
PRO/RMS-11
Macro Programmer's Guide
Order No. AA-P099A-TK

PRO/RMS-11
Macro Programmer's Guide
Order No. AA-P099A-TK

November 1982

This document is a reference manual describing the macros and symbols that make up the
interface between a MACR0-11 program and the operation routines of Record Management
Services (RMS-11) for the Professional Operating System (P/OS).

OPERATING SYSTEM AND VERSION: P/OS V1 .0 or later
SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation · maynard, massachusetts

First Printing, November 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER' s COMMENTS form on the l.ast page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MAS SB US VMS
DECSYSTEM-20 PDP VT
DEC US PDT

~nmnamn DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

•Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2167

CONTENTS

PREFACE xi

SUMMARY OF TECHNICAL CHANGES xiii

CHAPTER 1

1. 1
1. 2
1. 2. 1
1. 2. 2
1. 2. 3
1. 2. 4
1. 2. 5

CHAPTER 2

2.1
2.2
2.3
2.3.1
2. 3. 2
2.3.3
2. 3. 4
2. 3. 5
2.4
2. 5
2.5.1
2.5.1.1
2.5.1.2
2.5.1.3
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.3
2.5.3.1
2.5.3.2
2.5.4
2.5.5
2.5.5.1
2.5.5.2
2.5.5.3
2.6
2.7
2.7.1
2.7.2
2.7.2.1
2.7.2.2
2.8
2.8.1
2.8.2

INTRODUCTION TO RMS-11 WITH MACR0-11

ADVANTAGES OF USING RMS-11 MACROS
RMS-11 MACROS AND SYMBOLS

• • • . . 1-1
1-1
1-2 Operations • • • •••

Control Blocks and Fields
Pools • • • • • • • .
Facilities • • • •••
Macros That Declare Symbols

RMS-11 PROGRAMMING

• • 1-2
• 1-3

1-3
and Other Macros •• 1-3

DECLARING RMS-11 MACROS AND SYMBOLS ••••• 2-2
DECLARING RMS-11 FACILITIES • • • • • 2-2
DECLARING AND USING POOL SPACE • • • • • •• 2-3

Internal FAB and Index Descriptor Block Pool •• 2-5
Internal RAB Pool • • • • • • •• 2-6
Key Buffer Pool . • • . • •• 2-6
I/O Buffer Pool 2-7
Buffer Descriptor Block Pool • • • ••••• 2-8

DECLARING AND INITIALIZING CONTROL BLOCKS 2-9
USING RMS-11 OPERATIONS . • • • • • • • 2-9

Setting Up Control Block Fields 2-10
$STORE Macro • • • • • • • • 2-11
$SET Macro • . • • • • • • • • . • 2-11
$OFF Macro • • . • • • • • • • • • • 2-12
Chaining Control Blocks • • • • 2-13
Chaining a NAM Block to a FAB • • • • • 2-13
Chaining XABs to a FAB • • • • • • • • • • • • 2-13
Chaining a FAB to a RAB (CONNECT Operation) 2-14
Calling Operation Routines • . 2-15
Call with Macro Arguments ••• ,• 2-15
Call with Arguments in Memory 2-15
Handling Returns • • • • • • • • • • • • • 2-16
Examining Returned Values 2-17
$FETCH Macro • • • 2-17
$COMPARE Macro • • • • • • • • • • 2-18
$TESTBITS Macro • • • • • 2-18

WRITING COMPLETION HANDLERS • • • • • 2-20
USING GET-SPACE ROUTINES • • • • • • • • • • 2-20

Specifying Get-Space Routines • • • • 2-21
Writing a Get-Space Routine • • • • 2-21
Get-Space Routine Interface 2-21
Pool Free-Space Lists • • • • 2-22

ASSEMBLING THE PROGRAM • • • • • • • • • • 2-22
Assembling with the RMSMAC Macro Library • 2-22
Assembly-Time Errors from RMS-11 Macros 2-22

iii

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.8
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.4
3.8.2

3.8.3

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.3.4
4.3.5
4.3.6
4.3.6.1
4.3.6.2
4.3.6.3
4.3.6.4
4.3.6.5
4.3.7
4.3.7.1
4.3.7.2
4.3.7.3
4.3.7.4
4.3.7.5
4.3.7.6
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.4
4.4.5
4.4.5.1
4.4.5.2

CONTENTS

PROCESSING DIRECTORIES AND FILES

DEVICE CHARACTERISTICS • • • • • 3-1
LOGICAL CHANNELS • • • • 3-2
FILE SPECIFICATIONS AND IDENTIFIERS • 3-2
PRIVATE BUFFER POOLS • • • • • • • • • • • • • 3-5
COMPLETION STATUS • • • • • • 3-5
DIRECTORY OPERATIONS • • • • • • 3-5

ENTER Operation • • • • • • 3-5
REMOVE Operation • • • • • • • 3-6
RENAME Operation • • ••••••••• 3-6
PARSE Operation • • • • • • • • • • • • • 3-6

FILE OPERATIONS • • • • • • 3-6
CREATE Operation • • • • • • • • 3-7
OPEN Operation • • • •••••• 3-7
DISPLAY Operation • • • • • • •••• 3-7
ERASE Operation ••••••••• 3-7
EXTEND Operation •••••••••••••••• 3-8
CLOSE Operation • • • • • • • • • • 3-8

WRITING WILDCARD LOOPS • • • • • • • • 3-8
Introduction to Wildcarding • 3-8
Initializing for Wildcarding • • • • • 3-10
Finding the Next Matching File • • • • • • • 3-10
Operating on the Found File 3-10
Ending Wildcarding • • • • • . 3-11
Nonselective ERASE, REMOVE, or RENAME Wildcard
Operations • • • • • • • • • • • • • • • • • • 3-11
Selective Wildcard Operations • • • • • • • • 3-12

PROCESSING RECORDS AND BLOCKS

COMPLETION STATUS
STREAMS • • • • •
RECORD PROCESSING

Record Streams • •

• 4-1
• 4-1

. • . • . 4-2
• 4-2

Record Context • • • •••••••• 4-2
Record Access Modes • • • • • • • • • • • • 4-3
Sequential Access • • • • • • • • 4-3
Key Access • • • • • • • 4-4
RFA Access • • • • • • • • • 4-5
Record Buffers • • • • • • • • • 4-6
Locate Mode • • • • • • • . . • • • • • • • 4-6
Stream Operations • • • • • 4-7
CONNECT Operation • 4-7
FLUSH Operation • • • • • • • • • • • • • 4-7
FREE Operation • • • • • • • • • • • • • 4-8
REWIND Operation • • • 4-8
DISCONNECT Operation • • • • 4-8
Record Operations • • • • • • • • 4-8
FIND Operation • • • • • • • • • • • • • • • 4-8
GET Operation • • • • • • •••••••• 4-9
PUT Operation •••••••••••• 4-9
DELETE Operation • • • • • • • • • 4-9
UPDATE Operation • • • • • • • • 4-10
TRUNCATE Operation • • • • • 4-10

BLOCK PROCESSING • • • • • • • • • 4-10
Block Streams
Block Context
Block Access Modes •
Sequential Access
VBN Access • • • • •
Block Buffers

• • • • 4-10
. 4-10
• • • • • • • • • 4-11
• • • • • • • • • • • 4-11
• • • • • • • • 4-11
• • • • • 4-11
• • • • 4-12 Stream Operations

CONNECT Operation
FREE Operation ••

• • • • • 4-12
• • • • • • 4-12

iv

CHAPTER

CHAPTER

4.4.5.3
4. 4. 6
4.4.6.l
4.4.6.2

5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5. 11
5.12
5.13
5.14
5.15
5.16
5. l 7
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31

6

6.1
6. l. l
6.1. 2
6. l. 3
6.1. 4
6.1. 5
6. l. 6
6. l. 7
6. l. 8
6. l. 9
6.1.10
6.1. 11
6.2
6.2.l
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6. 3
6.3.l
6.3.2

CONTENTS

DISCONNECT Operation •
Block Operations •
READ Operation •
WRITE Operation

OPERATION MACRO DESCRIPTIONS

4-12
4-12
4-12
4-13

$CLOSE MACRO • • • 5-3
$CONNECT MACRO • • • • • • • • • • • • • 5-6
$CREATE MACRO • • • • • • • • • • • • • • 5-9
$DELETE MACRO • • • • • • • • • • • • • • • • • 5-24
$DISCONNECT MACRO 5-26
$DISPLAY MACRO • • • • • 5-28
$ENTER MACRO • • • • • • • • • • • • • 5-33
$ERASE MACRO • • • • • • • • 5-3 7
$EXTEND MACRO • • • • • • • • • • 5-42
$FIND MACRO (SEQUENTIAL ACCESS) • • • • 5-45
$FIND MACRO (KEY ACCESS) • • • • • • • 5-47
$FIND MACRO (RFA ACCESS) • • • • • • • • • 5-50
$FLUSH MACRO • • • • • • • • • 5-52
$FREE MACRO • • • • • • • • • • 5-54
$GET MACRO (SEQUENTIAL ACCESS) • • • • 5-56
$GET MACRO (KEY ACCESS) • • • • • • • • 5-59
$GET MACRO (RFA ACCESS) • • • • • 5-63
$OPEN MACRO • • • • • • • • • • 5-66
$PARSE MACRO • • • • • • • • • • 5-81
$PUT MACRO (SEQUENTIAL ACCESS) 5-85
$PUT MACRO (KEY ACCESS) • • • • • • • • • • 5-88
$READ MACRO (SEQUENTIAL ACCESS) • • • • • 5-91
$READ MACRO (VBN ACCESS) • • • • • • • • • • 5-93
$REMOVE MACRO • • • • 5-95
$RENAME MACRO • • • • • • • • • • 5-99
$REWIND MACRO •• 5-104
$SEARCH MACRO •••• 5-106
$TRUNCATE MACRO • • • • • 5-109
$UPDATE MACRO • • • • • ••••••••• 5-111
$WRITE MACRO (SEQUENTIAL ACCESS) •• 5-113
$WRITE MACRO (VBN ACCESS) •• 5-115

CONTROL BLOCK FIELDS

ALL BLOCK SUMMARY 6-2
AID Field in ALL Block 6-3
ALN Field in ALL Block 6-4
ALQ Field in ALL Block 6-5
AOP Field in ALL Block (XB $CTG Mask) 6-6
AOP Field in ALL Block (XB$HRD Mask) 6-7
BKZ Field in ALL Block 6-8
BLN Field in ALL Block (XB$LAL Code) 6-9
COD Field in ALL Block (XB $ALL Code) 6-10
DEQ Field in ALL Block 6-11
LOC Field in ALL Block 6-12
NXT Field in ALL Block 6-13

DAT BLOCK SUMMARY 6-14
BLN Field in DAT Block (XB$DTL Code) 6-15
CDT Field in DAT Block 6-16
COD Field in DAT Block (XB$DAT Code) 6-17
EDT Field in DAT Block 6-18
NXT Field in DAT Block 6-19
RDT Field in DAT Block . 6-20
RVN Field in DAT Block 6-21

FAB SUMMARY 6-22
ALQ Field in FAB 6-25
BID Field in FAB (FB$B ID Code) 6-26

v

CONTENTS

6.3.3 BKS Field in FAB • . . . 6-27
6.3.4 BLN Field in FAB (FB$BLN Code) 6-28
6.3.5 BPA Field in FAB 6-29
6.3.6 BPS Field in FAB 6-30
6.3.7 CTX Field in FAB 6-31
6.3.8 DEQ Field in FAB 6°~2
6.3.9 DEV Field in FAB 6-33
6.3.10 DNA Field in FAB 6-34
6.3.11 DNS Field in FAB 6-35
6.3.12 FAC Field in FAB 6-36
6.3.13 FNA Field in FAB 6-37
6.3.14 FNS Field in FAB 6-38
6.3.15 FOP Field in FAB (FB$CTG Mask) 6-39
6.3.16 FOP Field iri FAB (FB$DFW Mask) 6-40
6.3.17 FOP Field in FAB (FB$DLK Mask) 6-41
6.3.18 FOP Field in FAB (FB$FID Mask) 6-42
6.3.19 FOP Field in FAB (FB$MKD Mask) 6-43
6.3.20 FOP Field in FAB (FB$SUP Mask) 6-44
6.3.21 FOP Field in FAB (FB$TMP Mask) 6-45
6.3.22 FSZ Field in fAB 6-46
6.3.23 IFI Field in FAB 6-47
6.3.24 LCH Field in FAB 6-48
6.3.25 LRL Field in FAB 6-49
6.3.26 MRN Field in FAB 6-50
6.3.27 MRS Field in FAB 6-51
6.3.28 NAM Field in FAB 6-52
6.3.29 ORG Field in FAB 6-53
6.3.30 RAT Field in FAB 6-54
6.3.31 RAT Field in FAB (FB$BLK Mask) 6-55
6.3.32 RFM Field in FAB 6-56
6.3.33 RTV Field in FAB 6-57
6.3.34 SHR Field in FAB 6-58
6.3.35 STS Field in FAB 6-59
6.3.36 STV Field in FAB 6-60
6.3.37 XAB Field in FAB 6-61
6.4 KEY BLOCK SUMMARY 6-62
6.4.1 BLN Field in KEY Block (XB$KYL Code) 6-64
6.4.2 COD Field in KEY Block (XB$KEY Code) 6-65
6.4.3 DAN Field in KEY Block 6-66
6.4.4 DBS Field in KEY Block 6-67
6.4.5 DFL Field in KEY Block 6-68
6.4.6 DTP Field in KEY Block 6-69
6.4.7 DVB Field in KEY Block 6-70
6.4.8 FLG Field in KEY Block (XB$CHG Mask) 6-71
6.4.9 FLG Field in KEY Block (XB$DUP Mask) 6-72
6.4.10 FLG Field in KEY Block (XB$NUL Mask) 6-73
6.4.11 IAN Field in KEY Block 6-74
6.4.12 IBS Field in KEY Block 6-75
6.4.13 IFL Field in KEY Block 6-76
6.4.14 KNM Field in KEY Block 6-77
6.4.15 LAN Field in KEY Block 6-78
6.4.16 LVL Field in KEY Block 6-79
6.4.17 MRL Field in KEY Block 6-80
6.4.18 NSG Field in KEY Block 6-81
6.4.19 NUL Field in KEY Block 6-82
6.4.20 NXT Field in KEY Block 6-83
6.4.21 POS Field in KEY Block 6-84
6.4.22 REF Field in KEY Block 6-85
6.4.23 RVB Field in KEY Block 6-86
6.4.24 SIZ Field in KEY Block 6-87
6.4.25 TKS Field in KEY Block 6-88
6.5 NAM BLOCK SUMMARY 6-89
6.5.1 DID Field in NAM Block 6-91
6.5.2 DVI Field in NAM Block 6-92
6.5.3 ESA Field in NAM Block 6-93
6.5.4 ESL Field in NAM Block 6-94

vi

CONTENTS

6.5.5 ESS Field in NAM Block 6-95
6.5.6 FID Field in NAM Block 6-96
6.5.7 FNB Field in NAM Block 6-97
6.5.8 FNB Field in NAM Block (NB$WCH Mask) 6-98
6.5.9 RSA Field in NAM Block 6-99
6.5.10 RSL Field in NAM Block 6-100
6.5.11 RSS Field in NAM Block 6-101
6.5.12 wee Field in NAM Block 6-102
6.5.13 WDI Field in NAM Block . . 6-103
6.6 PRO BLOCK SUMMARY 6-104
6.6.1 BLN Field in PRO Block (XB $PRL Code) . . 6-105
6.6.2 COD Field in PRO Block (XB$PRO Code) 6-106
6.6.3 NXT Field in PRO Block . -. . . . 6-107
6.6.4 PRG Field in PRO Block 6-108
6.6.5 PRJ Field in PRO Block 6-109
6.6.6 PRO Field in PRO Block 6-110

- 6. 7 RAB SUMMARY 6-111
6.7.1 BID Field in RAB (RB$BID Code) 6-113
6.7.2 BKT Field in RAB 6-114
6.7.3 BLN Field in RAB 6-115
6.7.4 CTX Field in RAB 6-116
6.7.5 FAB Field in RAB 6-117
6.7.6 !SI Field in RAB 6-118
6.7.7 KBF Field in RAB 6-119
6.7.8 KRF Field in RAB 6-120
6.7.9 KSZ Field in RAB . . . 6-121
6.7.10 MBC Field in RAB 6-122
6.7.11 MBF Field in RAB 6-123
6.7.12 RAC Field in RAB 6-124
6.7.13 RBF Field in RAB 6-125
6.7.14 RFA Field in RAB 6-126
6.7.15 RHB Field in RAB 6-127
6.7.16 ROP Field in RAB (RB$EOF Mask) 6-128
6.7.17 ROP Field in RAB (RB$FDL Mask) 6-129
6.7.18 ROP Field in RAB (RB$KGE Mask) 6-130
6.7.19 ROP Field in RAB (RB$KGT Mask) 6-131
6.7.20 ROP Field in RAB (RB$LOA Mask) 6-132
6.7.21 ROP Field in RAB (RB$LOC Mask) 6-133
6.7.22 ROP Field in RAB (RB$MAS Mask) 6-134
6.7.23 ROP Field in RAB (RB$UIF Mask) 6-135
6.7.24 RSZ Field in RAB 6-136
6.7.25 STS Field in RAB 6-137
6.7.26 STV Field in RAB 6-138
6.7.27 UBF Field in RAB 6-139
6.7.28 usz Field in RAB 6-140
6.8 SUM BLOCK SUMMARY 6-141
6.8.1 BLN Fiel9 in SUM Block (XB $SML Code) 6-142
6.8.2 COD Field in SUM Block (XB$SUM Code) 6-143
6.8.3 NOA Field in SUM Block 6-144
6.8.4 NOK Field in SUM Block 6-145
6.8.5 NXT Field in SUM Block 6-146
6.8.6 PVN Field in SUM Block 6-147

CHAPTER 7 EXAMPLE PROGRAMS

APPENDIX A COMPLETION CODES AND FATAL ERROR CODES

A. 1 COMPLETIONS RETURNED IN STS AND STV FIELDS . . A-1
A.2 FATAL ERROR COMPLETIONS A_;l5

APPENDIX B ASSEMBLY-TIME MESSAGES

vii

APPENDIX C

APPENDIX D

INDEX

D.l
D.1.1
D.1.2
D.1.3
D.2
D.3
D.3.1
D.3.2

EXAMPLE 7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

TABLE 5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33

CONTENTS

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

PRO/RMS-11 VERSUS RSTS/E RMS-11 • • D-1
Different Behaviors • • • • • • • ••••• D-1
Features Not Supported on RSTS/E •••••••• D-2
Features Not Supported on P/OS ••••••••• D-3

PRO/RMS-11 VERSUS RSX-llM/M-PLUS RMS"'.'11 • • • • • D-3
RSTS/E RMS-11 VERSUS RSX-llM/M-PLUS RMS-11 • • D-3

Different Behaviors • • • • • • • • D-3
Features Not Supported on RSTS/E •••••••• D-4

EXAMPLES

PARSE - $PARSE Test • • • • •• 7-2
SEARCH - $SEARCH Test • • • •
ERASE - $ERASE Test • • • • • • • •

• • 7-5
•• 7-8

RENAME - $RENAME Test • • • • •
OPENl - $OPEN by Name/FID Test ••••
OPEN2 - $OPEN by FID with Wildcards Test ••
OPEN3 - $OPEN with Implicit Wildcards (Illegal)
GSA - Core Space Allocator •••••••••••

TABLES

CLOSE Input Fields
CLOSE Output Fields
CONNECT Input Fields
CONNECT Output Fields . .
CREATE Input Fields
CREATE Output Fields
DELETE Input Fields
DELETE Output Fields
DISCONNECT Input Fields
DISCONNECT Output Fields
DISPLAY Input Fields
DISPLAY Output Fields . . ,•
ENTER Input Fields
ENTER output Fields
ERASE Input Fields . .
ERASE Output Fields
EXTEND Input Fields
EXTEND Output Fields
FIND (Sequential Access) Input Fields
FIND (Sequential Access) Output Fields . .
FIND (Key Access) Input Fields
FIND (Key Access) Output Fields
FIND (RFA Access) Input Fields
FIND (RFA Access) Output Fields
FLUSH Input Fields
FLUSH Output Fields
FREE Input Fields
FREE Output Fields
GET (Sequential Access) Input Fields
GET (Sequential Access) Output Fields
GET (Key Access) Input Fields

viii

. . . .

7-11
7-14
7-17
7-20
7-23

5-5
5-5
5-8
5-8

5-21
5-23
5-25
5-25
5-27
5-27
5-31
5-32
5-35
5-36
5-40
5-41
5-44
5-44
5-46
5-46
5-49
5-49
5-51
5-51
5-53
5-53
5-55
5-55
5-58
5-58
5-61

(

I

\

5-34
5-35
5-36
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-63
5-64
5-65
5-66
5-68
5-69
5-70
5-71
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
C-1

CONTENTS

GET (Key Access) Output Fields • • • • 5-62
GET (RFA Access) Input Fields 5-65
GET (RFA Access) Output Fields 5-65
OPEN Input Fields • • • • 5-76
OPEN Output Fields • • • • • • • • • • • • • 5-78
PARSE Input Fields • • • • • • • • • • • • • • • 5-83
PARSE Output Fields • • • • • • • • • • • • 5-84
PUT (Sequential Access) Input Fields • 5-87
PUT (Sequential Access) Output Fields 5-87
PUT (Key Access) Input Fields • • • • 5-90
PUT (Key Access) Output Fields • • • • 5-90
READ (Sequential Access) Input Fields 5-92
READ (Sequential Access) Output Fields • • • • • 5-92
READ (VBN Access) Input Fields • • • • • 5-94
READ (VBN Access) Output Fields • • • • • 5-94
REMOVE Input Fields • • • • • • • • • • • 5-98
REMOVE Output Fields 5-98
RENAME Input Fields 5-102
RENAME Output Fields •• 5-103
REWIND Input Fields ••••••• 5-105
REWIND Output Fields • • • • • • 5-105
SEARCH Input Fields ••••••• 5-108
SEARCH Output Fields • • • • 5-108
TRUNCATE Input Fields • • • • • • • • • • • 5-110
TRUNCATE Output Fields • • 5-110
UPDATE Input Fields • • • • • • • 5-112
UPDATE Output Fields • • • • • • • 5-112
WRITE (Sequential Access) Input Fields • • 5-114
WRITE (Sequential Access) Output Fields • 5-114
WRITE (VBN Access) Input Fields • • • • • • 5-116
WRITE (VBN Access) Output Fields • • • • • • 5-116
ALL Block Summary • 6-2
DAT Block Summary • • • • 6-14
FAB Summary • • • • • • • • • • • • 6-22
KEY Block Summary 6-62
NAM Block Summary • • • • • • • • 6-89
PRO Block Summary • • • • • • •••••• 6-104
RAB Summary • • • • • • • • • • • • • • • 6-111
SUM Block Summary • • • • • • • 6-141
Macros That Declare Symbols and Other Macros • C-1

ix

PREFACE

MANUAL OBJECTIVES

This manual is a guide to the use of RMS-11 in programs written in
MACR0-11. It contains information necessary to writing MACR0-11
programs and subprograms that use RMS-11 operations.

INTENDED AUDIENCE

This manual is intended for both the MACR0-11 programmer who wants to
use RMS-11 operations and the high-level language programmer who wants
to use RMS-11 operations in a MACR0-11 subprogram.

Before reading this manual, you should read:

• RMS-11: An Introduction

STRUCTURE OF THIS DOCUMENT

• Chapter 1, Introduction to RMS-11 with MACR0-11, introduces
RMS-11 macros and symbols that are the interface between a
MACR0-11 program and RMS-11 operation routines.

• Chapter 2, RMS-11 Programming in MACR0-11, shows how to use
RMS-11 macros and symbols in a MACR0-11 program.

• Chapter 3, Processing Directories and Files, shows how to use
directory and file operations to process directories and
files.

• Chapter 4, Processing Records and Blocks, shows how to use
stream operations and either record or block operations to
process records or blocks.

• Chapter 5, Operation Macro Descriptions, describes in detail
each RMS-11 operation macro, the control blocks it uses, the
options you can specify in each control block field, and the
values returned in control block fields.

• Chapter 6, Control Block Fields, summarizes the use of each
control block, field, value, and mask.

• Chapter 7, Example Programs, contains
segments that illustrate the uses
features.

programs and program
of some major RMS-11

• Appendix A, Completion Codes and Fatal Error Codes, lists
RMS-11 completion symbols, values, and meanings.

• Appendix B, Assembly-Time Messages, lists the messages that
RMS-11 macros can generate at assembly time.

xi

PREFACE

• Appendix C, Macros That Declare Symbols and Other Macros,
describes RMS-11 macros that declare other RMS-11 macros and
define RMS-11 symbols.

• Appendix D, RMS-11 with Different Operating Systems,
describes the differences among the behaviors of RMS-11 with
various operating systems.

• The index includes a
control block field
symbol family.

major entry for each RMS-11 macro,
mnemonic, keyword macro argument, and

ASSOCIATED DOCUMENTS

• PRO/RMS-11: An Introduction introduces RMS-11 to new users.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in statement formats in this
document:

UPPERCASE

lowercase

[]

other

Uppercase characters within a string indicate
characters that you must include in the string; you
can type the characters in uppercase or lowercase.

Lowercase characters within a string indicate a
user-selected variable; text following the statement
format defines the syntax of the variable.

Square brackets indicate that the enclosed string is
optional user input.

A horizontal ellipsis indicates that the
preceding optional string (enclosed
brackets) may be repeated.

immediately
in square

A nonalphabetic character (except a square bracket or
a period that is part of an ellipsis) indicates a
character that you must include in the string.

Numbers in this manual that give the values of RMS-11 symbols are in
octal radix (base 8) unless otherwise indic'ated; all other numbers in
this manual are in decimal radix (base 10).

xii

SUMMARY OF TECHNICAL CHANGES

This revision contains the following technical changes:

e The new operation macros $ENTER, $PARSE, $REMOVE, $RENAME,
and $SEARCH are documented, along with the related NAM block
fields FNB, RSA, RSL, RSS, and wee.

• The new facility for wildcard
documented.

file specification is

• Random access to a sequential file with fixed-length records
(similar to random access to a relative file) is documented.

• The new "print" record-output handling is documented, along
with the related symbol FB$PRN for the RAT field of the FAB.

• The new sequential block access is documented; the previous
block access (formerly called block I/O) is now called VBN
access (virtual block number access).

• The addition of the success handler facility for file
operation macros ($CLOSE, $CREATE, $DISPLAY, $ERASE, $EXTEND,
and $OPEN) is documented.

• The obsolete RMS-11 initialization macros $!NIT and $INITIF
are no longer documented. These macros are now defined as
no-ops in the RMS-11 macro library RMSMAC.MLB; their
previous functions are no longer needed because RMS-11 is now
self-initializing. However, programs that use the $INIT and
$INITIF macros in their previous senses remain valid under
RMS-11 Version 2.0.

• Each XAB type now has a distinct name; the following are the
new names:

ALL block Area allocation XAB
DAT block File date XAB
KEY block File key XAB
PRO block File protection XAB
SUM block File summary XAB

• The following symbol declaration macros are documented:

FAB$BT Declare FAB value and mask symbols
NAM$BT Declare NAM block value and mask symbols
RAB$BT Declare RAB value and mask symbols
XAB$BT Declare XAB value and mask symbols
XBAOF$ Declare ALL block symbols
XBDOF$ Declare DAT block symbols
XBKOF$ Declare KEY block symbols
XBPOF$ Declare PRO block symbols
XBSOF$ Declare SUM block symbols

• The description of each operation macro includes the use and
meaning of each associated control block field.

xiii

SUMMARY or TECHNICAL CHANGES

• The value of each RMS-11 user symbol is documented.

• The structure of each RMS-11 user
documented.

xiv

control block is

CHAPTER 1

INTRODUCTION TO RMS-11 WITH MACR0-11

RMS-11 macros and symbols provide access to RMS-11 operations from a
MACR0-11 program.

1.1 ADVANTAGES OF USING RMS-11 MACROS

When you use RMS-11 operations
language restricts your options
accept these restrictions, you can
modules) in MACR0-11; this allows

1.2 RMS-11 MACROS AND SYMBOLS

from a high-level language, the
for some operations. If you cannot
write your program (or some of its
you full access to RMS-11 options.

RMS-11 macros and symbols define the interface between a MACR0-11
program and RMS-11 operation routines. Definitions for these madros
and symbols are in the RMS-11 macro library, RMSMAC.MLB.

RMS-11 macros allow your program to:

• Call RMS-11 operations

• Declare and manipulate control blocks, through which your
program communicates with RMS-11 operation routines

• Declare and manipulate space pools

• Declare needed RMS-11 facilities

• Extract (from the macro library RMSMAC.MLB) definitions for
RMS-11 macros and symbols

The following sections introduce RMS-11 macros and symbols.

1-1

INTRODUCTION TO RMS-11 WITH MACR0-11

1.2.1 Operations

An RMS-11 operation macro calls a routine that performs
operation. The name of an operation macro is the
corresponding operation, w.ith a prefixed dollar sign
following are the RMS-11 operation macros:

an RMS-11
name of the

($). The

Directory File Stream Record Block
Operation Operation Operation Operation Operation
Macros Macros Macros Macros Macros

$ENTER $CLOSE $CONNECT $DELETE $READ
$PARSE $CREATE $DISCONNECT $FIND $WRITE
$REMOVE $DISPLAY $FLUSH $GET
$RENAME $ERASE $FREE $PUT
$SEARCH $EXTEND $REWIND $TRUNCATE

$OPEN $UPDATE

An RMS-11 operation returns a value called a completion code that
indicates either a successful operation or an error. RMS-11
completion symbols give names to these completion codes.

When your program uses an RMS-11 operation macro to call an operation
routine, it can specify completion handlers (one for a successful
completion, one for an error completion) that RMS-11 calls when the
operation completes. The RMS-11 completion-return macro ($RETURN)
generates a proper return from a completion handler to the calling
point in your program.

1.2.2 Control Blocks and Fields

Your program and RMS-11 operation routines communicate by passing data
in blocks called control blocks. Each control block is divided into
fields~ each field has a 3-letter mnemonic name.

An RMS-11 block-declaration macro allocates
and initializes fields containing the
identifier. There is a block-declaration
control block.

space for a control block
block length and block

macro for each kind of

An RMS-11 field-initialization macro sets an initial value for a
control block field at assembly time. There are field-initialization
macros for most control block fields (those that you might reasonably
want to initialize).

An RMS-11 field-access macro manipulates the value of a control block
field during program execution. There are field-access macros for
copying values to and from fields ($STORE and $FETCH), for comparing
field values.with other values ($COMPARE), and for setting, clearing,
and testing bits in fields ($SET, $OFF, and $TESTBITS).

RMS-11 code and mask symbols give names to the codes and bit masks
used in many fields. This allows your program to determine the
details of an RMS-11 operation without using the numeric values
associated with those details.

RMS-11 field-offset symbols give names
within their control blocks. Because
field-access macros are based on field
use field-offset symbols.

1-2

to the locations of fields
RMS-11 field-initialization and
names, your program need not

INTRODUCTION TO RMS-11 WITH MACR0-11

RMS-11 control blocks and their general uses are as follows:

• ALL (area allocation) block - contains information about a
file area.

• DAT (file date) block - contains file dates and the file
revision number.

• FAB (file access block) - contains general information about a
file and how a program will access it.

• KEY (file key) block - contains information about a file index
and its key.

• NAM (file name) block - contains special information about the
device, directory, and specification for the file, along with
wildcarding information.

• PRO (file protection) block
protection information.

contains file owner and

• RAB (record access block) - contains general information about
a stream and a record or block, and how the program accesses
the record or block.

• SUM (file summary) block - contains the number of areas and
indexes in the file, and a version number indicating the
internal structure level of the file.

1. 2. 3 Pools

RMS-11 conserves space
space set aside in
space for pools.

by dynamically allocating and deallocating
pools. RMS-11 pool-declaration macros allocate

An RMS-11 routine called the get-space routine handles pooled space.
You can substitute your own get-space routine for the RMS-11 routine;
you can use RMS-11 get-space-address macros to initialize the address
of the get-space routine at assembly time (GSA$), to change the
address to that of a different routine during program execution
($SETGSA), and to return the address of the current routine during
program execution ($GETGSA).

1.2.4 Facilities

The RMS-11
determining
execution.

facilities-declaration macro (ORG$) assists RMS-11 in
exactly which routines your program needs during program

1.2.5 Macros That Declare Symbols and Other Macros

To extract the definition of an RMS-11 macro from the macro library,
your program must declare the macro in a .MCALL assembler directive.

1-3

INTRODUCTION TO RMS-11 WITH MACR0-11

Many RMS-11 macros declare related macros and define related symbols;
some RMS-11 macros have the sole purpose of declaring related macros
and defining related symbols. Using these macros simplifies the job
of declaring macros and defining symbols in your program.

For example, the FAS-declaration macro FAB$B declares FAB
field-initialization. macros and FAB offset, code, and mask symbols;
the $FBCAL macro declares all directory and file operation macros;
the $RMSTAT macro declares all completion symbols.

1-4

CHAPTER 2

RMS-11 PROGRAMMING

. To use RMS-11 operations in a MACR0-11 program, your program must:

• Declare RMS-11 macros and symbols

Before your program refers to an RMS-11 macro or symbol, it
must extract its definition from the RMS-11 macro library.
Section 2.1 shows how to declare macros and symbols.

• Declare RMS-11 facilities

To help RMS-11 decide which RMS-11 program modules are needed
for your program, your program must declare some of the RMS-11
operations that it uses. Section 2.2 shows how to declare
RMS-11 facilities.

• Declare and use pool space

RMS-11 dynamically allocates and deallocates space for some of
its requirements; this space is separated into five pools.
Using RMS-11 pool-declaration macros, you specify the size of
each pool. Section 2.3 shows how to declare pool space.

• Declare and initialize control blocks

Your program and RMS-11 operation routines communicate by
passing data back and forth in control block fields. Using
RMS-11 block-declaration and field-initialization macros, your
program allocates space for control blocks and (optionally)
assigns initial values for fields. Section 2.4 shows how to
declare and initialize control blocks.

• Use RMS-11 operations

Your program uses RMS-11 operation routines to perform record
management services; the routines return values that show the
results of the operations. Your program uses RMS-11 operation
macros to call these operation routines. Section 2.5 shows
how to call RMS-11 operation routines and how to handle
returns from the routines.

Your program may also:

• Include completion handlers

An RMS-11 operation routine returns either a success
completion code or an error completion code. Your program can
include special routines (called success handlers and error
handlers) that operation routines call automatically when
operations complete. Section 2.6 shows how to write
completion handlers.

2-1

RMS-11 PROGRAMMING

• Use its own get-space routines

RMS-11 uses a routine
and deallocate space.
can also supply others
use get-space routines

Finally, you must:

• Assemble the program

(called a get-space routine) to allocate
RMS-11 has a get-space routine, but you
of your own. Section 2.7 shows how to
and how to write a get-space routine.

When you assemble your program, it needs macro and symbol
definitions from RMS-11; these are in a macro library, which
your assembler command line must reference. RMS-11 macros
detect some kinds of errors during assembly, and print
messages that identify the errors. Section 2.8 shows how to
assemble your program.

• Build the task

When you build your task, you must use an RMS-11 resident
library.

2.1 DECLARING RMS-11 MACROS AND SYMBOLS

Before your program refers to an RMS-11 macro or symbol, it must
extract its definition from the RMS-11 macro library.

Your program can use the .MCALL assembler directive to extract the
definition of any RMS-11 macro (but not a symbol) from the macro
library. For example, to extract the definition of the macro $CLOSE,
use the .MCALL dir€ctive in the format:

.MCALL $CLOSE ;Declare RMS-11 $CLOSE macro

Your program can use RMS-11 macros to extract definitions for RMS-11
symbols, and for some groups of other RMS-11 macros. Appendix C lists
RMS-11 macros (with their arguments) that declare symbols and other
macros.

2.2 DECLARING RMS-11 FACILITIES

To help RMS-11 decide which RMS-11 program modules your program needs,
your program declares some of the operations that it uses. To do
this, it uses the facilities-declaration macro ORG$ in the format:

.MCALL ORG$;Declare ORG$ macro
ORG$ fileorg[,<operation[,operation] ••• >]

where fileorg is a keyword indicating a file organization and each
operation is a keyword indicating an operation that your program uses
for a file of that organization.

A separate ORG$ macro is required for each different file organization
that your program processes, except that no ORG$ macro is required for
an organization that will be processed using only directory operations
and block access.

2-2

RMS-11 PROGRAMMING

The fileorg keyword argument to the ORG$ macro is one of the
following:

IDX Indexed file organization
REL Relative file organization
SEQ Sequential file organization

Each operation argument to an ORG$ macro is one of the following:

CRE CREATE operation
DEL DELETE operation
FIN FIND operation
GET GET operation
PUT PUT operation
UPD UPDATE operation

These are the only operations that your
with the ORG$ macro; support for
automatically.

For example, suppose that your program:

program explicitly declares
other operations is handled

• Creates both sequential and indexed files

• Uses FIND, GET, PUT, and UPDATE operations for sequential
files

• Uses FIND, GET, PUT, and DELETE operations for indexed files

Then the proper ORG$ macros are:

ORG$

ORG$

SEQ,<FIN,GET,PUT,UPD> ;Declare FIND, GET, PUT, and UPDATE
; operations for sequential files

IDX,<FIN,GET,PUT,DEL> ;Declare FIND, GET, PUT, and DELETE
operations for indexed files

The results of ORG$ macros are additive. For example, if one portion
of your program specifies

ORG$ SEQ,<GET,PUT>

and another specifies

ORG$ SEQ,<GET,UPD>

then the effect is the same as specifying

ORG$ SEQ,<GET,PUT,UPD>

Note also that all ORG$ macros must occur in modules that are
contained in the root segment of your task (not overlaid). Use of
ORG$ macros is optional in tasks linked with an RMS-11 memory-resident
library.

2.3 DECLARING AND USING POOL SPACE

RMS-11 dynamically allocates and deallocates space for some of its
requirements; this space is separated into five pools:

• Internal FAB and index descriptor block (IFAB/IDB) pool

e Internal RAB (IRAB) pool

2-3

RMS-11 PROGRAMMING

• Key buffer pool

• I/O buffer pool

• Buffer descriptor block (BDB) pool

RMS-11 has a get-space routine that manages these pools, and that
allocates and deallocates space to meet the needs of RMS-11
operations; however, you can supply other get-space routines and
direct RMS-11 to use a different routine (and, optionally, different
pools) instead of its own.

If you use only the RMS-11 get-space routine, declare pool space using
the pool-declaration macros described below. If you use your own
get-space routine, read Section 2.7; it shows how to write the
routine, and how to manage the pools.

To declare space for pools, use pool-declaration macros in the format:

POOL$B
P$FAB
P$IDX
P$RAB

P$RABX

P$BUF

P$BDB
POOL$E

fabcount
indexcount
rabcount

;Begin pool declarations
;Space for IFABs in IFAB/IDB pool
;Space for IDBs in IFAB/IDB pool
;Space for IRABs for sequential

and relative files and for
block-accessed indexed files

; in IRAB pool
rabxcount,keysize,keychanges ;Space for IRABs for

record-accessed indexed
files in IRAB pool, and

bufcount

bdbcount

; space for key buffers in
; key buffer pool
;Space for I/O buffers in I/O
; buffer pool
;Space for BDBs in BDB pool
;End pool declarations

If your program uses multiple pool declarations, the results are
cumulative.

The following sections show how to compute the values of arguments to
the pool-declaration macros.

2.3.l Internal FAB and Index Descriptor Block Pool

Internal FABs (IFABs) and index descriptor blocks (IDBs) are the same
size and so share a pool (the IFAB/IDB pool). The total size of the
pool is the sum of the following:

• The largest number of IFABs that your program uses at the same
time, times 48 bytes. Specify this largest number of IFABs
(not multiplied by 48) as the fabcount argument to the P$FAB
macro.

A directory operation uses one IFAB, which is returned to the
pool before the operation completes.

A CREATE or OPEN operation uses one IFAB, which is
while the file is open; a CLOSE operation releases
A DISPLAY or EXTEND operation uses no new IFABs; it
IFAB already committed to the open file. An ERASE
uses one IFAB, which is released before the
completes.

2-4

committed
the IFAB.
uses the
operation
operation

/
\

RMS-11 PROGRAMMING

• The largest number of IDBs that your program uses at the same
time, times 48 bytes. Specify this largest number of IDBs
(not multiplied by 48) as the indexcount argument to the P$IDX
macro.

Your program uses one IDB for each index of each indexed file
opened for record access (rather than block access). The IDBs
for an indexed file are committed when the file is opened (by
a CREATE or OPEN operation) and are released when the file is
closed (by a CLOSE operation) •

2.3.2 Internal RAB Pool

Internal record access blocks (IRABs) have a separate pool. The size
of the IRAB pool is the largest number of streams that your program
will have connected at the same time, times the size of an IRAB (32
bytes) •

Specify the largest number of streams connected to sequential files,
relative files, and block-access indexed files (not multiplied by 32)
as the rabcount argument to the P$RAB macro. Specify the largest
number of streams connected to record-access indexed files as the
rabxcount argument to the P$RABX macro.

If the sum of the rabcount and rabxcount arguments is larger than the
largest number of streams that will ever be connected simultaneously,
you may deduct the excess from the rabcount argument that you specify.

An IRAB is committed when a stream is connected and is released when
the stream is disconnected or the file is closed (using the associated
FAB).

2.3.3 Key Buffer Pool

Key buffers have a separate pool. (These key buffers are different
from those specified by the KBF and KSZ fields of the RAB.)

Each time a stream is connected to an indexed file (for record
access) , the CONNECT operation requests space from the key buffer
pool; the space is released when the stream is disconnected or the
file is closed.

Compute the size (in bytes) of the request that the CONNECT operation
makes as follows:

1. Begin with the size of the largest key for the file.

2. Multiply by 2.

3. Add the number of alternate keys for the file that are
allowed to change during updating.

4. Add 1.

5. Round up (if necessary) to a multiple of 4.

2-5

RMS-11 PROGRAMMING

If your program performs complex sequences of CONNECT and DISCONNECT
(or CLOSE) operations for record-access indexed files with different
key sizes, the key buffer pool may become fragmented (and therefore
contain unusable space). In this case, the total size of the key
buffer pool should be larger than the sum of the requirements for each
connected stream.

Each P$RABX macro that your
rabxcount ,keysi ze ,keychanges)
buffer pool that is equal to

program uses (in the format P$RABX
allocates a number of bytes for the key

(rabxcount) x ((keysize * 2) + keychanges + 1)

The expression ((keysize * 2) + keychanges + 1) is rounded up (if
necessary) to a multiple of 4.

You can use P$RABX macros to precisely tailor the size of the key
buffer pool, or to provide extra space against possible fragmentation
problems. A good compromise is to choose the arguments to the P$RABX
macro as follows:

• Choose rabxcount as the largest number of streams that will be
connected to record-access indexed files.

• Choose keysize as the largest key in any file that will be
processed.

• Choose keychanges as the maximum number of changeable keys in
any file that will be processed.

2.3.4 I/O Buffer Pool

The I/O buffers for RMS-11 operations come
buffer pool or from a private buffer pool.
I/O buffers, and are different from the I/O
RBF, RSZ, UBF, and usz fields of the RAB.)

either from the central
(These are RMS-11 internal
buffers specified in the

Your program can specify a private buffer pool for a directory or file
operation (except CLOSE, DISPLAY, or EXTEND). If your program does
not specify a private buffer pool, these operations use the central
buffer pool.

All other operations that require I/O buffers use the same pool as the
CREATE or OPEN operation that opened the file.

The minimum size of
sizes of the I/O
same time (ignoring
Specify the size
iopoolsize argument

the central I/O buffer pool is the sum of the
buffers that your program will need from it at the
I/O buffers supplied from private buffer pools).
(in bytes) of the central buffer pool as the
to the P$BUF macro.

Specify the size (in bytes) of a private buffer pool for an operation
in the 1-word BPS field of the FAB and the address in the 1-word BPA
field of the FAB. If your program specifies a private buffer pool for
a CREATE or OPEN operation, the entire pool is reserved for and
managed by that file until the file is closed.

Your program needs space from buffer pools for the following:

• One 512-byte I/O buffer for any directory or file operation
(except CLOSE, DISPLAY, or EXTEND). This space is released
before the operation completes.

2-6

I
\

RMS-11 PROGRAMMING

• One 512-byte I/O buffer for a DISPLAY or EXTEND operation for
a record-access relative or indexed file; the space is
returned when the operation completes.

• I/O buffers for a CONNECT operation:

One I/O buffer for a record-access stream connected to a
sequential disk file. The I/O buffer uses 512 bytes times
the multiblock count for the stream.

One I/O buffer for a record-access stream connected to a
file on a unit-record device. The number of bytes in the
I/O buffer is equal to the default block size for the
device, rounded up (if necessary) to a multiple of 4 bytes.

One or more I/O buffers for a stream connected to a
relative file. Each I/O buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

Two or more I/O buffers for a stream connected to an
indexed file. Each I/O buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

I/O buffers for a connected stream are retained until the
stream is disconnected by a DISCONNECT or CLOSE operation.

If your program uses the I/O buffer pool for complex sequences of
operations that use I/O buffers for different files, the pool may
become fragmented. In that case, you may want to either allocate
extra space in the I/O buffer pool, or limit fragmentation through the
judicious use of private buffer pools.

2.3.5 Buffer Descriptor Block Pool

Your program requires one 20-byte buffer descriptor block (BDB) for
each I/O buffer (whether from the central or a private pool) that it
uses at the same time; these BDBs are allocated and returned at the
same time as their associated I/O buffers. (I/O buffer requirements
are described in the previous section.)

In addition, a block-access stream (for any file) or a record-access
stream that will write to a relative file requires an additional BDB;
a record-access stream that will write to an indexed file requires two
additional BDBs. These BDBs are returned when the stream is
disconnected (or the file is closed).

An EXTEND operation for a record-access relative or indexed file also
requires an additional BDB, which is returned when the operation
completes.

Therefore the size of the BDB pool is the largest number of BDBs
required at any one time, times 20 bytes. Specify this largest number
of BDBs (not multiplied by 20) as the bdbcount argument to the P$BDB
macro.

2-7

RMS-11 PROGRAMMING

2.4 DECLARING AND INITIALIZING CONTROL BLOCKS

Your program and RMS-11 operation routines
back and forth in control block
block-declaration and field-initialization
for control blocks and (optionally) assign

communicate by passing data
fields. Using RMS-11

macros, you allocate space
initial values for fields.

To declare a control block and initialize its fields, use
block-declaration and field-initialization macros as follows:

1. Make sure the control block is word-aligned by using the
.EVEN directive:

.EVEN ;Word-align block

2. Specify a label so that your program can refer symbolically
to the address of the control block.

label:

3. Begin the block declaration with one of the following macros:

FAB$B ;Beg in FAB declaration
NAM$B ;Beg in NAM block declaration
RAB$B ;Begin RAB declaration
XAB$B XB$ALL ;Begin ALL block declaration
XAB$B XB$DAT ;Beg in DAT block declaration
XAB$B XB$KEY ;Beg in KEY block declaration
XAB$B XB$PRO ;Begin PRO block declaration
XAB$B XB$SUM ;Begin SUM block declaration

4. Initialize (optionally) fields with
macros of one of the forms:

field-initialization

s.

F$fld
N$fld
R$fld
X$fld

arg
arg
arg
arg

;Initialize FAB field
;Initialize NAM block field
;Initialize RAB field
;Initialize XAB field

In each of these forms, fld is the mnemonic for a field in
the control block; arg is an argument suitable for the value
of the field. Chapter 6 describes field-initialization
macros and their arguments.

End the block declaration with one of the following macros:

FAB$E ;End FAB declaration
NAM$E ;End NAM block declaration
RAB$E ;End RAB declaration
XAB$E ;End XAB declaration

2.5 USING RMS-11 OPERATIONS

Your program uses RMS-11 operation routines to perform record
management services. Using RMS-11 operation macros, you call these
operation routines. The routines return values in control block
fields that show the results of the operations.

2-8

RMS-11 PROGRAMMING

To use RMS-11 operation routines, your program must:

• Set up control block fields

The values that your program places in control block fields
specify the details of the service you want from the RMS-11
operation routine. Section 2.5.l shows how to set up control
block fields.

• Chain control blocks

Some RMS-11 operation routines (stream, record, and block
operation routines) read only RAB fields; others (directory
and file operation routines) read FAB fields and, if your
program supplies them, fields in NAM blocks and XABs. Your
program chains these blocks (using address pointers) so that
the operation routine can find them. Section 2.5.2 shows how
to chain control blocks.

• Call operation routines

You use RMS-11 operation macros to call RMS-11 operation
routines. Section 2.5.3 shows how to call operation routines.

• Handle returns

Section 2.5.4 shows how to handle returns from operation
routines.

• Examine returned values

When an RMS-11 operation routine completes its execution, it
has placed values in control block fields that show the
results of the operation. Your program should examine these
values to determine the results. Section 2.5.5 shows how to
examine returned values.

2.5.1 Setting Up Control Block Fields

The values that your program places into control block fields specify
the details of the service you want from the RMS-11 operation routine.
The description of each operation macro in Chapter 5 discusses the
control block fields that are read by that operation.

Three RMS-11 field-access macros help you place values into control
block fields:

• $STORE places a specified value into a field.

• $SET sets bits in a field.

• $OFF clears bits in a field.

2-9

RMS-11 PROGRAMMING

2.5.1.1 $STORE Macro - Use the $STORE macro to copy a value from a
specified location to a control block field. The format for the
$STORE macro is:

$STORE src,fld,reg

where src is a an address in memory; fld is a field mnemonic; and
reg is a general purpose register (RO through RS) containing the
address of the control block.

The $STORE macro looks up the size of the destination field, so that
it can copy the correct number of bytes or words. If the source is a
register and the destination is a 1-byte field, then the low byte of
the register is copied; if the source is a register and the
destination is a multiword field, then the contents of the specified
register and following registers are copied.

The $STORE macro generates an error during assembly if you use an
illegal address mode for the source. For multiword fields, illegal
address modes are autoincrement deferred, autodecrement deferred, and
indexed deferred.

It is also illegal to specify the program counter (PC) as the source
or to specify a register as source in such a way that the source
overlaps the register that contains the control block address.

At execution time, the $STORE macro copies
specified location to the control block field.
words copied is the same as the field size for
6 gives the size of each control block field.

the contents of the
The number of bytes or

the mnemonic. Chapter

For example, suppose that you want to specify indexed file
organization in the FAB for a file, and suppose that the address of
that FAB is stored in register R2. Then the proper macro is:

$STORE jf:FB$IDX,ORG,R2 ;Indexed file organization

Suppose that you want to chain a NAM block whose label is NAMBLK to
the same FAB. Then the proper macro is:

$STORE jf:NAMBLK,NAM,R2 ;Chain NAM block

Suppose that you want to set the allocation quantity (ALQ field) of
the same FAB to the value stored in a location labeled ALQVAL. Then
the proper macro is:

$STORE ALQVAL,ALQ,R2 ;Load allocation quantity

and (because ALQ is a 2-word field) two words are copied from ALQVAL
to the ALQ field.

2.5.1.2 $SET Macro - Use the $SET macro to set bits in a 1-byte or
1-word control block field. The $SET macro logically ORs a given mask
into the control block field. Therefore for each bit set in the mask,
the $SET macro sets the corresponding bit in the field; the other
bits are not changed.

Note that you use the $SET macro only if you want to leave some bits
in a field undisturbed; if you want to set specified bits and clear
all others, use the $STORE macro.

2-10

/
\

(
\

/

\

RMS-11 PROGRAMMING

The format for the $SET macro is:

$SET mask,fld,reg

where mask is an address in memory containing bits to be set; fld is
the mnemonic for a control block field; and reg is a general purpose
register (RO through RS) containing the address of the control block.

If the field is not a 1-byte or 1-word field, the $SET macro generates
an error during assembly.

RMS-11 has symbols for masks for
field. Therefore your program
numerical values.

each bit-oriented control block
can use these symbols instead of

For example, suppose you want to specify rewind-on-close in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.
Then the proper macro is:

$SET JFB$RWC,FOP,R2 ;Rewind-on-close

As another example, suppose you want to specify key-duplicates-allowed
and key-changes-allowed for an index, but do not want to disturb other
bits in the FLG field of the KEY block; suppose also that the address
of the KEY block is in register R4. Then the proper macro is:

$SET JXB$DUP!XB$CHG,FLG,R4 ;Allow key duplicates and changes

2.S.1.3 $OFF Macro - Use the $OFF macro to clear bits in a 1-byte or
1-word control block field. The $OFF macro logically ANDs the l's
complement of a given mask into the control block field. Therefore
for each bit set in the mask, it clears the corresponding bit in the
field; the other bits are not changed.

Note that you use the $OFF macro only if you want to leave some bits
in a field undisturbed; if you want to clear the entire field, use
the $STORE macro (with a source value of JO).

The format for the $OFF macro is:

$OFF mask,fld,reg

where mask is an address in memory containing bits to be cleared; fld
is the mnemonic for a control block field; and reg is a general
purpose register (RO through RS) containing the address of the control
block.

If the field is not a 1-byte or 1-word field, the $OFF macro generates
an error during assembly.

RMS-11 has symbols for masks for
field. Therefore your program
numerical values.

each bit-oriented control block
can use these symbols instead of

For example, suppose you want to specify no-rewind-on-close in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.
Then the proper macro is:

$OFF JFB$RWC,FOP,R2 ;No rewind-on-close

2-11

RMS-11 PROGRAMMING

As another example, suppose you want to specify
no-key-duplicates-allowed and no-key-changes-allowed for an index, but
do not want to disturb other bits in the FLG field of the KEY block;
suppose also that the address of the KEY block is in register R4.
Then the proper macro is:

$OFF #XB$DUP!XB$CHG,FLG,R4 ;No key duplicates or changes

2.5.2 Chaining Control Blocks

An RMS-11 directory operation or file operation uses at least one FAB;
you specify FABs in the operation macros that call the operation
routines.

For some directory operations, a NAM block is required; it is
optional for other directory operations and for file operations. You
specify a NAM block and XABs for an operation by chaining them to the
FAB for the operation.

2.5.2.1 Chaining a NAM Block to a FAB - Specify the NAM block
associated with a FAB by placing its address in the 1-word NAM field
of the FAB.

2.5.2.2 Chaining XABs to a FAB - Specify the XABs
FAB by placing the address of the first XAB in the
the FAB; in each XAB, specify the address of the
chain in the 1-word NXT field of the XAB; in
chain, specify 0 in the NXT field.

associated with a
1-word XAB field of
next XAB in the

the last XAB in the

Follow these rules in ordering XABs in a chain:

• Place ALL blocks together in the chain. Each ALL block is
"numbered" by the value in the 1-byte AID field of the ALL
block; chain ALL blocks so that these numbers are in
ascending order. For the CREATE operation, begin with 0 and
do not skip numbers in the ascending sequence; for other
operations, you can skip numbers in the sequence.

• Place no more than one DAT block in the chain.

• Place KEY blocks together in the chain. Each KEY block is
"numbered" by the value in the 1-byte REF field of the KEY
block; chain KEY blocks so that these numbers are in
ascending order. For the CREATE operation, begin with O and
do not skip numbers in the ascending sequence; for other
operations, you can skip numbers in the sequence.

• Place no more than one PRO block in the chain.

• Place no more than one SUM block in the chain.

2.5.2.3 Chaining a FAB to a RAB
operation creates a stream for a
RAB specifies the stream. Specify
in the 1-word FAB field of the RAB

(CONNECT Operation) -
file. A FAB specifies
the address of the FAB
for the stream.

2-12

The CONNECT
the file; a
for the file

I
(
\

RMS-11 PROGRAMMING

2.5.3 Calling Operation Routines

Use RMS-11 operation macros to call operation routines. You can
specify arguments for the operation routine either by giving them as
arguments to the operation macro, or by placing them in an argument
block in memory.

2.5.3.1 Call with Macro Arguments - Call an operation routine (except
RENAME) using an operation macro with arguments in the format:

$macroname blkaddr[, [erraddr] [,sucaddr]]

where $macroname is the name of an operation macro
blkaddr is the address of a FAB (for a directory or
a RAB (for a stream, record, or block operation);
address of an error handler for the operation;
address of a success handler for the operation.

(except $RENAME);
file operation) or

erraddr is the
and sucaddr is the

For example, if you want to open a file using a FAB at address INFAB
and want to use a success handler at address SUCCES, the macro call
would be:

$OPEN #INFAB,,#SUCCES

Call the RENAME operation using the $RENAME operation macro with
arguments in the format:

$RENAME oldfabaddr,[erraddr],[sucaddr] ,newfabaddr

where oldfabaddr is the address of a FAB for the old file
specification; erraddr is the address of an error handler for the
operation; sucaddr is the address of a success handler for the
operation; and newfabaddr is the address of a FAB for the new file
specification.

2.5.3.2 Call with Arguments in Memory - To call an operation routine
using an operation macro with arguments in an argument block in
memory, omit the arguments to the macro, store the address of the
argument block in register RS, and store the argument block in memory
as follows:

0 J ARGUMENT COUNT 0

ADDRESS OF FAB OR RAB 2

ADDRESS OF ERROR HANDLER (OPTIONAL) 4

ADDRESS OF SUCCESS HANDLER (OPTIONAL) 6

ADDRESS OF NEW FAB (RENAME ONLY) 10

ZK-1097-82

2-13

RMS-11 PROGRAMMING

The argument count is 4 for a RENAME operation; otherwise it is one
of the following:

• 1 - no completion handlers

• 2 - error handler, but no success handler

• 3 - success handler

If the operation has no error handler, but either has a success
handler or the operation is RENAME, specify -1 as the address of the
error handler; if the operation has no success handler, but the
operation is RENAME, specify -1 as the address of the success handler.

2.5.4 Handling Returns

An RMS-11 file or directory operation returns a completion status code
in the 1-word STS field of the FAB and, for some completions, a
completion status value in the I-word STV field of the FAB.

An RMS-11 stream, record, or block operation returns a completion
status code in the 1-word STS field of the RAB and, for some
completions, a completion status value in the 1-word STV field of the
RAB.

Appendix A lists completion codes.

Your program should examine the STS field contents to determine
whether the operation was successful; even if the operation returned
an error completion, your program may be able to handle the error and
recover.

The program can handle the return (based on the completion code)
either in the code that immediately follows the operation macro, or in
special routines (called completion handlers) that the operation can
call. Section 2.6 shows how to write completion handlers.

There are two kinds of fatal RMS-11 errors:

• If the FAB or RAB address you specify is not the address of a
valid and idle FAB or RAB, or if the argument block you
provide is invalid, RMS-11 cannot return values, even in the
STS field. RMS-11 issues a BPT instruction, leaving status
information in the following registers:

RO: RMS-11 fatal error code
Rl: Stack pointer (at time of entry to RMS-11 routine)
R2: Program counter (entry return same as @Rl)
R3: Address of system impure area

• If RMS-11 detects the corruption of memory-resident data
structures, or if it detects inconsistent internal states, it
cannot proceed with its operations. In these cases, RMS-11
halts execution with a BPT instruction; if it can identify
the error, RMS-11 leaves an error completion in RO.

Appendix A lists the symbols and values for RMS-11 fatal error codes.

2-14

(

RMS-11 PROGRAMMING

2.5.5 Examining Returned Values

When an RMS-11 operation routine completes its execution, it has
placed values in control block fields that show the results of the
operation. Your program should examine these values to determine the
results. The description of each operation macro in Chapter 6
discusses the control block fields that return values for that
operation.

Three RMS-11 field-access macros help you examine values in control
block fields:

• $FETCH copies a value from a field to a specified location.

• $COMPARE compares a field value to a specified value.

• $TESTBITS determines whether specified bits in a field are
set.

2.5.5.1 $FETCH Macro - Use the $FETCH macro to copy a value from a
control block field to a specified location. The format for the
$FETCH macro is:

$FETCH dst,fld,reg

where dst is an address in memory; fld is the mnemonic for a control
block field; and reg is a general purpose register (RO through RS)
containing the address of the control block.

The $FETCH macro looks up the size of the source field, so that it can
copy the correct number of bytes or words. If the destination is a
register and the source is a 1-byte field, then the byte is copied to
the low byte of the register and the high byte is cleared. if the
destination is a register and the source is a multiword field, then
the multiword field is copied to the specified register and following
registers.

The $FETCH macro generates an error during assembly if you use an
illegal address mode for the destination. For multiword fields,
illegal address modes are autoincrement deferred, autodecrement
deferred, and indexed deferred. Immediate mode is illegal for $FETCH,
regardless of field size.

It is also illegal to use the program counter (PC)
or to specify a register for the destination in
destination overlaps the register that contains
address.

as the destination
such a way that the
the control block

At execution time, the $FETCH macro copies the contents of the control
block field to the specified location. The number of bytes or words
copied is the same as the field size for the mnemonic. Chapter 6
gives the size of each control block field.

As an example of the use of the $FETCH macro, suppose that you want to
fetch the allocation quantity (ALQ field) from a FAB to a location
labeled ALQSAV, and suppose also that the address of the FAB is in
register R3. Then the proper macro is:

$FETCH ALQSAV,ALQ,R3 ;Save allocation quantity

and two words are copied from the ALQ field to memory beginning at
ALQSAV.

2-15

.RMS-11 PROGRAMMING

2.S.S.2 $COMPARE Macro - Use the $COMPARE macro to compare the
contents of a 1-byte or 1-word control block field with a specified
value. The format for the $COMPARE macro is:

$COMPARE src,fld,reg

where src is an address in memory; fld is the mnemonic for a control
block field; and reg is a general purpose register (RO through RS)
containing the address of the control block.

If the given field is not a 1-byte or 1-word field, the $COMPARE macro
generates an error during assembly.

At execution time, the $COMPARE macro executes a machine instruction
that compares the source value and the field contents. The
instruction executed depends on the size of the specified field and on
the specified source:

• TSTB for a 1-byte field and the source #0

• TST for a 1-word field and the source #0

• CMPB for a 1-byte field and a source other than #0

• CMP for a 1-word field and a source other than #0

Chapter 6 gives the size of each control block field.

For example, suppose that you want to compare the value in the RSZ
field of a RAB with a value stored in a location labeled RSZSAV, and
suppose also that the address of the RAB is stored in register R2.
Then the proper macro is:

$COMPARE RSZSAV,RSZ,R2 ;Compare record size

Suppose that you want to compare the same RSZ field to the value of a
symbol, RECSIZ. Then the proper macro is:

$COMPARE #RECSIZ,RSZ,R2 ;Compare record size

2.S.S.3 $TESTBITS Macro - Use the $TESTBITS macro to test the values
of bits in a 1-byte or 1-word control block field. Chapter 6 gives
the size of each control block field. The format for the $TESTBITS
macro is:

$TESTBITS mask,fld,reg·

where mask is an address in memory containing bits to be tested; fld
is the mnemonic for a control block field; and reg is a general
purpose register (RO through RS) containing the address of the control
block.

If the given field is not a 1-byte or 1-word field, the $TESTBITS
macro generates an error during assembly.

At execution time, the $TESTBITS macro executes a machine instruction
that tests the bits specified in the mask. The instruction executed
depends on the size of the specified field:

• BITB for a 1-byte field

• BIT for a 1-word field

2-16

RMS-11 PROGRAMMING

For example, suppose you want to determine whether the terminal device
is set in the DEV field of a FAB, and suppose that the address of the
FAB is in register R3 Then the proper macro is:

$TESTBITS #FB$TRM,DEV,R3 ;Terminal device?

As another example, suppose that you want to determine whether either
the contiguous-area or the hard-location bit is set in the ADP field
of an ALL block, and suppose that the address of the ALL block is in
register R2. Then the proper macro is:

$TESTBITS #XB$CTG!XB$HRD,AOP,R2 ;Contiguous or hard location?

2.6 WRITING COMPLETION HANDLERS

Recall that when you use an RMS-11 operation macro, you can specify
the addresses of completion handlers for the operation; if you do so,
the operation automatically calls the error handler (for a nonfatal
error completion) or the success handler (for a success completion).
After the completion handler executes, control is returned to the
point immediately following the operation macro.

When execution control passes to your completion handler, it finds the
following situation:

• Register RS contains the address of the argument block for the
operation.

• The second word of the argument block contains the address of
the FAB or RAB for the operation. (Recall that the STS and
STV fields of the FAB or RAB contain the completion code and
completion value for the operation.)

• If the operation was RENAME, the fifth word of the argument
block contains the address of a second FAB for the operation.

• Other blocks are chained as they were when you used the
operation macro that called the operation routine.

A completion handler cannot determine from these values which RMS-11
operation was executed, or what part of your program called the
operation routine. You can, however, use the 1-word CTX field of the
FAB or the 1-word CTX field of the RAB to indicate the context of the
operation; RMS-11 does not disturb values in CTX fields.

The completion handler must preserve the stack pointer (SP), and must
end with the RMS-11 completion-return macro in the format:

$RETURN ;End of completion handler

2.7 USING GET-SPACE ROUTINES

Your program can provide and use get-space routines other than the one
provided with RMS-11. It can set an initial get-space routine at
assembly time, and it can change to other routines during program
execution. Section 2.7.1 shows how to specify get-space routines, and
how to obtain the address of the current get-space routine. Section
2.7.2 shows how to write a get-space routine.

2-17

RMS-11 PROGRAMMING

2.7.l Specifying Get-Space Routines

To specify a get-space routine at assembly time, use the GSA$ macro in
the format:

GSA$ address ;Initialize get-space routine
address

where address is the get-space routine entry address. If you specify
0 as the address, or if you do not use the GSA$ macro, the initial
get-space routine for the program is the RMS-11 routine.

To change the get-space routine during program execution, use the
$SETGSA macro in the format:

$SETGSA pointer ;Change get-space routine

where pointer is the address of a location that contains the get-space
routine entry address. If you specify the entry-point address as O,
the new get-space routine established is the RMS-11 routine.

To obtain the address (in RO) of the current get-space routine during
program execution, use the $GETGSA macro in the format:

$GETGSA ;Get-space routine address into RO

If the address returned in RO is O, the current get-space routine is
the RMS-11 routine.

2.7.2 Writing a Get-Space Routine

A get-space routine handles space in contiguous blocks. For a request
for space, it allocates a contiguous block of space (or denies the
request); for a release of space, it accepts a contiguous block of
space.

A get-space routine must have a proper interface to calling routines,
and it should handle unallocated space properly.

2.7.2.l Get-Space Routine Interface - When RMS-11 calls a get-space
routine, it either requests or releases a block of space. For a
request for space, registers RO through R2 contain the following
values:

RO Address of pool free-space list (see next section)
Rl Size (in bytes) of requested block
R2 0

If the get-space routine fills the request, it must clear the C bit
and return the address of the first word of the allocated block in RO;
if it does not fill the request, it must set the C bit. In either
case, the routine must preserve the stack and registers R3 through R6.

For a release of a block of space, registers RO through R2 contain the
following values:

RO
Rl
R2

Address of pool free-space list (see next section)
Size (in bytes) of released block
Address of first word being released

2-18

RMS-11 PROGRAMMING

For a release-space operation, the get-space routine returns no
values; however, it must preserve the stack and registers R3 through
R6.

2.7.2.2 Pool Free-Space Lists - When RMS-11 calls your get-space
routine, the address of a pool free-space list is in register RO.
This free-space list specifies free space in one of the five pools
described in Section 2.3; you can use this pool {which may or may not
have adequate free space), or you can use a pool of your own.

The free-space list chains free contiguous blocks of the pool. The
first word of each block contains the address of the next block; if
the first word of a block is O, it is the last block in the list.

Blocks in the list are ordered
addresses are word-aligned;
(allocations and deallocations
if necessary).

by ascending virtual addresses; their
their sizes are multiples of 4 bytes

must be rounded up to a multiple of 4,

The second word of each block contains the size (in bytes) of the
block, including the 4-byte header; the first "block" in the list
contains 0 in its second word, since it is the header block for the
list.

Your get-space routine can use the specified pool list to get space
for RMS-11; if it does this, it must properly maintain the list, and
must (if possible) merge blocks back into the pool.

The system routines $RQCB and $RLCB are suitable for handling pool
free-space lists. These routines have interfaces that meet the
requirements for your get-space routine; therefore your program can
jump to $RQCB (for a space request) or $RLCB (for a space release).

2.8 ASSEMBLING THE PROGRAM

When you assemble your program, you must cause the assembler to get
RMS~ll macro and symbol definitions from a library, and you may have
to correct errors indicated by messages from RMS-11 macros.

2.8.1 Assembling with the RMSMAC Macro Library

When you assemble your program, the assembler needs definitions for
the RMS-11 macros and symbols that your program uses; these are in
the RMS-11 macro library, RMSMAC.MLB. Include the following reference
to the RMS-11 macro library in your assembler command string:

LB:[l,l]RMSMAC.MLB/ML

2.8.2 Assembly-Time Errors from RMS-11 Macros

RMS-11 macros detect some errors during assembly. For each such
error, a macro issues a .PRINT or .ERROR assembler directive with a
message. Appendix B describes RMS-11 macro-generated messages and
their meanings.

2-19

(

\

CHAPTER 3

PROCESSING DIRECTORIES AND FILES

This chapter discusses use of RMS-11 directory and file operations.
The next sections discuss information and usage common to several
directory and file operations:

• Device characteristics

• Logical channels

• File specifications and identifiers

• Private buffer pools

• Completion status

The sections after those provide an overview of the operations
themselves (see Chapter 5 for detailed discussions):

e Directory operations -(except SEARCH): ENTER, REMOVE, RENAME
and PARSE

e File operations: CREATE, OPEN, DISPLAY, ERASE, EXTEND, and
CLOSE

Finally, the last sections discuss:

• SEARCH operation

• Writing wildcard loops

3.1 DEVICE CHARACTERISTICS

A directory or file operation (except CLOSE, DISPLAY, or EXTEND)
returns device characteristics. These characteristics are returned as
masks in the 1-byte DEV field of the FAB. The device characteristics
are:

• Printer or terminal (indicated by the set FB$CCL mask in the
1-byte DEV field of the FAB and the set FB$REC mask in the
1-byte DEV field of the FAB; for a terminal, the FB$TRM mask
in the 1-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FB$MDI mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

3-1

PROCESSING DIRECTORIES AND FILES

• Unit-record device (indicated by the set FB$REC mask in the
1-byte DEV field of the FAB).

• Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1-byte DEV field of the FAB and the set FB$REC
mask in the 1-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

• ANSI-format magtape (indicated by the set FB$SQD mask in the
1-byte DEV field of the FAB).

3.2 LOGICAL CHANNELS

An RMS-11 directory or file operation (except CLOSE, DISPLAY, or
EXTEND) requires a logical channel; this channel is a path from the
program to a specified device.

When your program executes a CREATE or OPEN operation on the channel,
the path is extended to the target file; until the file is closed,
the channel is reserved for the specified FAB.

Your program specifies the logical channel for a directory operation
or for a CREATE, ERASE, or OPEN operation in the 1-byte LCH field of
the FAB; the channel must not already be in use by the task.

You can
a Task
initial
channels

specify the initial device assignment for a logical channel in
Builder command file. The Task Builder also provides default
device assignments for certain channels. Other logical
are unassigned when your task beg ins executing.

During task execution, channel assignments are made or changed by use
of the ALUN$ system directive. For example, RMS-11 uses the ALUN$
directive to assign a logical channel for a directory operation or for
a CREATE, ERASE, or OPEN operation; if the FAB and NAM block specify
a device or device identifier, RMS-11 assigns the channel to that
device; if the FAB and NAM block do not specify a device or device
identifier, RMS-11 retains the device-channel assignment (if any), or
assigns the channel to the device SY:.

3.3 FILE SPECIFICATIONS AND IDENTIFIERS

A file specification consists of the following elements (in the order
given):

• Device specification - the device where the file resides

• Directory specification - the directory on the device through
which the file can be found

• File name - the name by which the file is known in the
directory

• File type - the type by which the file is known in the
directory

• File version - the version number by which the file is known
in the directory

3-2

PROCESSING DIRECTORIES AND FILES

RMS-11 operations construct and use file specification strings and
file identifiers to specify files. These strings and identifiers
include:

• User-provided file specification strings

• Expanded file specification strings

• Resultant file specification strings

• File, directory, and device identifiers

This section discusses these strings and identifiers as they are used
for nonwildcard operations; wildcard use is described in Section 3.8.

For a CREATE, ENTER, ERASE, OPEN, PARSE, REMOVE, or RENAME operation,
your program specifies two strings to be used in generating a full
file specification:

• A file specification string,
program specifies the address
FNA field of the FAB and the
1-byte FNS field of the FAB)

called the file string (your
of the file string in the 1-word
length of the string in the

• A default file specification string, called the default string
(your program specifies the address of the default string in
the 1-word DNA field of the FAB and the length of the string
in the 1-byte DNS field of the FAB)

The operation routine uses these two strings to form an internal
merged file specification string, called the merged string. The
operation initially forms the merged string as follows:

• It begins by taking available elements from the file string.

• It then supplies missing elements from the default string (if
they are available there). The operation (when it completes)
returns masks describing the results of this merge in the
1-word FNB field of the NAM block (if you supplied a NAM block
for the operation).

If elements are still missing from the merged string, the operation
next adds the following elements:

• Device - If the logical channel specified in the LCH field of
the FAB is already assigned to a device, that device is used;
otherwise the device SY: is used.

• Directory - The task's current default directory is used.

• File name, type, and version - Nulls are used.

If the operation is the PARSE operation, the merged string is
complete. If you provided a NAM block, the PARSE operation returns
the device identifier in the 2-word DVI field of the NAM block; if
you provided an expanded string buffer, the PARSE operation returns
the expanded string in the expanded string buffer (whose address is in
the 1-word ESA field of the NAM block). (Note that the device
specification in an expanded string has usually been translated to the
specification for a physical device.)

3-3

·PROCESSING DIRECTORIES AND FILES

An operation other than PARSE continues by examining the FB$FID mask
in the FOP field of the FAB. If the FB$FID mask is set, the operation
adds the tollowing elements:

• Device - If a device identifier is given in the NAM block,
that device overrides the device in the merged string and the
device specification is deleted from the merged string.

• Directory - If a directory identifier
block, that directory overrides the
string and the directory specification
merged string.

is given in the NAM
directory in the merged
is deleted from the

• File identifier - If a file identifier is given in the NAM
block and if the operation is ERASE or OPEN, that file
overrides the directory, file name, type, and version in the
merged string and the specifications for those elements are
deleted from the merged string.

The merged string is then copied to the expanded string buffer (if you
supplied one) as described for the PARSE operation above. The merged
string plus applicable identifiers are called the fully qualified file
specification, and define the file upon which the operation will be
performed.

The device, directory, and file identifiers for the file are returned
in the NAM block (if you supplied one). These identifiers can be used
as input to subsequent directory and file operations to speed
processing by eliminating directory and file lookups.

Note that a complete file specification is relevant only to a disk
file. Only the device specification is relevant for a file on a
unit-record device. Irrelevant elements are not processed, and appear
in the expanded string only if your program provides them in the file
string or default string.

NOTE: NULL, O, OR -1 VERSION NUMBER

If the version specification has not
been deleted and is null, O, or -1, it
will later be replaced with the version
number of the target file.

A version number of -1 identifies the
target file as the (otherwise) specified
file with the lowest version number; a
version number of -1 is illegal for a
CREATE or ENTER operation, or for the
new file specification for a RENAME
operation.

For an ERASE, OPEN, REMOVE, or RENAME
(old specification) operation, a null or
0 version number specifies the target
file as the (otherwise) specified file
with the highest version number.

For a CREATE, ENTER, or RENAME (new
specification) operation, a null or 0
version number specifies that the
operation is to create a new entry whose
version number is one greater than the
highest-numbered version of the
(otherwise) specified file.

3-4

PROCESSING DIRECTORIES AND FILES

3.4 PRIVATE BUFFER POOLS

Many RMS-11 operations require space from a buffer pool. A directory
or file operation (except CLOSE, DISPLAY, or EXTEND) allows your
program to specify a private buffer pool. Your program specifies the
address of the pool in the 1-word BPA field of the FAB; it specifies
the size (in bytes) of the pool in the 1-word BPS field of the FAB.

The CLOSE operation returns (in the BPA and BPS fields) the address
and size of the private buffer pool (if any) specified for the CREATE
or OPEN operation that opened the file; until the file is closed, the
pool is dedicated to the open file and must not be used for other
purposes.

If your program does not specify a private buffer pool, the operation
uses the central buffer pool (which your program declares using
pool-declaration macros); if your program specifies a private buffer
pool, the operation uses that pool.

The CLOSE, DISPLAY, and EXTEND operations, and all stream, record, and
block operations use the pool specified by the CREATE or OPEN
operation that opened the file.

3.5 COMPLETION STATUS

A directory or file operation returns a completion status code in the
1-word STS field of the FAB, and a completion status value in the
1-word STV field of the FAB.

3.6 DIRECTORY OPERATIONS

RMS-11 directory operations affect only directory entries (not the
contents of files). The directory operations are:

• ENTER: create a directory entry

• REMOVE: delete a directory entry

• RENAME: replace a directory entry

• PARSE: analyze a file specification

• SEARCH: search directories

The next sections provide an overview of the directory operations
(except for the SEARCH operation, which is discussed in Section 3.8).

3.6.1 ENTER Operation

A file specified as temporary when it was created has no directory
entry; a file also has no directory entry if the entry has been
deleted by the REMOVE operation.

Your program can use the ENTER operation to create a directory entry
for a file; this makes it possible for your program (and other
programs) to specify the file to RMS-11 by its file specification.

The ENTER operation uses the device and directory parts of the fully
qualified file specification to determine the target directory; it
then creates an entry in that directory using the file name, type, and

3-5

PROCESSING DIRECTORIES AND FILES

version from ~he fully qualified file specification, and the file
identifier specified in the NAM block.

3.6.2 REMOVE Operation

Your program can delete the directory entry for a file by using the
REMPVE operation; this does not affect either the existence of the
file or the file contents, but only removes the path to the file.

The device and directory elements from the fully qualified file
specification specify the target directory; the file name, type, and
version elements from the fully qualified file specification identify
the entry to be removed from the directory.

3.6.3 RENAME Operation

Your program can replace the directory entry for a file by using the
RENAME operation. The fully qualified file specification for the new
directory entry must not specify a new device for the file, but
otherwise it can specify elements different from the old file
specification: directory, file name, file extension, and file version
number.

If you do not specify a device, the device associated with the old
file specification is used.

For both the old and new directory entries, the RENAME operation
the device and directory elements of the fully qualified
specification to determine the target directory; it uses the
name, type, and version elements of the fully qualified
specification to identify the entry to be removed or created.

3.6.4 PARSE Operation

uses
file
file
file

Your program can use the PARSE operation to analyze a file
specification, or to prepare for a series of wildcard operations
(described in Section 3.8). The results of the PARSE operation are
described in detail in Section 3.3.

3.7 FILE OPERATIONS

RMS-11 file operations affect files
individual records or blocks in files).

as whole entities (but
The file operations are:

not

• CREATE: create a file (and a corresponding directory entry)
and open the file for processing

• OPEN: open an existing file for processing

• DISPLAY: write file information to control blocks

• ERASE: delete file contents (records or blocks) and remove
directory entry

3-6

(
\
\

PROCESSING DIRECTORIES AND FILES

• EXTEND: increase the allocation for a file

• CLOSE: close an open file

The next sections discuss file operations.

3.7.1 CREATE Operation

The CREATE operation creates a new file and opens it for processing;
unless the file is specified as a temporary file, the CREATE operation
also creates a directory entry for the file.

The CREATE operation uses the device and directory elements of the
fully qualified file specification to determine the target directory;
it then uses the file name, type, and version of the fully qualified
file specification to form the entry in that directory.

3.7.2 OPEN Operation

Your program can establish an access path to a file by using the OPEN
operation. This makes file information available to your program, and
enables your program to use the following operations for the file:

• DISPLAY operation (to make more file information available to
your program).

• EXTEND operation (to allocate more space for the file).

• CONNECT operation (to establish a path to file records or
blocks) • The CONNECT operation enables your program to use
other stream operations and either record operations or block
ope rations.

• CLOSE operation (to release resources committed
file). The CLOSE operation terminates the
established by the CREATE or OPEN operation that
file.

3.7.3 DISPLAY Operation

to the
access
opened

open
path

the

If your program uses the OPEN operation to open a file, but does not
provide control blocks and buffers for all the information that the
OPEN operation can return, you may want to use the DISPLAY operation
to obtain additional information while the file is open.

3.7.4 ERASE Operation

Your program can erase the contents of a file by using the ERASE
operation, and (optionally) remove its directory entry.

Unless your program provides a file identifier in the NAM block and
sets the FB$FID mask in the 1-word FOP field of the FAB, the ERASE
operation also removes the specified directory entry for the file.

The ERASE
determine
entry, it
qualified

operation uses the fully
the target file. If
uses the device and
file specification to

qualified file specification to
the operation removes the directory
directory elements of the fully
determine the target directory, and

3-7

PROCESSING DIRECTORIES AND FILES

the file name, type, and version elements to determine the entry to be
removed.

3.7.5 EXTEND Operation

Your program can increase the allocation for an open file by using the
EXTEND operation. Note that RMS-11 automatically extends the file
allocation when it needs more space; you can use the EXTEND operation
to make large extensions (avoiding repeated automatic extensions) or
exact extensions (avoiding wasteful automatic extensions).

3.7.6 CLOSE Operation

Your program can close an open file by using the CLOSE operation.
This releases task and system resources (other than the file itself)
and makes those resources available for other uses.

3.8 WRITING WILDCARD LOOPS

You can include wildcard characters in an RMS-11 file specification
and use the PARSE and SEARCH operations to identify files that match
the wildcard specification. This allows you to program a wildcard
loop that successively (and selectively, if you wish) processes files
matching the wildcard specification.

An advantage of RMS-11 wildcarding over system wildcard commands is
that your processing can be selective. For example, if you use a
system wildcard command to rename a group of files, the entire group
is renamed; if you use a wildcard loop in a program, the program can
fully examine information about each file and even the contents of
each file to decide whether to rename it.

The next three sections show:

• The structure of a wildcard loop and the behavior of directory
and file operations in the loop

• How to write a wildcard loop that nonselectively uses the
ERASE, REMOVE, or RENAME operation on successive matching
files

• How to write a wildcard loop that selectively performs
directory and file operations on successive matching files

3.8.1 Introduction to Wildcarding

This discussion assumes that you want to write a program
uses a wildcard input file specification, and that you want
same control blocks (FAB and NAM block) for all operations
with the wildcard loop.

loop that
to use the
associated

A series of wildcard operations can be viewed as having four steps:

1. Initializing for wildcarding

2. Finding the next matching file

3-8

PROCESSING DIRECTORIES AND FILES

3. Operating on the found file

4. Ending wildcarding

The next sections discuss these steps.

3.8.1.1 Initializing
initializes control
operations. Place the
program.

for Wildcarding - The PARSE
blocks (FAB and NAM block) for

$PARSE macro before the wildcard loop

operation
wildcard
in your

The PARSE operation sets the NB$WCH mask in the 1-word FNB field of
the NAM block to show that wildcard operations are in progress. (Your
program must clear the NB$WCH mask if it will not perform SEARCH
operations after a PARSE operation.)

The PARSE operation also forms a match-pattern in the expanded string
buffer (whose address is in the 1-word ESA field of the NAM block);
this match-pattern is used by subsequent wildcard SEARCH operations.

A series of SEARCH operations requires a NAM block that specifies both
expanded string and resultant string buffers. (The resultant string
buffer is specified in the 1-word RSA field of the NAM block.) Your
program must not alter the expanded string, the resultant string, or
other NAM block contents between the PARSE operation and the end of
the subsequent series of SEARCH operations.

3.8.1.2 Finding the Next Matching File - The SEARCH operation finds
the next file (if any) that matches the wildcard input file
specification. (If the SEARCH operation cannot find another matching
file, wildcarding ends; see Section 3.8.1.4.)

The SEARCH operation returns a fully qualified file specification in
the resultant string buffer, along with device, directory, and file
identifiers for the found file.

The SEARCH operation in your wildcard loop can either be explicit
(your loop contains the $SEARCH macro) or, for some operations,
implicit (RMS-11 automatically performs the SEARCH operation). If you
use the explicit SEARCH operation, place the $SEARCH macro inside the
loop but before other operation macros.

If you use an ERASE, REMOVE, or RENAME (old FAB) operation in the loop
with the FB$FID mask in the !-word FOP field of the FAB cleared,
RMS-11 implicitly performs a SEARCH operation (to find the next
matching file) before performing the ERASE, REMOVE, or RENAME
operation. This allows your wildcard loop to omit the $SEARCH macro.
(If the implicit SEARCH operation cannot find another matching file,
wildcarding ends; see Section 3.8.1.4,)

3.8.1.3 Operating on the Found File - A number of directory and file
operations are wildcard-transparent in the sense that they preserve
both wildcard context information and information about the last-found
file. This means that your program can use the operations within a
wildcard loop without changing the wildcard context; the series of
wildcard operations is continuable.

3-9

PROCESSING DIRECTORIES AND FILES

These wildcard-transparent operations are CLOSE, DISPLAY, and EXTEND,
and (if the FB$FID mask in the 1-word FOP field of the FAB is set)
ERASE, OPEN, REMOVE,, and RENAME (old FAB).

3.8.1.4 Ending Wildcarding - A series of wildcard operations (using a
specific FAB and NAM block) ends when a directory or file operation
discards wildcard context information or when your program clears the
NB$WCH mask in the 1-word FNB field of the NAM block.

Typically, the operation that ends wildcarding is a SEARCH
that cannot find another matching file. It returns
completion status code and clears the NB$WCH mask in the
field of the NAM block.

operation
the ER$NMF

1-word FNB

If your program exits from a wildcard loop before the SEARCH operation
fails to find a matching file, the NB$WCH mask in the 1-word FNB field
of the NAM block is still set, and your program must clear it.

Executing the PARSE operation during a wildcard series ends that
series and initializes control blocks for a new series.

Executing a CREATE or ENTER operation, or an OPEN operation with the
FB$FID mask in the 1-word FOP field of the FAB cleared, ends the
wildcard series for that FAB.

3.8.2 Nonselective ERASE, REMOVE, or RENAME Wildcard Operations

You can write a wildcard loop that performs
REMOVE, or RENAME operations on successive
RMS-11 implicitly performs a SEARCH operation
REMOVE, or RENAME operation.

To do this, do the following:

nonselective ERASE,
matching files, where

before each ERASE,

1. Use the PARSE operation to initialize control block fields
for wildcarding.

2. Clear the FB$FID mask in the 1-word FOP field of the FAB (for
the RENAME operation, the old FAB). This causes the ERASE,
REMOVE, or RENAME operation to perform an implicit SEARCH
operation before performing its own processing.

3. Use the ERASE, REMOVE, or RENAME operation to operate on the
next matching file.

4. Examine the STS field of the FAB. If it contains the ER$NMF
completion status code, there was not another matching file;
in that case, go to step 7.

5. Perform other in-loop-processing (such as reporting the file
specifi9ation of the erased, removed, or renamed file).

6. Go to step 2.

7. The wildcard series is finished;
processing.

3-10

continue with other

(

~

PROCESSING DIRECTORIES AND FILES

The following program segment illustrates this procedure, performing
the ERASE operation. In the ptogram segment, FABADR is a label giving
the address of the FAB for the operations, and RO is used (for the
$STORE and $COMPARE macros) to contain the address of the FAB.

LOOP:

DONE:

$PARSE

MOV
$STORE

$ERASE
$COMPARE
BEQ

BR

JFABADR

JFABADR, RO
tO,FOP,RO

#FABADR
tER$NMF, STS, RO
DONE

LOOP

3.8.3 Selective Wildcard Operations

;Set up for wildcarding

;FAB address to RO
;Use implicit search
; (FB $F ID o ff)
;Try to erase next file
;Was there a matching file?
;No more matching files
;Other in-loop processing
;On to next matching file

;Continue with other
processing

You can write a wildcard loop that performs directory and file
operations on selected matching files, where your program explicitly
performs a SEARCH operation at the beginning of each iteration of the
loop. To do this, do the following:

1. Use the PARSE operation to initialize control block fields
for wildcarding.

2. Use the SEARCH operation to obtain information about the next
file that matches the wildcard specification.

3. Examine the STS field of the FAB. If it contains the ER$NMF
completion status code, there was not another matching file;
in that case, go to step 6.

4. Perform directory and file operations on the found file. If
ERASE, OPEN, REMOVE, or RENAME operations are included, be
sure the FB$FID mask in the 1-word FOP field of the FAB (for
the RENAME operation, the old FAB) is set.

Do not perform CR:ieATE, ENTER, or PARSE operations, or GPEN
operations with the FB$FID mask cleared; these operations
end wildcarding.

Do not perform ERASE, REMOVE, or RENAME operations with the
FB$FID mask cleared; these operations perform an implicit
SEARCH operation, advancing to the next matching file.

5. Go to step 2.

6. The wildcard series is finished;
processing.

continue with other

The follow'ing program segment illustrates the procedure, performing
the ERASE operation on selected files. In the program segment, FABADR

3-11

PROCESSING DIRECTORIES AND FILES

is a label giving the address of the FAB for the operations, and RO is
used (for the $COMPARE macro) to contain the address of the FAB.

$PARSE #FABADR ;Set up for wildcarding

LOOP: $SEARCH #FABADR ;Find next matching file
MOV #FABADR, RO ;FAB address to RO
$COMPARE #ER$NMF, STS, RO ;Any mGre matching files?
BEQ DONE ;No more matching files

;Decide whether to delete
; file (if so, Z-bi t on)

BNE NOOP ;Don't delete file
MOV #FABADR,RO ;FAB address to RO
$SET #FB$FID,FOP,RO ;Explicit SEARCH already done
$ERASE #FABADR ;Erase file contents

NOOP: ;Other in-loop processing
BR LOOP ;On to next matching file

DONE: ;Continue with other
processing

3-12

I
I

\

(

CHAPTER 4

PROCESSING RECORDS AND BLOCKS

This chapter
operations;

describes use of RMS-11
its major sections are:

stream, record, and block

• Completion status

• Streams

• Record processing

• Block processing

4.1 COMPLETION STATUS

A stream, record, or block operation returns a completion status code
in the 1-word STS field of the RAB; it may also return a completion
status value in the 1-word STV field of the RAB.

4.2 STREAMS

A stream is a path from your program to the data in
CONNECT operation establishes a stream; for the
operation that opened the file, your program specified
access or block access.

a file. The
CREATE or OPEN
either record

If it specified record access, the stream is a record stream and
supports only stream operations and record operations; if it
specified block access, the stream is a block stream and supports only
stream operations and block operations.

For the CONNECT operation, your program specifies the FAB for the file
(in the 1-word FAB field of the RAB), and the CONNECT operation
returns an internal stream identifier (in the 1-word ISI field of the
RAB). All stream, block, and record operations (except CONNECT)
identify the file using the internal stream identifier; the
DISCONNECT operation terminates the stream, and clears the internal
stream identifier.

4-1

PROCESSING RECORDS AND BLOCKS

4.3 RECORD PROCESSING

This section describes use of RMS-11 record
subsections are:

processing. Its

• Record streams: the paths from your program to file records

• Record context: the "current location" of a stream in a file

• Record access modes: the ways your program can access records

• Record buffers: the locations of records in your program's
space

• Locate mode: a way of speeding record processing

• Stream operations: stream operations for a record stream

• Reco·rd operations: operations that access records

4.3.1 Record Streams

A record stream is a path from your program to the records in a file.
Your program establishes a record stream when it uses the CONNECT
operation to connect a stream to a file (opened for record access by
an earlier CREATE or OPEN operation). A record stream supports stream
operations and record operations, but not block operations.

If the target file for a stream is a relative or indexed file, your
program can establish more than one stream for the file; if, in
addition, your program specifies access sharing, more than one task
can establish streams for the file.

4.3.2 Record Context

A record stream has a record context, which consists of a
current-record context and a next-record context. Some record
operations use the current record or next record as the target for the
operation; some stream and record operations change the
current-record context, the next-record context, or both.

The notion of "following record" is important to record context
because the next-record context is often established as the record
"following" the current record. The precise meaning of "following
record" depends on the file organization:

• In a sequential file, the record following a given record is
the one immediately following it in physical sequence •.

· • In a relative file, the record following a given record is the
one in the first higher-numbered cell that contains a record.

• In an indexed file, a record follows another only with respect
to an index; each index imposes an order on the file records.
The record following a given record (under a given index) is
the record whose record key is the smallest in the file that
is greater than the record key of the given record; among
records having identical record keys, a record written later
follows a record written earlier.

4-2

PROCESSING RECORDS AND BLOCKS

Note that although an operation may establish the next-record context,
that context is not evaluated until another operation uses it. For
example, if your program connects a stream to a relative file that
contains records only in cells 5 and 10, a sequential access GET
operation returns the record in cell 5 and establishes both
current-record and next-record context; if another stream or task
then inserts a record in cell 7 before your program executes a second
sequential access GET operation, that GET operation returns the new
record (cell 7), even though the record did not exist when the
next-record context was established.

4.3.3 Record Access Modes

The record operations FIND, GET, and PUT allow your program to specify
a record access mode (in the 1-byte RAC field of the RAB); the record
access mode determines the target record for the operation. The
record access modes are:

• Sequential access

• Key access

• RFA access

The next sections discuss these access modes.

4.3.3.1 Sequential Access - Your program specifies sequential access
by setting the RB$SEQ code in the 1-byte RAC field of the RAB. A
sequential access FIND or GET operation has as its target the next
record. (Exception: a sequential access GET operation that
immediately follows any FIND operation has as its target the current
record, which is the record found by the FIND operation.)

The target of a sequential access PUT operation depends on the file
organization, as follows:

• For a sequential file, a series of sequential access put
operations must begin with the next-record context at the
end-of-file. The series of PUT operations adds new records at
the end-of-file.

• For a relative file, a series of sequential access PUT
operations must begin with the next-record context set such
that the first cell examined is empty (unless the RB$UIF mask
in the 1-word ROP field of the RAB is set. The series of PUT
operations adds new records in successive cells; if a
nonempty cell is encountered, the PUT operation returns the
ER$REX completion (unless the RB$UIF mask is set, in which
case the existing record is overwritten).

• For an indexed file, a series of sequential access PUT
operations does not depend on the next-record context;
however, a PUT operation in the series returns the ER$SEQ
completion if the value of the record primary key for the
operation is less than the value of the record primary key for
the preceding PUT operation.

A sequential access FIND or GET operation sets the current-record
context to the target record, and sets the next-record context to the
record following the target record. Sequential access PUT operations
leave both the current-record and next-record contexts undefined.

4-3

PROCESSING RECORDS AND BLOCKS

This targeting and context setting means, generally speaking, that a
series of sequential access operations operates on successive records.
Specifically, series of sequential access operations result as
follows:

• A series of sequential access FIND operations sets the stream
context to successive records.

• A series of sequential access GET operations reads successive
records.

• A series of sequential access PUT operations writes successive
records (for an indexed file, possibly interspersed with
existing records).

• A series of paired sequential access FIND and sequential
access GET operations reads successive records.

4.3.3.2 Key Access - Your program specifies key access by setting the
RB$KEY code in the 1-byte RAC field of the RAB. A key access FIND,
GET, or PUT operation has as its target the record that your program
specifies by specifying the key. For a relative file or for a
sequential disk file with fixed-length records, your program specifies
the key as a relative record number. Specify the relative record
number in the 1-word KBF field of the RAB and the key size as 0 or 4
in the 1-byte KSZ field of the RAB.

For a FIND or GET operation for an indexed file, your program
specifies the index of reference and a key buffer that contains the
record key. Specify the index of reference in the 1-byte KRF field of
the RAB, the address of the key buffer in the 1-word KBF field of the
RAB, and the key size in the 1-byte KSZ field of the RAB.

A key access FIND or GET operation sets the current-record context to
the record that is the target of the operation; a key access PUT
operation leaves the current-record context undefined.

A key access FIND or PUT operation does no~ affect the next-record
context; a key access GET operation sets the next-record context to
the record following the target record.

The target of a key access FIND, GET, or PUT operation depends on the
operation and on the file organization:

• For a relative
fixed-length
specifies the
the relative
specifies the

file or for a sequential disk file with
records, the key is a positive integer and
position of the record in the file. This key is

record number (RRN) for the record; RRN 1
first record, and so forth.

If your program sets the RB$KGT mask in the 1-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose RRN is greater than the given RRN; if it sets the
RB$KGE mask in the 1-word ROP field of the RAB, the operation
searches for a record whose RRN is greater than or equal to
the given RRN; if it sets neither of these masks, the
operation searches for a record with the given RRN.

4-4

PROCESSING RECORDS AND BLOCKS

Note that a FIND, GET, or PUT operation to a relative file or
to a sequential disk file with fixed length records returns
the RRN for the target record in the 2-word BKT field of the
RAB.

• For a FIND or GET operation to an indexed file, the key
specifies a record in the file whose record key matches the
given key. Your program specifies both the key to be matched
and the file index; the key data type must agree with the key
data type for the index (string, packed decimal, binary, or
signed integer) •

For a string key, your program specifies the portion of the
key that must be matched. If the value in the 1-byte KSZ
field of the RAB is nonzero but is smaller than the record
key, then only that smaller initial portion of the key must
match.

If your program sets the RB$KGT mask in the 1-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose key is greater than the given key; if it sets the
RB$KGE mask in the 1-word ROP field of the RAB, the operation
searches for a record whose key is greater than or equal to
the given key; if it sets neither of these masks, the
operation searches for a record whose key exactly matches the
given key.

• For a PUT operation to an indexed file, the key (for each
index) is in the record. The operation has no true target;
the record is inserted at the proper place and each index is
updated.

This targeting and context setting means that although the target of
the key access operation is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use key access to "jump" to a selected point in a
file, then use sequential access to process successive records.

4.3.3.3 RFA Access - Your program specifies RFA access by setting the
RB$RFA code in the 1-byte RAC field of the RAB. An RFA access FIND or
GET operation has as its target the record that your program specifies
by RFA (record file address). (The FIND, GET, and PUT operations
return the RFA for the target record; if your program saves the RFA,
it can use RFA access for the record in subsequent FIND and GET
operations.) Specify the RFA in the 3-word RFA field of the RAB.

An RFA access FIND or GET operation sets the current-record context to
the record that is the target of the operation. An RFA access FIND
operation does not affect the next-record context; an RFA access GET
operation set the next-record context to the record following the
target record.

This targeting and context setting means that although the target of
the RFA access operation is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use RFA access to "jump" to a selected point in a
file, then use sequential access to process successive records.

4-5

PROCESSING RECORDS AND BLOCKS

4.3.4 Record Buffers

A PUT or UPDATE operation transfers a record from a record buffer (in
your program's space) to a file; for a VFC record, the operation also
transfers the fixed-length portion of the record from a separate
record header buffer. Your program specifies the address of the
record buffer in the 1-word RBF field of the RAB and the size of the
record in the 1-word RSZ field of the RAB; for a VFC record, your
program also specifies the address of the record header buffer in the
1-word RHB field of the RAB.

A GET operation transfers a record from a file to an RMS-11 internal
I/O buffer and to a user buffer in your program's space. Your program
specifies the address of the user buffer in the 1-word UBF field of
the RAB and its size in the 1-word USZ field of the RAB. Along with
the record, the GET operation returns the address of the record in the
I-word RBF field of the RAB and its size in the I-word RSZ field of
the RAB.

For a VFC record, a GET operation also transfers the fixed-length
portion of the record to a separate record header buffer in your
program's space. Your program specifies the address of the record
header buffer in the 1-word RHB field of the RAB.

Exception: if your program specifies locate mode for a GET operation,
RMS-11 may not transfer the record to the user buffer; see the next
section for a discussion of locate mode.

4.3.5 Locate Mode

The GET and PUT operations normally use RMS-11 internal I/O buffers as
intermediate storage between your program's buffers (record or user
buffers) and the file. By specifying locate mode for a GET or PUT
operation, your program requests RMS-11 to transfer records only
between its I/O buffers and the file, thus saving time. Your program
specifies locate mode by setting the RB$LOC mask in the 1-word ROP
field of the RAB.

If your program specifies locate mode for a GET operation, RMS-11 may
transfer the record only to its internal I/O buffer (but not to the
user buffer). The GET operation routine decides whether to honor the
locate-mode request or to transfer the record to the user buffer
anyway; the operation returns the address and size of the retrieved
record (informing your program of the record's location -- the user
buffer or the I/O buffer).

If your program specifies locate mode for a
recognizes that the record may already be in
transfers it to the file from there.

PUT operation, RMS-11
its I/O buffer and if so

Your program has (in the I-word RBF field of the RAB) the address of a
location (in the I/O buffer if possible, otherwise in the user buffer)
that is suitable for building the next record; this address is
returned either by a previous locate-mode PUT operation or by an
initial locate-mode CONNECT operation. Therefore, if you use the
CONNECT operation for a stream that will use locate-mode PUT
operations, your program must specify locate mode for the CONNECT
operation, and must specify a user buffer (the address in the 1-word
UBF field of the RAB and the size in the 1-word USZ field of the RAB).

4-6

PROCESSING RECORDS AND BLOCKS

Note that specifying locate mode for a PUT operation has no effect
unless the file is sequential, the access mode is sequential, and the
record format is other than stream record format.

4.3.6 Stream Operations

Stream operations affect stream context and I/0 buffers (but not file
records). The stream operations for a record stream are:

• CONNECT: establish a record stream

• FLUSH: write unwritten buffers for a stream

• FREE: free locked bucket for a stream

• NXTVOL: set stream context to beginning of next volume

• REWIND: set stream context to beginning of current volume

• DISCONNECT: terminate a record stream

The next sections discuss these operations.

4.3.6.1 CONNECT Operation - Your program uses the CONNECT operation
to establish a record stream. (The stream is a record stream because
your program specified record access for the CREATE or OPEN operation
for the file.)

The current-record context after a CONNECT operation is undefined;
the next-record context is (by default) the first record in the file.

For an indexed file, your program must specify an initial index of
reference so that the record context is initialized properly.

For a sequential file, your program can specify that the initial
record context is to be at the end-of-file (instead of the beginning
of the file); in that case, the next-record context after the
operation is the end-of-file.

For a sequential disk file, your program specifies the number of
blocks in the I/O buffer for the stream; for a relative or indexed
file, your program specifies the number of I/O buffers for the stream.

If the stream will use locate-mode PUT operations, your program must
also specify locate mode and supply a user buffer. The CONNECT
operation returns the address of a location suitable for building the
first record to be output; see Section 4.3.5.

4.3.6.2 FLUSH Operation - Your program can use the FLUSH operation to
write any unwritten buffers for a stream (for example, to increase
data integrity by ensuring that all changes have been written to the
file); the FLUSH operation does not affect record context, except
that the current-record context is undefined for a following TRUNCATE
or UPDATE operation to a sequential file.

Note one special case: if the file was opened for deferred writing,
but not for write sharing, then the buffer may be controlled by
another record stream and will not be written by the FLUSH operation.

4-7

PROCESSING RECORDS AND BLOCKS

4.3.6.3 FREE Operation - Your program can use the FREE operation to
free a locked bucket for a stream; the FREE operation does not affect
stream context, except that the current-record context is undefined
for a following DELETE, TRUNCATE, or UPDATE operation.

4.3.6.4 REWIND Operation - Your program can use the REWIND operation
to reset the context for a stream to the beginning-of-file.

The current-record context after the operation is undefined; the
next-record context is the first record in the file; for an indexed
file, your program specifies the index of reference for the operation
so that the stream context is initialized properly.

4.3.6.5 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a record stream, thus recovering the resources
committed for the stream {primarily pool space). The DISCONNECT
operation also discards record context and the internal stream
identifier.

4.3.7 Record Operations

Record operations affect stream context, buffers (I/O,
record), and file records. The record operations are:

user,

• FIND: transfer a record from a file to an I/O buffer

and

• GET: transfer a record from a file to an I/O buffer and to a
user buff er

• PUT: transfer a record from a user buffer to a file

• DELETE: remove a record from a file

• UPDATE: replace a record in a file

• TRUNCATE: remove the current record and all following records
from a sequential file

The next sections discuss these operations.

4.3.7.1 FIND Operation - Your program can use the FIND ~peration to
transfer a record (or part of a record) from a file to an I/O buffer;
the FIND operation does not transfer the record to a user buffer. ·

Your program specifies an access mode (sequential, key, or RFA) for
the FIND operation; Section 4.3.3 describes the target record and
context-setting for the FIND operatiGn (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access, and 4.3.3.3 for RFA access).

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the relative record number (RRN)
and the record file address (RFA) for the found record; for other
files, the FIND operation returns only the RFA for the found record.

4-8

I
\

PROCESSING RECORDS AND BLOCKS

4.3.7.2 GET Operation - Your program can use the GET operation to
transfer a record from a file to an I/O buffer and to a user buffer
(which your program specifies) •

Your program specifies an access mode (sequential, key, or RFA) for
the GET operation; Section 4.3.3 describes the target record and
context-setting for the GET operation (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access, and 4.3.3.3 for RFA access).

The GET operation returns the address and
record, along with its RFA; for a relative
disk file with fixed-length records, the GET
the RRN for the retrieved record.

size of the retrieved
file or for a sequential
operation also returns

If your program specifies locate mode for the GET operation, it must
also specify a user buffer; see Section 4.3.5.

4.3.7.3 PUT Operation - Your program can use the PUT operation to
transfer a record from a user buffer to an I/O buffer and to a file.

Your program specifies an access mode (sequential or key) for the PUT
operation; Section 4.3.3 describes the target record and
context-setting for the PUT operation (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access).

Your program can specify that RMS-11 must honor bucket fill numbers.

For an indexed file, your program can specify that each PUT
in a series is part of a mass insertion; for a relative
program can specify that the PUT operation should overwrite
record (if any).

operation
file, your
the target

The PUT operation returns the RFA for the inserted record; for a
relative file or for a sequential disk file with fixed-lentgh records,
the PUT operation also returns the RRN for the inserted record.

If your program specifies locate mode for the PUT operation, it must
also specify a user buffer. The PUT operation returns the address of
a location suitable for building the next output record; see Section
4.3.5.

4.3.7.4 DELETE Operation - Your program can use the DELETE operation
to remove a record from a relative or indexed file. The target of a
DELETE operation is the current record.

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

For an indexed file, your program can specify that RMS-11 must use the
fast-deletion procedure. However, this procedure is faster because it
deletes only those alternate index pointers that it must; future
retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

4-9

PROCESSING RECORDS AND BLOCKS

4.3.7.5 UPDATE Operation - Your program can use the UPDATE operation
to transfer a record from a user buffer to a file (overwriting the
existing record). The target of the UPDATE operation is the current
record, which is overwritten.

The current-record context after an UPDATE operation is undefined;
the next-record context is unchanged.

Your program specifies the record buffer for the record to be inserted
(and, for a VFC record, the VFC-header buffer).

4.3.7.6 TRUNCATE Operation - Your program can use the TRUNCATE
operation to remove the current record and all following records
(through the end-of-file) from a sequential file. The current-record
context after a TRUNCATE operation is undefined; the next-record
context is the new end-of-file.

4.4 BLOCK PROCESSING

This section describes use of RMS-11
subsections are:

• Block streams: the paths from your

block

program

• Block context: the "current location" of a

• Block access modes: the ways your program

• Block buffers: the locations of blocks
space

processing. Its

to file blocks

stream in a file

can access blocks

in your program's

• Stream operations: stream operations for a block stream

• Block operations: operations that access blocks

4.4.1 Block Streams

A block stream is a path from your program to the blocks in a file.
Your program establishes a block stream when it uses the CONNECT
operation to connect a stream to a file (opened for block access by an
earlier CREATE or OPEN operation). A block stream supports stream
operations and block operations, but not record operations.

4.4.2 Block Context

A block stream has a block context, which consists of a readable-block
context and a writable-block context. The READ operation uses the
readable-block as its target block; the WRITE operation uses the
writable-block as its target block; block operations change both the
readable-block and the writable-block contexts.

For a disk file, your program can use the•READ or WRITE operation to
read or write multiple blocks in a single operation. In that case,
reading or writing begins at the readable block or the writable block
(respectively), and continues through the number of blocks requested.

4-10

PROCESSING RECORDS AND BLOCKS

4.4.3 Block Access Modes

The block operations READ, SPACE, and WRITE allow your program to
specify a block access mode (in the 2-word BKT field of the RAB); the
block access mode determines the target block for the operation. The
block access modes are:

• Sequential access

• VBN access

The next sections discuss these access modes.

4.4.3.l Sequential Access - Your program specifies sequential block
access by giving the value 0 in the 2-word BKT field of the RAB. A
sequential access READ operation has as its target the readable block;
it sets the readable-block context to the next-following unread block,
and sets the writable-block context to the target block (first block
read for that READ operation) •

A sequential access WRITE operation has as its target the writable
block; it sets both the readable-block and writable-block contexts to
the next-following unwritten block.

This targeting and context setting has the following results:

• A series of sequential access READ operations reads successive
blocks

• A series of sequential access WRITE
successive blocks

• A series of paired READ and WRITE
successive blocks

operations

operations

writes

updates

4.4.3.2 VBN Access - A VBN access READ or WRITE operation reads or
writes blocks beginning with a virtual block that your program
specifies. Specify the virtual block number in the 2-word BKT field
of the RAB.

Note that your program can use VBN access to move to a random position
in a disk file, and then use sequential block access to process blocks
sequentially from that point.

4.4.4 Block Buffers

Your program specifies a user buffer for the READ operation; the
operation returns the address of the first-read byte and the number of
bytes read. Specify the address of the user buffer in the 1-word UBF
field of the RAB and its size in the 1-word USZ field of the RAB; the
READ operation returns the address of the first-read byte in the
1-word RBF field of the RAB and the number of bytes read in the 1-word
RSZ field of the RAB.

Your program specifies the buffer containing the writable data for the
WRITE operation. Specify the buffer address in the 1-word RBF field
of the RAB and its size in the 1-word RSZ field of the RAB.

4-11

PROCESSING RECORDS AND BLOCKS

4.4.5 Stream Operations

Stream operations affect stream context and I/O buffers (but not file
blocks). The stream operations for a block stream ar~:

• CONNECT: establish a block stream.

• FLUSH: write unwritten buffers for a stream.

• FREE: free a locked block for a stream.

• DISCONNECT: terminate a block stream.

The next sections discuss these operations.

4.4.5.1. CONNECT Operation - Your program uses the CONNECT operation
to establish a block stream. (The stream is a block stream because
your program specified block access for the CREATE or OPEN operation
for the file.)

After a CONNECT operation, both the readable-block and writable-block
contexts are the 'first block in the file.

4.4.5.2 FREE Operation - Your program can use the FREE operation to
free a locked block for a stream; the FREE operation does not affect
stream context.

4.4.5.3 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a block stream, thus recovering the resources
committed for the stream. The DISCONNECT operation also discards
block context and the internal stream identifier.

4.4.6 Block Operations

Block operations affect stream context, block buffers, and file
blocks. The block operations are:

• READ: transfer blocks from a file to a block buffer

• WRITE: transfer blocks from a block buffer to a file

The next sections discuss these operations.

4.4.6.1 READ Operation - Your program can use the READ operation to
transfer blocks from a file to a block buffer. Your program specifies
an access mode (sequential or VBN) for the READ operation; Section
4.4.3.l describes sequential access; Section 4.4.3.2 describes VBN
access.

4-12

PROCESSING RECORDS AND BLOCKS

4.4.6.2 WRITE Operation - Your program can use the WRITE operation to
transfer blocks from a block buffer to a file. Your program specifies
an access mode (sequential or VBN) for the WRITE operation; Section
4.4.3.1 describes sequential access; Section 4.4.3.2 describes VBN
access.

Note that because the WRITE operation always write to the file
immediately, the FLUSH operation has no use for block access.

4-13

CHAPTER 5

OPERATION MACRO DESCRIPTIONS

This chapter describes RMS-11 operation macros and the operation
routines they call. Each section of the chapter describes an
operation macro and its corresponding operation. (For the $FIND,
$GET, $PUT, $READ, and $WRITE macros, there is a separate description
for each access method.)

Each description is divided into the following parts:

• FORMAT - the format for the macro and its parameters

• CONTROL BLOCKS - the required and optional control blocks for
the operation

• OPTIONS - the options that you can select for the operation,
and the control block fields and values that control the
options

• STREAM CONTEXT - the current-record and next-record contexts
(for a record stream) or the readable-block and writable-block
contexts (for a block stream) after the operation completes

• RETURNED VALUES the values that the operation routine
returns in control block fields and buffers

• CHECKLISTS - a list of the control block fields that you
supply to specify options, and a list of the control block
fields that contain returned values

The operation macros are:

• $CLOSE - Close an open file

• $CONNECT - Connect a record stream to an open file

• $CREATE - Create a new file and open it for processing

• $DELETE - Remove a record from a file

• $DISCONNECT - Disconnect a record stream

• $DISPLAY - Write file data into control block fields

• $ENTER - Enter a file specification into a directory

• $ERASE - Erase an existing file

• $EXTEND - Extend the allocation for an open file

• $FIND - Set the stream context to a record in a file

5-1

OPERATION MACRO DESCRIPTIONS

• $FLUSH - Write any unwritten buffers for a stream

• $FREE - Unlock a bucket locked by a stream

• $GET - Retrieve a record from a file

e $OPEN - Open an existing file

• $PARSE - Write file data into a NAM block

• $PUT - Insert a record into a file

e $READ - Read blocks from a file

e $REMOVE - Delete a file specification from a directory

• $RENAME - Rename an existing file

• $REWIND - Set stream context to beginning-of-file

e $SEARCH - Search directories for a file specification

• $TRUNCATE - Remove all following records from a file

• $UPDATE - Replace a record in a file

• $WRITE - Write blocks into a file

5-2

5.1 $CLOSE MACRO

The $CLOSE macro calls the CLOSE operation routine to close an open
file.

FORMAT

The format for the $CLOSE macro is:

$CLOSE fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the CLOSE operation.

If you supply a PRO block, the CLOSE operation reads its fields to
obtain new owner and protection codes for the file.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the CLOSE
operation, specify the address of the first XAB in the 1-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the 1-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The CLOSE operation reads the internal file identifier for the file
from the 1-word IFI field of the FAB. This identifier was written by
the CREATE or OPEN operation when the file was opened.

File Owner and Protection

If you want to change the owner of the target file, specify the
project (or group) portion of the owner code in the 1-word PRJ field
of the PRO block, and specify the programmer (or member) portion in
the 1-word PRG field of the PRO block; if you specify 0 for both
these fields, the PRO block (including the PRO field) is ignored.

If you want to change the file protection for the target file, specify
the protection code in the 1-word PRO field of the PRO block (and
specify a nonzero value in the PRG or PRJ field); if you specify 0 in
this field, the operating system uses its defaults.

5-3

$CLOSE MACRO

Marking the File for Deletion

If you want the closed file marked for deletion, set the FB$MKD mask
in the 1-word FOP field of the FAB; this causes the operating system
to delete the file as soon as it has no accessing programs.

STREAM CONTEXT

The CLOSE operation destroys stream context for any streams connected
by the closing file (after writing any unwritten buffers for those
streams) •

RETURNED VALUES

Private Buffer Pool

The CLOSE operation writes the address of the private buffer pool (if
any) for the file in the 1-word BPA field of the FAB; if the CLOSE
operation clears the BPA field, the file had no private buffer pool.

If the file had a private buffer pool, the CLOSE operation writes the
size (in bytes) of the pool in the 1-word BPS field of the FAB.

Internal File Identifier

The CLOSE operation clears the 1-word IFI field of the FAB.

Completion Status and Value

The CLOSE operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-1 lists control block fields that are input to the CLOSE
operation. Table 5-2 lists control block fields that are output by
the CLOSE operation.

5-4

(

Block Field

ALL
ALL
DAT
FAB

FAB
FAB
KEY
KEY
PRO
PRO
PRO
PRO
SUM

AID
NXT
NXT
FOP

!FI
XAB
REF
NXT
NXT
PRG
PRJ
PRO
NXT

Block Field

FAB
FAB
FAB
FAB
FAB

BPA
BPS
!FI
STS
STV

Table 5-1: CLOSE Input Fields

Description

Area number
Next XAB address
Next XAB address
File processing option mask

FB$MKD
FB$RWC

Mark file for deletion
Rewind magtape after closing file

Internal FAB identifier
XAB address
Index reference number
Next XAB address
Next XAB address

$CLOSE MACRO

Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code
Next XAB address

Table 5-2: CLOSE Output Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Internal FAB identifier
Completion status code
Completion status value

5-5

5.2 -$CONNECT MACRO

The $CONNECT macro calls the CONNECT operation routine to connect a
record stream to an open file, and initialize the stream context.

FORMAT

The format for the $CONNECT macro is:

$CONNECT rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the CONNECT operation.

You must supply a FAB for the CONNECT operation.

OPTIONS

File Identification

Specify the address of the FAB in the 1-word FAB field of the RAB.
The CONNECT operation reads the internal file identifier for the file
from the 1-word IFI field of the FAB.

I/O Buffers

For a sequential disk file, specify the size (in blocks) of the RMS-11
I/O buffer for the stream in the 1-byte MBC field of the RAB; the
largest legal value is 63. If you specify O, the CONNECT operation
uses a buffer of one block. For a relative file, an indexed file, or
a sequential nondisk file, the CONNECT operation ignores the MBC
field.

For a relative or indexed file, specify the number of I/O buffers for
the stream in the 1-byte MBF field of the RAB. For a sequential file,
specify 0 in the MBF field. If you specify O, the CONNECT operation
uses the minimum number of buffers: one for a sequential or relative
file, or two for an indexed file.

User Buffer (Locate Mode for Sequential File)

If you are connecting to a sequential file, and if you intend to
execute PUT operations in locate mode for the connected stream, then:

• Specify the address of the user buffer in the 1-word UBF field
of the RAB.

• Specify the size (in bytes) of the user buffer in the 1-word
USZ field of the RAB.

• Set the RB$LOC mask in the 1-word ROP field of the RAB.

This assures proper handling of the first PUT operation for the
stream.

5-6

$CONNECT MACRO

Key of Reference (Indexed File)

For an indexed file, specify the key of reference in the 1-byte KRF
field of the RAB. This value specifies the index to be used in
establishing initial record context: 0 for the primary index, l for
the first alternate index, and so forth.

Initial Stream Context (Sequential File)

If you want to initialize the next-record context of a sequential file
to the end-of-file, set the RB$EOF mask in the 1-word ROP field of the
RAB; if you do not set this mask, the CONNECT operation initializes
the next-record context to the first record in the file (or to the
end-of-file if the file is empty) •

STREAM CONTEXT

For a record-access file, the current-record context after a CONNECT
operation is undefined; the next-record context is the first record
in the file (under the specified index for an indexed file), or the
end-of-file, if the file is empty.

For a block-access file, both the readable-block and writable-block
contexts after a CONNECT operation are the first block in the file.

RETURNED VALUES

Internal Stream Identifier

The CONNECT operation writes an internal stream identifier in the
1-word ISI field of the RAB. Do not destroy this identifier; all
other stream, record, and block operation routines read it.

Record Buffer

The CONNECT operation copies the value from the UBF field into the
1-word RBF field of the RAB (the record address); this prepares the
record buffer for your use in case the first record operation for the
stream is a locate-mode PUT operation to a sequential file.

RFA

For block access, the CONNECT operation returns the logical
end-of-file value in the 3-word RFA field of the RAB. The first two
words of this field are the VBN in which the logical end-of-file
occurs, and the third word is the offset of the first byte beyond the
logical end-of-file within that block. This logical end-of-file value
is meaningful only for disk files.

Completion Status and Value

The CONNECT operation returns completion status in the 1-word STS
field of the RAB and returns a completion value in the 1-word STV
field of the RAB. Appendix A lists completion status symbols and
values.

5-7

$CONNECT MACRO

CHECKLISTS

Table 5-3 lists control block fields that are input to the CONNECT
operation. Table 5-4 lists control block fields that are output by
the CONNECT operation.

Block Field

FAB
RAB
RAB
RAB
RAB
RAB

RAB
RAB

IFI
FAB
KRF
MBC
MBF
ROP

UBF
usz

Block Field

RAB
RAB
RAB
RAB
RAB

ISI
RBF
RFA
STS
STV

Table 5-3: CONNECT Input Fields

Description

Internal FAB identifier
FAB address
Key of reference
Multiblock count
Multibuffer count
Record processing option mask

RB$EOF
RB$LOC

Position to end-of-file
Locate mode

User buffer address
User buffer size (bytes)

Table 5-4: CONNECT Output Fields

Description

Internal stream identifier
Record buff er address
End-of-file address
Completion status code
Completion status value

5-8

5.3 $CREATE MACRO

The $CREATE macro calls the CREATE operation routine to create a new
file and open it for processing.

FORMAT

The format for the $CREATE macro is:

$CREATE fabaddr(,erraddr(,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the CREATE operation.

If you supply a NAM block, the CREATE operation reads its fields to
obtain the expanded string buffer, and writes identifiers in its
fields.

To supply a NAM block for the CREATE operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

Each ALL block that you supply defines one area in the created file,
and you can place the area at a specific location. If you supply no
ALL blocks, the file has one area; you define this area in the FAB,
but you cannot place the area at a specific location. You cannot
supply more than one ALL block for a sequential or relative file.

Each KEY block that you supply defines one index for the created file.
You must supply at least one KEY block for an indexed file; you
cannot supply KEY blocks for a ~elative or sequential file.

If you supply a PRO block, the CREATE operation reads its fields to
obtain the protection for the file.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the CREATE
operation, specify the address of the first XAB in the 1-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must
ascending order (by
of the KEY block);
beginning with O.

be together in the chain of XABs, and must be in
the index reference number in the 1-byte REF field
the index reference numbers must be consecutive

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1-byte AID field of the
ALL block); the area identifiers must be consecutive beginning with
o.

Multiple DAT, PRO, or SUM XABs are illegal.

Note that if the LAN field of a KEY XAB is O, RMS-11 will use the area
specified in the IAN field for the lowest level index for that index.

5-9

$CREATE MACRO

OPTIONS

File Specification

The CREATE operation constructs the merged string for the target file
from the file string, the.default string, RMS-11 defaults, and system
defaults.

Specify the address of the file string in the
FAB. Specify the size (in bytes) of the file
field of the FAB; if you specify D in the
operation uses no file string.

Specify the address of the default string in
the FAB. Specify the size (in bytes) of
1-byte DNS field of the FAB; if you specify
CREATE operation uses no default string.

1-word FNA field of the
string in the 1-byte FNS
FNS field, the CREATE

the 1-word DNA field of
the default string in the
D in the DNS field, the

If you set the FB$FID mask in the 1-word FOP field of the FAB and
supply a NAM block, the CREATE operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the CREATE operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

Expanded String Buffer

If you want the CREATE operation to return the expanded string for the
created file, provide a buffer for the string. Specify the address of
the expanded string buffer in the 1-word ESA field of the NAM block
and its size (in bytes) in the !-byte ESS field of the NAM block; if
you specify O in the ESS field, the CREATE operation does not return
the expanded string.

Supersession of Existing File

If you want to create a file that supersedes an existing file with the
same specification, set the FB$SUP mask in the !-word FOP field of the
FAB; if you do not set the FB$SUP mask, and you specify a file that
already exists, the CREATE operation returns an error completion and
does not create the new file.

Temporary or Marked-for-Delete File

If you want the created file to be a temporary file (one that has no
directory entry), set the FB$TMP mask in the 1-word FOP field of the
FAB; if you do not set the FB$TMP mask, the created file has a
directory entry.

If you want the created file to be deleted when it is closed, set the
FB$MKD mask in the !-word FOP field of the FAB; this causes the
operating system to delete the file when it has no accessing programs.
If you do not set the FB$MKD mask, the created file is not marked for
deletion.

5-10

i
\

$CREATE MACRO

If you want the created file to be a temporary file that is marked for
deletion, set the FB$TMD mask in the 1-word FOP field of the FAB; the
FB$TMD mask includes the bits for both the FB$TMP and the FB$MKD
masks.

File Protection

Specify the protection for the created file in the 1-word PRO field of
the PRO block; if you supply no PRO block, the operating system uses
its default file protection.

File Organization

Specify a file organization code in the 1-byte ORG field of the FAB.
The symbols for file organization codes are:

FB$IDX
FB$REL
FB$SEQ

Record Format

Indexed file organization
Relative file organization
Sequential file organization

Specify the record format code in the 1-byte RFM field of the FAB.
The symbols for record format codes are:

FB$FIX
FB$STM
FB$UDF
FB$VAR
FB$VFC

Fixed-length record format
Stream record format
Undefined record format
Variable-length record format
VFC record format

If you specify VFC record format (FB$VFC code in the RFM field),
specify the size (in bytes) of the VFC header field in the 1-byte FSZ
field of the FAB; if you specify O, the CREATE operation uses the
value 2.

Blocked Records (Sequential Disk File)

If you are creating a sequential disk file, and if you want the file
to contain blocked records (records that cannot span block
boundaries), set the FB$BLK mask in the 1-byte RAT field of the FAB;
if you do not set the FB$BLK mask, records can span block boundaries.

Record-Output Handling

Specify a record-output mask in the 1-byte RAT field of the FAB. This
record-output attribute controls the handling of records that are
output to a print device (printer or terminal):

• FORTRAN-style record-output specifies FORTRAN-style
carriage-control handling.

• Carriage-return record-output specifies that a prefixed
linefeed and a suffixed carriage-return must be added to each
record on output to a print device.

5-11

$CREATE MACRO

• The print record-output specifies that the file is in print
format. This format is allowed only for files with VFC
records for which the fixed header size for each record is O
or 2 bytes. (RMS-11 treats a header size of 0 as if you had
specified 2.)

When records from the file are written directly to a
unit-record device, RMS-11 interprets the first byte of the
VFC header as a prefix for the record and the second byte of
the header as a suffix for the record. RMS-11 further
interprets the prefix/suffix control bytes as follows:

- If the top bit of the control byte is clear, the entire byte
is used as a count of the number of carriage return/line
feed pairs with which to prefix or suffix the record.

- If the top bit of the control byte is set, the low 5 bits of
the byte are used as the prefix or suffix character.

If you specify none of these attributes, records are output without
special handling.

The symbols for record-output masks are:

FB$CR
FB$FTN
FB$PRN

Record Size

Add CRLF to print record (LF-record-CR)
FORTRAN-style carriage-control character in record
VFC print record handling

Specify the record size (in bytes) in the 1-word MRS field of the FAB
(unless you have specified undefined record format). For fixed-length
records, the CREATE operation uses this value as the record size; for
variable-length records, the CREATE operation uses this value as the
maximum record size; for VFC records, the CREATE operation uses this
value as the maximum size of the variable portion of each record.

If you specify a nonzero value in the MRS field, RMS-11 checks the
size of each record written to the file against the MRS-field value,
and returns an error completion if the record size is inappropriate;
if you specify 0 in the MRS field, RMS-11 does not check record sizes
against the MRS-field value.

Maximum Record Number

If you specify relative file organization (FB$REL value in the ORG
field), specify the maximum record number in the 2-word MRN field of
the FAB. If you specify a nonzero value in the MRN field, RMS-11
checks the record number of each record written to the file against
the MRN-field value, and returns an error completion if the record
number is too large; if you specify 0 in the MRN field, RMS-11 does
not check record numbers against the MRN-field value.

Private Buffer Pool

If you want the CREATE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the 1-word BPA field of the FAB, and its size
(in bytes) in the 1-word BPS field of the FAB; this size must be a
multiple of 4.

5-12

$CREATE MACRO

If you specify 0 in either the BPA field or the BPS field, the CREATE
operation uses the central buffer pool.

The pool that the CREATE operation uses is also used by the DISPLAY
and EXTEND operations, and by stream and record operations while the
file is open.

Logical Channel

Specify the logical channel for the CREATE operation in the 1-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
o.

The logical channel that the CREATE operation uses is also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Retrieval Pointers

Specify the number of retrieval pointers for the open file in the
1-byte RTV field of the FAB. If you specify O, the CREATE operation
uses the operating system default; if you specify -1, the CREATE
operation maps as much of the file as possible.

Requested Access

Specify one or more requested-access masks in the 1-byte FAC field of
the FAB. This mask determines the access that the creating program
has while the file is open. Regardless of what you specify, the
CREATE operation includes the mask FB$PUT (for record access) or
FB$WRT (for block access). The symbols for requested-access masks
are:

FB$DEL
FB$GET
FB$PUT
FB$REA
FB$TRN
FB$UPD
FB$WRT

Request find/get/delete access
Request find/get access
Request put access
Request block read access
Request find/get/truncate access
Request find/get/update access
Request block write access

Note that FB$REA and FB$WRT override any record access requested.

Access Sharing

Specify the kinds of access that your program is willing to share with
other programs by setting an access-sharing mask in the 1-byte SHR
field of the FAB. The symbols for access-sharing masks are:

FB$GET
FB$NIL
FB$WRI
FB$UPI

Share find/get access
No access sharing
Share find/get/put/update/delete access
Share any access (user-provided interlock)

5-13

$CREATE MACRO

The kinds of access sharing are:

• Shared read access

Your program is willing to allow other programs to read the
file, but not to write it.

• Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has undefined record format
and your program opens the file for block access; shared
write access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,
RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

• No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-11 does, however, allow other
programs to read the file unless your program also requests
some form of write access (which is always the case for
CREATE).

Deferred Writing

If you want deferred buffer writing for the open file, set the FB$DFW
mask in the 1-word FOP field of the FAB; This means that RMS-11 does
not necessarily write its buffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it
needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FB$DFW mask, the DELETE, PUT, and UPDATE
operations write buffers to the file immediately.

Note that record operations always use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to
use deferred writing for a record stream to a relative or indexed
file.

File Locking

If you want the file to remain unlocked even if it is closed
abnormally, set the FB$DLK mask in the 1-word FOP field of the FAB;
if you do not set the FB$DLK mask, the operating system locks the file
if it is closed abnormally.

5-14

$CREATE MACRO

Single-Area Unlocated File

If you want the created file to have only one area, and if you do not
want to place the area at a specific location on disk, then you supply
no ALL blocks for the CREATE operation, but rather specify the
following file attributes in FAB fields (as described in sections
below) :

• File allocation size

• Default file extension size

• File bucket size

• File contiguity

Multiarea or Located File

If you want to place the created file at a specific location on disk,
or if you want a created indexed file to have more than one area, then
you supply ALL blocks for the CREATE operation and you specify the
following area attributes in ALL block fields (as described in
sections below):

• Area allocation size

• Default area extension size

• Area bucket size

• Area contiguity

• Area alignment

• Area location

Specify the area number for each area in the 1-byte AID field of the
ALL block for the area.

Allocation Size

For a single-area unlocated file, specify the file allocation size (in
blocks) in the 2-word ALQ field of the FAB. For a multiarea or
located file, specify the area allocation size (in blocks) in the
2-word ALQ field of the ALL block for each area.

Default Extension Size

For a single-area unlocated file, specify the default extension size
(in blocks) for the file in the 1-word DEQ field of the FAB. For a
multiarea or located file, specify the default extension size (in
blocks) for each area in the 1-word DEQ field of the ALL block for the
area.

5-15

$CREATE MACRO

Bucket Size (Relative or Indexed File)

For a single-area unlocated file, specify the bucket size (in blocks)
for the file in the 1-byte BKS field of the FAB. For a multiarea or
located file, specify the bucket size (in blocks) for each area in the
1-byte BKZ field of the ALL block for the area.

The largest allowed bucket size is 32 blocks; the smallest is O. If
you specify a bucket size of O, the CREATE operation uses 1-block
buckets for the file or area.

Area Location

If you want to place an area at a particular location on disk, specify
an alignment mask in the 1-byte ALN field of the ALL block for the
area. Cylinder alignment (available only for the VAX-11 AME) places
the area at a specified cylinder; logical block alignment places the
area at a specified logical block; virtual block alignment (not
allowed for area 0) places the area near a specified virtual block.
If you specify no alignment mask, the CREATE operation places the area
at any convenient location. The symbols for alignment masks are:

XB$CYL
XB$LBN
XB$VBN

Cylinder alignment
Logical block alignment
Virtual block alignment

Specify the number of the cylinder, logical block, or virtual block in
the 2-word LOC field of the ALL block for the area.

If you do not want the file to be created unless the specified area
location is available, set the XB$HRD mask in the 1-byte AOP field of
the ALL block for the area. If you do not set this mask, the CREATE
operation creates the file even if it must place the area at an
alternate location. Note that hard location at a virtual block
location is illegal.

The CREATE operation creates areas by extending the file if either of
the following is true:

• You specify placement for areas other than area 0 (in which
case the CREATE operation ignores the FB$CTG mask).

• You specify contiguity in one or more ALL blocks, but not in
the FAB for the file.

Otherwise the CREATE operation creates the entire file as a single
operation, and, if you specified contiguity in the FAB, creates the
entire file as a single contiguous extent.

Note also that because virtual block alignment is always possible,
specifying hard location for virtual block alignment has no effect.

Contiguity

If you want a file to be contiguous, set the FB$CTG mask in the 1-word
FOP field of the FAB and (for a multiarea file) do not specify disk
location for any area except (optionally) area O; if the CREATE
operation cannot create a contiguous file, it returns an error
completion; if you do not set this mask, the CREATE operation does
not attempt to create a contiguous file.

5-16

$CREATE MACRO

If you want an area of a multiarea or located file to be contiguous,
set the XB$CTG mask in the 1-byte AOP field of the ALL block for the
area. If you set this mask and the CREATE operation cannot create a
contiguous area, it returns an error completion; if you do not set
this mask, the CREATE operation does not attempt to create a
contiguous area.

Indexes

If you specify indexed file organization (FB$IDX value in the ORG
field), you must supply at least one KEY block for the CREATE
operation. Each KEY block you supply defines one index for the
created file.

Specify the reference number for each index in the 1-byte REF field of
the KEY block for the index. Specify 0 for the primary index, 1 for
the first alternate index, and so forth. Chain KEY blocks so that the
reference numbers are in consecutive order, and so that there are no
intervening XABs of other types (ALL, DAT, PRO, or SUM blocks).

Key Name

If you want to define a key name for the index, place the key name
string in a 32-character buffer. Specify the address of this buffer
in the 1-word KNM field of the KEY block for the index. If you
specify 0 in the KNM field, the index has no key name.

Index Key Data Type

Specify a key data type code in the 1-byte DTP field of the KEY block
for each index. The symbols for key data type codes are:

XB$BN2
XB$BN4
XB$IN2
XB$IN4
XB$PAC
XB$STG

Key Segments

16-bit unsigned integer
32-bit unsigned integer
15-bit signed integer
31-bit signed integer
Packed decimal number
String

Specify the size and position of each key segment in the 8-byte SIZ
field of the KEY block and the 8-word POS field of the KEY block for
the index. (Only a string key can have more than one segment.)

The first byte of the SIZ field is for the size (in bytes) of the
first key segment, the second byte is for the second segment, and so
forth. If the key is to have fewer than eight segments, specify O in
the remaining bytes of the SIZ field. (The CREATE operation does not
check segment sizes after the first 0 it encounters in the SIZ field.)

The first word of the POS field is for the position of the first key
segment, the second word is for the second segment, and so forth. If
the key has fewer than eight segments, the CREATE operation ignores
the remaining words of the POS field. (The first position in a record
is position 0.)

5-17

$CREATE MACRO

Key Changes

For an alternate index, if you want to allow the key to change during
update operations, set the XB$CHG mask in the 1-byte FLG field of the
KEY block and the XB$DUP mask in the 1-byte FLG field of the KEY block
for the index; if you do not set these masks, RMS-11 returns an error
if a program attempts to change the value of a record key during
updating.

Key Duplications

If you want to allow duplicate keys in an index, set the XB$DUP mask
in the 1-byte FLG field of the KEY block for the index. If you do not
set this mask, RMS-11 returns an error if a program attempts to insert
or update a record that would create a duplicate record key. Note
that the XB$DUP mask must be set if record keys in the index are to be
changeable durinq update.

Null Keys

If you want to omit null keys from an alternate index, set the XB$NUL
mask in the 1-byte FLG field of the KEY block for the index, and (for
a string key) specify the null character for the key in the 1-byte NUL
field of the KEY block (the null value for a nonstring key is 0).

If you do not set the XB$NUL mask, all keys are included in the index;
if you set the XB$NUL mask, a nonstring key with a 0 value or a string
key with an all-null value will not appear in that alternate index.

Index Areas

Specify areas for the data records and for the levels of the index:

• The area for data records in the 1-byte DAN field of the KEY
block.

• The area for the lowest index level in the 1-byte LAN field of
the KEY block.

• The area for higher index levels in the 1-byte IAN field of
the KEY block.

Note that the bucket sizes of the LAN and IAN areas of a given index
must be identical.

Bucket Fill Numbers

Bucket fill numbers guide the PUT and UPDATE operations in deciding
how many records to place in each bucket. A bucket fill number of 0
is usually appropriate, and specifies that buckets should be filled
completely.

A nonzero bucket fill number specifies the number of bytes that should
be filled in each bucket. If the specified bucket fill number is less
than half the bucket size, it is rounded up to half the bucket size;
if the specified number is more than the bucket size, it is rounded
down to the bucket size.

5-18

$CREATE MACRO

Specify the fill numbers for data buckets and index buckets: the fill
number for data buckets in the 1-word DFL field of the KEY block, and
the fill number for index buckets in the 1-word IFL field of the KEY
block.

Longest Record Length

If you specify block access for the created file, and you plan to copy
an existing file into the new file, you can specify the length of the
longest record in the new file in the 1-word LRL field of the FAB.

RETURNED VALUES

Internal File Identifier

The CREATE operation writes an internal file identifier in the 1-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier.)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

Device Characteristics

The CREATE operation returns device characteristics as masks in the
1-byte DEV field of the FAB. The device characteristics are:

• Printer or terminal (indicated by the set FB$CCL mask in .the
1-byte DEV field of the FAB and the set FB$REC mask in the
1-byte DEV field of the FAB; for a terminal, the FB$TRM mask
in the 1-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

• Disk, DECtape, or DECTAPE II (indicated by the set FB$MDI mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

• Unit-record device (indicated by the set FB$REC mask in the
1-byte DEV field of the FAB).

• Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1-byte DEV field of the FAB and the set FB$REC
mask in the 1-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

• ANSI-format magtape (indicated by the set FB$SQD mask in the
1-byte DEV field of the FAB).

Device, Directory, and File Identifiers

If you supply a NAM block,
identifier in the 2-word
identifier in the 3-word DID
identifier in the 3-word FID

the CREATE operation writes a device
DVI field of the NAM block, a directory
field of the NAM block, and a file
field of the NAM block.

You must save these identifiers if you want to open (after closing) or
erase the file using its file identifiers.

5-19

$CREATE MACRO

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the CREATE operation writes the file
specification for the created file in this buffer, and writes the
length (in bytes) of the specification string in the 1-byte ESL field
of the NAM block.

File Specification Characteristics

The CREATE operation sets masks in the ·1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

Wildcard ing

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

The CREATE operation clears the NB$WCH mask in the 1-word FNB field of
the NAM block; this shows that no wildcard context exists after the
CREATE operation. It also clears the 1-byte RSL field of the NAM
block to show that no resultant string was returned.

Extension Sizes

The CREATE operation returns the size (in blocks) of each allocation
it makes. If you created only area 0 using FAB fields, the CREATE
operation writes the size of the allocation in the 2-word ALQ field of
the FAB. If you created areas using ALL blocks, the CREATE operation
writes the size of each area allocation in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value

The CREATE operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-5 lists control block fields that are input to the CREATE
operation. Table 5-6 lists control block fields that are output by
the CREATE operation.

5-20

Block Field

ALL
ALL

ALL
ALL

ALL
ALL
ALL
ALL
DAT
FAB
FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
FAB

FAB
FAB
FAB
FAB
FAB
FAB

AID
ALN

ALQ
AOP

BKZ
DEQ
LOC
NXT
NXT
ALQ
BKS
BPA
BPS
DEQ
DNA
DNS
FAC

FNA
FNS
FOP

FSZ
LCH
LRL
MRN
MRS
NAM

$CREATE MACRO

Table 5-5: CREATE Input Fields

Description

Area number
Initial area alignment request

XB$CYL
XB$LBN
XB$VBN

Cylinder alignment
Logical block alignment
Virtual block alignment

Initial area allocation request size (blocks)
Area option mask

XB$CTG
XB$HRD

Contiguous area request
Area hard location request

Area bucket size (blocks)
Area default extension size (blocks)
Initial area location request
Next XAB address
Next XAB address
Initial file allocation request size (blocks)
File bucket size (blocks)
Private buffer pool address
Private buffer pool size (bytes)
Permanent file default extension size (blocks)
Default string address
Default string size (bytes)
Requested access mask

FB$DEL
FB$GET
FB$PUT
FB$REA
FB$TRN
FB$UPD
FB$WRT

Request find/get/delete access
Request find/get access
Request put access
Request block read access
Request find/get/truncate access
Request find/get/update access
Request block write access

File string address
File string size (bytes)
File processing option mask

FB$CTG
FB$DFW
FB$DLK
FB$FID
FB$MKD
FB$SUP
FB$TMD
FB$TMP

Contiguous file request
Defer writing
No file locking on abnormal close
Use information in NAM block
Mark file for deletion
Supersede existing file
Temporary file, mark for deletion
Temporary file

Fixed control area size for VFC records (bytes)
Logical channel number
Longest record length
Maximum record number
Maximum record size (bytes)
NAM block address

(continued on next page)

5-21

$CREATE MACRO

Block Field

FAB

FAB

FAB

FAB
FAB

FAB
KEY
KEY
KEY

KEY

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY

ORG

RAT

RFM

RTV
SHR

XAB
DAN
DFL
DTP

FLG

IAN
!FL
KNM
LAN
NUL
NXT
POS
REF
SIZ

Table 5-5 (cont~): CREATE Input Fields

Description

File organization code

FB$IDX
FB$REL
FB$SEQ

Indexed file organization
Relative file organization
Sequential file organization

Record handling mask

Blocked records FB$BLK
FB$CR
FB$FTN

Add CRLF to print record (LF-record-CR)
FORTRAN-style carriage-control character in
record

FB$PRN VFC print record handling

Record format code

FB$FIX
FB$STM
FB$UDF
FB$VAR
FB$VFC

Fixed-length record format
Stream record format
Undefined record format
Variable-length record format
VFC record format

Retrieval pointer count
Shared access mask

Share find/get access
No access sharing

FB$GET
FB$NIL
FB$WRI Share find/get/put/update/delete access

XAB address
Data area number
Data bucket fill factor
Key data type code

XB$BN2 16-bit unsigned integer
XB$BN4 32-bit unsigned integer
XB$IN2 15-bit signed integer
XB$IN4 31-bit signed integer
XB$PAC Packed decimal number
XB$STG String

Index option mask

XB$DUP
XB$CHG
XB$NUL

Duplicate record keys allowed
Record key changes allowed on update
Null record keys not indexed

Higher level index area number
Index bucket fill factor
Key name buffer address
Lowest index level area number
Null key character
Next XAB address
Key segment positions
Index reference number
Key segment sizes (bytes)

5-22

(continued on next page)

Block Field

NAM ESA.
NAM DID
NAM DVI
NAM ESS
PRO NXT
PRO PRO
SUM NXT

Block Field

ALL
FAB
FAB

FAB
FAB
FAB
NAM
NAM
NAM
NAM
NAM

NAM

ALQ
ALQ
DEV

IFI
STS
STV
DID
DVI
ESL
FID
FNB

RSL

$CREATE MACRO

Table 5-5 (cont.): CREATE Input Fields

Description

Expanded string buff er address
Directory identifier
Dev ice identifier
Expanded string buffer size (bytes)
Next XAB address
File protection code
Next XAB address

Table 5-6: CREATE Output Fields

Description

Initial area allocation size (blocks)
Initial file allocation size (blocks)
Device characteristic mask

FB$CCL
FB$MDI
FB$REC
FB$SDI
FB$SQD
FB$TRM

Carriage-control device
Multidirectory device
Record-oriented device
Single-directory device
Sequential device
Terminal device

Internal FAB identifier
Completion status code
Completion status value
Directory identifier
Device identifier
Expanded string length (bytes)
File identifier
File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA

NB$WTY

NB$WVE

NB$WCH

string
File name in
File type in
File version
string

file string or default string
file string or default string

in file string or default

Wildcard directory in file
default string

string

Wildcard file name in file string
default string
Wildcard file type in file string
default string

or

or

or

Wildcard file version in file string or
default string
Wildcard context established (cleared)

Resultant string length (bytes) (cleared)

5-23

5.4 $DELETE MACRO

The $DELETE macro calls the DELETE operation routine to remove a
record from a relative or indexed file. The target of the DELETE
operation is the current record. The current record must be locked;
it was automatically locked when the current-record context was set,
but you must not have unlocked it with a FREE operation.

If the stream has no current-record context, or if the current record
is not locked, the DELETE operation returns an error completion.

FORMAT

The format for the $DELETE macro is:

$DELETE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the DELETE operation.

OPTIONS

Internal Stream Identifier

The DELETE operation reads the internal stream identifier from the
1-word IS! field of the RAB.

Fast Deletion (Indexed File)

If the file is an indexed file, and if its alternate indexes allow
duplicate keys, then you can speed up the DELETE operation by using
the fast-deletion procedure. However, this procedure is faster
because it deletes only those alternate index pointers that it must;
future retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

To use the fast-deletion procedure with the DELETE operation, set the
RB$FDL mask in the 1-word ROP field of the RAB. If you do not set
this mask, the DELETE operation does not use the fast-deletion
procedure.

STREAM CONTEXT

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

RETURNED VALUES

Completion Status and Value

The DELETE operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

5-24

$DELETE MACRO

CHECKLISTS

Table 5-7 lists control block fields that are input to the DELETE
operation. Table 5-8 lists control block fields that are output by
the DELETE operation.

Block Field

RAB
RAB

ISI
ROP

Block Field

RAB
RAB

STS
STV

Table 5-7: DELETE Input Fields

Description

Internal stream identifier
Record processing option mask

RB$FDL Fast deletion

Table 5-8: DELETE Output Fields

Description

Completion status code
Completion status value

5-25

5.5 $DlSCONNECT MACRO

The $DISCONNECT macro calls the DISCONNECT operation routine to
terminate a stream and disconnect it, releasing the internal resources
it was using. The stream context is lost; you cannot reestablish the
same stream context by reconnecting the stream with the CONNECT
operation.

FORMAT

The format for the $DISCONNECT macro is:

$DISCONNECT rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the DISCONNECT operation.

OPTIONS

Internal Stream Identifier

The DISCONNECT operation reads the internal stream identifier from the
1-word ISI field of the RAB.

STREAM CONTEXT

The DISCONNECT operation terminates the stream; therefore there is no
stream context after the DISCONNECT operation.

RETURNED VALUES

Internal Stream Identifier (Cleared)

The DISCONNECT operation clears the internal stream identifier from
the 1-word ISI field of the RAB.

Completion Status and Value

The DISCONNECT operation returns completion status in the 1-word STS
field of the RAB and returns a completion value in the 1-word STV
field of the RAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-9 lists control block fields that are input to the DISCONNECT
operation. Table 5-10 lists control block fields that are output by
the DISCONNECT operation.

5-26

Block Field

RAB !SI

Block Field

RAB
RAB
RAB

ISI
STS
STV

Table 5-9: DISCONNECT Input Fields

Description

Internal stream identifier

Table 5-10: DISCONNECT Output Fields

Description

Internal stream identifier
Completion status code
Completion status value

5-27

$DISCONNECT MACRO

5.6 $DISPLAY MACRO

The $DISPLAY macro calls the DISPLAY operation routine to write values
into control block fields. The DISPLAY operation does not alter the
file in any way.

When you use the OPEN operation to open a file, you might not know how
many areas or how many indexes the file has. If, however, you supply
a SUM block for the OPEN operation, the OPEN operation writes the
number of areas and number of keys (indexes) in its fields. You can
then supply ALL blocks and KEY blocks so that the DISPLAY operation
can fill their fields with values describing the file areas and
indexes.

FORMAT

The format for the $DISPLAY macro is:

$DISPLAY fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the DISPLAY operation.

If the file is an indexed file, for each ALL block that you supply,
the DISPLAY operation fills its fields with values describing the
corresponding area (if any) of the file. You need not supply an ALL
block for every area of the file. Note that if the file was opened
for block access, no information is returned in ALL blocks.

For each KEY block that you supply, the DISPLAY operation fills its
fields with values describing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of the file.
Note that if the file was opened for block access, no information is
returned in KEY blocks.

If you supply a PRO block, the DISPLAY operation fills its fields with
values showing the owner and protection for the file.

If you supply a DAT block, the DISPLAY operation fills its fields with
values showing the creation date, expiration date, revision date, and
revision number for the file.

If you supply a SUM block for a relative or indexed file, the DISPLAY
operation fills its fields with values showing the number of areas and
indexes for the file, and with its prologue version number. (If you
are opening the file for block access, the DISPLAY operation returns
the number of areas and number of keys as O, and does not return the
prologue version number.)

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the DISPLAY
operation, specify the address of the first XAB in the 1-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the 1-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

5-28

$DISPLAY MACRO

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The DISPLAY operation reads the internal file identifier from the
1-word IFI field of the FAB. This is the value that was written when
the file was opened by the CREATE or OPEN operation.

Key Name Buffer

If you want the key name string for an index returned to a buffer,
supply a KEY block for the index; specify the address of a 32-byte
buffer in the 1-word KNM field of the KEY block. If you do not supply
a KEY block for an index, or if you specify 0 in its KNM field, the
DISPLAY operation does not return the key name string.

STREAM CONTEXT

The DISPLAY operation does not affect stream context.

RETURNED VALUES

Area Descriptions

For each ALL block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding area of the file. Area
0 is described in the ALL block containing 0 in its AID field; area 1
is described in the ALL block containing 1 in its AID field; and so
forth.

size
field

the
(in

The DISPLAY operation writes three sizes for a file area: the
(in blocks) of the unused portion of the area in the 2-word ALQ
of the ALL block, the default area extension size (in blocks) in
1-word DEQ field of the ALL block, and the area bucket size
blocks) in the 1-byte BKZ field of the ALL block.

The DISPLAY operation clears the 1-byte AOP field of the ALL block and
the 1-byte ALN field of the ALL block.

Key Descriptions

For each KEY block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding index of the file. The
primary index is described in the KEY block containing 0 in its REF
field; the first alternate index is described in the KEY block
containing 1 in its REF field; and so forth.

The DISPLAY operation writes the key data type code in the 1-byte DTP
field of the KEY block. The symbols for key data type codes are:

XB$BN2
XB$BN4
XB$IN2

16-bit unsigned integer
32-bit unsigned integer
15-bit signed integer

5-29

$DISPLAY MACRO

XB$IN4
m$~C
XB$STG

31-bit signed integer
Packed decimal number
String

The DISPLAY operation writes key segment information for the index:
the number of key segments in the 1-byte NSG field of the KEY block,
and the total key size (sum of segments, in bytes) in the 1-byte TKS
field of the KEY block.

The DISPLAY operation writes the sizes of key segments in the 8-byte
SIZ field of the KEY block. The size (in bytes) of the first key
segment is in the first byte of the SIZ field, the size of the second
segment is in the second byte of the SIZ field, and so forth. If the
key has fewer than eight segments, the first byte containing 0
indicates the number of key segments.

The DISPLAY operation writes the positions of key segments in the
8-word POS field of the KEY block. The position (leftmost position is
0) of the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth. If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The DISPLAY operation writes a key-characteristics mask in the 1-byte
FLG field of the KEY block. The symbols for key-characteristics masks
are:

m~~
XB$DUP
XB$INI
XB$NUL

Record key changes allowed on update
Duplicate record keys allowed
No entries yet made in index
Null record keys not indexed

The DISPLAY operation writes the null-key character in the 1-byte NUL
field of the KEY block. This character is meaningful only if the
XB$NUL mask in the 1-byte FLG field of the KEY block is set and the
DISPLAY operation returns the XB$STG code in the 1-byte DTP field of
the KEY block (indicating a string key).

The DISPLAY operation writes area numbers for the index: the area for
the data level in the 1-byte DAN field of the KEY block, the area for
the lowest index level in the 1-byte LAN field of the KEY block, and
the area for higher index levels in the 1-byte IAN field of the KEY
block.

The DISPLAY
the fill
block, and
of the KEY

operation writes bucket fill numbers for the index areas:
number for the data area in the 1-word DFL field of the KEY
the fill number for the index areas in the 1-word !FL field
block.

The DISPLAY operation writes bucket sizes for index areas: the data
area bucket size (in blocks) in the 1-byte DBS field of the KEY block,
and the index area bucket size (in blocks) in the 1-byte !BS field of
the KEY block.

The DISPLAY operation writes virtual block numbers for the
areas: the virtual block number for the first data bucket
2-word DVB field of the KEY block, and the virtual block number
root index bucket in the 2-word RVB field of the KEY block.

index
in the
of the

The DISPLAY operation writes the number of levels in the index (not
including the data level) in the 1-byte LVL field of the KEY block.

The DISPLAY operation writes the minimum size (in bytes) of a record
that contains the key for the index in the 1-word MRL field of the KEY
block.

5-30

$DISPLAY MACRO

File Owner and Protection (Disk File)

If the file is a disk file, and if you supply a PRO block, the DISPLAY
operation writes the project (or group) portion of the file owner cod-e
in the 1-word PRJ field of the PRO block, the programmer (or member)
portion of the file owner code in the !-word PRG field of the PRO
block, and the file protection code in the !-word PRO field of the PRO
block.

File Dates

If you supply a DAT block for a disk
writes four values in its fields: the
field of the DAT block, the expiration
the DAT block, the revision date in
block, and the revision number (number
write-accessed and then closed) in
block.

File Summary Information

file, the DISPLAY operation
creation date in the 4-word CDT
date in the 4-word EDT field of
the 4-word RDT field of the DAT
of times the file has been
the !-word RVN field of the DAT

If you supply a SUM block, the DISPLAY operation writes three values
in its fields: the number of file areas in the !-byte NOA field of
the SUM block, the number of file indexes in the 1-byte NOK field of
the SUM block, and the prologue version number (for a relative or
indexed file) in the 1-word PVN field of the SUM block.

Completion Status and Value

The DISPLAY operation returns completion status in the 1-wo~d STS
field of the FAB and returns a completion value in the !-word STV
field of the FAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-11 lists control block fields that are input to the DISPLAY
operation. Table 5-12 lists control block fields that are output by
the DISPLAY operation.

Block Field

ALL
ALL
DAT
FAB
FAB
KEY
KEY
KEY
PRO
SUM

AID
NXT
NXT
IFI
XAB
NXT
KNM
REF
NXT
NXT

Table 5-11: DISPLAY Input Fields

Description

Area number
Next XAB address
Next XAB address
Internal FAB identifier
XAB address
Next XAB address
Key name buffer address
Index reference number
Next XAB address
Next XAB address

5-31

$DISPLAY MACRO

Block Field

ALL
ALL
ALL

ALL
ALL
DAT
DAT
DAT
DAT
FAB
FAB
KEY
KEY
KEY
KEY

KEY
KEY

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
PRO
PRO
PRO
SUM
SUM
SUM

ALN
ALQ
AOP

BKZ
DEQ
CDT
EDT
RDT
RVN
STS
STV
DAN
DBS
DFL
DTP

DVB
FLG

IAN
IBS
IFL
LAN
LVL
MRL
NSG
NUL
POS
RVB
SIZ
TKS
PRG
PRJ
PRO
NOA
NOK
PVN

Table 5-12: DISPLAY Output Fields

Description

Area alignment mask (cleared)
Unused area allocation size (blo6ks)
Area option mask

XB$CTG
XB$HRD

Contiguous area (cleared)
Hard area location (cleared)

Area bucket size (blocks)
Area default extension size (blocks)
File creation date
File expiration date
File revision date
File revision number
Completion status code
Completion status value
Data area number
Data area bucket size (blocks)
Data bucket fill factor
Key data type code

XB$BN2
XB$BN4
XB$IN2
XB$IN4
XB$PAC
XB$STG

16-bit unsigned integer
32-bit unsigned integer
15-bit signed integer
31-bit signed integer
Packed decimal number
String

First data bucket virtual block number
Index option mask

XB$CHG
XB$DUP
XB$INI
XB$NUL

Record key changes allowed on update
Duplicate record keys allowed
No entries yet made in index
Null record keys not indexed

Higher level index area number
Index area bucket size (blocks)
Index bucket fill factor
Lowest index level area number
Number of index l~vels (not including data level)
Minimum length of record containing key (bytes)
Key segment count
Null key character
Key segment positions
Root index bucket virtual block number
Key segment sizes (bytes)
Total key size (sum of key segment sizes) (bytes)
Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code
Number of areas
Number of indexes
Prologue version number

5-32

5.7 $ENTER MACRO

The $ENTER macro calls the ENTER operation routine to insert a file
name into a directory file.

FORMAT

The format for the $ENTER macro is:

$ENTER fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the ENTER operation.

You must supply a NAM block for the ENTER operation.

To supply a NAM block for the ENTER operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

File Specification

The ENTER operation constructs the merged string for the target file
from the file string, the default string, RMS-11 defaults, and system
defaults.

Specify the address of the file string in the 1-word FNA field of the
FAB. Specify the size {in bytes) of the file string in the !-byte FNS
field of the FAB; if you specify 0 in the FNS field, the ENTER
operation uses no file string.

Specify the address of the default string in the 1-word DNA field of
the Fli.B. Specify the size {in bytes) of the default string in the
1-byte DNS field of the FAB; if you specify 0 in the DNS field, the
ENTER operation uses no default string.

Specify the file identifier of the target file in the 3-word FID field
of the NAM block.

If you set the FB$FID mask in the 1-word FOP field of the Fli.B and
supply a NAM block, the ENTER operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

Jn the same circumstance, the ENTER operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

Expanded String Buffer

If you want the ENTER operation to return the expanded string for the
created file, provide a buffer for the string. Specify the address of
the expanded string buffer in the !-word ESA field of the NAM block.
Specify the size {in bytes) of the expanded string buffer in the

5-33

$ENTER MACRO

1-byte ESS field of the NAM block; if you specify 0 in the ESS field,
the ENTER operation does not return the expanded string.

Private Buffer Pool

If you want the ENTER operation to use a private buffer
of the central buffer pool, specify the address of the
private buffer pool in the 1-word BPA field of the FAB,
(in bytes) in the 1-word BPS field of the FAB; this
multiple of 4.

pool instead
(word-aligned)
and its size
size must be a

If you specify 0 in either the BPA field or the BPS field, the ENTER
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the ENTER operation in the 1-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
o.

RETURNED VALUES

Expanded String

If you specified an expanded string buffer, the ENTER operation
returns the expanded string in the buffer, and writes the length (in
bytes) of the string in the 1-byte ESL field of the NAM block.

Device and Directory Identifiers

The ENTER operation returns the device identifier for the target file
in the 2-word DVI field of the NAM block and the directory identifier
in the 3-word DID field of the NAM block.

File Specification Characteristics

The ERASE operation sets masks in the 1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

Wildcarding

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

The ENTER operation clears the NB$WCH mask in the 1-word FNB field of
the NAM block and the 1-byte RSL fi~ld of the NAM block; this shows
that no wildcard context exists and that no resultant string was
returned.

5-34

$ENTER MACRO

Completion Status and Value

The ENTER operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-15 lists control block fields that are input to the ENTER
operation. Table 5-16 lists control block fields that are output by
the ENTER operation.

Block Field

FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
NAM
NAM
NAM
NAM
NAM

BPA
BPS
DNA
DNS
FNA
FNS
FOP

LCH
NAM
DID
DVI
ESA
ESS
FID

Table 5-15: ENTER Input Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Default string address
Default string size (bytes)
File string address
File string size (bytes)
File processing option mask

FB$FID Use information in NAM block

Logical channel number
NAM block address
Directory identifier
Device identifier
Expanded string buffer address
Expanded string buffer size (bytes)
File identifier

5-35

$ENTER MACRO

Block Field

FAB
FAB
NAM
NAM
NAM
NAM

NAM

STS
STV
DID
DVI
ESL
FNB

RSL

Table 5-16: ENTER Output Fields

Description

Completion status code
Completion status value
Directory identifier
Device identifier
Expanded string length (bytes)
File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA

NB$WTY

NB$WVE

NB$WCH

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default
string
File name in
File type in
File version
string

file string or default string
file string or default string

in file string or default

Wildcard directory in file string or
default string
Wildcard file name in file string or
default string
Wildcard file type in file string or
default string
Wildcard file version in file string or
default string
Wildcard context established (cleared)

Resultant string length (bytes) (cleared)

5-36

5.8 $ERASE MACRO

The $ERASE macro calls the ERASE operation routine to erase a file and
delete its directory entry. Note that erasing a file marks the file
for deletion, but does not necessarily erase the file immediately;
the file is erased when it has no accessing programs. The allocation
for the file is released for use in other files.

FORMAT

The format for the $ERASE macro is:

$ERASE fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the ERASE operation.

If you supply a NAM block and specify wildcarding, the ERASE operation
reads the address and length of the expanded string from NAM block
fields; if you supply a NAM block and specify erase by NAM block, the
ERASE operation reads NAM block fields to obtain identifiers for the
target file.

To supply a NAM block for the ERASE operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

Erase by File Specification

If you want to erase a file by its file specification, clear the
FB$FID mask in the 1-word FOP field of the FAB.

If the FB$FID mask is clear, the ERASE operation uses the fully
qualified file specification to determine the target file.

Specify the address of the file string in the
FAB; specify the size (in bytes) of the file
field of the FAB. If you specify 0 in the
operation uses no file string.

1-word FNA field of the
string in the 1-byte FNS

FNS field, the ERASE

Specify the address of the default string in the 1-word DNA field of
the FAB; specify the size (in bytes) of the default string in the
1-byte DNS field of the FAB. If you specify 0 in the DNS field, the
ERASE operation uses no default string.

Erase by NAM Block

If you want to identify the target file by its identifiers, set the
FB$FID mask in the 1-word FOP field of the FAB, and supply a filled-in
NAM block (one whose fields were written by a CREATE or OPEN operation
for the file); this causes the ERASE operation to ignore the file
specification fields (FNA, FNS, DNA, and DNS) and identify the file
usi,ng identifiers in the NAM block: the 2-word DVI field of the NAM
block and the 3-word FID field of the NAM block.

5-37

$ERASE MACRO

You can erase by NAM block without providing
the file identifier is O, the device and
nonzero) override in the normal manner (and
removed).

a file identifier; if
directory identifiers (if
the . directory entry is

Note that erasing a file by its file identifier does not remove the
directory entry (if any) for the file.

Erase by Wildcard Specification

You can use the ERASE operation in a wildcarding program loop. (The
NB$WCH mask in the 1-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FB$FID mask in the 1-word FOP field of the FAB, the
file found by a previous SEARCH oper~tion and its directory entry are
deleted, but all fields relevant to wildcard context are preserved
(for possible subsequent SEARCH operations).

If you clear the FB$FID mask in the 1-word FOP field of the FAB, the
ERASE operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not included in the checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the ERASE operation erases its contents and deletes its
directory entry; if not, the ERASE operation does not erase the file
contents or delete its directory entry, but instead passes control
block data from the SEARCH operation (in particular, the ER$NMF
completion status code and the cleared NB$WCH mask in the 1-word FNB
field of the NAM block).

Expanded String Buffer

If you erase a file by its file specification, and if you want the
ERASE operation to return the expanded string for the erased file,
provide a buffer for the string. Specify the address of the expanded
string. buffer in the 1-word ESA field of the NAM block. Specify the
size (in bytes) of the expanded string buffer in the 1-byte ESS field
of the NAM block; if you specify 0 in the ESS field, the ERASE
operation does not return the expanded string.

Private Buffer Pool

If you want the ERASE operation to use a private buffer
of the central buffer pool, specify the address of the
private buffer pool in the !-word BPA field of the FAB,
(in bytes) in the 1-word BPS field of the FAB; this
multiple of 4.

pool instead
(word-aligned)
and its size
size must be a

If you specify 0 in either the BPA field or the BPS field, the ERASE
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the ERASE operation in the 1-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
a.

5-38

$ERASE MACRO

RETURNED VALUES

Expanded String

If you specify a buffer for the expanded string for the file {ESA and
ESS fields in the NAM block), the ERASE operation writes the expanded
string for the erased file in the buffer, and writes the length {in
bytes) of the string in the 1-byte ESL field of the NAM block.

Device, Directory, and File Identifiers

The ERASE operation returns identifiers: the device identifier in the
2-word DVI field of the NAM block, the directory identifier in the
3-word DID field of the NAM block {unless you specified erase by file
identifier) , and the file identifier in the 3-word FID field of the
NAM block.

Device Characteristics

The ERASE operation returns device characteristics as masks in the
1-byte DEV field of the FAB. The device characteristics are:

• Printer or terminal {indicated by the set FB$CCL mask in the
1-byte DEV field of the FAB and the set FB$REC mask in the
1-byte DEV field of the FAB; for a terminal, the FB$TRM mask
in the 1-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

• Disk, DECtape, or DECTAPE II {indicated by the set FB$MDI.mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

• Unit-record device {indicated by the set FB$REC mask in the
1-byte DEV field of the FAB).

• Non-ANSI magtape or cassette tape {indicated by the set FB$SDI
mask in the 1-byte DEV field of the FAB and the set FB$REC
mask in the 1-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

• ANSI-format magtape {indicated by the set FB$SQD mask in the
1-byte DEV field of the FAB).

Wildcard Context

A nonwildcard ERASE operation clears the NB$WCH mask in
field of the NAM block and the 1-byte RSL field of
this shows that no wildcarding is in progress and that
string was returned.

File Specification Characteristics

the 1-word FNB
the NAM block;

no resultant

The ERASE operation sets masks in the 1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string

5-39

$ERASE MACRO

NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

Completion Status and Value

The ERASE operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-17 lists control block fields that are input to the ERASE
operation. Table 5-18 lists control block fields that are output by
the ERASE operation.

Block Field

FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
NAM
NAM
NAM
NAM
NAM

BPA
BPS
DNA
DNS
FNA
FNS
FOP

LCH
NAM
DVI
ESA
ESS
FID
FNB

Table 5-17: ERASE Input Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Default string address
Default string size (bytes)
File string address
File string size (bytes)
File processing option mask

FB$FID Use information in NAM block

Logical channel number
NAM block address
Device identifier
Expanded string buffer address
Expanded string buffer size (bytes)
File identifier
File specification mask

NB$WCH Wildcard context established

5-40

Block Field

FAB

FAB
FAB
NAM
NAM
NAM
NAM

NAM
NAM

DEV

STS
STV
DID
DVI
ESL
FNB

FID
RSL

$ERASE MACRO

Table 5-18: ERASE Output Fields

Description

Device characteristic mask

FB$CCL
FB$MDI
FB$REC
FB$SDI
FB$SQD
FB$TRM

Carriage-control device
Multidirectory device
Record-oriented device
Single-directory device
Sequential device
Terminal device

Completion status code
Completion status value
Directory identifier
Device identifier
Expanded string length (bytes)
File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA

NB$WTY

NB$WVE

NB$WCH

string
File name in
File type in
File version
string

file string or default string
file string or default string

in file string or default

Wildcard directory in file
default string

string

Wildcard file name in file string
default string
Wildcard file type in file string
default string

or

or

or

Wildcard file version in file string or
default string
Wildcard context established

File id ent if ie r
Resultant string length (bytes)

5-41

5.9 $EXTEND MACRO

The $EXTEND macro calls the EXTEND operation routine to extend the
allocation for an open file.

FORMAT

The format for the $EXTEND macro is:

$EXTEND fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the EXTEND operation.

For each ALL block that you supply, the EXTEND operation extends the
corresponding area as described in the ALL block. You need not supply
an ALL block for an area that you do not want to extend, but each
supplied ALL block must correspond to an area in the file; this means
that you can supply ALL blocks for areas other than area 0 only for an
indexed file opened for record access.

To supply XABs {ALL, DAT, KEY, PRO, and SUM blocks) for the EXTEND
operation, specify the address of the first XAB in the 1-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the 1-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The EXTEND operation reads the internal file identifier from the
1-word IFI field of the FAB. This is the value written by the CREATE
or OPEN operation that opened the file.

Area 0 Extended by FAB

If you supply no ALL blocks, specify the size {in blocks) of the
extension in the 2-word ALQ field of the FAB.

If you want the extension to be contiguous within itself {it will not
necessarily be contiguous with the file), set the FB$CTG mask in the
1-word FOP field of the FAB; if you do not set this mask, the
extension is not necessarily contiguous within itself.

5-42

$EXTEND MACRO

Areas Extended by ALL Blocks

If you supply ALL blocks, the EXTEND operation ignores the ALQ field
of the FAB, and extends each area specified in an ALL block. Specify
each area to be extended by supplying an ALL block with the area
number in the 1-byte AID field of the ALL block. Specify the size of
the extension (in blocks) for the area in the 2-word ALQ field of the
ALL block.

If you want the area extension to be contiguous within
not be contiguous with the previous area extent), set
in the 1-byte AOP field of the ALL block. If you do
mask, the extension will not necessarily be contiguous

itself (it will
the XB$CTG mask
not set this

within itself.

If you want to place the extension at a specific location, specify an
alignment mask in the 1-byte ALN field of the ALL block; if you
specify O, the EXTEND operation places the extension at any convenient
location. The symbols for alignment masks are:

XB$CYL
XB$LBN
XB$VBN

Cylinder alignment
Logical block alignment
Virtual block alignment

Specify the number of the cylinder, logical block, or virtual block in
the 2-word LOC field of the ALL block.

If you specify logical block alignment, and if you want the extension
placed only at the logical block you specify, set the XB$HRD mask in
the 1-byte AOP field of the ALL block. If you do not set this mask,
the EXTEND operation selects an alternate location if the specified
location is not available. If you do set this mask, the EXTEND
operation returns an error completion if the specified location is not
available.

STREAM CONTEXT

The EXTEND operation does not affect stream context.

RETURNED VALUES

Extension Sizes

The EXTEND operation returns the size (in blocks) of each extension it
makes. If you extended only area 0 using FAB fields, the EXTEND
operation writes the size of the extension in the 2-word ALQ field of
the FAB. If you extended areas using ALL blocks, the EXTEND operation
writes the size of each area extension in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value

The EXTEND operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-19 lists control block fields that are input to the EXTEND
operation. Table 5-20 lists control block fields that are output by
the EXTEND operation.

5-43

$EXTEND MACRO

Block Field

ALL
ALL

ALL
ALL

ALL
ALL
DAT
FAB
FAB

FAB
FAB
KEY
PRO
KEY
SUM

AID
ALN

ALQ
AOP

LOC
NXT
NXT
ALQ
FOP

IFI
XAB
NXT
NXT
REF
NXT

Block Field

ALL
FAB
FAB
FAB

ALQ
ALQ
STS
STV

Table 5-19: EXTEND Input Fields

Description

Area number
Area extension alignment request

XB$CYL
XB$LBN
XB$VBN

Cylinder alignment
Logical block alignment
Virtual block alignment

Area allocation extension request size (blocks)
Area option mask

XB$CTG
XB$HRD

Contiguous area extension request
Area extension hard location request

Area extension location request
Next XAB address
Next XAB address
File allocation extension request size (blocks)
File processing option mask

FB$CTG Contiguous file extension request

Internal FAB identifier
XAB address
Next XAB address
Next XAB address
Index reference number
Next XAB address

Table 5-20: EXTEND Output Fields

Description

Area allocation extension actual size (blocks)
File allocation extension actual size (blocks)
Completion status code
Completion status value

5-44

5.10 $FIND MACRO (SEQUENTIAL ACCESS}

The $FIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a file to an I/O buffer. The FIND
operation transfers the entire record if the file is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.

The target of a sequential-access FIND operation is the next record
(for an indexed file, the next record under the current index).

FORMAT

The format for the $FIND macro is:

$FIND rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Sequential Access

Specify the RB$SEQ code in the 1-byte RAC field of the RAB.

STREAM CONTEXT

The current-record context after a sequential access FIND operation is
the found record; the next-record context is the record following the
found record (for an indexed file, the next record under the current
index). If the FIND operation returns an error completion, the
current-record context is undefined, and the next-record context is
unchanged.

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access FIND operation returns the relative
record number (RRN) for the found record in the 2-word BKT field of
the RAB.

5-45

$FIND MACRO (SEQUENTIAL ACCESS)

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RAB.

Completion Status and Value

The FIND operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-21 lists control block fields that are input to the FIND
operation. Table 5-22 lists control block fields that are output by
the FIND operation.

Table 5-21: FIND (Sequential Access) Input Fields

Block Field

RAB
RAB

!SI
RAC

Description

Internal stream identifier
Record access code

RB$SEQ Sequential access

Table 5-22: FIND (Sequential Access) Output Fields

Block Field

RAB
RAB
RAB
RAB

BKT
RFA
STS
STV

Description

Relative record number (RRN)
Record file address
Completion status code
Completion status value

5-46

5.11 $FIND MACRO (KEY ACCESS)

The $FIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a sequential disk file (with fixed-length
records), a relative file, or an indexed file to an I/O buffer. The
FIND operation transfers the entire record if the file is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.

The target of a key-access FIND operation is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the current index.

FORMAT

The format for the $FIND macro is:

$FIND rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Key Access

Specify the RB$KEY code in the 1-byte RAC field of the RAB.

Key of Reference (Indexed File)

Specify the key of reference in the 1-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the FIND operation.

Key

Specify a buffer containing the key for the record to be found:
specify the address of the key buffer in the 1-word KBF field of the
RAB, and specify the size of the key in the 1-byte KSZ field of the
RAB.

For a relative file, or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as O or 4.

5-47

$FIND MACRO (KEY ACCESS)

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); for a
string key, if you specify a key size smaller than the key size for
the index, the FIND operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the 1-word ROP field of the RAB. The
symbols for key-criterion masks are:

RB$KGE
RB$KGT

Greater-than-or-equal key criterion
Greater-than key criterion

If you specify the key-greater criterion, the FIND operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greater-or-equal criterion, the FIND operation
searches for the first record whose key is greater than or equal to
the key you specify; if you specify neither criterion, the FIND
operation searches for a record whose key exactly matches the key you
specify. (It is illegal to specify both criteria.)

STREAM CONTEXT

The current-record context after a key access FIND operation is the
found record; the next-record context is unchanged. If the FIND
operation returns an error completion, the current-record context is
undefined, and the next-record context is unchanged.

RETURNED VALUES

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.

Completion Status and Value

The FIND operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-23 lists control block fields that are input to the FIND
operation. Table 5-24 lists control block fields that are output by
the FIND operation.

5-48

Block Field

RAB
RAB
RAB
RAB
RAB

RAB

!SI
KBF
KRF
KSZ
RAC

ROP

Block Field

RAB
RAB
RAB
RAB

BKT
RFA
STS
STV

$FIND MACRO (KEY ACCESS)

Table 5-23: FIND (Key Access) Input Fields

Description

Internal stream identifier
Key buffer address
Key of reference
Key size (bytes)
Record access code

RB$KEY Key access

Record processing option mask

RB$KGE
RB$KGT

Greater-than-or-equal key criterion
Greater-than key criterion

Table 5-24: FIND (Key Access) Output Fields

Description

Relative record number (RRN)
Record file address
Completion status code
Completion status value

5-49

5.12 $FIND MACRO (RFA ACCESS)

The $FIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a file to an I/O buffer. The FIND
operation transfers the entire file if the file is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.

The target of an RFA-access FIND operation is the record having the
record file address (RFA) you specify.

FORMAT

The format for the $FIND macro is:

$FIND rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
1-word ISI field of the RAB.

RFA Access

Specify the RB$RFA code in the 1-byte RAC field of the RAB.

RFA

Specify the RFA for the record to be found in the 3-word RFA field of
the RAB.

STREAM CONTEXT

The current-record context after an RFA access FIND operation is the
found record (for an indexed file, in the context of the primary
index); the next-record context is unchanged. If the FIND operation
returns an err6r completion, the current-record context is undefined,
and the next-record context is unchanged.

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.

5-50

$FIND MACRO (RFA ACCESS)

Completion Status and Value

The FIND operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-25 lists control block fields that are input to the FIND
operation. Table 5-26 lists control block fields that are output by
the FIND operation.

Block Field

RAB
RAB

RAB

ISI
RAC

RFA

Block Field

RAB
RAB
RAB

BKT
STS
STV

Table 5-25: FIND (RFA Access) Input Fields

Description

Internal stream identifier
Record access code

RB$RFA RFA access

Record file address

Table 5-26: FIND (RFA Access) Output Fields

Description

Relative record number (RRN)
Completion status code
Completion status value

5-51

5.13 $FLUSH MACRO

The $FLUSH macro calls the FLUSH operation routine to write any
unwritten buffers for a stream. The FLUSH operation does not affect
stream context, except that the current-record context is undefined
for a following TRUNCATE or UPDATE operation.

Note one special case: if a file was opened for deferred writing
(FB$DFW set in the FOP field of the FAB for the CREATE or OPEN
operation), and was not opened for write sharing (FB$WRI cleared in
the SHR field of the FAB), then a buffer may be controlled by a
different stream, and it will not be written by the FLUSH operation.

FORMAT

The format for the $FLUSH macro is:

$FLUSH rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FLUSH operation.

OPTIONS

Internal Stream Identifier

The FLUSH operation reads the internal stream identifier from the
!-word ISI field of the RAB.

STREAM CONTEXT

The FLUSH operation does not affect stream context, except that the
current-record context is undefined for a following TRUNCATE or UPDATE
operation.

RETURNED VALUES

Completion Status and Value

The FLUSH operation returns completion status in the !-word STS field
of the RAB and returns a completion- value in the !-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-27 lists control block fields that are input to the FLUSH
operation. Table 5-28 lists control block fields that are output by
the FLUSH operation.

5-52

Block Field

RAB IS!

Block Field

RAB
RAB

STS
STV

Table 5-27: FLUSH Input Fields

Description

Internal stream identifier

Table 5-28: FLUSH Output Fields

Description

Completion status code
Completion status value

5-53

$FI..USH MACRO

5.14 $FREE MACRO

The $FREE macro calls the FREE operation routine to free a locked
bucket for a stream. The FREE operation does not affect stream
context, except that the current-record context is undefined for a
following DELETE, TRUNCATE, or UPDATE operation.

FORMAT

The format for the $FREE macro is:

$FREE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FREE operation.

OPTIONS

Internal Stream Identifier

The FREE operation reads the internal stream identifier from the
!-word ISI field of the RAB.

STREAM CONTEXT

The FREE operation does not affect stream context, except that the
current-record context is undefined for a following DELETE, TRUNCATE,
or UPDATE operation.

RETURNED VALUES

Completion Status and Value

The FREE operation returns completion status in the !-word STS field
of the RAB and returns a completion value in the !-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-29 lists control block fields that are input to the FREE
operation. Table 5-30 lists control block fields that are output by
the FREE operation.

5~4

Block Field

RAB ISI

Block Field

RAB
RAB

STS
STV

Table 5-29: FREE Input Fields

Description

Internal stream identifier

Table 5-30: FREE Output Fields

Description

Completion status code
Completion status value

5-55

$FREE MACRO

5.15 $GET MACRO (SEQUENTIAL ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a file to an I/O buffer and to a user buffer.

The target of a sequential-access GET operation depends on whether the
previous operation was a FIND operation:

• If the previous operation was a FIND operation, the target of
a sequential-access GET operation is the current record.

• If the previous operation was not a FIND operation, the target
of a sequential-access GET operation is the next record (for
an indexed file, the next record under the current index).

FORMAT

The format for the $GET macro is:

$GET rabaddr[,erraddr[,sucaddr)]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the 1-word
IS! field of the RAB.

Sequential Access

Specify the RB$SEQ code in the 1-byte RAC field of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the 1-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1-word
usz field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the 1-word RHB field of
the RAB.

5-56

$GET MACRO (SEQUENTIAL ACCESS)

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RB$LOC mask in the
1-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a sequential access GET operation is
the retrieved record; the next-record context is the record following
the retrieved record.

If the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1-word RBF field of the RAB, and the size (in bytes) of the
record in the 1-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field; if you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/O buffer.

If the file is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

RFA

The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB.

Completion Status and Value

The GET operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.

5-57

$GET MACRO (SEQUENTIAL ACCESS)

CHECKLISTS

Table 5-31 lists control block fields that are input to the GET
operation. Table 5-32 lists control block fields that are output by
the GET operation.

Table 5-31: GET (Sequential Access) Input Fields

Block Field

RAB
RAB

RAB
RAB

RAB
RAB

ISI
RAC

RHB
ROP

UBF
usz

Description

Internal stream identifier
Record access code

RB$SEQ Sequential access

VFC control buffer address
Record processing option mask

RB$LOC Locate mode

User buff er address
User buffer size (bytes)

Table 5-32: GET (Sequential Access) Output Fields

Block Field

RAB
RAB
RAB
RAB
RAB
RAB

BKT
RBF
RFA
RSZ
STS
STV

Description

Relative record number (RRN)
Record buffer address
Record file address
Record size (bytes)
Completion status code
Completion status value

5-58

5.16 $GET MACRO (KEY ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a sequential disk file (with fixed-length records), a relative
file, or an indexed file to an I/O buffer and to a user buffer.

The target of a key-access GET operation is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the current index.

FORMAT

The format for the $GET macro is:

$GET rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the 1-word
ISI field of the RAB.

Key Access

Specify the RB$KEY code in the 1-byte RAC field of the RAB.

Key of Reference (Indexed File)

Specify the key of reference in the 1-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the GET operation.

Key

Specify a buffer containing the key for the record to be retrieved:
specify the address of the key buffer in the 1-word KBF field of the
RAB, and specify the size of the key in the 1-byte KSZ field of the
RAB.

For a relative file or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as 0 or 4.

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); for a
string key, if you specify a key size smaller than the key size for

5-59

$GET MACRO (KEY ACCESS)

the index, the GET operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the 1-word ROP field of the RAB. The
symbols for key-criterion masks are:

RB$KGE
RB$KGT

Greater-than-or-equal key criterion
Greater-than key criterion

If you specify the key-greater criterion, the GET operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greater-or-equal criterion, the GET operation
searches for the first record whose key is greater than or equal to
the key you specify; if you specify neither criterion, the GET
operation searches for a record whose key exactly matches the key you
specify.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the 1-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1-word
USZ field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the 1-word RHB field of
the RAB.

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer) , set the RB$LOC mask in the
1-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a key access GET operation is the
retrieved record; the next-record context is the record following the
retrieved record.

If the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1-word RBF field of the RAB, and the size (in bytes) of the
record in the 1-word RSZ field of the RAB.

5-60

$GET MACRO (KEY ACCESS)

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/O buffer.

If the file is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a key-access GET operation returns the relative record number
(RRN) for the retrieved record in the 2-word BKT field of the RAB.

RFA

The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB.

Completion Status and Value

The GET operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-33 lists control block fields that are input to the GET
operation. Table 5-34 lists control block fields that are output by
the GET operation.

Block Field

RAB
RAB
RAB
RAB
RAB

RAB
RAB

RAB
RAB

ISI
KBF
KRF
KSZ
RAC

RHB
ROP

WF
usz

Table 5-33: GET (Key Access) Input Fields

Description

Internal stream identifier
Key buffer address
Key of reference
Key size (bytes)
Record access code

RB$KEY Key access

VFC control buffer address
Record processing option mask

RB$KGE
RB$KGT
RB$LOC

Greater-than-or-equal key criterion
Greater-than key criterion
Locate mode

User buffer address
User buffer size (bytes)

5-61 .

$GET MACRO (KEY ACCESS)

Block Field

RAB
RAB
RAB
RAB
RAB
RAB

BKT
RBF
RFA
RSZ
STS
STV

Table 5-34: GET (Key Access) Output Fields

Description

Relative record number (RRN)
Record buffer address
Record file address
Record size (bytes)
Completion status code
Completion status value

5-62

5.17 $GET MACRO (RFA ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a file to an I/O buffer and to a user buffer.

The target of an RFA-access GET operation is the record having the
record file address (RFA) you specify.

FORMAT

The format for the $GET macro is:

$GET rabaddr[;erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the 1-word
ISI field of the RAB.

RFA Access

Specify the RB$RFA code in the 1-byte RAC field of the RAB.

RFA

Specify the RFA for the record to be retrieved in the 3-word RFA field
of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the 1-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1-word
USZ field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the 1-word RHB field of
the RAB.

5-63

$GET MACRO (RFA ACCESS)

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer) , set the RB$LOC mask in the
1-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after an RFA access GET operation is the
retrieved record (for an indexed file, in the context of the primary
index); the next-record context is the record following the retrieved
record. If the GET operation returns an error completion, the
current-record context is undefined, and the next-record context is
unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1-word RBF field of the RAB, and the size (in bytes) of the
record in the 1-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/O buffer.

If the file is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, an RFA-a~cess GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

Completion Status and Value

The GET operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-35 lists control block fields that are input to the GET
operation. Table 5-36 lists control block fields that are output by
the GET operation.

5-64

Block Field

RAB
RAB

RAB
RAB
RAB

RAB
RAB

!SI
RAC

RFA
RHB
ROP

UBF
usz

Block Field

RAB
-RAB

RAB
RAB
RAB

BKT
RBF
RSZ
STS
STV

$GET MACRO (RFA ACCESS)

Table 5-35: GET (RFA Access) Input Fields

Description

Internal stream identifier
Record access code

RB$RFA RFA access

Record file address
VFC control buffer address
Record processing option mask

RB$LOC Locate mode

User buffer address
User buffer size (bytes)

Table 5-36: GET (RFA Access) Output Fields

Description

Relative record number (RRN)
Record buffer address
Record size (bytes)
Completion status code
Completion status value

5-65

5.18 $OPEN MACRO

The $OPEN macro calls the OPEN operation routine to open a file for
processing by the calling task.

FORMAT

The format for the $OPEN macro is:

$OPEN fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the OPEN operation.

If you supply a NAM block and specify open by NAM block, the OPEN
operation reads NAM block fields to obtain identifiers for the target
file.

To supply a NAM block for the OPEN operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

For each ALL block that you supply, the OPEN operation fills its
fields with values describing the corresponding area (if any) of the
file. You need not supply an ALL block for every area of the file.
(If you are opening the file for block access, the OPEN operation
writes information describing the file as a whole in the all block for
area 0.)

For each KEY block that you supply, the OPEN operation fills its
fields with values describing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of the file.
(If you are opening the file for block access, the OPEN operation does
not write in KEY blocks.)

If you supply a PRO block for a disk file, the OPEN operation fills
its fields with values showing the owner and protection for the file.

If you supply a DAT block for a disk file, the OPEN operation fills
its fields with values showing the creation date, expiration date,
revision date, and revision number for the file.

If you supply a SUM block for a relative or indexed file, the
operation fills its fields with values showing the number of areas
indexes for the file, and with its prologue version number. (If
are opening the file for block access, the OPEN operation returns
number of areas and number of keys as O, and does not return
prologue version number.)

OPEN
and
you
the
the

This information is especially useful if you do not know how many
areas or keys an indexed file has when you open it. If you supply a
SUM block for the OPEN operation, you can get the number of areas and
number of indexes from its fields, and then supply the correct number
of ALL blocks and KEY blocks for the DISPLAY operation.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the OPEN
operation, specify the address of the first XAB in the 1-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

5-66

$OPEN MACRO

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the 1-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Open by File Specification

If you want to open a file
mask in the 1-word FOP
operation to use the fully
the target file.

by its file specification, clear the FB$FID
field of the FAB; this causes the OPEN

qualified file specification to determine

Specify the address of the file string in the 1-word
FAB; specify the size (in bytes) of the file string
field of the FAB. If you specify 0 in the FNS
operation uses no file string.

FNA field of the
in the 1-byte FNS
field, the OPEN

Specify the address
the FAB; specify
1-byte DNS field of
OPEN operation uses

of the default string in
the size (in bytes) of

the FAB. If you specify
no default string.

the 1-word DNA field of
the default string in the
0 in the DNS field, the

Open by NAM Block

If you want to specify the target file by its identifiers, set the
FB$FID mask in the 1-word FOP field of the FAB, and supply a filled-in
NAM block (one whose fields were written by a CREATE or OPEN operation
for the file); this causes the OPEN operation to use any nonzero
identifiers in the NAM block to override corresponding elements in the
file specification provided.

These identifiers are the device identifier (in the 2-word DVI field
of the NAM block), the directory identifier (in the 3-word DID field
of the NAM block), and the file identifier (in the 3-word FID field of
the NAM block) •

Open with Wildcard Context

If you want to open a file that was found by a wildcard SEARCH
operation (using the FAB and NAM block that the SEARCH operation
used), set the FB$FID mask in the 1-word FOP field of the FAB; this
causes the OPEN operation to open the file without altering wildcard
context.

Expanded String Buffer

If you want the OPEN operation to return the expanded string for the
opened file, provide a buffer for the string. Specify the address of
the expanded string buffer in the 1-word ESA field of the NAM block
and its size (in bytes) in the 1-byte ESS field of the NAM block; if
you specify 0 in the ESS field, the OPEN operation does not return the
expanded string.

5-67

$OPEN MACRO

Key Name Buffer

If you want the key name string for an index returned to a buffer,
supply a KEY block for the index. Specify the index reference number
in the 1-byte REF field of the KEY block, and specify the address of a
32-byte buffer in the 1-word KNM field of the KEY block. If you do
not supply a KEY block for an index, or if you specify 0 in its KNM
field, the OPEN operation does not return the key name string.

While-Open Default Extension Sizes

If you want to override the default extension size for the file while
it is open, specify the while-open default file extension size (in
blocks) in the 1-word DEQ field of the FAB. If you specify O, the
OPEN operation does not establish a while-open default extension size
for the file; instead, it uses the permanent default extension size.

The while-open default extension size for a file remains in force
while the file is open, but does not change the file extension size
established when the file was created.

Private Buffer Pool

If you want the OPEN operation to use a private buffer pool instead of
the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the 1-word BPA field of the FAB, and its size
(in bytes) in the 1-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the OPEN
operation uses the central buffer pool.

The pool that the OPEN operation uses is also used by the DISPLAY and
EXTEND operations, and by stream and record or block operations while
the file is open.

Logical Channel

Specify the logical
field of the FAB.
the logical channel
o.

channel for the OPEN operation in the 1-byte LCH
The logical channel number must not be the same as
number for any already-open file, and must not be

The logical channel that the OPEN operation uses is also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Retrieval Pointers

Specify the number of retrieval pointers for the open file in the
1-byte RTV field of the FAB. If you specify O, the OPEN operation
uses the operating system default; if you specify -1, the CREATE
operation maps as much of the file as possible with each retrieval
pointer.

Requested-Access

Specify one or more requested-access masks in the 1-byte FAC field of
the FAB. This mask determines the access that the opening program has
while the file is open. If you specify no requested-access mask,
find/get access is allowed (the OPEN operation uses the mask FB$GET).

5-68

The symbols for requested-access masks are:

FB$DEL
FB$GET
FB$PUT
FB$REA
FB$TRN
FB$UPD
FB$WRT

Request find/get/delete access
Request find/get access
Request put access
Request block read access
Request find/get/truncate access
Request find/get/update access
Request block write access

$OPEN MACRO

Note that FB$REA and FB$WRT override any record access requested.

Access Sharing

Specify the kinds of access that your program will share with other
programs by setting an access-sharing mask in the 1-byte SHR field of
the FAB. The symbols for access-sharing masks are:

FB$GET
FB$NIL
FB$UPI
FB$WRI

Share find/get access
No access sharing
Share any access (user-provided interlock)
Share find/get/put/update/delete access

The kinds of access sharing are:

• Shared read access

Your program is willing to allow other programs to read the
file, but not to write it.

• Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has undefined record format
and your program opens the file for block access; shared
write access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,
RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

• No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-11 does, however, allow other
programs to read the file unless your program also requests
some form of write access.

• User-provided interlocking

Your program and other cooperating programs define and enforce
their own access interlocking; RMS-11 does not check access
sharing. User-provided interlocking is allowed only if your
program has requested read access for a sequential file;
otherwise, the FB$UPI mask is ignored (but other masks are
honored) •

Deferred Writing

If you want deferred buffer writing for the open file, set the FB$DFW
mask in the 1-word FOP field of the FAB; This means that RMS-11 does
not necessarily write its buffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it

5-69

$OPEN MACRO

needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FB$DFW mask, the DELETE, PUT, and UPDATE
operations write buffers to the file immediately.

Note that record operations always use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to
use deferred writing for a record stream to a relative or indexed
file.

File Locking

If you want the file
abnormally, set the
if you do not set this
is closed abnormally.

RETURNED VALUES

to remain unlocked even if it is closed
FB$DLK mask in the 1-word FOP field of the FAB;
mask, the operating system locks the file if it

Internal File Identifier

The OPEN operation writes an internal file identifier in the 1-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier.)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

Device Characteristics

The OPEN operation returns device characteristics as masks in the
1-byte DEV field of the FAB. The device characteristics are:

• Printer or terminal (indicated by the set FB$CCL mask in the
1-byte DEV field of the FAB and the set FB$REC mask in the
1-byte DEV field of the FAB; for a terminal, the FB$TRM mask
in the 1-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

• Disk, DECtape, or DECTAPE II (indicated by the set FB$MDI mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

• Unit-record device (indicated by the set FB$REC mask in the
1-byte DEV field of the FAB).

• Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1-byte DEV field of the FAB and the set FB$REC
mask in the 1-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

• ANSI-format magtape (indicated by the set FB$SQD mask in the
1-byte DEV field of the FAB).

5-70

$OPEN MACRO

Device, Directory, and File Identifiers

If you supply a NAM block, the OPEN operation writes a device
identifier in the 2-word DVI field of the NAM block, a directory
identifier in the 3-word DID field of the NAM block, and a file
identifier in the 3-word FID field of the NAM block.

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the OPEN operation writes the expanded
string for the opened file in this buffer, and writes the length (in
bytes) of the string in the 1-byte ESL field of the NAM block.

File Alloc~tion, Bucket Size, and Contiguity

The OPEN operation writes the file allocation size (in blocks) in the
2-word ALQ field of the FAB, and the file bucket size or largest area
bucket size (in blocks) in the 1-byte BKS field of the FAB. If the
file is contiguous, the OPEN operation sets the FB$CTG mask in the
1-word FOP field of the FAB.

Extension size

The OPEN operation writes the current default extension size for the
open file in the 1-word DEQ field of the FAB.

File Organization

The OPEN operation writes the file organization code in the 1-byte ORG
field of the FAB. The symbols for file organization codes are:

FB$IDX
FB$REL
FB$SEQ

Record Format

Indexed file organization
Relative file organization
Sequential file organization

The OPEN operation writes the record format code in the 1-byte RFM
field of the FAB. The symbols for record format codes are:

FB$FIX
FB$STM
FB$UDF
FB$VAR
FB$VFC

Fixed-length record format
Stream reco~d format
Undefined record format
Variable-length record format
VFC record format

If the record format is VFC, the OPEN operation writes the size (in
bytes) of the VFC header field in the' 1-byte FSZ field of the FAB;
otherwise it writes 0 in the FSZ field.

5-71

$OPEN MACRO

Blocked Records (Sequential Disk File)

If the file was created specifying blocked records, the OPEN operation
sets the FB$BLK mask in the 1-byte RAT field of the FAB. (The OPEN
operation sets the mask if it was set when the file was created, even
if the file is not a sequential file; preservation of this mask
allows you to copy a sequential file to a file of a different
organization and back without losing the blocked-record
characteristic.)

Record-Output Handling

The OPEN operation writes the record-output mask in the 1-byte RAT
field of the FAB. The symbols for record-output masks are:

FB$CR
FB$FTN
FB$PRN

Add CRLF to print record (LF-record-CR)
FORTRAN-style carriage-control character in record
VFC print record handling

Record Size

The OPEN operation writes the maximum permitted record size (in bytes)
in the 1-word MRS field of the FAB.

Maximum Record Number ·

If the file is a relative file (FB$REL in the ORG field) , the OPEN
operation writes the maximum record number in the 2-word MRN field of
the FAB (unless you are opening the file for block access).

Longest Record Length

The OPEN operation writes the length of the longest record in the file
in the 1-word LRL field of the FAB; this value is meaningful only for
sequential files.

Area Descriptions

For each ALL block that you supply, the OPEN operation writes a
description in its fields of the corresponding area of the file
(unless you are opening the file for block access). Area 0 is
described in the ALL block containing 0 in its AID field, ~rea 1 is
described in the ALL block containing 1 in its AID field, and so
forth.

The OPEN operation writes three sizes for a file area: the size (in
blocks) of the unused portion of the area in the 2-word ALQ field of
the ALL block, the default area extension size (in blocks) in the
1-word DEQ field of the ALL block, and the area bucket size (in
blocks) in the 1-byte BKZ field of the ALL block. (If you are opening
the file for block access, only the ALL block for area 0 is written,
and the ALL block contains the current file allocation size, default
file extension size, and file bucket size.)

5-72

\

/

$OPEN MACRO

The OPEN operation clears the 1-byte ALN field of the ALL block and
the XB$HRD mask in the 1-byte AOP field of the ALL block. If you are
opening a sequential or relative file for record access, the OPEN
operation sets the XB$CTG mask in the 1-byte AOP field of the ALL
block if the file is contiguous; otherwise it clears the entire
1-byte AOP field of the ALL block.

Key Descriptions

For each KEY block that you
description in its fields
(The OPEN operation does not
the file for block access.)

supply, the OPEN operation writes a
of the corresponding index of the file.

write in KEY blocks if you are opening

The primary index is described in the KEY block containing 0 in its
REF field, the first alternate index is described in the KEY block
containing 1 in its REF field, and so forth.

The OPEN operation writes the key data type code in the 1-byte DTP
field of the KEY block. The symbols for key data type codes are:

XB$BN2
XB$BN4
XB$IN2
XB$IN4
XB$PAC
XB$STG

16-bit unsigned integer
32-bit unsigned integer
15-bit signed integer
31-bit signed integer
Packed decimal number
String

The OPEN operation writes the sizes of key segments in the 8-byte SIZ
field of the KEY block. The size (in bytes) of the first key segment
is in the first byte of the SIZ field, the size of the second segment
is in the second byte of the SIZ field, and so forth. If the key has
fewer than eight segments, the first byte containing 0 establishes the
number of key segments.

The OPEN operation writes the positions of key segments in the 8-word
POS field of the KEY block. The position (leftmost position is 0) of
the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth. If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The OPEN operation writes a key flags mask in the 1-byte FLG field of
the KEY block. The symbols for key flags masks are:

XB$CHG
XB$DUP
XB$INI
XB$NUL

Record key changes allowed on update
Duplicate record keys allowed
No entries yet made in index
Null record keys not indexed

The OPEN operation writes the null-key character in the !-byte NUL
field of the KEY block; this character is meaningful only if the
XB$NUL mask in the FLG field is set and if the key is a string key
(XB$STG in the DTP field).

The OPEN operation writes area numbers for the index: the area for
the data level in the 1-byte DAN field of the KEY block, the area for
the lowest index level in the 1-byte LAN field of the KEY block, and
the area for hi~her index levels in the 1-byte IAN field of the KEY
block.

5-73

$OPEN MACRO

The OPEN operation writes bucket fill numbers for the index areas:
the fili number for the data area in the 1-word DFL field of the KEY
block, and the fill number for the index areas in the 1-word IFL field
of the KEY block.

The OPEN operation writes bucket sizes for index areas: the data area
bucket size (in blocks) in the 1-byte DBS field of the KEY block, and
the index area bucket size (in blocks) in the 1-byte IBS field of the
KEY block.

The OPEN operation writes virtual block numbers for the
the virtual block number for the first data bucket in
field of the KEY block, and the virtual block number of
bucket in the 2-word RVB field of the KEY block.

index areas:
the 2-word DVB
the root index

The OPEN operation writes the number of levels in the index (not
including the data level) in the 1-byte LVL field of the KEY block.

The OPEN operation writes the minimum size (in bytes) of a record that
contains the key for the index in the 1-word MRL field of the KEY
block.

The OPEN operation writes key segment information for the index: the
number of key segments in the 1-byte NSG field of the KEY block, and
the total key size (sum of segments, in bytes) in the 1-byte TKS field
of the KEY block.

File Owner and Protection (Disk File}

If the file is a disk file, and if you supply a PRO block, the OPEN
operation writes the project (or group) portion of the file owner code
in the 1-word PRJ field of the PRO block, the programmer (or member)
portion of the file owner code in the 1-word PRG field of the PRO
block, and the file protection code in the 1-word PRO field of the PRO
block.

File Dates

If you supply a DAT block, the OPEN operation writes four values in
its fields: the creation date in the 4-word CDT field of the DAT
block, the expiration date in the 4-word EDT field of the DAT block,
the rev1s1on date in the 4-word ROT field of the DAT block, and the
revision number (number of times the file has been opened for write
access and then closed) in the 1-word RVN field of the DAT block.

File Summary Information

If you supply a SUM block and are opening an indexed file, the OPEN
operation writes three values in its fields: the number of file areas
in the 1-byte NOA field of the SUM block, the number of file indexes
in the 1-byte NOK field of the SUM block, and the prologue version
number (for a relative or indexed file} in the 1-word PVN field of the
SUM bloc!<. (If you are opening the file for block access, the OPEN
operation returns the number of areas and the number of keys as 0, and
does not return the prologue version number.)

5-74

$OPEN MACRO

File Specification Characteristics

The OPEN operation sets masks in the 1-word FNB field of the NAM block
to show which file specification elements were present in the file
string and default string. These masks and their meanings are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
w~w

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

Wildcard Context Information

If you cleared the FB$FID mask, the OPEN operation clears the NB$WCH
mask in the 1-word FNB field of the NAM block and the 1-byte RSL field
of the NAM block; this shows that no wildcard context information
exists after the operation and that no resultant string was returned.
If you set the FB$FID mask, the OPEN operation does not alter the
NB$WCH mask, and (if the NB$WCH mask is set) does not alter the RSL
field.

Completion Status and Value

The OPEN operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-39 lists control block fields that are input to the OPEN
operation. Table 5-40 lists control block fields that are output by
the OPEN operation.

Block Field

ALL AID
ALL NXT
DAT NXT
FAB BPA
FAB B~
FAB DEQ
FAB DNA
FAB DNS

Table 5-39: OPEN Input Fields

Description

Area number
Next XAB address
Next XAB address
Private buffer pool address
Private buffer pool size (bytes)
While-open file default extension size (blocks)
Default string address
Default string size (bytes)

(continued on next page)

5-75

$OPEN MACRO

Block Field

FAB

FAB
FAB
FAB

FAB
FAB
FAB
FAB

FAB
KEY
KEY
KEY
NAM
NAM
NAM
NAM
NAM
NAM

PRO
SUM

FAC

FNA
FNS
FOP

LCH
NAM
RTV
SHR

XAB
KNM
NXT
REF
DID
DVI
ESA
ESS
FID
FNB

NXT
NXT

Table 5-39 (cont.): OPEN Input Fields

Description

Requested access mask

FB$DEL
FB$GET
FB$PUT
FB$REA
FB$TRN
FB$UPD
FB$WRT

Request find/get/delete access
Request find/get access
Request put access
Request block read access
Request find/get/truncate access
Request find/get/update access
Request block write access

File string address
File string size (bytes)
File processing option mask

FB$DFW
FB$DLK
FB$FID

Defer writing
No file locking on abnormal close
Use information in NAM block

Logical channel number
NAM block address
Retrieval pointer count
Shared access mask

FB$GET
FB$NIL
FB$UPI
FB$WRI

Share find/get access
No access sharing
Share any access (user-provided interlock)
Share find/get/put/update/delete access

XAB address
Key name buffer address
Next XAB address
Index reference number
Directory identifier
Device identifier
Expanded string buffer address
Expanded string buffer size (bytes)
File identifier
File specification mask

NB$WCH Wildcard context established

Next XAB address
Next XAB address

5-76

Block Field

ALL
ALL
ALL

ALL
ALL
DAT
DAT
DAT
DAT
FAB
FAB
FAB
FAB

FAB

FAB
FAB
FAB
FAB
FAB
FAB

FAB

ALN
ALQ
AOP

BKZ
DEQ
CDT
EDT
RDT
RVN
ALQ
BKS
DEQ
DEV

FOP

FSZ
!FI
LRL
MRN
MRS
ORG

RAT

Table 5-40: OPEN Output Fields

Description

Area alignment mask
Unused area allocation size (blocks)
Area option mask

XB$CTG
XB$HRD

Contiguous area
Hard area location (cleared)

Area bucket size (blocks)
Area default extension size (blocks)
File creation date
File expiration date
File revision date
File revision number
Current file allocation (blocks)
File bucket size (blocks)

$OPEN MACRO

Current file default extension size (blocks)
Device characteristic mask

FB$CCL
FB$MDI
FB$REC
FB$SDI
FB$SQD
FB$TRM

Carriage-control device
Multidirectory device
Record-oriented device
Single-directory device
Sequential device
Terminal device

File processing option mask

FB$CTG Contiguous file

Fixed control area size for VFC records (bytes)
Internal FAB identifier
Longest record length
Maximum record number
Maximum record size (bytes)
File organization code

FB$SEQ
FB$REL
FB$IDX

Sequential file organization
Relative file organization
Indexed file organization

Record handling mask

FB$BLK
FB$CR
FB$FTN

FB$PRN

Blocked records
Add CRLF to pririt record (LF-record-CR)
FORTRAN-style carriage-control character in
record
VFC print record handling

(continued on next page)

$OPEN MACRO

Block Field

FAB

FAB
FAB
KEY
KEY
KEY
KEY

KEY
KEY

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
NAM
NAM
NAM
NAM

RFM

STS
STV
DAN
DBS
DFL
DTP

DVB
FLG

IAN
IBS
IFL
LAN
LVL
MRL
NSG
NUL
POS
RVB
SIZ
TKS
DID
DVI
ESL
FID

Table 5-40 (cont.): OPEN Output Fields

Description

Record format code

FB$UDF
FB$FIX
FB$VAR
FB$VFC
FB$STM

Undefined record format
Fixed-length record format
Variable-length record format
VFC record format
Stream record format

Completion status code
Completion status value
Data area number
Data area bucket size (blocks)
Data bucket fill factor
Key data type code

XB$BN2
XB$BN4
XB $IN2
XB$IN4
XB$PAC
XB$STG

16-bit unsigned integer
32-bit unsigned integer
15-bit signed integer
31-bit signed integer
Packed decimal number
String

First data bucket virtual block number
Index option mask

XB$CHG
XB$DUP
XB$INI
XB$NUL

Record key changes allowed on update
Duplicate record keys allowed
No entries yet made in index
Null record keys not indexed

Higher level index area number
Index area bucket size (blocks)
Index bucket fill factor
Lowest index level area number
Number of index levels (not including data level)
Minimum length of record containing key (bytes)
Key segment count
Null key character
Key segment positions
Root index bucket virtual block number
Key segment sizes (bytes)
Total key size (sum of key segment sizes) (bytes)
Directory identifier
Device identifi•r
Expanded string length (bytes)
File identifier

5-78

(continued on next page)

Block Field

NAM

PRO
PRO
PRO
SUM
SUM
SUM

FNB

PRG
PRJ
PRO
NOA
NOK
PVN

$OPEN MACRO

Table 5-40 (cont.): OPEN Output Fields

Description

File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA.

NB$WTY

NB$WVE

NB$WCH

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default
string
File name in
File type in
File version
string

file string or default string
file string or default string

in file string or default

Wildcard directory in file
default string

string

Wildcard file name in file string
default string
Wildcard file type in file string
default string

or

or

or

Wildcard file version in file string or
default string
Wildcard context established

Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code
Number of areas
Number of indexes
Prologue version number

5-79

5.19 $PARSE MACRO

The $PARSE macro calls the PARSE operation routine to analyze a file
specification.

FORMAT

The format for .the $PARSE macro is:

$PARSE fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr i~
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the PARSE operation.

If you supply a NAM block for the PARSE operation, the operation
routine writes file information in its fields. This information is
suitable as input to subsequent wildcard SEARCH operations.

To supply a NAM block for the PARSE operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

File Specification

The PARSE operation constructs the merged string for the target file
from the file string, the default string, RMS-11 defaults, and system
defaults.

Specify the address of the file string in the 1-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1-byte FNS
field of the FAB; if you specify 0 in the FNS field, the PARSE
operation uses no file string.

Specify the address of the default string in the 1-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
1-byte DNS field of the FAB; if you specify 0 in the DNS field, the
PARSE operation uses no default string.

Expanded String Buffer

If you want the PARSE operation to return the expanded string for the
file, provide a buffer for the string. If you want subsequent
wildcard SEARCH operations to use the results of the PARSE operation,
you must provide an expanded string buffer.

Specify the address of the expanded string buffer in the 1-word ESA
field of the NAM block. Specify the size (in bytes) of the expanded
string buffer in the 1-byte ESS field of the NAM block; if you
specify 0 in the ESS field, the PARSE operation does not return the
expanded string.

5-80

Private Buffer Pool

If you want the PARSE operation to use a private buffer
of the central buffer pool, specify the address of the
private buffer pool in the I-word BPA field of the FAB,
(in bytes) in the I-word BPS field of the FAB; this
multiple of 4.

$PARSE MACRO

pool instead
(word-aligned)
and its size
size must be a

If you specify 0 in either the BPA field or the BPS field, the PARSE
operation uses the central buffer pool.

Logical Channel

Specify the logical
field of the FAB.
the logical channel
o.

channel for the PARSE operation in the I-byte LCH
The logical channel number must not be the same as
number for any already-open file, and must not be

RETURNED VALUES

Wildcard Initialization

If you supplied a NAM block to be initialized for wildcard SEARCH
operations, the PARSE operation clears several fields: the 3-word DID
field of the NAM block, the I-byte RSL field of the NAM block, the
1-word WCC field of the NAM block, and the 1-word WDI field of the NAM
block. These cleared fields are part of the initialization for
subsequent wildcard SEARCH operations.

The PARSE operation writes a match-pattern (for subsequent wildcard
SEARCH operations) in the expanded string buffer, and writes the
length (in bytes) of the expanded string in the 1-byte ESL field of
the NAM block.

The PARSE operation sets the NB$WCH mask in the 1-word FNB field of
the NAM block, showing that wildcard information in the NAM block is
initialized.

File Specification Characteristics

The PARSE operation sets masks in the 1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

5-81

$PARSE MACRO

Expanded String

If you supply a NAM block, and if the input file specification string
does not contain wildcard characters, the PARSE operation writes the
expanded string in the expanded string buffer; this string is a fully
qualifi~d file specification except that the file version number {if
any) from the input file specification is unchanged.

Completion Status and Value

The PARSE operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-41 lists control block fields that are input to the PARSE
operation. Table 5-42 lists control block fields that are output by
the PARSE operation.

Block Field

FAB
FAB
FAB
FAB
FAB
FAB
FAB
FAB
NAM
NAM

BM
B~

DNA
DNS
FNA
FNS
~H

NAM
ESA
ESS

Table 5-41: PARSE Input Fields

Description

Private buffer pool address
Private buffer pool size {bytes)
Default string address
Default string size (bytes)
File string address
File string size (bytes)
Logical-channel number
NAM block address
Expanded string buffer address
Expanded string buffer size (bytes)

Block Field

FAB
FAB
NAM
NAM
NAM

NAM
NAM
NAM

STS
STV
DID
ESL
FNB

RSL
wee
WDI

Table 5-42: PARSE Output Fields

Description

Completion status code
Completion status value
Directory identifier (cleared)
Expanded string length (bytes)
File specification mask

$PARSE MACRO

NB$NOD Node in file string or default string
NB$DEV Device in file string or default string
NB$DIR Directory in file string or default string
NB$QUO Quoted string in file string or default

string
NB$NAM File name in file string or default string
NB$TYP File type in file string or default string
NB$VER File version in file string

string
NB$WCH Wildcard context established
NB$WDI Wildcard directory in file

default string
NB$WNA Wildcard file name in file

default string
NB$WTY Wildcard file type in file

default string
NB$WVE Wild card file version in file

default string

Resultant string length (bytes) (cleared)
Wildcard context (cleared)
Wildcard directory context (cleared)

5-83

or default

string or

string or

string or

string or

5.20 $PUT MACRO (SEQUENTIAL ACCESS)

The $PUT macro calls the PUT operation routine to transfer a record
from a user buffer to an I/O buffer and to a file.

The target of a sequential-access PUT operation depends on the file
organization:

• For a sequential file, the target of a sequential-access PUT
operation is the end-of-file, and the next-record context must
be the end-of-file.

• For a relative file, the target of a sequential-access PUT
operation is the next cell (as determined by the next-record
context or by the context of an immediately preceding
sequential access PUT operation) •

• For an indexed file, a sequential-access PUT operation has no
target; the PUT operation inserts the record and updates
indexes. If the immediately preceding operation was also a
sequential access PUT operation, the primary key value in your
record must be greater than or equal to the primary key value
of the preceding record.

FORMAT

The format for the $PUT macro is:

$PUT rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the PUT operation.

OPTIONS

Internal Stream Identifier

The PUT operation reads the internal stream identifier from the 1-word
ISI field of the RAB.

Sequential Access

Specify the RB$SEQ code in the 1-byte RAC field of the RAB.

Record

Specify the address of the record to be transferred in the 1-word RBF
field of the RAB, and the size (in bytes) of the record in the 1-word
RSZ field of the RAB.

If the record is in VFC format, specify the address of the
fixed-length portion of the record in the 1-word RHB field of the RAB.
If you specify 0 in this field, the record header will be null-filled.

5-84

$PUT MACRO (SEQUENTIAL ACCESS)

Locate Mode

For a sequential file, if you want the PUT operation to use locate
mode, specify the address of the user buffer in the 1-word UBF field
of the RAB, specify the maximum size of the record for the next PUT
operation in the 1-word USZ field of the RAB, and set the RB$LOC mask
in the 1-word ROP field of the RAB.

The PUT operation returns (in the RBF field) the address of a location
where your program can build the next record for output. The maximum
next record size that you specify in the USZ field determines whether
the next record can fit into an I/O buffer.

Bucket Fill Number Honoring

If you want the PUT operation to honor bucket fill numbers for the
file and its areas, set the RB$LOA mask in the 1-word ROP field of the
RAB. If you do not set this mask, the PUT operation fills buckets
without regard to bucket fill numbers.

Update Existing Record (Relative File)

If you want to transfer the record to a cell in a relative
if the cell contains a record, set the RB$UIF mask in the
field of the RAB. If you do not set this mask, and if
already contains a record, the PUT operation returns
completion and does not transfer the record.

Mass Insertion (Indexed File)

file even
1-word ROP
the cell
an error

For an indexed file, using mass-insertion mode for a series of PUT
operations speeds up the insertion of a series of records. To use
mass-insertion mode for a series of records, set the RB$MAS mask in
the 1-word ROP field of the RAB for each PUT operation in the series.

STREAM CONTEXT

The current-record and next-record contexts after a sequential access
PUT operation are undefined.

RETURNED VALUES

Next Record Buffer

If you specified locate mode for the PUT operation, the PUT operation
returns the address of a location where your program can build the
next record for output in the 1-word RBF field of the RAB. This
address gives a location in the I/O buffer (if there is room for
another record there), or the location of your user buffer (if not).

RRN

For a relative file or for a sequential disk file
records, a sequential-access PUT operation returns
number (RRN) for the inserted record in the 2-word
RAB.

5-85

with fixed-length
the relative record
BKT field of the

$PUT MACRO (SEQUENTIAL ACCESS)

RFA

The PUT operation returns the record file address (RFA) for the
inserted record in the 3-word RFA 'field of the RAB.

Completion Status and Value

The PUT operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-43 lists control block fields that are input to the PUT
operation. Table 5-44 lists control block fields that are output by
the PUT operation.

Table 5-43: PUT (Sequential Access) Input Fields

Block Field

RAB
RAB

RAB
RAB
RAB

RAB
RAB
RAB

!SI
RAC

RBF
RHB
ROP

RSZ
UBF
usz

Description

Internal stream identifier
Record access code

RB$SEQ Sequential access

Record buffer address
VFC control buff er address
Record processing option mask

RB$LOA
RB$LOC
RB$MAS
RB$UIF

Honor bucket fill numbers
Locate mode
Mass insert
Update if record exists

Record size (bytes)
User buffer address
User buffer size (bytes)

Table 5-44: PUT (Sequential Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RFA Record file address
RAB RBF Record buffer address
RAB STS Completion status code
RAB STV Completion status value

5-86

5.21 $PUT MACRO (KEY ACCESS)

The $PUT macro calls the PUT operation routine to transfer a record
from a user buffer to an I/O buffer and to a sequential disk file
(with fixed-length records), a relative file, or an indexed file.

The target of a key-access PUT operation depends on the file
organization:

• For a sequential disk file (with fixed-length records) or a
relative file, the key is a relative record number (RRN), and
the target of a key-access PUT operation is the cell specified
by the RRN.

• For an indexed file, a key-access PUT operation has no target;
the PUT operation inserts the record and updates indexes.

FORMAT

The format for the $PUT macro is:

$PUT rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the PUT operation.

OPTIONS

Internal Stream Identifier

The PUT operation reads the internal stream identifier from the 1-word
IS! field of the RAB.

Key Access

Specify the RB$KEY code in the 1-byte RAC field of the RAB.

Record

Specify the address of the record to be transferred in the 1-word RBF
field of the RAB, and the size (in bytes) of the record in the 1-word
RSZ field of the RAB.

If the record is in VFC format, specify the address of the
fixed-length portion of the record in the 1-word RHB field of the RAB.
If you specify 0 in this field, the record header will be null-filled.

Record Buffer

Specify a record buffer for the PUT operation; specify the address of
the record buffer in the 1-word UBF field of the RAB; specify the
size (in bytes) of the record buffer in the 1-word USZ field of the
RAB.

5-87

$PUT MACRO (KEY ACCESS)

Note that the value in the UBF field will be used (copied to the RBF
field) only if you specify locate mode. A request for locate mode is
otherwise ignored for a key access PUT operation.

RRN

For a relative file or for a sequential disk file with fixed-length
records, specify a 4-byte relative record number (RRN) in the 1-word
KBF field of the RAB, and specify 0 or 4 in the 1-byte KSZ field of
the RAB.

Bucket Fill Number Honoring

If you want the PUT operation to honor bucket fill numbers for the
file and its areas, set the RB$LOA mask in the 1-word ROP field of the
RAB. If you do not set this mask, the PUT operation fills buckets
without regard to bucket fill numbers.

Update Existing Record (Relative File)

If you want to transfer the record to a cell in a relative
if the cell contains a record, set the RB$UIF mask in the
field of the RAB. If you do not set this mask, and if
already contains a record, the PUT operation returns
completion and does not transfer the record.

STREAM CONTEXT

file even
1-word ROP
the cell
an error

The current-record context after a key access PUT operation is
undefined; the next-record context is unchanged.

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, a key-access PUT operation returns the relative record number
(RRN) for the inserted record in the 2-word BKT field of the RAB.

RFA

The PUT operation returns the record file address (RFA) for the
inserted record in the 3-word RFA field of the RAB.

Completion Status and Value

The PUT operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-45 lists control block fields • that are input to the PUT
operation. Table 5-46 lists control block fields that are output by
the PUT operation.

5-88

Block Field

RAB
RAB
RAB
RAB

RAB
RAB
RAB

RAB
RAB
RAB

ISI
KBF
KSZ
RAC

RBF
RHB
ROP

RSZ
UBF
usz

Block Field

RAB
RAB
RAB
RAB
RAB

BKT
RBF
RFA
STS
STV

$PUT MACRO (KEY ACCESS)

Table 5-45: PUT (Key Access) Input Fields

Description

Internal stream identifier
Key buffer address
Key size (bytes)
Record access code

RB$KEY Key access

Record buff er address
VFC control buffer address
Record processing option mask

RB$LOA
RB$LOC
RB$UIF

Honor bucket fill numbers
Locate mode
Update if record exists

Record size (bytes)
User buff er address
User buffer size (bytes)

Table 5-46: PUT (Key Access) Output Fields

Description

Relative record number (RRN)
Record buff er address
Record file address
Completion status code
Completion status value

5-89

5.22 $READ MACRO (SEQUENTIAL ACCESS)

The $READ macro calls the READ operation routine to transfer blocks
from a file to an I/O buffer. The target of a sequential-access READ
operation is the readable block (and, for a multiblock READ operation,
following blocks).

FORMAT

The format for the $READ macro is:

$READ rabaddr[,erraddr[,sucaddr])

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the READ operation.

OPTIONS

Internal Stream Identifier

The READ operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Block Specification

For a sequential-access READ operation, specify 0 in the 2-word BKT
field of the RAB.

User Buffer

Specify the address of the user buffer in the 1-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1-word
USZ field of the RAB.

The READ operation reads enough blocks from the file to fill the
buffer (unless it reached the end-of-file before the buffer is fille
d) •

STREAM CONTEXT

The readable-block context after
following the last-read block;
first-read block.

RETURNED VALUES

Data Blocks

a READ operation is the block
the writable-block context is the

The READ operation returns the address and length of the data read
from the file. The value in the 1-word RBF field of the RAB is the
address of the data read; the value in the 1-word RSZ field of the
RAB is the length (in bytes) of the data read.

5-90

$READ MACRO (SEQUENTIAL ACCESS)

The READ operation normally will not read beyond the logical
end-of-file. For sequential files with undefined (UDF) record format,
however, the READ operation will respect the logical end-of-file
marker only in either of the following situations:

• The file is not accessed for writing and no write-sharing is
allowed.

• The file is accessed for writing and the FB$NIL mask in the
1-byte SHR field of the FAB is set.

If you do not specify no write-sharing, RMS-11 will ignore the logical
end-of-file marker and will stop only at the physical end-of-file on
the disk.

Record File Address (RFA)

The READ operation returns the virtual block number of the first-read
block in the first two words of the 3-word RFA field of the RAB (it
clears the third word).

Completion Status and Value

The READ operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-47 lists control block fields that are input to the READ
operation. Table 5-48 lists control block fields that are output by
the READ operation.

Table 5-47: READ (Sequential Access) Input Fields

Block Field

RAB
RAB

RAB
RAB

B~

ISI

UBF
usz

Description

Virtual block number (VBN)
Internal stream identifier

User buffer address
User buffer size (bytes)

Table 5-48: READ (Sequential Access) Output Fields

Block Field Description

RAB RBF Record buffer address
RAB RFA Virtual block number (2 words)
RAB RSZ Record size (bytes)
RAB STS Completion status code
RAB STV Completion status value

5-91

5.23 $READ MACRO (VBN ACCESS)

The $READ macro calls the READ operation routine to transfer blocks
from a file to an I/O huff er. The target of a VBN-access READ
operation is a specified block (and, for a multiblock READ operation,
following blocks).

FORMAT

The format for the $READ macro is:

$READ rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the READ operation.

OPTIONS

Internal Stream Identifier

The READ operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Block Specification

Specify the virtual block number of the first block to be read in the
2-word BKT field of the RAB.

User Buffer

Specify the address of the user buffer in the 1-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1-word
USZ field of the RAB.

The READ operation reads enough blocks from the file to fill the
buffer (unless it reached the end-of-file before the buffer is fille
d) •

STREAM CONTEXT

The readable-block context
following the last-read
first-read block.

after
block;

a READ operation is the block
the writable-block context is the

RETURNED VALUES

Data Blocks

The READ operation returns the address and length of
from the file. The value in the 1-word RBF field of
address of the data read; the value in the 1-word RSZ
RAB is the length (in bytes) of the data read.

5-92

the data read
the RAB is the
field of the

$READ MACRO (VBN ACCESS)

The READ operation normally will not read beyond the logical
end-of-file. For sequential files with undefined (UDF) record format,
however, the READ operation will respect the logical end-of-file
marker only in either of the following situations:

• The file is not accessed for writing and no write-sharing is
allowed.

• The file is accessed for writing and the FB$NIL mask in the
1-byte SHR field of the FAB is set.

If you do not specify no write-sharing, RMS-11 will ignore the logical
end-of-file marker and will stop only at the physical end-of-file on
the disk.

Record File Address (RFA)

The READ operation returns the virtual block number of the first-read
block in the first two words of the 3-word RFA field of the RAB (it
clears the third word).

Completion Status and Value

The READ operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-49 lists control block fields that are input to the READ
operation. Table 5-50 lists control block fields that are output by
the READ operation.

Block Field

RAB
RAB

RAB
RAB

Block

RAB
RAB
RAB
RAB
RAB

BKT
ISI

UBF
usz

Field

RBF
RFA
RSZ
STS
STV

Table 5-49: READ (VBN Access) Input Fields

Description

Virtual block number (VBN)
Internal stream identifier

User buffer address
User buffer size (bytes)

Table 5-50: READ (VBN Access) Output Fields

Description

Record buffer address
Virtual block number (2 words)
Record size (bytes)
Completion status code
Completion status value

5-93

5.24 $REMOVE MACRO

The $REMOVE macro calls the REMOVE operation routine to remove · the
directory entry for a file.

FORMAT

The format for the $REMOVE macro is:

$REMOVE fabaddr{,erraddr{,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for the REMOVE operation.

If you supply a NAM block and specify remove by NAM block, the REMOVE
operation reads NAM block fields to obtain identifiers for the target
file.

To supply a NAM block for the REMOVE operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

Remove by File Specification

If you want to remove a directory entry by its file specification,
clear the FB$FID mask in the 1-word FOP field of the FAB.

If the FB$FID mask is clear, the REMOVE operation uses the fully
qualified file specification to identify the target file.

Specify the address of the file string in the 1-word FNA field of the
FAB, and specify the size (in bytes) of the file string in the 1-byte
FNS field of the FAB. If you specify 0 in the FNS field, the REMOVE
operation uses no file string.

Specify the address of the default string in the 1-word DNA field of
the FAB, and specify the size (in bytes) of the default string in the
1-byte DNS field of the FAB. If you specify 0 in the DNS field, the
REMOVE operation uses no default string.

Remove by NAM Block

If you want to identify the target file by its identifiers, set the
FB$FID mask in the !-word FOP field of the FAB, and supply a filled-in
NAM block (one whose fields were written by a CREATE, OPEN, or SEARCH
operation).

The REMOVE operation reads the 2-word DVI field of the NAM block and
the 3-word DID field of the NAM block (if nonzero) to override the
corresponding file specification elements in the merged string.

5-94

$REMOVE MACRO

Remove by Wildcard Specification

You can use the REMOVE operation in a wildcarding program loop. (The
NB$WCH mask in the 1-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FB$FID mask in the 1-word FOP field of the FAB, the
file found by a previous SEARCH operation is removed without affecting
fields that are used as context for subsequent SEARCH operations.

If you clear the FB$FID mask in the 1-word FOP field of the FAB, the
REMOVE operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not included in the checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the REMOVE operation removes its directory entry; if
not, the REMOVE operation does not remove a directory entry, but
instead passes control block data from the SEARCH operation (in
particular, the ER$NMF completion status code and the cleared NB$WCH
mask in the !-word FNB field of the NAM block).

Expanded String Buffer

If you want the REMOVE operation to return the expanded string for the
file whose directory entry was removed, provide a buffer for the
string. Specify the address of the expanded string buffer in the
!-word ESA field of the NAM block •. Specify the size (in bytes) of the
expanded string buffer in the 1-byte ESS field of the NAM block; if
you specify 0 in the ESS field, the REMOVE operation does not rl'!turn
the expanded string.

Private Buffer Pool

If you want the REMOVE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the !-word BPA field of the FAB, and its size
(in bytes) in the !-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the REMOVE
operation uses the central buffer pool.

Logical Channel

Specify the logical
field of the FAB.
the logical channel
o.

channel for the REMOVE operation in the 1-byte LCH
The logical channel number must not be the same as
number for any already-open file, and must not be

RETURNED VALUES

Device, Directory, and File Identifiers

If you supply a NAM block,
identifier in the 2-word
identifier in the 3-word DID
identifier in the 3-word FID

the REMOVE operation writes a device
DVI field of the NAM block, a directory
field of the NAM block, and a file
field of the NAM block.

5-95

$REMOVE MACRO

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the REMOVE operation writes the expanded
string for the target file in this buffer, and writes the length (in
bytes) of the string in the 1-byte ESL field of the NAM block.

File Specification Characteristics

The REMOVE operation sets the masks in the 1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string.

These masks and their meaning are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

Wildcarding

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

The REMOVE operation clears the NB$WCH mask in the 1-word FNB field of
the NAM block; this shows that no wildcard context exists after the
REMOVE operation. It also clears the 1-byte RSL field of the NAM
block to show that no resultant string was returned.

Completion Status and Value

The REMOVE operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-53 lists control block fields that are input to the REMOVE
operation. Table 5-54 lists control block fields that are output by
the REMOVE operation.

5-96

Block Field

FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
NAM
NAM
NAM
NAM
NAM

BPA
BPS
DNA
DNS
FNA
FNS
FOP

LCH
NAM
DVI
ESA
ESS
FID
FNB

Block Field

FAB
FAB
NAM
NAM
NAM
NAM
NAM

NAM

STS
STV
DID
DVI
ESL
FID
FNB

RSL

$REMOVE MACRO

Table 5-53: REMOVE Input Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Default string address
Default string size (bytes)
File string address
File string size (bytes)
File processing option mask

FB$FID Use information in NAM block

Logical channel number
NAM block address
Device identifier
Expanded string buffer address
Expanded string buffer size (bytes)
File identifier
File specification mask

NB$WCH Wildcard context established

Table 5-54: REMOVE Output Fields

Description

Completion status code
Completion status value
Directory identifier
Device identifier
Expanded string length (bytes)
File identifier
File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA

NB$WTY

NB$WVE

NB$WCH

string
File name in
File type in
File version
string

file string or default string
file string or default string

in file string or default

Wildcard directory in file
default string

string

Wildcard file name in file string
default string
Wildcard file type in file string
default string

or

or

or

Wildcard file version in file string or
default string
Wildcard context established (cleared)

Resultant string length (bytes)

5-97

5.25 $RENAME MACRO

The $RENAME macro calls the RENAME operation routine to change the
directory entry for a file.

The old and new entries (file specifications) must have the same
device specification.

FORMAT

The format for the $RENAME macro is:

$RENAME oldfabaddr,[erraddr] ,[sucaddr] ,newfabaddr

where oldfabaddr is the address of the FAB for the operation; erraddr
is the address of the error handler for the operation; sucaddr is the
address of the success handler for the operation; and newfabaddr is
the address of the FAB giving the new file specification.

CONTROL BLOCKS

.You must supply two FABs for the RENAME operation: an "old" FAB
containing the current specification for the file, and a "new" FAB
containing the new specification for the file.

If. you supply a NAM block for the old FAB (old NAM block) and specify
either rename by NAM block or wildcarding, the RENAME operation reads
its fields to obtain identifiers for the old file specification. If
yo.u supply a NAM block for the new FAB (new NAM block) and specify
rename by NAM block, the RENAME operation reads its fields to obtain
identifiers for the new file specification.

To supply a NAM block for the RENAME operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

Old File Specification (Nonwildcard RENAME Operation)

If the NB$WCH mask in the 1-word FNB field of the NAM block is cleared
(nonwildcard RENAME operation), the RENAME operation uses the merged
string to identify the target file.

Specify the old file string in the old FAB: specify the address of
the old file string in the 1-word FNA field of the FAB, and specify
the size (in bytes) of the old file string in the 1-byte FNS field of
the FAB. If you specify 0 in the FNS field, the RENAME operation uses
no old file string.

Specify the old default string in the old FAB: specify the address of
the old default string in the 1-word DNA field of the FAB, and specify
the size (in- bytes) of the old default string in the 1-byte DNS field
of the FAB. If you specify 0 in the DNS field, the RENAME operation
uses no old default string.

If you set the FB$FID mask in the 1-word FOP field of the FAB and
supply a NAM block, the RENAME operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

5-98

$RENAME MACRO

In the same circumstance, the RENAME operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

Old File Specification (Wildcard RENAME Operation)

You can use the RENAME operation in a wildcarding program loop. (The
NB$WCH mask in the 1-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FB$FID mask in the 1-word FOP field of the FAB, the
file found by a previous SEARCH operation is renamed without affecting
fields that are used as context for subsequent SEARCH operations.

If you clear the FB$FID mask in the 1-word FOP field of the FAB, the
RENAME operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not included in the checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the RENAME operation replaces its directory entry; if
not, the RENAME operation does not replace a directory entry, but
instead passes control block data from the SEARCH operation (in
particular, the ER$NMF completion status code and the cleared NB$WCH
mask in the 1-word FNB field of the NAM block).

New File Specification

The RENAME operation uses the new merged string to identify the target
file.

Specify the address of the new file string in the 1-word FNA field of
the FAB and specify the size (in bytes) of the new file string in the
1-byte FNS field of the FAB. If you specify 0 in the FNS field, the
RENAME operation uses no new file string.

Specify the address of the new default string in the 1-word DNA field
of the FAB and specify the size (in bytes) of the new default string
in the 1-byte DNS field of the FAB. If you specify 0 in the DNS
field, the RENAME operation uses no new default string.

If you set the FB$FID mask in the 1-word FOP field of the FAB and
supply a NAM block, the RENAME operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the RENAME operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

Private Buffer Pool

If you want the RENAME operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the 1-word BPA field of the FAB, and its size
(in bytes) in the 1-word BPS field of the FAB; this size must be a
multiple of 4.

5-99

$RENAME MACRO

If you specify 0 in either the BPA field or the BPS field, the RENAME
operation uses the central buffer pool.

Logical Channel

Specify the logical
field of the FAB.
the logical channel
0.

channel for the RENAME operation in the 1-byte LCH
The logical channel number must not be the same as
number for any already-open file, and must not be

Expanded String Buffers

If you want the expanded string for the file given by a FAB returned
to a buffer, supply a NAM block for the FAB. Specify the address of
the buffer in the 1-word ESA field of the NAM block, and the size (in
bytes) of the buffer in the 1-byte ESS field of the NAM block. If you
do not supply a NAM block for a FAB, or if you specify 0 in the ESS
field, the RENAME operation does not return the expanded string.

RETURNED VALUES

Expanded Strings

If you
fields
string
in the

specify a buffer for the expanded string for a FAB (ESA and ESS
in the NAM block), the RENAME operation writes the expanded

in the buffer, and writes the length (in bytes) of the string
1-byte ESL field of the NAM block.

Device, Directory, and File Identifiers

If you supply a NAM block,
identifier in the 2-word
identifier in the 3-word DID
identifier in the 3-word FID

the RENAME operation writes a device
DVI field of the NAM block, a directory
field of the NAM block, and a file
field of the NAM block.

File Specification Characteristics

The RENAME operation sets masks in the 1-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string.

These masks and their meaning are:

NB$NOD
NB$DEV
NB$DIR
NB$QUO
NB$NAM
NB$TYP
NB$VER
NB$WDI
NB$WNA
NB$WTY
NB$WVE

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default string
File name in file string or default string
File type in file string or default string
File version in file string or default string
Wildcard directory in file string or default string
Wildcard file name in file string or default string
Wildcard file type in file string or default string
Wildcard file version in file string or default string

5-100

$RENAME MACRO

Wildcarding

The RENAME operation clears the NB$WCH mask in the 1-word FNB field of
the NAM block; this shows that no wildcard context exists after the
RENAME operation. It also clears the 1-byte RSL field of the NAM
block to show that no resultant string was returned.

Completion Status and Value

The RENAME operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-55 lists control block fields that are input to the RENAME
operation. Table 5-56 lists control block fields that are output by
the RENAME operation.

Block Field

FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
NAM
NAM
NAM
NAM
NAM

BAA
B~

DNA
DNS
FNA
FNS
FOP

~H

NAM
DID
DVI
ESA
ESS
FNB

Table 5-55: RENAME Input Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Default string address
Default string size (bytes)
File string address
File string size (bytes)
File processing option mask

FB$FID Use information in NAM block

Logical channel number
NAM block address
Directory identifier
Device identifier
Expanded string buffer address
Expanded string buffer size (bytes)
File specification mask

NB$WCH Wildcard context established

5-101

$RENAME MACRO

Block Field

FAB
FAB
NAM
NAM
NAM
NAM
NAM

NAM

STS
STV
DID
DVI
ESL
FID
FNB

RSL

Table 5-56: RENAME Output Fields

Description

Completion status code
Completion status value
Directory identifier
Device identifier
Expanded string length (bytes)
File identifier
File specification mask

NB$NOD
NB$DEV
NB$DIR
NB$QUO

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default

NB$NAM
NB$TYP
NB$VER

NB$WDI

NB$WNA

NB$WTY

NB$WVE

NB$WCH

string
File name in file
File type in file
File version in
string

string or default string
string or default string
file string or default

Wildcard directory in file
default string

string

Wildcard file name in file string
default string
Wildcard file type in file string
default string

or

or

or

Wildcard file version in file string or
default string
Wildcard context established (cleared)

Resultant string length (bytes)

5-102

5.26 $REWIND MACRO

The $REWIND macro calls the REWIND operation routine to reset the
context for a stream to the beginning-of-file. The file can have any
organization.

FORMAT

The format for the $REWIND macro is:

$REWIND rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the REWIND operation.

OPTIONS

Internal Stream Identifier

The REWIND operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Key of Reference

For an indexed file, you must specify the index that the stream will
use in accessing records. Specify this key of reference in the 1-byte
KRF field of the RAB. This value matches the value in the file's KEY
block for the index: 0 for the primary index, l for the first
alternate index, and so forth.

STREAM CONTEXT

For a record access file, the current context after a REWIND operation
is undefined and the next-record context is the first record in the
file; for an indexed file, this first record is defined by the
specified index.

For a block access file, both the readable-block and writable-block
contexts after a REWIND operation are the first block in the file.

RETURNED VALUES

Completion Status and Value

The REWIND operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

5-103

$REWIND MACRO

CHECKLISTS

Table 5-57 lists cont~ol block fields that are input to the REWIND
operation. Table 5-58 lists control block fields that are output by
the REWIND operation.

Block Field

RAB
RAB

ISI
KRF

Block Field

RAB
RAB

STS
STV

Table 5-57: REWIND Input Fields

Description

Internal stream identifier
Key of reference

Table 5-58: REWIND Output Fields

Description

Completion status code
Completion status value

5-104

(

\

I

I

\

5.27 $SEARCH MACRO

The $SEARCH macro calls the SEARCH operation routine to scan a
directory and return a file specification and identifiers in NAM block
fields. You should precede the SEARCH operation by a PARSE operation,
which initializes the NAM block fields for the SEARCH operation.

The SEARCH operation finds a file specification that matches the
match-pattern initialized (in the expanded string buffer) by the PARSE
operation; a series of wildcard SEARCH operations returns successive
matching file specifications.

FORMAT

The format for the $SEARCH macro is:

$SEARCH fabaddr[,erraddr[,sucaddr]]

where fabaddr is the address of the FAS for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAS for the SEARCH operation.

You must supply a NAM block for the SEARCH operation.

To supply a NAM block for the SEARCH operation, specify the address of
the NAM block in the 1-word NAM field of the FAB.

OPTIONS

Wildcard Context Information

The SEARCH operation reads NAM block fields that are initialized,
written, or preserved by a preceding PARSE or wildcard SEARCH
operation: the 3-word DID field of the NAM block, the 2-word DVI
field of the NAM block, the 1-word ESA field of the NAM block, the
!-byte ESL field of the NAM block, the NB$WCH mask in the !-word FNB
field of the NAM block, the 1-word RSA field of the NAM block, the
1-byte RSL field of the NAM block, the 1-byte RSS field of the NAM
block, the 1-word WCC field of the NAM block, and the 1-word WDI field
of the NAM block.

The SEARCH operation also uses the expanded string in the expanded
string buffer.

You must preserve these fields between a PARSE and a SEARCH operation
and between successive wildcard SEARCH operations.

Private Buffer Pool

If you want the SEARCH operation to use a private buffer pool instea9
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the !-word SPA field of the FAS, and its size
(in bytes) in the !-word BPS field of the FAS; this size must be a
multiple of 4.

5-105

$SEARCH MACRO

If you specify 0 in either the BPA field or the BPS field, the SEARCH
operation uses the central buffer pool.

Logical Channel

Specify the logical
field of the FAB.
the logical channel
o.

RETURNED VALUES

Resultant String

channel for the SEARCH operation in the 1-byte LCH
The logical channel number must not be the same as
number for any already-open file, and must not be

The SEARCH operation writes the full file specification for the found
file in the resultant string buffer, and writes the length of the
string in the 1-byte RSL field of the NAM block.

Directory and File Identifiers

If the SEARCH operation finds a file that matches the wildcard
pattern, it writes the directory identifier for the found file in the
3-word DID field of the NAM block, and the file identifier in the
3-word FID field of the NAM block.

Wildcard Context Information

The SEARCH operation writes the wildcard context in the 1-word wee
field of the NAM block, and the wildcard directory context in the
1-word WDI field of the NAM block,

If the SEARCH operation did not find a matching file, it clears the
NB$WCH mask in the 1-word FNB field of the NAM block; this shows that
no further wildcarding is possible using the current wildcard
information.

Completion Status and Value

The SEARCH operation returns completion status in the 1-word STS field
of the FAB and returns a completion value in the 1-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-59 lists control block fields that are input to the SEARCH
operation. Table 5-60 lists control block fields that are output by
the SEARCH operation.

5-106

Block Field

FAB
FAB
FAB
FAB
NAM
NAM
NAM
NAM
NAM

NAM
NAM
NAM
NAM
NAM

BPA
BPS
LCH
NAM
DID
DVI
ESA
ESL
FNB

RSA
RSL
RSS
wee
WDI

Block Field

FAB
FAB
NAM
NAM
NAM

NAM
NAM
NAM

STS
STV
DID
FID
FNB

RSL
wee
WDI

Table 5-59: SEARCH Input Fields

Description

Private buffer pool address
Private buffer pool size (bytes)
Logical channel number
NAM block address
Directory identifier
Device identifier
Expanded string buffer address
Expanded string length (bytes)
File specification mask

NB$WCH Wildcard context established

Resultan~ string buffer address
Resultant string length (bytes)
Resultant string buffer size (bytes)
Wildcard context
Wildcard directory context

Table 5-60: SEARCH Output Fields

Description

Completion status code
Completion status value
Directory identifier
File identifier
File specification mask

NB$WCH Wildcard context established

Resultant string length (bytes)
Wildcard context
Wildcard directory context

5-107

$SEARCH MACRO

S.28 $TRUNCATE MACRO

The $TRUNCATE macro calls the TRUNCATE operation routine to remove
records from the latter part of a sequential file; records are
removed inclusively from the current record through the end-of-file.
If the file cannot be truncated, the TRUNCATE operation returns an
error completion and leaves the current-record context undefined and
the next-record context unchanged.

FORMAT

The format for the $TRUNCATE macro is:

$TRUNCATE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the TRUNCATE operation.

OPTIONS

Internal Stream Identifier

The TRUNCATE operation reads the internal stream identifier from the
1-word ISI field of the RAB.

STREAM CONTEXT

The TRUNCATE operation destroys the current-record context; the
next-record context after the TRUNCATE operation is the end-of-file.

RETURNED VALUES

Completion Status and Value

The TRUNCATE operation returns completion status in the 1-word STS
field of the RAB and returns a completion value in the 1-word STV
field of the RAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-63 lists control block fields that are input to the TRUNCATE
operation. Table 5-64 lists control block fields that are output by
the TRUNCATE operation.

5-108

I

(

Block Field

RAB ISI

Block Field

RAB
RAB

STS
STV

Table 5-63: TRUNCATE Input Fields

Description

Internal stream identifier

Table 5-64: TRUNCATE Output Fields

Description

Completion status code
Completion status value

5-109

$TRUNCATE MACRO

5.29 $UPDATE MACRO

The $UPDATE macro calls the UPDATE operation routine to transfer a
record from a user buffer to a file (overwriting the existing record).
The target of the UPDATE operation is the current record, which is
overwritten.

If no record (as specified in the RAB) can be transferred, the UPDATE
operation returns an error completion.

FORMAT

The format for the $UPDATE macro is:

$UPDATE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the UPDATE operation.

OPTIONS

Internal Stream Identifier

The UPDATE operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Record Buffer

Specify the address of the record buffer in the 1-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the
1-word RSZ field of the RAB. For sequential files and for indexed
files in which duplicate primary key values are permitted, the size of
the buffer must be the same as the size of the existing record.

If the file has VFC format, specify the address of the buffer for the
VFC header in the 1-word RHB field of the RAB; if you specify zero in
this field, the existing record header will remain unchanged.

STREAM CONTEXT

The UPDATE operation destroys the current-record context; the
next-record context after the UPDATE operation is unchanged.

RETURNED VALUES

Completion Status and Value

The UPDATE operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

5-110

$UPDATE MACRO

CHECKLISTS

Table 5-65 lists control block fields that are input to the UPDATE
operation. Table 5-66 lists control block fields that are output by
the UPDATE operation.

Block Field

RAB
RAB
RAB

RAB

IS!
RBF
RHB

RSZ

Block Field

RAB
RAB

STS
STV

Table 5-65: UPDATE Input Fields

Description

Internal stream identifier
Record buffer address
VFC control buff er address

Record size (bytes)

Table 5-66: UPDATE Output Fields

Description

Completion status code
Completion status value

5-111

5.30 $WRITE MACRO (SEQUENTIAL ACCESS)

The $WRITE macro calls the
a file. The target of
writable block (and, for
blocks).

FORMAT

WRITE operation routine to write blocks to
a sequential-access WRITE operation is the

a multiblock WRITE operation, following

The format for the $WRITE macro is:

$WRITE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for t~e operation.

CONTROL BLOCKS

You must supply a RAB for the WRITE.operation.

OPTIONS

Internal Stream Identifier

The WRITE operation reads the internal stream identifier from the
1-word IS! field of the RAB.

Block Identification

For a sequential-access WRITE operation, specify 0 in the 2-word BKT
field of the RAB.

Record Buffer

Specify the address of the record buffer in the 1-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the
1-word RSZ field of the RAB. You must specify a record buffer for the
WRITE operation; the WRITE operation transfers data from this buffer
to the file.

The WRITE operation normally updates the logical end-of-file marker,
when appropriate, and automatically extends the file's allocation,
when necessary. For sequential files with undefined (UDF) record
format, however, the WRITE operation updates the logical end-of-file
marker and performs automatic file extensions onl~ if the FB$NIL mask
in the 1-byte SHR field of the FAB is set.

Record File Address (RFA)

The WRITE operation returns the virtual block number of the
first-written block in the first two words of the 3-word RFA field of
the RAB (it clears the third word).

5-112

$WRITE MACRO (SEQUENTIAL ACCESS)

STREAM CONTEXT

The readable-block context after a WRITE operation is the block
following the last-written block; the writable-block context after a
WRITE operation is the block following the last-written block.

RETURNED VALUES

Completion Status and Value

The WRITE operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-68 lists control block fields that are input to the WRITE
operation. Table 5-69 lists control block fields that are output by
the WRITE operation.

Table 5-68: WRITE (Sequential Access) Input Fields

Block Field

RAB
RAB
RAB

RAB

BKT
!SI
RBF

RSZ

Description

Virtual block number (VBN)
Internal stream identifier
Record buffer address

Record size (bytes)

Table 5-69: WRITE (Sequential Access) Output Fields

Block Field

RAB
RAB
RAB

RFA
STS
STV

Description

Virtual block number (2 words)
Completion status code
Completion status value

5-113

5.31 $WRITE MACRO (VBN ACCESS)

The $WRITE macro calls the WRITE operatio·n routine to write blocks to
a file. The target of a VBN-access WRITE operation is the writable
block (and, for a multiblock WRITE operation, following blocks).

FORMAT

The format for the $WRITE macro is:

$WRITE rabaddr[,erraddr[,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the WRITE operation.

OPTIONS

Internal Stream Identifier

The WRITE operation reads the internal stream identifier from the
1-word !SI field of the RAB.

Block Identification

Specify the virtual block number of the first block to be written in
the 2-word BKT field of the RAB.

Record Buffer

Specify the address of the record buffer in the 1-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the.
1-word RSZ field of the RAB. You must specify a record buffer for the
WRITE operation; the WRITE operation transfers data from this buffer
to the file.

The WRITE operation normally updates the logical end-of-file marker,
when appropriate, and automatically extends the file's allocation,
when necessary. For sequential files with undefined (UDF) record
format, however, the WRITE operation updates the logical end-of-file
marker and performs automatic file extensions only if the FB$NIL mask
in the 1-byte SHR field of the FAB is set.

Record File Address (RFA)

The WRITE operation returns the virtual block number of the
first-written block in the first two words of the 3-word RFA field of
the RAB (it clears the third word).

STREAM CONTEXT

The readable-block context after a WRITE operation is the block
following the last-written block; the writable-block context after a
WRITE operation is the block following the last-written block.

5-114

$WRITE MACRO (VBN ACCESS)

RETURNED VALUES

Completion Status and Value

The WRITE operation returns completion status in the 1-word STS field
of the RAB and returns a completion value in the 1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-70 lists control block fields that are input to the WRITE
operation. Table 5-71 lists control block fields that are output by
the WRITE operation.

Block Field

RAB
RAB
RAB

RAB

BKT
ISI
RBF

RSZ

Block Field

RAB
RAB
RAB

RFA
STS
STV

Table 5-70: WRITE (VBN Access) Input Fields

Description

Virtual block number (VBN)
Internal stream identifier
Record buffer address

Record size (bytes)

Table 5-71: WRITE (VBN Access) Output Fields

Description

Virtual block number (2 words)
Completion status cod~
Completion status value

5-115

CHAPTER 6

CONTROL BLOCK FIELDS

Each major section of this chapter describes an RMS-11 control block,
and includes:

• Block summary table

A table summarizes the entire control block. The table shows
the offset, offset symbol, field size, and a brief description
of each field in the block; for each mask or code for a
field, the table shows the value, symbol, and a brief
description of the mask or code.

• Field summaries

Each subsection following the block summary table is a
description of one field in the block. A field that has masks
that are very different in purpose (such as the FOP field in
the FAB) is described as a number of separa,te "fields" (such
as FOP FB$FID, FOP FB$RWO, and so forth).

The description of each field includes the following:

USE: a summary of the purpose of the field

SIZE: the size of the field

INIT: the format of the field-initialization macro (if any)

ACCESS: the formats of field-access macros to access the
field

MASKS or CODES: (if any) each mask or code symbol and a brief
description

INPUT: the operations that read values from the field, and
the meanings of those values

OUTPUT: the operations that store values in the field, and
the meanings of those values

Fields described as "Reserved" and undefined bits in masks should (and
in some cases must) be O.

6-1

6.1 ALL BLOCK SUMMARY

This section summarizes the ALL block and its fields. Table 6-1
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-1: ALL Block Summary

Offset Field
Offset Symbol Size

000 0$COD 1 byte

001

002
004
005
006
010

Oll

012
012
014
016
020
022
022
024

0$BLN

0$NXT
0$AID
0$BKZ
0$VOL
0$ALN

0$AOP

0$ALQ
0$ALQO
0$ALQ1
0$DEQ

0$LOC
0$LOCO
0$LOC1

1 byte

1 word
1 byte
1 byte
1 word
1 byte

1 byte

2 words
1 word
1 word
1 word
1 word
2 words
1 word
1 word

Description

ALL block identifier code

000004 XB$ALL ALL block identifier

ALL block length (bytes)

000034 XB$LAL ALL block length (bytes)

Next XAB address
Area number
Area bucket size (blocks)
Reserved
Area alignment mask

000001
000002
000004

XB$CYL
XB$LBN
XB$VBN

Cylinder alignment
Logical block alignment
Virtual block alignment

Area option mask

000001
000002

XB$HRD
XB$CTG

Hard area location
Contiguous area

Area allocation size (blocks)
ALQ field low word
ALQ field high word
Area default extension size (blocks)
Reserved
Area location
LOC field low word
LOC field high word

6-2

ALL BLOCK SUMMARY

6.1.1 AID Field in ALL Block

USE Contains the area identifier for the area described by the
ALL block.

!NIT X$AID number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,AID,reg
$STORE src,AID,reg
$COMPARE src,AID,reg

CLOSE Area number
CREATE Area number
DISPLAY Area number
EXTEND Area number
OPEN Area number

;AID field to !-byte dst
;!-byte src to AID field
;!-byte src with AID field

6-3

ALL BLOCK SUMMARY

6.1.2 ALN Field in ALL Block

USE

INIT

SIZE

ACCESS

MASKS

INPUT

OUTPUT

Indicates alignment for the area described by the ALL
block.

X$ALN mask

1 byte

$SET mask,ALN,r~g ;Mask bits on in ALN field
;Mask bits off in ALN field
;Test mask bits in ALN field
;ALN field to 1-byte dst
;1-byte src to ALN field
;1-byte src with ALN field

$OFF mask,ALN,reg
$TESTBITS mask,ALN,reg
$FETCH dst,ALN,reg
$STORE src,ALN,reg
$COMPARE src,ALN,reg

XB$CYL
XB$LBN
XB$VBN

CREATE
EXTEND

DISPLAY
OPEN

Cylinder alignment
Logical block alignment
Virtual block alignment

Initial area alignment request
Area extension alignment request

Area alignment mask (cleared)
Area alignment mask (cleared)

6-4

ALL BLOCK SUMMARY

6.1.3 ALQ Field in ALL Block

USE Contains the allocation size for the area described by the
ALL block.

INIT X$ALQ number

SIZE 2 words

ACCESS

INPUT

OUTPUT

$FETCH dst,ALQ,reg
$STORE src,ALQ,reg
$FETCH dst,ALQn,reg
$STORE src,ALQn,reg
$COMPARE src,ALQn,reg

;ALQ field to 2-word dst
;2-word src to ALQ field
;ALQ word n to 1-word dst
;1-word src to ALQ word n
;1-word src with ALQ word n

CREATE
EXTEND

DISPLAY
EXTEND
OPEN

Initial area allocation request size (blocks)
Area allocation extension request size
(blocks)

Unused area allocation size (blocks)
Area allocation extension actual size (blocks)
Unused area allocation size (blocks)

6-5

ALL BLOCK SUMMARY

6.1.4 AOP Field in ALL Block (XB$CTG Mask)

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Indicates contiguity for the area described by the ALL
block.

X$AOP mask

1 byte

$SET mask,AOP,reg
$OFF mask,AOP,reg
$TESTBITS mask,AOP,reg
$FETCH dst,AOP,reg
$STORE src,AOP,reg
$COMPARE src,AOP,reg

;Mask bits on in AOP field
;Mask bits off in AOP field
;Test mask bits in AOP field
;AOP field to 1-byte dst
;1-byte src to AOP field.
;1-byte src with AOP field

CREATE
EXTEND

Contiguous area request
Contiguous area extension request

DISPLAY
OPEN

Contiguous area (cleared)
Contiguous area (cleared)

6-6

I
\

ALL BLOCK SUMMARY

6.1.5 ADP Field in ALL Block (XB$HRD Mask)

USE Indicates a demand for the requested location.

INIT X$AOP mask

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$SET mask,AOP,reg
$OFF mask,AOP,reg
$TESTBITS mask,AOP,reg
$FETCH dst,AOP,reg
$STORE src,AOP,reg
$COMPARE src,AOP,reg

;Mask bits on in AOP field
;Mask bits off in ADP field
;Test mask bits in ADP field
;ADP field to 1-byte dst
;1-byte src to ADP field
;1-byte src with AOP field

CREATE
EXTEND

Area hard location request

DISPLAY
OPEN

Area extension hard location request

Hard area location (cleared)
Hard area location (cleared)

6-7

ALL BLOCK SUMMARY

6.1.6 BKZ Field in ALL Block

USE Contains the bucket size for the area described by the ALL
block.

INIT X$BKZ number

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,BKZ,reg
$STORE src,BKZ,reg
$COMPARE src,BKZ,reg

; B KZ fie 1 d to 1-byt e d st
;1-byte src to BKZ field
;1-byte src with BKZ field

CREATE Area bucket size (blocks)

DISPLAY
OPEN

Area bucket size (blocks)
Area bucket size (blocks)

6-8

ALL BLOCK SUMMARY

6.1.7 BLN Field in ALL Block (XB$LAL Code)

USE Contains the length of the ALL block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-byte src with BLN field

6-9

ALL BLOCK SUMMARY

6.1.8 COD Field in ALL Block (XB$ALL Code)

USE Contains the identifier for the ALL block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg
$COMPARE src,COD,reg

;COD field to 1-byte dst
;1-byte src with COD field

6-10

ALL BLOCK SUMMARY

6.1.9 DEQ Field in ALL Block

USE Contains the default extension size for the area described
by the ALL block.

INIT X$DEQ number

SIZE 1 word

ACCESS

INPUT

OUTPUT

$FETCH dst,DEQ,reg
$STORE src,DEQ,reg
$COMPARE src,DEQ,reg

;DEQ field to 1-word dst
;1-word src to DEQ field
;1-word src with DEQ field

CREATE Area default extension size (blocks)

DISPLAY
OPEN

Area default extension size (blocks)
Area default extension size (blocks)

6-11

ALL BLOCK SUMMARY

6.1.10 LOC Field in ALL Block

USE

INIT

SIZE

ACCESS

INPUT

Contains the location of the area described by the ALL
block.

The meaning of the location depends on the ALN mask: a
cylinder number (if XB$CYL), a logical block number (if
XB$LBN), or a virtual block number (if XB$VBN).

X$LOC number

2 words

$FETCH dst,LOC,reg
$STORE src,LOC,reg
$FETCH dst,LOCn,reg
$STORE src,LOCn,reg
$COMPARE src,LOCn,reg

;LOC field to 2-word dst
;2-word src to LOC field
;LOC word n to 1-word dst
;1-word src to LOC word n
;1-word src with LOC word n

CREATE
EXTEND

Initial area location request
Area extension location request

6-12

ALL BLOCK SUMMARY

6.1.11 NXT Field in ALL Block

USE

!NIT

SIZE

ACCESS

INPUT

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst,NXT,reg
$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ENTER Next XAB
ERASE Next XAB
EXTEND Next XAB
OPEN Next XAB
PARSE Next XAB
REMOVE Next XAB
RENAME Next XAB
SEARCH Next XAB

;NXT field to 1-word dst
;1-word src to NXT field
;1-word src with NXT field

address
address
address
address
address
address
address
address
address
address
address

6-13

6.2 DAT BLOCK SUMMARY

This section summarizes the DAT block and its fields. Table 6-2
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-2: DAT Block Summary

Offset Field
Offset Symbol Size Description

000 0$COD 1 byte DAT block identifier code

000003 XB$DAT DAT block identifier

001 0$BLN 1 byte DAT block length (bytes)

000046 XB$DTL DAT block length (bytes)

002 0$NXT 1 word Next XAB address
006 O$RDT 4 words File revision date
016 O$CDT 4 words File creation date
036 0$BDT 4 words Reserved

6-14

DAT BLOCK SUMMARY

6.2.l BLN Field in DAT Block (XB$DTL Code)

USE Contains the length of the DAT block.

INIT None

SIZE l byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;I-byte src with BLN field

6-15

DAT BLOCK SUMMARY

6.2.2 CDT Field in DAT Block

USE

INIT

SIZE

ACCESS

OUTPUT

Contains the binary creation date for the file.

None

4 words

$FETCH dst,CDT,reg ~CDT field to 4-word dst

DISPLAY
OPEN

File creation date
File creation date

6-16

\

\

/
\,

DAT BLOCK SUMMARY

6.2.3 COD Field in DAT Block (XB$DAT Code)

USE Contains the identifier for the DAT block.

!NIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg
$COMPARE src,COD,reg

;COD field to 1-byte dst
;1-byte src with COD field

6-17

DAT BLOCK SUMMARY

6.2.4 EDT Field in DAT Block

USE Contains the expiration date for the file.

INIT None

SIZE 4 words

ACCESS $FETCH dst,EDT,reg ;EDT field to 4-word dst

OUTPUT OPEN
DISPLAY

File expiration date
File expiration date

6-18

DAT BLOCK SUMMARY

6.2.5 NXT Field in DAT Block

USE

!NIT

SIZE

ACCESS

INPUT

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst,NXT,reg
$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ENTER Next XAB
ERASE Next XAB
EXTEND Next XAB
OPEN Next XAB
PARSE Next XAB
REMOVE Next XAB
RENAME Next XAB
SEARCH Next XAB

;NXT field to l-word dst
;!-word src to NXT field
;!-word src with NXT field

address
address
address
address
address
address
address
address
address
address
address

6-19

DAT BLOCK SUMMARY

6.2.6 RDT Field in DAT Block

USE Contains the binary revision date for the file.

INIT None

SIZE 4 words

ACCESS $FETCH dst,RDT,reg ;RDT field to 4-word dst

OUTPUT DISPLAY
OPEN

File revision date
File revision date

6-20

(

~

DAT BLOCK SUMMARY

6.2.7 RVN Field in DAT Block

USE

!NIT

SIZE

ACCESS

OUTPUT

Contains the revision number (number of times closed) for
the file.

None

1 word

$FETCH dst,RVN,reg
$COMPARE src,RVN,reg

;RVN field to 1-word dst
;1-word src with RVN field

DISPLAY
OPEN

File revision number
File revision number

6-21

6.3 FAB SUMMARY

This section summarizes the FAB and its fields. Table 6-3 summarizes
the entire block, giving the offset, offset symbol, size, and a brief
description for each field1 for a field that has mask or code
symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-3: FAB Summary

Offset Field
Offset Symbol Size Description

000 0$BID 1 byte FAB identifier

000003 FB$BID FAB identification code

001 0$BLN 1 byte FAB length (bytes)

000120 FB$BLN FAB length (bytes)

002 0$CTX 1 word User context
004 0$IFI 1 word Internal FAB identifier
006 0$STS 1 word Completion status code
010 0$STV 1 word Completion status value
012 0$ALQ 2 words File allocation size (blocks)
016 0$DEQ 1 word File default extension size (blocks)
020 0$FAC 1 byte Requested access mask

000001 FB$PUT Request put access
000002 FB$GET Request find/get access
000004 FB$DEL Request find/get/delete

access
000010 FB$UPD Request find/get/update

access
000020 FB$TRN Request find/get/truncate

access
000041 FB$WRT Request block write

access
000042 FB$REA Request block read access

021 0$SHR 1 byte Shared access mask

000002 FB$GET Share find/get access
000015 FB$WRI Share find/get/put/update/delete

access
000040 FB$UPI Share any access

(user-provided interlock)
000100 FB$NIL No access sharing

(continued on next page)

6-22

FAB SUMMARY

T•ble 6-3 (cont.): FAB Summary

Offset Field
Offset Symbol Size

022 0$FOP l word

024
025

026

027

030
032
034
036
040
044
046
050
052
054

0$RTV
0$0RG

0$RAT

0$RFM

0$XAB
0$BPA
0$BPS
0$MRS
0$MRN
0$LRL
0$NAM
0$FNA
0$DNA
0$FNS

l byte
1 byte

l byte

l byte

l word
l word
1 word
1 word
2 words
1 word
1 word
1 word
1 word
1 byte

Description

File processing option mask

000020

000200
000400
002000
004000
006000

010000

020000

FB$DLK

FB$CTG
FB$SUP
FB$TMP
FB$MKD
FB$TMD

FB$FID

FB$DFW

No file locking on
abnormal close
Contiguous file
Supersede existing file
Temporary file
Mark file for deletion
Temporary file, mark for
deletion
Use information in NAM
block
Defer writing

Retrieval pointer count
File organization code

000000 FB$SEQ Sequential file
organization

000020 FB$REL Relative file
organization

000040 FB$IDX Indexed file organization

Record handling mask

000001

000002

000004
000010

FB$FTN

FB$CR

FB$PRN
FB$BLK

FORTRAN-style
carriage-control
character in record
Add CRLF to print record
(LF-record-CR)
VFC print record handling
Blocked records

Record format code

000000
000001

000002

000003
000004

FB$UDF
FB$FIX

FB$VAR

FB$VFC
FB$STM

XAB address

Undefined record format
Fixed-length record
format
Variable-length record
format
VFC record format
Stream record format

Private buffer pool address
Private buffer pool size (bytes)
Maximum record size (bytes)
Maximum record number
Longest record length
NAM block address
File string address
Default string address
File string size (bytes)

(continued on next page)

6-23

FAB SUMMARY

Table 6-3 (cont.): FAB Summary

Offset Field
Offset Symbol Size Description

055 0$DNS 1 byte Default string size (bytes)
056 O$BLS 1 word Magtape block size (characters)
060 0$FSZ 1 byte Fixed control area size for VFC records

(bytes)
061 0$BKS 1 byte File bucket size (blocks)
062 0$DEV 1 byte Device characteristic mask

000001 FB$REC Record-oriented device
000002 FB$CCL Carriage-control device
000004 FB$TRM Terminal device
000010 FB$MDI Multidirectory device
000020 FB$SDI Single-directory device
000040 FB$SQD Sequential device

063 0$LCH 1 byte Logical channel number

6-24

FAB SUMMARY

6.3.l ALQ Field in FAB

USE Contains the allocation size for the file.

!NIT F$ALQ number

SIZE 2 words

ACCESS

INPUT

OUTPUT

$FETCH dst,ALQ,reg
$STORE src,ALQ,reg
$FETCH dst,ALQn,reg
$STORE src,ALQn,reg
$COMPARE src,ALQn,reg

;ALQ field to 2-word dst
;2-word src to ALQ field
;ALQ word n to 1-word dst
;1-word src to ALQ word n
;1-word src with ALQ word n

CREATE
EXTEND

Initial file allocation request size (blocks)
File allocation extension request size
(blocks)

EXTEND
OPEN

File allocation extension actual size (blocks)
Current file allocation (blocks)

6-25

FAB SUMMARY

6.3.2 BID Field in FAB (FB$BID Code)

USE Contains the identifier for the FAB.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BID,reg
$COMPARE src,BID,reg

;BID field to 1-byte dst
;1-byte src with BID field

6-26

FAB SUMMARY

6.3.3 BKS Field in FAB

USE Contains the bucket size for the file.

INIT F$BKS number

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,BKS,reg
$STORE src,BKS,reg
$COMPARE src,BKS,reg

;BKS field to 1-byte dst
;1-byte src to BKS field
;1-byte src with BKS field

CREATE

OPEN

File bucket size (blocks)

File bucket size (blocks)

6-27

FAB SUMMARY

6.3.4 BLN Field in FAB (FB$BLN Code)

USE Contains the length of the FAB.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-byte src with BLN field

6-28

FAB SUMMARY

6.3.5 BPA Field in FAB

USE Contains the address of the private buffer pool for the
operation.

!NIT F$BPA address

SIZE 1 word

ACCESS $FETCH d st ,BPA, reg ;BPA field to 1-word dst
$STORE src,BPA,reg ;1-word src to BPA field
$COMPARE src,BPA,reg ;1-word src with BPA field

INPUT CREATE Private buffer pool address
ENTER Private buffer pool address
ERASE Private buffer pool address
OPEN Private buffer pool address
PARSE Private buffer pool address
REMOVE Private buffer pool address
RENAME Private buffer pool address
SEARCH Private buffer pool address

OUTPUT CLOSE Private buffer pool address

6-29

FAB SUMMARY

6.3.6 BPS Field in FAB

USE Contains the size of the private buffer pool for the
operation.

INIT F$BPS number

SIZE 1 word

ACCESS $FETCH dst,BPS,reg ;BPS field to 1-word dst
$STORE src,BPS,reg ; 1-word src to BPS field
$COMPARE src,BPS,reg ;1-word src with BPS field

INPUT CREATE Private buffer pool size (bytes)
ENTER Private buffer pool size (bytes)
ERASE Private buffer pool size (bytes)
OPEN Private buffer pool size (bytes)
PARSE Private buffer pool size (bytes)
REMOVE Pr iv ate buffer pool size (bytes)
RENAME Private buffer pool size (bytes)
SEARCH Private buffer pool size (bytes)

OUTPUT CLOSE Private buffer pool size (bytes)

6-30

FAB SUMMARY

6.3.7 CTX Field in FAB

USE

!NIT

SIZE

ACCESS

Contains any information you may want to associate with
the file at run time.

F$CTX number

1 word

$FETCH dst,CTX,reg
$STORE src,CTX,reg
$COMPARE src,CTX,reg

;CTX field to 1-word dst
;I-word src to CTX field
;I-word src with CTX field

6-31

FAB SUMMARY

6.3.8 DEQ Field in FAB

USE Contains the default extension size for the file.

INIT F$DEQ number

SIZE 1 word

ACCESS

INPUT

OUTPUT

$FETCH dst,DEQ,reg
$STORE src,DEQ,reg
$COMPARE src,DEQ,reg

;DEQ field to 1-word dst
;1-word src to DEQ field
;1-word src with DEQ field

CREATE
OPEN

OPEN

Permanent file default extension size (blocks)
While-open file default extension size
(blocks)

Current file default extension size (blocks)

6-32

FAB SUMMARY

6.3.9 DEV Field in FAB

USE Indicates device characteristics for the file.

INIT None

SIZE 1 byte

ACCESS $TESTBITS mask,DEV,reg ;Test mask bits in DEV field

MASKS

OUTPUT

$FETCH dst,DEV,reg ;DEV field to 1-byte dst
$COMPARE src,DEV,reg ;1-byte src with DEV field

FB$CCL
FB$MDI
FB$REC
FB$SDI
FB$SQD
FB$TRM

CREATE
ERASE
OPEN

Carriage-control device
Multidirectory device
Record-oriented device
Single-directory device
Sequential device
Terminal device

Device characteristic mask
Device characteristic mask
Device characteristic mask

6-33

FAB SUMMARY

6.3.10 DNA Field in FAB

USE

INIT

SIZE

ACCESS

INPUT

Contains the address of the default string for the
operation.

F$DNA address

1 word

$FETCH dst,DNA,reg
$STORE src,DNA,reg
$COMPARE src ,DNA, reg

CREATE Default
ENTER Default
ERASE Default
OPEN Default
PARSE Default
REMOVE Default
RENAME Default

;DNA field to 1-word dst
;1-word src to DNA field
;1-word src with DNA field

string address
string address
string address
string address
string address
string address
string address

6-34

FAB SUMMARY

6.3.11 DNS Field in FAB

USE Contains the size of the default string for the operation.

INIT F$DNS number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,DNS,reg
$STORE src,DNS,reg
$COMPARE src,DNS,reg

CREATE Default
ENTER Default
ERASE Default
OPEN Default
PARSE Default
REMOVE Default
RENAME Default

;DNS field to 1-byte dst
;1-byte src to DNS field
;1-byte src with DNS field

string size (bytes)
string size (bytes)
string size (bytes)
string size (bytes)
string size (bytes)
string size (bytes)
string size (bytes)

6-35

FAB SUMMARY

6.3.12 FAC Field in FAB

USE Indicates the requested access for the file.

!NIT F$FAC mask

SIZE 1 byte

ACCESS

MASKS

INPUT

$SET mask,FAC,reg ;Mask bits on in FAC field
;Mask bits off in FAC field
;Test mask bits in FAC field
;FAC field to 1-byte dst
;1-byte src to FAC field
;1-byte src with FAC field

$OFF mask,FAC,reg
$TESTBITS mask,FAC,reg
$FETCH dst,FAC,reg
$STORE src,FAC,reg
$COMPARE src,FAC,reg

FB$DEL
FB$GET
FB$PUT
FB$REA
FB$TRN
FB$UPD
FB$WRT

CREATE
OPEN

Request find/get/delete access
Request find/get access
Request put access
Request block read access
Request find/get/truncate access
Request find/get/update access
Request block write access

Requested access mask
Requested access mask

6-36

FAB SUMMARY

6.3.13 FNA Field in FAB

USE Contains the address of the file string for the file.

INIT F$FNA address

SIZE 1 word

ACCESS

INPUT

$FETCH dst,FNA,reg
$STORE src,FNA,reg
$COMPARE src,FNA,reg

CREATE File string
ENTER File string
ERASE File string
OPEN File string
PARSE File string
REMOVE File string
RENAME File string

;FNA field to 1-word dst
;1-word src to FNA field
;1-word src with FNA field

address
address
address
address
address
address
address

6-37

FAB SUMMARY

6.3.14 FNS field in FAB

USE Contains the size of the file string for the file.

INIT F$FNS number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,FNS,reg
$STORE src,FNS,reg
$COMPARE src ,FNS, reg

CREATE File string
ENTER File string
ERASE File string
OPEN File string
PARSE File string
REMOVE File string
RENAME File string

;FNS field to 1-byte dst
;1-byte src to FNS field
;l-byte src with FNS field

size (bytes)
size (bytes)
size (bytes)
size (bytes)
size (bytes)
size (bytes)
size (bytes)

6-38

' /

FAB SUMMARY

6.3.15 FOP Field in FAB (FB$CTG Mask)

USE Indicates file contiguity.

!NIT F$FOP mask

SIZE 1 word

ACCESS

INPUT

OUTPUT

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to 1-word dst
;1-word src to FOP field
;1-word src with FOP field

CREATE
EXTEND

Contiguous file request
Contiguous file extension request

OPEN Contiguous file

6-39

FAB SUMMARY

6.3.16 FOP Field in FAB (FB$DFW Mask)

USE Requests deferred writing for the file.

!NIT F$FOP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to !-word dst
;!-word src to FOP field
;!-word src with FOP field

CREATE
OPEN

Defer writing
De fer wr it i ng

6-40

FAB SUMMARY

6.3.17 FOP Field in FAB (FB$DLK Mask)

USE Requests no file locking if the file is closed abnormally.

!NIT F$FOP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to 1-word dst
;1-word src to FOP field
;1-word src with FOP field

CREATE
OPEN

No file locking on abnormal close
No file locking on abnormal close

6-41

FAB SUMMARY

6.3.18 FOP Field in FAB (FB$FID Mask)

USE

INIT

SIZE

ACCESS

INPUT

Requests that NAM block information be used to identify
the file.

F$FOP mask

1 word

$SET mask,FOP,reg ;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to 1-word dst
;1-word src to FOP field
;1-word src with FOP field

$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src ,FOP, reg

CREATE Use information
ENTER Use information
ERASE Use information
OPEN Use information
REMOVE Use information
RENAME Use information

6-42

in NAM block
in NAM block
in NAM block
in NAM block
in NAM block
in NAM block

/

FAB SUMMARY

6.3.19 FOP Field in FAB (FB$MKD Mask)

USE Requests that the file be marked for deletion.

!NIT F$FOP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to 1-word dst
;1-word src to FOP field
;1-word src with FOP field

CREATE Mark file for deletion

6-43

FAB SUMMARY

6.3.20 FOP Field in FAB (FB$SUP Mask)

USE Requests that the created file supersede the old file with
the same spectfication (if one exists).

INIT F$FOP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to 1-word dst
;1-word src to FOP field
;1-word src with FOP field

CREATE Supersede existing file

6-44

FAB SUMMARY

6.3.21 FOP Field in FAB (FB$TMP Mask)

USE

INIT

SIZE

ACCESS

INPUT

Requests that the created file be a temporary file (one
with no directory entry).

F$FOP mask

1 word

$SET mask,FOP,reg
$OFF mask,FOP,reg
$TESTBITS mask,FOP,reg
$FETCH dst,FOP,reg
$STORE src,FOP,reg
$COMPARE src,FOP,reg

;Mask bits on in FOP field
;Mask bits off in FOP field
;Test mask bits in FOP field
;FOP field to !-word dst
;!-word src to FOP field
;!-word src with FOP field

CREATE Temporary file

6-45

FAB SUMMARY

6.3.22 FSZ Field in FAB

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the size of the fixed control area for VFC
records.

F$FSZ number

1 byte

$FETCH dst, FSZ, reg
$STORE src,FSZ,reg
$COMPARE src,FSZ,reg

;FSZ field to 1-byte dst
;1-byte src to FSZ field
;1-byte src with FSZ field

CREATE

OPEN

Fixed control area size for VFC
(bytes)

Fixed control area size for VFC
(bytes)

6-46

records

records

FAB SUMMARY

6.3.23 IFI Field in FAB

USE Contains the internal file identifier for the file.

INIT

SIZE

ACCESS

INPUT

OUTPUT

None

1 word

$FETCH dst,IFI,reg
$COMPARE src,IFI,reg

CLOSE Internal
CONNECT Internal
DISPLAY Internal
EXTEND Internal

CLOSE Internal
CREATE Internal
OPEN Internal

;IFI field to 1-word dst
;1-word src with IFI field

FAB identifier
FAB identifier
FAB identifier
FAB identifier

FAB identifier
FAB identifier
FAB identifier

6-47

FAB SUMMARY

6.3.24 LCH Field in FAB

USE Contains the logical channel number for the operation.

INIT F$LCH number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,LCH,reg
$STORE src,LCH,reg
$COMPARE src,LCH,reg

CREATE Logical
ENTER Logical
ERASE Logical
OPEN Logical
PARSE Logical
REMOVE Logical
RENAME Logical
SEARCH Logical

;LCH field to 1-byte dst
;1-byte src to LCH field
;1-byte src with LCH field

channel number
channel number
channel number
channel number
channel number
channel number
channel number
channel number

6-48

FAB SUMMARY

6.3.25 LRL Field in FAB

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the length of the longest record in a sequential
file.

None

1 word

$FETCH dst,LRL,reg
$COMPARE src,LRL,reg

;LRL field to 1-word dst
;1-word src with LRL field

CREATE

OPEN

Longest record length
sequential files only)

Longest record length

6-49

(block access to

FAB SUMMARY

6.3.26 MRN Field in FAB

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the maximum record number allowed in a relative
file.

F$MRN number

2 words

$FETCH dst,MRN,reg
$STORE src,MRN,reg
$FETCH dst,MRNn,reg
$STORE src,MRNn,reg
$COMPARE src,MRNn,reg

;MRN field to 2-word dst
;2-word src to MRN field
;MRN word n to 1-word dst
;1-word src to MRN word n
;1-word src with MRN word n

CREATE Maximum record number

OPEN Maximum record number

6-50

FAB SUMMARY

6.3.27 MRS Field in FAB

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the record size or maximum record size for the
file.

F$MRS number

1 word

$FETCH dst,MRS,reg
$STORE src,MRS,reg
$COMPARE src,MRS,reg

;MRS field to 1-word dst
;1-word src to MRS field
;1-word src with MRS field

CREATE Maximum record size (bytes)

OPEN Maximum record size (bytes)

6-51

FAB SUMMARY

6.3.28 NAM Field in FAB

USE Contains the address of the NAM block for the operation.

INIT F$NAM address

SIZE 1 word

ACCESS

INPUT

$FETCH dst,NAM,reg
$STORE src,NAM,reg
$COMPARE src,NAM,reg

CREATE NAM block
ENTER NAM block
ERASE NAM block
OPEN NAM block
PARSE NAM block
REMOVE NAM block
RENAME NAM block
SEARCH NAM block

;NAM field to 1-word dst
;!-word src to NAM field
;1-word src with NAM field

address
address
address
address
address
address
address
address

6-52

FAB SUMMARY

6.3.29 ORG Field in FAB

USE

INIT

SIZE

ACCESS

CODES

INPUT

OUTPUT

Contains the file organization code.

F$0RG code

1 byte

$FETCH dst,ORG,reg
$STORE src,ORG,reg
$COMPARE src,ORG,reg

;ORG field to 1-byte dst
;I-byte src to ORG field
;!-byte src with ORG field

FB$IDX
FB$REL
FB$SEQ

CREATE

OPEN

Indexed file organization
Relative file organization
Sequential file organization

File organization code

File organization code

6-53

FAB SUMMARY

6.3.30 RAT F'ield in FAB

USE Indicates the record-output characteristic for the file.
(The RAT field also contains the record-blocking
characteristic, which is described in the next section.)

INIT F$RAT mask

SIZE 1 byte

ACCESS

MASKS

INPUT

OUTPUT

$SET mask,RAT,reg ;Mask bits on in RAT field
;Mask bits off in RAT field
;Test mask bits in RAT field
;RAT field to 1-byte dst
;1-byte src to RAT field
;1-byte src with RAT field

$OFF mask,RAT,reg
$TESTBITS mask,RAT,reg
$FETCH dst,RAT,reg
$STORE src,RAT,reg
$COMPARE src,RAT,reg

FB$CR
FB$FTN
FB$PRN

CREATE

OPEN

Add CRLF to print record (LF-record-CR)
FORTRAN-style carriage-control character in record
VFC print record handling

Record handling mask

Record handling mask

6-54

FAB SUMMARY

6.3.31 RAT Field in FAB (FB$BLK Mask)

USE Indicates whether the file has blocked records. (The RAT
field also contains the record-output characteristic,
which is described in the previous section.)

!NIT F$RAT mask

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$SET mask,RAT,reg
$OFF mask,RAT,reg
$TESTBITS mask,RAT,reg
$FETCH dst,RAT,reg
$STORE src,RAT,reg
$COMPARE src,RAT,reg

;Mask bits on in RAT field
;Mask bits off in RAT field
;Test mask bits in RAT field
;RAT field to 1-byte dst
;1-byte src to RAT field
;1-byte src with RAT field

CREATE Blocked records

OPEN Blocked records

6-55

FAB SUMMARY

6.3.32 RFM Field in FAB

USE Contains the record format code for the file.

INIT F$RFM code

SIZE l byte

ACCESS

CODES

INPUT

OUTPUT

$FETCH dst,RFM,reg
$STORE src,RFM,reg
$COMPARE src,RFM,reg

;RFM field to 1-byte dst
;1-byte src to RFM field
;1-byte src with RFM field

FB$FIX
FB$STM
FB$UDF
FB$VAR
FB$VFC

CREATE

OPEN

Fixed-length record format
Stream record format
Undefined record format
Variable-length record format
VFC record format

Record format code

Record format code

6-56

FAB SUMMARY

6.3.33 RTV Field in FAB

USE Contains the retrieval pointer count for the file.

INIT F$RTV number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,RTV,reg
$STORE src,RTV,reg
$COMPARE src,RTV,reg

;RTV field to 1-byte dst
;1-byte src to RTV field
;1-byte src with RTV field

CREATE
OPEN

Retrieval pointer count
Retrieval pointer count

6-57

FAB SUMMARY

6.3.34 SHR Field in FAB

USE Indicates requested access sharing for the file.

INIT F$SHR mask

SIZE 1 byte

ACCESS

MASKS

INPUT

$SET mask,SHR,reg ;Mask bits on· in SHR field
;Mask bits off in SHR field
;Test mask bits in SHR field
;SHR field to 1-byte dst
;1-byte src to SHR field
;!-byte src with SHR field

$OFF mask,SHR,reg
$TESTBITS mask,SHR,reg
$FETCH dst,SHR,reg
$STORE src,SHR,reg
$COMPARE src,SHR,reg

FB$GET
FB$NIL
FB$UPI
FB$WRI

CREATE
OPEN

Share find/get access
No access sharing
Share any access (user-provided interlock)
Share find/get/put/update/delete access

Shared access mask
Shared access mask

6-58

FAB SUMMARY

6.3.35 STS Field in FAB

USE Contains the completion status code for the operation.

INIT None

SIZE 1 word

ACCESS $FETCH dst,STS,reg ;STS field to 1-word dst
$COMPARE src,STS,reg ; 1-wo rd src with STS field

OUTPUT CLOSE Completion status code
CREATE Completion status code
DISPLAY Completion status code
ENTER Completion status code
ERASE Completion status code
EXTEND Completion status code
OPEN Completion status code
PARSE Completion status code
REMOVE Completion status code
RENAME Completion status code
SEARCH Completion status code

6-59

FAB SUMMARY

6.3.36 STV Field in FAB

USE Contains the completion status value for the operation.

INIT None

SIZE 1 word

ACCESS

OUTPUT

$FETCH dst,STV,reg
$COMPARE src,STV,reg

CLOSE Completion
CREATE Completion
DISPLAY Completion
ENTER Completion
ERASE Completion
EXTEND Completion
OPEN Completion
PARSE Completion
REMOVE Completion
RENAME Completion
SEARCH Completion

;STV field to I-word dst
;I-word src with STV field

status value
status value
status value
status value
status value
status value
status value
status value
status value
status value
status value

6-60

FAB SUMMARY

6.3.37 XAB Field in FAB

USE Contains the address of the first XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

INIT F$XAB address

SIZE 1 word

ACCESS

INPUT

$FETCH dst,XAB,reg
$STORE src,XAB,reg
$COMPARE src,XAB,reg

CLOSE
CREATE
DISPLAY
EXTEND
OPEN

XAB address
XAB address
XAB address
XAB address
XAB address

;XAB field to 1-word dst
;1-word src to XAB field
;1-word src with XAB field

6-61

6.4 KEY BLOCK SUMMARY

This section summarizes the KEY block and its fields. Table 6-4
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field7 for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-4: KEY Block Summary

Offset Field
Offset Symbol Size

000 0$COD 1 byte

001 0$BLN 1 byte

002 0$NXT 1 word
004 0$REF 1 byte
005 O$LVL 1 byte

006 0$IFL 1 word
010 0$DFL 1 word
012 0$NUL 1 byte
013 0$IAN 1 byte
014 0$LAN 1 byte
015 0$DAN 1 byte
016 0$FLG 1 byte

017 0$DTP 1 byte

Description

KEY block identifier code

000001 XB$KEY KEY block identifier

KEY block length (bytes)

000070 XB$KYL KEY block length (bytes)

Next XAB address
Index reference number
Number of index levels (not including
data level)
Index bucket fill factor
Data bucket fill factor
Null key character
Higher level index area number
Lowest index level area number
Data area number
Index option mask

000001 XB$DUP Duplicate record keys
allowed

000002 XB$CHG Record key changes
allowed on update

000020 XB$INI No entries yet made in
index

000004 XB$NUL Null record keys not
indexed

Key data type code

000000
000001
000002
000003
000004
000005

XB$STG
XB$IN2
XB$BN2
XB$IN 4
XB$BN4
XB$PAC

6-62

String
15-bit signed integer
16-bit unsigned integer
31-bit signed integer
32-bit unsigned integer
Packed decimal number

(continued on next page)

KEY BLOCK SUMMARY

Table 6-4 (cont.): KEY Block Summary

Off set Field
Offset Symbol Size Description

020 0$KNM 1 word Key name buffer address
022 0$POS 8 words Key segment positions
022 0$POSO 1 word Key segment 0 position
024 0$POS1 1 word Key segment 1 position
026 0$POS2 1 word Key segment 2 position
030 0$POS3 1 word Key segment 3 position
032 0$POS4 1 word Key segment 4 position
034 0$POS5 1 word Key segment 5 position
036 0$POS6 1 word Key segment 6 position
040 0$POS7 1 word Key segment 7 position
042 0$SIZ 8 bytes Key segment sizes (bytes)
042 0$SIZO 1 byte Key segment 0 size (bytes)
043 0$SIZ1 1 byte Key segment 1 size (bytes)
044 0$SIZ2 1 byte Key segment 2 size (bytes)
045 0$SIZ 3 1 byte Key segment 3 size (bytes)
046 0$SIZ4 1 byte Key segment 4 size (bytes)
047 0$SIZ5 1 byte Key segment 5 size (bytes)
050 0$SIZ6 1 byte Key segment 6 size (bytes)
051 0$SIZ7 1 byte Key segment 7 size (bytes)
052 0$RVB 2 words Root index bucket virtual block number
056 0$DVB 2 words First data bucket virtual block number
062 0$IBS 1 byte Index area bucket size (blocks)
063 0$DBS 1 byte Data area bucket size (blocks)
064 0$NSG 1 byte Key segment count
065 0$TKS 1 byte Total key size (sum of key segment sizes)

(bytes)
066 0$MRL 1 word Minimum length of record containing key

(bytes)

6-63

KEY BLOCK SUMMARY

6.4.1 BLN Field in KEY Block (XB$KYL Code)

USE Contains the length of the KEY block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-byte src with BLN field

6-64

KEY BLOCK SUMMARY

6.4.2 COD Field in KEY Block (XB$KEY Code)

USE Contains the identifier for the KEY block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg
$COMPARE src,COD,reg

;COD field to 1-byte dst
;1-byte src with COD field

6-65

KEY BLOCK SUMMARY

6.4.3 DAN Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the area number of the data area for the index
described by the KEY block.

X$DAN number

1 byte

$FETCH dst,DAN,reg
$STORE src,DAN,reg
$COMPARE src,DAN,reg

;DAN field to 1-byte dst
;1-byte src to DAN field
;1-byte src with DAN field

CREATE

DISPLAY
OPEN

Data area number

Data area number
Data area number

6-66

KEY BLOCK SUMMARY

6.4.4 DBS Field in KEY Block

USE

!NIT

SIZE

ACCESS

OUTPUT

Contains the bucket size for the data area for the index
described by the KEY block.

None

1 byte

$FETCH dst,DBS,reg
$COMPARE src,DBS,reg

;DBS field to 1-byte dst
;!-byte src with DBS field

DISPLAY
OPEN

Data area bucket size (blocks)
Data area bucket size (blocks)

6-67

KEY BLOCK SUMMARY

6.4.5 DFL Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the bucket fill number for the data area for the
index described by the KEY block.

X$DFL number

1 word

$FETCH dst,DFL,reg
$STORE src,DFL,reg
$COMPARE src,DFL,reg

;DFL field to 1-word dst
;1-word src to DFL field
;1-word src with DFL field

CREATE

DISPLAY
OPEN

Data bucket fill factor

Data bucket fill factor
Data bucket fill factor

6-68

KEY BLOCK SUMMARY

6.4.6 DTP Field in KEY Block

USE Contains the key data type code for the index described by
the KEY block.

INIT X$DTP code

SIZE 1 byte

ACCESS

CODES

INPUT

OUTPUT

$FETCH dst,DTP,reg
$STORE src,DTP,reg
$COMPARE src,DTP,reg

;DTP field to 1-byte dst
;1-byte src to DTP field
;1-byte src with DTP field

XB$BN2 16-bit unsigned integer
XB$BN4 32-bit unsigned integer
XB$IN2 15-bit signed integer
XB$IN4 31-bit signed integer
XB$PAC Packed decimal number
XB$STG String

CREATE Key data type code

DISPLAY Key data type code
OPEN Key data type code

6-69

KEY BLOCK SUMMARY

6.4.7 DVB Field in KEY Block

USE

!NIT

SIZE

ACCESS

OUTPUT

Contains the virtual block number of the first bucket in
the data area for the index described by the KEY block.

None

2 words

$FETCH dst,DVB,reg ;DVB field to 2-word dst

DISPLAY
OPEN

First data bucket virtual block number
First data bucket virtual block number

6-70

KEY BLOCK SUMMARY

6.4.8 FLG Field in KEY Block (XB$CHG Mask)

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Specifies that a record key (for an alternate index) is
allowed to change when the record is updated.

X$FLG mask

1 byte

$SET mask,FLG,reg
$OFF mask,FLG,reg
$TESTBITS mask,FLG,reg
$FETCH dst,FLG,reg
$STORE src,FLG,reg
$COMPARE src,FLG,reg

;Mask bits on in FLG field
;Mask bits off in FLG field
;Test mask bits in FLG field
;FLG field to 1-byte dst
;1-byte src to FLG field
;1-byte src with FLG field

CREATE Record key changes allowed on update

DISPLAY
OPEN

Record key changes allowed on update
Record key changes allowed on update

6-71

KEY BLOCK SUMMARY

6.4.9 FLG Field in KEY Block (XB$DUP Mask)

USE Indicates that duplicate record keys are allowed for the
index described by the KEY block; duplicate record keys
are not allowed in the primary index.

INIT X$FLG mask

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$SET mask,FLG,reg
$OFF mask,FLG,reg
$TESTBITS mask,FLG,reg
$FETCH dst,FLG,reg
$STORE src,FLG,reg
$COMPARE src,FLG,reg

;Mask bits on in FLG field
;Mask bits off in FLG field
;Test mask bits in FLG field
;FLG field to 1-byte dst
;1-byte src to FLG field
;1-byte src with FLG field

CREATE Duplicate record keys allowed

DISPLAY
OPEN

Duplicate record keys allowed
Duplicate record keys allowed

6-72

KEY BLOCK SUMMARY

6.4.10 FLG Field in KEY Block (XB$NUL Mask)

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Indicates that records containing only null characters are
not contained in the index described by the KEY block.
(The null character is specified in the NUL field of the
KEY block.)

X$FLG mask

1 byte

$SET mask,FLG,reg
$OFF mask,FLG,reg
$TESTBITS mask,FLG,reg
$FETCH dst,FLG,reg
$STORE src,FLG,reg
$COMPARE src,FLG,reg

;Mask bits on in FLG field
;Mask bits off in FLG field
;Test mask bits in FLG field
;FLG field to !-byte dst
;!-byte src to FLG field
;!-byte src with FLG field

CREATE Null record keys not indexed

DISPLAY
OPEN

Null record keys not indexed
Null record keys not indexed

6-73

KEY BLOCK SUMMARY

6.4.11 IAN Field in KEY Block

USE Contains the area number of the area containing the higher
index levels (all except the lowest level) for the index
described by the KEY block.

INIT X$IAN number

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,IAN,reg
$STORE src,IAN,reg
$COMPARE src,IAN,reg

;IAN field to 1-byte dst
;1-byte src to IAN field
;1-byte src with IAN field

CREATE Higher level index area number

DISPLAY
OPEN

Higher level index area number
Higher level index area number

6-74

KEY BLOCK SUMMARY

6.4.12 !BS Field in KEY Block

USE

!NIT

SIZE

ACCESS

OUTPUT

Contains the bucket size of the area containing the index
described by the KEY block.

None

1 byte

$FETCH dst,IBS,reg
$COMPARE src,IBS,reg

;IBS field to 1-byte dst
;1-byte src with IBS field

DISPLAY
OPEN

Index area bucket size (blocks)
Index area bucket size (blocks)

6-75

KEY BLOCK SUMMARY

6.4.13 !FL Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the bucket fill number for the area containing
the index described by the KEY block.

X$IFL number

1 word

$FETCH dst,IFL,reg
$STORE src,IFL,reg
$COMPARE src,IFL,reg

;IFL field to 1-word dst
;1-word src to IFL field
;1-word src with IFL field

CREATE

DISPLAY
OPEN

Index bucket fill factor

Index bucket fill factor
Index bucket fill factor

6-76

KEY BLOCK SUMMARY

6.4.14 KNM Field in KEY Block

USE

INIT

SIZE

ACCESS

INPUT

Contains the address of the 32-byte key name buffer for
the index described by the KEY block.

X$KNM address

1 word

$FETCH dst,KNM,reg
$STORE src,KNM,reg
$COMPARE src,KNM,reg

;KNM field to !-word dst
;!-word src to KNM field
;!-word src with KNM field

CREATE
DISPLAY
OPEN

Key name buffer address
Key name buffer address
Key name buffer address

6-77

KEY BLOCK SUMMARY

6.4.15 LAN Field in KEY Block

USE Contains the area number of the area containing the lowest
level of the index described by the KEY block.

INIT X$LAN number

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,LAN,reg
$STORE src,LAN,reg
$COMPARE src,LAN,reg

;LAN field to 1-byte dst
;1-byte src to LAN field
;1-byte src with LAN field

CREATE Lowest index level area number

DISPLAY
OPEN

Lowest index level area number
Lowest index level area number

6-78

\

KEY BLOCK SUMMARY

6.4.16 LVL Field in KEY Block

USE

INIT

SIZE

ACCESS

OUTPUT

Contains the number of levels (not including the data
level) for the index described by the KEY block.

None

l byte

$FETCH dst,LVL,reg
$COMPARE src,LVL,reg

;LVL field to 1-byte dst
;l-byte src with LVL field

DISPLAY

OPEN

Number of index levels (not including data
level)
Number of index levels (not including data
level)

6-79

KEY BLOCK SUMMARY

6.4.17 MRL Field in KEY Block

USE Contains the length of the smallest record that is long
enough to completely contain a record key for the index
described by the KEY block.

INIT None

SIZE 1 word

ACCESS $FETCH dst,MRL,reg
$COMPARE src,MRL,reg

;MRL field to 1-word dst
;1-word src with MRL field

OUTPUT DISPLAY

OPEN

Minimum length of record ·containing
(bytes)
Minimum length of record containing
(bytes)

6-80

key

key

\

KEY BLOCK SUMMARY

6.4.18 NSG Field in KEY Block

USE

!NIT

SIZE

ACCESS

OUTPUT

Contains the number of key segments in the key for the
index described by the KEY block.

None

1 byte

$FETCH dst,NSG,reg
$COMPARE src,NSG,reg

;NSG field to 1-byte dst
;1-byte src with NSG field

DISPLAY
OPEN

Key segment count
Key segment count

6-81

KEY BLOCK SUMMARY

6.4.19 NUL Field in KEY Block

USE Contains the null character for the (alternate) index
described by the KEY block. For a string key (XB$STG in
the DTP field of the KEY block), the NUL field contain.s an
ASCII character; for any other key data type, the NUL
field is unused (nonstring keys use 0 as the null value
when the XB$NUL mask is set).

INIT X$NUL number

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,NUL,reg
$STORE src,NUL,reg
$COMPARE src,NUL,reg

;NUL field to 1-byte dst
;1-byte src to NUL field
;1-byte src with NUL field

CREATE Null key character

DISPLAY
OPEN

Null key character
Null key character

6-82

KEY BLOCK SUMMARY

6.4.20 NXT Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst,NXT,reg
$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ENTER Next XAB
ERASE Next XAB
EXTEND Next XAB
OPEN Next XAB
PARSE Next XAB
REMOVE Next XAB
RENAME Next XAB
SEARCH Next XAB

;NXT field to 1-word dst
;1-word src to NXT field
;1-word src with NXT field

address
address
address
address
address
address
address
address
address
address
address

6-83

KEY BLOCK SUMMARY

6.4.21 POS Field in KEY Block

. USE Contains the positions of segments for the record keys in
the index described by the KEY block. (The first key
position is position O.)

!NIT X$POS <number[,number] ••• >

SIZE 8 words

ACCESS

INPUT

OUTPUT

$FETCH dst,POS,reg
$STORE src,POS,reg
$FETCH dst,POSn,reg
$STORE src,POSn,reg
$COMPARE src,POSn,reg

;POS field to 8-word dst
;8-word src to POS field
;POS word n to 1-word dst
;1-word src to POS word n
;1-word src with POS word n

CREATE Key segment positions

DISPLAY
OPEN

Key segment positions
Key segment positions

6-84

KEY BLOCK SUMMARY

6.4.22 REF Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

Contains the reference number for the index described by
the KEY block.

X$REF number

1 byte

$FETCH dst,REF,reg
$STORE src,REF,reg
$COMPARE src,REF,reg

;REF field to !-byte dst
;!-byte src to REF field
;!-byte src with REF field

CLOSE Index reference number
CREATE Index reference number
DISPLAY Index reference number
EXTEND Index reference number
OPEN Index reference number

6-85

KEY BLOCK SUMMARY

6.4.23 RVB Field in KEY Block

USE Contains the virtual block number of the first block of
the root bucket of the index described by the KEY block.

!NIT None

SIZE 2 words

ACCESS $FETCH dst,RVB,reg ;RVB field to 2-word dst

OUTPUT DISPLAY
OPEN

Root index bucket virtual block number
Root index bucket virtual block number

6-86

KEY BLOCK SUMMARY

6.4.24 SIZ Field in KEY Block

USE

!NIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the sizes of segments for the record keys in the
index described by the KEY block.

X$SIZ <number[,number] ••• >

8 bytes

$FETCH dst,SIZ,reg
$STORE src,SIZ,reg
$FETCH dst,SIZn,reg
$STORE src,SIZn,reg
$COMPARE src,SIZn,reg

;SIZ field to 8-byte dst
;8-byte src to SIZ field
;SIZ byte n to I-byte dst
;I-byte src to SIZ byte n
;1-byte src with SIZ byte n

CREATE Key segment sizes (bytes)

DISPLAY
OPEN

Key segment sizes (bytes)
Key segment sizes (bytes)

6-87

KEY BLOCK SUMMARY

6.4.25 TKS Field in KEY Block

USE

INIT

SIZE

ACCESS

OUTPUT

Contains the total key size (sum of the segment sizes) of
a record key for the index described by the KEY block.

None

1 byte

$FETCH dst,TKS,reg
$COMPARE src,TKS,reg

;TKS field to 1-byte dst
;1-byte src with TKS field

DISPLAY

OPEN

Total key size (sum of key segment sizes)
(bytes)
Total key size (sum of key segment sizes)
(bytes)

6-88

6.5 NAM BLOCK SUMMARY

This section summarizes the NAM block and its fields. Table 6-5
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Offset
Offset Symbol

000 0$RLF
002 0$RSA
004 0$RSS
005 0$RSL
006 0$DVI
012 0$WDI
014 0$FID
022 0$DID
030 0$FNB

Table 6-5: NAM Block Summary

Field
Size

1 word
1 word
1 byte
1 byte
2 words
1 word
3 words
3 words
1 word

Description

Reserved
Resultant string buffer address
Resultant string buffer size (bytes)
Resultant string length (bytes)
Device identifier
Wildcard directory context
Fi le identifier
Directory identifier
File specification mask

000001 NB$VER File version in file
string or default string

000002 NB$TYP File type in file string
or default string

000004 NB$NAM File name in file string
or default string

000010 NB$WVE Wildcard file version in
file string or default
string

000020 NB$WTY Wildcard file type in
file string or default
string

000040 NB$WNA Wildcard file name in
file string or default
string

000100 NB$DIR Directory in file string
or default string

000200 NB$DEV Device in file string or
default string

000400 NB$NOD Node in file string or
default string

001000 NB$WDI Wildcard directory in
file string or default
string

002000 NB$QUO Quoted string in file
string or default string

004000 NB$WCH Wildcard context
established

(continued on next page)

6-89

NAM BLOCK SUMMARY

Table 6-5 (cont.): NAM Block Summary

Offset

032
034
035
036

Offset
Symbol

0$ESA
0$ESS
0$ESL
0$WCC

Field
Size

l word
l byte
l byte
l word

, Description

Expanded string buffer address
Expanded string buffer size (bytes)
Expanded string length (bytes)
Wildcard context

The first word of the NAM block is currently reserved, as noted above,
and must contain the value O. If the NAM block is extended in the
future, the first byte will contain an identifier and the second byte
will contain the (new) block length.

6-90

NAM BLOCK SUMMARY

6.5.1 DID Field in NAM Block

USE Contains the directory identifier for the target file.

!NIT None

SIZE 3 words

ACCESS $FETCH dst,DID,reg ;DID field to 3-wo rd dst

INPUT CREATE Directory identifier
ENTER Directory identifier
ERA.SE Directory identifier
OPEN Directory identifier
REMOVE Directory identifier
RENAME Directory identifier
SEARCH Directory identifier

OUTPUT CREATE Directory identifier
ENTER Directory identifier
ERASE Directory identifier
OPEN Directory identifier
REMOVE Directory identifier
RENAME Directory identifier
SEARCH Directory identifier

6-91

NAM BLOCK SUMMARY

6.5.2 DVI Field in NAM Block

USE Contains the device identifier for the target file.

!NIT None

SIZE 2 words

ACCESS $FETCH d st , DVI , reg ;DVI field to 2-word dst

INPUT CREATE Device identifier
ENTER Device identifier
ERASE Device identifier
OPEN Device identifier
REMOVE Device identifier
RENAME Device identifier
SEARCH Device identifier

OUTPUT CREATE Device identifier
ENTER Device identifier
ERASE Device identifier
OPEN Device identifier
PARSE Dev ic.e identifier
REMOVE Device identifier
RENAME Dev ice identifier

6-92

NAM BLOCK SUMMARY

6.5.3 ESA Field in NAM Block

USE Contains the address of the expanded string buffer.

INIT N$ESA address

SIZE 1 word

ACCESS

INPUT

$FETCH dst,ESA,reg
$STORE src,ESA,reg
$COMPARE src,ESA,reg

;ESA field to 1-word dst
;1-word src to ESA field
;1-word src with ESA field

CREATE
ENTER
ERASE
OPEN
PARSE
REMOVE
RENAME
SEARCH

Expanded string buffer address
Expanded string buffer address
Expanded string buffer address
Expanded string buffer address
Expanded string buffer address
Expanded string buffer address
Expanded string buffer address
Expanded string buffer address

6-93

NAM BLOCK SUMMARY

6.5.4 ESL Field in NAM Block

USE Contains the length of the expanded string.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,ESL,reg ;ESL field .to 1-byte dst
$COMPARE src,ESL,reg ;I-byte src with ESL field

INPUT SEARCH Expanded string length (bytes)

OUTPUT CREATE Expanded string length (bytes)
ENTER Expanded string length (bytes)
ERASE Expanded string length (bytes)
OPEN Expanded string length (bytes)
PARSE Expanded string length (bytes)
REMOVE Expanded string length (bytes)
RENAME Expanded string length (bytes)

6-94

NAM BLOCK SUMMARY

6.5.5 ESS Field in NAM Block

USE Contains the size of the expanded string buffer.

!NIT N$ESS number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,ESS,reg
$STORE src,ESS,reg
$COMPARE src,ESS,reg

CREATE Expanded
ENTER Expanded
ERASE Expanded
OPEN Expanded
PARSE Expanded
REMOVE Expanded
RENAME Expanded

;ESS field to 1-byte dst
;1-byte src to ESS field
;1-byte src with ESS field

string buffer size (bytes)
string buffer size (bytes)
string buffer size (bytes)
string buffer size (bytes)
string buffer size (bytes)
string buffer size (bytes)
string buffer size (bytes)

6-95

NAM BLOCK SUMMARY

6.5.6 FID Field in NAM Block

USE Contains the file identifier for the target file.

INIT None

SIZE 3 words

ACCESS $FETCH dst,FID,reg ;FID field to 3-word dst

INPUT ENTER File id en ti fier
ERASE File identifier
OPEN File identifier

OUTPUT CREATE File identifier
ERASE File identifier
OPEN File identifier
REMOVE File identifier
RENAME File identifier
SEARCH File identifier

6-96

NAM BLOCK SUMMARY

6.5.7 FNB Field in NAM Block

USE

INIT

SIZE

ACCESS

MASKS

OUTPUT

Indicates which parts of the merged string were taken from
the file string or the default string. (The masks in this
section do not include the NB$WCH mask, which has its own
description in the next section.)

None

1 word

$TESTBITS mask,FNB,reg ;Test mask bits in FNB field
$FETCH dst,FNB,reg ;FNB field to 1-word dst
$COMPARE src,FNB,reg ;1-word src with FNB field

NB$DEV Device in file string or default string
NB$DIR Directory in file string or default string
NB$NAM File name in file string or default string
NB$NOD Node in file string or default string
NB$QUO Quoted string in file string or default string
NB$TYP File type in file string or default string
NB$VER File version in file string or default string
NB$WDI Wildcard directory in file string or default

string
NB$WNA Wildcard file name in file string or default

NB$WTY
string
Wildcard file type in file string or default
string

NB$WVE Wildcard file version in file string or default
string

CREATE File specification mask
ENTER File specification mask
ERASE File specification mask
OPEN File specification mask
PARSE File specification mask
REMOVE File specification mask
RENAME File specification mask

6-97

NAM BLOCK SUMMARY

6.5.8 FNB Field in NAM Block (NB$WCH Mask)

USE Indicates that a valid wildcard context exists. (Masks
for the FNB field other than the NB$WCH mask are described
in the previous section.)

!NIT None

SIZE 1 word

ACCESS $TESTBITS mask,FNB,reg ;Test mask bits in FNB field
$FETCH dst,FNB,reg ;FNB field to 1-word dst
$COMPARE src,FNB,reg ;I-word src with FNB field

INPUT ERASE Wi ldcard context established
REMOVE Wild card context established
RENAME Wildcard context established
SEARCH Wildcard context established

OUTPUT CREATE Wild card context established
ENTER Wildcard context established
OPEN Wildcard context established
PARSE Wildcard context established
SEARCH Wildcard context established

6-98

NAM BLOCK SUMMARY

6.5.9 RSA Field in NAM Block

USE Contains the address of the resultant string buffer.

!NIT N$RSA address

SIZE 1 word

ACCESS $FETCH dst,RSA,reg
$STORE src,RSA,reg
$COMPARE src,RSA,reg

;RSA field to 1-word dst
;1-word src to RSA field
;1-word src with RSA field

INPUT SEARCH Resultant string buffer address

6-99

NAM BLOCK SUMMARY

6.5.10 RSL Field in NAM Block

USE Contains the length of the resultant string.

INIT None

SIZE 1 byte

ACCESS

INPUT

OUTPUT

$FETCH dst,RSL,reg
$COMPARE src,RSL,reg

;RSL field to 1-byte dst
;1-byte src with RSL field

SEARCH Resultant string length (bytes)

SEARCH Resultant string length (bytes)

6-100

\

NAM BLOCK SUMMARY

6.5.11 RSS Field in NAM Block

USE Contains the size of the resultant string buffer.

INIT N$RSS number

SIZE 1 byte

ACCESS $FETCH dst,RSS,reg
$STORE src,RSS,reg
$COMPARE src,RSS,reg

;RSS field to 1-byte dst
;!-byte src to RSS field
;!-byte src with RSS field

INPUT SEARCH Resultant string buffer size (bytes)

6-101

NAM BLOCK SUMMARY

6.5.12 wee Field in NAM Block

USE Contains wildcard context information.

INIT None

SIZE 1 word

ACCESS $FETCH dst,WCC,reg
$COMPARE src,WCC,reg

;WCC field to !-word dst
;l-word src with wee field

INPUT

OUTPUT

SEARCH

PARSE
SEARCH

Wildcard context

Wildcard context
Wildcard context

6-102

NAM BLOCK SUMMARY

6.5.13 WDI Field in NAM Block

USE Contains wildcard directory context information.

!NIT None

SIZE 1 word

ACCESS

INPUT

OUTPUT

$FETCH dst,WDI,reg
$COMPARE src,WDI,reg

;WDI field to 1-word dst
;1-word src with WDI field

SEARCH

PARSE
SEARCH

Wildcard directory context

Wildcard directory context
Wildcard directory context

6-103

6.6 PRO BLOCK SUMMARY

This section summarizes the PRO block and its fields. Table 6-6
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-6: PRO Block Summary

Offset Field
Off set Symbol Size Description

000 0$COD 1 byte PRO block identifier

000003 XB$PRO PRO block identifier code

001 0$BLN 1 byte PRO block length (bytes)

000012 XB$PRL PRO block length (bytes)

002 0$NXT 1 word Next XAB address
004 0$PRG 1 word Programmer or member po rt ion of file

owner code
006 0$PRJ 1 word Project or group portion of file owner

code
010 0$PRO 1 word File protection code

6-104

\.

(

PRO BLOCK SUMMARY

6.6.1 BLN Field in PRO Block (XB$PRL Code)

USE Contains the length of the PRO block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-byte src with BLN field

n-1os

PRO BLOCK SUMMARY

6.6.2 COD Field in PRO Block (XB$PRO Code)

USE

INIT

SIZE

ACCESS

Contains the identifier for the PRO block.

None

1 byte

$FETCH dst,COD,reg
$COMPARE src,COD,reg

;COD field to 1-byte dst
;1-byte src with COD field

6-106

\

PRO BLOCK SUMMARY

6.6.3 NXT Field in PRO Block

USE

INIT

SIZE

ACCESS

INPUT

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst,NXT,reg
$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ENTER Next XAB
ERASE Next XAB
EXTEND Next XAB
OPEN Next XAB
PARSE Next XAB
REMOVE Next XAB
RENAME Next XAB
SEARCH Next XAB

;NXT field to 1-word dst
;1-word src to NXT field
;1-word src with NXT field

address
address
address
address
address
address
address
address
address
address
address

6-107

PRO BLOCK SUMMARY

6.6.4 PRG Field in PRO Block

USE Contains the member or programmer portion of the file
owner code.

INIT X$PRG number

SIZE 1 word

ACCESS $FETCH dst ,PRG, reg ;PRG field to 1-word dst
$STORE src,PRG,reg ; 1-word src to PRG field
$COMPARE src,PRG,reg ; 1-word src with PRG field

INPUT CLOSE Programmer or member portion of file owner
code

OUTPUT DISPLAY Programmer or member portion of file owner
code

OPEN Programmer or member portion of file owner
code

6-108

PRO BLOCK SUMMARY

6.6.5 PRJ Field in PRO Block

USE Contains the group or project portion of the file owner
code.

INIT X$PRJ number

SIZE 1 word

ACCESS $FETCH dst ,PRJ, reg ;PRJ field to 1-wo rd dst
$STORE src,PRJ,reg ;1-word src to PRJ field
$COMPARE src,PRJ,reg ; 1-word src with PRJ field

INPUT CLOSE Project or group portion of file owner code

OUTPUT DISPLAY Project or group portion of file owner code
OPEN Project or group portion of file owner code

6-109

PRO BLOCK SUMMARY

6.6.6 PRO Field in PRO Block

USE Contains the protection code for the file.

INIT X$PRO number

SIZE 1 word

ACCESS

INPUT

$FETCH dst,PRO,reg
$STORE src,PRO,reg
$COMPARE src,PRO,reg

;PRO field to 1-word dst
;1-word src to PRO field
;1-word src with PRO field

CLOSE
CREATE
DISPLAY
OPEN

File protection code
File protection code
rile protection code
File protection code

6-110

/

6.7 RAB SUMMARY

This section summarizes the RAB and its fields. Table 6-7 summarizes
the entire block, giving the offset, offset symbol, size, and a brief
description for each field; for a field that has mask or code
symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Off set
Offset Symbol

000 0$BID

001

002
004
006
010
012
020

021
022

0$BLN

0$CTX
0$ISI
0$STS
0$STV
0$RFA
0$RAC

0$KSZ
0$ROP

Table 6-7: RAB Summary

Field
Size

1 byte

1 byte

1 word
1 word
1 word
1 word
3 words
1 byte

1 byte
1 word

Description

RAB identifier code

000001 RB$BID RAB identifier

RAB length (bytes)

000120 RB$BLN RAB length (bytes)

User context
Internal stream identifier
Completion status code
Completion status value
Record file address
Record access code

000000 RB$SEQ Sequential access
000001 RB$KEY Key access
000002 RB$RFA RFA access

Key size (bytes)
Record processing option mask

000001
000002
000020
000100
002000

004000

010000

RB$EOF
RB$MAS
RB$LOA
RB$LOC
RB$KGE

RB$KGT

RB$FDL

6-111

Position to end-of-file
Mass insert
Honor bucket fill numbers
Locate mode
Greater-than-or-equal key
criterion
Greater-than key
criterion
Fast deletion

(continued on next page)

RAB SUMMARY

Table 6-7 (cont.): RAB Summary

Offset Field
Offset Symbol Size Description

020000 RB$UIF Update if record exists

024 0$USZ 1 word User buffer size (bytes)
026 0$UBF 1 word User buffer address
030 0$RSZ 1 word Record size (bytes)
032 0$RBF 1 word Record buffer address
034 0$KBF 1 word Key buffer address
036 0$KRF 1 byte Key of reference
037 0$MBF 1 byte Multibuffer count
040 0$MBC 1 byte Multiblock count
041 0$RT1A 1 byte Reserved
042 0$RHB 1 word VFC control buff er address
044 0$FAB 1 word FAB address
046 O$BKT 2 words Virtual block number (VBN) or relative

record number (RRN)

6-112

RAB SUMMARY

6.7.1 BID Field in RAB (RB$BID Code)

USE Contains the identifier for the RAB.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BID,reg
$COMPARE src,BID,reg

;BID field to 1-byte dst
;1-byte src with BID field

6-113

RAB SUMMARY

6.7.2 BKT Field in RAB

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Contains a virtual block number or relative record number
for a target record-

R$BKT number

2 words

$FETCH dst,BKT,reg
$STORE src,BKT,reg
$FETCH dst,BKTn,reg
$STORE src,BKTn,reg
$COMPARE src,BKTn,reg

;BKT field to 2-word dst
;2-word src to BKT field
;BKT word n to 1-word dst
;!-word src to BKT word n
;!-word src with BKT word n

READ Virtual block number (VBN)
SPACE Virtual block number (VBN) increment
WRITE Virtual block number (VBN)

FIND Relative record number (RRN)
GET Relative record number (RRN)
PUT Relative record number (RRN)

6-114

RAB SUMMARY

6.7.3 BLN Field in RAB

USE Contains the length of the RAB.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-~yte src with BLN field

CODES RB$BLN RAB length (bytes)

6-115

RAB SUMMARY

6.7.4 CTX Field in RAB

USE

!NIT

SIZE

ACCESS

Contains any information you may want to associate with
the stream at run time.

R$CTX number

1 word

$FETCH dst,CTX,reg
$STORE src,CTX,reg
$COMPARE src,CTX,reg

;CTX field to 1-word dst
;1-word src to CTX field
;I-word src with CTX field

6-116

RAB SUMMARY

6.7.5 FAB Field in RAB

USE Contains the address of the FAB for the target file.

INIT R$FAB address

SIZE 1 word

ACCESS $FETCH dst,FAB,reg
$STORE src,FAB,reg
$COMPARE src,FAB,reg

;FAB field to !-word dst
; !-word src to FAB field
;!-word src with FAB field

INPUT CONNECT FAB address

6-117

RAB SUMMARY

6.7.6 ISI Field in RAB

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the internal stream identifier for the target
file.

None

1 word

$FETCH dst,ISI,reg ; ISI field to 1 ~word dst
$COMPARE src,ISI,reg ; 1-wo rd src with ISI field

DELETE Internal stream identifier
DISCONNECT Internal stream identifier
FIND Internal st ream identifier
FLUSH Internal stream identifier
FREE Internal stream identifier
GET Internal stream identifier
PUT Internal stream identifier
READ In tern al st ream identifier
REWIND Internal stream identifier
TRUNCATE Internal stream identifier
UPDATE Internal stream identifier
WAIT Internal stream identifier
WRITE Internal stream identifier

CONNECT Internal stream identifier
DISCONNECT Internal stream identifier

6-118

"\

RAB SUMMARY

6.7.7 KBF Field in RAB

USE

INIT

SIZE

ACCESS

INPUT

Contains the address of the key buffer for the target
record.

R$KBF address

1 word

$FETCH dst,KBF,reg
$STORE src,KBF,reg
$COMPARE src,KBF,reg

;KBF field to 1-word dst
;!-word src to KBF field
;!-word src with KBF field

FIND
GET
PUT

Key buffer address
Key buffer address
Key buffer address

6-119

RAB SUMMARY

6.7.8 KRF Field in RAB

USE

INIT

SIZE

ACCESS

INPUT

Contains the index reference number of the index for the
operation.

R$KRF number

1 byte

$FETCH dst,KRF,reg
$STORE src,KRF,reg
$COMPARE src,KRF,reg

;KRF field to 1-byte dst
;1-byte src to KRF field
;1-byte src with KRF field

CONNECT
FIND
GET
REWIND

Key of reference
Key of reference
Key of reference
Key of reference

6-120

I

\

(

~

RAB SUMMARY

6.7.9 KSZ Field in RAB

USE Contains the size of the record key for the operation.

INIT R$KSZ number

SIZE 1 byte

ACCESS

INPUT

$FETCH dst,KSZ,reg
$STORE src,KSZ,reg
$COMPARE src,KSZ,reg

;KSZ field to 1-byte dst
;1-byte src to KSZ field
;1-byte src with KSZ field

FIND
GET
PUT

Key size (bytes)
Key size (bytes)
Key size (bytes)

6-121

RAB SUMMARY

6.7.10 MBC Field in RAB

USE Contains the multiblock count for the stream.

INIT R$MBC number

SIZE 1 byte

ACCESS $FETCH dst,MBC,reg
$STORE src,MBC,reg
$COMPARE src ,MBC, reg

;MBC field to 1-byte dst
;1-byte src to MBC field
;1-byte src with MBC field

INPUT CONNECT Multiblock count

6-122

RAB SUMMARY

6.7.11 MBF Field in RAB

USE Contains the multibuffer count for the stream.

INIT R$MBF number

SIZE 1 byte

ACCESS $FETCH dst,MBF,reg
$STORE src,MBF,reg
$COMPARE src,MBF,reg

;MBF field to !-byte dst
;!-byte src to MBF field
;!-byte src with MBF field

INPUT CONNECT Multibuffer count

6-123

RAB SUMMARY

6.7.12 RAC Field in RAB

USE Contains the access mode code for the operation.

!NIT R$RAC code

SIZE 1 byte

ACCESS

CODES

INPUT

$FETCH dst,RAC,reg
$STORE src,RAC,reg
$COMPARE src,RAC,reg

;RAC field to !-byte dst
;1-byte src to RAC field
;!-byte src with RAC field

RB$KEY Key access
RB$RFA RFA access
RB$SEQ Sequential access

FIND Record access code
GET Record access code
PUT Record access code

6-124

RAB SUMMARY

6.7.13 RBF Field in RAB

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Contains the address of the record buffer for
operation.

R$RBF address

1 word

$FETCH dst,RBF,reg
$STORE src,RBF,reg
$COMPARE src,RBF,reg

;RBF field to 1-word dst
;1-word src to RBF field
;1-word src with RBF field

PUT Record buffer address
UPDATE Record buffer address
WRITE Record buffer address

CONNECT Record buffer address
GET Record buff er address
PUT Record buffer address
READ Record buffer address

6-125

the

RAB SUMMARY

6.7.14 RFA Field in RAB

USE Contains the record file address for the target record.

INIT None

SIZE 3 words

ACCESS $FETCH dst,RFA,reg ;RFA field to 3-word dst

INPUT

OUTPUT

FIND
GET

CONNECT
FIND
GET
PUT
READ
WRITE

Record file address
Record file address

End-of-file address
Record file address
Record file address
Record file address
Virtual block number (2 words)
Virtual block number (2 words)

6-126

RAB SUMMARY

6.7.15 RHB Field in RAB

USE Contains the address of the VFC fixed control area buffer
for the target record.

INIT R$RHB address

SIZE 1 word

ACCESS $FETCH dst,RHB,reg ;RHB field to 1-word dst
$STORE src,RHB,reg ;1-word src to RHB field
$COMPARE src,RHB,reg ;1-word src with RHB field

INPUT GET VFC control buffer address
PUT VFC control buffer address
UPDATE VFC control buffer address

6-127

RAB SUMMARY

6.7.16 ROP Field in RAB (RB$EOF Mask)

USE Requests initial stream context at end-of-file.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

CONNECT Position to end-of-file

6-128

RAB SUMMARY

6.7.17 ROP Field in RAB (RB$FDL Mask)

USE Requests fast deletion.

!NIT R$ROP mask

SIZE 1 word

ACCESS $SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

INPUT DELETE Fast deletion

6-129

RAB SUMMARY

6.7.18 ROP Pield in RAB (RB$KGE Mask)

USE Requests greater-than-or-equal key match criterion.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

FIND
GET

Greater-than-or-equal key criterion
Greater-than-or-equal key criterion

6-130

(

RAB SUMMARY

6.7.19 ROP Field in RAB (RB$KGT Mask)

USE Requests greater-then key match criterion.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

FIND
GET

Greater-than key criterion
Greater-than key criterion

6-131

RAB SUMMARY

6.7.20 ROP Field in RAB (RB$LOA Mask)

USE Requests bucket fill number honoring.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src ,ROP, reg

7Mask bits on in ROP field
7Mask bits off in ROP field
7Test mask bits in ROP field
7ROP field to 1-word dst
11-word src to ROP field
71-word src with ROP field

PUT
UPDATE

Honor bucket fill numbers
Honor bucket fill numbers

6-132

\

RAB SUMMARY

6.7.21 ROP Field in RAB (RB$LOC Mask)

USE Requests locate mode operation.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

CONNECT
GET
PUT

Locate mode
Locate mode
Locate mode

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

6-133

RAB SUMMARY

6.7.22 ROP Field in RAB (RB$MAS Mask)

USE Requests mass insertion.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

PUT Mass insert

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to !-word dst
;!-word src to ROP field
;!-word src with ROP field

6-134

\

RAB SUMMARY

6.7.23 ROP Field in RAB (RB$UIF Mask)

USE Requests update if target record already exists.

INIT R$ROP mask

SIZE 1 word

ACCESS

INPUT

$SET mask,ROP,reg
$OFF mask,ROP,reg
$TESTBITS mask,ROP,reg
$FETCH dst,ROP,reg
$STORE src,ROP,reg
$COMPARE src,ROP,reg

;Mask bits on in ROP field
;Mask bits off in ROP field
;Test mask bits in ROP field
;ROP field to 1-word dst
;1-word src to ROP field
;1-word src with ROP field

PUT Update if record exists

6-135

RAB SUMMARY

6.7.24 RSZ Field in RAB

USE Contains the size of the target record.

INIT R$RSZ number

SIZE 1 word

ACCESS

INPUT

OUTPUT

$FETCH dst,RSZ,reg
$STORE src,RSZ,reg
$COMPARE src,RSZ,reg

;RSZ field to 1-word dst
;1-word src to RSZ field
;1-word src with RSZ field

PUT
UPDATE
WRITE

GET
READ

Record size (bytes)
Record size (bytes)
Record size (bytes)

Record size (bytes)
Record size (bytes)

6-136

RAB SUMMARY

6.7.25 STS Field in RAB

USE Contains the completion status code for the operation.

!NIT None

SIZE 1 word

ACCESS $FETCH dst,STS,reg ;STS field to 1-word dst
$COMPARE src,STS,reg ;1-word src with STS field

OUTPUT CONNECT Completion status code
DELETE Completion status code
DISCONNECT Completion status code
FIND Completion status code
FLUSH Completion status code
FREE Completion status code
GET Completion status code
PUT Completion status code
READ Completion status code
REWIND Completion status code
TRUNCATE Completion status code
UPDATE Completion status code
WRITE Completion status code

\

6-137

RAB SUMMARY

6.7.26 STV Field in RAB

USE Contains the completion status value for the operation.

!NIT None

SIZE 1 word

ACCESS $FETCH dst,STV,reg
$COMPARE src,STV,reg

;STV field to 1-word dst
;1-word src with STV field

OUTPUT CONNECT
DELETE
DISCONNECT
FIND
FLUSH
FREE
GET
PUT
READ
REWIND
TRUNCATE
UPDATE
WRITE

Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value
Completion status value

6-138

\

RAB SUMMARY

6.7.27 UBF Field in RAB

USE Contains the address of the user buffer for the operation.

INIT R$UBF address

SIZE 1 word

ACCESS

INPUT

$FETCH dst,UBF,reg
$STORE src,UBF,reg
$COMPARE src,UBF,reg

;UBF field to 1-word dst
;1-word src to UBF field
;1-word src with UBF field

CONNECT
GET
PUT
READ

User buffer address
User buffer address
User buffer address
User buffer address

6-139

RAB SUMMARY

6.7.28 USZ Field in RAB

USE Contains the size of the user buffer for the operation.

INIT R$USZ number

SIZE 1 word

ACCESS

INPUT

$FETCH dst,USZ,reg
$STORE src,USZ,reg
$COMPARE src,USZ,reg

;USZ field to 1-word dst
;1-word src to usz field
;1-word src with USZ field

CONNECT
GET
PUT
READ

User buffer size (bytes)
User buffer size (bytes)
User buffer size (bytes)
User buffer size (bytes)

6-140

\.

6.8 SUM BLOCK SUMMARY

This section summarizes the SUM block and its fields. Table 6-8
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-8: SUM Block Summary

Offset Field
Offset Symbol Size Description

000 0$COD 1 byte SUM block identifier

000005 XB$SUM SUM block identifier code

001 0$BLN 1 byte SUM block length (bytes)

000012 XB$SML SUM block length (bytes)

002 0$NXT 1 word Next XAB address
004 0$NOK 1 byte Number of indexes
005 0$NOA 1 byte Number of areas
006 0$NOR 1 byte Reserved
007 1 byte Reserved
010 0$PVN 1 word Prologue version number

6-141

SUM BLOCK SUMMARY

6.8.1 BLN Field in SUM Block (XB$SML Code)

USE Contains the length of th~ SUM block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to 1-byte dst
;1-byte src with BLN field

6-142

SUM BLOCK SUMMARY

6.8.2 COD Field in SUM Block (XB$SUM Code)

USE Contains the identifier for the SUM block.

!NIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg
$COMPARE src,COD,reg

:COD field to 1-byte dst
:1-byte src with COD field

6-143

SUM BLOCK SUMMARY

6.8.3 NOA Field in SUM Block

USE Contains the number of areas in the file.

!NIT None

SIZE 1 byte

ACCESS

OUTPUT

$FETCH dst,NOA,reg
$COMPARE src,NOA,reg

;NOA field to 1-byte dst
;1-byte src with NOA field

DISPLAY
OPEN

Number of areas
Number of areas

J

SUM BLOCK SUMMARY

6.8.4 NOK Field in SUM Block

USE Contains the number of indexes in the file.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,NOK,reg
$COMPARE src,NOK,reg

;NOK field to 1-byte dst
;1-byte src with NOK field

OUTPUT DISPLAY
OPEN

Number of indexes
Number of indexes

6-145

SUM BLOCK SUMMARY

6.8.5 NXT Field in SUM Block

USE

INIT

SIZE

ACCESS

INPUT

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst,NXT,reg
$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ENTER Next- XAB
ERASE Next XAB
EXTEND Next XAB
OPEN Next XAB
PARSE Next XAB
REMOVE Next XAB
RENAME Next XAB
SEARCH Next XAB

;NXT field to 1-word dst
;1-word src to NXT field
;1-word src with NXT field

address
address
address
address
address
address
address
address
address
address
address

-6-146

(

SUM BLOCK SUMMARY

6.8.6 PVN Field in SUM Block

USE Contains the prologue version number for the file.

INIT None

SIZE 1 word

ACCESS $FETCH dst,PVN,reg
$COMPARE src,PVN,reg

;PVN field to 1-word dst
;1-word src with PVN field

OUTPUT DISPLAY
OPEN

Prologue version number
Prologue version number

6-147

CHAPTER 7

EXAMPLE PROGRAMS

This chapter contains example programs; the titles of the programs
are:

e PARSE - $PARSE TEST

• SEARCH - $SEARCH TEST

• ERASE - $ERASE TEST

• RENAME - $RENAME TEST

• OPENl - $OPEN BY NAME/FID TEST

• OPEN2 - $OPEN BY FID WITH WILDCARDS TEST

• OPEN3 - $OPEN WITH IMPLICIT WILDCARDS (ILLEGAL)

• GSA - CORE SPACE ALLOCATOR

7-1

EXAMPLE PROGRAMS

.TITLE
• !DENT

• ENABL

.MCALL

.MCALL

.MCALL

Example 7-1: PARSE - $PARSE Test

PARSE - $PARSE TEST
/XOl.00/

LC

FABB,NAMB,GSA$
$PARSE,$STORE,$FETCH,$COMPARE
ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $PARSE function.

RMS-11 Data Structures

FAB::

NAM::

PARSE::

GSA$ GSA

FAB$B Argument FAB
F$NAM NAM Link to NAM
F$LCH 2. Channel #2

FAB$E

NAM$B NAM definition
N$ESA EXPSTR EXP STR address
N$ESS 128. EXP STR length

NAM$E

.PSECT $CODE$,RO,I

ALUN$S
MOV
MOV
MOV
MOV
MOV
CLR
MOV
MOV
DIR$
TSTB
BMI
MOV
MOV
DIR$
TSTB
BMI
$STORE
$STORE
MOV
MOV
DIR$
TSTB
BMI
MOV
MOV
DIR$
TSTB
BMI

U,#"TI,#0
#FAB,RO
ftEDBLK, R2
#NAM, R3
#READ,R4
#WRITE, RS

Assign the terminal
Map the target FAB
Map the exit block
Map the target NAM
Map the input DPB
Map the output DPB
Turn off carriage ctl Q. IOPL+4 (RS)

#QUESl,Q.IOPL(RS)
#QUES1L,Q.IOPL+2(RS)
RS Prompt for the DNA
IOSTAT Check the IOSB

Exit if error EXIT ;
#BUFF1,Q.IOPL(R4)
#64.,Q.IOPL+2(R4)
R4
IOSTAT
EXIT

Get the response
Check the IOSB
Exit if error
Set the default length
Set the default address

IOLEN,DNS,RO
#BUFFl,DNA,RO ;
#QUES2,Q.IOPL(RS)
#QUES2L,Q.IOPL+2(RS)
RS Prompt for the DNA
IOSTAT Check the IOSB
EXIT Exit if error
#BUFF2,Q.IOPL(R4)
#64.,Q.IOPL+2(R4)
R4
IOSTAT
EXIT

7-2

Get the response
Check the IOSB
Exit if error

\

EXIT:

ERROR:

BITS:

2$:
/

4$:

6$:

8$:

10$:

12$:

14$:

16$:

18$:

20$:

\
PRINT:

$STORE IOLEN,FNS,RO
$STORE =ltBUFF2,FNA,RO
MOV =lt40,Q.IOPL+4(R5);
$PARSE RO
$COMPARE =ltO,STS,RO
BLT ERROR
CLR (R2)
$FETCH (R2),ESL,R3
TST (R2) +
$FETCH (R2)+,ESA,R3
$FETCH (R2),FNB,R3
MOV =ltESSSTR,Rl
CALL PRINT
CALL BITS
BR PARSE

EXIT$S

$FETCH
$FETCH
MOV
CALL
BR

MOV
$FETCH
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
BIT
BEQ
MOV
MOV
MOV
CALL
RETURN

MOV
MOV

(R2)+,STS,RO
(R 2) , STV, RO
=ltERRSTR,Rl
PRINT
PARSE

#EDBLK,R2
RO,FNB,R3
=lt2000,RO
2$
=ltQUO, (R2)+
UOOO,RO
4$
=ltWDI, (R2)+
*400, RO
6$
=ltNOD, (R2)+
#100,RO
8$
=ltDIR, (R2)+
*40,RO
10$
ftWNA, (R2)+
=lt20,RO
12$
=ltWTY, (R2)+
UO,RO
14$
=ltWVE, (R2)+
=lt4, RO
16$
=ltNME, (R2)+
=lt2, RO
18$
=ltTYP, (R2)+
U,RO
20$
=ltVER, (R2)+
=ltEND, (R2)
jf:DEV,Rl
PRINT

#EDBLK, R2
#BUFFER, RO

7-3

EXAMPLE PROGRAMS

Set the default length
Set the default address
Restore carriage control
Parse the strings
An error?
Yes if MI; display it
Init the length
Get the string length
Advance
Get the string address
Get the file name bits
Select the format string
Display the file
Do the FNB bit disply
And let's try another

Task exit

Set the STS returned
And the STV
Set the error format string
Go edit and print the message
Let's try this again

Init EDBLK address
Get the FNB bits
Quoted string?
No if EQ
Set Quoted string
Wild directory?
No if EQ
Set wild directory
Node spec?
No if EQ
Set nodespec
Directory spec?
No if EQ
Set directory
Wild name?
No if eq
Set wild name
Wild type?
No if EQ
Set wild type
Wild version?
No if EQ
Set wild version
Name?
No if EQ
Set name
Type?
No if EQ
Set type
Version?
No if EQ
Set version
End with a null •••
Set the default (dev)
Edit and print
And exit

Setup edit
Output buffer

EXAMPLE PROGRAMS

QUESl:

QUES2:

ERRSTR:
ESSSTR:

DEV:
NOD:
DIR:
NME:
QUO:
TYP:
VER:
WDI:
WNA:
WTY:
WVE:
END:

EDBLK:
BUFFER:
BUFF!:
BUFF2:
EXPSTR:
IOSTAT:
I OLEN:
READ:
WRITE:

CALL
MOV
MOV
DIR$
RETURN

• PSECT

.Ase ii
QUESlL
.Ase ii
QUES2L
.Asciz
.Ase ii
.Asciz
.Asciz
.Asciz
.Asciz
.Asciz
.Asciz
• Ase i z
.Asciz
.Asciz
.Asciz
• Ase i z
• Ase i z
• Ase i z

.EVEN

.BLKW

• Bl kb
.Bl kb
• BLKB
.WORD
.WORD
QIOW$
QIOW$

• END

=

=

$EDMSG ; Exit the string
JBUFFER,Q.IOPL(R5)
Rl,Q.IOPL+2(R5)
RS Send to the terminal

Return to caller

$DATA$, RW ,D

<15><12>"Enter the default name string: . - QUESl
<15><12>"Enter the primary name string: . - QUES2
"$PARSE error -- STS=%P, STV=%P"
"$PARSE expanded string is %VA%N"

File name bits (FNB) are %P"
(DEV%I"

, NOD%I"
, DIR%I"
, NAM%I"
, QUO%I"
, TYP%I"

11 VER%I"
11 WDI %I"
11 WNA%I"
11 WTY%I"
11 WVE %I" ,
11) 11

16.

64 •
64
128 •
0
0
IO.RLB,1,1,,IOSTAT
IO.WLB,l,l,,IOSTAT,,<,,40>

PARSE

7-4

II

11

• TITLE
.!DENT

.ENABL

.MCALL

.MCALL

.MCALL

Example 7-2: SEARCH - $SEARCH Test

SEARCH - $SEARCH TEST
/XOl. 00/

LC

EXAMPLE PROGRAMS

FABB,NAMB,GSA$
$PARSE,$SEARCH,$STORE,$FETCH,$COMPARE
ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $SEARCH function.

RMS-11 Data Structures

FAB::

NAM::

SEARCH::

GETFIL:

GSA$ GSA

FAB$B
F$DNA SYDSKA
F$DNS SYDSKL
F$NAM NAM
F$LCH 2.

FAB$E

NAM$B
N$ESA EXPSTR
N$ESS 128.
N$RSA RESS TR
N$RSS 128.

NAM$E

.PSECT $CODE$,RO,I

U,#"TI,#0
jf:FAB,RO
#EDBLK, R2
#NAM,R3
#READ,R4
#WRITE ,RS

Argument FAB
If no device, SY:
should be used
Link to NAM
Channel #2

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

Assign the terminal
Map the target FAB
Map the exit block
Map the target NAM
Map the input DPB

ALUN$S
MOV
MOV
MOV
MOV
MOV
CLR
MOV
MOV
DIR$
TSTB
BM!
MOV
MOV
DIR$
TSTB

Map the output DPB
Turn off carriage ctl Q. IOPL+4 (RS)

#QUES,Q.IOPL(RS)
#QUESL,Q.IOPL+2(RS)
RS Prompt for the DNA
IOSTAT Check the IOSB
EXIT Exit if error
#BUFF,Q. IOPL (R4)
#64.,Q.IOPL+2(R4)
R4
IOSTAT

BM! EXIT
$STORE IOLEN,FNS,RO
$STORE #BUFF,FNA,RO
MOV #40,Q.IOPL+4(RS);
CLR FILCNT
$PARSE RO
$COMPARE #0,STS,RO
BLT ERROR

7-S

Get the response
Check the IOSB
Exit if error
Set the string length
Set the string address
Restore carriage control
!nit count of matches
Parse the strings
An error?
Yes if MI; display it

EXAMPLE PROGRAMS

NOTFST:

EXIT:

ERROR:

ERROR2:

ERR ORO:

ERRORl:

PRINT:

SYDSKA:

QUES:

ERRSTR:
RSSSTl:
RSSSTR:

MOV #EDBLK,R2
$SEARCH RO
$COMPARE #0,STS,RO
BLT ERROR
CLR (R2)
$FETCH (R2),RSL,R3
TST (R2)+
$FETCH (R2)+,RSA,R3
MOV #RSSSTR,Rl
TST FILCNT
BNE NOTFST
MOV #RSSSTl,Rl

CALL PRINT
MOV #FAB,RO
INC FILCNT
BR GETFIL

EXIT$S

$COMPARE #ER$NMF,STS,RO
BNE ERR ORO
MOV F I LC NT , (R 2) +
BEQ ERROR2
CLR (R 2)
$FETCH (R2) ,ESL,R3
TST (R2) +
$FETCH (R2) ,ESA,R3
MOV #TTLSTR,Rl
BR ERRORl

CLR - (R2)
$FETCH (R2) ,ESL,R3
TST (R2) +
$FETCH (R2) ,ESA,R3
MOV #NOFILE,Rl
BR ERRORl

$FETCH (R2) +, STS, RO
$FETCH (R2) ,STV,RO
MOV #ERRSTR,Rl

CALL PRINT
JMP SEARCH

Reset the edit block addr
Get a matching file
Error?
Yes if LT
Init the length
Get the string length
Advance
Get the string address
Select the format string
First file needs a blank
line before it
Insert CR/LF first

Display the file
Rest the FAB address
Count this file
And let's try another

Task exit

No more matches?
No - some other error
Set the cound of matches
No files •••
Give the ESA
Set the length
Advance word
Set the address
Set the format string
Go show it and exit

Setup for string length
Set the length
Advance to next word
Set the address
Set the format string
Print the error

Set the STS returned
And the STV
Set the error format string

Go edit and print the message
Let's try this again

MOV
MOV
CALL
MOV
MOV
DIR$
RETURN

#EDBLK,R2 ; Setup edit

• PSECT

.Ase ii
SYDSKL =
• Ase ii
QUE SL =
.Asciz
.Ase ii
• Ase i z

#BUFFER,RO ; Output buffer
$EDMSG ; Exit the string
#BUFFER,Q.IOPL(RS)
Rl, Q. IOPL+2 (RS)
RS Send to the terminal

Return to caller

$DATA$,RW,D

"SY:" . - SYDSKA
<l S><l 2>" Enter a wildcard filespec: II

. - QUES
"$SEARCH error -- STS=%P, STV=%P"
"%N"
" %VA"

7-6

EXAMPLE PROGRAMS

NOFILE: .Ase i z "%NNo files matching %VA%N°
TTLSTR: .Asciz "%NTotal of %D files matching %VA%N"

.EVEN
FILCNT: .WORD 0
EDBLK: .BLKW 6
BUFFER:
BUFF: • Bl kb 128 •
EXPSTR: .BLKB 128.
RESSTR: • BLKB 128 •
IOSTAT: .WORD 0
!OLEN: .WORD 0
READ: QIOW$ IO.RLB,1,1,,IOSTAT
WRITE: QIOW$ IO.WLB,l,l,,IOSTAT,,<,,40>

• END SEARCH

\

7-7

EXAMPLE PROGRAMS

Example 7-3: ERASE - $ERASE Test

.TITLE ERASE - $ERASE TEST

.IDENT /XOl.00/

.ENABL LC

.MCALL FABB,NAMB,GSA$

.MCALL $PARSE,$ERASE,$STORE,$FETCH,$COMPARE

.MCALL ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $ERASE function, with implicit $SEARCH.

RMS-11 Data Structures

FAB::

NAM::

ERASE::

GETFIL:

GSA$ GSA

FAB$B
F$DNA
F$DNS
F$NAM
F$LCH

FAB$E

NAM$B
N$ESA
N$ESS
N$RSA
N$RSS

NAM$E

SYDSKA
SYDSKL
NAM
2.

EXPSTR
128.
RESS TR
128.

.PSECT $CODE$,RO,I

ALUN$S #l,#"TI,#0
MOV #FAB,RO
MOV #EDBLK,R2
MOV #NAM,R3
MOV #READ,R4
MOV #WRITE,RS
CLR Q.IOPL+4(R5)
MOV #QUES,Q.IOPL(RS)

Argument FAB
If no device, SY:
should be used
Link to NAM
Channel #2

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

Assign the terminal
Map the target FAB
Map the exit block
Map the target NAM
Map the input DPB
Map the output DPB
Turn off carriage ctl

MOV #QUESL,Q.IOPL+2(R5)
DIR$ RS Prompt for the DNA
TSTB IOSTAT Check the IOSB
BMI EXIT Exit if error
MOV #BUFF,Q.IOPL(R4)
MOV #64.,Q.IOPL+2(R4)
DIR$ R4
TSTB IOSTAT
BMI EXIT
$STORE IOLEN,FNS,RO
$STORE #BUFF,FNA,RO
MOV #40,Q.IOPL+4(R5);
CLR FILCNT
$PARSE RO
$COMPARE #0,STS,RO
BLT ERROR

Get the response
Check the IOSB
Exit if error
Set the string length
Set the string address
Restore carriage control
Ini t co lint of matches
Parse the strings
An error?
Yes if MI; display it

7-8

\.

NOTFST:

EXIT:

ERROR:

ERROR2:

ERRORO:

ERRORl:

PRINT:

MOV JEDBLK,R2
$ERASE RO
$COMPARE #0,STS,RO
BLT ERROR
CLR (R2)
$FETCH (R2),RSL,R3
TST (R2)+
$FETCH (R2)+,RSA,R3
MOV #RSSSTR,Rl
TST FILCNT
BNE NOTFST
MOV #RSSSTl,Rl

CALL
MOV
INC
BR

EXIT$S

PRINT
#FAB,RO
FI LC NT
GETFIL

$COMPARE #ER$NMF,STS,RO
BNE ERR ORO
MOV FILCNT, (R2)+
BEQ ERROR2
CLR (R2)
$FETCH (R2) ,ESL,R3
TST (R2)+
$FETCH (R2) ,ESA,R3
MOV #TTLSTR, Rl
BR ERRORl

CLR -(R2)
$FETCH (R2) ,ESL,R3
TST {R2)+
$FETCH (R2) ,ESA,R3
MOV #NOFILE,Rl
BR ERRORl

$FETCH (R2)+,STS,RO
$FETCH (R2) ,STV,RO
MOV #ERRSTR,Rl

CALL PRINT
JMP ERASE

EXAMPLE PROGRAMS

Reset the edit block addr
Issue implicit $ERASE
Error?
Yes if LT
Ini t the length
Get the string length
Advance
Get the string address
Select the format string
First file needs a blank
line before it
Insert CR/LF first

Display the file
Rest the FAB address
Count this file
And let's try another

Task exit

No more matches?
No - some other error
Set the cound of matches
No files •••
Give the ESA
Set the length
Advance word
Set the address
Set the format string
Go show it and exit

Setup for string length
Set the length
Advance to next word
Set the address
Set the format string
Print the error

Set the STS returned
And the STV
Set the error format string

Go edit and print the message
Let's try this again

MOV
MOV
CALL
MOV
MOV
DIR$
RETURN

#EDBLK,R2 ; Setup edit

• PSECT

#BUFFER,RO ; Output buffer
$EDMSG ; Exit the string
#BUFFER,Q.IOPL(RS)
Rl,Q. IOPL+2 (RS)
RS ; Send to the terminal

; Return to caller

$DATA$, RW, D

SYDSKA: .Ascii
SYDSKL

"SY: II
= • - SYDSKA

QUES: .Ascii
QUESL =

ERRSTR: .Asciz
RSSSTl: .Ascii
RSSSTR: .Asciz

<1S><l2>"File(s) to erase: "
• - QUES
"$ERASE error -- STS=%P, STV=%P"
"%N"
" File %VA deleted"

7-9

EXAMPLE PROGRAMS

NOFILE: .Asciz "%NNo files matching %VA%N"
TTLSTR: .Ase i.z "%NTotal of %D files matching %VA deleted%N"

.EVEN
FILCNT: .WORD 0
EDBLK: .BLKW 6
BUFFER:
BUFF: • Blkb 128 •
EXPSTR: • BLKB 128 •
RESSTR: .BLKB 128.
IOSTAT: .WORD 0
!OLEN: .WORD 0
READ: QIOW$ IO.RLB,1,1,,IOSTAT
WRITE: QIOW$ IO.WLB,l,l,,IOSTAT,,<,,40>

.END ERASE

7-10

.TITLE
• !DENT

.ENABL

.MCALL

.MCALL

.MCALL

Example 7-4: RENAME - $RENAME Test

RENAME - $RENAME TEST
/XOl.00/

LC

EXAMPLE PROGRAMS

FABB,NAMB,GSA$
$PARSE,$SEARCH,$RENAME,$STORE,$FETCH,$COMPARE
ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $RENAME function.

RMS-11 Data Structures

FABl::

NAMl::

GSA$ GSA

FAB$B
F$DNA
F$DNS
F$NAM
F$LCH
F$FOP

FAB$E

NAM$B
N$ESA
N$ESS
N$RSA
N$RSS

NAM$E

SYDSKA
SYDSKL
NAMl
2.
FB$FID

ESSTRl
128.
RSSTRl
128.

Old file name
Default to SY:

Link to NAMl
Channel :ff:2
Turn on NAM usage

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

FAB2:: FAB$B New file name
Link to NAM2
Same channel

F$NAM NAM2
F$LCH 2.

FAB$E

NAM2:: NAM$B NAM definition
EXP STR address
EXP STR length

RENAME::

N$ESA ESSTR2
N$ESS 128.

NAM$E

.PSECT $CODE$,RO,I

ALUN$S
MOV
MOV
MOV
MOV
CLR
MOV
MOV
DIR$
TSTB
BMI
MOV
MOV

U,#"TI,#0
:ftFABl,RO
ltEDBLK, R2
ltREAD,R4
ltWRITE,RS

Assign the terminal
Map the target FAB
Map the exit block
Map the input DPB
Map the output DPB
Turn off carriage ctl Q. IOPL+4 (RS)

ltQUESl,Q.IOPL(RS)
ltQUESlL,Q.IOPL+2(RS)
RS Prompt for the
IOSTAT Check the IOSB
EXIT ; Exit if error
ltBUFFl,Q.IOPL(R4)
lt64.,Q.IOPL+2(R4)

7-11

DNA

EXAMPLE PROGRAMS

EXIT:

LOOP:

ERROR:

SEAERR:

DIR$ R4
TSTB IOSTAT
BM! EXIT
$STORE IOLEN,DNS,RO
$STORE #BUFFl,DNA,RO
$PARSE RO
$COMPARE #0,STS,RO
BLT ERROR
MOV #FAB2,RO
MOV #QUES2,Q.IOPL(RS)

Get the response
Cheek the IOSB
Exit if error
Set the default
Set the default
Parse the input
An error?
Yes if LT
Map the 2d FAB

length
address
spec

MOV #QUES2L,Q.IOPL+2(RS)
DIR$ RS Prompt for the new name
TSTB IOSTAT Check the IOSB
BM! EXIT Exit if error
MOV #BUFF2,Q.IOPL(R4)
MOV #64.,Q.IOPL+2(R4)
DIR$ R4
TSTB IOSTAT
BM!
$STORE
$STORE
MOV
CLR
BR

EXIT$S

EXIT
IOLEN,FNS,RO
#B UFF2, FNA, RO
#40,Q.IOPL+4(RS);
FILCNT
LOOP

MOV #FABl,RO
MOV #FAB2,Rl
MOV #NAMl, R2
MOV #NAM2, R3
$SEARCH RO
$COMPARE #0,STS,RO
BLT SEA ERR
$FETCH R4,RSA,R2
$STORE R4,DNA,Rl
$FETCH R4,RSL,R2
$STORE R4,DNS,Rl
$RENAME RO,,,Rl
$COMPARE #0,STS,RO
BLT ERROR
MOV #EDBLK,RO
CLR (RO)
$FETCH (RO),RSL,R2
TST (RO)+
$FETCH (RO)+,RSA,R2
CLR (RO)
$FETCH (RO), ESL, R3
TST (RO)+
$FETCH (RO), ESA, R3
MOV #RENMSG,Rl
CALL PRINT
INC FI LC NT
BR LOOP

MOV
$FETCH
$FETCH
MOV
CALL
JMP

#EDBLK, R2
(R2) +, STS, RO
(R2) ,STV,RO
#ERRSTR,Rl
PRINT
RENAME

Get the response
Check the IOSB
Exit if error
Set the default length
Set the default address
Restore carriage control
Initialize file count
Enter the RENAME loop

Task exit

Get the input FAB
And the output FAB
Setup NAM references

Attempt to find a file
Error?
Yes if LT
Get the resultant address
Set this as default
Get the resultant length
Set the default length
Rename input as output
Error?
Yes if LT- investigate
Setup to show the rename

Set the length
Advance to next word
Set the address

Set the length
Advance to next word
Set te address
Format string
Display it
Count the file
And try another file

Map the edit block
Set the STS returned
And the STV
Set the error format string
Go edit and print the message
Let's try this again

7-12

SETES:

TOTAL:

PRINT:

SYDSKA:

QUESl:

QUES2:

ERRSTR:
RENMSG:
TTLMSG:
NOFILE:

FILCNT:
EDBLK:
BUFFER:
BUFF!:
BUFF2:
ESSTRl:
ESSTR2:
RSSTRl:
IOSTAT:
I OLEN:
READ:
WRITE:

EXAMPLE PROGRAMS

$COMPARE tER$NMF,STS,RO End of wild card search?
No if NE- show why BNE ERROR

MOV tEDBLK,RO Map the edit block
TST FILCNT Any files?
BNE TOTAL Yes if NE, show total

Show the total MOV tNOFILE,Rl

CLR
$FETCH
TST
$FETCH
CALL
JMP

MOV
MOV
BR

MOV
MOV
CALL
MOV
MOV
DIR$
RETURN

• PSECT

.Ase ii
SYDSKL
• Ase ii
QUESlL
.Ase ii
QUES2L
.Asciz
.Asciz
.Asciz
.Asciz

.EVEN

.WORD

.BLKW

.BLKB

.BLKB
• BLKB
.BLKB
• BLKB
.WORD
.WORD
QIOW$
QIOW$

(RO)
(RO) ,ESL,R2
(RO)+
(RO)+, ESA, R2
PRINT
RENAME

FILCNT, (RO)+
tTTLMSG, Rl
SETES

Set the length
Advance
Get the ESA address

Repeat

Set the rename count
Set the format string
Add ESA and print

JEDBLK,R2 ; Setup edit
tBUFFER,RO ; Output buffer
$EDMSG ; Exit the string
iBUFFER,WRITE+Q.IOPL
Rl,WRITE+Q.IOPL+2
tWRITE Send to the terminal

Return to caller

$DATA$,RW,D

"SY: II
= • - SYDSKA

<15><12>"From: "
= • - QUESl

<15><12>"To:
= • - QUES2

II

"$RENAME error STS=%P, STV=%P"
" File %VA renamed to %VA"
"%NTotal of %D files matching %VA renamed%N"
"%NNo files matching %VA%N"

0
6

64.
64
128 •
128.
128 •
0
0
IO.RLB,1,1,,IOSTAT
IO.WLB,l,l,,IOSTAT,,<,,40>

.END RENAME

7-13

EXAMPLE PROGRAMS

Example 7-S: OPENl - $OPEN by Name/FID Test

.TITLE OPENl - $OPEN BY NAME/FID TEST

.IDENT /XOl.00/

.ENABL LC

.MCALL FABB,NAMB,GSA$

.MCALL $0PEN,$CLOSE,$STORE,$FETCH,$COMPARE,$SET,$0FF,ORG$

.MCALL ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $OPEN by name and FID functions.

RMS-11 Data Structures

ORG$ SEQ
ORG$ REL
ORG$ IDX

GSA$ GSA

FAB:: FAB$B
F$DNA SYDSKA
F$DNS SYDSKL
F$NAM NAM
F$LCH 2.

FAB$E

NAM:: NAM$B
N$ESA EXPSTR
N$ESS 128.

NAM$E

.PSECT $CODE$,RO,I

$OPEN sequential
$OPEN relative
$OPEN indexed

Argument FAB
If no device, SY:
should be used
Link to NAM
Channel i2

NAM definition
EXP STR address
EXP STR length

OPENl:: f
ALUN$S
MOV
MOV
MOV
MOV
MOV
CLR
MOV
MOV
DIR$
TSTB
BMI
MOV
MOV
DIR$
TSTB
BMI
$STORE
$STORE
MOV
MOV
$OFF
$OPEN

U,t"TI,tO
tFAB,RO
iEDBLK, R2
tNAM,R3
iREAD,R4
#WRITE ,RS

Assign the terminal
Map the target FAB
Map the exit block
Map the target NAM
Map the input DPB
Map the output DPB
Turn off carriage ctl Q. IOPL+4 (RS)

iQUES,Q.IOPL(RS)
iQUESL,Q.IOPL+2(RS)
RS Prompt for the FNA
IOSTAT Check the IOSB
EXIT Exit if error
iBUFF,Q.IOPL(R4)
#64.,Q.IOPL+2(R4)
R4
I OS TAT
EXIT
IOLEN,FNS,RO
#BUFF, FNA, RO
i40,Q.IOPL+4(RS);
iEDBLK, R2
#FB$BID, FOP, RO
RO

Get the response
Check the IOSB
Exit if error
Set the string length
Set the string address
Restore carriage control
Reset the edit block addr
Turn off FID bit
Open the file

7-14

I'

\

EXIT:

ERROR:

ERRORl:

PRINT:

SYDSKA:

QUES:

ERRSTR:
ESSSTR:
NAMSTR:

" ' FIDSTR: I

/ ,

EDBLK:

$COMPARE fO,STS,RO
BLT ERROR
CLR (R2)
$FETCH (R2),ESL,R3
TST (R2)+
$FETCH (R2)+,ESA,R3
MOV #ESSSTR,Rl
CALL PRINT
MOV f2,(R2)+
MOV fNAM+O$DVI, (R2)+
MOV 0$DVI+2(R3),(R2)+
MOV 0$FID(R3),(R2)+ ;
MOV 0$FID+2(R3),(R2)+
MOV 0$FID+4(R3),(R2)+
MOV tNAMSTR,Rl
CALL PRINT
MOV fFAB,RO
$CLOSE RO
$SET #FB$FID,FOP,RO
$STORE tO,FNA,RO
$STORE #0,FNS,RO
$OPEN RO
$COMPARE #0,STS,RO
BLT ERROR
MOV fFIDSTR,Rl
CALL PRINT
MOV fFAB,RO
$CLOSE RO
JMP OPENl

EXIT$S

$FETCH (R2)+,STS,RO
$FETCH (R 2) , STV, RO
MOV fERRSTR,Rl

CALL PRINT
JMP OPENl

Error?
Yes if LT
Init the length

EXAMPLE PROGRAMS

Get the string length
Advance
Get the string address
Select the format string
Display the file's ES
Setup to show NAM info

; Show the unit field
Show the 3 FID words

Set the format string
Display it
Reset for close
And close off the file
Turn on OPEN by FID
Remove the file name
Information
Attempt the open
Status OK?
No if LE; show error
Show that the open worked
Display the text
Restore the FAB address
(We assume no $CLOSE errors)
Do this again

Task exit

Set the STS returned
And the STV
Set the error format string

Go edit and print the message
Let's try this again

MOV iEDBLK,R2 ; Setup edit
MOV
CALL
MOV
MOV
DIR$
MOV
RETURN

• PSECT

• Ase ii
SYDSKL
.Ase ii
QUESL =
.Asciz
• Ase i z
.Ase ii
.Asciz
.Asciz

.EVEN

.BLKW

fBUFFER,RO ; Output buffer
$EDMSG ; Exit the string
fBUFFER,Q.IOPL(RS)
Rl,Q. IOPL+2 (RS)
RS
fEDBLK, R2

$DATA$,RW,D

"SY:"

Send to the terminal
Restore the edit block ptr
Return to caller

= • - SYDSKA
<1S><l2>"File to $OPEN: "
• - QUES
"%N$0PEN error -- STS=%P, STV=%P%N"
"%N File %VA successfully $0PENed"
" NAM data returned: DVI='%VA' DVI+2=%P "
"FID=(%P,%P,%P)%N"
" File successfully $0PENed by FID%N"

10.

7-lS

EXAMPLE PROGRAMS

BUFFER:
BUFF:
EXPSTR:
I OS TAT:
!OLEN:
READ:
WRITE:

.Blkb

.BLKB

.WORD

.WORD
QIOW$
QIOW$

128.
128.
0
0
IO.RLB,1,1,,IOSTAT
IO.WLB,l,l,,IOSTAT,,<,,40>

• END OPENl

7-16

\

\

(

\

,
I

/

'\

EXAMPLE PROGRAMS

Example 7-6: OPEN2 - $OPEN by FID with Wildcards Test

.TITLE
• I DENT

.ENABL

.MCALL

.MCALL

.MCALL

.MCALL

OPEN2 - $OPEN BY FID WITH WILDCARDS TEST
/XOl.00/

LC

FABB,NAMB,GSA$
$PARSE,$SEARCH,$0PEN,$CLOSE
$STORE,$FETCH,$COMPARE,$SET,$0FF,ORG$
ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $PARSE, $SEARCH, $OPEN by FID functions.

RMS-11 Data Structures

ORG$ SEQ $OPEN sequential
ORG$ REL $OPEN relative
ORG$ IDX $OPEN indexed

GSA$ GSA

FAB:: FAB$B Argument FAB
F$DNA SYDSKA If no device, SY:
F$DNS SYDSKL should be used
F$NAM NAM Link to NAM
F$LCH 2. Channel #2

FAB$E

NAM:: NAM$B NAM definition
N$ESA EXPSTR EXP STR address
N$ESS 128. EXP STR length
N$RSA RESS TR RES STR address
N$RSS 128. RES STR length

NAM$E

• PSECT $CODE$, RO, I

OPEN2::
ALUN$S =ltl, #"TI, #0 Assign the terminal
MOV #FAB,RO · Map the target FAB
MOV #EDBLK,R2 Map the exit block
MOV #NAM,R3 Map the target NAM
MOV #READ,R4 Map the input DPB
MOV #WRITE,RS Map the output DPB
CLR Q. IOPL+4 (RS) Turn off carriage ctl
MOV #QUES,Q. IOPL (RS)
MOV #QUESL,Q.IOPL+2(RS)
DIR$ RS Prompt for the FNA
TSTB IOSTAT Cheek the IOSB
BMI EXIT Exit if error
MOV #BUFF,Q.IOPL(R4)
MOV #64.,Q.IOPL+2(R4)
DIR$ R4 Get the response
TSTB IOSTAT Check the IOSB
BMI EXIT Exit if error
$STORE IOLEN,FNS,RO Set the string length
$STORE #BUFF, FNA, RO Set the string address
MOV #40,Q~IOPL+4(RS)~ Restore carriage control

7-17

EXAMPLE PROGRAMS

GETFIL:

EXIT:

SEAERR:

ERROR2:

ERROR:

ERRORl:

CLR FILCNT
$SET #FB$FID,FOP,RO
$PARSE RO
$COMPARE #0 ,:STS, RO
BLT ERROR
CLR FI LC NT

MOV #EDBLK,R2
MOV #FAB,RO

Init count of. matches
Turn on FID bit
Parse the strings
An error?
Yes if MI; display it
Clear the match count

Reset the edit block addr
Reset the FAB address

$SEARCH RO
$COMPARE #0,STS,RO

. , Get a matching file
Error?

BLT SEAERR
CLR (R2)
$FETCH (R2),RSL,R3
TST (R2) +
$FETCH (R2)+,RSA,R3
MOV #RSSSTR,Rl
CALL PRINT
MOV #2,{R2)+
MOV #NAM+O$DVI,{R2)+
MOV 0$DVI+2(R3),{R2)+
MOV O$FID{R3),{R2)+;
MOV 0$FID+2(R3),{R2)+
MOV 0$FID+4{R3),(R2)+
MOV #NAMSTR,Rl
CALL PRINT
MOV #FAB,RO
$OPEN RO
$COMPARE #0,STS,RO
BLT ERROR
MOV #FIDSTR,Rl
CALL PRINT
MOV #FAB,RO
$CLOSE RO
INC FILCNT
BR GETFIL

EXIT$S

$COMPARE #ER$NMF,STS,RO
BNE ERROR
MOV FILCNT,{R2)+
BEQ ERROR2
CLR (R2)
$FETCH {R2},ESL,R3
TST {R2)+
$FETCH {R2),ESArR3

Yes if LT
Ini t the length
Get the string length
Advance
Get the string address
Select the format string
Display the file's RS
Setup to show NAM info

; Show the unit field
Show the 3 FID words

Set the format string
Display it
Reset for $OPEN
Attempt the open
Status OK?
No if LE; show error
Show that the open worked
Display the text
Restore the FAB address
{We assume no $CLOSE errors)
Count this wildcard
Do this again

Task exit

No more matches?
No - some other error
Set the cound of matches
No files •••
Give the ESA
Set the length
Advance word
Set the address

MOV #TTLSTR,Rl
BR ERRORl

r Set the format string
Go show it and exit

CLR -(R2) Setup for string length
$FETCH (R2), ESL, R3 Set the length
TST (R2)+ Advance to next word
$FETCH {R2), ESA, R3 Set the address
MOV #NOFILE,Rl ; Set the format string
BR ERRORl Print the error

$FETCH (R2)+, STS, RO Set the STS returned
$FETCH {R 2) , STV, RO And the STV
MOV #ERRSTR,Rl ' , Set the error format string

CALL PRINT Go edit and print the message
JMP OPEN2 Let's try this again

7-18

(

\

r
\

PRINT:

SYDSKA:

QUES:

ERRSTR:
RSSSTR:
NAMSTR:

FIDSTR:
NOFILE:
TTLSTR:

FI LC NT:
EDBLK:
BUFFER:
BUFF:
EXPSTR:
RESSTR:
I OS TAT:
I OLEN:
READ:
WRITE:

MOV
MOV
CALL
MOV
MOV
DIR$
MOV
RETURN

• PSECT

• Ase ii
SYDSKL
• Ase ii
QUE SL
.Ase iz
.Asciz
• Ase ii
.Asciz
.Ase iz
.Ase iz
.Asciz

.EVEN

.WORD
• BLKW
.BLKB
• Blkb
• BLKB
• BLKB
.WORD
.WORD
QIOW$
QIOW$

.END

=

EXAMPLE PROGRAMS

JEDBLK,R2 ; Setup edit
tBUFFER,RO ; Output buffer
$EDMSG ; Exit the string
tBUFFER,Q.IOPL(RS)
Rl, Q. IOPL+2 (RS)
RS
fl:EDBLK, R2

Send to the terminal
Restore edit block
Return to caller

$DATA$, RW ,D

"SY: II
= • - SYDSKA

<1S><l2>"File(s) to $OPEN: "
- QUES

0

%N$0PEN error -- STS=%P, STV=%P%N"
%N File %VA found by $SEARCH"

NAM data returned: DVI='%VA' DVI+2=%P "
FID=(%P,%P,%P)%N"

File successfully $OPENed by FID"
%NNo files matching %VA found%N"
%NTotal of %D files matching %VA $0PENed by FID%N"

10 •
128.
128 •
128 •
128 •
0
0
IO.RLB,1,1,,IOSTAT
IO.WLB,l,l,,IOSTAT,,<,,40>

OPEN2

7-19

EXAMPLE PROGRAMS

Example 7-7: OPEN3 - $OPEN with Implicit Wildcards (Illegal)

.TITLE

.IDENT

.ENABL

.MCALL

.MCALL

.MCALL

.MCALL

OPEN3 - $OPEN WITH IMPLICIT WILDCARDS (ILLEGAL)
/XOl.00/

LC

FABB,NAMB,GSA$
$PARSE,$0PEN,$CLOSE
$STORE,$FETCH,$COMPARE,$SET,$0FF,ORG$
ALUN$S,QIOW$,DIR$,EXIT$S

This program tests/demonstrates the use of
the RMS-11 $PARSE, $OPEN with implicit wildcards.
NOTE: This test is intended to show failure, as

$OPEN by implicit wildcards is not supported.

RMS-11 Data Structures

FAB::

NAM::

OPEN3::

ORG$
ORG$
ORG$

GSA$

FAB$B
F$DNA
F$DNS
F$NAM
F$LCH

FAB$E

NAM$B
N$ESA
N$ESS
N$RSA
N$RSS

NAM$E

SEQ
REL
IDX

GSA

SYDSKA
SYDSKL
NAM
2.

EXPSTR
128.
RESS TR
128.

$OPEN sequential
$OPEN relative
$OPEN indexed

Argument FAB
If no device, SY:
should be used
Link to NAM
Channel #2

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

.PSECT $CODE$,RO,I

ALUN$S
MOV
MOV
MOV
MOV
MOV
CLR
MOV
MOV
DIR$
TSTB
BMI
MOV
MOV
DIR$
TSTB
BMI
$STORE

U,#"TI,#0
ltFAB,RO
#EDBLK, R2
#NAM, R3
#READ,R4
#WRITE, R5
Q. IOPL+4 (R5)

Assign the terminal
Map the target FAB
Map the exit block
Map the target NAM
Map the input DPB
Map the output DPB
Turn off carriage ctl

#QUES, Q. IOPL (R5)
#QUESL,Q.IOPL+2(R5)
R5 Prompt for the FNA
IOSTAT Check the IOSB
EXIT Exit if error
#BUFF ,Q. IOPL (R4)
#64.,Q.IOPL+2(R4)
R4
IOSTAT
EXIT
IOLEN,FNS,RO

Get the response
Check the IOSB
Exit if error
Set the string length

7-20

i ;

GETFIL:

EXIT:

SEAERR:

ERROR2:

ERROR:

ERRORl:

PRINT:

$STORE #BUFF,FNA,RO ;
MOV #40,Q.IOPL+4(R5);
CLR FI LC NT
$SET #FB$FID,FOP,RO
$PARSE RO
$COMPARE #0,STS,RO
BLT ERROR
CLR FI LC NT

MOV #EDBLK,R2
MOV #FAB, RO
$OPEN RO
$COMPARE #0,STS,RO
BLT SEA ERR
CLR (R2)
$FETCH (R2), RSL, R3
TST (R2)+
$FETCH (R2)+,RSA,R3
MOV #RSSSTR,Rl
CALL PRINT
MOV #2, (R2)+
MOV #NAM+O$DVI, (R2)+
MOV 0$DVI+2(R3),(R2)+
MOV 0$FID(R3),(R2)+;
MOV 0$FID+2(R3) ,(R2)+
MOV 0$FID+4(R3) ,(R2)+
MOV #NAMSTR,Rl
CALL PRINT
MOV #FAB,RO
$CLOSE RO
INC FI LC NT
BR GETFIL

EXIT$S

$COMPARE #ER$NMF,STS,RO
BNE ERROR
MOV FILCNT, (R2) +
BEQ ERROR2
CLR (R 2)
$FETCH (R2) ,ESL,R3
TST (R2)+
$FETCH (R2), ESA, R3
MOV #TTLSTR, Rl
BR ERRORl

CLR - (R2)
$FETCH (R2), ESL, R3
TST (R2)+
$FETCH (R2) ,ESA,R3
MOV #NOFILE,Rl
BR ERRORl

$FETCH (R2)+,STS,RO
$FETCH (R2),STV,RO
MOV #ERRSTR,Rl

CALL PRINT
JMP OPEN3

MOV #EDBLK, R2
MOV #BUFFER, RO

EXAMPLE PROGRAMS

Set the string address
Restore carriage control
!nit count of matches
Turn on FID bit
Parse the strings
An error?
Yes if MI; display it
Clear the match count

Reset the edit block addr
Reset the FAB address
$OPEN a matching file
Error?
Yes if LT
!nit the length
Get the string length
Advance
Get the string address
Select the format string
Display the file's RS
Setup to show NAM info

; Show the unit field
Show the 3 FID words

Set the format string
Display it
Reset for $OPEN
(We assume no $CLOSE errors)
Count this wildcard
Do this again

Task exit

No more matches?
No - some other error
Set the cound of matches
No files •••
Give the ESA
Set the length
Advance word
Set the address
Set the format string
Go show it and exit

Setup for string length
Set the length
Advance to next word
Set the address
Set the format string
Print the error

Set the STS returned
And the STV
Set the error format string

Go edit and print the message
Let's try this again

Setup edit
Output buffer

7-21

EXAMPLE PROGRAMS

CALL
MOV
MOV
DIR$
MOV
RETURN

.PSECT

SYDSKA: .Ase ii
SYDSKL

QUES: • Ase ii
QUESL =

ERRSTR: .Ase iz
RSSSTR: .Asciz
NAMSTR: .Ase ii

.Asciz
NOFILE: .Ase iz
TTLSTR: • Ase i z

.EVEN
FILCNT: .WORD
EDBLK: .BLKW
BUFFER: • BLKB
BUFF: • Bl kb
EXPSTR: .BLKB
RESSTR: • BLKB
I OS TAT: .WORD
I OLEN: .WORD
READ: QIOW$
WRITE: QIOW$

.END

$EDMSG ; Exit the string
#BUFFER,Q.IOPL(RS)
R 1, Q. IOPL+2 (R 5)
RS
#EDBLK,R2

$DATA$,RW,D

"SY:"
= • - SYDSKA

; Send to the terminal
Restore edit block
Return to caller

<15><12>"File(s) to $OPEN: "
• - QUES
"%N$0PEN error -- STS=%P, STV=%P%N"
"%N File %VA successfully $0PENed"
" NAM data returned: DVI='%VA' DVI+2=%P "
"FID=(%P,%P,%P)%N"
"%NNo files matching %VA found%N"
"%NTotal of %D files matching %VA $0PENed%N"

0
10.
128 •
128 •
128.
128 •
0
0
IO.RLB,1,1,,IOSTAT
IO.WLB,l,l,,IOSTAT,,<,,40>

OPEN3

7-22

\

/

\

,/

Example 7-8: GSA - Core Space Allocator

• Title
• Id en t

.Enabl

GSA - Core space allocator
/V02.00/

LC

EXAMPLE PROGRAMS

Copyright (C) 1982, Digital Equipment Corporation
Maynard, Massachusetts 01754

**-GSA - Dynamic memory allocation for RMS-11 pool

Called by RMS-11 to manage pool space.
In the event of pool exhaustion, the task
image will be extended to obtain more space.

May be called by user written code providing
the interface standard is adhered to.

Interface:
Request

RO ->
Rl : =
R2 : =

Release
RO ->
Rl : =
R2 ->

Returns:

space:
RMS/user Pool list head (maintained by RL/CQB)
Amount of space requested (bytes)
0 (differentiates between request and release)

space:
RMS Pool list head (maintained
Amount of space to be released
Base address (for release)

by RL/CQB)
(bytes)

C-Bit "set" if an error has occurred (failure)
C-Bit "clear" if no error has occurred (success)

.Mcall Extk$S

• Page
.Sbttl Control block definitions

.Psect GSA$$D,RW,D

GSA internal data:

GSABAS - Base address for the next memory allocation.
Initially set to zero, it will be assigned
the first address outside of the task's
current address limits.

GSAMIN - Decimal value reflecting the m1n1mum size
(in bytes) to extend the task in order to
provide space to the pool.

GSAREQ - Requested pool block number. If a request
for the 'GSAMIN' fails, then the original
allocation size will be attempted. If that
fails, then there is no more memory left.

GSABAS::
.Word

GSAMIN::
000000

GSA base address
(for next allocation)

Minimum allocation

7-23

EXAMPLE PROGRAMS

.Word
GSAREQ::

.Word

.Page

512./64.

000000

(in 32-word blocks)
Size of this request
(if 'GSAMIN' extends fail)

.Sbttl GSA Initialization code

.Psect GSA$$I,RO,I

GSA Initialization

This code is entered when GSA is entered with GSABAS
set to zero. In order to be able to build valid pool
header tables, GSABAS must be properly initialized and
maintained.

Initialization consists of finding the size of the task
in 32-word units, and converting that value to a usable
16-bit address (which corresponds to the address of the
next task extension (Extk$S) call. Once GSABAS has been
initialized, GSAINI will not be reused.

GSA IN I:
Mov
Mov
Mov

RO,-(SP)
Rl,-(SP)
R2,-(SP)

R0-2 will be used to
communicate with $INIDM
NOTE: $INIDM uses EXTSK.

The following code will use $INIDM to initialize the
dynamic memory. Contrary to documentation, Rl will return
the first address following the task image, and R2 will
return the size of the "free" memory from that address.

NOTE: $INIDM and EXTSK reside in LB:[l,l]VMLIB for RSX
systems, and in LB:[l,l]SYSLIB for RSTS/E systems.

$INIDM interface:
Calls:

RO -> Pool list head

Returns:
RO -> First address in task
Rl -> First address AFTER task
R2 := Size of free core after task (based at Rl)

Call
Mov
Mov
Mov
Mov

$INIDM
Rl, GS AB AS
(SP)+,R2
(SP)+,Rl
(SP)+,RO

Initialize dynamic memory
Setup the "free" address
Restore the registers

Return And return to GSA

• Page
.Sbttl GSA Mainline code

.Psect GSA$$M,RO,I

GSA Mainline

Entry point is "GSA", with registers 0-2 loaded as
described above.

7-24

EXAMPLE PROGRAMS

GSA::

First, determine if dynamic memory has been initialized.
GSABAS (initially set to zero) will be non-zero if $INIDM
has been called and the memory list initialized. On RSX
based systems it is possible to install tasks with an
extension (/INCREMENT). $INIDM will detect this and setup
the first memory entry in the pool list.

A point to note: If the RSX task has been installed with
; the non-checkpointable (/-CP) flag, then EXTKs will not

return success. If it is necessary to install the task
non-checkpointable, then the task should be installed with
and increment value.

10 $:

Tst
Bne
Cal 1

GSA BAS
10$
GS AINI

Dynamic memory initialized?
Yes if NE, proceed
Otherwise, initialize pool

Determine if this call involves real memory.
Rl should contain the size (in bytes) of the core
block requested or to be released. If zero then
return to the caller without an error (TST leaves CC).

Tst Rl
Bne 20$
Return

20$:

Real memory?
Yes if NE, then process it
Otherwise return with success

If this call is a request for space, pass control
to the allocation routines. Otherwise, pass control
to the system deallocation module $RLCB. There is
no need to return, so control is passed via JMP.-

30$:

Save
RO
Rl
R2

Tst
Beq
Jmp

R2
30$
$RLCB

our current context:
Pool list head
Size of memory required
0 (signifies request)

Mo v R 0 , - (S P)
Mov Rl, - (SP)
Mov R2,-(SP)

Address specified? (release)
No if EQ, then it's a request
Otherwise it's a release; do it

Attempt an allocation from the current pool
If this is successful, pass control to the
common exit.

7-25

EXAMPLE PROGRAMS

Call
Bee

$RQCB
70$

Try the allocation
CC signifies success

Now that the initial allocation failed, we must extend
the task and give the new area (extended into) to the
caller. To do this, the following procedure is used:

1. The task is extended
2. The area extended is returned to the

pool specified as if a release was attempted
3. We retry the allocation operation, but

this time it should succeed, since we have
increased the size of the pool area

NOTE: $RQCB has a bad habit of nuking registers, so it
becomes necessary to save and restore them around
unsuccessful calls.

Mov 2(SP),Rl ; Obtain the request size

Determine what the requirement is in 32-word blocks.
Retain this value to allow GSA to decide whether
to issue further task extension directives in
order to satisfy the requirements.

Add #63.,Rl Round the request
Asr Rl to ,a 32-word boundary
Asr Rl Then convert the value
Asr Rl to the number of
Asr Rl 32-word blocks.
Asr Rl
Asr Rl
Mov Rl,GSAREQ Save the real size

We will allocate core to the pool in "reasonable"
increments to cut down on system overhead, and pool
fragmentation. This is accomplished by using either
the requested size, or "GSAMIN", whichever is LARGER.
If the request is unsuccessful, and the amount is
smaller than GSAMIN, then request that particular size.

40$:

Cmp
Bhi
Mov

Rl,GSAMIN
40$
GSAMIN,Rl

Smaller than minimum?
No if HI, use it as is
Otherwise use GSAMIN

Now we attempt to extend the task by that size.
If the request fails, then use the size of the
original request. If that also fails, then we
simply ran out of memory.

50$:

Extk$S
Bee
Cmp
Blos
Mov
Br

Rl
60$
Rl,GSAREQ
50$
GSAREQ,Rl
40$ '

Extend the task
CC if successful
Is this request?
Yes if LOS, the end
Otherwise try to use
the actual request

7-26

\

(
'

Sec
Br 70$

Mark failure
And exit

EXAMPLE PROGRAMS

The task has been extended, now this memory must be
released to the pool for future allocation.
To do this, we setup the registers as if RMS were
going to release the core, and call ourself to do
the work. When the area has been released to the
pool, we will return inline and proceed to reenter
our code again from start to reattempt the allocation.

60$:
Mov 4(SP),RO Setup the PLH
Asl Rl Convert the real
Asl Rl size to the actual
Asl Rl 16-bit size that
Asl Rl was allocated.
Asl Rl The virtual address
Asl Rl should be after the
Mov GSABAS,R2 task (which is now
Add Rl,GSABAS part of the task)
Call GSA Call ourself to release

At this point, the new memory has been added to the
pool, and is available for use. We now reattempt
to allocate the memory required.

Mov
Mov
Mov
Br

(SP)+, R2
(SP)+,Rl
(SP)+,RO
GSA

Restore our registers
to the initial state
upon entry, and reenter
as if it's a new request

Common exit. Leave the registers in their current state,
and return control to the caller.

70$:
Inc
Bit
Return

.End

(SP)+
(SP)+, (SP)+

These won't alter the
C-bit, so status remains
unchanged upon return

7-27

APPENDIX A

COMPLETION CODES AND FATAL ERROR CODES

Section A.l describes RMS-11 completions that are returned in the STS
and STV fields of FABs and RABs. Section A.2 describes RMS-11 fatal
error completions.

A.l COMPLETIONS RETURNED IN STS AND STV FIELDS

This section lists and explains RMS-11 completions that are returned
in the STS and STV fields of FABs and RABs. For each completion, the
symbol, message, octal and decimal values, and explanation are given.

SU$SUC Operation succeeded Octal: 000001
Decimal: 1

SU$DUP Inserted record has duplicate key Octal: 000002
Decimal: 2

SU$IDX

The PUT or UPDATE operation inserted a record whose key
duplicates a key already in the index.

Error updating index Octal:
Decimal:

000003
3

The PUT or UPDATE operation inserted the record properly, but
RMS-11 did not optimize the index structure; subsequent
retrievals of the record will require extra I/O operations.

ER$ACC File access error Octal: 177740
Decimal: -32

1. A relative or indexed file is in the initial stage of
creation and cannot be accessed yet. 2. A write-accessed
file was not properly closed. 3. The file processor could
not access the file. The STV field of the FAB contains the
file processor error code; see your operating system
documentation for the meaning of the code.

ER$ACT Activity precludes operation Octal: 1 77720
Decimal: -4 8

RMS-11 could not perform the requested operation because of an
activity in progress (for example, RMS-11 cannot perform the
CLOSE operation for a file that has an outstanding
asynchronous operation) •

A-1

COMPLETION CODES AND FATAL ERROR CODES

ER$AID Bad value in AID field Octal: 177700
Decimal: -64

The file contains no area with the area number given in the
AID field of an ALL block.

ER$ALN Bad mask in ALN field Octal: 177660
Oec imal: -80

The ALN field of an ALL block contains an invalid value.

ER$ALQ Bad value in ALQ field Octal: 177640
Decimal: -96

The ALQ field of a FAB or an ALL block contains an invalid
value; the value in the ALQ field is either too large, or is
0 for an EXTEND operation.

ER$AOP Bad mask in AOP field Octal: 177600
Decimal: -128

The AOP field of an ALL block contains an invalid mask value.

ER$ATR Error reading attributes Octal: 177540
Decimal: -160

The file processor could not read the attributes for the fil~.
The STV field of the FAB or RAB contains the file processor
error code; see your operating system documentation for the
meaning of the code.

ER$ATW Error writing attributes Octal: 177520
Decimal: -176

The file processor could not write the attributes for the
file. The STV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$BKS Bad value in BKS field Octal: 177500
Decimal: -192

The value in the BKS field of the FAB is too large.

ER$BKZ Bad value in BKZ field Octal: 177460
Decimal: -208

The value in the BKZ field of an ALL block is too large; or
the bucket sizes of the lowest (LAN) and upper (IAN) areas of
an index are not equal.

ER$BOF Beginning-of-file found Octal: 177430
Decimal: -232

The SPACE operation backspaced to the beginning-of-file.

ER$BPA Bad address in BPA field Octal: 177420
Decimal: -2 40

The value in the BPA field of the FAB is odd, and the BPS
field contains a nonzero value.

A-2

(

\

\

COMPLE.TION CODES AND FATAL ERROR CODES

ER$BPS Bad value in BPS field Octal: 177400
Decimal: -256

The value in the BPS field of the FAB is nonzero and not a
multiple of 4, and the BPA field is nonzero.

ER$CCR RAB already in use Octal: 177340
Decimal: -288

The CONNECT operation could not connect a stream using the
specified RAB because the file is sequential and does not
allow multiple connected streams.

ER$CHG Illegal record key change Octal: 177320
Decimal: -304

The UPDATE operation did not allow a changed record key
because the index does not allow key changes or does not allow
duplicate key values.

ER$CHK Bad bucket header Octal: 177300
Decimal: -320

The bucket header data for an indexed file is corrupted.

To recover from the error, follow this procedure:

1. Move the disk to a different drive and try the process
again. If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the
next step.

2. Recreate the file by fetching records from the old file
using sequential access on the primary index. If this
fails, proceed to the next step.

3. Restore the file from a backup copy.

ER$CLS File processor error Octal: 177260
Decimal: -336

The file processor returned an error condition to the CLOSE
operation. The STV field of the FAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$COD Bad code in COD field Octal: 177240
Decimal: -3 52

The value in the COD field of an XAB is .not valid.

ER$CRE File processor error Octal: 177220
Decimal: -368

The file processor returned an error condition to the CREATE
operation. The STV field of the FAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$CUR Undefined current-record context Octal: 177200
Decimal: -384

A DELETE, TRUNCATE, or UPDATE operation required a defined
current-record context, but it was undefined.

A-3

COMPLETION CODES AND FATAL ERROR CODES

ER$DAN Bad value in DAN field Octal: 177140
Decimal: -416

The value in the DAN field of a KEY block specifies a
nonexistent area.

ER$DEL Record having RFA deleted Octal: 177120
Decimal: -432

The record specified by RFA has been deleted.

ER$DEV Bad device specification Octal: 177100
Decimal: -448

The device specification given contains a syntax error, there
is no such device, the device is inappropriate for the
operation, or two different devices have been specified for a
RENAME operation.

ER$DFW File processor error Octal: 177070
Decimal: -456

ER$DIR

ER$DME

ER$DNA

The file processor returned an error while writing
deferred-write data. The STV field of the FAB or RAB contains
the file processor error code; see your operating system
documentation for the meaning of the code.

Bad directory specification Octal: 177060
Decimal: -464

The directory specification contains a syntax error.

Pool exhausted Octal: 177040
Decimal: -480

One of the five pools that RMS-11 uses cannot provide needed
space for the operation.

Bad address in DNA field Octal: 177030
Decimal: -488

The DNA field of the FAB contains O, but the DNS field is
nonzero.

ER$DNF No such directory Octal: 177020
Decimal: -496

The directory specification given specifies a nonexistent
directory.

ER$DNR Device not ready

The device specified is not on line.

ER$DTP Bad code in DTP field

Octal: 177000
Decimal: -512

Octal: 176760
Decimal: -528

The value in the DTP field of a KEY block does not specify a
valid key data type.

A-4

t
\

COMPLETION CODES AND FATAL ERROR CODES

ER$DUP Duplicate key not allowed Octal: 176740
Decimal: -544

The record offered for insertion had a record key that would
duplicate a record already in the index, but the index does
not allow duplicate keys.

ER$ENT File processor error Octal: 176720
Decimal: -560

The file processor could not create the specified
entry. The STV field of the FAB contains the file
error code; see your operating system documentation
meaning of the code.

directory
processor

for the

ER$ENV Feature not in selected RMS-11 environment Octal: 1 76700
Decimal: -576

ER$EOF

ER$ESA

The RMS-11 environment (selected with the ORG$ macro or by the
compiler or by the manner in which RMS-11 code is linked with
your program) does not include the attempted operation for the
specified file organization.

End-of-file reached Octal:
Decimal:

176660
-592

The operaLion specified a record or block that is past the
last record or block.

Bad address in ESA field

The ESA field of the NAM block contains O.

Octa 1:
Decimal:

176650
-600

ER$ESL Bad value in ESL field Octal: 176644
Decimal: -604

ER$ESS

The ESL field of the NAM block contains O.

ESS field value too small

The value in the ESS field of
expanded string buffer that
expanded string.

Octal:
Decimal:

176640
-608

the NAM block specifies an
is too small to contain the

ER$EXP File expiration date not yet reached Octal: 176630
Decimal: -616

ER$EXT File processor error Octal: 176620
Decimal: -624

The file processor could not make the requested extension to
the file. The STV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$FAC FAC field forbids operation Octal: 176560
Decimal: -656

The attempted record or block operation was not specified in
the FAC field of the FAB when the file was created or opened.

A-5

COMPLETION CODES AND FATAL ERROR CODES

ER$FEX File already exists Octal: 176540
Decimal: -672

ER$FID

ER$FLG

The file specified for creation
supersession was not specified.

Bad value in FID field

The FID field of the NAM block contains
file identifier.

Bad mask in FLG field

already exists, but

Octal: 177530
Decimal: -680

a value that is not a

Octal: 176520
Decimal: -688

The combination of masks specified in the FLG field of a KEY
block is illegal.

ER$FLK File locked by ~nother task Octal: 176500
Decimal: -704

The file sharing specified is not allowed by a task already
accessing the file.

ER$FNA Bad address in FNA field Octal: 176470
Decimal: -712

The FNA field of the FAS contains O, but the FNS field is
nonzero.

ER$FND File processor error Octal: 176460
Decimal: -720

The file processor could not find the file specified. The STV
field of the FAB contains the file processor error code; see
your operating system documentation for the meaning of the
code.

ER$FNF File not found Octal: 176440
Decimal: -736

The file specified for a directory or file operation does not
exist.

ER$FNM Bad file name Octal: 176420
Decimal: -752

The file name portion of a file specification string has a
syntax error.

ER$FOP Bad mask in FOP field Octal: 176400
Decimal: -768

The FOP field of the FAB contains one or more illegal masks.

ER$FUL Device or file full Octal: 176360
Decimal: -784

The specified device or file has no room to allow file
creation or extension.

ER$IAN Bad value in IAN field Octal: 176340
Decimal: -800

The valu~ in the IAN field of a KEY block specifies a
nonexistent file area.

A-6

{

\

COMPLETION CODES AND FATAL ERROR CODES

ER$IDX Index not initialized

This code is only returned in
conjunction with the code
indicates that no entries
specified for the GET or FIND

ER$IFI Bad value in IFI field

the STV field
ER$RNF in the
have been made
operation.

Octal: 176320
Decimal: -816

of the RAB in
STS field. It

in the index

Octal: 176300
Decimal: -832

The value in the IFI field of the FAB is not the internal file
identifier for a file.

ER$IMX Too many XABs of same type Octal: 176260
Decimal: -848

The number of XABs of the same type in the chain of XABs is
too large (more than 254 ALL blocks or KEY blocks, more than 1
DAT block, PRO block, or SUM block).

ER$IOP Illegal operation for file Octal: 176220
. Decimal: -880

The requested operation is illegal for the file organization
or for the allowed access.

ER$IRC Illegal record found in sequential file Octal: 176200
Decimal: -896

The record length field of a record in a sequential file is
invalid.

ER$ISI Bad value in ISI field Octal: 176160
Decimal: -912

The ISI field of the RAB contains a value that is not an
internal stream identifier.

ER$KBF Bad address in KBF field

The KBF field of the RAB contains o.

ER$KEY Bad key

Octal: 176140
Decimal: -928

Octal: 176120
Decimal: -944

The key specified for a key access operation is invalid
(either a negative RRN or an erroneous packed-decimal key).

ER$KRF Bad value in KRF field Octal: 176100
Decimal: -960

The KRF field of the RAB contains (or contained) a value that
does not specify a file index. For a key access FIND or GET
operation, the RAB contains the invalid value in its KRF
field; for a sequential access FIND or GET operation, the RAB
contained the invalid .value in its KRF field during an earlier
CONNECT or REWIND operation.

ER$KSZ Bad value in KSZ field Octal: 176060
Decimal: -976

The KSZ field of the RAB contains an invalid value.

A-7

COMPLETION CODES AND FATAL ERROR CODES

ER$LAN Bad value in LAN field Octal: 176040
Decimal: -992

The value in the LAN field of a KEY block specifies a
nonexistent file area.

ER$LBY Logical channel busy Octal: 176000
Decimal: -1024

The LCH field of the FAB contains the number of a logical
channel that is already in use by the task.

ER$LCH Bad value in LCH field Octal: 175760
Decimal: -1040

The LCH field of the FAB contains a value that is too large to
be a logical channel number.

ER$LEX Extension not needed Octal: 175750
Decimal: -1048

The requested extension was not needed because the file area
still contains an unused extent.

ER$LOC Bad value in LOC field Octal: 175740
Decimal: -1056

The LOC field of an ALL block contains a value that does not
specify a valid location.

ER$MEM Memory address rollover Octal: 175710
Decimal: -1080

The area specified for the file string, default string,
expanded string, or resultant string extends beyond the end of
addressable memory.

ER$MKD File processor error Octal: 175700
Decimal: -1088

The file processor could not mark the specified file for
deletion. The STV field of the FAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$MRN Bad value in MRN field or bad record number Octal: 175660
Decimal: -1104

The MRN field of the FAB contains a
operation) , or the record number
record operation is larger than the
(specified in the MRN field at file

ER$MRS Bad value in MRS field

negative number (CREATE
specified for a key access
file maximum record number
creation).

Octal: 175640
Decimal: -1120

The MRS field of the FAB contains 0 even though the file to be
created is requested either to be a relative file or to have
fixed-length records.

ER$NAM Bad address in NAM field Octal: 175620
Decimal: -1136

The NAM field of the FAB contains 0 or an odd address.

A-8

COMPLETION CODES AND FATAL ERROR CODES

ER$NEF Context not end-of-file Octal: 175600
Decimal: -1152

The PUT operation could not insert a record into a sequential
file because the next-record context was not the end-of-file.

ER$NMF No more matching files Octal: 175554
Decimal: -1172

The SEARCH operation ended the wildcard SEARCH series because
there are no more files matching the wildcard file
specification.

ER$NOD Bad node name Octal: 1 75550
Decimal: -1176

The specified node name is invalid or, for the RENAME
operation, the two node names are different.

ER$NPK No primary key for indexed file Octal: 175540
Decimal: -1184

The CREATE operation did not create the specified file because
no primary index was specified even though the request
specified indexed file organization.

ER$0RD Ordering of XABs illegal Octal: 175500
Decimal: -1216

The chain of XABs for a directory or file operation is
improperly ordered.

ER$0RG Bad mask in ORG field Octal: 175460
Decimal: -1232

The ORG field of the FAB contains an invalid file organization
code; the file was not created.

ER$PLG Error reading file prologue Octal: 175440
Decimal: -1248

ER$PLV

The data read from the file prologue is incorrect.

To recover from the error, follow this procedure:

1. Move the disk to a different drive and try the process
again. If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the
next step.

2. Recreate the file by fetching records from the old file
using sequential access on the primary index. If this
fails, proceed to the next step.

3. Restore the file from a backup copy.

File prologue version level unsupported Octal:
Decimal:

175430
-1256

The file prologue version number shows that the file was
created by a version of RMS that is not supported on your
system.

A-9

COMPLETION CODES AND FATAL ERROR CODES

ER$POS Bad value in POS field Octal: 175420
Decimal: -1264

The POS field of a KEY block contains a value that is greater
than the maximum record size for the file; the STV field of
the FAB contains the address of the KEY block.

ER$PRM Bad file date read Octal: 175400
Decimal: -1280

The file dates read are illegal.

ER$PRV Privilege violation Octal: 175360
Decimal: -12%

The file processor denied the requested operation because the
task has no privilege for the operation.

ER$RAC Bad mask in RAC field Octal: 175320
Decimal: -1328

The RAC field of the RAB contains an illegal value.

ER$RAT Bad mask in RAT field Octal: 175300
Decimal: -1344

The RAT field of the FAB contains illegal set bits.

ER$RBF Bad address in RBF field Octal: 175260
Decimal: -1360

The RBF field of the RAB contains an odd address; the address
must be even for block access.

ER$RER File processor error Octal: 175240
Decimal: -1376

The file processor could not read the requested record or
block. The STV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

ER$REX Record already exists Octal: 175220
Decimal: -1392

The target cell for a PUT operation to a relative file already
contains a record.

ER$RFA Bad value in RFA field Octal: 175200
Decimal: -1408

The RFA field of the RAB contains an illegal RFA.

ER$RFM Bad code in RFM field Octal: 175160
Decimal: -1424

The RFM field of the FAB contains an illegal value.

ER$RLK Record locked Octal: 175140
Decimal: -1440

The bucket containing the specified record is locked by
another task or by another stream in your task.

A-10

(

\

\

COMPLETION CODES AND FATAL ERROR CODES

ER$RNF No such record Octal: 175100
Decimal: -1472

The record specified for key access does not exist.

ER$RNL Record not locked Octal: 175060
Decimal: -1488

The FREE operation found that no record was locked for the
stream.

ER$ROP Bad mask in ROP field Octal: 175040
Decimal: -1504

The ROP field of the RAB contained illegal set bits.

ER$RPL File processor error Octal: 175020
Decimal: -1520

The data read from the file prologue is incorrect.

To recover from the error, follow this procedure:

1. Move the disk to a different drive and try the process
again. If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the
next step.

2. Recreate the file by fetching records from the
using sequential access on the primary index.
fails, proceed to the next step.

old file
If this

3. Restore the file from a backup copy.

ER$RRV Bad internal pointer

An internal pointer in the file is invalid.
I

ER$RSL Bad value in RLS field

The RSL field of the NAM block contains O.

ER$RSS Bad value in RSS field

The RSS field of the NAM block contains O.

ER$RST Bad address in RSA field

The RSA field of the NAM block contains O.

ER$RSZ Bad value in RSZ field

Octal: 175000
Decimal: -1536

Octal: 174754
Decimal: -1556

Octal: 174750
Decimal: -1560

Octal: 174744
Decimal: -1564

Octal: 174740
Decimal: -1568

The RSZ field of the RAB contains a value that is larger than
the maximum allowed record size, or (for fixed-length records)
is not equal to the maximum record size, or (for an UPDATE
operation to a sequential file) is not equal to the length of
the record to be updated.

A-11

COMPLETION CODES AND FATAL ERROR CODES

ER$RTB Record too big for user buffer

The record read cannot fit into the user
field of the RAB contains the size of
portion that will fit is moved to the user
successful GET.

ER$RVU Internal pointer corrupted

The record insertion succeeded and the
updated successfully; however, RMS-11
internal pointers.

Octal: 174720
Decimal: -1584

buffer; the STV
the record, and the
buffer as for a

Octal: 174710
Decimal: -1592

primary
could

index was
not update

To recover from the error, follow this procedure:

1. Recreate the file by fetching records ftom the old file
using sequential access on the primary index. If this
fails, proceed to the next step.

2. Restore the file from a backup copy.

ER$SEQ Sequential insertion records not in order Octal: 174700
Decimal: -1600

The sequential access PUT operation found
primary keys were not in ascending order.

records whose

ER$SHR Bad mask in SHR field Octal: 174660
Decimal: -1616

The SHR field of the FAB contains an illegal mask.

ER$SIZ Bad value in SIZ field Octal: 174640
Decimal: -1632

The SIZ field of a KEY block contains an illegal value.

ER$SYS System error Octal: 174600
Decimal: -1664

The inte.rface between RMS-11 and the system is in error; the
STV field of the FAB or RAB contains the status code for a
system directive. Please submit a Software Performance
Report.

ER$TRE Index error

The index contains invalid data. Build
either an RMS-11 utility (RMSIFL or
sequential access and the primary index
records.

ER$TYP Bad file extension

Octal: 174560
Decimal: -1680

a new file using
RMSCNV) or using

to fetch the old

Octal: 174540
Decimal: -1696

The file extension in a file specification contains invalid
syntax.

A-12

COMPLETION CODES AND FATAL ERROR CODES

ER$UBF Bad address in UBF field Octal: 174520
Decimal: -1712

The UBF field of the RAB contains 0 or, for block access, an
odd address.

ER$USZ Bad value in USZ field

The USZ field of the RAB contains O.

ER$VER Bad file version number

Octal: 174500
Decimal: -1728

Octal: 174460
Decimal: -1744

The file version portion of a file specification contains a
syntax error.

ER$WCD Illegal wildcard in merged string

The merged
wildcarding
operation.

string contains a wildcard
is not in progress or is

ER$WER File processor error

Octal: 174430
Decimal: -1768

character, but
illegal for the

Octal: 174420
Decimal: -1776

The file processor could not write to the file. The STV field
of the FAB or RAB contains the file processor error code; see
your operating system documentation for the meaning of the
code.

ER$WLK Device write-locked

The device specified is write-locked.

ER$WPL File processor error

Octal: 174410
Decimal: -1784

Octal: 174400
Decimal: -1792

The file processor could not write the file prologue. The STV
field of the FAB or RAB contains the file processor error
code; see your operating system documentation for the meaning
of the code.

ER$XAB Bad address in XAB field Octal: 174360
Decimal: -1808

The XAB field of the FAB contains an odd address.

ER$XTR Extraneous data in file specification Octal: 174340
Decimal: -1824

The file specification contains extraneous characters. The
value in the STV field of the FAB is the address of the first
character beyond the end of the valid file specification.

A-13

COMPLETION CODES AND FATAL ERROR CODES

A.2 FATAL ERROR COMPLETIONS

This section lists and explains RMS-11 completions that are returned
in general register RO. These errors are fatal either because RMS-11
detected an internal error condition and could not continue, or
because the RAB or FAB is of questionable validity and RMS-11
therefore did not write the completion in its fields.

ER$ACT Illegal concurrent operation Octal: 177720
Decimal: -48

1. The FAB you specified is already in use by another
operation. 2. You have illegally interrupted RMS-11
processing.

ER$AST Illegal operation at AST level Octal: 177560
Decimal: -144

Your program attempted to use WAIT operation at AST level.

ER$BUG Error in RMS-11 internal data Octal: 177360
Decimal: -272

RMS-11 detected an error in its internal data structures. The
error may have been caused by your task writing into the
structures; if you think your task did not cause the error,,
please submit a Software Performance Report to DIGITAL,
including the following information:

• Contents of general registers and stack

• Operation and file organization for which the
occurred

error

• Task builder map of the task

ER$CPB Bad parameter block Octal: 177230
Decimal: -360

The parameter block (pointed to by RS) for an operation macro
has an invalid argument count or is at a zero or odd address.

ER$FAB Bad FAB Octal: 176600
Decimal: -640

The value in the BID or BLN field of the specified FAB is not
the correct identifier or block length for a FAB, or the
address of the FAB is 0 or odd.

ER$LIB Resident library not available Octal: 175744
Decimal: -1052

The version of the RMS-11 resident library needed for your
task is not available~

A-14

(

(

\

I

/

COMPLETION CODES AND FATAL ERROR CODES

ER$MAP Error in internal buffer mapping data Octal: 175720
Decimal: -1072

RMS-11 detected an error in its internal data structures. The
error may have been caused by your task writing into the
structures; if you think your task did not cause the error,
please submit a Software Performance Report to DIGITAL,
including the following information:

• Contents of general registers and stack

• Operation and file organization for which the
occurred

error

• Task builder map of the task

ER$RAB Bad RAB Octal: 175340
Decimal: -1312

The value in the BID or BLN field of the specified RAB is not
the correct identifier or block length for a RAB, or the
address of the RAB is 0 or odd.

A-15

(
I

APPENDIX B

ASSEMBLY-TIME MESSAGES

RMS-11 macros detect some errors during assembly. For each such
error, the macro issues a .PRINT or .ERROR assembler directive with a
message. This appendix shows these messages and their meanings.

$COMPARE MACRO - FIELD TOO LARGE

You can specify only a 1-byte or 1-word field as the field
parameter for the $COMPARE macro.

$COMPARE MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $COMPARE macro.

$FETCH MACRO - PC DESTINATION INVALID

You cannot specify the PC as the destination for the $FETCH
macro.

$FETCH OR $STORE MACRO - ADDRESS MODE INVALID

You have used an illegal address mode in the source for a $STORE
macro or in the destination for a $FETCH macro. See Chapter 3
for a description of legal address modes for these macros.

$FETCH OR $STORE MACRO - FIELD PARAMETER INVALID

You can specify only a valid field mnemonic as the field
parameter for a field access macro.

$FETCH OR $STORE MACRO - FIELD TOO LARGE FOR GIVEN REGISTERS

You cannot
destination

specify
address

remaining registers.

the given register
because the field

as
is

the source
larger than

$FETCH OR $STORE MACRO - FIELD TOO LARGE FOR IMMEDIATE MODE

or
the

You can specify an immediate mode value for a field access macro
only if you specify a 1-byte or 1-word field.

$FETCH OR $STORE MACRO - FIELD TOO LARGE FOR REGISTERS

You cannot specify a register as the source or destination
address because the given field is too large.

B-1

ASSEMBLY-TIME MESSAGES

$FETCH OR $STORE MACRO - REGISTER PARAMETER INVALID

You can specify only RO, Rl, R2, R3, R4, or RS as the register
parameter for a field access macro.

$FETCH OR $STORE MACRO - REGISTER USAGES OVERLAP

You cannot specify the given register as the source or
destination address because the indicated registers overlap the
register containing the control block address.

$OFF MACRO - FIELD TOO LARGE

You can specify only a 1-byte or 1-word field as the field
parameter for the $OFF macro.

$OFF MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $OFF macro.

$SET MACRO - FIELD TOO LARGE

You can specify only a 1-byte or 1-word field as the field
parameter for the $SET macro.

$SET MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $SET macro.

$SETGSA MACRO - REGISTER PARAMETER INVALID

You must specify RO, Rl, R2, R3, R4, or RS as the register
parameter for the $SETGSA macro.

$TESTBITS MACRO - FIELD TOO LARGE

You can specify only a 1-byte or 1-word field as the field
parameter for the $TESTBITS macro.

$TESTBITS MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $TESTBITS macro.

F$BSZ MACRO - BSZ FIELD NOT USED IN RMS-11

RMS-11 has no BSZ field in the FAB; therefore the F$BSZ macro
cannot initialize the field.

F$JFN MACRO - JFN FIELD NOT USED IN RMS-11

FAB$B

RMS-11 has no JFN field in the FAB; therefore the F$JFN macro
cannot initialize the field.

MACRO - ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the FAB$B macro to begin FAB declaration until you
have ended the current block or pool declaration (using the
FABE, NAME, POOLE, RABE or XAB$E macro).

8-2

ASSEMBLY-TIME MESSAGES

FAB$B MACRO - FAB NOT WORD-ALIGNED

Use the .EVEN assembler directive before the FAB$B macro;
assures word-alignment for the FAB.

FAB$E MACRO - NOT IN FAB DECLARATION

this

You must begin a FAB declaration with the FAB$B macro before
ending it with a FAB$E macro.

NAM$B MACRO - ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the NAM$B macro to begin NAM block declaration
until you have ended the current block or pool declaration (using
the FABE, NAME, POOLE, RABE or XAB$E macro).

NAM$B MACRO - NAM BLOCK NOT WORD-ALIGNED

Use the .EVEN assembler directive before the NAM$B macro;
assures word-alignment for the NAM.

NAM$E MACRO - NOT IN NAM BLOCK DECLARATION

this

You must begin a NAM block declaration with the NAM$B macro
before ending it with a NAM$E macro.

OPERATION MACRO - FAB OR RAB ADDRESS PARAMETER MISSING

You must specify a control block address for the operation macro;
for a file operation, specify a FAB address; for a stream,
record, or block I/O operation, specify a RAB address.

ORG$ MACRO - OPERATION PARAMETER INVALID

You can specify only CRE, DEL, FIN, GET, PUT, and UPD as
operation parameters for the ORG$ macro.

ORG$ MACRO - ORGANIZATION PARAMETER INVALID

You can specify only IDX, REL, or SEQ as the organization
parameter for the ORG$ macro.

ORG$ MACRO - ORGANIZATION PARAMETER MISSING

You must specify IDX, REL, or SEQ as the organization parameter
for the ORG$ macro.

POOL$B MACRO - ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the POOL$B macro to begin pool declaration until
you have ended the current block or pool declaration (using the
FABE, NAME, POOLE, RABE or XAB$E macro).

POOL$E MACRO - NOT IN POOL DECLARATION

You must begin a POOL declaration with the POOL$B macro before
ending it with a POOL$E macro.

R$LSN MACRO - LSN FIELD NOT USED IN RMS-11

RMS-11 has no LSN field in the RAB; therefore the R$LSN macro
cannot initialize the field.

B-3

ASSEMBLY-TIME MESSAGES

RAB$B MACRO - ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the RABSB macro to begin RAB declaration until you
have ended the current block or pool declaration (using the
FABE, NAME, POOLE, RABE or XAB$E macro).

RAB$B MACRO - RAB NOT WORD-ALIGNED

Use the .EVEN assembler directive before the RAB$B macro;
assures word-alignment for the RAB.

RAB$B MACRO - RAB TYPE PARAMETER INVALID

this

You can specify only SYN, ASYN, or a null as the parameter for
the RAB$B macro.

RAB$E MACRO - NOT IN RAB DECLARATION

You must begin a RAB declaration with the RAB$B macro before
ending it with a RAB$E macro.

X$SIZ MACRO - TOTAL KEY SIZE TOO LARGE

The sum of the segment sizes for a key is greater than 255.
Specify smaller segments.

XAB$B MACRO - ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the XAB$B macro to begin XAB declaration until you
have ended the current block or pool declaration (using the
FABE, NAME, POOLE, RABE or XAB$E macro).

XAB$B MACRO - XAB NOT WORD-ALIGNED

Use the .EVEN assembler directive before the XAB$B macro;
assures word-alignment for the XAB.

XAB$B MACRO - XAB TYPE PARAMETER INVALID

this

You can specify only XBALL, XBDAT, XBKEY, XBPRO, or XB$SUM as
the XAB type parameter for the XAB$B macro.

XAESE MACRO - NOT IN XAB DECLARATION

You must begin a XAB declaration with the XAB$B macro before
ending it with a XAB$E macro.

B-4

APPENDIX C

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 lists RMS-11 macros (and their arguments) that declare
symbols and other macros. In the table, the expression xxx represents
a 2- or 3-character string, so that the expression O$xxx represents
all symbols that begin with 0$; the expression fld represents a field
mnemonic.

Note that you can declare symbols either globally or locally. For a
FASST, RASST, XAS$ST, or $RMSTAT macro, give the argument DFIN$G (or
omit the argument) to define symbols globally; give the argument
DFIN$L to define symbols locally.

Note also that you can declare symbols for control block sizes without
declaring field-offset symbols. For a FASOF$, NAMOF$, RASOF$, XASOF$,
XSAOF$, XSDOF$, XBKOF$, XSPOF$, or XSSOF$ macro, give the argument
DEF$SZ to define only symbols for block sizes, or give no argument to
define both symbols for block sizes and field-offset symbols.

Table C-1: Macros That Declare Symbols and Other Macros

Macro

FAS$S

FAS$ST

FAS$ST

FABOF$

FABOF$

$FBCAL

Argument Declares

DFIN$G

DFIN$L

DEF$SZ

- FAS field-initialization macros: of the form
F$fld

- FAB end-block-declaration macro: FAS$E
- FAS field-offset symbols: of the form 0$fld
- FAS code and mask symbols: of the form

FS$xxx

- Global FAS code and mask symbols:
form FS$xxx (except FAS length
FS$SLN)

of the
symbol

- Local FAS code and mask symbols: of the form
FS$xxx (except FAS length symbol FS$SLN)

- FAS field offset symbols: of the form 0$fld
- FAS length symbol: FS$SLN

- FAB length symbol: FB$BLN

- Directory operation macros: $ENTER, $PARSE,
$REMOVE, $RENAME, and $SEARCH

- File operation macros: $CLOSE, $CREATE,
$DISPLAY, $ERASE, $EXTEND, and $OPEN

(continued on next page)

C-1

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (cont.): Macros That Declare Symbols and Other Macros

Macro

$GNCAL

NAM$B

NAMOF$

NAM OF$

POOL$B

RAB$B

RAB$BT

RAB$BT

RAB OF$

RAB OF$

Argument Declares

DEF$SZ

DFIN$G

DFIN$L

DEF$SZ

-,Get-space address macros: GSA$, $GETGSA, and
$SETGSA

- Facilities-declaration macro: ORG$
- RMS-11 initialization macros: $INIT and

$INITIF (obsolete)
- Field-access macros: $COMPARE, $FETCH, $OFF,

$SET, $STORE, and $TESTBITS
- Completion-handler return macro: $RETURN

- NAM block field-initialization macros: of
the form N$fld

- NAM block end-block-declaration macro: NAM$E
- NAM block field-offset symbols: of the form

0$fld
- NAM block code and mask symbols: of the form

NB$xxx

- NAM block field offset symbols: of the form
0$fld

- NAM block length symbol: NB$BLN

- NAM block length symbol: NB$BLN

- Pool declaration macros: P$BDB,
PFAB, PIDX, P$RAB, and P$RABX

- End-pool-declaration macro: POOL$E

P$BUF,

- RAB field-initialization macros: of the form
R$fld

- RAB end-block-declaration macro: RAB$E
- RAB field-offset symbols: of the form 0$fld
- RAB code and mask symbols: of the form

RB$xxx

- Global RAB code and mask symbols: of the
form RB$xxx (except RAB length symbol RB$BLN
or RB$BLL)

- Local RAB code and mask symbols: of the form
RB$xxx (except RAB length symbol RB$BLN or
RB$BLL)

- RAB field offset symbols: of the form O$fld
- RAB length symbol: RB$BLN (for synchronous

RAB) or RB$BLL (for asynchronous RAB)

- RAB length symbol: RB$BLN (for synchronous
RAB) or RB$BLL (for asynchronous RAB)

(continued on next page)

C-2

\

I

\

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (cont.): Macros That Declare Symbols and Other Macros

Macro

$RBCAL

$RM STAT

$RM STAT

XAB$B

XAB$B

XAB$B

XAB$B

XAB$B

Argument Declares

DFIN$G

DFIN$L

XB$ALL

XB$DAT

XB$KEY

XB$PRO

XB$SUM

- Stream operation macros:
$DISCONNECT, $FLUSH, $FREE,
$REWIND, and $WAIT

$CONNECT,
$NXTVOL,

- Record operation macros: $DELETE, $FIND,
$GET, $PUT, $TRUNCATE, and $UPDATE

- Block operation macros: $READ, $SPACE, and
$WRITE

- Global completion symbols: of the forms
ER$xxx and SU$xxx

- Local completion symbols: of the forms
ER$xxx and SU$xxx

- ALL block field-initialization macros: of
the form X$fld

- XAB end-block-declaration macro: XAB$E
- ALL block field-offset symbols: of the form

0$fld
- XAB code and mask symbols: of the form

XB$xxx

- DAT block field-initialization macros: of
the form X$fld

- XAB end-block-declaration macro: XAB$E
- DAT block field-offset symbols: of the form

0$fld
- XAB code and mask symbols: of the form

XB$xxx

- KEY block field-initialization macros: of
the form X$fld

- XAB end-block-declaration macro: XAB$E
- KEY block field-offset symbols: of the form

0$fld
- XAB code and mask symbols: of the form

XB$xxx

- PRO block field-initialization macros: of
the form X$fld

- XAB end-block-declaration macro: XAB$E
- PRO block field-offset symbols: of the form

0$fld
- XAB code and mask symbols: of the form

XB$xxx

- SUM block field-initialization macros: of
the form X$fld

- XAB end-block-declaration macro: XAB$E
- SUM block

0$fld
field-offset symbols: of the form

- XAB code and mask symbols: of the form
XB$xxx

(continued on next page)

C-3

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (cont.): Macros That Declare Symbols and Other Macros

Macro

XAB$BT

XAB$BT

XABOF$

XABOF$

XBAOF$

~A~$

XBDOF$

~D~$

XBKOF$

XBKOF$

XBPOF$

XBPOF$

XBSOF$

XBSOF$

Argument Declares

DFIN$G - Global XAB code and mask symbols: of the
form XB$xxx (except XAB length symbols:
XBLAL, XBDTL, XBKYL, XBPRL, and XB$SML)

DFIN$L - Local XAB code and mask symbols: of the form

DEF$SZ

DEF$SZ

DEF$SZ

DEF$SZ

DEF$SZ

DEF$SZ

XB$xxx (except XAB length symbols: XB$LAL,
XBDTL, XBKYL, XB$PRL, and XB$SML)

- XAB field offset symbols: of the form O$fld
- XAB length symbols: XBLAL, XBDTL, XB$KYL,

XB$PRL, and XB$SML

- XAB length symbols: XBLAL, XBDTL, XB$KYL,
XB$PRL, and XB$SML

- ALL block field offset symbols: of the form
0$fld

- ALL block length symbol: XB$LAL

- ALL block length symbol: ~$LAL

- DAT block field offset symbols: of the form
0$fld

- DAT block length symbol: XB$DTL

- DAT block length symbol: ~$DTL

- KEY block field offset symbols: of the form
0$fld

- KEY block length symbol: ~$KYL

- KEY block length symbol: ~$KYL

- PRO block field offset symbols: of the form
0$fld

- PRO block length symbol: ~$PRL

- PRO block length symbol: ~$PRL

- SUM block field offset symbols: of the form
0$fld

- SUM block length symbol: XB$SML

- SUM block length symbol: XB$SML

C-4

APPENDIX D

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

This appendix contrasts the behaviors of RMS-11 on different operating
systems:

e PRO/RMS-11 versus RSTS/E RMS-11

e PRO/RMS-11 versus RSX-llM/M-PLUS RMS-11

e RSTS/E RMS-11 versus RSX-llM/MPLUS RMS-11

D.l PRO/RMS-11 VERSUS RSTS/E RMS-11

This section contrasts the behaviors of PRO/RMS-11 and RSTS/E RMS-11.

D.1.1 Different Behaviors

The following features behave differently for RSTS/E and P/OS users:

• Macro library location

RMS-11 macro libraries for the systems are located in the
files:

RSTS/E
P/OS

• RTV field in FAB

LB:RMSMAC.MLB
LB:[l,l]RMSMAC.MLB

The RTV field in the FAB has different uses:

RSTS/E
P/OS

• Maximum bucket size

Cluster size
Retrieval pointer count

The maximum bucket sizes (given by the BKS field in the FAB or
the BKZ fields in ALL blocks) are different:

RSTS/E
P/OS

15 blocks
32 blocks

D-1

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

• Area alignment

The meanings of area alignment codes (in the ALN field of an
ALL block) are different:

RSTS/E

P/OS

• Protection codes

XB$LBN

XB$CYL
XB$LBN
XB$VBN

Cluster alignment

Cylinder alignment
Logical block alignment
Virtual block alignment

The protection codes (and defaults) are system-specific.

D.1.2 Features Not Supported on RSTS/E

The following RMS-11 features are not supported on RSTS/E, but are
supported on P/OS:

• ENTER operation ($ENTER macro)

• NXTVOL operation ($NXTVOL macro)

• REMOVE operation ($REMOVE macro)

• SPACE operation ($SPACE macro)

• WAIT operation ($WAIT macro)

• User-provided interlocking (FB$UPI mask in SHR field of FAB)

• File version numbers (NB$VER mask in FNB field of NAM)

• Asynchronous execution of operations (RB$ASY mask in ROP field
of RAB; SYN and ASYN arguments to RAB$B macro; RB$BLL symbol
for length of asynchronous RAB)

• Directories (DID field in NAM block)

• Area extension (ALL block fields for $EXTEND macro)

• Contiguous file extension (FB$CTG mask in FOP field of FAB for
$EXTEND macro)

• Hard placement (XB$HRD mask in AOP field of ALL block)

• Return of date and protection information by DISPLAY operation
(PRO block fields and DAT block fields for $DISPLAY macro)

• File expiration
revision number

date (EDT field of NAM
(RVN field of NAM block)

• Magtape devices are not supported on P/OS.

• Remote operations are not supported on P/OS.

D-2

block) and file

I
/

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

D.1.3 Features Not Supported on P/OS

On RSTS/E, for compatibility with older file system, RMS-11 treats
certain sequential files with undefined records as sequential files
with stream records. P/08 will allow only block access to such files.

D.2 PRO/RMS-11 VERSUS RSX-llM/M-PLUS RMS-11

The P/OS operating system does not support magtape devices or remote
RMS-11 operations.

P/OS files have decimal version numbers (NB$VER mask in FNB field of
NAM) •

D.3 RSTS/E RMS-11 VERSUS RSX-llM/M-PLUS RMS-11

This section contrasts the
RSX-llM/M-PLUS RMS-11.

D.3.1 Different Behaviors

behaviors of

The following features
RSX-llM/M-PLUS users:

behave differently

• Macro library location

RSTS/E RMS-11

for RSTS/E

RMS-11 macro libraries for the
files:

systems are located in

RSTS/E
RSX-llM/M-PLUS

e RTV field in FAB

LB :RMSMAC.MLB
LB:[l,l]RMSMAC.MLB

The RTV field in the FAB has different uses:

RSTS/E
RSX-llM/M-PLUS

• Maximum bucket size

Cluster size
Retrieval pointer count

and

and

the

The maximum bucket sizes (given by the BKS field in the FAB or
the BKZ fields in ALL blocks) are different:

RSTS/E
RSX-llM/M-PLUS

• Area alignment

15 blocks
32 blocks

The meanings of area alignment codes (in the ALN field of an
ALL block) are different:

RSTS/E

RSX-llM/M-PLUS

XB$LBN

XB$CYL
XB$LBN
XB$VBN

D-3

Cluster alignment

Cylinder alignment
Logical block alignment
Virtual block alignment

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

D.3.2 Features Not Supported on RSTS/E

The following RMS-11 features are not supported on RSTS/E, but are
supported on RSX-llM/M-PLUS:

• ENTER operation ($ENTER macro)

e NXTVOL operation ($NXTVOL macro)

• REMOVE operation ($REMOVE macro)

• REWIND operation for magtape device ($REWIND macro)

• SPACE operation ($SPACE macro)

• WAIT operation ($WAIT macro)

• User-provided interlocking (FB$UPI mask in SHR field of FAB)

• Octal file version numbers (NB$VER mask in FNB field of NAM)

• Asynchronous execution of operations (RB$ASY mask in ROP field
of RAB; SYN and ASYN arguments to RAB$B macro; RB$BLL symbol
for length of asynchronous RAB)

• Directories (DID field in NAM block)

• Area extension (ALL block fields for $EXTEND macro)

• Contiguous file extension (FB$CTG mask in FOP field of FAB for
$EXTEND macro)

• Hard placement (XB$HRD mask in AOP field of ALL block)

• Return of date and protection information by DISPLAY operation
(PRO block fields and DAT block fields for $DISPLAY macro)

• - File expiration date (EDT field in NAM block) and file
revision number (RVN field of NAM block)

• Initial end-of-file context for magtape file (FB$NEF mask in
FOP field of FAB for $OPEN macro)

• Multivolume magtapes

D-4

/
\

$CLOSE macro, 5-3
example, 7-14, 7-17, 7-20

$COMPARE macro, 2-18
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
$CONNECT macro, 5-6
$CREATE macro, 5-9
$DELETE macro, 5-24
$DISCONNECT macro, 5-26
$DISPLAY macro, 5-28

RSTS/E, D-2
$ENTER macro, 5-33

RSTS/E, D-2
$ERASE macro, 5-37

example, 7-8
$EXTEND macro, 5-42

RSTS/E, D-2
$FBCAL macro, C-1
$FETCH macro, 2-17

example, 7-2, 7-5, 7-8, 7-11,
7-14, 7-17, 7-20

$FIND macro
key access, 5-47
RFA access, 5-50
sequential access, 5-45

$FLUSH macro, 5-52
$FREE macro, 5-54
$GET macro

key access, 5-59
RFA access, 5-63
sequential access, 5-56

$GETGSA macro, 2-21
$GNCAL macro, C-2
$INIT macro (obsolete) , vi
$INITIF macro (obsolete), vi
$NXTVOL macro

RSTS/E, D-2
$OFF macro, 2-12

example, 7-14, 7-17, 7-20
$OPEN macro, 5-66

example, 7-14, 7-17, 7-20
$PARSE macro, 5-81

example, 7-2, 7-5, 7-8, 7-11,
7-17, 7-20

$PUT macro
key access, 5-88
sequential access, 5-85

$RBCAL macro, C-2
$READ macro

sequential access, 5-91
VBN access, 5-93

$REMOVE macro, 5-95
RSTS/E, D-2

$RENAME macro, 5-99
example, 7-11

$RETURN macro, 2-20
$REWIND macro, 5-104
$RLCB system routine, 2-22
$RMSTAT macro, C-3
$RQCB system routine, 2-22
$SEARCH macro, 5-106

INDEX

example, 7-5, 7-11, 7-17
$SET macro, 2-11

example, 7-14, 7-17, 7-20
$SETGSA macro, 2-21
$SPACE macro

RSTS/E, D-2
$STORE macro, 2-11

example, 7-2, 7-5, 7-8, 7-11,
7-14, 7-17, 7-20

$TESTBITS macro, 2-18
$TRUNCATE macro, 5-109
$UPDATE macro, 5-111
SWAIT macro

RSTS/E, D-2
$WRITE macro

sequential access, 5-113
VBN access, 5-115

.EVEN assembler directive
control block alignment, 2-9
pool alignment, 2-5

.MCALL assembler directive, 2-2
/ML assembler switch, 2-22

Access
requested

See FAC field in FAB
shared

See SHR field in FAB
Access mode

block
See BKT field in RAB

record
See RAC field in RAB

AID field in ALL block, 2-13
CLOSE operation, 5-3
CREATE operation, 5-9, 5-15
DISPLAY operation, 5-29
EXTEND operation, 5-42 to 5-43
offset, 6-2
OPEN operation, 5-67
summary, 6-3

Alignment
See ALN field in ALL block

ALL block
chaining to FAB, 2-13
declaring, 2-9
initializing, 2-9
summary, 6-2

Allocation
See ALQ field in ALL block
See ALQ field in FAB
XAB

See ALL block
ALN field in ALL block

CREATE operation, 5-16
DISPLAY operation, 5-29
EXTEND operation, 5-43
offset, 6-2
OPEN operation, 5-74
RSTS/E, D-2
summary, 6-4

Index-1

ALQ field in ALL block
CREATE operation, 5-15, 5-20
DISPLAY operation, 5-29
EXTEND operation, 5-43
offset, 6-2
OPEN operation, 5-73
RSTS/E, D-2
summary, 6-5

ALQ field in FAB
CREATE operation, 5-15, 5-20
EXTEND operation, 5-42 to 5-43
offset, 6-22
OPEN operation, 5-72
summary, 6-25

ALQO field in ALL block
offset, 6-2

ALQl field in ALL block
offset, 6-2

ANSI magtape device, 3-2, 5-19,
5-39, 5-71

AOP field in ALL block
CREATE operation, 5-16 to 5-17
DISPLAY operation, 5-29
EXTEND operation, 5-43
offset, 6-2
OPEN operation, 5-74
RSTS/E, D-2
summary

XB$CTG mask, 6-6
XB$HRD mask, 6-7

Area
al ig.nment

See ALN field in ALL block
allocation

See ALQ field in ALL block
bucket size

See BKZ field in ALL block
contiguity

See XB$CTG mask in AOP field
count

See NOA field in SUM block
default extension size

See DEQ field in ALL block
description, obtaining

See DISPLAY operation
extending allocation

See EXTEND operation
identifier

See AID field in ALL block
location

See LOC field in ALL block
See ALL block

Assembly, 2-22
ASYN argument to RAB$B macro

RSTS/E, D-2

BDB pool, 2-8
BID field in FAB

offset, 6-22
summary

FB$BID code, 6-26
BID field in RAB

offset, 6-111
summary

RB$BID code, 6-113

INDEX

Binary key
See XB$BN2 mask in DTP field
See XB$BN4 mask in DTP field

BKS field in FAB
CREATE operation, 5-16
offset, 6-24
OPEN operation, 5-72
RSTS/E, D-1
summary, 6-27

BKT field in RAB, 4-5, 4-11
FIND operation, 5-45, 5-48,

5-51
GET operation, 5-57, 5-61,

5-64
offset, 6-112
PUT operation, 5-86, 5-89
READ operation, 5-91, 5-93
summary, 6-114
WRITE operation, 5-113, 5-115

BKZ field in ALL block
CREATE operation, 5-16
DISPLAY operation, 5-29
offset, 6-2
OPEN operation, 5-73
RSTS/E, D-1 to D-2
summary, 6-8

BLN field in ALL block
offset, 6-2
summary

XB$LAL code, 6-9
BLN field in DAT block

offset, 6-14
summary

XB$DTL code, 6-15
BLN field in FAB

offset, 6-22
summary

FB$BLN code, 6-28
BLN field in KEY block

offset, 6-62
summary

XB$KYL code, 6-64
BLN field in PRO block

offset, 6-104
summary

XB$PRL code, 6-105
BLN field in RAB

offset, 6-111
summary, 6-115

BLN field in SUM block
offset, 6-141
summary

XB$SML code, 6-142
Block

access mode
See BKT field in RAB

locating
See SPACE operation

reading
See READ operation

writing
See WRITE operation

Block context, 4-10
Block operation, 4-12
Block operation macro

Index-2

INDEX

$READ, 5-91, 5-93
$WRITE, 5-113, 5-115
declaring, C-2

Block processing, 4-10
Block stream, 4-10
Block-declaration macro, 2-9
Blocked record

See FB$BLK mask in RAT field
BLS field in FAB

offset, 6-24
BPA field in FAB, 2-7, 3-5

CLOSE operation, 5-4
CREATE operation, 5-12
ENTER operation, 5-34
ERASE operation, 5-38
offset, 6-23
OPEN operation, 5-68
PARSE operation, 5-82
REMOVE operation, 5-96
RENAME operation, 5-100
SEARCH operation, 5-106
summary, 6-2 9

BPS field in FAB, 2-7, 3-5
CLOSE operation, 5-4
CREATE operation, 5-12
ENTER operation, 5-34
ERASE operation, 5-38
offset, 6-23
OPEN operation, 5-68
PARSE operation, 5-82
REMOVE operation, 5-96
RENAME operation, 5-100
SEARCH operation, 5-106
summary, 6-30

Bucket
fill number

data
See DFL field in KEY block

honoring
See RB$LOA mask in ROP field

index
See IFL field in KEY block

size
See BKS field in FAB
See BKZ field in ALL block

Buffer
record

See RBF field in RAB
user

See UBF field in RAB
Buffer pool, 3-5

Call
operation routine, 2-15

arguments in memory, 2-15
macro argument, 2-15

Carriage control
See RAT field in FAB

Carriage-control device
See FB$CCL mask in DEV field

Carriage-return carriage control
See FB$CR mask in RAT field

Casette tape device, 3-2, 5-19,
5-39, 5-70

CDT field in DAT block

DISPLAY operation, 5-31
offset, 6-14
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-16

Central buffer pool, 3-5
Changed key

See XB$CHG mask in FLG field
CLOSE operation, 3-8

$CLOSE macro, 5-3
BDB requirement, 2-8
I/O buffer requirement, 2-7
wildcard loop, 3-11

Cluster size
See RTV field in FAB

COD field in ALL block
offset, 6-2
summary

XB$ALL code, 6-10
COD field in DAT block

offset, 6-14
summary

XB$DAT code, 6-17
COD field in KEY block

offset, 6-62
summary

XB$KEY code, 6-65
COD field in PRO block

offset, 6-104
summary

XB$PRO code, 6-106
COD field in SUM block

offset, 6-141
summary

XB$SUM code, 6-143
Code and mask symbol

declaring
ALL block, C-3,
DAT block, C-3,
FAB, C-1
KEY block, C-3,
NAM block, C-2
PRO block, C-3,
RAB, C-2
SUM block, C-3,
XAB, C-3

value
ALL block, 6-2
DAT block, 6-14
FAB, 6-22
KEY block, 6-62
NAM block, 6-89
PRO block, 6-104
RAB, 6-111
SUM block, 6-141

Code symbol
See Code and mask

Completion
handler, 2-20
return macro

declaring, C-2
symbol

declaring, C-3
Completion status

C-5
C-5

C-5

C-5

C-5

symbol

See STS field in FAB

Index-3

See STS field in RAB
See STV field in FAB
See STV field in RAB

CONNECT operation
$CONNECT macro, 5-6
BDB requirement, 2-8
block stream, 4-12
I/O buffer requirement, 2-8
IRAB requirement, 2-6
key buffer requirement, 2-6
record stream, 4-7

Context
block stream, 4-10
record stream, 4-2

Contiguity
See FB$CTG mask in FOP field
See XB$CTG mask in AOP field

Control block, 1-2
cha in ing, 2-13
declaring, 2-9
examining, 2-17
field

See Field
initializing, 2-9
setting up, 2-10

CRE argument to ORG$ macro, 2-3
CREATE operation, 3-7

$CREATE macro, 5-9
BOB requirement, 2-8
declaring with ORG$ macro, 2-3
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-11

Creation date
See CDT field in DAT block

CTX field in FAB, 2-20
offset, 6-22
summary, 6-31

CTX field in RAB, 2-20
offset, 6-111
summary, 6-116

Current-record context, 4-2

DAN field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-74
summary, 6-66

DAT block
chaining to FAB, 2-13
declaring, 2-9
initializing, 2-9
summary, 6-14

Data area number
See DAN field in KEY block

Date
See DAT block
XAB

See DAT block
DBS field in KEY block

DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-75
summary, 6-67

INDEX

DECtape device, 3-1, 5-19~
5-39, 5-70

DECTAPE II device, 3-1, 5-19,
5-39, 5-70

DEF$SZ argument, C-1
Default extension size

See DEQ field in ALL block
See DEQ field in FAB

Default string
See DNA field in FAB

Deferred writing
See FB$DFW mask in FOP field

DEL argument to ORG$ macro, 2-3
DELETE operation, 4-9

$DELETE macro, 5-24
declaring with ORG$ macro, 2-3

Deletion, file marked for
See FB$MKD mask in FOP field

DEQ field in ALL block
CREATE operation, 5-15
DISPLAY operation, 5-29
offset, 6-2
OPEN operation, 5-73
RSTS/E, D-2
summary, 6-11

DEQ field in FAB
CREATE operation, 5-15
offset, 6-22
OPEN operation, 5-68, 5-72
summary, 6-32

DEV field in FAB, 3-1 to 3-2
CREATE operation, 5-19
ERASE operation, 5-39
offset, 6-24
OPEN operation, 5-70 to 5-71
summary, 6-33

Device
characteristics

See DEV field in FAB
identifier

See DVI field in NAM block
DFIN$G argument, C-1
DFIN$L argument, C-1
DFL field in KEY block

CREATE operation, 5-19
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-75
summary, 6-68

DID field in NAM block
CREATE operation, 5-10, 5-19
ENTER operation, 5-33 to 5-34
ERASE operation, 5-39
offset, 6-89
OPEN operation, 5-67, 5-72
PARSE operation, 5-82
REMOVE operation, 5-95 to 5-96
RENAME operation,

5-100 to 5-101
SEARCH operation,

5-106 to 5-107
summary, 6-91

DID field in NAM block field
RSTS/E, D-2

Directory

Index-4

\
i

/

wildcard context
See WDI field in NAM block

wildcard operation
See NB$WCH mask in FNB field

Directory entry
creating

See ENTER operation
deleting

See REMOVE operation
replacing

See RENAME operation
Directory operation, 3-5
Directory operation macro

$ENTER, 5-33
$PARSE, 5-81
$REMOVE, 5-95
$RENAME, 5-99
$SEARCH, 5-106
declaring, C-1

Directory processing, 3-1
DISCONNECT operation

$DISCONNECT macro, 5-26
block stream, 4-12
record stream, 4-8

Disk device, 3-1, 5-19, 5-39,
5-70

DISPLAY operation, 3-7
$DISPLAY macro, 5-28
BDB requirement, 2-8
I/O buffer requirement, 2-7
wildcard loop, 3-11

DNA field in FAB, 3-3
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-37
offset, 6-23
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-95
RENAME operation,

5-99 to 5-100
summary, 6-34

DNS field in FAB, 3-3
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-37
offset, 6-24
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-95
RENAME operation,

5-99 to 5-100
summary, 6-35

DTP field in KEY block
CREATE operation, 5-17
DISPLAY operation,

5-29 to 5-30
offset, 6-62
OPEN operation, 5-74
summary, 6-69

Duplicate key
See XB$DUP mask in FLG fiela

DVB field in KEY block
DISPLAY operation, 5-30
offset, 6-63

INDEX

OPEN operation, 5-75
summary, 6-70

DVI field in NAM block, 3-3
CREATE operation, 5-10, 5-19
ENTER operation, 5-33 to 5-34
ERASE operation, 5-37, 5-39
offset, 6-89
OPEN operation, 5-67, 5-72
REMOVE operation, 5-95 to 5-96
RENAME operation,

5-99 to 5-101
SEARCH operation, 5-106
summary, 6-92

EDT field in DAT block
DISPLAY operation, 5-31
OPEN operation, 5-75
summary, 6-18

EDT field in NAM block
P/OS, D-2

ENTER operation, 3-5
$ENTER macro, 5-33
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-11

ER$-family symbol
declaring, C-3
value, A-1 to A-16

ERASE operation, 3-7
$ERASE macro, 5-37
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-10 to 3-11

nonselective, 3-11
selective, 3-12

Error
assembly-time, 2-22
fatal, 2-16
handler, 2-20

ESA field in NAM block, 3-3,
3-10
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-38
offset, 6-90
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-96
RENAME operation, 5-101
SEARCH operation, 5-106
summary, 6-93

ESL field in NAM block
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-39
offset, 6-90
OPEN operation, 5-72
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
SEARCH operation, 5-106
summary, 6-94

ESS field in NAM block

Index-5

CREATE operation, 5-10
ENTER operation, 5-34
ERASE operation, 5-38
offset, 6-90
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-96
RENAME operation, 5-101
summary, 6-95

Expanded string
See ESA field in NAM block

EXTEND operation, 3-8
$EXTEND macro, 5-42
BDB requirement, 2-8
I/O buffer requirement, 2-7
wildcard loop, 3-11

Extended attribute block
See XAB

F$-family macro, 2-9
declaring, C-1
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
FAB

chaining to RAB, 2-14
declaring, 2-9
initializing, 2-9
summary, 6-22

FAB field in RAB, 4-1
chaining FAB to RAB, 2-14
CONNECT operation, 5-6
offset, 6-112
summary, 6-117

FAB$B macro, 2-9, C-1
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
FAB$BT macro, C-1
FAB$E macro, 2-9

declaring, C-1
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
FABOF$ macro, C-1
FAC field in FAB

CREATE operation, 5-13
offset, 6-22
OPEN operation, 5-69
summary, 6-36

Facilities-declaration macro,
2-2
declaring, C-2

Fast deletion
See RB$FDL mask in ROP field

Fatal error, 2-16
FB$-family symbol

declaring, C-1
FB$BID code in BID field

summary, 6-2 6
value, 6-22

FB$BLK mask in RAT field
CREATE operation, 5-11
OPEN operation, 5-73
summary, 6-55
value, 6-23

FB$BLN code in BLN field
summary, 6-28

INDEX

value, 6-22
FB$CCL mask in DEV field, 3-1

CREATE operation, 5-19
ERASE operation, 5-39
OPEN operation, 5-70
value, 6-24

FB$CR mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-73
value, 6-23

FB$CTG mask in FOP field
CREATE operation, 5-16
EXTEND operation, 5-42
OPEN operation, 5-72
RSTS/E, D-2
summary, 6-39
value, 6-23

FB$DEL mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$DFW mask in FOP field
CREATE operation, 5-14
OPEN operation, 5-70
summary, 6-40
value, 6-23

FB$DLK mask in FOP field
CREATE operation, 5-14
OPEN operation, 5-70
summary, 6-41
value, 6-23

FB$FID mask in FOP field, 3-7,
3-10 to 3-12
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-37 to 5-38
OPEN operation, 5-67
REMOVE operation, 5-95 to 5-96
RENAME operation,

5-99 to 5-100
summary, 6-42
value, 6-23

FB$FIX code in RFM field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$FTN mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-73
value, 6-23

FB$GET mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$GET mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$IDX code in ORG field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$MDI mask in DEV field, 3-1
CREATE operation, 5-19
ERASE operation, 5-39

Index-6

)

OPEN operation, 5-70
value, 6-2 4

FB$MKD mask in FOP field
CLOSE operation, 5-4
CREATE operation, 5-10
summary, 6-43
value, 6-23

FB$NIL mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-69
READ operation, 5-92, 5-94
value, 6-22
WRITE operation, 5-113, 5-115

FB$PRN mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-73
value, 6-23

FB$PUT mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$REA mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$REC mask in DEV field,
3-1 to 3-2
CREATE operation, 5-19
ERASE operation, 5-39
OPEN operation, 5-70
value, 6-24

FB$REL code in ORG field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$SDI mask in DEV field, 3-2
CREATE operation, 5-19
ERASE operation, 5-39
OPEN operation, 5-70
value, 6-24

FB$SEQ code in ORG field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$SQD mask in DEV field, 3-2
CREATE operation, 5-19
ERASE operation, 5-39
OPEN operation, 5-71
value, 6-24

FB$STM code in RFM field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$SUP mask in FOP field
CREATE operation, 5-10
summary, 6-44
value, 6-23

FB$TMD mask in FOP field
CREATE operation, 5-11
value, 6-23

FB$TMP mask in FOP field
CREATE operation, 5-10
summary, 6-45
value, 6-23

FB$TRM mask in DEV field, 3-1

INDEX

CREATE operation, 5-19
ERASE operation, 5-39
OPEN operation, 5-70
value, 6-24

FB$TRN mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$UDF code in RFM field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$UPD mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$UPI mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$UPI mask in SHR field of FAB
P/OS, D-2

FB$VAR code in RFM field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$VFC code in RFM field
CREATE operation, 5-11
OPEN operation, 5-72
value, 6-23

FB$WRI mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FB$WRT mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-69
value, 6-22

FID field in NAM block
CREATE operation, 5-19
ENTER operation, 5-33
ERASE operation, 5-37, 5-39
offset, 6-89
OPEN operation, 5-67, 5-72
REMOVE operation, 5-96
RENAME operation, 5-101
SEARCH operation, 5-107
summary, 6-96

Field, 1-2
clearing bits in, 2-12
comparing value, 2-18
copying value from, 2-17
copying value into, 2-11
examining, 2-17
initializing, 2-9
mnemonic, 1-2
setting bits in, 2-11
setting up, 2-10
testing bits in, 2-18

Field-access macro
$COMPARE, 2-18
$FETCH, 2-1 7
$OFF, 2-12
$SET, 2-11
$STORE, 2-11

Index-7

$TESTBITS, 2-18
declaring, C-2

Field-initialization macro, 2-9
declaring

ALL block, C-3
DAT block, C-3
FAB, C-1
KEY block, C-3
NAM block, C-2
PRO block, C-3
RAB, C-2
SUM block, C-3

Field-off set symbol
declaring

ALL block, C-3, C-5
DAT block, C-3, C-5
FAB, C-1
KEY block, C-3, C-5
NAM block, C-2
PRO block, C-3, C-5
RAB, C-2
SUM block, C-3, C-5
XAB, C-3

value
ALL block, 6-2
DAT block, 6-14
FAB, 6-22
KEY block, 6-62
NAM block, 6-89
PRO block, 6-104
RAB, 6-111
SUM block, 6-141

File
access requested

See FAC field
access shared

See SHR field
alignment

See ALN field
allocation

See ALQ field
See ALQ field

area
See ALL block

bucket size

in

in

in

in
in

FAB

FAB

ALL

ALL
FAB

See BKS field in FAB

block

block

See BKZ field in ALL block
closing

See CLOSE operation
cluster size

See RTV field in FAB
contiguity

See FB$CTG mask in FOP field
See XB$CTG mask in AOP field

creating
See CREATE operation

creation date
See CDT field in DAT block

date
See DAT block

default extension size
See DEQ field in ALL block
See DEQ field in FAB

deleting
See ERASE operation

INDEX

extending allocation
See EXTEND operation

identifier
See FID field in NAM block

internal file identifier
See IFI field in FAB

location
See LOC field in ALL block

locking
See FB$DLK mask in FOP field

name block
See NAM block

opening
See OPEN operation

o rg ani za ti on
See ORG field in FAB

owner
See PRG field in PRO block

protection
See PRO field in PRO block

record-output characteristic
See RAT field in FAB

renaming
See RENAME operation

revision date
See RDT field in DAT block

revision number
See RVN field in DAT block

specification string
default

See DNA field in FAB
parsing

See FNB field in NAM block
See FNA field in FAB

string
See FNA field in FAB

supersession
See FB$SUP mask in FOP field

truncating
See TRUNCATE operation

wildcard context
See WCC field in NAM block

wildcard operation
See NB$WCH mask in FNB field

wildcard search
See SEARCH operation

File access block
See FAB

File operation, 3-6
File operation macro

$CLOSE, 5-3
$CREATE, 5-9
$DISPLAY, 5-28
$ERASE, 5-37
$EXTEND, 5-42
$OPEN, 5-66
declaring, C-1

File processing, 3-1
File specification

fully qualified, 3-4
merged string, 3-3
parsing

See PARSE operation
wildcard, 3-8

Fill number

Index-8

data bucket
See DFL field in KEY block

index bucket
See IFL field in KEY block

FIN argument to ORG$ macro, 2-3
FIND operation, 4-8

$FIND macro
key access, 5-47
RFA access, 5-50
sequential access, 5-45

declaring with ORG$ macro, 2-3
Fixed-control-size

See FSZ field in FAB
Fixed-length record format

See FB$FIX code in RFM field
FLG field in KEY block

CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-74
summary

XB$CHG mask, 6-71
XB$DUP mask, 6-72
XB$NUL mask, 6-73

FLUSH operation
$FLUSH macro, 5-52
record stream, 4-7

FNA field in FAB, 3-3
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-37
offset, 6-23
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-95
RENAME operation,

5-99 to 5-100
summary, 6-37

FNB field in NAM block, 3-3,
3-10 to 3-11
CREATE operation, 5-20
ENTER operation, 5-34 to 5-35
ERASE operation, 5-38 to 5-39
offset, 6-89
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-96 to 5-97
RENAME operation,

5-99 to 5-102
SEARCH operation,

5-106 to 5-107
summary, 6-97

NB$WCH mask, 6-98
wildcard loop, 3-11

FNS field in FAB, 3-3
CREATE operation, 5-10
ENTER operation, 5-33
ERASE operation, 5-37
offset, 6-23
OPEN operation, 5-67
PARSE operation, 5-81
REMOVE operation, 5-95
RENAME operation,

5-99 to 5-100
summary, 6-38

INDEX

FOP field in FAB, 3-7,
3-10 to 3-12
CLOSE operation, 5-4
CREATE operation,

5-10 to 5-11, 5-14, 5-16
ENTER operation, 5-33
ERASE operation, 5-37 to 5-38
EXTEND operation, 5-42
offset, 6-23
OPEN operation, 5-67, 5-70,

5-72
REMOVE operation, 5-95 to 5-96
RENAME operation,

5-99 to 5-100
summary

FB$CTG mask, 6-39
FB$DFW mask, 6-40
FB$DLK mask, 6-41
FB$FID mask, 6-42
FB$MKD mask, 6-43
FB$SUP mask, 6-44
FB$TMP mask, 6-45

FORTRAN-style carriage control
See FB$FTN mask in RAT field

FREE operation
$FREE macro, 5-54
block stream, 4-12
record stream, 4-8

Free-space list for pool, 2-22
FSZ field in FAB

CREATE operation, 5-11
offset, 6-24
OPEN operation, 5-72
summary, 6-46

GET argument to ORG$ macro, 2-3
GET operation, 4-9

$GET macro
key access, 5-59
RFA access, 5-63
sequential access, 5-56

declaring with ORG$ macro, 2-3
Get-space routine, 2-20

example, 7-23
macro

declaring, C-2
RMS-11-supplied, 2-5

GSA$ macro, 2-21
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20

Hard location
See XB$HRD mask in AOP field

I/O buffer pool, 2-7
IAN field in KEY block

CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-74
summary, 6-74

IBS field in KEY block
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-75

Index-9

summary, 6-7 5
IDB pool, 2-5
IDX argument to ORG$ macro, 2-3
IFAB pool, 2-5
IFI field in FAB

CLOSE operation, 5-3 to 5-4
CONNECT operation, 5-6
CREATE operation, 5-19
DISPLAY operation, 5-29
EXTEND operation, 5-42
offset, 6-22
OPEN operation, 5-70
summary, 6-4 7

IFL field in KEY block
CREATE operation, 5-19
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-75
summary, 6-76

Index
area bucket size

See IBS field in KEY block
area number

higher levels
See IAN field in KEY block

lowest level
See LAN field in KEY block

count
See NOK field in SUM block

data bucket size
See DBS field in KEY block

data bucket VBN
See DVB field in KEY block

description, obtaining
See DISPLAY operation

level count
See LVL field in KEY block

reference number
See REF field in KEY block

root bucket VBN
See RVB field in KEY block

See KEY block
Indexed file

declaring with ORG$ macro, 2-3
Indexed file organization

See FB$IDX code
Initialization

field, 2-9
Integer key

See XB$IN2 mask in DTP field
See XB$IN4 mask in DTP field

Internal file identifier
See IFI field in FAB

Internal stream identifier
See ISI field in RAB

IRAB pool, 2-6
IS I f i e 1 d in RAB , 4-1

CONNECT operation, 5-7
DELETE operation, 5-24
DISCONNECT operation, 5-26
FIND operation, 5-45, 5-47,

5-50
FLUSH operation, 5-52
FREE operation, 5-54
GET operation, 5-56, 5-59,

INDEX

5-63
offset, 6-111
PUT operation, 5-85, 5-88
READ operation, 5-91, 5-93
REWIND operation, 5-104
summary, 6-118
TRUNCATE operation, 5-109
UPDATE operation, 5-111
WRITE operation, 5-113, 5-115

KBF field in RAB, 4-4
FIND operation, 5-47
GET operation, 5-59
offset, 6-112
PUT operation, 5-89
summary, 6-119

Key
buffer address

See KBF field in RAB
buffer size

See KSZ field in RAB
changes

See XB$CHG mask in FLG field
characteristics

See FLG field in KEY block
data type

See DTP field in KEY block
duplication

See XB$DUP mask in FLG field
match criterion

See RB$KGE mask in ROP field
See RB$KGT mask in ROP field

name
See KNM field in KEY block

null character
See NUL field in KEY block

reference
See KRF field in RAB

segment
position

See POS field in KEY block
size

See SIZ field in KEY block
segment count

See NSG field in KEY block
size, total

See TKS field in KEY block
XAB

See KEY block
KEY block

chaining to FAB, 2-13
declaring, 2-9
initializing, 2-9
summary, 6-62

Key buffer pool, 2-6
Key record access

See RB$KEY code in RAC field
KNM field in KEY block

CREATE operation, 5-17
DISPLAY operation, 5-29
offset, 6-63
OPEN operation, 5-68
summary, 6-77

KRF field in RAB, 4-4
CONNECT operation, 5-7

Index-10

FIND operation, 5-47
GET operation, 5-59
offset, 6-112
REWIND operation, 5-104
summary, 6-120

KSZ field in RAB, 4-4 to 4-5
FIND operation, 5-47
GET operation, 5-59
offset, 6-111
PUT operation, 5-89
summary, 6-121

LAN field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-74
summary, 6-78

LCH field in FAB, 3-2
CREATE operation, 5-13
ENTER operation, 5-34
ERASE operation, 5-38
offset, 6-24
OPEN operation, 5-68
PARSE operation, 5-82
REMOVE operation, 5-96
RENAME operation, 5-101
SEARCH operation, 5-107
summary, 6-48

LOC field in ALL block
CREATE operation, 5-16
EXTEND operation, 5-43
offset, 6-2
RSTS/E, D-2
summary, 6-12

LOCO field in ALL block
offset, 6-2

LOCl field in ALL block
offset, 6-2

Locate mode
See RB$LOC mask in ROP field

Location
hard

See XB$HRD mask in AOP field
See LOC field in ALL block

Locking, file
See FB$DLK mask in FOP field

Logical channel number
See LCH field in FAB

LRL field in FAB
CREATE operation, 5-19
offset, 6-23
OPEN operation, 5-73
summary, 6-49

LVL field in KEY block
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-75
summary, 6-79

Macro library
RMSMAC.MLB, 2-22
RSTS/E, D-1

Macro-declaration macro, 2-2
Mag tape

INDEX

positioning
See FB$NEF mask in FOP field
See FB$POS mask in FOP field

rewind-after-closing
See FB$RWC mask in FOP field

rewind-before-creating
See FB$RWO mask in FOP field

rewind-before-opening
See FB$RWO mask in FOP field

Magtape device, 3-2, 5-19,
5-39, 5-70
ANSI, 3-2, 5-19, 5-39, 5-71
RSTS/E, D-2
RSX-11, D-3

Mark-for-deletion
See FB$MKD mask in FOP field

Mask symbol
See Code and mask symbol

Mass insertion
See RB$MAS mask in ROP field

Match criterion
See RB$KGE mask in ROP field
See RB$KGT mask in ROP field

MBC field in RAB
CONNECT operation, 5-6
offset, 6-112
summary, 6-122

MBF field in RAB
CONNECT operation, 5-6
offset, 6-112
summary, 6-123

Merged string, 3-3
MRL field in KEY block

DISPLAY operation, 5-31
offset, 6-63
OPEN operation, 5-75
summary, 6-80

MRN field in FAB
CREATE operation, 5-12
offset, 6-23
OPEN operation, 5-73
summary, 6-50

MRS field in FAB
CREATE operation, 5-12
offset, 6-23
OPEN operation, 5-73
summary, 6-51

Multiblock count
See MBC field in RAB

Multibuffer count
See MBF field in RAB

Multidirectory device
See FB$MDI mask in DEV field

N$-family macro, 2-9
declaring, C-2
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
NAM block

chaining to FAB, 2-13
declaring, 2-9
identification by

See FB$FID mask in FOP field
initializing, 2-9
summary, 6-89

Index-11

NAM field in FAB
chaining NAM block to FAB,

2-13
CREATE operation, 5-9
ENTER operation, 5-33
ERASE operation, 5-37
offset, 6-23
OPEN operation, 5-66
PARSE operation, 5-81
REMOVE operation, 5-95
RENAME operation, 5-99
SEARCH operation, 5-106
summary, 6-52

NAM$B macro, 2-9, C-2
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
NAM$E macro, 2-9

declaring, C-2
example, 7-2, 7-5, 7-8, 7-11,

7-14, 7-17, 7-20
NAMOF$ macro, C-2
NB$-family symbol

declaring, C-2
NB$DEV mask in FNB field

CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-39
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, .5-101
value, 6-89

NB$DIR mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-39
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$NAM mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation

(set if NB$QUO is set) , 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$NOD mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-39
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$QUO mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-39
OPEN operation, 5-76

INDEX

PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$TYP mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation

(set if NB$QUO is set), 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$VER mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$VER mask in FNB field of NAM
P/OS, D-2 to D-3

NB$WCH mask in FNB field,
3-10 to 3-11
CREATE operation, 5-20
ENTER operation, 5-35
ERASE operation, 5-38 to 5-39
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-96 to 5-97
RENAME operation,

5-99 to 5-100, 5-102
SEARCH operation,

5-106 to 5-107
summary, 6-98
value, 6-89
wildcard loop, 3-11

NB$WDI mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$WNA mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

NB$WTY mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97

Index-12

}

/

RENAME operation, 5-101
value, 6-89

NB$WVE mask in FNB field
CREATE operation, 5-20
ENTER operation, 5-34
ERASE operation, 5-40
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-101
value, 6-89

Next-record context, 4-2
NOA field in SUM block

DISPLAY operation, 5-31
offset, 6-141
OPEN operation, 5-75
summary, 6-144

NOK field in SUM block
DISPLAY operation, 5-31
offset, 6-141
OPEN operation, 5-75
summary, 6-145

NSG field in KEY block
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-75
summary, 6-81

NUL field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-62
OPEN operation, 5-74
summary, 6-82

Null key character
See NUL field in KEY block
See XB$NUL mask in FLG field

NXT field in ALL block
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-29
EXTEND operation, 5-42
offset, 6-2
OPEN operation, 5-67
summary, 6-13

NXT field in DAT block
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-29
EXTEND operation, 5-42
offset, 6-14
OPEN operation, 5-67
summary, 6-19

NXT field in KEY block
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-29
EXTEND operation, 5-42
offset, 6-62
OPEN operation, 5-67
summary, 6-83

NXT field in PRO block
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-29
EXTEND operation, 5-42

INDEX

offset, 6-104
OPEN operation, 5-67
summary, 6-107

NXT field in SUM block
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-29
EXTEND operation, 5-42
offset, 6-141
OPEN operation, 5-67
summary, 6-146

NXT field in XAB
chaining XABs to FAB, 2-13

0$-family symbol
declaring

ALL block, C-3, C-5
DAT block, C-3, C-5
FAB field offset, C-1
KEY block, C-3, C-5
NAM block field offset, C-2
PRO block, C-3, C-5
RAB, C-2
SUM block, C-3, C-5
XAB, C-3

value
ALL block, 6-2
DAT block, 6-14
FAB, 6-22 to 6-24
KEY block, 6-62 to 6-63
NAM block, 6-89 to 6-90
PRO block, 6-104
RAB, 6-111 to 6-112
SUM block, 6-141

OPEN operation, 3-7
$OPEN macro, 5-66
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-11 to 3-12

Operation, 1-2
routine

calling, 2-15
return, 2-16

using, 2-9
Operation macro, 1-2, 2-9
ORG field in FAB

CREATE operation, 5-11
offset, 6-23
OPEN operation, 5-72
summary, 6-53

ORG$ macro, 2-2
example, 7-14, 7-17, 7-20

Organization, file
See ORG field in FAB

Owner, file
See PRG field in PRO block

P$-family macro
declaring, C-2

P$BDB macro
argument computation, 2-8
format, 2-5

P$BUF macro
argument computation, 2-7

Index-13

INDEX

format, 2-5
P$FAB macro

argument computation, 2-5
format, 2-5

P$IDX macro
argument computation, 2-6
format, 2-5

P$RAB macro
argument computation, 2-6
format, 2-5

P$RABX macro
argument computation,

2-6 to 2-7
format, 2-5

Packed decimal key
See XB$PAC mask in DTP field

PARSE operation, 3-6
$PARSE macro, 5-81
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard initialization, 3-10

Pool
buffer descriptor block, 2-8
declaring space, 2-3
free-space list, 2-22
I/O buffer, 2-7
index descriptor block, 2-5
internal FAB, 2-5
internal RAB, 2-6
key buffer, 2-6
See also Get-space routine

POOL$B macro, 2-5, C-2
POOL$E macro, 2-5

declaring, C-2
Pool-declaration macro, 2-5

declaring, C-2
POS field in KEY block

CREATE operation, 5-17
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-74
summary, 6-84

POSO field in KEY block
offset, 6-63

POSl field in KEY block
offset, 6-63

POS2 field in KEY block
offset, 6-63

POS3 field in KEY block
offset, 6-63

POS4 field in KEY block
offset, 6-63

POSS field in KEY block
offset, 6-63

POS6 field in KEY block
offset, 6-63

POS7 field in KEY block
offset, 6-63

Positioning
mag tape

See FBSNEF mask in FOP field
See FB$POS mask in FOP field

PRG field in PRO block
CLOSE operation, 5-3

DISPLAY operation, 5-31
offset, 6-104
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-108

Printer device, 3-1, 5-19,
5-39, 5-70

Private buffer pool
See BPA field in FAB
See BPS field in FAB

PRJ field in PRO block
CLOSE operation, 5-3
DISPLAY operation, 5-31
offset, 6-104
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-109

PRO block
chaining to FAB, 2-13
declaring, 2-9
initializing, 2-9
summary, 6-104

PRO field in PRO block
CLOSE operation, 5-3
CREATE operation, 5-11
DISPLAY operation, 5-31
offset, 6-104
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-110

PRO/RMS-11
contrasted with RSTS/E RMS-11,

D-1
contrasted with RSX-11 RMS-11,

D-3
Prologue version number

See PVN field in SUM block
Protection

file
See PRO field in PRO block

XAB
See PRO block

PUT argument to ORG$ macro, 2-3
PUT operation, 4-9

$PUT macro
key access, 5-88
sequential access, 5-85

declaring with ORG$ macro, 2-3
PVN field in SUM block

DISPLAY operation, 5-31
offset, 6-141
OPEN operation, 5-75
summary, 6-147

R$-family macro, 2-9
declaring, C-2

RAB
declaring, 2-9
initializing, 2-9
summary, 6-111

RAB$B macro, 2-9, C-2
RAB$BT macro, C-2
RAB$E macro, 2-9

declaring, C-2
RABOF$ macro, C-2

Index-14

RAC field in RAB, 4-3 to 4-5
FIND operation, 5-45, 5-47,

5-50
GET operation, 5-56, 5-59,

5-63
offset, 6-111
PUT operation, 5-85, 5-88
summary, 6-124

RAT field in FAB
CREATE operation, 5-11
offset, 6-23
OPEN operation, 5-73
summary, 6-54

FB$BLK mask, 6-55
RB$-family symbol

declaring, C-2
RB$ASY mask in ROP field

RSTS/E, D-2
RB$BID code in BID field

summary, 6-113
value, 6-111

RB$BLL code in BLN field
RSTS/E, D-2

RB$BLN code in BLN field
value, 6-111

RB$EOF mask in ROP field
CONNECT operation, 5-7
summary, 6-128
value, 6-111

RB$FDL mask in ROP field
DELETE operation, 5-24
summary, 6-129
value, 6-111

RB$KEY code in RAC field, 4-4
FIND operation, 5-47
GET operation, 5-59
PUT operation, 5-88
value, 6-111

RB$KGE mask in ROP field,
4-4 to 4-5
FIND operation, 5-48
GET operation, 5-60
summary, 6-130
value, 6-111

RB$KGT mask in ROP field,
4-4 to 4-5
FIND operation, 5-48
GET operation, 5-60
summary, 6-131
value, 6-111

RB$LOA mask in ROP field
PUT operation, 5-86, 5-89
summary, 6-132
value, 6-111

RB$LOC mask in ROP field, 4-6
CONNECT operation, 5-6
GET operation, 5-57, 5-60,

5-64
PUT operation, 5-86
summary, 6-133
value, 6-111

RB$MAS mask in ROP field
PUT operation, 5-86
summary, 6-134
value, 6-111

INDEX

RB$RFA code in RAC field, 4-5
FIND operation, 5-50
GET operation, 5-63
value, 6-111

RB$SEQ code in RAC field, 4-3
FIND operation, 5-45
GET operation, 5-56
PUT operation, 5-85
value, 6-111

RB$UIF mask in ROP field, 4-3
PUT operation, 5-86, 5-89
summary, 6-135
value, 6-112

RBF field in RAB, 4-6, 4-11
CONNECT operation, 5-7
GET operation, 5-57, 5-60,

5-64
offset, 6-112
PUT operation, 5-85 to 5-86,

5-88
READ operation, 5-91, 5-93
summary, 6-12 5
UPDATE operation, 5-111
WRITE operation, 5-113, 5-115

RDT field in DAT block
DISPLAY operation, 5-31
offset, 6-14
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-20

READ operation, 4-12
$READ macro

sequential access, 5-91
VBN access, 5-93

Readable-block context, 4-10
Record

access mode
See RAC field in RAB

blocked
See FB$BLK mask in RAT field

buffer address
See RBF field in RAB

deleting
fast

See RB$FDL mask in ROP field
See DELETE operation

fast deletion
See RB$FDL mask in ROP field

format
See RFM field in FAB

locating
See FIND operation

longest
See LRL field in FAB

reading
See GET operation

replacing
See UPDATE operation

size
See RSZ field in RAB

update existing
See RB$UIF mask in ROP field

writing
See PUT operation

Record access block

Index-15

See RAB field in RAB
Record access mode,.~-3
Record context, 4-2
Record file address

See RFA field in RAB
Record length

longest
See LRL field in FAB

maximum
See MRL field in FAB

Record number
maximum

See MRN field in FAB
Record operation, 4-8
Record operation macro

$DELETE, 5-24
$FIND, 5-45, 5-47, 5-50
$GET, 5-56, 5-59, 5-63
$PUT, 5-85, 5-88
$TRUNCATE, 5-109
$UPDATE, 5-111
declaring, C-2

Record processing, 4-2
Record stream, 4-2
Record-oriented device

See FB$REC mask in DEV field
Record-output characteristic

See RAT field in FAB
REF field in KEY block, 2-13

CLOSE operation, 5-3
CREATE operation, 5-9, 5-17
DISPLAY operation, 5-28
EXTEND operation, 5-42
offset, 6-62
OPEN operation, 5-67 to 5-68
summary, 6-85

REL argument .to ORG$ macro, 2-3
Relative file

declaring with ORG$ macro, 2-3
Relative file organization

See FB$REL code
Relative record number

See BKT field in RAB
Remote operation

RSTS/E, D-2
RSXll, D-3

REMOVE operation, 3-6
$REMOVE macro, 5-95
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-10 to 3-11

nonselective, 3-11
selective, 3-12

RENAME operation, 3-6
$RENAME macro, 5-99
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-10 to 3-11

nonselective, 3-11
selective, 3-12

Resultant string
See RSA field in NAM block

Retrieval pointer count

INDEX

See RTV field in FAB
Return

operation, from, 2-16
Return from completion handie~~

2-20
Revision date

See RDT field in DAT block
Revision number

See RVN field in DAT block
REWIND operation

$REWIND macro, 5-104
record stream, 4-8

RFA field in RAB, 4-5
CONNECT operation, 5-7
FIND operation, 5-46, 5-48,

5-50
GET operation, 5-57, 5-61,

5-63
offset, 6-111
PUT operation, 5-87, 5-89
READ operation, 5-92, 5-94
summary, 6-126
WRITE operation, 5-113, 5-115

RFA record access
See RB$RFA code in RAC field

RFM field in FAB
CREATE operation, 5-11
offset, 6-23
OPEN operation, 5-72
summary, 6-56

RHB field in RAB, 4-6
GET operation, 5-56, 5-60,

5-63
offset, 6-112
PUT operation, 5-85, 5-88
summary, 6-127
UPDATE operation, 5-111

RMSMAC.MLB macro library, 2-22
RSTS/E, D-1

ROP field in RAB, 4-3 to 4-6
CONNECT operation, 5-6 to 5-7
DELETE operation, 5-24
FIND operation, 5-48
GET operation, 5-57, 5-60,

5-64
offset, 6-111
PUT operation, 5-86, 5-89
summary

RRN

RB$EOF mask, 6-128
RB$FDL mask, 6-129
RB$KGE mask, 6-130
RB$KGT mask, 6-131
RB$LOA mask, 6-132
RB$LOC mask, 6-133
RB$MAS mask, 6-134
RB$UIF mask, 6-135

See BKT field in RAB
RSA field in NAM block, 3-10

offset, 6-89
SEARCH operation, 5-106
summary, 6-99

RSL field in NAM block
CREATE operation, 5-20
ENTER operation, 5-35

Index-16

\

I

/

ERASE operation, 5-39
offset, 6-89
OPEN operation, 5-76
PARSE operation, 5-82
REMOVE operation, 5-97
RENAME operation, 5-102
SEARCH operation,

5-106 to 5-107
summary, 6-100

RSS field in NAM block
offset, 6-89
SEARCH operation, 5-106
summary, 6-101

RSTS/E RMS-11
contrasted with PRO/RMS-11,

D-1
contrasted with RSX-11 RMS-11,

D-3
RSX-llM/M-PLUS RMS-11

contrasted with PRO/RMS-11,
D-3

contrasted with RSTS/E RMS-11,
D-3

RSZ field in RAB, 4-6, 4-11
GET operation, 5-57, 5-60,

5-64
offset, 6-112
PUT operation, 5-85, 5-88
READ operation, 5-91, 5-93
summary, 6-136
UPDATE operation, 5-111
WRITE operation, 5-113, 5-115

RTV field in FAB
CREATE operation, 5-13
offset, 6-23
OPEN operation, 5-68
RSTS/E, D-1
summary, 6-57

RVB field in KEY block
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-75
summary, 6-86

RVN field in DAT block
DISPLAY operation, 5-31
OPEN operation, 5-75
RSTS/E, D-2
summary, 6-21

RVN field in NAM block
P/OS, D-2

SEARCH operation
$SEARCH macro, 5-106
BDB requirement, 2-8
I/O buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-10

explicit, 3-12
implicit, 3-10 to 3-11

SEQ argument to ORG$ macro, 2-3
Sequential block access

See BKT field in RAB
Sequential device

See FB$SQD mask in DEV field
Sequential file

INDEX

declaring with ORG$ macro, 2-3
Sequential file organization

See FB$SEQ code
Sequential record access

See RB$SEQ code in RAC field
Shared access

See SHR field in FAB
SHR field in FAB

CREATE operation, 5-13
offset, 6-22
OPEN operation, 5-69
READ operation, 5-92, 5-94
summary, 6-58
WRITE operation, 5-113, 5-115

Single-directory device
See FB$SDI mask in DEV field

SIZ field in KEY block
CREATE operation, 5-17
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-74
summary, 6-87

SIZO field in KEY block
offset, 6-63

SIZl field in KEY block
offset, 6-63

SIZ2 field in KEY block
offset, 6-63

SIZ3 field in KEY block
offset, 6-63

SIZ4 field in KEY block
offset, 6-63

SIZ5 field in KEY block
offset, 6-63

SIZ6 field in KEY block
offset, 6-63

SIZ7 field in KEY block
offset, 6-63

Stream, 4-1
connecting

See CONNECT operation
disconnecting

See DISCONNECT operation
internal identifier

See !SI field in RAB
unlocking bucket

See FREE operation
writing buffers

See FLUSH operation
Stream context

advancing to next volume
See NXTVOL operation

Stream operation
block stream, 4-12
record stream, 4-7

Stream operation macro
$CONNECT, 5-6
$DISCONNECT, 5-26
$FLUSH, 5-52
$FREE, 5-54
$REWIND, 5-104
declaring, C-2

Stream record format
See FB$STM code in RFM field

String key

Index-17

See XB$STG mask in DTP field
STS field in FAB, 2-16, 3-5

CLOSE operation, 5-4
CREATE operation, 5-20
DISPLAY operation, 5-31
ENTER operation, 5-35
ERASE operation, 5-40
EXTEND operation, 5-43
offset, 6-22
OPEN operation, 5-76
PARSE operation, 5-83
REMOVE operation, 5-97
RENAME operation, 5-102
SEARCH operation, 5-107
summary, 6-59

STS field in RAB, 2-16, 4-1
CONNECT operation, 5-7
DELETE operation, 5-25
DISCONNECT operation, 5-26
FIND operation, 5-46, 5-48,

5-51
FLUSH operation, 5-52
FREE operation, 5-54
GET operation, 5-57, 5-61,

5-64
offset, 6-111
PUT operation, 5-87, 5-89
READ operation, 5-92, 5-94
REWIND operation, 5-104
summary, 6-137
TRUNCATE operation, 5-109
UPDATE operation, 5-111
WRITE operation, 5-114, 5-116

STV field in FAB, 2-16, 3-5
CLOSE operation, 5-4
CREATE operation, 5-20
DISPLAY operation, 5-31
ENTER operation, 5-35
ERASE operation, 5-40
EXTEND operation, 5-43
offset, 6-22
OPEN operation, 5-76
PARSE operation, 5-83
REMOVE operation, 5-97
RENAME operation, 5-102
SEARCH operation, 5-107
summary, 6-60

STV field in RAB, 2-16, 4-1
CONNECT operation, 5-7
DELETE operation, 5-25
DISCONNECT operation, 5-26
FIND operation, 5-46, 5-48,

5-51
FLUSH operation, 5-52
FREE operation, 5-54
GET operation, 5-57, 5-61,

5-64
offset, 6-111
PUT operation, 5-87, 5-89
READ operation, 5-92, 5-94
REWIND operation, 5-104
summary, 6-138
TRUNCATE operation, 5-109
UPDATE operation, 5-111
WRITE operation, 5-114, 5-116

INDEX

SU$-family symbol
declaring, C-3
value, A-1

Success
handler, 2-20

SUM block
chaining to FAB, 2-13
declaring, 2-9
initializing, 2-9
summary, 6-141

Summary XAB
See SUM block

Super session
See FB$SUP mask in FOP field

Symbol-declaration macro, 2-2
SYN argument to RAB$B macro

RSTS/E, D-2

Temporary file
See FB$TMP mask in FOP field

Terminal device, 3-1, 5-19,
5-39, 5-70
See FB$TRM mask in DEV field

TKS field in KEY block
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-75
summary, 6-88

TRUNCATE operation, 4-10
$TR!JNCATE macro, 5-109

UBF field in RAB, 4-6, 4-11
CONNECT operation, 5-6
GET operation, 5-56, 5-60,

5-63
offset, 6-112
PUT operation, 5-86, 5-88
READ operation, 5-91, 5-93
summary, 6-139

Undefined record format
See FB$UDF code in RFM field

Unit-record device, 3-2, 5-19,
5-39, 5-70

UPD argument to ORG$ macro, 2-3
UPDATE operation, 4-10

$UPDATE macro, 5-111
declaring with ORG$ mac.ro, 2-3

User buffer
address

See UBF field in RAB
size

See usz field in RAB
USZ field in RAB, 4-6, 4-11

CONNECT operation, 5-6
GET operation, 5-56, 5-60,

5-63
offset, 6-112
PUT operation, 5-86, 5-88
READ operation, 5-91, 5-93
summary, 6-140

Variable-length record format
See FB$VAR code in RFM field

VBN
See BKT field in RAB

Index-18

INDEX

VBN access
See BKT field in RAB

VFC carriage control
See FB$PRN mask in RAT field

VFC header buffer address
See RHB field in RAB

VFC record format
See FB$VFC code in RFM field

Virtual block number
See BKT field in RAB

Volume
advancing to next

See NXTVOL operation

WCC field in NAM block
offset, 6-90
PARSE operation, 5-82
SEARCH operation,

5-106 to 5-107
summary, 6-102

WDI field in NAM block
offset, 6-89
PARSE operation, 5-82
SEARCH operation,

5-106 to 5-107
summary, 6-103

Wildcard
directory context

See WDI f1eld in NAM block
file context

See WCC field in NAM block
operation

See NB$WCH mask in FNB field
Wildcard loop, 3-8
Writable-block context, 4-10
WRITE operation, 4-13

$WRITE macro
sequential access, 5-113
VBN access, 5-115

X$-family macro, 2-9
declaring

XAB

ALL block, C-3
DAT block, C-3
KEY block, C-3
PRO block, C-3
SUM block, C-3

chaining to FAB, 2-13
See also ALL block
See also DAT block
See also KEY block
See also PRO block
See also SUM block

XAB field in FAB
chaining XABs to FAB, 2-13
CLOSE operation, 5-3
CREATE operation, 5-9
DISPLAY operation, 5-28
EXTEND operation, 5-42
offset, 6-23
OPEN operation, 5-66

block
summary, 6-61

XAB$B macro, 2-9, C-3
XAB$BT macro, C-3

XAB$E macro, 2-9
declaring, C-3

XABOF$ macro, C-3
XB$-family symbol

declaring
ALL block, C-3, C-5
DAT block, C-3, C-5
KEY block, C-3, C-5
PRO block, C-3, C-5
SUM block, C-3, C-5
XAB, C-3

XB$ALL code in COD field, 2-9
summary, 6-10
value, 6-2

XB$BN2 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$BN4 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$CHG mask in FLG field
CREATE operation, 5-18
DISPLAY operation, 5-30
OPEN operation, 5-74
summary, 6-71
value, 6-62

XB$CTG mask in AOP field
CREATE operation, 5-17
EXTEND operation, 5-43
OPEN operation, 5-74
RSTS/E, D-2
summary,. 6-6
value, 6-2

XB$CYL mask in ALN field
CREATE operation, 5-16
EXTEND operation, 5-43
RSTS/E, D-2
value, 6-2

XB$DAT code in COD field, 2-9
summary, 6-17
value, 6-14

XB$DTL code in BLN field
summary, 6-15
value, 6-14

XB$DUP mask in FLG field
CREATE operation, 5-18
DISPLAY operation, 5-30
OPEN operation, 5-74
summary, 6-72
value, 6-62

XB$HRD mask in AOP field
CREATE operation, 5-16
EXTEND operation, 5-43
OPEN operation, 5-74
RSTS/E, D-2
summary, 6-7
value, 6-2

XB$HRD mask in AOP field of ALL

P/OS, D-2
XB$IN2 code in DTP field

CREATE operation, 5-17

Index-19

DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$IN4 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$INI mask in FLG field
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$KEY code in COD field, 2-9
summary, 6-65
value, 6-62

XB$KYL code in BLN field
summary, 6-64
value, 6-62

XB$LAL code in BLN field
summary, 6-9
value, 6-2

XB$LBN mask in ALN field
CREATE operation, 5-16
EXTEND operation, 5-43
RSTS/E, D-2
value, 6-2

XB$NUL mask in FLG field
CREATE operation, 5-18
DISPLAY operation, 5-30
OPEN operation, 5-74
summary, 6-73
value, 6-62

XB$PAC code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$PRL code in BLN field
summary, 6-105
value, 6-104

XB$PRO code in COD field, 2-9
summary, 6-106
value, 6-104

XB$SML code in BLN field
summary, 6-142
value, 6-141

XB$STG code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-30
OPEN operation, 5-74
value, 6-62

XB$SUM code in COD field, 2-9
summary, 6-143
value, 6-141

XB$VBN mask in ALN field
CREATE operation, 5-16
EXTEND operation, 5-43
RSTS/E, D-2
value, 6-2

XBAOF$ macro, C-5
XBDOF$ macro, C-5
XBKOF$ macro, C-5
XBPOF$ macro, C-5
XBSOF$ macro, C-5

INDEX

Index-20

)

READER'S COMMENTS

PRO/RMS-11 Macro
Programmer's Guide

AA-P099A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
[] Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience
O Student programmer
[] Other (please specify)

Organization

Street

City------------------------ State------ Zip Code -----­
or Country

- - DoNotTear-FoldHereandTape - - - - - - - - - -

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - Do Not Tear- Fold Here -

(

\

