBCDIC translation table, based on
ANSI X3.26 - 1970. All ASCII graphics are translated to their equivalent

EBCDIC graphic except for:

ASCII graphic

[(left square bracket)

! (exclamation point)

" (circumflex)

] (right square bracket)

EBCDIC graphic

cents sign

short vertical bar

logical not

! (exclamation point)

The complete table in hexadecimal notation is:

ASCII to EBCDIC

b7 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1
column b6 o 0 0 011.1.1.0 0 0 01 1 11

b5 | 0 0 1.1 0 0 1 1t 0 0 1 1 O O 1 1

b4 0O 1 0 1.0 1 0 1 0 1 0 1 0 1 0 1
row
b3b2b1b0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
000O0]00 00 10 40 FO 7C D7 79 97 3F 3F 3F 3F 3F 3F 3F 3F
0001]01 01 11 4F F1 C1 D8 81 98 3F 3F 3F 3F 3F 3F 3F 3F
0010]|02 02 12 7F F2 C2 D9 82 99 3F 3F 3F 3F 3F 3F 3F 3F
0011]|03 03 13 7B F3 C3 E2 83 A2 3F 3F 3F 3F 3F 3F 3F 3F
0100]|04 37 3C 5B F4 C4 E3 84 A3 3F 3F 3F 3F 3F 3F 3F 3F
0101105 2D 3D 6C F5 C5 E4 85 A4 3F 3F 3F 3F 3F 3F 3F 3F
0110106 2E 32 50 F6 C6 Eb5 86 A5 3F 3F 3F 3F 3F 3F 3F 3F
0111]1]07 2F 26 7D F7 C7 E6 87 A6 3F 3F 3F 3F 3F 3F 3F 3F
100008 16 18 4D F8 C8 E7 88 A7 3F 3F 3F 3F 3F 3F 3F 3F
1001]09 05 19 5D F9 C9 E8 83 A8 3F 3F 3F 3F 3F 3F 3F 3F
1010]10 25 3F 5C 7A D1 E9 91 A9 3F 3F 3F 3F 3F 3F 3F 3F
1011]11 0B 27 4E 5E D2 4A 92 CO0 3F 3F 3F 3F 3F 3F 3F 3F
1100]12 0C 1C 6B 4C D3 E0 93 6A 3F 3F 3F 3F 3F 3F 3F 3F
1101]13 0D 1D 60 7E D4 5A 94 DO 3F 3F 3F 3F 3F 3F 3F 3F
1110}14 OE 1E 4B 6E D5 5F 95 Al 3F 3F 3F 3F 3F 3F 3F 3F
1111}15 OF 1F 61 6F D6 6D 96 07 3F 3F 3F 3F 3F 3F 3F 3F
where byte: b7b6b5b4 b3b2b1b0

N N~

column row

General Utility Procedures

3-69

LIBSTRA_EBC__ASC

3.3.5.4 Translate EBCDIC to ASCIl — LIB$TRA_EBC__ASC translates an
EBCDIC string to an ASCII string. If the destination string is a fixed string,
its length must match the length of the input string (no filling is done). The
EBCDIC to ASCII translation table at LIBSAB__EBC__ASC can be specified
in a routine using LIBSMOVTC, but no testing for untranslatable characters
is done.

Format
ret-status = LIBSTRA_EBC__ASC (src-str, dst-str)

src-str
Address of the source (EBCDIC) string descriptor.

dst-str
Address of the destination (ASCII) string descriptor (fixed-length or
dynamic).

Implicit Inputs
The EBCDIC to ASCII translation table at LIBSAB_EBC__ASC.

Return Status

SS$_NORMAL
Routine successfully completed.

LIB$_INVCHA
One or more occurrences of an untranslatable character has been detected
in the course of the translation.

LIB$_INVARG
If the destination string is a fixed string and its length is not the same as
the source string length; no translation is attempted.

LIB$AB_EBC__ASC is the EBCDIC to ASCII translation table based on
ANSI X3.26 - 1970. All EBCDIC graphics are translated to the identical
ASCII graphic except for:

EBCDIC graphic ASCII graphic
cents sign [(left square bracket)
short vertical bar ! (exclamation point)
logical not " (circumflex)
! (exclamation point)] (right square bracket)

3-70 General Utility Procedures

Untranslatable codes map into 5C (hex) (the ASCII character “\’’). Mapping
them into 1A (hex) (the ASCII substitute character) would be more desirable,
but could cause trouble with STREAM-ASCII files under RMS-11 which
recognizes 1A (hex) as a CTRL/Z signifying an end-of-file. The complete table
in hexadecimal notation is:

EBCDIC to ASCII

b7 | O 0 0 000 0 0 1. 1.1 1 1 1 11
columm b6 | 0 0 0 0 1 1 1 1 0 O O O 1 1 1 1

b5 {0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

b4} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
row
b3b2b1b0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
000000 | 00 10 5C 5C 20 26 2D 5C 5C 5C 5C 5C 7B 7D 5C 30
000101 | 01 11 5C 5C 5C 5C 2F 5C 61 6A TE 5C 41 4A 5C 31
0010]02 | 02 12 5C 16 5C 5C 5C 5C 62 6B 73 5C 42 4B 53 32
001103 | 03 13 5C 5C 5C 5C 5C 5C 63 6C 74 5C 43 4C 54 33
0100]04 | 5C 5C 5C 5C 5C 5C 5C 5C 64 6D 75 5C 44 4D 55 34
0101]05 | 09 5C 0A 5C 5C 5C 5C 5C 65 6E 76 5C 45 4E 56 35
011006 | 5C 08 17 5C 5C 5C 5C 5C 66 6F 77 5C 46 4F 57 36
0111}07 | 7F 5C 1B 04 5C 5C 5C 5C 67 70 78 5C 47 50 58 37
100008 | 5C 18 5C 5C 5C 5C 5C 5C 68 71 79 5C 48 51 59 38
1001]09 | 5C 19 5C 5C 5C 5C 5C 60 69 72 TA 5C 49 52 5A 39
1010}10 | 5C 5C 5C 5C 5B 5D 7C 3A 5C 5C 5C 5C 5C 5C 5C 5C
1011]11] 0B 5C 5C 5C 2E 24 2C 23 5C 5C 5C 5C 5C 5C 5C 5C
1100]12 | 0C 1C 5C 14 3C 2A 25 40 5C 5C 5C 5C 5C 5C 5C 5C
1101]13] 0D 1D 05 15 28 29 5F 27 5C 5C 5C 5C 5C 5C 5C 5C
1110]|14 | OE 1E 06 5C 2B 3B 3E 3D 5C 5C 5C 5C 5C 5C 5C 5C
111115 | OF 1F 07 1A 21 5E 3F 22 5C 5C 5C 5C 5C 5C 5C 5C

where byte: b7b6b5b4 b3b2b1b0
N_—_ Nu_—
column row

STRSTRANSLATE

3.3.5.5 Translate Matched Characters — STR$TRANSLATE successively
compares each character in a source string to all characters in a match string.
If a source character has a match, the destination character is taken from the
translate string. Otherwise, the source character moves to the destination
string. The character taken from the translate string has the same relative
position as the matching character had in the match string. If the translate
string is shorter than the match string and the matched character position is
greater than the translate string length, the destination character is a space.

Format
ret-status = STR$TRANSLATE (des-str, src-str, trans-tbl, match-str)

des-str
Address of destination string descriptor (fixed-length or dynamic).

General Utility Procedures 3-71

srec-str
Address of source string descriptor.

trans-tbl
Address of translate string descriptor.

match-str
Address of match string descriptor.

STRSUPCASE

3.3.5.6 Uppercase Conversion — STR$UPCASE converts successive charac-
ters in a source string to uppercase and writes the converted character into the
destination string. When you need to compare characters without regard to
case, you can first convert both characters to uppercase. The routine only
converts a to z. Foreign languages with accented letters should use
STR$TRANSLATE.

Format

ret-status = STR$UPCASE (des-str, src-str)

des-str
Address of destination string descriptor (fixed-length or dynamic).

src-str
Address of source string descriptor.

Return Status

SS$_NORMAL
Routine successfully completed.

STR$_TRU
Warning. String truncated. Fixed-length destination string could not con-
tain all of the characters.

STR$_FATINTERR
STR$_ILLSTRCLA
STR$_INSVIRMEM
STR$_STRIS__INT

3-72 General Utility Procedures

Example

The following BASIC statements would result in D$ containing
‘HELLO’:

EXTERNAL INTEGER FUNCTION STR4UPCASE
STATUBYZ = STR$UPCASE (D#%s ‘Hello’)

3.4 Formatted Input and Output Conversion Procedures

This section describes the formatted input and output conversion routines
available as callable procedures. Input conversion procedures convert a fixed-
length string of characters to a D__, G, or H_floating or integer binary
value. Output conversion procedures convert a D__, G, or H__floating or
integer binary value to the corresponding space-padded, fixed-length string of
characters. String descriptors are used to specify the length and address of all
strings.

The following floating input and output conversions are provided:

D FORTRAN D format (scientific notation with D exponent)

E FORTRAN E format (scientific notation with E exponent)

F FORTRAN F format

G FORTRAN G format (selects between E and F depending on the magni-
tude of the value)

The following integer input and output conversions are provided:

I Integer

L Logical

O Octal

Z Hexadecimal

While these procedures may be called from FORTRAN, they are provided for
use by programs written in other languages. These procedures are called im-
plicitly by the language support procedures to perform formatted and list-
directed input/output statements. Input scalars are passed by immediate
value, rather than by reference. Output strings are assumed to be static, and
the class field in the descriptor is not checked.

NOTE

If you are interested in procedures that convert decimal, octal,
or hexadecimal strings to binary values and pass the strings by
count and address, see Section 3.4.1.6.

General Utility Procedures 3-73

3-74

OTS$_CVT_T_x

3.4.1 Input Conversions

3.4.1.1 Convert Text to Floating — OTS$CVT_T__x converts an ASCII text
string representation of a numeric value to D__, G, or H__floating. The
routine supports FORTRAN D, E, F and G input type conversion as well as
similar types for other languages.

For compatibility with previous releases, the name FOR$CNV__IN_DEFG is
equivalent to OTS$CVT__T__D.

The syntax of a valid ASCII input string is:

<zero or more blanks>
<47, “-” or nothing>
<zero or more decimal digits>
<“.” or nothing>
<zero or more decimal digits>
<exponent or nothing, where exponent is:
< <<“E”’ “e,” “D,” “d7,’ (‘Q”’ 6‘q,,>
<zero or more blanks>

<47, “=” or nothing>>
or
<“+”’ OI' “__’7>>

<zero or more decimal digits>>
<end of string>

NOTE

There is no difference in semantics between any of the six valid
exponent letters. See discussion of flags.

Format

ret-status = OTS$CVT_T__x (inp-str, value [,digits-in-fract
[,scale-factor [,flags [,ext-bits]]l])

where “x” is D for D__floating, G for G_floating or H for H__floating.

inp-str
Address of input string descriptor.

value
Address of the floating result.

digits-in-fract
An unsigned longword containing the number of digits in the fraction if
the decimal point is in the input string. (This is an optional parameter,
passed by immediate value. If omitted, the default is zero.)

General Utility Procedures

scale-factor
A signed longword containing the scale factor. If flags bit 6 is clear, the
result value is multiplied by 10**factor unless the exponent is present. If
flags bit 6 is set, the scale factor is always applied. (This is an optional
parameter, passed by immediate value. If omitted, the default is zero.)

flags
An unsigned longword containing caller-supplied flags defined as follows:

Bit 0 If set, blanks are ignored. If clear, blanks are equivalent to “0”.
Bit 1 If set, only E or e exponents are allowed.

Bit 2 If set, underflow will cause an error.

Bit 3 If set, don’t round the value.

Bit 4 If set, tabs are ignored. If clear, tabs are illegal.

Bit 5 If set, an exponent must begin with a valid exponent letter. If
clear, the exponent letter may be omitted.

Bit 6 If set, the scale factor is always applied. If clear, it is only applied
if there is no exponent present in the string.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

ext-bits
Address of a byte or word to receive the extra precision bits. If present, the
value is not rounded, and the first n bits after truncation are returned in
this argument. For D__floating, n equals 8 and the bits are returned as a
byte. For G_ and H__floating, n equals 11 and 15, respectively, and the
bits are returned as a word, left-justified. These values are suitable for use
as the extension operand in an EMOD instruction.

CAUTION

The bits returned for H__floating may not be precise because
calculations are only carried to 128 bits. However, the error
should be small. D_ and G__floating return guaranteed exact
bits; they are not rounded.

Return Status

SS$__NORMAL
Routine successfully completed.

OTS$_INPCONERR
Input conversion error; an invalid character in input string, or value is
outside the range that can be represented. Value is set to +0.0 (not re-
served operand -0.0).

General Utility Procedures 3-75

OTSSCVT_TI__L

3.4.1.2 Convert Text (Signed Integer) to Longword — OTS$CVT_TI__L con-
verts an ASCII text string representation of a decimal number to a signed
byte, word, or longword. The result is a longword by default, but the calling
program can specify a byte or a word value instead.

The syntax of a valid ASCII text input string is:
[+ or —l[<integer-digits>]

Leading blanks are always ignored. Blanks after the sign or the first digit are
ignored if flags bit 0 is set; otherwise, blanks are treated as zeroes. T'abs are
ignored if flags bit 1 is set; otherwise, tabs are invalid. An implicit decimal
point is assumed at the right of inp-str.

For compatibility with previous releases, the name FOR$CNV_IN_ is
equivalent to OTS$CVT__TL_L.

Format
ret-status = OTS$CVT_TL_L (inp-str, value [,value-size [,flags]])

inp-str
Address of the input string descriptor.

value
Address of a signed byte, word, or longword to receive the integer value,
depending on value-size. (This is an output parameter.)

value-size
A longword containing the number of bytes the value will occupy. (This is
an optional parameter, passed by immediate value. The default is four.)
Valid values are one, two and four. Invalid values return an error.

flags
An unsigned longword containing caller supplied flags defined as follows:

bit 0 If set, blanks are ignored. If clear, blanks after the first legal char-
acter are treated as zeroes.

bit 1 If set, tabs are ignored. If clear, tabs are invalid.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$__NORMAL
Routine successfully completed.

OTS$__INPCONERR
Input conversion error; an invalid character in input string, or value over-
flows byte, word, or longword, or value-size is invalid; value is set to zero.

3-76 General Utility Procedures

OTSSCVT_TL_L

3.4.1.3 Convert Text (Logical) to Longword — OTS$CVT__TL__L converts an
ASCII text string representation of a FORTRAN-77 L format to a byte, word,
or longword value. The result is a longword by default, but the calling pro-
gram can specify a byte or a word value instead.

For compatibility with previous releases, the name FOR$CNV_IN_L is
equivalent to OTS$CVT__TL__L.

The syntax of a valid ASCII text string is:

<zero or more blanks>
< <end of string>
or
< <‘.” or nothing>
Letter: <“T”. “t”. “F”, “f’>
<zero or more of any character>
<end of string>>>

The value returned by OTS$CVT__TL__L is minus one if the character de-
noted by “Letter:” is “T” or ‘“t”, zero otherwise.

Format

ret-status = OTS$CVT__TL__L (inp-str, value [,value-size))

inp-str
Address of the input string descriptor.

value
Address of a byte, word, or longword to receive the integer value, depend-
ing on value-size. (This is an output parameter.)

value-size
A longword containing the number of bytes the value will occupy. (This is
an optional parameter, passed by immediate value. The default is four.)
Valid values are one, two and four. Invalid values return an error.

Return Status

SS$__NORMAL
Routine successfully completed.

OTS$__INPCONERR
Invalid character in the input string or invalid value-size; value set to
Zero.

General Utility Procedures 3-77

3-78

OTSSCVT_TO_L

3.4.1.4 Convert Text (Octal) to Longword — OTS$CVT_TO__L converts an
ASCII text string representation of an unsigned octal value to an unsigned
byte, word, or longword. The result is a longword by default, but the calling
program can specify a byte or a word value instead. The valid input charac-
ters are the space and the digits 0 through 7. No sign is permitted.

For compatibility with previous releases, the name FOR$CNV_IN__O is
equivalent to OTS$CVT_TO__L.

Format
ret-status = OTS$CVT_TO__L (inp-str, value [,value-size [,flags]])

inp-str
Address of input string descriptor.

value
Address of an unsigned byte, word, or longword to receive the result,
depending on value-size.

value-size
A longword containing the number of bytes that the value will occupy.
(This is an optional parameter, passed by immediate value. The default is
four.) If input size is zero or negative, an error is returned.

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, blanks are ignored; otherwise blanks are treated as zeroes.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_INPCONERR
Input conversion error. An invalid character, overflow, or invalid value-
size occurred.

General Utility Procedures

OTSSCVT_TZ__L

3.4.1.5 Convert Text (Hexadecimal) to Longword — OTS$CVT_TZ__L con-
~ verts an ASCII text string representation of an unsigned hexadecimal value to
an unsigned byte, word, or longword. The result is a longword by default, but
the calling program can specify a byte or a word value instead. Valid input
characters are the space, the digits 0 through 9, and letters A through F. No
sign is permitted. Lowercase letters a through f are acceptable.

For compatibility with previous releases, the name FOR$CNV_IN_Z is
equivalent to OTS$CVT__TZ__L.

Format
ret-status = OTS$CVT__TZ__L (inp-str, value [,value-size [,flags]])

inp-str
Address of input string descriptor.

value
Address of an unsigned byte, word, or longword to receive the result,
depending on value-size.

value-size
A longword containing the number of bytes that the value will occupy.
(This is an optional parameter, passed by immediate value. The default is
four.) If input size is zero or negative, an error is returned.

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, blanks are ignored; otherwise blanks are treated as zeroes.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$__INPCONERR
Input conversion error. An invalid character, overflow, or invalid value-
size occurred.

General Utility Procedures 3-79

3-80

LIBSCVT_xTB

3.4.1.6 Convert Text to Binary

LIB$CVT_DTB — Decimal to Binary Conversion
LIB$CVT__HTB — Hexadecimal to Binary Conversion
LIB$CVT_OTB — Octal to Binary Conversion

These procedures return a binary representation of the ASCII text string
representation of a decimal, octal, or hexadecimal number.
NOTE

These LIB$ procedures are unusual in that they expect input
scalar parameters to be passed by immediate value and strings
by reference and blanks are invalid characters.

Format

ret-status = LIB§CVT_DTB (count, string, result)
ret-status = LIB§CVT._OTB (count, string, result)
ret-status = LIBSCVT__HTB (count, string, result)

count
Byte count of input ASCII text string.

string
Address of input ASCII text string.

result
Address to receive longword result.

Return Status

SS$_NORMAL
Procedure successfully completed.

Nonradix character in the input string or a sign in any position other than
the first character. Blanks and tabs are invalid characters. An overflow
from 32 bits (unsigned) will cause an error.

NOTE

See Section 3.4.1.1 for more flexible and general input conver-
sion routines.

General Utility Procedures

OTSSCVT_L_TI

3.4.2 Output Conversions

3.4.2.1 Convert Longword to Text (Signed Integer) — OTS$CVT_L__TI
converts a signed integer to a decimal ASCII text string. This procedure
supports FORTRAN Iw and Iw.m output and BASIC output conversion.

A separate entry point FOR$CNV_OUT__I is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L__TT (value-adr, out-str [,int-digits [,value-size
[,flags]ll)

ret-status = FOR$CNV_OUT__I (value, out-str)

value-adr (OTS$CVT__L__TI only)
Address of the signed byte, word, or longword containing the integer value,
depending on value-size.

value (FOR$CNV_OUT_I only)
A longword containing the signed integer value to be converted to text
(passed by immediate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K__CLASS__S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant digits is smaller, leading zeroes are pro-
duced. If int-digits is zero and value is zero, a blank field will result. (This
is an optional parameter, passed by immediate value. The default value is
one.)

value-size
A longword containing the number of bytes occupied by the value to be
converted to text. The value-size must be either one, two or four. If value-
size is 1 or 2, the value is sign extended to a longword before conversion.
(This is an optional parameter, passed by immediate value. The default is
four.)

flags
A longword containing caller supplied flags defined as follows:

Bit 0 If set, a plus sign (+) will be inserted before the first non-blank
character in the output string; otherwise, the plus sign will be
omitted.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

General Utility Procedures 3-81

3-82

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_OUTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

OTSSCVT_L_TL

3.4.2.2 Convert Longword to Text (Logical) — OTS$CVT_L.__TL converts an
integer to the ASCII text string representation using FORTRAN L (logical)
format.

The output string will consist of (length -1) blanks followed by:

The letter T if bit O is set
The letter F if bit O is clear

A separate entry point FOR$CNV_OUT_L is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L__TL (value-adr, out-str)
ret-status = FOR$CNV__OUT__L (value, out-str)

value-adr (OTS$CVT_L__TL only)
Address of the longword containing the input value to be converted to
text. .

value (FOR$CNV_OUT__L only)
A longword containing the input value to be converted to text (passed by
immediate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K_CLASS__S).

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$_OUTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is of zero length (DSC$W_LENGTH=0).

General Utility Procedures

OTSSCVT_L_TO

3.4.2.3 Convert Longword to Text (Octal) — OTS$CVT_L__TO converts an
unsigned integer to an octal ASCII text string. OTS$CVT_L__TO supports
FORTRAN Ow and Ow.m output conversion formats.

A separate entry point FOR$CNV_OUT__O is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L_TO (value-adr, out-str [,int-digits
[,value-size]])

ret-status = FOR$CNV_OUT__O (value, out-str)

value-adr (OTS$CVT__L__TO only)
Address of the unsigned byte, word, or longword containing the integer
value, depending on value-size.

value (FOR$CNV_OUT_O only)
A longword containing the integer value to be converted (passed by imme-
diate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K__CLASS__S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant digits is less, leading zeroes are produced.
If int-digits is zero and value is zero, a blank string results. (This is an
optional parameter, passed by immediate value. The default is one.)

value-size
A longword containing the size of value in bytes. (This is an optional
parameter, passed by immediate value. The default is four.)

Return Status

SS$_NORMAL
Routine successfully completed.

OTS$__OUTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

General Utility Procedures 3-83

3-84

OTS$SCVT_L_TZ

3.4.2.4 Convert Longword to Text (Hexadecimal) — OTS$CVT_I.__TZ con-
verts an unsigned integer to a hexadecimal ASCII text string.
OTS$CVT_L_TZ supports FORTRAN Zw and Zw.m output conversion

formats.

A separate entry point FOR$CNV_OUT__Z is provided for compatibility
with previous releases.

Format

ret-status = OTS$CVT_L__TZ (value-adr, out-str [,int-digits
[,value-size]])

ret-status = FOR$CNV_OUT__Z (value, out-str)

value-adr (OTS$CVT_L__TZ only)
Address of the unsigned byte, word, or longword containing the integer
value, depending on value-size.

value (FOR$CNV__OUT__Z only)
A longword containing the integer value to be converted (passed by imme-
diate value).

out-str
Address of output string descriptor to receive the ASCII text string. The
string is assumed to be fixed-length (DSC$K__CLASS__S).

int-digits
A longword containing the minimum number of digits to be generated. If
the actual number of significant. digits is less, leading zeroes are produced.
If int-digits is zero and value is zero, a blank string results. (This is an
optional parameter, passed by immediate value. The default is one.)

value-size
A longword containing the size of value in bytes. (This is an optional
parameter, passed by immediate value. The default is four.)

Return Status

SS$__NORMAL
Routine successfully completed.

OTS$_OUTCONERR
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

General Utility Procedures

FORSCVT_x__Ty

3.4.2.5 Convert Floating to Text — FOR$CVT__x__Ty are routines that con-
vert floating values to ASCII text strings. They are divided according to
VAX-11 data types and to FORTRAN format types.

FORTRAN format types are D/E (exponential), F (fixed point), and G (fixed
or exponential). VAX-11 data types are D__, G, and H__floating.

For compatibility with previous releases, the name FOR$CNV_OUT__y is
equivalent to FOR$CVT_D__Ty.

Format

ret-status = FOR$CVT_x__Ty (value-adr, out-str, digits-in-fract [,scale-
factor {,digits-in-int [,digits-in-exp [,flags]ill)

where:

x is the VAX-11 data type, either D__, G_, or H__floating and
y is the FORTRAN format, either D, E, F or G

value-adr
Address of the D_, G, or H__floating value to be converted.

out-str
Address of the output string descriptor to receive the ASCII text string.
The string is assumed to be fixed-length (DSC$K__CLASS__S).

digits-in-fract
An unsigned longword containing the number of digits in the fraction
portion (passed by immediate value).

scale-factor
A longword containing the scale factor. The externally represented num-
ber equals the internally represented number multiplied by 10** scale-
factor. If digits-in-int is not present, scale-factor indicates the true scale
factor on F format or the digits-in-int for D, E and G formats. (This is an
optional parameter, passed by immediate value. The default is zero.)

digits-in-int
An unsigned longword containing the number of digits in the integer part
of an exponentially formatted value. Digits-in-int is ignored for F format.
(This is an optional parameter, passed by immediate value. The default is
Z€ero.)

digits-in-exp
An unsigned longword containing the number of digits in the exponent
field. If the exponent overflows this field by one digit, the exponent letter
is removed. (This is an optional parameter, passed by immediate value.
The default is two.)

General Utility Procedures 3-85

3-86

flags
An unsigned longword containing the caller supplied flags defined as
follows:

bit 0 If set, and the value is positive, insert a plus sign (+) before the
first non-zero character in the output string.

(Flags is an optional parameter, passed by immediate value. If omitted,
all bits are clear.)

Return Status

SS$_NORMAL
Routine successfully completed.

FOR$__OUTCONERR ,
Output conversion error. The result would have exceeded the fixed-length
string; the output string is filled with asterisks.

Messages

SS$_ROPRAND
Reserved operand fault. A reserved floating operand was passed; out-str is
not changed.

3.4.3 Convert Binary to Formatted ASCII

The Formatted ASCII Output system service ($FAQO) converts binary values
into ASCII characters and returns the converted characters in an output
string. It can be used to:

e Insert variable character string data into an output string

e Convert binary values into the ASCII representations of their decimal, hex-
adecimal, or octal equivalents and substitute the results into an output
string

The Formatted ASCII Output with List Parameter system service ($SFAOL)
provides an alternate way to specify input parameters for a call to the $FAO
system service.

System service routines that return strings return only fixed-length strings
and they are not blank filled. For some high-level languages, it is desirable to
be able to return dynamic strings and for others, to blank fill fixed-length
strings. Likewise, high-level languages generally pass parameters by refer-
ence, while system service routines pass by immediate value. The following
procedures, LIB§SYS_FAO and LIB$SYS_FAOL, provide a convenient in-
terface for higher level languages and the corresponding system services.

General Utility Procedures

LIB$SSYS_FAO

3.4.3.1 Formatted ASCIl Output — LIB$SYS__FAO calls $FAO for the caller,
returning a string using the semantics of the caller’s string. If called with other
than a fixed string for output, the length of the resultant string is limited to
256 bytes and truncation can occur.

See VAX/VMS System Services Reference Manual for a complete description
of $FAO.

Format
ret-status = LIB$SYS_FAO (ctr-str [,out-len], out-buf [,p1 ... [,pn]])

ctr-str
Address of the ASCII control string descriptor. The control string consists
of the fixed text of the output string and FAO directives.

out-len
Address of a word to receive the output string length. This is an optional
parameter.

out-buf
Address of the fixed-length or dynamic output string descriptor to receive
the fully formatted output string.

pl - pn
Directive parameters contained in longwords. Depending on the directive,
a parameter can be a value to be converted, the address of the string to be
inserted, or a length or argument count. A maximum of 17 directive
parameters can be specified. These are optional parameters. The passing
mechanism for each of these parameters should be the one expected by the
system service.

Return Status

SS$_NORMAL
Procedure successfully completed.

LIB$_STRTRU
Success, but source string was truncated on copy.

LIB$__INSVIRMEM
Insufficient virtual memory to allocate dynamic string.

LIB$_INVSTRDES
Invalid string descriptor.

SS$_BUFFEROVF
Successfully completed, but formatted output string overflowed the out-
put buffer and has been truncated.

SS$_BADPARAM
An invalid directive was specified in the FAO control string,.

General Utility Procedures 3-87

LIBSSYS__FAOL

3.4.3.2 Formatted ASCII Output with List Parameter — LIB$SYS__FAOL calls
the system service routine $FAOL for the caller, returning the resultant string
using the semantics of the caller’s string. If called with other than a fixed
string for output, the length of the resultant string is limited to 256 bytes and
truncation may occur.

See the VAX/VMS System Services Reference Manual for a complete descrip-
tion of $FAOL.

Format
ret-status = LIB$SYS_FAOL (ctr-str [,out-len], out-buf, prm-Ist)

ctr-str
Address of the ASCII control string descriptor. The control string consists
of fixed text from the output string and conversion directives.

out-len
Address of a word to receive the output string length. (This is an optional
parameter.)

out-buf
Address of the fixed-length or dynamic output string descriptor to receive
the fully formatted output string.

prm-lst
Address of an array of longwords to be used as p1 through pn. The param-
eter list can be a data structure that already exists in a program and from
which certain values are to be extracted.

Return Status

See LIB$SYS_FAO description in Section 3.4.3.1.

3.5 Variable Bit Field Instruction Procedures

3-88

The following procedures manipulate variable bit fields. The procedures are
intended primarily for higher level languages. The MACRO programmer can
perform the equivalent using a single machine instruction.

A variable bit field is specified by three scalar parameters:

® pos - the address of a signed longword containing the first bit position of the
field with respect to the base address

* size — the address of a byte containing the size of the bit field, from 0 to 32
® base — the address of the base of the bit field

General Utility Procedures

Bit fields are zero-origin, which means that the procedure regards the first bit
in the field as being the zero position. For more detailed information on
VAX-11 bit numbering and data formats, see the VAX-11 Architecture
Handbook.

LIBSINSV

3.5.1 Insert a Variable Bit Field

LIBSINSYV replaces the variable bit field specified by the base, position, and
size parameters with bits zero through size-1 of the source. If the size of the
bit field is zero, nothing is inserted.

Format
CALL LIBSINSV (src, pos, size, base)

sre
Address of longword containing the source field to be inserted.

pos
Address of longword containing the first bit position of the field relative to
the base address.

size
Address of unsigned byte containing the size of the bit field to be inserted.

base
Address of the base of the output field in which the source is to be
inserted.

Messages

SS$_ROPRAND
A reserved operand fault is signaled if a size greater than 32 is specified.

Examples

In FORTRAN, to set bits 0 through 2 of longword COND__VALUE to 4:

INTEGER*4 COND_VALUE
CALL LIBSINSBY (4 Oy 3+ COND-VALUE)

In BASIC, to set bits 0 through 2 of longword COND__VALUE to 4:

DECLARE INTEGER COND.YALUE
CALL LIB&INSV (4%, 0%, 3%, COND.VALUE)

General Utility Procedures 3-89

3-90

LIBSEXTV

3.5.2 Extract and Sign-Extend a Field

LIB$SEXTYV returns a sign-extended, longword field that has been extracted
from the specified variable bit field.

Format
field = LIBSEXTYV (pos, size, base)

pos
* Address of longword containing the beginning bit position (relative to the
base address).
size
Address of unsigned byte containing the size of the bit field to be ex-
tracted. The maximum size is 32 bits.

base
Address of the base of the bit field to be extracted.

field
The field, sign-extended to a longword.

SS$_ROPRAND
A reserved operand fault occurs if a size greater than 32 is specified.

Example
In FORTRAN, if bits 3 to 0 of VALU