
CORE Graphics Library Manual

Order No. AA-N619C-TK

CORE Graphics Library Manual

Order No. AA-N619C-TK

April 1984

This document describes the Professional 300 series CORE Graphics Library.
It is intended to be used as a reference manual and user guide for program­
mers developing graphics applications with the Professional Host Tool Kit or
PRO/Tool Kit.

DEVELOPMENT SYSTEM: Professional Host Tool Kit V2.0
PRO/Tool Kit V2.0

SOFTWARE VERSION: CORE Graphics Library V2.0

DIGIT AL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, December 1982
Revised, September 1983

Revised, April 1984

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software or equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for manufacture or sale of items without written permission.

Copyright © 1982, 1983, 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS
DEC
DECmate
DECsystem-1 O
DECSYSTEM-20
DEC US
DECwriter
DIBOL

llllDID

MASSBUS
PDP
P/OS
PRO/BASIC
PRO/Communications
Professional
PRO/FMS
PRO/RMS
PROSE
PROSE PLUS

Rainbow
RSTS
RSX
Tool Kit
UNIBUS
VAX
VMS
VT
Work Processor

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.2
1.5.2.1
1.5.2.2
1.5.3
1.5.4
1.6

1.6.1
1.6.2
1.6.3

1.6.4
1.7

1.7.1
1.7.2
1.7.3
1.7.4
1.7.4.1
1.7.4.2
1.7.4.3
1.7.5
1.7.6

CHAPTER 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.3
2.4

CONTENTS

PREFACE • ix

OVERVIEW

RELATIONSHIP TO OTHER GRAPHICS TOOLS • • • • • • • 1-1
THE CORE GRAPHICS STANDARD • • • • • • • • • • • • 1-2
GRAPHICS PROGRAMMING • • • • • • • • • • • • • • • 1-4
CONTROLLING THE GRAPHICS SYSTEM • • • • • • • 1-5
DESCRIBING THE GRAPHICAL WORLD • • • • • • • • • • 1-7

WORLD COORDINATES • • • • • • • • • • • • • 1-8
THE WINDOW • • • • • • • • • • • • • • • • • 1-10
THE CURRENT POSITION • • • • • • • • • • • • 1-11
ABSOLUTE VS. RELATIVE POSITIONS • • • • • • 1-12

NORMALIZED DEVICE COORDINATES • • • • • • • • 1-12
NOC SPACE • • • • • • • • • • • • • • • • • 1-13
THE VIEWPORT • • • • • • • • • • • • • • • • 1-13

PHYSICAL DEVICE COORDINATES • • • • • • • • • 1-14
THE VIEWING TRANSFORMATION • • • • • • • • • • 1-14

OUTPUT PRIMITIVES - THE GRAPHICAL "BUILDING
BLOCKS" •

CURRENT POSITION INSTRUCTIONS • • • • • • • •
MARKER PRIMITIVE INSTRUCTIONS • • • • • • • •
LINE PRIMITIVE INSTRUCTIONS - THE GRAPHICAL

1-16
1-17
1-17

"PEN" • 1-18
TEXT PRIMITIVE INSTRUCTIONS • • • • • • • • • 1-19

ATTRIBUTES - CONTROLLING THE WAY OUTPUT
PRIMITIVES LOOK • • • • • • • • • • • • • • • • 1-21

LINE ATTRIBUTES • • • • • • • • • • • • • • • 1-21
MARKER ATTRIBUTES • • • • • • • • • • • • • • 1-24
TEXT ATTRIBUTES • • • • • • • • • • • • • • • 1-25
COLOR - THE BITMAP ARCHITECTURE • • • • • • • 1-30

HOW COLORS ARE FORMED • • • • • • • • • • • 1-31
THE COLOR MAP • • • • • • • • • • • • • • • 1-32
THE BITMAP/COLOR MAP INTERFACE • • • • • • • 1-34

THE WRITING MODE • • • • • • • • • • • • • • • 1-36
THE GLOBAL ATTRIBUTE LIST • • • • • • • • • • 1-38

PROGRAMMING WITH THE CORE GRAPHICS LIBRARY

CALLING CGL ROUTINES FROM HIGH-LEVEL LANGUAGES • • 2-1
THE BASIC-PLUS-2 INTERFACE • • • • • • • • • • • 2-1
THE COBOL-81 INTERFACE • • • • • • • • • • • • • 2-2
THE DIBOL INTERFACE • • • • • • • • • • • • • • 2-3
THE FORTRAN INTERFACE • • • • • • • • • • • • • 2-4
THE PASCAL INTERFACE • • • • • • • • • • • • • • 2-5

CALLING CGL ROUTINES FROM MACR0-11 • • • • • • • • 2-6
TERMINAL INPUT/OUTPUT • • • • • • • • • • • • • • 2-7
USING CGL WITH THE P/OS USER INTERFACE LIBRARY • • 2-7

iii

2.5
2.6

BUILDING YOUR CGL PROGRAM
INSTALLING YOUR CGL PROGRAM

• • • . . • • • • 2-. . . . • • • • 2-1

CHAPTER 3 CONTROL INSTRUCTIONS

CHAPTER

CHAPTER

3.1
3.2
3.3
3.4
3.5
3.6

INITIALIZE CORE - PREPARE GRAPHICS SYSTEM FOR USE 3-
TERMINATE CORE - GRAPHICS SYSTEM USAGE FINISHED • 3-
NEW FRAME-- REFRESH VIEW SURFACE ••••••••• 3-
INITIALIZE VIEW SURFACE - ENABLE ACCESS TO DEVICE 3-
TERMINATE VIEW SURFACE - DISABLE ACCESS TO DEVICE 3-
SELECT VIEW SURFACE - ENABLE GRAPHICS OUTPUT TO
DEVICE-. • 7 3-

3.7 DESELECT VIEW SURFACE - DISABLE GRAPHICS OUTPUT TO
DEVICE • • • 7 • • • • • . • • • • • • • 3-

3. 8 PLAYBACK FILE - EXECUTE FILE OF GRAPHICS COMMANDS 3-
3.9 BEGIN BATCH - BEGIN STORING VIEW SURFACE UPDATES • 3-
3 .10 END BATCH - END BATCH OF UPDATES ••••••••• 3-
3.11 CGL-WAIT - SUSPEND EXECUTION • • • • • • • • • • 3-1
3.12 ERASE VIEWPORT - ERASE IMAGES IN VIEWPORT • • • 3-1
3.13 PRINT SCREEN - SEND SCREEN IMAGE TO PRINTER • • 3-1
3.14 REPORT MOST RECENT ERROR - IDENTIFY EXECUTION

4

4.1
4.2
4.3

4.4
4.5

4.6
4.7

5

5.1

5.2

5.3

5.4
5.5
5.6
5.7

ERROR • 3-1

VIEWING TRANSFORMATION INSTRUCTIONS

SET WINDOW - SPECIFY WORLD COORDINATE SPACE • • • 4-
SET ORIGIN - SPECIFY ORIGIN OF WINDOW • • • • • • 4-
SET WINDOW CLIPPING - ENABLE OR DISABLE WINDOW
CLIPPING .- • 4-
SET NDC SPACE 2 - DEFINE SIZE OF NDC SPACE • • • • 4-
SET-VIEWPORT 2 - SPECIFY USABLE AREA OF VIEW
SURFACE • 4-
SCROLL - MOVE SCREEN CONTENTS • • • • • • • • • • 4-
SCROLL VIEWPORT - MOVE VIEWPORT CONTENTS • • • • • 4-

GLOBAL ATTRIBUTE INSTRUCTIONS

SET WRITING INDEX - SELECT COLOR MAP INDEX FOR
IMAGES • 5-
SET BACKGROUND INDEX - SET BACKGROUND COLOR MAP
INDEX • 5·
SET COLOR MAP ENTRY - SET COLOR MAP ENTRY RGB
VALUES • 5-
SET COLOR MAP - SET ALL COLOR MAP RGB VALUES • • • 5-
SET-WRITING PLANES - SELECT COMBINATION OF PLANES 5-
SET-WRITING-MODE - SET WRITING CHARACTERISTICS • • 5-
SET-GLOBAL ATTRIBUTES - SET GLOBAL ATTRIBUTE LIST 5-

iv

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3

6.1.4
6.2
6.2.1
6.2.2

6.2.3

6.2.4

6.3
6.3.1

CHAPTER 7

7.1
7.1.1
7.1.2
7.1.3

7.1.4

7.1.S

7.1.6

7.1.7

7.1.8

7.2
7.2.l
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3

7.3.4
7.3.S

7.3.6

CURRENT POSITION AND MARKER INSTRUCTIONS

CURRENT POSITION INSTRUCTIONS • • • • • • • • • • 6-1
MOVE ABS 2 - Move to Absolute Position • • ••• 6-1
MOVE-REL-2 - Move Relative to Current Position • 6-2
INQUIRE CURRENT POSITION 2 - Get Current
Position ••• : •••• - •••••••••••• 6-2
SET_CURSOR - Specify Cursor Characteristics • • 6-3

MARKER PRIMITIVE INSTRUCTIONS • • • • • • • • • • 6-4
MARKER ABS 2 - Draw Marker at Absolute Position 6-4
MARKER-REL-2 - Draw Marker Relative to Current
Position .-••••••••••••••••••• 6-5
POLYMARKER ABS 2 - Draw Markers at Absolute
Positions ••••••••••••••••••• 6-5
POLYMARKER REL 2 - Draw Markers at Relative
Positions-•• - ••••••••••••••••• 6-6

MARKER ATTRIBUTE INSTRUCTIONS • • • • • • • • • • 6-7
SET MARKER SYMBOL - Select New Marker Symbol • • 6-7

LINE INSTRUCTIONS

STRAIGHT LINE PRIMITIVE INSTRUCTIONS • • • • • • • 7-1
LINE ABS 2 - Draw Line to Absolute Position •• 7-1
LINE-REL-2 - Draw Line to Relative Position •• 7-1
POLYLINE-ABS 2 - Draw Lines to Absolute
Positions • • • • • • • • • • • • • • • • • • • 7-2
POLYLINE REL 2 - Draw Lines to Relative
Positions .-•••••••••••••••••• 7-3
POLYGON ABS 2 - Draw Polygon by Absolute
Posit ions • • • • • • • • • • • • • • • • • • • 7-4
POLYGON REL 2 - Draw Polygon by Relative
Positions ••••••••••••••••••• 7-5
RECTANGLE ABS 2 - Draw Rectangle by Absolute
Position 7 . 7 7-6
RECTANGLE REL 2 - Draw Rectangle by Relative
Position 7 . 7 7-7

CURVED LINE PRIMITIVE INSTRUCTIONS • • • • • • • • 7-8
ARC ABS 2 - Draw Arc Based on Absolute Position 7-8
ARC-REL-2 - Draw Arc Based on Relative Position 7-9
CURVE ABS 2 - Draw Curve by Absolute Positions 7-11
CURVE-REL-2 - Draw Curve by Relative Positions 7-12

LINE ATTRIBUTE INSTRUCTIONS • • • • • • • • • • 7-13
SET LINESTYLE - Set Line Drawing Style • • • • 7-13
SET-LINEWIDTH - Set Line Drawing Width • • • • 7-14
SET-LINEWIDTH ORIENTATION - Set Line Endpoint
offset • • • : • • • • • • • • • • • • • • • • 1-16
SET FILL MODE - Enable or Disable Area Fill
SET-FILL-ENTITY - Specify Line or Point for

• 7-18

FilT Reference • • • • • • • • • • • • • • • •
SET_FILL CHAR - Specify Character for Fill • •

v

7-19
7-20

CHAPTER 8

8.1
0.1.1
0.1.2

8.1.3
8.1.4
8.1.5
8.1.6
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

APPENDIX A

APPENDIX B

B.l

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8
B.1.9
B.1.10
B.1.11
B.1.12
B.1.13
B.1.14
B.1.15

APPENDIX C

c.1
c.2
C.3
c.4

TEXT INSTRUCTIONS

TEXT PRIMITIVE INSTRUCTIONS • • • • • • • • • • • 8·
TEXT - Draw Line of Text • • • • • • • • • • • • 8-
INQUIRE TEXT EXTENT 2 - Report Position at End
of String .- • • • -:- • • • • • • • • • • • • • • 8-
LOAD FONT - Load User-defined Font • • • • • • • 8-
LOAD-CHARACTER - Load User-defined Character • • 8-
BEGIN DEFINE CHARACTER • • • • • • • • • • • • • 8·
END DEFINE CHARACTER • • • • • • • • • • • • • • 8·

TEXT ATTRIBUTE INSTRUCTIONS • • • • • • • • • • • 8·
SET CHARSIZE - Set Character Size • • • • • • • 8-
SET-CHARSPACE - Set Character Spacing • • • • • 8·
SET-CHARPATH - Set Text Writing Direction ••• 8-
SET-CHARJUST - Set Text Justification • • • • 8-J
SET-CHARITALIC - Set Character Slant • • • • • 8-J
SET-FONT - Select Character Font • • • • • • • 8-J
SET-FONT SIZE - Define Size of Character Font 8-J

ERROR MESSAGES

OPTIONAL VIEW SURFACES

HEWLETT-PACKARD HP7470A AND HP7475A GRAPHICS
PLOTTERS • B·

Hardware Requirements • • • • • • • • • • • • • B·
Setting Up the Plotter • • • • • • • • • • • • • B­
Physical Device Coordinate Space • • • • • ••• B­
Inoperative Instructions •••••••••••• B·
SET WRITING INDEX • • • • • • • • • • • • • • • B·
SET-BACKGROUND INDEX • • • • • • • • • • • • • • B·
SET-WRITING MODE • • • • • • • • • • • • • • • • B· - -SET MARKER SYMBOL • • • • • • • • • • • • • • • B·
SET-LINESTYLE • • • • • • • • • • • • • • • • • B·
SET LINEWIDTH • • • • • • • • • • • • • • • • • B·
SET-FILL CHAR • • • • • • • • • • • • • • • • • B·
SET-FONT-. • • • • • • • • • • • • • • • • • • • B·
SET FONT SIZE • • • • • • • • • • • • • • • • • ~
Plotter Errors • • • • • • • • • • • • • • • • • B·
HP-GL Features Not Accessible from CGL • • • • • B·

INCLUDE FILES

BASIC-PLUS-2 • • • • • • • • • •
DIBOL • • • • •
FORTRAN-77 • • •
PASCAL • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •

vi

• • • • • • • • • C·
• • • • • • • • • C·
• • • • • • • • • C·
• • • • • • • • • C·

APPENDIX D EXAMPLE PROGRAMS

D.l
D.1.1
D.2
D.3
D.3.1
D.4

COLORMAP.PAS - COLOR MAP EDITOR ••••••••• D-1
COLORMAP.HLP - HELP FRAME ••••••••••• D-4

GEDIT.B2S - GRAPHICS SKETCHPAD •••••••••• D-5
FONT.B2S - DISPLAY A FONT • • • • • • • • • • • D-12

SUITS.FNT - SAMPLE USER-DEFINED FONT • • • • • D-14
MODE.B2S - DEMONSTRATE WRITING MODES • • • • • • D-15

APPENDIX E SUMMARY OF INSTRUCTIONS

APPENDIX F GLOSSARY

INDEX

FIGURES

1-1 A Graphics System • • • • • • • • • • • • • • • • 1-3
1-2 A Cartesian Coordinate System • • • • • • • • • • 1-8
1-3 The Window In World Coordinate Space • • • • • • • 1-9
1-4 The Origin of the Window • • • • • • • • • • • • 1-10
1-5 Default Normalized Device Coordinate Space • • • 1-11
1-6 The Viewport • • • • • • • • • • • • • • • • • • 1-12
1-7 The Viewing Transformation • • • • • • • • • • • 1-13
1-8 One Image in Several Viewports • • • • • • • • • 1-15
1-9 Polygon Fill (Drawn on HP7470 Plotter) • • • • • 1-22
1-10 Open Area Fill Modes • • • • • • • • • • • • • • 1-23
1-11 Character Size • • • • • • • • • • • • • • • • • 1-24
1-12 Character Spacing • • • • • • • • • • • • • • • 1-25
1-13 Character Path • • • • • • • • • • • • • • • • • 1-26
1-14 Character Justification • • • • • • • • • • • • 1-27
1-15 Character Italic • • • • • • • • • • • • • • • • 1-28
1-16 Font 0 • 1-29
1-17 The Bitmap with Extended Bitmap Option • • • • • 1-30
1-18 The Color Map with Default Values • • • • • • • 1-32
1-19 The Color Map/Bitmap Interface • • • • • • • • • 1-34
1-20 The Writing Modes (Shown with Line Style) • • • 1-35
4-1 The SCROLL Instruction with Default Window Origin 4-7
7-1 An Arc in World Coordinate Space • • • • • • • 7-9
7-2 The Standard Line Styles • • • • • • • • • • • • 7-14
7-3 Line Width Orientations: Bottom-left and Centered 7-17
B-1 Hatch Patterns 1 through 18 • • • • • • • • • • • B-7
B-2 Pie Chart (Drawn with HP7470 Plotter) •••••• B-8

vii

TABLES

5-1 Integer Attribute List • • • • • • • • • • • • • 5-
5-2 Real Attribute List • • • • • • • • • • • • • 5-
B-1 Hatch Patterns • • • • • • • • • • • B-

PREFACE

Document Objectives

This manual describes the Professional 300 Series CORE Graphics
Library. It provides both reference and user information.

Intended Audience

This document is intended to be used as a reference manual and
user guide for programmers developing graphics applications with
the Professional Developer's Tool Kit.

Document Structure

This manual describes a graphics
approximately 100 instructions.

system consisting of

Chapter 1 is devoted to an overall "user guide" description of
the system. It describes what a graphics system is, what the
instructions do, and how they interact with each other.

Chapter 2 describes how to use the CORE
various programming languages and how
programs.

Graphics Library with
to task build graphics

Chapters 3 through 8 make up a "reference manual" for individual
instructions. The various types of output primitive instructions
and their associated attribute instructions are grouped together
by function.

Within each chapter, the instructions are ordered from simplest
to most complex. For some users, this is equivalent to ordering
them from most often used to least often used. Testing has shown
this order to provide the quickest access.

Each CORE Graphics Library instruction is documented in the
following format:

• Instruction Name and Description

CORE Graphics Library instruction names were selected for
compatibility with the ACM SIGGRAPH CORE Standard. Where
appropriate, CORE Standard names are used. For example~
names that end with " 2" specify a two-dimensional
instruction. The CORE Standard provides for
three-dimensional graphics.

A brief description of each instruction is provided, except
for symmetric INQUIRE instructions. All SET instructions
have a corresponding INQUIRE instruction that returns the
current values of the instruction's parameters.

ix

PREFACE

e CORE Standard

To facilitate program portability, the CORE Standard
"function" that corresponds to each CORE Graphics Library
instruction is shown. For the most part, CORE Standard
parameters indicate nonspecific data types and structures,
and, in some cases, do not match the CORE Graphics Library
parameters.

• CORE Graphics Library

Each CORE Graphics Library instruction name is shown with the
data types, positions, and semantic meanings of the
parameters. For example:

LINE_ABS_2 (X, Y)

For symmetric (SET/INQUIRE) instructions, respective data
types are shown. For example:

SET WRITING_INDEX (index)

INQUIRE_WRITING_INDEX (index)

index is an integer expression/variable that specifies
• • •

The term "expression" corresponds to the SET instruction and
the term "variable" corresponds to the INQUIRE instruction.
A SET instruction does not return a value1 thus, in theory,
you should be able to pass an expression such as:

SET_WRITING_INDEX (((X + Y) * Z) MOD 8)

Some programming languages allow expressions as reference
parameters by evaluating the expression and storing the
result in a temporary location. Others do not. If your
programming language does not support this feature, please
read "expression" as "value."

• Notes

Additional information relating to the
instruction is provided.

• Errors

usage

The most likely execution errors are provided.

x

of the

PREFACE

• Example

Where appropriate, example program fragments are provided.
For clarity, the examples use language-independent CORE
Graphics Library instruction names.

Appendix A contains the CORE Graphics Library error messages.

Appendix B contains information about non-default view surfaces,
such as Hewlett-Packard graphics plotters.

Appendix C contains listings of language-specific
declaration files.

constant

Appendix D contains several PASCAL and BASIC-PLUS-2 example
programs, provided for instructional purposes.

Appendix E provides an alphabetic summary of the CORE Graphics
Library instructions.

Appendix F provides a glossary of commonly used terms.

How to Use this Manual

Read Chapter 1 carefully, particularly if you are not an
experienced graphics programmer. A sound understanding of the
coordinate systems, viewing transformation, Extended Bitmap
Option, writing modes, and so forth is essential. Read Chapter 2
when you are ready to begin writing programs. Use Chapters 3
through 8 for reference. When you have become familiar with most
of the instructions, you may prefer to use Appendix E for
reference.

Documentation Conventions

• The term "CGL" is used in place of "CORE Graphics Library."

• The term "CORE Standard" is used in place of "ACM SIGGRAPH
CORE Standard."

• In CORE Graphics Library instruction descriptions, the items
in UPPER CASE are to be used exactly as shown. The items in
lower case must be replaced by language-specific elements as
described.

Associated Professional 300 Series Documentation

• Tool Kit User's Guide

xi

PREFACE

• Terminal Subsystem Manual

• BASIC Reference Manual

• Tool Kit COBOL-81 Documentation Supplement

e Tool Kit DIBOL User's Guide

• Tool Kit FORTRAN-77 Documentation Supplement

e Tool Kit PASCAL User's Guide

xii

CHAPTER 1

OVERVIEW

The Professional 300 Series Terminal Subsystem has two modes:
text mode and graphics mode. Text mode is directly accessable to
Tool Kit application programs and is described in the Terminal
Subsystem Manual. Graphics mode is accessable to appl1cat1on
programs only through one of several software development tools.

The Professional 300 Series CORE Graphics Library (CGL from this
point on) is a general purpose graphics subroutine package that
was designed with two objectives:

• To be compatible with CORE Graphics Standard created by the
Association for Computing Machinery (ACM) Special Interest
Group on Graphics (SIGGRAPH).

• To make available to the high-level language programmer the
powerful functions provided by the Professional 300 Series
video bitmap architecture.

This chapter compares CGL to the other graphics programming
tools, explains why the CORE Standard was selected as the basis
for the Professional 300 series high-level graphics interface,
and provides an extensive description of how to use CGL.

1.1 RELATIONSHIP TO OTHER GRAPHICS TOOLS

Other Professional 300 Series graphics software development tools
include:

• PRO/GIDIS (General Image Display Instruction set)

PRO/GIDIS is the lowest-level, virtual device interface to
the Professional's graphics hardware. Applications that use
PRO/GIDIS are optimized for speed and compactness1 thus
PRO/GIDIS is well-suited to applications like interactive
drawing packages, graphics terminal emulators, and

1-1

RELATIONSHIP TO OTHER GRAPHICS TOOLS

scientific/engineering data display packages. Both CGL and
ReGIS have been implemented with PRO/GIDIS.

Although it will not usually provide the same speed or
compactness, CGL provides more functionality than PRO/GIDIS.
For example, you can use a single CGL instruction to draw a
curve connecting a list of coordinate pairs. With PRO/GIDIS,
you must construct the curve yourself, using your own curve
interpolation algorithm and lower-level instructions.

NOTE

Curve interpolation can product jagged lines
and strange loops in some cases. To correct
the problem, add additional points and/or
space the points differently.

Applications implemented using CGL are transportable to other
CORE implementations with a minimum of conversion effort.
PRO/GIDIS is a Digital-specific protocol, and is not easily
transportable to other devices or graphics systems.

The application-level interface to CGL is the standard PDP-11
RS subroutine call. PRO/GIDIS is accessed as a device
driver, using the P/OS QIO mechanism to transmit a stream of
binary op-codes and parameter data.

• ReGIS (Remote Graphics Instruction Set)

ReGIS is a Digital-developed, ASCII-based protocol used to
transmit graphics instructions from a host computer to a
remote Professional, or VT125 or GIGI graphics terminal.
ReGIS cannot currently be used by applications that reside on
the ·Professional itself; it can only be used when
communicating to the Professional over a communications line.

1.2 THE CORE GRAPHICS STANDARD

Most computer applications are designed to create, manipulate, or
analyze data. A graphics system is a tool used by an application
program to create pictures that show relationships among data.

To accomplish this, the program must describe each part of a
picture to the graphics system. The graphics system then creates
an image by converting the description from the program into
commands that affect the view surfaces (display components) of
one or more graphics output devices (see Figure 1-1).

1-2

THE CORE GRAPHICS STANDARD

Before 1976, no standard for device-independent graphics systems
existed. Although some were very good, none of the existing
systems were compatible. A program that used one graphics system
would have had to be completely rewritten in order to use
another.

RECTANGLE-ABS-2()
POLVGON-ABS-2(...)
ARC-ABS-2(...)

GRAPHICS SYSTEM

y-

Figure 1-1: A Graphics System

GRAPHICS PROGRAM

The Association for Computing Machinery (ACM) Special Interest
Group on Graphics (SIGGRAPH) recognized the need for a computer
graphics standard and, in 1974, began the long process of
defining one. Four themes influenced the subsequent design:

1. Portability of programs (and programmers) is the
significant purpose of a standard.

most

2. The issues that affect portability are those which affect
program structure and deserve the most attention.

3. The methodology of both design and use of a standard is as
important as its functional capability.

1-3

THE CORE GRAPHICS STANDARD

4. The functions of constructing and manipulating an object, and
of producing a picture of the object, should be cleanly
separated.

The CORE Standard places a great deal of emphasis on portability
because factors that limit a program's portability (device
dependence, readability, structure,) are the same factors that
limit its maintainability. As any software manager knows, a
maintainable program is more profitable in the long run. You
should strive for portability, even if your programs will never
run on anything but a Professional.

The key requirement for program
independence: the graphics system
an application program to contain
particular graphical output device.

portability is device­
must make it unnecessary for
information specific to a

Portability also applies to personnel.
learn to program new or different
extensive retraining. The desirability
needs no elaboration.

A portable programmer can
graphics systems without
of that characteristic

1.3 GRAPHICS PROGRAMMING

The first step in the graphics programming process is to design
pictorial representations of the data you want to display. This
step is similar to designing a program: you don't begin writing
code until you know exactly what you intend to do.

The second step is to write the instructions that create the
desired images. CGL has four general types of instructions:

• Control Instructions

Control instructions start and stop
initialize, select, deselect, and
print the screen, and report errors.

the graphics system,
refresh view surfaces,

• Viewing Transformation Instructions

Viewing transformation instructions provide the
system with a description of the graphical world
manipulated by your program) and control how the
system displays it on the current view surfaces.

• Output Primitive Instructions

graphics
(the data
graphics

These instructions draw the actual lines, curves, markers,
and text that make up images.

1-4

GRAPHICS PROGRAMMING

• Attribute Instructions

These instructions control colors, styles, modes, and fonts.

The remaining steps are to compile, task build, transfer,
install, and test your program on the Professional. CGL requires
that you make some edits (see Chapter 2) to the PAB (task
builder) command file before task building. The overall
development cycle is described in detail in the Developer's Tool
Kit User Guide.

1.4 CONTROLLING THE GRAPHICS SYSTEM

CGL requires a minimum of program control. The only requirement
is that all programs execute the INITIALIZE CORE instruction
before using any other instructions.

The instructions that control CGL are described in detail in
Chapter 3. They are:

• INITIALIZE CORE

The INITIALIZE CORE instruction allocates the resources used
by CGL, initializes and selects the video view surface, sets
the default values of the viewing transformation, attributes,
color map, and so forth.

e TERMINATE CORE

The TERMINATE CORE instruction releases the resources used by
CGL.

e NEW FRAME

The NEW FRAME instruction erases currently selected view
surfaces. It is recommended that you execute a NEW FRAME
instruction immediately after INITIALIZE CORE - and
INITIALIZE VIEW SURFACE in order to ensure -fresh view
surfaces.

e INITIALIZE VIEW SURFACE

The INITIALIZE VIEW SURFACE instruction tells CGL to make a
specific view surface ready to accept graphics output.
However, CGL does not start sending information to the view
surface until you select it. The video monitor is
initialized by default.

1-5

CONTROLLING THE GRAPHICS SYSTEM

e TERMINATE_VIEW_SURFACE

The TERMINATE VIEW SURFACE instruction terminates access to
and releases a specific output device.

• SELECT VIEW SURFACE - -
The SELECT VIEW SURFACE instruction adds a specific device to
the set of view surfaces to which CGL performs output. It
does not affect the current attribute and viewing
transformation values. For example, suppose that you select
a view surface, draw an image, deselect that view surface,
and select another view surface. The viewport is the same
for the second view surface as it was for the first. CGL
conveys current state information (except font descriptions)
to each view surface when you select it. The video monitor
is selected by default.

• DESELECT VIEW SURFACE - -
The DESELECT VIEW SURFACE instruction removes a specific
device from tne set of selected devices.

• PLAYBACK FILE

The PLAYBACK FILE instruction
commands and- sends them to
surfaces.

• BEGIN BATCH

reads a file
all currently

of display
selected view

The BEGIN BATCH instruction begins storing all subsequent
view surface updates in a buffer and continues to do so until
it executes an END.BATCH instruction. Normally, CGL updates
the view surfaces-each time it executes an instruction. Use
of this instruction can considerably improve performance.

• END BATCH

The END BATCH instruction empties the buffer and performs all
of the view surface updates that have been stored since the
last BEGIN BATCH instruction. CGL no longer stores view
surface updates after END BATCH executes.

• CGL WAIT

The CGL WAIT instruction suspends graphics execution, leaving
the view surfaces unchanged for a specific number of seconds.

1-6

CONTROLLING THE GRAPHICS SYSTEM

e ERASE VIEWPORT

The ERASE VIEWPORT instruction erases the viewport leaving
the remainder of each view surface unchanged.

e PRINT SCREEN

The PRINT SCREEN instruction sends a specified portion of the
image on the video monitor screen to the printer. You can
specify horizontal and vertical margins.

e REPORT MOST RECENT ERROR

The REPORT MOST RECENT ERROR instruction reports the number
of the most recent -execution error and the number of the
instruction that caused it. It is used primarily for
debugging.

1.5 DESCRIBING THE GRAPHICAL WORLD

The graphical world is two-dimensional; we visualize it as a
plane. The Cartesian coordinate system provides a convenient way
of describing points on a plane. Cartesian coordinates are
specified in the format:

X,Y

where X is the horizontal axis and Y is the vertical axis.

A coordinate pair specifies a discrete point on the plane. The
finite area of the plane that can be specified by coordinate
pairs is called the coordinate space. Figure 1-2 shows a typical
coordinate system with axes intersecting at (O,O) and space
defined as:

-1 <= x <= 2 and -2 <= y <= 1

The point (-2,1) is outside of the coordinate space.

CGL deals with three different Cartesian coordinate systems:

1. The world coordinate system

Your program uses this coordinate system to represent its
database or simply for programming convenience.

1-7

DESCRIBING THE GRAPHICAL WORLD

2. The normalized device coordinate system

CGL uses this coordinate system as a device-independent way
of describing a view surface.

3. The physical device coordinate system

The Professional terminal subsystem uses this coordinate
system to address individual locations on a specific view
surface.

The following sections will discuss each coordinate system
individually.

(-2,1)

•
(-1,1) .------

I
I
I
I
I

-2 -1

I
I
I
I
I • I (-o.5. -1i

I
- -- = Coordinate space I

I
I ._ ____ _

(-1.-2)

y

(2, 1)

1 - ---- --- --..,

(0,0)

•
(0.5.0.5)

I
I
I
I
I

2

I
• I

t1.5. -o.5J I

I

x

-1 I
I
I

• I
(1. -1.5J I

I
-2----------..

(2. -2)

Figure 1-2: A Cartesian Coordinate System

1.5.1 WORLD COORDINATES

Graphical world coordinates (world coordinates from this point
on) are device-independent Cartesian coordinates defined by your
application program to describe locations and sizes to CGL. You
can adjust the graphical world to whatever size and shape is the
most convenient.

1-8

DESCRIBING THE GRAPHICAL WORLD

If you are working with a database, you can adjust the graphical
world to match the data. For example, an application program
might deal with sales of amblihelical hexnuts in thousands
against time in months, while another program might deal with
peaches in bushels against rainfall in inches.

If you are creating visual images, you can adjust the graphical
world to match the image. For example, a chess program could
draw a chessboard by making the graphical world eight squares by
eight squares.

The mapping of world coordinates onto a view surface (or some
portion of a view surface) is called the viewing transformation.
This is described in detail in Section 1.5.4.

smaller

y

lower
y

x

lowerx upperx

-------------------- -

Window

-+------------------+--
up~r f t larger

Figure 1-3: The Window In World Coordinate Space

World coordinates can represent any unit of measure. The only
requirement imposed by CGL is that world coordinate values must
be supplied as real (floating point) numbers. (According to the
CORE Standard, most data are available as real numbers.} World
coordinate space, then, is bounded only by the set of PDP-11
single-precision real numbers.

1-9

DESCRIBING THE GRAPHICAL WORLD

1.5.1.1 THE WINDOW - The SET WINDOW instruction (described in
Chapter 4) defines the window, which is the rectangular portion
of world coordinate space that is currently used by your program.
You provide the lower and upper bounds of the X (horizontal) and
Y (vertical) dimensions of the window. Figure 1-3 shows a window
in world coordinate space.

The X and Y axes in Figure 1-3 are shown in arbitrary locations
and do not necessarily represent zero. The edges of a window can
be positive or negative coordinates. Zero on the X or Y axis can
be inside or outside of the window.

The origin of the window represents which directions on the view
surfaces correspond to increases and decreases in world
coordinate values. The or1g1n is defined to be the corner
addressed by the smallest world coordinate pair. For example, a
window defined as (-2,3,7,9) has as its origin the point (-2,7).

x x

y y

/
ORIGIN

/
y y

x x

Figure 1-4: The Origin of the Window

If the origin is set to the top-left (the default), X values
increase toward the right of the view surf aces and Y values
increase toward the bottom. You may decide that the bottom-right
is a more convenient origin for your program. By changing the

1-10

DESCRIBING THE GRAPHICAL WORLD

origin, you can cause the X value to increase toward the left of
the view surf aces and/or the Y value to increase toward the top.

By default, the origin is the top-left corner (the corner
appears at the top-left corner of the view surfaces).
SET_ORIGIN instruction (described in Chapter 4) selects any
the four corners as the origin. Figure 1-4 shows
relationship between the origin and world coordinate values.

that
The
of

the

l.S.1.2 THE CURRENT POSITION - CGL maintains a coordinate pair
called the current position that corresponds to the current
drawing location in world coordinate space. The visual
representation of the current position is the cursor, a symbol
that blinks in complement mode. The default cursor is a
crosshair symbol. You can use the SET CURSOR instruction
(described in Chapter 6) to specify your own cursor.

(0.0)
(1,0)

NOC SPACE

(0,1)
(1.1)

Figure 1-5: Default Normalized Device Coordinate Space

Some output primitive instructions use the current position as
the starting position. All output primitive instructions affect
the current position (or don't affect it) in a well-defined way.
For example, a call to the LINE ABS 2 instruction draws a line
from the current position to a specified location and makes that

1-11

DESCRIBING THE GRAPHICAL WORLD

location the current position. Thus, repeated calls to the
LINE ABS 2 instruction would result in a set of connected lines.
CGL -also provides MOVE ABS 2 and MOVE REL 2 instructions to
change the current position wTthout drawing anything.

1.5.1.3 ABSOLUTE VS. RELATIVE POSITIONS - You can specify a
position in world coordinate space in one of two ways: as an
absolute position (independent from the current position) or as a
relative position (an offset or displacement from the current
position). Output primitive instructions have two versions,
"ABS" and " REL", for absolute coordinates and relative
coordinates, respectively.

1.5.2 NORMALIZED DEVICE COORDINATES

Normalized device coordinate (NDC) space
method of describing the dimensions
device-independent way.

is the CORE Standard
of any view surf ace in a

NDC coordinates are real numbers in the range 0 to 1, with
default bounds (0,1,0,1) that map to the entire view surface.
Your application can specify the upper bounds of NDC space in
order to change the aspect ratios of view surfaces.

VIEWPORT

Figure 1-6: The Viewport

1-12

DESCRIBING THE GRAPHICAL WORLD

1.5.2.1 NDC SPACE - The default NDC space is rectangular, not
square, because its aspect ratio corresponds to that of the
Professional video monitor (960 x 600 or 8:5). To change this
ratio, use the SET NDC SPACE 2 instruction. Figure 1-5 is a
picture of the default NDC space.

1.5.2.2 THE VIEWPORT - Your program can use all of normalized
device coordinate space or any rectangular portion of it that you
desire. The portion used by your program is called the viewport
and is shown in Figure 1-6. The SET VIEWPORT 2 instruction
(described in Chapter 4) specifies the -exact bounds of the
viewport.

0 /\I
I\ I ~~~inate

...__--------~- Space

Normalized
Device
Coordinate
Space

Figure 1-7: The Viewing Transformation

1-13

Physical
Device
Coordinate
Space

DESCRIBING THE GRAPHICAL WORLD

1.5.3 PHYSICAL DEVICE COORDINATES

Physical device coordinates are device-dependent Cartesian
coordinates for specifying positions on the view surface of a
particular output device. Each type of output device has its own
physical coordinate space. Some CGL instructions accept numeric
values where each bit corresponds to one physical device
coordinate unit.

The Professional video monitor has a physical device coordinate
space of 960 (horizontal) by 600 (vertical) units, a rectangle
lying on its side. As a matter of interest, each horizontal
device coordinate corresponds to a single pixel (picture
element). That is not true of the vertical coordinates1 there
are only 240 vertical pixels. The mapping of physical device
coordinate units into pixels is a function of the terminal
subsystem.

1.5.4 THE VIEWING TRANSFORMATION

The process of creating an image on a view surf ace can be thought
of as a three-step process, as shown in Figure 1-7.

1. CGL (optionally) clips the world coordinate objects to be
viewed so that the portions that would fall outside the
window are removed from view. The SET_WINDOW_CLIPPING
instruction controls this function.

2. CGL maps the contents of the window (world coordinates) to
the viewport (normalized device coordinates).

3. CGL maps the contents of the viewport (normalized
coordinates) to each currently selected view
(physical device coordinates).

device
surf ace

The viewport can have any aspect (X to Y) ratio you wish. If the
aspect ratio of the window does not match the viewport, CGL
"squeezes" or "stretches" the window to fit. Changing the
viewport affects different output primitives in different ways.
Some of these effects are controlled by CGL1 others are
characteristics of the terminal subsystem.

• Straight lines and arcs appear as you would expect. Arcs
retain their shape but not their size (a circle does not
transform to an ellipse).

1-14

DESCRIBING THE GRAPHICAL WORLD

• Curved lines vary somewhat in shape, depending on the
physical device coordinate positions available to draw them.

• Text (character size and spacing) is adjusted to fit the
required number of characters into the viewport.

IA
~
i ! Alj i
I i Ill· i
! I/ !·it I
/i-• !11 I Iii , 1, j

I ! /j1 l
I .111 I

1 / //I I
i f 1:1 i
I I I I

j ~l/ !

: 4 ; I
I ! I !
'!' I i j !
I I
I I
L___;

Figure 1-8: One Image in Several Viewports

Figure 1-8 shows the image of a rectangle (drawn
of the viewport), a circle (360 degree arc) and
several different viewports. The circle
regardless of the shape of the viewport.

1-15

I' /I A
I I fl

/ / /! '
l / / / ! I
l~/'i'i . i i

I, , , ;/ I
' / ./ !
! {/ I
I I

along the edges
a curve drawn in
remains round,

OUTPUT PRIMITIVES THE GRAPHICAL •auILDING BLOCKsn

1.6 OUTPUT PRIMITIVES - THE GRAPHICAL •aoILDING BLOCKS·

Output primitives are the fundamental visible images that you
combine to make up pictures. You can draw straight lines, curved
lines, markers, and text, or just move the current position.

Your application program creates output primitives by calling CGL
instructions (described in detail in Chapters 6 and 7). Output
primitive instruction names end in "ABS 2" (absolute) or •REL 2"
(relative) which specifies whether the parameters are absolute
positions or offsets. The suffix " 2• is the CORE Standard
syntax for •two dimensional" and is included for compatibility
with future software that may support three dimensional output
primitives.

The way output primitives appear on the view surfaces is
determined by:

• The parameters passed with the instruction call

Most of the parameters passed with output primitive
instructions specify where in world coordinate space to draw
the output primitive. If the parameters are absolute
coordinates, you specify either a single coordinate pair or
an array containing a list of coordinate pairs. If the
parameters are relative coordinates, you specify either a
single offset or an array containing a list of offsets.

• The current global attribute value settings

The global attributes (which affect all output primitives)
are: the writing index, the background index, the writing
planes, and the writing mode. These are explained in Section
1.7.6.

• The current primitive-specific attribute value settings

Each type of output primitive has a set of attributes that
determine style, color, and so forth. For example, line
primitives have a special attribute called fill that you can
use to draw "solid" objects. These are explained in Section
1.7.

• The viewing transformation

The shapes of the window and the viewport affect the way
output primitives appear. If the shapes are different, CGL
"squeezes" or "stretches" the window to fit the viewport.
The distortion of the window affects different output
primitives in different ways and is described in Section
1.5.4

1-16

OUTPUT PRIMITIVES

1.6.l CURRENT POSITION INSTRUCTIONS

Current position
surfaces. They
current position.

instructions
simply change

cause no change to the view
or report on the value of the

• MOVE ABS 2 - -
The MOVE_ABS_2 instruction changes the current position to a
point specified as an absolute position in world coordinate
space.

• MOVE REL 2 - -
The MOVE REL 2 instruction changes the current position to a
point specified as an offset in world coordinate space.

• INOUIRE_CURRENT_POSITION_2

The INQUIRE CURRENT POSITION 2 instruction
current position in world coordinate space.

• SET_CURSOR

returns the

The SET CURSOR instruction controls the appearance of the
cursor,-the visual representation of the current position.

1.6.2 MARKER PRIMITIVE INSTRUCTIONS

These instructions change the current position and draw markers
or series of markers. Markers are symbols such as dots or
bullets that represent points in world coordinate space. They
appear on the view surfaces centered on the new current position.

• MARICER_ABS_2

The MARKER ABS 2 instruction draws a character at a point
specified as an absolute position in world.coordinate space.

• MARKER REL 2

The MARKER REL 2 instruction draws a character at a point
specified as an offset in world coordinate space.

e POLYMARKER ABS 2

The POLYMARKER ABS 2 instruction draws a character at each of
a list of points specified as absolute positions in world
coordinate space.

1-17

OUTPUT PRIMITIVES

e POLYMARKER REL 2 - -
The POLYMARKER REL 2 instruction draws a character at each of
a list of points specified as offsets in world coordinate
space.

1.6.3 LINE PRIMITIVE INSTRUCTIONS - THE GRAPHICAL •PEN•

These instructions draw one or more lines. You supply the
point(s) that describe the line(s) that you want to draw.

These instructions draw straight lines:

• LINE ABS 2 - -
The LINE ABS 2 instruction draws a straight line from. the
current position to a point specified as an absolute position
in world coordinate space.

e LINE REL 2

The LINE REL 2 instruction draws a straight line from the
current position to a point specified as an offset in world
coordinate space.

• POLYLINE ABS 2 - -
The POLYLINE ABS 2 instruction draws a series of
the current position to a list of points
absolute positions in world coordinate space.

• POLYLINE REL 2

lines from
specified as

The POLYLINE REL 2 instruction draws a series of lines from
the current position to a list of points specified as offsets
in world coordinate space.

• POLYGON ABS 2 - -
The POLYGON ABS 2 instruction draws a series of lines
connecting a list of points specified as absolute positions
in world coordinate space.

e POLYGON_REL_2

The POLYGON REL 2
connecting a list
coordinate space.

instruction draws a series of lines
of points specified as offsets in world

1-18

OUTPUT PRIMITIVES

e RECTANGLE ABS 2

The RECTANGLE ABS 2 instruction draws a series of lines
forming a four-sided, perpendicular, polygon with the current
position at one corner and a point specified as an absolute
position in world coordinate space at the other.

• RECTANGLE REL 2

The RECTANGLE REL 2 instruction draws a series of lines
forming a four-sided, perpendicular, polygon with the current
position at one corner and a point specified as an offset in
world coordinate space at the other.

These instructions draw curved lines by a process called
"interpolation." CGL computes the shape of the curve from the
supplied points and provides the missing points.

• ARC ABS 2 - -
The ARC ABS 2 instruction draws a section of a circle based
on absolute positions in world coordinate space.

• ARC REL 2 - -
The ARC REL 2 instruction draws a section of a circle based
on offsets in world coordinate space.

e CURVE ABS 2

The CURVE ABS 2 instruction draws a smooth
list of points specified as absolute
coordinate space.

• CURVE REL 2

curve through a
positions in world

The CURVE REL 2 instruction draws a smooth curve through a
list of points specified as offsets in world coordinate
space.

1.6.4 TEXT PRIMITIVE INSTRUCTIONS

Graphics text is independent from and more flexible than the text
available when the Terminal Subsystem is in text mode. Although
it is possible to have both output primitives and text mode text
on a view surface at the same time, it is recommended that you
use only one at a time. The aspects of using text mode and
graphics simultaneously are discussed in the Terminal Subsystem
Manual.

1-19

OUTPUT PRIMITIVES

e TEXT

The TEXT instruction draws a line of graphical text.

e INOUIRE_TEXT_EXTENT_2

The INQUIRE TEXT EXTENT 2 instruction does not draw anything.
It reports the amount of world coordinate space that would be
used to draw a string of a specified length.

• LOAD FONT

The LOAD FONT instruction loads multiple characters into the
current user-defined font from a region in memory created by
your application. This is much faster than loading
individual characters.

• LOAD CHARACTER

The LOAD CHARACTER instruction loads a character description
into the current user-defined font. You provide the
character description in the form of an array of integers.
Each integer in the array describes a horizontal row of 16
physical device coordinate positions. Each set bit specifies
an "on" position and each clear bit specifies an "off"
position (see Section 1.7.4.3). The first element describes
the "top" row of the character: the next element describes
the next row: and so forth.

In order to set the bits in each of the elements, a program
called a "font editor" is very useful. The algorithm for a
simple font editor is shown· in the example program "FONT" in
Appendix D. It reads font description data from a
terminal-format file and performs a string-to-integer
conversion for each line in the array. You can use an
ordinary text editor to create the terminal-format file.

• BEGIN/END_DEFINE_CBARACTER

You can load a character by using the following sequence of
instructions:

1-20

OUTPUT PRIMITIVES

BEGIN DEFINE CHARACTER

. .
output primitives and attributes

. .
END DEFINE CHARACTER

The output primitives and attributes describe the character to be
loaded. World coordinates and attribute sizes are mapped to the
character dimensions specified in SET FONT SIZE.

1.7 ATTRIBUTES - CONTROLLING THE WAY OUTPUT PRIMITIVES LOOK

Attributes are characteristics of appearance, color, style, mode,
width, and so forth. Attribute values stay the same until they
are explicitly changed. For example, the default line style is
SOLID. If you change the line style to DASHED, all subsequent
lines will be drawn DASHED until you change it again.

Each type of output primitive has a set of
For example, line attributes have no effect
The "global" output primitive attributes are
and the writing mode.

unique attributes.
on text primitives.
the writing index

The background has an attribute called the background index. The
background is defined to be all areas of the view surfaces not
covered by the image of an output primitive. Some programmers
think of the background on a video monitor as a permanent output
primitive that fills the entire screen.

1.7.1 LINE ATTRIBUTES

The line primitives (line, polyline, polygon, rectangle, arc, and
curve) have three attributes. The instructions that set them
are:

• SET LINESTYLE

The line style is the pattern used to draw lines, except when
fill is enabled. You can use a standard line style or
specify your own. The standard styles are: SOLID, DASHED,
DOTTED, and combinations and variations of the above.

1-21

ATTRIBUTES

e SET LINEWIDTH

The line width is the width of line primitives in world
coordinate units. You can control the vertical and
horizontal line width independently. The width of a diagonal
line varies according to the angle in which it is drawn (see
Figure 7-3). The line width is "squeezed" or "stretched" in
the viewing transformation; thus you should adjust it
accordingly.

e SET LINEWIDTH ORIENTATION - -
The line width orientation controls the way CGL draws the
ends of lines. You can think of the end of a line as a
rectangle described by the vertical and horizontal line width
(see Figure 7-3). You can control the offset between one
corner of that rectangle and the point in world coordinate
space specified as the starting position in the line
primitive instruction.

Figure 1-9: Polygon Fill (Drawn on HP7470 Plotter)

1-22

ATTRIBUTES

e SET FILL MODE

Fill creates solid images by filling in areas with a pattern
consisting of a standard or user-defined character. When
fill is off, CGL draws lines are drawn using the linestyle.
When fill is on, CGL does not actually draw lines. Instead,
it causes the space described by a line primitive to be
"shaded" or "flooded" with the fill pattern.

If the line describes a closed area such as
rectangle, closed arc, or closed curve, CGL (in
mode) "shades" the area ~ith the fill pattern.
shows a random curve drawn with polygon fill.

a polygon,
polygon fill
Figure 1-9

If the line primitive describes an open area, CGL "shades"
the area between the undrawn line and a predefined entity.
The entity can be a horizontal line, a vertical line, or a
point. Figure 1-10 shows the open area fill modes.

Fill patterns are
overlapping areas

self-aligning.
are filled,

When
the

two adjacent or
patterns align

"seamlessly."

• SET FILL ENTITY

The fill entity specifies a reference for filling open areas.
The reference can be a horizontal line, a vertical line, or a
point.

FILL "tO A VERTICAL LINE

vvwvvvwvvvvvvvvvvwvvvvvvvvvvvvvvvv
VVVVVVVVVVVVVVVVVVWVIJVVVIJVVVVVVVW I+
VVVVVVWVVV\IWVVVVVWV'NVVWVVIJ'..JVi .. HHf+-
NVVWVVVVVVV'JVVVVVVVWVVVVVVVV HHHHr

VVVVVVVVVVVVVVVVVVVVWVVVVVVV HHHHHHHl­
VVVVVVVVVVVVVVVVVVVVVVVVVVV HHHHHHHHHl­
VVVVVVWVVVVVVVVVVV'JWVVV HHHHHHHHHHHl-IVVVVVVVVVVVVVVVVVVVVVVV HHHHHHHHHHHHHl­
VWVVVVVVVVVVVVVVVVW HHHHHHHHHHHHtlHHl-
WVVVVVWVVVVVVVVV' HHHHHHHHHHHHHHHHHl-
VVVVVVVVVVVVVVVV HHHHHHHHHl+fHHHHHHl-
VVVVVWWVVVVV HHHHHHHHHHHHHHHHHHHHHHl­

HHHHHHHHHHHHHHHHHHHHHHHHI­
VVVVVVVVVV l+IHHHHHHHHHHHHHHHHHHHHHHHHI­
. HHHHHHHHHHHHHHHHHHHHHHHHHHHHt-

FILL TO A POINT

~fPPPPPPPPrFln...,
~pppppppppppppppppppr

0 PPPPPPPPPPPPPPPPPPF
Pppppppppppppppppp
•ppppppppppppppppr
1PPPPPPPPPP~PPPF
1ppppppppppppp
~ppppppppppp·

opppppppppr
PPPPPPPPF
'PPPPPPP
ipppppr
"'PPPF
opp

pr

IHHHHHHHHHHHHHHHHHHHHHHHHHHHHHt­
IHHHHHHHHHHHHHHHHHHHHHHHHHHHHHl­
iHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI­
IHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI-

FILL TO A HORIZONTAL LINE

Figure 1-10: Open Area Fill Modes

1-23

ATTRIBUTES

e SET FILL CHAR

The fill character specifies the character (from any font)
used for area fill. You can change the size of the fill
character by specifying a multiplier on the character height
and/or width.

The default fill character is a special case: in fact, it's
not a character at all. Character zero (the default) causes
CGL to uses a vertically-oriented version of the current line
style, rather than a character. The default line style is
solid, thus the default fill is also solid.

1.7.2 MARKER ATTRIBUTES

The marker primitives (marker and polymarker) have one attribute.
The instruction that sets it is:

e SET MARKER SYMBOL - -
The marker symbol is the character used to draw markers. You
can use a standard symbol or any other character. The
(CORE-defined) standard symbols are: period, plus sign,
asterisk, upper-case O, and upper-case x.

Figure 1-11: Character Size

1-24

.., ...,

.a:. .a:.
2 (:) (:)

ATTRIBUTES

1.7.3 TEXT ATTRIBUTES

The text primitive has six attributes. The instructions that set
them are:

• SET CHARSIZE

Character size is the size, in world coordinates, of the
characters drawn by the TEXT instruction. You can control
the height and the width independently. Figure 1-11 shows
some examples of character size. Character size is only an
approximation. It is affected by the current font, the
viewing transformation, as well as other text attribute
instructions (character path and character italic).

The terminal subsystem supports only integer multiples of the
"standard" character size (the character pattern as defined
in physical device coordinate units). Thus, CGL selects the
largest integer multiple of the "standard" size that will
allow the required number of characters to fit on a
horizontal line in the current viewport. CGL assumes that
the character spacing is the same as the character width (see
SET_CHARSPACE).

SET_CHARSPACE,12,0
EEEE
T T T T
- - - -c c c c
H H H H
A A A A
R R R R
s s s s
p p p p
A A A A

. c c c .C
E E E E
, ,
0 1 2 3

' 2 4 6
2 ,
5 ~ z z ~

5 5 5

Figure 1-12: Character Spacing

1-25

ATTRIBUTES

For example, if the window is ten world coordinate units wide
and you specify a character width of one unit, CGL selects
the largest available size that will fit ten characters to a
line. If you specify a character size of two units, CGL
selects the largest size that will fit five characters to a
line.

The "standard" size for Font 0 characters is 12 X 25 physical
device coordinate units. The video monitor screen is 960 X
600 physical device coordinate units, thus it can contain 24
rows of 80 characters. The "standard" size for user-defined
characters varies from one to 16 physical device coordinates
in both height and width (see the SET_FONT_SIZE instruction).

The SET CHARPATH and SET CHARITALIC instructions can change
the available character-sizes. character sizes. Characters
drawn in a horizontal path are smaller than those drawn
diagonally and larger than those drawn vertically.
Characters drawn with a slant are larger than those with no
slant.

Figure 1-13: Character Path

1-26

Z E R 0
~~

y'~~
.:l o n ~

~""~

ATTRIBUTES

e SET CHARSPACE

The SET CHARSPACE instruction specifies the displacement
between the starting points of adjacent letters. The
displacement can be horizontal, vertical, or both. Figure
1-12 shows some examples of character spacing.

The SET CHARSPACE instruction affects the relative position
(not the direction) of individual characters in a string.
The direction is specified by the SET_CHARPATH instruction.

CGL modifies the character spacing to maintain
rotation when the character path mode is "string."

e SET CHARPATH

string

Character path is the direction in which text is drawn. It
can apply to individual characters or to entire strings.
There are eight possible directions as shown in Figure 1-13.

The SET CHARPATH instruction has two modes:
string.

character and

In character mode, SET CHARPATH rotates (changes the
direction relative to horizontal) the individual characters
in a text string, and sets the spacing to that explicitly
defined by the last SET CHARSPACE call.

LEFT CEN:'rER RIGHT . .
TOP CEN:TER BDT~OM .

1 ' o! a ;
I p ... u '.
I !:~ ~· """'"'m • I

8~ n'\aM : U.JOVq_ •

-------------------'1J~irco·-----------~:-~--------------~-~~Q~-----------------------
("Jo O; 0
d 0 .

o! <> ! '0. ~
~~· ~? v~ :~9 ~~f ·

------------------- -------------- ~------------ - : ()')~+o <»~~~ 6~~r- ----------------- ---
. '
' ' '
' . . .

Figure 1-14: Character Justification

1-27

ATTRIBUTES

In string mode, (the default) SET_CHARPATH rotates the entire
string to the specified direction by changing the character
spacing and the direction of the individual characters.

SET CHARPATH can be used in conjunction with SET CHARSPACE to
create virtually any desired combination of direction and
spacing. Subsequent calls to SET CHARSPACE cause CGL to
modify the spacing so as to maintain string rotation.
Likewise, subsequent calls that set the CHARPATH to character
mode also explicitly set the character spacing to that last
specified.

e SET CHARJUST

The SET CHARJUST instruction specifies the starting position
of text primitives relative to the current position. It
allows horizontal and vertical justification and centering.
Figure 1-14 shows some examples of character justification.

Justification and centering are defined in terms of
horizontal text drawn left to right. Justification means
that an edge of the string is aligned along an X (horizontal)
or Y (vertical) line. The edges of a string are the top, the
bottom, the leftmost side of the first character, and the
rightmost side of the last character. Centering means that
the string is bisected exactly by an x or Y line.

S£T_CHARITALICf-20J

SET-CHARITALIC<OO>

Figure 1-15: Character Italic

1-28

ATTRIBUTES

If the character spacing is not horizontal, CGL computes the
position at which it would draw the first character of a
horizontal string and draws the first character of the string
at that position. The character spacing then determines the
position of tpe second and subsequent characters.

• SET CHARITALIC

Character italic is a forward or backward slant that
characters in a text string resemble italic type.
1-15 shows some examples of character italic.

• SET FONT

makes
Figure

The SET FONT instruction specifies the current font. Font 0
contains the DEC Multinational Character Set (except for CO,
Cl, and the delete character) which has 190 "printing"
characters and cannot be redefined (see Figure 1-16). Fonts
1, 2, and 3 are user-defined fonts that can each contain up
to 190 characters that you load yourself.

! I I 0 @ p I I I ~ A I I p ~ a 7

I
f

I I 1 A Q a q I I ! A ~ f'i. ! a i

I • " 2 B R b I • 4 t A b a I r 0
I I l i # 3 r ~ c s I I £ ~

d a i I
~ 0 . A 6

I
I I ·$ 4 D T d t • • ~ ~ A 0 a 0

I

I I % ~ E u e u I I ¥ A ~ ~ 5 I w µ

I
I I a 6 F v f v I I ! • E d ~ 6 I • I 7 G w g w • I i c ~ 9 ~ I
I I 8 H x h I i E ~

I
x ~ ~ e ~ l ;

l i i 3 I y
~ j • @ i ~ u ! ~ !

I i i * J z J i j
i

I z a ~ ~ u e u I

I I I j + K (k { • I E
I

« » 0 e u f
I

I I (L \ 1 I I 7 ~ • 0 i u I ~

I I = M J m). I I ? ~ t y g I
I I I > N A n N I I 7 ~ ¥ 7 i ~ I ~

I I i ? 0 0 • I ~ l I ~ 1 •
Figure 1-16: Font 0

1-29

ATTRIBUTES

e SET FONT SIZE -
The SET FONT SIZE instruction initializes a user-defined
font. It establishes the size of the font (the highest
decimal character code) and the size of the characters in
physical device coordinate units.

When you execute SET FONT SIZE, CGL passes the font size and
subsequent character definitions to all currently selected
view surfaces. If a view surface is not selected at the time
the font is defined, it cannot access the font.

Thus, in theory, you can have different fonts, with
characters of different aspect ratios, simultaneously defined
for different view surfaces.

1.7.4 COLOR - THE BITMAP ARCHITECTURE

The terminal subsystem has an internal data structure called the
bitmap that stores the information currently being displayed on
the view surfaces. The bitmap consists of one or three planes.
Each plane, in terms of a high-level language data structure, is
a two-dimensional array of bits. Each bit corresponds to one
physical device coordinate position and represents some
information about brightness or color. The basic Professional
(with no Extended Bitmap Option) has only one bitmap plane and
thus can display only monochromatic images. The value of each
bit represents a light or dark point on the screen. The actual
color of a monochromatic image depends on the phosphor used in
the monitor.

Plane 1

Plane2

~-+--Plane 4

Figure 1-17: The Bitmap with Extended Bitmap Option

1-30

ATTRIBUTES

The Extended Bitmap Option (shown in Figure 1-17) provides two
additional bitmap planes, making a total of three planes
available to your program. The planes are numbered 1, 2, and 4.
Each plane doubles the number of colors available to your program
at any given time.

With one plane, there are only two colors: dark and light. Two
planes provide four colors. Three planes provide eight colors.

In order to use the full color graphics capabilities of the
Professional, an output device with appropriate capabilities,
such as color video monitor or multi-pen plotter is required.
The Extended Bitmap Option with a monochrome output device can
simulate colors with varying shades of lightness.

The Extended Bitmap Option also provides a data structure called
the color map. In order to understand how the bitmap and the
color map work together to produce colors on the view surfaces,
consider how colors in light are formed.

1.7.4.1 BOW COLORS ARE FORMED - The Professional forms colors by
addition. Red, green, and blue, the primary colors in light, can
be added together in various proportions to approximate any color
of the spectrum.

The red and blue primary colors of light are similar, but not
identical, to the red and blue primary colors of paint. In
light, the blue primary is less green and the red primary is more
orange. Equal amounts of the light primaries can be combined to
form white light.

Complementary colors in light are any two colors that form white
light when combined. The three most important complementary
colors can be formed by combining primaries:

• Cyan (the complement of red) is formed by combining green and
blue.

• Magenta (the complement of green) is formed by combining red
and blue.

• Yellow (the complement of blue) is formed by combining red
and green.

You can combine any one of these three complementary colors with
the third primary color to produce white light. For example,
yellow added to blue forms white.

1-31

1.7.4.2
internal
entries,
program.

ATTRIBUTES

THE COLOR MAP - The Extended Bitmap Option provides an
data structure called the color map that has eight

each of which represents a color available to your
Figure 1-18 shows a picture of the color map.

Each color map entry consists of three values, one each for red,
green, and blue. These "RGB" values specify how much of each
primary color is used to form a color. RGB values have the range
zero to seven. Zero is the minimum amount of color and seven is
the maximum •

.----- WRITING_INDEX

[

BACKGROUND-INDEX

COLOR MAP

0 Black

2

3

4

5

6

7

Blue

Red

Green

White

White

White

White

-..... __ _
-- 2

....... _ --

Figure 1-18: The Color Map with Default Values

MAP
ENTRY

RED
Value

GREEN
Value

BLUE
Value

Each entry in the color map is eight bits wide; three bits for
red, three for green but only two for blue, since it is difficult
for the human eye to distinguish shades of blue. The blue value
range is only (0, 2, 4, 6). Blue values are rounded down to the
next lowest even number.

Thus, a color map entry can contain one of 256 (8 * 8 * 4)
possible colors ranging from black (0,0,0) to white (7,7,6).

CGL provides two instructions that access the color map:

e SET COLOR MAP

The SET COLOR MAP instruction sets up the RGB values of the
entire color map.

1-32

ATTRIBUTES

e SET COLOR MAP ENTRY - - -
The SET COLOR MAP ENTRY instruction sets up the RGB values of
an individual-entry in the color map.

NOTE

When you change the values in a color map entry,
you instantaneously change the color of any image
on the video monitor screen that was drawn with
that entry. This dynamic screen update feature
can be used in some very sophisticated ways.

CGL provides two global color attributes. The instructions that
set them are:

e SET BACKGROUND INDEX

This specifies the color map entry generally used to indicate
the absence of an image.

• SET WRITING INDEX

This specifies the color map entry generally used to indicate
the presence of an image.

These definitions say "generally" because the exact manner in
which CGL draws output primitives depends on the writing mode
(described in Section 1.7.5).

The background index and the writing index do not
specify a color~ they specify a color map entry.
depends on the values stored in the color map.

actually
The color

For example, suppose that you want to draw a yellow circle. If
one of the color map entries contains the desired color, just set
the writing index to that entry. Otherwise, choose a color map
entry and set its red, green, blue values to the desired color,
then set the writing index to that entry.

CGL provides the following (VT125 compatible) default color map
values:

1-33

ATTRIBUTES

Entry Color R G B Entry Color R G B

0 black 0 0 0 4 white 7 7 7

1 blue 0 0 7 5 white 7 7 7

2 red 7 0 0 6 white 7 7 7

3 green 0 7 0 7 white 7 7 7

If only a monochrome monitor is present, CGL uses the following
formula to convert RGB values to shades of grey:

grey value = ((R * 2) + (G * 4) + B) I 1

Thus, grey values also fall in the range zero to seven.

1.7.4.3 THE BITMAP/COLOR MAP INTERFACE - With the Extended
Bitmap Option present, the values stored in the three bitmap
planes form a three-bit binary number (decimal value 0 to 7).
This number, points to one of the entries in the color map. The
RGB values in that entry determine the color of the physical
device coordinate location controlled by that three-bit number.

MONITOR

rr=====~/,,,. /
/

/ /
/ / " / / 1"' /

I.<"
L---~

Figure 1-19: The Color Map/Bitmap Interface

1-34

0
1
2

3
4

5

COLOR
MAP

RED GREEN BLUE

ATTRIBUTES

Figure 1-19 shows the relationship between the bitmap and the
color map. The three bitmap planes form the number 110 (binary)
or 6 (decimal) which the terminal subsystem uses as an index into
the color map. Color map entry 6 contains the color red, which
appears on the screen at the appropriate location.

You can control to which of the three bitmap planes your program
has access. In other words, you can make each bitmap plane
"read/write" or "read only." The SET WRITING PLANES instruction
specifies which planes your program can write-into.

The ability to "write-protect" individual planes should be used
only for advanced graphics techniques.

I
i

NOTE

If a write-protected plane contains image
information, that information will affect any
image written over it. For example, suppose that
you write-protect plane 2, and write ones into
planes 1 and 4. Wherever plane 2 contains zero
(forming 101 binary) the bitmap will point to
color map entry 5. Wherever plane 2 contains one
(forming 111 binary) the bitmap will point to
color map entry 7.

'ICOMPLEMENTI Ill ! ••••••

JfDt~LfiEN,rl NifA~~
illlllllllll
I II II II II II

!

I OVERLAY

l
I OVERLAY NEGATE

lrE:i"1i 11 · 11 11
l I II II II II II

11111111111 llREPLACE NEGATll
(•.•.•.•.
!

' i
i ERASE NEGATE

Figure 1-20: The Writing Modes (Shown with Line style)

1-35

ATTRIBUTES

1.7.S THE WRITING MODE

The writing mode is a powerful global attribute that is not
included in the CORE Standard. The SET WRITING MODE instruction
(described in Chapter 5) defines the exact manner in which output
primitives are drawn on the view surfaces. The ten writing mode
values are described below.

To describe how the writing mode works, the term "current
pattern" is defined to be the bit pattern of whatever is being
drawn. The set bits (1) are said to be "on" and the clear bits
(0) are said to be "off."

• If CGL is drawing a line with fill disabled, the current
pattern is the line style. For example, if the line style is
SOLID, all bits are "on": there are no "off" bits.

• Otherwise, with
character cell.

fill
The

"on." The remainder of
line primitives with
marker primitives.

enabled, the current pattern is a
bits that represent the character are

the cell is "off." This encompasses
fill enabled, text primitives, and

Figure 1-20 shows a screen image from an example program that
demonstrates SET WRITING MODE. First, the program uses fill to
create two large,-verticaT bars so that the screen has four equal
areas of "on" and "off." Then it draws seven DOT DASHED
horizontal lines using each of the visible writing mode values.
The ten writing mode values are:

O. TRANSPARENT

In transparent mode, CGL goes through the process of drawing
output primitives and updates the current position without
actually drawing anything. Thus, transparent mode is useful
for determining what the new current position will be after
an image is drawn, without actually drawing the image.

1 • TRANSPARENT NEGATE

Transparent negate mode is identical to transparent mode.

2. COMPLEMENT

The purpose of complement mode is to draw output primitives
so that they stand out from existing images and thus have
maximum visibility. Where the current pattern is "on," the
image is affected. Wherever the current pattern is "off,"
the image is unaffected.

With the Extended Bitmap Option, CGL draws the "on" areas

1-36

ATTRIBUTES

using the "complement" of the existing image. Assuming all
three planes are available:

complement = 7 - n

where n is the current (decimal) value in the bitmap

For example, a solid line drawn in complement
bitmap value of 5 changes the value to 2.
drawn over a value of 1 changes the value to 6.

mode over a
The same line

NOTE

For complement mode to work effectively, you
must first set up the color map so that
complementary entries contain complementary
(or at least different) colors. The default
values were chosen for VT125 compatibility
and may not produce the desired result.

With no Extended Bitmap Option, CGL draws the "on" areas by
negating (reversing) the existing image. For example, a
solid line drawn over a dark value changes the value to
light, while the same line over a light value changes the
value to dark.

3. COMPLEMENT NEGATE

Complement negate mode is identical to complement mode except
the current pattern is negated. Wherever the current pattern
is "off," the existing image is affected. Wherever the
current pattern is "on," no drawing occurs.

4. OVERLAY

Overlay is the default writing mode.
draws output primitives "on top
Wherever the current pattern is "on,"
writing index. Where the current
drawing occurs.

5. OVERLAY NEGATE

In overlay mode, CGL
of" existing images.

CGL draws with the
pattern is "off," no

Overlay negate mode is identical to overlay mode except the
current pattern is negated. Wherever the current pattern is
"off," CGL draws in the writing index. Wherever the current
pattern is "on," no drawing is done.

1-37

ATTRIBUTES

6. REPLACE

In replace mode, CGL draws output primitives while erasing
any existing image. Wherever the current pattern is "on,"
CGL draws in the writing index. Wherever the current pattern
is "off," CGL draws in the background index.

7. REPLACE NEGATE

Replace negate mode is identical to replace mode except the
current pattern is negated. Wherever the current pattern is
"on," CGL draws in the background index. Wherever the
current pattern is "off," CGL draw in the writing index.

8. ERASE

In erase mode,
existing images.
background index.

9. ERASE NEGATE

CGL draws output primitives by erasing
CGL draws the entire current pattern in the

Erase negate mode is identical to erase mode except CGL draws
the entire current pattern in the writing index.

1.7.6 THE GLOBAL ATTRIBUTE LIST

CGL maintains a list that contains the current values of all
attributes, both global and output primitive-specific. This
attribute list is named "global" for compatibility with future
versions of the CORE Graphics Library. The SET GLOBAL ATTRIBUTES
instruction sets the values of the entire global attributes list.
Its use· will improve performance when many attributes have to be
set at once (for example on application startup), since the
number of calls to CGL are minimized.

In general, reducing the number of calls to CGL will give
improved performance because of the overhead associated with each
call to the resident library (and especially when CGL is
clustered with other libraries).

1-38

CHAPTER 2

PROGRAMMING WITH THE CORE GRAPHICS LIBRARY

2.1 CALLING CGL ROUTINES FROM HIGH-LEVEL LANGUAGES

To access the CORE Graphics Library, use the standard PDP-11 RS
calling sequence convention (sometimes called the FORTRAN Calling
Sequence Convention). The library has one global entry point:
CGL. The first parameter is an integer value that specifies an
individual instruction. All parameters are passed by reference.

The data type and relative position of each parameter must match
that expected by CGL. Although CGL cannot perform data type
checking of parameters, it checks the number of parameters
supplied. If a function doesn't work correctly, check the
parameter data types. One of the most common bugs is a real
parameter where an integer is required and vice-versa.

2.1.l THE BASIC-PLUS-2 INTERFACE

To call CGL from a BASIC-PLUS-2 program or subprogram, use the
CALL (BY REF) statement. External routine names do not have to
be declared. Refer to your BASIC-PLUS-2 documentation for more
information on the CALL statement.

Format

CALL CGL BY REF (inst_name, pl, p2, ••• , pn)

BY REF

inst name

specifies that the parameters are to be passed by
reference (BASIC-PLUS-2 passes the parameter's
address). Always use BY REF with CGL calls.

is an integer expression specifying the desired CGL
instruction. CGL provides a file named
"LB:[l,S]CGL.B2S" (listed in Appendix C) that
declares a set of integer constants corresponding to
the names of the CGL instructions.

2-1

THE BASIC-PLUS-2 INTERFACE

pl,p2, ••• are parameters as described in the
instruction sections of this manual.

Example

10 %INCLUDE "LB:[l,5]CGL.B2S"

Notes

CALL CGL BY REF (INITIALIZE CORE)
CALL CGL BY REF (NEW FRAME)-
CALL CGL BY REF (SET-WINDOW, 0, 100, 0, 100)
CALL CGL BY REF (MOVE ABS 2, O, 0)
CALL CGL BY REF (RECTANGLE ABS 2, 100, 100)
CALL CGL BY REF (TERMINATE CORE)
END

individual

• To pass an array to CGL, you must include the (empty)
parentheses in the BASIC-PLUS-2 call, for example:

CALL CGL BY REF (POLYLINE_ABS_2, X(), Y(), 4%)

• BASIC-PLUS-2 does not allow you to pass array elements by
reference. This line is invalid:

CALL CGL BY REF (INQUIRE CURRENT POSITION 2, &
CP(0%),-CP(l%))-

• You can pass a dynamic string variable to CGL. For example:

CALL CGL BY REF (TEXT, S$, LEN(S$))

2.1.2 .THE COBOL-81 INTERFACE

To call CGL from a COBOL program, use the CALL statement.
External routine names do not have to be declared. Refer to the
Tool Kit COBOL-81 Documentation Supplement for detailed
information on calling CGL routines from COBOL.

Format

CALL •cGL• USING inst name pl p2 ••• pn.

inst name

pl p2 . . .
is a PIC S9(4) COMP item specifying the desired CGL
instruction.

are actual parameters as described in the
instruction sections of this manual.

2-2

individual

THE COBOL-81 INTERFACE

Example

IDENTIFICATION DIVISION.
PROGRAM-ID.

OUTLINE-WINDOW.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NEW-FRAME PIC
01 SET-WINDOW PIC
01 MOVE-ABS-2 PIC
01 RECTANGLE-ABS-2 PIC
01 INITIALIZE-CORE PIC
01 TERMINATE-CORE PIC
01 NUM-CONST-0 PIC
01 NUM-CONST-100 PIC
01 REALI PIC
01 REAL2 PIC
01 REAL3 PIC
01 REAL4 PIC
PROCEDURE DIVISION.
MAIN.

S9(4) COMP
S9(4) COMP
S9(4) COMP
S9(4) COMP
S9(4) COMP
S9(4) COMP
S9(4) COMP
S9(4) COMP
x (4).
X(4) •
X(4).
X(4).

CALL "CGL" USING INITIALIZE-CORE.
CALL "CGL" USING NEW-FRAME.
CALL "CONIFL" USING

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

NUM-CONST-0 REALI
NUM-CONST-100 REAL2
NUM-CONST-0 REAL3
NUM-CONST-100 REAL4.

92.
80.
1.
10.
90.
91.
o.
100.

CALL "CGL" USING SET-WINDOW REALI REAL2 REAL3 REAL4.
CALL "CGL" USING MOVE-ABS-2 REALI REAL3.

DONE.

Notes

CALL "CGL" USING RECTANGLE-ABS-2 REAL2 REAL4.
CALL "CGL" USING TERMINATE-CORE.
GO TO DONE.

EXIT.

• Text can be described as PIC X(n), where "n" is the maximum
length of the text string.

• Tool Kit COBOL-81 provides a routine named CONIFL to convert
integers to real numbers, as required by CGL (see example
above).

2.1.3 THE DIBOL INTERFACE

To call CGL from a DIBOL program, use the XCALL statement.
External routine names do not have to be declared. Refer to the

2-3

THE DIBOL INTERFACE

Tool Kit DIBOL User's Guide for detailed information on calling
CGL routines from DIBOL.

Format

XCALL CGL (inst_name, pl, p2, ••• , pn)

inst name is the name of the CGL instruction. DIBOL provides a
file named "LB:[l,S]CGL.DBL" (listed in Appendix C)
that declares a set of integer constants
corresponding to the names of the CGL instructions.

pl,p2, ••• are actual parameters as described in the individual
instruction sections of this manual.

Example

.INCLUDE 'LB:[l,S]CGL.DBL'
PROC

XCALL DCGL (GIC)
XCALL DCGL (GNF)
XCALL DCGL (GSW, O, 100, O, 100)
XCALL DCGL (GMA2, 0, O)
XCALL DCGL (GRA2, 100, 100)
XCALL DCGL (GTC)
END

2.1.4 THE FORTRAN INTERFACE

To call CGL from a FORTRAN program, use the CALL statement.
External routine names do not have to be declared. Refer to the
Tool Kit FORTRAN-77 Documentation Supplement for detailed
information on calling P/OS routines from FORTRAN.

Format

CALL CGL (inst_name, pl, p2, ••• , pn)

inst name

pl,p2, •••

is an integer constant specifying the desired CGL
instruction. CGL provides a file named
"LB:[l,S]CGL.FTN" (listed in Appendix C) that defines
a set of symbolic names corresponding to the CGL
instruction numbers.

are actual parameters as described in the individual
instruction sections of this manual.

2-4

THE FORTRAN INTERFACE

Example

INCLUDE 'LB:[l,S]CGL.FTN'
10 CALL CGL (GIC)

CALL CGL (GNF)
CALL CGL (GSW, O., 100., O., 100.)
CALL CGL (GMA2, O., O.)
CALL CGL (GRA2, 100., 100.)
CALL CGL (GTC)
END

2.1.5 THE PASCAL INTERFACE

To call CGL from a PASCAL program, you must use the external
(SEQll) procedure names declared in "LB:[l,S]CGL.PAS," which is
provided with the Tool Kit PASCAL distribution kit. Refer to the
Tool Kit PASCAL User's Guide for detailed information on calling
CGL routines from PASCAL.

To use CGL.PAS, include this line in your program:

%INCLUDE 'LB:[l,S]CGLDEFS.PAS/NOLIST':

.Remove the "/NOLIST" option if you prefer to see the declarations
in your program listing.

Format

instname (pl, p2, ••• , pn):

inst name is the name of a CGL instruction (a SEQll procedure
declared in CGL.PAS).

pl,p2, ••• are actual parameters as described in the individual
instruction sections of this manual. Check CGL.PAS
for data types.

Example

PROGRAM OUTLINE WINDOW:
%INCLUDE 'LB:[l~S]CGLDEFS.PAS/NOLIST'
BEGIN

INITIALIZE CORE:
NEW FRAME:-
SET-WINDOW (O.O, 100.0, 0.0, 100.0):
MOVE ABS 2 (O.O, 0.0):
RECTANGLE ABS 2 (100.0, 100.0):
TERMINATE-CORE:

END. -

2-5

THE PASCAL INTERFACE

Notes

• When calling a CGL routine, always pass the exact number of
actual parameters specified in this manual. The declarations
are set up so that each procedure has a formal parameter
named $$$, which has a default value corresponding to a CGL
instruction number. For example:

[EXTERNAL($PCGL)]
PROCEDURE MQVE ABS 2 (VAR X, Y : [READONLY] REAL;

$$$: INTEGER := 1); SEQll;

Do not pass an actual parameter for $$$. You
invalidate the instruction number and cause an error.

would

• Some of the instructions have formal
READONLY attribute and can accept
parameters (as shown above).

parameters with the
constants as actual

• Some of the instructions have formal parameters with the
UNSAFE attribute so that you can pass arrays of different
lengths. They are:

e POLYLINE ABS 2

e POLYLINE REL 2

e POLYGON ABS 2

• POLYGON REL 2

e TXT

e POLYMARKER ABS_2,

e POLYMARKER REL 2

e CURVE ABS 2

e CURVE REL 2

2.2 CALLING CGL ROUTINES FROM MACRO-II

To transfer control to a CGL routine:

JSR PC,CGL

General purpose register 5 (RS) contains the address of the
parameter block which has the following format:

2-6

CALLING CGL ROUTINES FROM MACR0-11

high byte low byte

0 J number of parameters

address of instruction number
'

address of parameter 1

address of parameter 2

address of parameter n

The second word contains the address of a word containing the CGL
instruction number. When the CGL routine returns, the contents
of registers RO through RS and floating accumulators 0 through 3
are undefined. The stack pointer (SP) is restored to its state
before the call.

You can check for errors by testing the carry (C) bit. If a
function caused an error and an application does not call
REPORT MOST RECENT ERROR, then the carry (C) bit is returned set
from CGL. - -

2.3 TERMINAL INPUT/OUTPUT

Do not use your programming language's output facilities to write
to the terminal while CGL is operational. The results of mixed
text mode and graphics mode operations are unpredictable.
Because CGL has no input instructions, it is recommended that you
use the GETKEY routine (described in the Developer's Tool Kit
User's Guide) for keyboard input.

If you use your language's keyboard input facilities while CGL is
operational, it is recommended that you turn off echo. Some
languages can do this for you. For example, in BASIC-PLUS-2, you
can say:

Z% = NOECH0(0%)

2.4 USING CGL WITH THE P/OS USER INTERFACE LIBRARY

You can use P/OS User Interface Library (POSRES) routines while

2-7

USING CGL WITH THE PIOS USER INTERFACE LIBRARY

CGL is operational. It is recommended that you follow this
procedure to switch screen context from CGL to POSRES and back.

1. Use INQUIRE_COLOR_MAP to save the contents of the color map.

2. Use NEW FRAME to clear the screen.

3. Use SET COLOR MAP ENTRY to set entry zero to black.

4. Use SET COLOR MAP ENTRY to set entry four to white.

5. Call the POSRES routine.

6. Use SET_WRITING_PLANES (7) to restore access to all planes.

7. Use SET COLOR MAP to restore the color map.

8. Redraw whatever was present before the POSRES call.

2.5 BUILDING YOUR CGL PROGRAM

Your language documentation describes how to create an
Application Builder command (.CMD) file and an Overlay Descriptor
Language (.ODL) file for your program. A typical .CMD file (for
a PASCAL program named TEST) looks something like:

Make

TESTICPIFP,TESTIMAl-SP=TESTIMP
CLSTR=PASRES,CGLFPU,POSRES,RMSRES:RO
TASK = TEST
STACK = 30
UNITS = 46
GBLDEF = TT$EFN:7

'GBLDEF = WC$LUN:45
GBLDEF = MS$LUN:44
GBLDEF = HL$LUN:43
GBLDEF = MN$LUN:42
GBLDEF = TT$LUN:41
GBLDEF = G$LUN:41
ASG = TT1:33
ASG = SY:36
ASG = LB:34:35:37
;EXTSCT = MS$BUF:3100
;EXTSCT = MN$BUF:4540
;EXTSCT = DM$BUF:4540
;EXTSCT = MM$BUF:l000
;EXTSCT = HL$BUF:3400
II

the following edits:

2-8

BUILDING YOUR CGL PROGRAM

1. If the default is not /FP, ensure that you use the /FP
switch.

2. Find the line that begins with "CLSTR" and insert "CGLFPU" as
the second library in the line. (If it says "CGLEIS," change
it to "CGLFPU".) It should look something like:

CLSTR=PASRES,CGLFPU,POSRES,RMSRES:RO

NOTE

The CGLEIS (Extended Instruction Set) library
is supported only for Tool Kit Vl.0/1.5
applications that were built against CGLEIS
and used the /-FP option. Use CGLFPU for
Tool Kit Vl.7 and later applications.

3. If there is already a line that defines the symbol "G$LUN,"
after it insert the line:

GBLDEF = G$EFN:n

which defines the event flag number to be used by CGL. If
there is no line defining G$LUN, find the line that assigns a
LUN to the terminal. It should look something like:

ASG = TTl:n

where "n" is a decimal number. Convert the number from
decimal to octal and insert the following line:

GBLDEF = G$LUN:n
GBLDEF = G$EFN:n

where "n" is an octal number. For example:

GBLDEF
GBLDEF
ASG

= G$LUN:41
= G$EFN:l
= TT1:33

4. The .CMD file should now look something like:

2-9

BUILDING YOUR CGL PROGRAM

TESTICPIFP,TESTIMAl-SP=TESTIMP
CLSTR=PASRES,CGLFPU,POSRES,RMSRES:RO
TASK = TEST
STACK = 30
UNITS = 46
GBLDEF = TT$EFN:7
GBLDEF = WC$LUN: 45
GBLDEF = MS$LUN:44
GBLDEF = HL$LUN:43
GBLDEF = MN$LUN:42
GBLDEF = TT$LUN:41
GBLDEF = G$EFN:l
GBLDEF = G$LUN:41
ASG = TT1:33
ASG = SY:36
ASG = LB:34:35:37
;EXTSCT = MS$BUF:3100
;EXTSCT = MN$BUF:4540
;EXTSCT = DM$BUF:4540
;EXTSCT = MM$BUF:l000
;EXTSCT = HL$BUF:3400
II

2.6 INSTALLING YOUR CGL PROGRAM

Application programs that use CGL must specify the
library in their installation command (.INS} file.
Tool Kit User's Guide for detailed information on
Insert:

INSTALL [ZZSYS]CGLFPU.TSKILIBRARY

CGL cluster
(Refer to the
.INS files.)

If you use the PLAYBACK FILE instruction in your application, you
must install the file read task used by CGL. Insert:

INSTALL [ZZSYS]CGLGRT.TSKITASK

If you use the LOAD FONT instruction, you must install the font
files as regions in-memory by either:

1. Creating the region dynamically within your application (using t
directive}, or

2. Installing them here using:

INSTALL f ilespeclCOMMON

2-10

CHAPTER 3

CONTROL INSTRUCTIONS

This chapter describes the instructions that control the overall
operation of the CORE Graphics Library.

3.1 INITIALIZE CORE - PREPARE GRAPHICS SYSTEM FOR USE

The INITIALIZE CORE instruction guarantees
system is in a standard state with
established. All programs that use CGL
INITIALIZE CORE instruction before any other
any subprogram that uses CGL).

CORE Standard

that the graphics
default parameters
must execute the
CGL instruction (or

INITIALIZE_CORE (outlevel, inlevel, dimension, hidden_surface)

CORE Graphics Library

INITIALIZE CORE

Notes

e INITIALIZE CORE is instruction number 90.

• You cannot execute INITIALIZE CORE more than once before
executing a TERMINATE_CORE instruction.

• If you do not execute this instruction before any other CGL
calls, CGL does it for you and returns error number 743 for
that call.

• The video monitor is implicitly initialized and selected by
the INITIALIZE CORE instruction.

3-1

INITIALIZE CORE

Errors

701. The CORE system is already initialized.

3.2 TERMINATE CORE - GRAPHICS SYSTEM USAGE FINISHED

The TERMINATE CORE instruction performs an implicit END BATCH,
deselects and terminates all view surfaces, and releases all
resources used by the CGL system.

CORE Standard

TERMINATE_CORE ()

CORE Graphics Library

TERMINATE CORE

Notes

e TERMINATE CORE is instruction number 91.

• Failing to terminate may cause your program to retain
resources that are no longer needed.

Errors

743. The CORE system has not been initialized.

3.3 NEW FRAME - REFRESH VIEW SURFACE

The NEW FRAME instruction clears all currently selected view
surfaces. Clearing a view surface is equivalent to filling the
entire surface with the background index. All images are lost.

CORE Standard

NEW FRAME ()

CORE Graphics Library

NEW FRAME

3-2

NEW FRAME

Notes

• NEW FRAME is instruction number 92.

• NEW FRAME affects only currently selected writing planes.

• NEW FRAME has no effect on plotter view surfaces.

3.4 INITIALIZE_VIEW_SURFACE - ENABLE ACCESS TO DEVICE

The INITIALIZE VIEW SURFACE instruction prepares a specific
output device for graphics output. It does not add that device
to the list of currently selected devices1 to do so you must also
select the view surface.

CORE Standard

INITIALIZE VIEW SURFACE (surface_name, type)

CORE Graphics Library

name

INITIALIZE VIEW SURFACE (name, length)

is a string expression that specifies the view surface
name.

length is an integer expression taht specifies the number of
characters in the string.

There are three view surfaces available:

1. video

2. HP plotter

3. file

To initialize the video view surface use the surface name "TI:"1
for the HP pl6tter use "GH:". Both these surface names,
therefore, have length 3.

The file "device" creates a file of GIDIS display commands that
can be used as input to other programs. The file view surface
name should be an RMS compatible file specification with
appropriate length (the maximum is 60 characters).

3-3

INITIALIZE VIEW SURFACE

NOTE

Only one file view surface can be active at one
time.

You can re-execute the file using the PLAYBACK FILE instruction.
The file can also be printed using P/OS print services. It is
recommended that the file name have an extension ".GID", since
this is the default assumed by print services.

Not all CGL commands generate GIDIS output to the file.

Notes

• This will normally be transparent to your application with
one exception, the WAIT command is handled internally by CGL.
If you want to playback a series of slides, for example, witb
pauses between each slide, you must re-execute the wait again
between each slide.

e INITIALIZE VIEW SURFACE is instruction number 103.

• A device must be initialized before it is selected.

• The video monitor is implicitly initialized and selected when
you execute the INITIALIZE CORE instruction.

Errors

705. View surface already initialized.

706. Invalid view surface name.

906. Error on view surface device.

907. Invalid when in begin/end batch.

908. View surface not ready.

910. Invalid when in begin/end define character.

3.5 TERMINATE VIEW SURFACE - DISABLE ACCESS TO DEVICE - -
The TERMINATE VIEW SURFACE instruction terminates access to and
releases a specific output device.

3-4

TERMINATE VIEW SURFACE

CORE Standard

TERMINATE VIEW SURFACE (surface_name)

CORE Graphics Library

TERMINATE VIEW SURFACE (name, length)

name

length

Notes

is a string expression that specifies the view surface
name.

is an integer expression that specifies the number of
characters in the string.

e TERMINATE VIEW SURFACE is instruction number 104.

e See INITIALIZE VIEW SURFACE for a list of valid surface
names.

• All view surfaces are impicitly deselected and terminated by
the TERMINATE CORE instruction.

Errors

708. View surface not initialized.

906. Error on view surface device.

907. Invalid when in begin/end batch.

910. Invalid when in begin/end define character.

3.6 SELECT VIEW SURFACE - ENABLE GRAPHICS OUTPUT TO DEVICE - -
The SELECT VIEW SURFACE instruction adds the specified device to
the set of-view-surfaces to which CGL performs output.

CORE Standard

SELECT VIEW SURFACE (surface_name)

CORE Graphics Library

name

SELECT VIEW SURFACE (name, length)

is a string expression that specifies the view surface
name.

3-5

SELECT VIEW SURFACE

length is an integer expression that specifies the number of
characters in the string.

Notes

• SELECT VIEW SURFACE is instruction number 105.

• See INITIALIZE VIEW SURFACE for a list of valid surface
names.

• A device must be initialized before it is selected.

• The video monitor is implicitly initialized and selected by
the INITIALIZE CORE instruction.

• SELECT VIEW SURFACE has no effect on the current attribute
values~ current position, and viewing transformation.

• CGL conveys current state information (except font
descriptions) to each view surface when you select it.
SET FONT SIZE passes a font size and subsequent character
definitions to all currently selected view surfaces. Thus,
in theory, you can have different fonts, with characters of
different aspect ratios, simultaneously defined for different
view surfaces.

Example

program example1

%include 'lb:[l,S]cgldefs.pas/nolist'

procedure draw_picture1 external1

begin .
initialize core1
draw picture1 { draw picture on video
deselect view surface ('TI:' ,3)1 { deselect video J
initialize view surface ('GH' ,3)1 [initialize plotter J
select view surface ('GH:' ,3)1 [select plotter J
draw picture1 [draw picture on plotter l
deselect view surface ('GH:' ,3)1 [deselect plotter J
select vTew surface ('TI:' ,3)1 { select video l

end [example-11

Errors

708. View surface not initialized.

3-6

SELECT VIEW SURFACE

709. View surface already selected.

906. Error on view surface device.

907. Invalid when in begin/end batch.

910. Invalid when in begin/end define character.

3.7 DESELECT VIEW SURFACE - DISABLE GRAPHICS OUTPUT TO DEVICE

The DESELECT VIEW SURFACE instruction removes the specified
device to the-set of view surfaces to which CGL performs output.

CORE Standard

DESELECT VIEW SURFACE (surface_name)

CORE Graphics Library

DESELECT VIEW SURFACE (name, length)

name

length

Notes

is a string expression that specifies the view surface
name.

is an integer expression that specifies the number of
characters in the string.

e DESELECT VIEW SURFACE is instruction number 106.

e See INITIALIZE VIEW SURFACE for a list of valid surface
names.

• DESELECT VIEW SURFACE has no effect on the current attribute
values, current position, and viewing transformation.

• All view surfaces are implicity deselected and terminated by
the TERMINATE CORE instruction.

Errors

711. View surface not selected.

906. Error on view surface device. complete batch first).

3-7

DESELECT VIEW SURFACE

907. Invalid when in begin/end batch.

910. Invalid when in begin/end define character.

3.8 PLAYBACK FILE - EXECUTE FILE OF GRAPHICS COMMANDS

The PLAYBACK FILE instruction opens and reads a file of GIDIS
commands and re-executes them on all currently selected view
surfaces. Your application could, for example, create a file by
selecting the file view surface, draw some lines, text, and so
forth, on the video then play the file back to the plotter.

NOTE

If you want to playback a file currently open as
a view surface you must deselect and terminate
that view surface (to close the file) before the
file can be read for playback.

You can also play back one file while a file view surface is
selected, thus appending GIDIS commands from one file to another
file.

CORE Standard

Not included.

CORE Graphics Library

PLAYBACK_FILE (name, length)

name

length

Notes

is a string expression that specifies the view surface
name.

is an integer expression that specifies the number of
characters in the string.

• PLAYBACK FILE is instruction number 111.

• The name should be an RMS compatible file specification. The
name length can be a maximum of 60 characters.

3-8

PLAYBACK FILE

• All attributes are saved and restored around the playback.

• Files created with other software can also be played back.
They must have sequential organization, with records of no
more than 512 (decimal bytes) in length.

Errors

911. Error on file playback (file not found, etc).

3.9 BEGIN BATCH - BEGIN STORING VIEW SURFACE UPDATES

The BEGIN BATCH instruction begins storing all subsequent view
surface updates in a buffer and continues to do so until it
executes an END BATCH instruction. If the buffer becomes full,
CGL empties it (performs all stored updates) and continues to
store subsequent updates. Some instructions also cause the
buffer to be emptied (but they do not end batching): the CGL WAIT
instruction is an example. Batching should be used wherever
appropriate since it will give a significant performance
improvement.

CORE Standard

BEGIN BATCH OF UPDATES ()

CORE Graphics Library

BEGIN BATCH

Notes

• BEGIN BATCH is instruction number 96.

• Images are not affected by BEGIN BATCH
instructions. Only the view surface is-affected.

END BATCH

Errors

716. There has been no END BATCH since the last BEGIN BATCH.

3.10 END BATCH - END BATCH OP UPDATES

The END BATCH instruction performs all
updates- that have been stored since
instruction. CGL no longer buffers view
END BATCH executes.

3-9

of the view surface
the last BEGIN BATCH

surface updates -after

END BATCH

CORE Standard

END BATCH OF UPDATES ()

CORE Graphics Library

END BATCH

Notes

• END BATCH is instruction number 97.

• You must execute a BEGIN BATCH instruction at some point
before using END BATCH.

Errors

717. There has been no corresponding BEGIN BATCH.

3.11 CGL WAIT - SUSPEND EXECUTION

The CGL WAIT instruction causes CGL to suspend all changes to
view surfaces for a specified period of real time.

CORE Standard

Not included.

CORE Graphics Library

CGL WAIT (seconds)

seconds., is a real expression that specifies the number of
seconds to wait.

Notes

• CGL WAIT is instruction number 95.

• The instruction name "CGL WAIT" was chosen because "WAIT" is
a reserved word in BASIC-PLUS-2.

3.12 ERASE VIEWPORT - ERASE IMAGES IN VIEWPORT

The ERASE VIEWPORT instruction clears the viewport without
affecting other portions of the screen. Clearing the viewport is
equivalant to filling the viewport with the background index.

3-10

ERASE VIEWPORT

CORE Standard

Not included.

CORE Graphics Library

ERASE VIEWPORT

Notes

• ERASE VIEWPORT is instruction number 88.

• The ERASE VIEWPORT instruction affects only the currently
selected writing planes.

• This instruction is useful for applications
multiple windows by moving the viewport to
disjoint areas. For example, you can
pseudo-windows by bisecting the screen.

that simulate
one of several

create two

• The SET VIEWPORT 2 instruction is described in Chapter 4.

3.13 PRINT_SCREEN - SEND SCREEN IMAGE TO PRINTER

The PRINT SCREEN instruction sends an image of the video monitor
screen contents to a graphics (LASO or LA100) printer.

CORE Standard

Not included.

CORE Graphics Library

PRINT SCREEN (lower x, upper x,
lower y, upper_y,
x_offset, y_offset)

The parameters
coordinates.

are real expressions

lower x specifies the lower limit of the

upper_x specifies the upper limit of the

lower_y specifies the lower limit of the

upper_y specifies the upper limit of the

x off set specifies the horizontal margdn.

3-11

representing world

x coordinate.

x coordinate.

y coordinate.

y coordinate.

PRINT SCREEN

y_offset specifies the vertical margin.

Notes

• PRINT SCREEN is instruction number 94.

• If a plotter is connected, PRINT SCREEN is inoperative.

3.14 REPORT MOST RECENT ERROR - IDENTIFY EXECUTION ERROR - -
The REPORT MOST RECENT ERROR instruction reports the instruction
number and error code associated with the most recent CGL
execution error and returns the system to a non-error state.

CORE Standard

REPORT MOST RECENT ERROR (error_report)

CORE Graphics Library

REPORT MOST RECENT_ERROR (inst_name, code)

inst name is an integer variable that receives the name (number)
of the instruction that caused the most recent
execution error.

code is an integer variable that receives the error code.

Notes

• REPORT MOST RECENT ERROR is instruction number 93.

• The error codes are listed in Appendix A.

• Use REPORT MOST RECENT ERROR if it appears that a CGL
instruction- is -not working correctly or not working at all.
For example, if you attempted to execute:

TEXT ("fubar", -5)

CGL would not draw anything. REPORT MOST RECENT ERROR would
tell you that a number 16 instruction (TEXT)-caused error
number 2 (N is less than or equal to zero).

• If CGL is in a non-error state, REPORT MOST RECENT ERROR
returns inst name and code values of zero.

3-12

CHAPTER 4

VIEWING TRANSFORMATION INSTRUCTIONS

This section explains the instructions that describe the
graphical world and control the viewing transformation.

4.1 SET WINDOW - SPECIFY WORLD COORDINATE SPACE

The SET WINDOW instruction specifies the edges of the window and
resets -the current position and the fill entity coordinates to
the origin of the window. The window is the visible portion of
world coordinate space (the portion that is mapped onto the
viewport).

CORE Standard

SET WINDOW (xmin, xmax, ymin, ymax)

INQUIRE_WINDOW (xmin, xmax, ymin, ymax)

CORE Graphics Library

SET_WINDOW (xmin, xmax, ymin, ymax)

INQUIRE_WINDOW (xmin, xmax, ymin, ymax)

The parameters are real expressions/variables representing world
coordinates.

xmin specifies the x (horizontal) lower limit of the window.

xmax specifies the x (horizontal) upper limit of the window.

ymin specifies the y (vertical) lower limit of the window.

ymax specifies the y (vertical) upper limit of the window.

4-1

SET WINDOW

Notes

• SET WINDOW is instruction number 80.

• INQUIRE_WINDOW is instruction number 81.

• The default window specification is (O, 959, O, 599), which
corresponds to the Professional's physical device
coordinates.

Errors

501. Invalid coordinate values (minimum>= maximum).

4.2 SET ORIGIN - SPECIFY ORIGIN OF WINDOW

The SET ORIGIN instruction specifies which corner of the viewport
corresponds to the origin of the window and resets the current
position and fill entity coordinates to the new origin. The
origin of the window is the point addressed by the smallest world
coordinate pair. For example, a window defined as (1,2,1,2) has
as its origin the point (1,1).

CORE Standard

Not included.

CORE Graphics Library

SET_ORIGIN (origin

INQUIRE_ORIGIN (origin)

origin is is an integer expression/variable that specifies one
of the following corners:

Notes

O = bottom left
1 = top left (default)
2 = top right
3 = bottom right

• SET ORIGIN is instruction number 86.

4-2

SET ORIGIN

• INQUIRE_ORIGIN is instruction number 87.

e When you execute a SET WINDOW or SET VIEWPORT 2
CGL resets the current position- (and the
coordinates) to the origin of the window.

instruction,
fill entity

4.3 SET WINDOW CLIPPING - ENABLE OR DISABLE WINDOW CLIPPING

The SET WINDOW CLIPPING instruction enables or disables the
displaying of output primitives (or portions of output
primitives) that fall outside of the window.

CORE Standard

SET_WINDOW_CLIPPING (on_off)

INQUIRE_WINDOW_CLIPPING (on_off)

CORE Graphics Library

SET WINDOW CLIPPING (on_off)

INQUIRE_WINDOW_CLIPPING (on_off)

on off is an integer expression/variable that contains one of
the following values:

0 = off anything else = on

Notes

e SET WINDOW CLIPPING is instruction number 84.

e INQUIRE_WINDOW_CLIPPING is instruction number 85.

• Window clipping is on by default.

• If you disable window clipping, output primitives are clipped
at the view surface edges only.

4.4 SET NDC SPACE 2 - DEFINE SIZE OF NDC SPACE

The SET NDC SPACE 2 instruction defines the NDC address space of
all view surfaces-within which viewports will be specified.

4-3

SET NOC SPACE 2

CORE Standard

SET NOC SPACE_2 (width, height)

INQUIRE_NDC_SPACE_2 (width, height)

CORE Graphics Library

SET_NDC_SPACE_2 (width, height)

INQUIRE_NDC_SPACE_2 (width, height)

width specifies the width of NDC space. The parameters are
real expressions greater than zero, less than or equal
to one. At least one parameter must equal one.

height specifies the height of NDC space.

Notes

• SET NDC SPACE 2 is instruction number 107.

e INQUIRE_NDC_SPACE_2 is instruction number 108.

• The default NDC space is (1,1).

• The SET NDC SPACE 2 instruction sets the default viewport to
(O, O,)':-

• SET NOC SPACE 2 can be used at most once per
of CGL and that call must appear
SET/INQUIRE_VIEWPORT_2 instruction.

initialization
before any

• For the Professional video monitor, an NDC space of (1,
0.62S) wilL producte a square aspect ratio. For example, in
a window d'eftned as (0, 100, 0, 100), a rectangle 10 X 10
will be square and the bottom of the screen (with origin at
top) will correspond to the Y coordinate 62.S.

Errors

S03. SET_NDC_SPACE_2 already invoked since initialization.

S04. Default NDC space already established.

SOS. A parameter is not in the range 0 to 1.

4-4

SET NDC SPACE 2

506. Neither width nor height has a value of 1.

507. Neither WIDTH nor HEIGHT can be equal to zero.

4.5 SET VIEWPORT 2 - SPECIFY USABLE AREA OF VIEW SURFACE

The SET VIEWPORT 2 instruction specifies a portion of normalized
device coordinate space to be the viewport and resets the current
position and the fill entity coordinates to the origin of the
window. If you do not execute a SET VIEWPORT 2 instruction, CGL
uses all of NDC space (the entire view surface) by default.

CORE Standard

SET VIEWPORT_2 (xmin, xmax, ymin, ymax)

INQUIRE_VIEWPORT_2 (xmin, xmax, ymin, ymax)

CORE Graphics Library

SET_VIEWPORT_2 (xmin, xmax, ymin, ymax)

INQUIRE_VIEWPORT_2 (xmin, xmax, ymin, ymax)

The parameters are real expressions representing normalized
device coordinates in the range 0 to the NDC upper limit.

xmin specifies the lower limit of the x coordinate.

xmax specifies the upper limit of the x coordinate.

ymin specifies the lower limit of the y coordinate.

ymax specifies the upper limit of the y coordinate.

Notes

• SET VIEWPORT 2 is instruction number 82.

e INQUIRE_VIEWPORT_2 is instruction number 83.

• The default viewport specification is (0, NDC WIDTH, 0, NDC
HEIGHT).

• The viewport's sides are vertical and its top and bottom are
horizontal.

4-5

SET VIEWPORT 2

• The viewport cannot exceed the bounds of NDC space.

Errors

501. Invalid coordinate values (minimum>= maximum).

508. A value outside NDC space is not allowed.

4.6 SCROLL - MOVE SCREEN CONTENTS

The SCROLL instruction moves the contents of the entire screen by
a specified amount of world coordinate space. It has no effect
on the viewing transformation or current values.

CORE Standard

Not included.

CORE Graphics Library

SCROLL (delta_x, delta_y)

The parameters
coordinates.

are real expressions representing

delta x

delta_y

specifies the X (horizontal) movement.

specifies the Y (vertical) movement.

Notes

• SCROLL is instruction number 89.

world

• The direction of movement depends on the origin of the
window. For example, with the default origin (top-left),
positive delta x values scroll toward the left side of the
screen and positive delta y values scroll toward the top of
the screen. Figure 4-1 shows how the SCROLL instruction
works with the default origin.

• Scrolling does not cause any image to be drawn. The area
scrolled onto the screen is filled with the background index.

• Images that scroll off the screen are lost.

4-6

SCROLL

X,Y 0,Y -X,Y

X,0

X,-Y

X,Y = Positive world coordinates

Figure 4-1: The SCROLL Instruction with Default Window Origin

4 .• 7 SCROLL VIEWPORT - MOVE VIEWPORT CONTENTS

The SCROLL VIEWPORT instruction moves the contents of the
viewport by a specified amount of world coordinate space without
affecting images drawn outside the viewport. It has no effect on
the viewing transformation or current values.

CORE Standard

Not included.

CORE Graphics Library

SCROLL VIEWPORT (delta_x, delta_y)

The parameters
coordinates.

are real expressions

4-7

representing world

delta x

delta_y

Notes

SCROLL VIEWPORT

specifies the X (horizontal) movement.

specifies the Y (vertical) movement.

• SCROLL VIEWPORT is instruction number 102.

• The direction of movement depends on the origin of the
window. For example, with the default origin (top-left),
positive delta x values scroll toward the left side of the
screen and positive delta_y values scroll toward the top of
the screen. Figure 4-1 shows how the SCROLL VIEWPORT
instruction works with the default origin.

• Scrolling does not cause any image to be drawn. The area
scrolled into the viewport is filled with the background
index.

• Images that scroll outside the viewport are lost.

4-8

CHAPTER 5

GLOBAL ATTRIBUTE INSTRUCTIONS

This chapter describes the instructions that set the values of
global attributes.

NOTE

The following instructions require the Extended
Bitmap Option. They do nothing if it is not
present.

SET COLOR MAP ENTRY

SET COLOR MAP

SET WRITING PLANES

5.1 SET WRITING INDEX - SELECT COLOR MAP INDEX FOR IMAGES

The SET WRITING INDEX instruction selects an index into the color
map for images created by subsequent output primitive
instructions. It does not change the appearance of any existing
images.

CGL uses the writing index to draw images in
OVERLAY NEGATE, and ERASE NEGATE modes. For more
information, refer to the description of the writing
Chapter 1.

CORE Standard

DEFINE COLOR_INDEX (surface_name, i, cl, c2, c3)

INQUIRE_COLOR_INDEX (surface_name, i, cl, c2, c3)

5-1

OVERLAY,
detailed
mode in

SET WRITING INDEX

CORE Graphics Library

index

Notes

SET WRITING INDEX (index)

INQUIRE_WRITING_INDEX (index)

is an integer expression/variable that specifies one of
the eight color map entries (O to 7).

e SET WRITING INDEX is instruction number 60.

e INQUIRE_WRITING_INDEX is instruction number 61.

• The default writing index is color map entry 7 (which
contains the color white by default).

• If the Extended Bitmap Option is not present, the following
writing index values apply:

0 = dark
other values = light (default)

• The SET WRITING INDEX instruction works differently when used
with plotter view surfaces (see Appendix B).

Errors

401. One or more of the attribute values is invalid.

5.2 SET BACKGROUND INDEX - SET BACKGROUND COLOR MAP INDEX

The SET BACKGROUND INDEX instruction selects an index into the - -
color map for the background. It does not change the appearance
of the background until CGL executes a NEW FRAME or
ERASE VIEWPORT instruction.

CGL uses the background
(NEW FRAME) and to draw
ERASE modes. For more
description of the writing

CORE Standard

index to erase the view surf ace
images in REPLACE, REPLACE NEGATE, and
detailed information, refer to the
mode in Chapter 1.

SET BACKGROUND_INDEX (index)

INQUIRE_BACKGROUND_INDEX (index)

5-2

SET BACKGROUND INDEX

CORE Graphics Library

index

Notes

SET BACKGROUND INDEX (index)

INQUIRE_BACKGROUND_INDEX (index)

is an integer expression/variable that specifies one of
the eight color map entries (0 to 7).

e SET BACKGROUND INDEX is instruction number 62.

e INQUIRE_BACKGROUND_INDEX is instruction number 63.

• The default background index is color map entry 0 (which
contains the color black by default).

• If the Extended Bitmap Option is not present, the following
background index values apply:

0 = dark (default)
other values = light

• The SET BACKGROUND INDEX instruction works differently when
used with plotter view surfaces (see Appendix B).

Errors

401. One or more of the attribute values is invalid.

5.3 SET COLOR MAP ENTRY - SET COLOR MAP ENTRY RGB VALUES

The SET COLOR MAP ENTRY instruction sets the RGB (red, green,
blue) values of an individual color map entry and of any existing
images drawn with that entry.

CORE Standard

Not included.

CORE Graphics Library

entry

SET COLOR MAP ENTRY (entry, color)

INQUIRE_COLOR_MAP_ENTRY (entry, color)

is an integer expression (range 0 to 7) that specifies
which color map entry to set.

5-3

SET COLOR MAP ENTRY

color is a three-element integer array (range 0 to 7) that
specifies red, green, and blue values in that order.

Notes

e SET COLOR MAP ENTRY is instruction number 66 •

• INQUIRE_COLOR_MAP_ENTRY is instruction number 67.

• SET COLOR MAP ENTRY has no effect on plotter view surfaces.

• You can declare a color map entry array
subscripts your programming language allows.
indexed from zero to two:

color(O) specifies a red value
color(l) specifies a green value
color(2) specifies a blue value

Example

with whatever
If the array is

This PASCAL code shows how to use an array constant to specify a
color map entry. The type declarations are from the include file
CGLDEFS.PAS and are shown only for illustrative purposes.

procedure example; { Set color map entry no. 4 to white J
type

RGB value= 0 •• 7;
color_map_entry =array [1 •• 3) of RGB_value;

con st
white= color_map_entry (7, 7, 6);

begin
set color map entry (4, white);

end {-example 11

5.4 SET COLOR MAP - SET ALL COLOR MAP RGB VALUES

.The SET COLOR MAP instruction sets the RGB (red, green, blue)
values of the-entire color map and of any existing images.

CORE Standard

Not included.

5-4

SET COLOR MAP

CORE Graphics Library

SET_COLOR_MAP (color_map)

INQUIRE_COLOR_MAP (color_map)

color_map is a 24-element integer array containing color values
(range 0 to 7) that specify all eight color map entries
in the order red, green, blue, red, green, blue, and so
forth.

Notes

• SET COLOR MAP is instruction number 64.

• INQUIRE_COLOR_MAP is instruction number 65.

• SET COLOR MAP has no effect on plotter view surfaces.

• You can declare a color map array with whatever subscripts
your programming language allows. If the array is indexed
from zero to 23:

Array Element
Color Map Entry
RGB Value

Example

0
0
R

1
0
G

2
0
B

3
1
R

4
1
G

• • •
• • •
• • •

19 20
6 6
G B

21 22 23
7 7 7
R G B

This PASCAL code shows how to use an array constant to set the
color map. The type declarations are from the include file
CGLDEFS.PAS and are shown only for illustrative purposes.

procedure example1 [Set up the color map 1
type

RGB value= 0 •• 77
color_map =array [0 •• 23] of RGB_value1

const
def ault_map := color map (7,0,0, 0,7,0, 0,0,6, 0,0,0,

- 7,7,6, 7,7,0, 7,0,6, 0,7,6)1
begin

set color map (default map)1
end [-exampTe 11 -

5-5

SET_WRITING_PLANES - SELECT COMBINATION OF PLANES

5.5 SET WRITING PLANES - SELECT COMBINATION OF PLANES - -
The SET WRITING PLANES instruction selects which of the three
bitmap planes can be written into by CGL. It does not affect the
contents of any of the planes. For more information, refer to
the description of the bitmap in Chapter 1.

CORE Standard

Not included.

CORE Graphics Library

n

SET WRITING PLANES (n)

INQUIRE_WRITING_PLANES (n)

is an integer expression/variable that specifies that
CGL can write into one of the following combinations of
planes:

n Plane4 Plane2 Plane 1
Writeable Color Map
Entries*

0 none

1 x 0, 1

2 x 0,2

3 x x 0, 1,2,3

4 x 0,4

5 x x o, 1,4,5

6 x x 0,2,4,6

7 x x x 0, 1,2,3,4,5,6, 7

• assuming that all write-protected planes are empty

Notes

e SET WRITING PLANES is instruction number 68.

e INQUIRE_WRITING_PLANES is instruction number 69.

5-6

SET WRITING PLANES

• The default n value is 7 (all three planes selected).

• SET WRITING PLANES has no effect on plotter view surfaces.

5.6 SET WRITING MODE - SET WRITING CHARACTERISTICS

The SET WRITING MODE instruction defines the exact manner in
which CGL draws output primitives. For detailed information,
refer to the description of the writing mode in Chapter 1.

CORE Standard

Not included.

CORE Graphics Library

SET WRITING MODE (mode)

INQUIRE_WRITING_MODE (mode)

mode is an integer expression/variable that specifies one of
the following values:

0 = TRANSPARENT 5 = OVERLAY NEGATE

1 = TRANSPARENT NEGATE 6 = REPLACE

2 = COMPLEMENT 7 = REPLACE NEGATE

3 = COMPLEMENT NEGATE 8 = ERASE

4 = OVERLAY (default) 9 = ERASE NEGATE

Notes

e SET WRITING MODE is instruction number 70.

e INQUIRE_WRITING_MODE is instruction number 71.

• The constant declaration files included with the CGL software
kit include symbols for all ten writing mode values.

• The SET WRITING MODE instruction works differently when used
with plotter view surfaces (see Appendix B).

5-7

SET GLOBAL ATTRIBUTES - SET GLOBAL ATTRIBUTE LIST

5.7 SET GLOBAL ATTRIBUTES - SET GLOBAL ATTRIBUTE LIST

The SET GLOBAL ATTRIBUTES instruction sets the values of the
entire global output primitive attribute list with a single call.

CORE Standard

SET_PRIMITIVE_ATTRIBUTES_2 (primitive_attribute_array_2)

INQUIRE_PRIMITIVE_ATTRIBUTES_2 (primitive_attribute_array_2)

CORE Graphics Library

SET GLOBAL ATTRIBUTES (int_list, real_list)

INQUIRE_GLOBAL_ATTRIBUTES (int_list, real_list)

int list is a subscripted variable that specifies a 19-element
integer array as shown below.

real list is a subscripted variable that specifies an
eight-element real array as shown below.

Table 5-1: Integer Attribute List

Element Attribute Name Default Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

*

writing index 7
background index 0
writin~ mode 4
line style style 1
line style pattern -1
line style mult 2
font 0
character path path 0
character path mode 1
character justification x_just 1
character justification y_just l
character italic O
marker symbol symbol 1
marker symbol code 183
fill mode 0
fill character font 0
fill character char O
fill character width mult 1
fill character height_mult 1

(light/white)
(dark/black)
(OVERLAY)
(SOLID)
*
(DEC Multinational)
(horizontal)
(string)
(left)
(top)
(vertical)
(period)
*
(off)
*
*

ignored by CGL while default values remain in effect

5-8

SET GLOBAL ATTRIBUTES

Table 5-2: Real Attribute List

Element Attribute Name Default Value

0
1
2
3
4
5
6
7

*

Notes

linewidth dx
linewidth dy
character size width
character size height
character spacing delta x
character spacing delta_y
fill entity x
fill entity y

one physical device coordinate unit

o.o
o.o

12.0
25.0
12.0
o.o
o.o
o.o

*
*

o SET GLOBAL ATTRIBUTES is instruction number 72.

o INQUIRE_GLOBAL_ATTRIBUTES is instruction number 73.

o Some of the SET_GLOBAL_ATTRIBUTES parameters have no effect
on, or work differently when used with plotter view surfaces
(see Appendix B).

Example

procedure example; { set up global attribute list 1
var

integer array= array [0 •• 18] of integer;
real_array =array [0 •• 7] of real;

const
integer_list = integer_array (7, 0, 4, 1, -1, 2, O, O, 0,

1, 1, O, 1, 183, O, O, 0, 1, l);

real list = real_array (0.0, 0.0, 12.0, 25.0,
12.0, o.o, o.o, 0.0);

begin
set global attributes {integer_list, real_list);

end {-example 1;

5-9

CHAPTER 6

CURRENT POSITION AND MARKER INSTRUCTIONS

This chapter describes the instructions that change and report on
the current position, draw markers, and control marker attribute
values.

6.1 CURRENT POSITION INSTRUCTIONS

Current position instructions change or report on the value of
the current position: they do not affect the view surface.

6.1.1 MOVE ABS 2 - Move to Absolute Position

The MOVE ABS 2 instruction changes the current position to the
specified world coordinate position.

CORE Standard

MOVE_ABS_2 (x, y)

CORE Graphics Library

MOVE ABS 2 (x, y)

The parameters
coordinates.

are real expressions representing world

x specifies the new X (horizontal) value of the current
position.

y specifies the new Y (vertical) value of the current
position.

6-1

MOVE ABS 2

Notes

• MOVE ABS 2 is instruction number 1.

6.1.2 MOVE_REL_2 - Move Relative to Current Position

The MOVE_REL_2 instruction changes the current position according
to the specifed offsets (delta values).

CORE Standard

MOVE_REL_2 (dx, dy)

CORE Graphics Library

MOVE REL 2 (delta_x, delta_y)

The parameters
coordinates.

are real expressions

delta x specifies a change in the x
position.

delta_y specifies a change in the y
position.

Notes

0 MOVE REL 2 is instruction number 2.

representing

(horizontal)

(vertical)

6.1.3 INOUIRE_CURRENT_POSITION_2 - Get Current Position

world

current

current

The INOUIRE_CURRENT_POSITION_2 instruction returns the current
world coordinate position.

CORE Standard

INOUIRE_CURRENT_POSITION 2 (x, y)

CORE Graphics Library

INOUIRE_CURRENT_POSITION_2 (x, y)

The parameters are real variables representing world coordinates.

x receives the value of the X (horizontal) current
position.

6-2

y

Notes

INQUIRE_CURRENT_POSITION_2

receives the value of the Y
position.

(vertical) current

e INQUIRE_CURRENT POSITION 2 is instruction number 3.

6.1.4 SET_CURSOR - Specify Cursor Characteristics

The SET_CURSOR instruction controls the appearance of the cursor,
the visual representation of the current position.

CORE Standard

Not included.

CORE Graphics Library

font

char

width

SET_CURSOR (font, char, width, height, dx, dy)

INQUIRE_CURSOR (font, char, width, height, dx, dy)

is an integer expression/variable in the range 0 to 3
that specifies one of the four available fonts.

is an integer expression/variable in the range 32 to
126 or 160 to 255 that specifies the decimal equivalent
of the character.

is an integer expression/variable that specifies a
multiplier on the width of the character.

height is an integer expression/variable that specifies a
multiplier on the height of the character.

dx

dy

Notes

is a real expression/variable in the range O to 1 that
specifies the horizontal offset from the upper-left
corner of the cursor character to the current position.

is a real expression/variable in the range 0 to 1 that
specifies the vertical offset from the upper-left
corner of the cursor character to the current position.

• SET CURSOR is instruction number 100.

6-3

SET CURSOR

• INQUIRE_CURSOR is instruction number 101.

• Font -1 is a special set of pre-defined cursors:

Char

-1
0
1
2
3

Cursor

none
default, crosshairs
crosshairs
full screen crosshairs
block

• Redefining the character currently being used as the cursor
does not change the cursor. Only SET CURSOR specifies a new
cursor.

• SET CURSOR has no effect on plotter view surfaces.

Errors

401. One or more of the attribute values is invalid.

910. Invalid when in begin/end define character.

6.2 MARKER PRIMITIVE INSTRUCTIONS

Marker instructions draw markers or series of markers.

6.2.1 MARKER ABS 2 - Draw Marker at Absolute Position

The MARKER ABS 2 instruction changes the current position to the
specified world coordinate position and draws a marker at that
position.

CORE Standard

MARKER ABS_2 (x, y)

CORE Graphics Library

MARKER ABS 2 (x, y)

The parameters are real expressions representing world

6-4

MARKER ABS 2

coordinates.

x specifies the X (horizontal) position at which to draw
a marker.

y specifies the Y (vertical) position at which to draw a
marker.

Notes

• MARKER ABS 2 is instruction number 33.

6.2.2 MARKER REL 2 - Draw Marker Relative to Current Position

The MARKER REL 2 instruction changes the current position
according to the specifed offsets (delta values) and draws a
marker at the new current position.

CORE Standard

MARKER REL_2 (dx, dy)

CORE Graphics Library

MARKER REL 2 (delta_x, delta_y)

The. parameters
coordinates.

are real expressions representing world

delta x specifies the X (horizontal) offset at which to draw a
marker.

delta_y

Notes

specifies the Y (vertical) offset at which to draw a
marker.

• MARKER REL 2 is instruction number 34.

6.2.3 POLYMARKER ABS 2 - Draw Markers at Absolute Positions

The POLYMARKER ABS 2 instruction is an extension of the
MARKER ABS 2 instruction: it draws a series of markers. CGL
changes the current position to each of a list of world
coordinate positions and draws a marker at each position.

6-5

POLYMARKER ABS 2

CORE Standard

POLYMARKER ABS 2 (x_array, y_array, n)

CORE Graphics Library

POLYMARKER ABS 2 (x_array, y_array, n)

x_array is a subscripted real variable that specifies a list of
X world coordinate positions at which to draw a marker.

y_array is a subscripted real variable that specifies a list of
Y world coordinate positions at which to draw a marker.

n is an integer expression that specifies the number of
elements in each array.

Notes

• POLYMARKER ABS 2 is instruction number 35.

• When the POLYMARKER ABS 2 instruction has finished, the
current position is the last specified position.

Errors

2. N is less than or equal to zero.

6.2.4 POLYMARKER REL 2 - Draw Markers at Relative Positions

The POLYMARKER REL 2 instruction is an extension of the
MARKER REL 2 instruction; it draws a series of markers. CGL
changes the current position to each of a list of world
coordinate offsets and draws a marker at each new position.

CORE Standard

POLYMARKER REL 2 (dx_array, dy_array, n)

CORE Graphics Library

POLYMARKER REL 2 (dx_array, dy_array, n)

dx_array is a subscripted real variable that specifies a list of
X world coordinate offsets at which to draw a marker.

dy_array is a subscripted real variable that specifies a list of
Y world coordinate offsets at which to draw a marker.

6-6

n

POLYMARKER REL 2

is an integer expression that specifies the number of
elements in each array.

Notes

• POLYMARKER REL 2 is instruction number 36.

• When the POLYMARKER REL 2 instruction has finished, the
current position is the last specified position.

Errors

2. N is less than or equal to zero.

6.3 MARKER ATTRIBUTE INSTRUCTIONS

This instruction allows you to specify the symbol to be used in
subsequent marker instructions.

6.3.1 SET_MARKER_SYMBOL - Select New Marker Symbol

The SET MARKER SYMBOL instruction specifies one of five symbols
defined- by the CORE Standard or another character as the current
marker symbol.

CORE Standard

SET_MARKER_SYMBOL (symbol)

INQUIRE_MARKER_SYMBOL (symbol)

CORE Graphics Library

SET MARKER SYMBOL (symbol, code)

INQUIRE_MARKER_SYMBOL (symbol, code)

symbol is an integer expression/variable that specifies one of
the following five £tandard symbols (code is ignored)
or another character (symbol> 5 or symbol< 1).

1 = (period) (default)
2 = + (plus sign)
3 = * (asterisk)
4 = 0 (upper case 0)
5 = x (upper case X)

6-7

code

Notes

SET MARKER SYMBOL

is an integer expression/variable that specifies the
decimal code of a character from the current font.

e SET MARKER SYMBOL is instruction number 37.

e INQUIRE_MARKER_SYMBOL is instruction number 38.

• A symbol value that is greater than five or less than one
indicates that the "code" parameter specifies the desired
character.

• The default symbol is the period (value= 1).

• SET MARKER SYMBOL works differently when used with plotter
view surfaces (see Appendix B).

6-8

CHAPTER 7

LINE INSTRUCTIONS

7.1 STRAIGHT LINE PRIMITIVE INSTRUCTIONS

Line instructions draw straight lines or series of connected
straight lines.

7.1.1 LINE ABS 2 - Draw Line to Absolute Position

The LINE ABS 2 instruction changes the current position to the
specified world coordinate position and draws a line connecting
the old current position and the new current position.

CORE Standard
LINE ABS 2 (x, y)

CORE Graphics-Library

LINE ABS 2 (x, y)

The parameters
coordinates.

are real expressions representing world

x specifies an X (horizontal) position to which to draw a
line.

y

Notes

specifies a Y (vertical) position to which to draw a
line.

• LINE ABS 2 is instruction number 4.

7.1.2 LINE REL 2 - Draw Line to Relative Position

The LINE REL 2 instruction changes the current position according

7-1

LINE REL 2

to the specifed world coordinate offsets and draws a line
connecting the old current position and the new current position.

CORE Standard

LINE_REL_2 (dx, dy)

CORE Graphics Library

LINE REL 2 (delta_x, delta_y)

The parameters
coordinates.

are real expressions representing world

delta x specifies an X (horizontal) offset to which to draw a
line.

delta_y

Notes

specifies a Y (vertical) offset to which to draw a
line.

• LINE REL 2 is instruction number S.

7.1.3 POLYLINE ABS 2 - Draw Lines to Absolute Positions - -
The POLYLINE ABS 2
instruction. You
draws a series of
position and ending

instruction is an iterated LINE ABS 2
supply a list of absolute positions and CGL

connected lines starting at the current
at the last position in the list.

CORE Standard

POLYLINE_ABS_2 (x_array, y_array, n)

CORE Graphics Library

POLYLINE_ABS_2 (x_array, y_array, n)

x_array

y_array

n

is a subscripted real variable that specifies a list of
X world coordinate positions to which to draw a line.

is a subscripted real variable that specifies a list of
Y world coordinate positions to which to draw a line.

is an integer expression that specifies the number of
elements in each array.

7-2

POLYLINE ABS 2

Notes

• POLYLINE ABS 2 is instruction number 6.

• When the POLYLINE ABS 2 instruction has finished, the current
position is the- end of the last line drawn: x_array(n),
y_array(n).

Errors

2. N is less than or equal to zero.

7.1.4 POLYLINE REL 2 - Draw Lines to Relative Positions

The POLYLINE REL 2
instruction. You
draws a series of
position and ending

CORE Standard

instruction is an iterated LINE REL 2
supply a list of relative positions and CGL

connected lines starting at the current
at the last position in the list.

POLYLINE_REL_2 (dx_array, dy_array, n)

CORE Graphics Library

POLYLINE_REL_2 (dx_array, dy_array, n)

dx_array is a subscripted real variable that specifies a list of
world coordinate offsets to which to draw a line.

dy_array is a subscripted real variable that specifies a list of
world coordinate offsets to which to draw a line.

n is an integer expression that specifies the number of
elements in each array.

Notes

• POLYLINE REL 2 is instruction number 7.

• When the POLYLINE_REL_2 instruction has finished, the current
position is the end of the last line drawn.

Errors

2. N is less than or equal to zero.

7-3

POLYLINE REL 2

7.1.S POLYGON ABS 2 - Draw Polygon by Absolute Positions

The POLYGON ABS 2 instruction is similar to the POLYLINE ABS 2
instruction. You supply a list of absolute positions and CGL
draws a series of connected lines. The differences are:

• CGL begins drawing at the first position in the specified
list, rather then the current position.

• CGL draws a line from the last position in the list to the
first position, closing the figure.

CORE Standard

POLYGON_ABS_2 (x_array, y_array, n)

CORE Graphics Library

POLYGON_ABS_2 (x_array, y_array, n)

x_array is a subscripted real variable that specifies a list of
X world coordinate positions describing a polygon.

y_array is a subscripted real variable that specifies a list of
Y world coordinate positions describing a polygon.

n is an integer expression that specifies the number of
elements in each array.

Notes

• POLYGON ABS.2 is instruction number 8.

• Assuming that arrays are numbered from 0 to n (as in
BASIC-PLus~2), the instruction (POLYGON_ABS_2, x_array,
y_array, n+l) is equivalent to:

MOVE ABS 2, x array(O), y array(O)
LINE-ABS-2, x-array(l), y-array(l)
LINE ABS=2, x=array(2), y_array(2)

LINE ABS 2, x array(n), y array(n)
LINE ABS=2, x=array(O), y_array(O)

7-4

POLYGON ABS 2

When the POLYGON ABS 2 instruction has finished, the current
position has the-value (x_array(O), y_array(O)).

Errors

3. N is less than or equal to two.

904. Too many points in closed, filled figure.

7.1.6 POLYGON_REL_2 - Draw Polygon by Relative Positions

The POLYGON REL 2 instruction is similar to the POLYLINE REL 2
instruction. You supply a list of relative positions and ·CGL
draws a series of connected lines. The differences are:

• CGL begins drawing at the first position in the specified
list, rather then the current position.

• CGL draws a line from the last position in the list to the
first position, closing the figure.

CORE Standard

POLYGON_REL_2 (dx_array, dy_array, n)

CORE. Graphics Library

POLYGON_REL_2 (dx_array, dy_array, n)

dx_array is a subscripted real variable that specifies a list of
X world coordinate offsets describing a polygon.

dy_array is a subscripted real variable that specifies a list of
Y world coordinate offsets describing a polygon.

n is an integer expression that specifies the number of
elements in each array.

Notes

• POLYGON REL 2 is instruction number 9.

• Assuming that arrays are numbered from 0 to n (as in
BASIC-PLUS-2), the instruction (POLYGON_REL 2, dx_array,
dy_array, n+l) is equivalent to:

MOVE REL 2, dx array(O), dy array(O)
INQUIRE CURRENT POSITION 2,-xl, yl
LINE_REL_2, dx_array(l),-dy_array(l)

7-5

POLYGON REL 2

LINE_REL_2, dx array(2), dy_array(2)

•
•

LINE REL 2, dx array(n), dy array(n)
INQUIRE CURRENT POSITION 2,-xn, yn

· LINE_REL_2, xl = xn, yl = yn

When the POLYGON REL 2 instruction has finished, the current
position has the value that was obtained when CGL executed
(MOVE_REL_2, dx_array(O), dy_array(O)).

Errors

3. N is less than or equal to two.

904. Too many points in closed, filled figure.

7.1.7 RECTANGLE_ABS_2 - Draw Rectangle by Absolute Position

The RECTANGLE ABS 2 instruction draws a series of connected lines - -forming
position
position
does not

a four-sided, perpendicular, polygon with the current
at one corner and a point specified as an absolute

in world coordinate space at the opposing corner. It
change the current position.

CORE Standard

Not included.

CORE Graphics Library

RECTANGLE_ABS_2 (x, y)

The parameters
coordinates.

are real expressions representing world

x specifies an x (horizontal) position describing a
rectangle.

y specifies a y (vertical) position describing a
rectangle.

Notes

• RECTANGLE ABS 2 is instruction number 10.

7-6

RECTANGLE ABS 2

Example

Suppose that the current position is (O,O).
(RECTANGLE_ABS, 2, 3) is equivalent to:

LINE_ABS_2, 2, 0
LINE ABS 2, 2, 3
LINE-ABS-2, O, 3
LINE ABS=2, O, 0

The instruction

7.1.8 RECTANGLE_REL_2 - Draw Rectangle by Relative Position

The RECTANGLE REL 2 instruction draws a series of connected lines
forming a four-sided, perpendicular, polygon with the current
position at one corner and a point specified as an offset in
world coordinate space at the opposing corner. It does not
change the current position.

CORE Standard

Not included.

CORE Graphics Library

RECTANGLE_REL_2 (dx, dy)

The parameters
coordinates.

are real expressions representing world

dx specifies an X (horizontal) offset describing a
rectangle.

dy specifies a Y (vertical) offset describing a rectangle.

Notes

• RECTANGLE REL 2 is instruction number 11.

Example

Suppose that the current position is (0,0).
(RECTANGLE_REL, 2, 3) is equivalent to:

LINE REL 2,
LINE-REL-2,
LINE-REL-2,
LINE REL=2,

2, 0
0, 3

-2, 0
0, -3

7-7

An instruction

CURVED LINE PRIMITIVE INSTRUCTIONS

7.2 CURVED LINE PRIMITIVE INSTRUCTIONS

Arc and curve primitive instructions draw curved lines by
interpolation.

7.2.1 ARC ABS 2 - Draw Arc Based on Absolute Position

The ARC ABS 2 instruction draws an arc of a circle whose center
is at -a specified world coordinate position. The arc begins at
the current position and continues for a specified number of
degrees. CGL updates the current position to the last point on
the arc.

Unlike other output primitives, arcs do not change their shape in
the viewing transformation. The circle described by the
ARC ABS 2 instruction is always a perfect circle, regardless of
whether-the window is the same shape as the viewport.

CORE Standard

Not included.

CORE Graphics Library

ARC_ABS_2 (x, y, angle)

x

y

is a real expression that specifies the X world
coordinate of the center of the circle.

is a real expression that specifies the Y world
coordinate of the center of the circle.

angle is an integer expression that specifies the angle (in
degrees) of the arc.

Notes

• ARC ABS 2 is instruction number 39.

• Positive angles cause the arc to be drawn counterclockwise.
Negative angles cause the arc to be drawn clockwise.

• The angle can be any number up to machine infinity. CGL uses
the specified angle value modulo 360.

• Because of rounding errors, a series of consecutive arcs does
not necessarily describe a circle. For example, six
consecutive 60-degree arcs do not join at the starting point.
If you want an accurate circle, you must specify a 360-degree

7-8

ARC ABS 2

arc.

• You can compute the radius of the circle with the Pythagorean
Theorem. For example, in PASCAL:

Example

arc abs 2 (xl, yl, n):
inquire-current position 2 (x2, y2):
radius 7= sqrt(sqr(abs(xl - x2)) + sqr(abs(yl - y2))):

Figure 7-1 shows what the window would look like if you executed
the following instructions:

SET WINDOW (0.0, 9.0, 0.0, 14.0)
MOVE ABS 2 (8.0, 9.0)
ARC ABS 2 (4.0, 5.0, 90)

WINDOW

(0,0)

(4.5)

•
CENTER

NEWCP

(9,14)

Figure 7-1: An Arc in World Coordinate Space

7.2.2 ARC REL 2 - Draw Arc Based on Relative Position

The ARC REL 2 instruction draws an arc of a circle whose center
is a specified offset from the current position. The arc begins
at the current position and continues for a specified number of
degrees. CGL updates the current position to the last point on
the arc.

Unlike other output primitives, arcs do not change their shape in
the viewing transformation. The circle described by the
ARC REL 2 instruction is always a perfect circle, regardless of

7-9

ARC REL 2

whether the window is the same shape as the viewport.

CORE Standard

Not included.

CORE Graphics Library

ARC_REL_2 (x, y, angle)

x

y

is a real expression that specifies the center of the
circle as an X offset from the current position.

is a real expression that specifies the center of the
circle as a Y offset from the current position.

angle is an integer expression that specifies the angle (in
degrees) of the arc.

Notes

• ARC REL 2 is instruction number 40.

• Positive angles cause the arc to be drawn counterclockwise.
Negative angles cause the arc to be drawn clockwise.

• The angle can be any number up to machine infinity. CGL uses
the specified angle modulo 360.

• Because of rounding errors, a series of consecutive arcs does
not necessarily describe a circle. For example, six
consecutive 60-degree arcs do not join at the starting point.
If you want an accurate circle, you must specify a 360-degree
arc.

• You can compute the radius of the circle with the Pythagorean
Theorem. For example, in PASCAL:

arc rel 2 (xl, yl, n)1
radius~ sqrt(sqr(abs(xl)) + sqr(abs(yl)))1

Example

Figure 7-1 shows what the window would look like if you executed
the following instructions:

SET WINDOW (O.O, 9.0, 0.0, 14.0)
MOVE ABS 2 (8.0, 9.0)
ARC REL 2 (-4.0, -3.0, 90)

7-10

ARC REL 2

7.2.3 CURVE ABS 2 - Draw Curve by Absolute Positions

The CURVE ABS 2 instruction draws a smooth curve connecting a
list of -world coordinate positions. You can specify an open or
closed curve.

CGL begins Drawing at the first position in the specified list
and continues to the last position. If you specify an open
curve, CGL stops drawing there. If you specify a closed curve,
CGL continues the curve back to the first position in the list.
In either case, CGL updates the current position to the end of
the curve.

CORE Standard

Not included.

CORE Graphics Library

CURVE_ABS_2 (x_array, y_array, n, type)

x_array is a subscripted real variable that specifies a list of
X world coordinate positions.

y_array is a subscripted real variable that specifies a list of
Y world coordinate positions.

n is an integer expression that specifies the number of
elements in each array.

type is an integer expression that specifies one of the
following values:

0 = open curve anything else = closed curve

Notes

• CURVE ABS 2 is instruction number 41.

• If you are drawing a closed curve with polygon fill ON, the
maximum number of points that can be on the curve is 28.

Errors

3. N is less than or equal to two.

904. Too many points in closed, filled figure.

7-11

CURVE ABS 2

7.2.4 CURVE_REL_2 - Draw Curve by Relative Positions

The CURVE REL 2 instruction draws a smooth curve connecting a
list of offsets in world coordinate space. You can specify an
open or closed curve.

CGL begins drawing at the first offset in the supplied list and
continues to the last offset. If you specify an open curve, CGL
stops drawing there. If you specify a closed curve, CGL
continues the curve back to the position described by the first
offset in the list. In either case, CGL updates the current
position to the end of the curve.

CORE Standard

Not included.

CORE Graphics Library

CURVE_REL_2 (x_array, y_array, n, type)

x_array

y_array

n

type

Notes

is a subscripted real variable that specifies a set of
X offsets in world coordinate space.

is a subscripted real variable that specifies a set of
Y offsets in world coordinate space.

is an integer expression that specifies the number of
elements in each array.

is an integer expression that specifies one of the
following values:

0 = open curve anything else = closed curve

• CURVE REL 2 is instruction number 42.

Errors

3. N is less than or equal to two.

904. Too many points in closed, filled figure.

7-12

LINE ATTRIBUTE INSTRUCTIONS

7.3 LINE ATTRIBUTE INSTRUCTIONS

Line attribute instructions affect the appearance of the images
produced by both straight and curved line primitive instructions.

7.3.1 SET_LINESTYLE - Set Line Drawing Style

The SET LINESTYLE instruction sets the style of lines drawn by
line drawing instructions. You specify one of the nine standard
line styles or a user-defined line style. Figure 7-2 shows the
nine standard line styles.

CORE Standard

SET LINESTYLE (linestyle)

INQUIRE_LINESTYLE (linestyle)

CORE Graphics Library

SET_LINESTYLE (style, pattern, mult)

INQUIRE_LINESTYLE (style, pattern, mult)

The parameters are integer expressions/variables.

style

pattern

mult

Notes

specifies one of nine standard line styles (pattern and
mult are ignored) or a user-defined style.

specifies a 16-bit user-defined pattern where the set
bits are "on" and the clear bits are "off".

specifies how many times to draw each bit in the
pattern.

• SET LINESTYLE is instruction number 12.

e INQUIRE_LINESTYLE is instruction number 13.

• Any style value less than one or greater than nine indicates
a user-defined style.

• The default line style is 1 (SOLID).

7-13

SET LINESTYLE

• The multiplier operates on individual bits.
suppose the pattern is:

1010101010101010

A multiplier of two would produce:

11001100110011001100110011001100

A multiplier of three would produce:

For example,

111000111000111000111000111000111000111000111000

• SET LINESTYLE works differently when used with plotter view
surfaces (see Appendix B).

STYLE
NO. NAME

SOLID

2 DASHED

3 DOT _DASHED

4 DOTTED

5 DOT-DOT-DASHED

6 DOTTED-WIDE-SPACING

7 DASHED-SHORT _LINES

8 DASHED-LONG-LINES ...

9 DOT _DASHED-SHORT _LINES

BIT PATTERN
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- •
··-·· • • •
. ...

Figure 7-2: The Standard Line Styles

7.3.2 SET_LINEWIDTH - Set Line Drawing Width

The SET LINEWIDTH instruction specifies the width of line
primitives in world coordinate units. You can set the X and Y
line widths independently.

7-14

SET LINEWIDTH

CORE Standard

SET LINEWIDTH (linewidth)

INQUIRE_LINEWIDTH (linewidth)

CORE Graphics Library

SET_LINEWIDTH (dx, dy)

INQUIRE_LINEWIDTH (dx, dy)

The parameters are real expressions/variables representing world
coordinate units.

dx

dy

Notes

specifies the X (horizontal) width of lines created by
line primitive instructions.

specifies the Y (vertical) width of lines created by
line primitive instructions.

• SET LINEWIDTH is instruction number 14.

e INQUIRE_LINEWIDTH is instruction number 15.

• The default line width is (dx = O, dy = 0).

• A line width parameter less than or equal to zero sets the
line width to one physical device coordinate unit.

• The drawing speed is noticably slower if the line width is
wider than one physical device coordinate unit.

• Complement mode does not work correctly if the line width is
wider than one physical device coordinate unit.

• SET LINEWIDTH works differently when used with plotter view
surfaces (see Appendix B).

NOTE

The following feature is supported only for
compatibility with earlier versions of CGL.
It is recommended that you use
SET LINEWIDTH ORIENTATION to control line
positioning. Once executed, it always
overrides the following.

7-15

SET LINEWIDTH

• You can use the signs of the line width parameters to control
a line's exact starting position relative to the drawing
position and the origin of the window. CGL draws the end of
a line as a rectangle with dimensions determined by the line
width parameters. You can specify which of the four corners
of the rectangle is to appear at the current position.
Assuming the default origin (top-left):

dx dy corner

+ + lower left
+ lower right

+ upper left
upper right

7.3.3 SET_LINEWIDTH_ORIENTATION - Set Line Endpoint Offset

The SET LINEWIDTH ORIENTATION instruction specifies the offset
from the end of a line primitive to the actual drawing position
specified in the line primitive instruction. CGL draws the end
of a line as a rectangle with dimensions determined by the
current vertical and horizontal line width. (This can be clearly
seen in Figure 7-3.) You can specify X and Y offsets from the
bottom-left corner of that rectangle to the actual drawing
position.

CORE Standard

Not included.

CORE Graphics Library

SET LINEWIDTH ORIENTATION (dx, dy)

INQUIRE_LINEWIDTH_ORIENTATION (dx, dy)

The parameters are real expressions/variables in the range zero
to one.

dx

dy

specifies the X (horizontal) offset from the upper-left
corner of the end-point rectangle to the current
position.

specifies the Y (vertical) offset from the upper-left
corner of the end-point rectangle to the current
position.

7-16

Figure 7-3:

SET LINEWIDTH ORIENTATION

()
• I () r 1 • ()
--·-------~--------------,

. .

.

------------~------------.

Line Width Orientations: Bottom-left and Centered

7-17

SET LINEWIDTH ORIENTATION

Notes

• SET LINEWIDTH ORIENTATION is instruction number 98.

• INQUIRE_LINEWIDTH_ORIENTATION is instruction number 99.

• The default line width orientation is the top-left corner
(dx = 0, dy = 0).

• To center the end point over the drawing position, use (0.5,
O.S), as shown in Figure 7-3.

Errors

SOS. A parameter is not in the range 0 to 1.

7.3.4 SET FILL MODE - Enable or Disable Area Fill

The SET FILL MODE instruction selects the current area fill mode
(or disables fill). When fill is enabled, CGL shades (fills in
with a character) areas described by subsequent line primitives.
You can use "polygon fill" mode with closed line primitives (a
polygon, rectangle, closed arc, or closed curve) or fill to a
specified line or point (see the SET FILL ENTITY instruction).

CORE Standard

Not included.

CORE Graphics Library

SET_FILL_MODE (mode)

INQUIRE_FILL_MODE (mode)

mode is an integer expression/variable that specifies one of
the following values:

0 = fill off (default)

1 = fill to a vertical line

2 = fill to a horizontal line

3 = fill to a point

4 = fill polygons

7-18

SET FILL MODE

Notes

• SET FILL MODE is instruction number 74. - -
• INQUIRE_FILL_MODE is instruction number 75.

• This is a limit of 256 points in any filled polygon except
for a closed curve, which has a limit of 28 points.

Errors

401. One or more of the attribute values is invalid.

7.3.5 SET_FILL_ENTITY - Specify Line or Point for Fill Reference

The SET FILL ENTITY instruction sets the line or point used as
the reference for area fill (see SET_FILL_MODE).

CORE Standard

Not included.

CORE Graphics Library

SET_FILL_ENTITY (x, y)

INQUIRE_FILL_ENTITY (x, y)

The parameters are real expressions/variables
absolute world coordinates.

x

y

specifies the X value of the fill entity.

specifies the Y value of the fill entity.

Notes

• SET FILL ENTITY is instruction number 76. - -
• INQUIRE_FILL_ENTITY is instruction number 77.

representing

• The default fill entity coordinate pair is the origin of the
window.

• If the fill mode is 1, the X value (a point on the horizontal
axis) describes a vertical line.

7-19

SET FILL ENTITY

• If the fill mode is 2, the Y value (a point on the vertical
axis) describes a horizontal line.

• If the fill mode is 3, the X and Y values describe a point.

• The fill entity does not have to be within the window.

• If polygon fill is enabled, the fill coordinates are not
actually used when filling but are stored for a future change
of fill mode.

7.3.6 SET_FILL_CHAR - Specify Character for Fill

The SET FILL CHAR specifies the character used for area fill.

CORE Standard

Not included.

CORE Graphics Library

SET_FILL_CHAR (font, char, width_mult, height_mult)

INQUIRE_FILL_CHAR (font, char, width_mult, height_mult)

The parameters are integer expressions/variables.

font

char

specifies the number of the font containing the fill
character.

specifies the numeric code of the character.

width mult specifies a multiplier on the standard character
width.

height_mult specifies a multiplier on the standard character
height.

Notes

• SET FILL CHAR is instruction number 78.

• INQUIRE_FILL_CHAR is instruction number 79.

• The.default fill character is a special case; in fact it's
not a character at all but a vertically-oriented version of
the current line style.

7-20

SET FILL CHAR

• SET FILL CHAR works differently when used with plotter view
surfaces (see Appendix B).

Errors

401. One or more of the attribute values is invalid.

7-21

CHAPTER 8

TEXT INSTRUCTIONS

This chapter describes text primitive and attribute instructions.

8.1 TEXT PRIMITIVE INSTRUCTIONS

8.1.1 TEXT - Draw Line of Text

The TEXT instruction draws a line of text. Unlike most other
output primitives, text does not change the current position.

CORE Standard

TEXT (character_string)

CORE Graphics Library

TEXT (string, length)

string is a string expression.

length

Notes

is an integer expression representing the number of
characters in the string expression.

• TEXT is instruction number 16.

• In PASCAL, "TEXT" is a predeclared identifier, thus the name
of this instruction is "TXT".

Errors

8. TEXT error, N < 0 or extent > 32767.

8-1

TEXT

208. The string contains one or more undefined characters.

8.1.2 IN0UIRE_TEXT_EXTENT_2 - Report Position at End of String

The INQUIRE TEXT EXTENT 2 instruction reports the amount of world
coordinate -space that- would be used to draw a string of the
indicated length, unjustified, beginning at the current position.
The current text attribute settings are used to compute the
string extent vector. Nothing is drawn or changed.

CORE Standard

INQUIRE_TEXT_EXTEN~_2 (character_string, surface_name, dx, dy)

CORE Graphics Library

INQUIRE TEXT EXTENT_2 (length, delta_x, delta_y)

length is an integer expression representing the number of
characters in the string.

delta x receives the X extent in world coordinate units.

delta_y receives the Y extent in world coordinate units.

Notes

• INQUIRE_TEXT EXTENT 2 is instruction number 17.

8.1.3 LOAD FONT - Load User-defined Font

The LOAD FONT instruction loads characters into
selected- font from a named region in memory. The
region is described in the PRO/GIDIS Manual
AA-Y660A-TK).

CORE Standard

Not included.

CORE Graphics Library

LOAD FONT (name, length)

name is a string expression.

8-2

the currently
format of this

(order no.

LOAD FONT

length is a an integer value or expression that specifies the
length of the name string.

Notes

• LOAD FONT is instruction number 112.

• The name must correspond to the installed region name and
should only contain characters A through z (upper or lower
case), and 0 through 9.

• The name length must be greater than zero and less than or
equal to six.

• You must call SET FONT SIZE before using this instruction in
order to pass the extent and size information to CGL (even
though this information forms part of the file header).

• If a font could not be loaded, font 0 is loaded by default.

• Characters cannot be defined for the plotter using this
instruction. Use begin/end define character.

Errors

9. Font 0 cannot be redefined.

401. One or more of the attribute values is invalid.

910. Invalid when in begin/end define character.

912. Font could not be loaded.

8.1.4 LOAD CHARACTER - Load User-defined Character

The LOAD CHARACTER instruction loads a character into the current
(user-defined) font.

CORE Standard

Not included•

CORE Graphics Library

LOAD_CHARACTER (code, matrix)

code is an integer expression that specifies
Multinational Character Set decimal code.

8-3

a DEC
The valid

LOAD CHARACTER

codes range from 32 to 126 {GL less the delete
character) and from 161 to 255 {GR). You cannot load
characters that correspond to CO, the delete character,
or Cl.

matrix

Notes

is an integer array variable
physical device coordinate
character.

that specifies
unit pattern of

• LOAD CHARACTER is instruction number 32.

the
the

• You must execute the SET FONT SIZE instruction before using
the LOAD CHARACTER instruction.

• The character code value must be less than or equal to the
extent specified in the SET_FONT_SIZE instruction.

• The number of elements in the matrix value must correspond to
the y_size value specified in the SET FONT SIZE instruction.

• If the x size specified in the SET FONT SIZE instruction is
less than 16, CGL uses the high-order bits in each array
element.

• If the y size specified in the SET FONT SIZE instruction is
less than the number of elements-in the array, CGL uses the
lower-numbered array elements.

• You cannot define characters on the plotter view surface
using this instruction. Use the begin/end define character
sequence.

Errors

9. Font 0 cannot be redefined.

401. One or more of the attribute values is invalid.

910. Invalid when in begin/end define character.

8.1.S BEGIN DEFINE CHARACTER - -
This instruction provides an alternate way of loading a character
into the current {user defined) font. Instructions between the
BEGIN DEFINE CHARACTER and the END DEFINE CHARACTER instructions
are used to describe the character. The world coordinates of

8-4

BEGIN DEFINE CHARACTER

output primitives and attribute sizes are mapped to the character
dimensions specified in SET FONT SIZE.

CORE Standard

Not included.

CORE Graphics Library

code

BEGIN DEFINE CHARACTER (code)

is an integer expression that specifies a DEC
Multinational Character Set decimal code. The valid
codes range from 32 to 126 (GL less the delete
character) and from 160 to 255 (GR). You cannot load
characters that correspond to co, the delete character,
or Cl.

Notes

e BEGIN DEFINE CHARACTER is instruction number 109.

• You must execute the SET FONT SIZE instruction before using
this instruction.

• The character code value must be less than or equal to the
extent specified in the SET FONT SIZE instruction.

• Use this instruction to define characters to be used on the
plotter view surface.

• Some instructions are invalid within BEGIN
character. Examples are LOAD CHARACTER,
SELECT VIEW SURFACE. -

Errors

9. Font 0 cannot be redefined.

and END define
SET CURSOR and

401. One or more of the attribute values is invalid.

910. Invalid when in begin/end define character.

8.1.6 END DEFINE CHARACTER

This instruction terminates the definition of a character.

8-5

END DEFINE CHARACTER

CORE Standard

Not included.

CORE Graphics Library

END DEFINE CHARACTER
Notes

e END DEFINE CHARACTER is instruction number 110.

Errors

910. Invalid when in begin/end define character.

8.2 TEXT ATTRIBUTE INSTRUCTIONS

8.2.1 SET CHARSIZE - Set Character Size

The SET CHARSIZE instruction sets the size, in world coordinate
units, -of the characters drawn by subsequent TEXT instructions.
You can set the X and Y sizes independently. (See the detailed
discussion of character size in Chapter 1.)

CORE Standard

SET CHARSIZE (charwidth, charheight)

INQUIRE_CHARSIZE (charwidth, charheight)

CORE Graphics Library

SET_CHARSIZE (width, height)

INQUIRE_CHARSIZE (width, height)

The parameters are real expressions/variables representing world
coordinate units.

width specifies the X (horizontal) size of the character.

height specifies the Y (vertical) size of the character.

Notes

8-6

SET CHARSIZE

• SET CHARSIZE is instruction number 20.

e INQUIRE_CHARSIZE is instruction number 21.

• The default width (12) and height (25) values produce
graphics characters that appear the same size as text mode
characters using the default window (0, 959, O, 599). CGL's
default differ from the CORE Standard, which specifies a
default of 100 lines of 100 characters.

• Negative width or height values cause CGL to invert the
characters. In other words, a negative width value produces
characters that are backwards and a negative height value
produces characters that are upside-down.

• If the specified character size is smaller than the default
character size, the terminal subsystem draws the characters
"half size" by using every other physical device coordinate
unit.

8.2.2 SET_CHARSPACE - Set Character Spacing

The SET CHARSPACE instruction specifies the displacement between
the starting points of adjacen,t letters. The displacement can be
horizontal, or vertical, or both.

CORE Standard

SET CHARSPACE (charspace)

INQUIRE_CHARSPACE (charspace)

CORE Graphics Library

SET_CHARSPACE (delta_x, delta_y)

INQUIRE_CHARSPACE (delta_x, delta_y)

The parameters are real expressions/variables representing world
coordinate units.

delta x specifies the X offset between characters.

delta_y specifies the Y offset between characters.

8-7

SET CHARSPACE

Notes

• SET CHARSPACE is instruction number 24.

e INQUIRE_CHARSPACE is instruction number 25.

• The default delta x value is 12 (the same
character width): The default delta_y
vertical offset).

as the default
value is zero (no

• In string mode CGL adjusts the spacing to maintain the
current character path (see SET_CHARPATH).

8.2.3 SET CHARPATH - Set Text Writing Direction

The SET CHARPATH instruction has two modes:
string.

character and

In character mode, SET CHARPATH changes the angle (relative
horizontal) in which- CGL draws individual characters.
character spacing is set to that last explicitly defined

to
The

by a
SET CHARSPACE instruction.

In string mode, SET CHARPATH changes the angle (relative to
horizontal) in which CGL draws individual characters and adjusts
the character spacing so that characters are drawn along the base
line described by the character angle (see Figure 1-13).

CORE Standard

SET CHARPATH (charpath)

INQUIRE_CHARPATH (charpath)

CORE Graphics Library

SET_CHARPATH (path, mode)

INQUIRE_CHARPATH (path, mode)

The parameters are integer expressions/variables.

path specifies ·one of the following values:

8-8

SET CHARPATH

2

3

5

6

mode specifies one of the following values:

0 = character mode

anything else = string mode (default)

Notes

• SET CHARPATH is instruction number 22.

e INQUIRE_CHARPATH is instruction number 23.

• The default character path is zero.

• The angles (counterclockwise from horizontal) that correspond
to the eight possible paths are:

path angle

0 0
1 51
2 90
3 129
4 180
5 132
6 270
7 309

• Characters drawn with a diagonal path appear somewhat italic.
If necessary, use SET CHARITALIC to compensate.

8-9

SET CHARPATH

8.2.4 SET CHARJUST - Set Text Justification

The SET CHARJUST instruction specifies the starting position of
text primitives relative to the current position. It allows
horizontal and vertical justification and centering.

CORE Standard

SET CHARJUST (charjust)

INQUIRE_CHARJUST (charjust)

CORE Graphics Library

SET_CHARJUST (x_just, y_just)

INQUIRE_CHARJUST (x_just, y_just)

x_just is an integer expression/variable that specifies one of
the following X (horizontal) text justification values:

1 = left (default)
2 = center
3 = right

y_just is an integer expression/variable that specifies one of
the following Y (horizontal) text justification values:

Notes

1 = top (default)
2 = center
3 = bottom

• SET CHARJUST is instruction number 26.

• INQUIRE_CHARJUST is instruction number 27.

8.2.5 SET CHARITALIC - Set Character Slant

The SET CHARITALIC instruction changes the shape of the
individual characters in a text string to resemble italic type.
The characters can have a forward or backward slant.

CORE Standard

Not included.

8-10

SET CHARITALIC

CORE Graphics Library

SET_CHARITALIC (angle)

INQUIRE_CHARITALIC (angle)

angle is an integer expression/variable that specifies an
angle (in degrees) of slant.

Notes

• SET CHARITALIC is instruction number 28.

• INQUIRE CHARITALIC is instruction number 29.

• A negative angle specifies a forward (right) slant. A
positive angle specifies backward (left) slant.

• You should confine the angle of slant to the range -40 to 40
for readability.

• The default angle is zero (vertical).

8.2.6 SET FONT - Select Character Font

The SET FONT instruction selects one of the four character fonts
available to your program.

Font 0 contains the DEC Multinational Character Set (GL and GR)
and cannot be redefined.

Fonts 1 through 3 are user-defined fonts in which you can load
your own special characters. Refer to the SET FONT SIZE,
LOAD FONT, LOAD CHARACTER, and BEGIN/END DEFINE CHARACTER
instructions for more information about user-defined fonts.

CORE Standard

SET FONT (font)

INQUIRE_FONT (font)

CORE Graphics Library

SET FONT (font)

INQUIRE_FONT (font)

8-11

SET FONT

font is an integer expression/variable that specifies a
value in the range 0 to 3.

Notes

• SET FONT is instruction number 18.

•. INQUIRE_FONT is instruction number 19.

• Font 0 (DEC Multinational) is the default.

• SET FONT works differently when used with plotter view
surfaces (see Appendix B).

8.2.7 SET FONT SIZE - Define Size of Character Font

The SET FONT SIZE instruction initializes the current
user-defined font. It establishes the size of the font by
specifying the highest DEC Multinational Character Set decimal
code (the lowest is always 32) and specifies the size of the
characters in physical device coordinate units.

When you execute SET FONT SIZE, CGL passes the font size and
subsequent character definitions to all currently selected view
surfaces. If a view surface is not selected at the time the font
is defined, it cannot access the font.

CORE Standard

Not included.

CORE Graphics Library

SET_FONT_SIZE (extent, x_size, y_size)

INQUIRE_FONT_SIZE (extent, x_size, y_size)

The parameters are integer expressions/variables.

extent specifies the highest decimal code in the font. The
valid codes for a user-defined font range from 32 to
126 (GL less the delete character) and from 161 to 255
(GR). You cannot define characters that correspond to
CO, the delete character, or Cl.

x size specifies the width of the font's characters
physical device coordinate units (range 1 to 16).

8-12

in

SET FONT SIZE

y_size specifies the height of the font's characters in
physical device coordinate units (range 1 to 16).

Notes

• SET FONT SIZE is instruction number 30. - -

• INQUIRE_FONT_SIZE is instruction number 31.

• The extent of font 0 is 255.

• The x size of font 0 is 12.

• The y_size of font 0 is 10.

• An extent value less than 32 clears the specified font
(except font 0).

• SET FONT SIZE works differently when used with plotter view
surf aces -(see Appendix B).

Errors

9. Font 0 cannot be redefined.

401. One or more of the attribute values is invalid.

902. There is insufficient space for the font.

8-13

0.

2.

3.

8.

9.

208.

401.

SOL

S03.

S04.

sos.

S06.

S07.

S08.

701.

70S.

706.

There is no error.

APPENDIX A

ERROR MESSAGES

N is less than or equal to zero.

N is less than or equal to two.

TEXT error, N < 0 or extent > 32767.

Font 0 cannot be redefined.

The string contains one or more undefined characters.

One or more of the attribute values is invalid.

Invalid coordinate values (minimum>= maximum}.

SET_NDC_SPACE_2 already invoked since initialization.

Default NDC space already established.

A parameter is not in the range 0 to 1.

Neither width nor height has a value of 1.

Neither WIDTH nor HEIGHT can be equal to zero.

A value outside NDC space is not allowed.

The CORE system is already initialized.

View surface already initialized.

Invalid view surface name.

A-1

ERROR MESSAGES

708. View surface not initialized.

709. View surface already selected.

711. View surface not selected.

716. There has been no END BATCH since the last BEGIN BATCH.

717. There has been no corresponding BEGIN_BATCH.

743. The CORE system has not been initialized.

900. Function number out of range or
parameters.

wrong

902. There is insufficient space for the font.

903. I/O error (unassigned LUN, etc.).

904. Too many points in closed, filled figure.

906. Error on view surface device.

907. Invalid when in begin/end batch.

908. View surface not ready.

909. Function not implemented.

910. Invalid when in begin/end define character.

911. Error on file playback (file not found, etc).

912. Font could not be loaded.

A-2

number of

APPENDIX B

OPTIONAL VIEW SURFACES

This appendix provides information specific to view surfaces
other than the Professional 300 Series video monitor.

B.1 HEWLETT-PACKARD HP7470A AND HP7475A GRAPHICS PLOTTERS

The following sections describe all the differences between the
way CGL works with a plotter and with the other view surfaces.
If an instruction is not mentioned, it performs exactly as
specified in Chapters 3 through 8.

The plotter pen normally operates at 38 cm/s. CGL can "feed" the
plotter fast enough to keep it active.

In some cases, exact support for CGL instructions would require
too much computation, reduce the quality or speed of output, or
put unnecessary stress on the plotter. In those cases, suitable
"fallbacks" have been devised: the instructions perform somewhat
differently on the plotter than they do on other view surfaces.
Other instructions simply have no effect on a plotter view
surface at all.

B.1.1 Hardware Requirements

To connect a plotter to the printer port, you must have a
standard DEC printer cable (BCCOS). If you want to connect a
plotter only, you must have a DEC Male-Male cable (BC22H). If
you want to connect a printer and a plotter to the same system,
you must have the "Eavesdrop" cable supplied by Hewlett-Packard
(07470-60090).

A printer cable (BCC20) with a male connector at the printer (or
plotter) end will become available in early 1984. It will
eliminate the need for the Male-Male cable.

B-1
)

HEWLETT-PACKARD PLOTTERS

B.1.2 Setting Up the Plotter

This list supplements the Hewlett-Packard documentation in
describing how to set the plotter's rocker switches:

• Switches Bl thru B4 control baud rate. Specify 4800 baud by
setting Bl and B4 on (to Bl and B4).

• The next two switches on the 7475 and the next switch on the
7470 control paper size. See the HP operator's manual for
details.

• The Y/D switch controls cabling. If
Male-Male cable, set it to off (D).
"Eavesdrop" cable, set it to on (Y).

you are using the
If you are using the

• The Sl and S2 switches control byte size and parity. Set
both to off (eight-bit bytes and no parity checking).

B.1.3 Physical Device Coordinate Space

Physical device coordinate space for the HP7470A is 1000 x 720
(paper sizes A and A4). Physical device coordinate space for the
HP7475A is either 1000 x 720 or 1520 x 1000 (paper sizes B and
A3). These coordinate spaces have been set so that one unit is
approximately the line width drawn by the .3 mm pen supplied by
Hewlett-Packard.

B.1.4 Inoperative Instructions

The following instructions have no effect on plotter output.

e LOAD FONT ,-
e LOAD CHARACTER

e NEW FRAME

e SCROLL

e SCROLL VIEWPORT

e SET COLOR MAP

B-2

HEWLETT-PACKARD PLOTTERS

e SET COLOR MAP ENTRY

• SET CURSOR

• SET WRITING PLANES

B.1.5 SET WRITING INDEX

Writing index to pen mapping was
compatibility with the video
specifies pens as follows:

7470A plotter (two pens)

1 = left pen
2 = right pen
3 = left pen at two-thirds

chosen to maximize potential
color map. SET WRITING INDEX

speed
4 = right pen at two-thirds speed
5 = left pen
6 = right pen
7 = left pen

7475A plotter (six pens)

1 = pen 1
2 = pen 2
3 = pen 3
4 = pen 4
5 = pen 1 at two-thirds speed
6 = pen 5
7 = pen 6

A writing index value of zero for either plotter is described in
the section on SET BACKGROUND INDEX.

Slowing the pen down to two-thirds full speed thickens and
darkens a line slightly, particularly with a fresh pen.

If fill is enabled, CGL uses
alignment of the hatch lines
between hatch lines drawn in
alignment between writing
unit.

the writing index to determine the
in order to maximize differentiation
different colors. The difference in
index n and writing index n+2 is one

B-3

HEWLETT-PACKARD PLOTTERS

B.1.6 SET BACKGROUND INDEX

In the context of a plotter-only application, the color of the
background is is the color of the paper currently being used.
Thus, there is no reason to change the background index. Other
view surfaces, however, may require different background indexes.
Thus, while the background index does not by itself specify a
pen, changing it will in some circumstances temporarily remap
pens to minimize the chance that adjacent areas will accidentally
be the same color.

• If the writing index and the background index are both zero,
CGL draws with the right-hand pen on the HP7470A and pen six
on the HP7475A.

• If the writing index is zero and the background index is
non-zero, CGL draws with the pen specified by the background
index.

• If the writing index and the background index are the same
non-zero number, CGL draws with the specified pen.

Setting the background index to a value of eight will slow the
pen down. This is particularly suitable for plotting on
transparency material.

B.1.7 SET_WRITING_MODE

All writing modes are mapped to OVERLAY or TRANSPARENT.
TRANSPARENT, TRANSPARENT NEGATE, ERASE, and ERASE NEGATE are
treated as TRANSPARENT. All other modes are treated as OVERLAY.

B.1.8 SET MARKER SYMBOL

If you set the current font to a font whose extent is less than
or equal to 60, CGL uses a special font consisting of 20 markers:

0 = lower-case x 10 = square
1 = lower-case 0 11 = diamond
2 = plus sign 12 = filled square
3 = star 13 = filled diamond
4 = double dagger 14 = pi
5 = asterisk 15 = up arrow
6 = sideways H 16 = down arrow
7 = triangle 17 = left arrow
8 = inverted triangle 18 = right arrow
9 = crosshatch 19 = check mark

B-4

HEWLETT-PACKARD PLOTTERS

If you specify a marker symbol character greater than 19, CGL
uses the number modulo 20.

B.1.9 SET LIRESTYLE - .

The style parameter specifies one of the following, built-in
plotter line styles. These resemble but do not match the video
monitor line styles.

1 = SOLID
2 = DASHED LONG LINES
3 = DOT DOT DASHED - -4 = DASHED SHORT LINES
5 = DOT DOT DASHED
6 = DOTTED WIDE SPACING
7 = DASHED
8 = DOT DASHED
9 = DASHED

The size of the line style pattern is set to the value specified
in the command, with a minimum of about .125 inches. The pattern
is rotated rather than projected when a diagonal line is drawn.

B.1.10 SET LINEWIDTR

Actual line width is only an approximation because of the nature
of the hardware. A line width of one approximates the .3mm pens
supplied by Hewlett-Packard.

B.1.11 SET FILL CHAR

Fill characters are mapped to a special set of hatch patterns.
There are four specific cases:

e SET_FILL_CHAR (O, 0, •••)

This specifies horizontal hatch lines about .04 inches apart
that are drawn using the current linestyle.

e SET_FILL_CHAR (n, 32, •••)

This specifies solid fill. Parameter "n" is a integer in the
range one to three representing a user-defined font.

B-5

HEWLETT-PACKARD PLOTTERS

e SET_FILL_CHAR (0, c, •••)

This specifies one of the hatch patterns shown in Table B-1.
Parameter "c" is a positive integer representing a character
code. CGL uses the character code specified.

• SET_FILL_CHAR (n, c, •••)

This specifies one of the hatch patterns shown in Table B-1.
Parameter "n" specifies a user-defined font and "c" specifies
a character code. CGL maps the character code as described
under the LOAD CHARACTER instruction in Chapter 8. For
example, SET FILL CHAR (1,33, •••) specifies pattern 1 (plus
sign) with line separation of six units and solid lines.

Table B-ls Batch Patterns

Line Separations 6 Units

Solid Lines Dashes Long Dashes Long/Short Dashes

1 plus sign 13 plus sign 25 plus sign 37 plus sign
2 slash 14 slash 26 slash 38 slash
3 horiz. line 15 horiz. line 27 horiz. line 39 horiz. line
4 backslash 16 backslash 28 backslash 40 backslash
5 vert. line 17 vert. line 29 vert. line 41 vert. line
6 x 18 x 30 x 42 x

Line Separations 11 Units

Solid Lines Dashes Long Dashes Long/Short Dashes

7 plus sign 19 plus sign 31 plus sign 43 plus sign
8 slash 20 slash 32 slash 44 slash
9 horiz. line 21 horiz. line 33 horiz. line 45 horiz. line

10 backslash 22 backslash 34 backslash 46 backslash
11 vert. line 23 vert. line 35 vert. line 47 vert. line
12 x 24 x 36 x 48 x

Hatch pattern one is the same as pattern seven, and so forth.
The difference is that that the lower-numbered patterns have
hatch lines that are separated by six units and the
higher-numbered six patterns have lines separated by 11 units.
The entire hatch pattern set repeats with codes 49 through 96.
Some of the patterns are shown in Figures B-1 and B-2.

B-6

HEWLETT-PACKARD PLOTTERS

±I ti ti ti 1:± 1±1±
j:I :ti ti tt tt l:tlj
l:l:r:t cc a1:c1:

13 :tll:::t c CJ a 1:r1
+1 +:H::i 1:u::i: 1:+1

+1 +:! R i:J i:J 1+ +1r• o: - •

'''''''''' ~ ,,,,,,,,,
,, ''''''" ,,, ,,,,,,
,,,, ''''' 16 ,,,,, ,,,, ,,,,,, ,,. ,,,,,,, ,,,,,,,,,
~,,,.

5

11

1111111II11111
111111II11111
1111111111111

17 1111111111111
111111111111
111111111111 ,,

3

9

12mr
---· ------·

15 = = = = = = -----------------·

Figure B-11 Batch Patterns 1 through 18

B-7

HEWLETT-PACKARD PLOTTERS

B.1.12 SET FORT

All characters of Font 0 (DEC Multinational) are supported. The
error character, for control characters and so forth, is the
question mark.·

B.1.13 SET FORT SIZE - -
SET_FONT_SIZE is ignored except that the font extent specifies
either DEC Multinational or the marker alphabet as the current
font. There are three cases:

o.w ..
Loe Angal• ~====;a

Miami

Waeh. D. C.

Figure B-2: Pie Chart (Drawn with HP7470 Plotter)

• An extent less than or equal to 60 specifies the marker
alphabet.

• An extent of 128 or 256 specifies DEC Multinational with no
character index mapping.

B-8

HEWLETT-PACKARD PLOTTERS

• Any other extent specifies DEC Multinational without CO and
Cl.

B.1.14 Plotter Errors

When something does wrong with the plotter, CGL simply returns
error 906: "Error on view surface device." This list documents
the behavior of the plotter in unusual conditions so that you can
find and correct the error.

NOTE

This list assumes that the plotter and printer
are in series via the "Eavesdrop" cable provided
by Hewlett-Packard.

• If either the plotter or printer is offline (not plugged in
or either's power is off) when you start a plotting
application, INITIALIZE_VIEW_SURFACE causes an error.

• If the printer port is already attached,
INITIALIZE VIEW SURFACE causes an error.

• If you turn the plotter (or printer) off while the plotter is
active, data will be lost.

• To resume using the plotter or printer after the plotter has
been turned off, you must turn both devices off and on.

• If your application does not call TERMINATE_VIEW_SURFACE
before exiting, CGL implicity terminates the plotter.

B.1.15 BP-GL Features Not Accessible from CGL

• Automatic generation of tick marks on the axis of a graph.

• Direct control over the velocity of the pen. However for
certain primary colors, pen velocity is set to 26 cm/sec.

• The various Report commands.

• Manual setting of Pl and P2. In other words, you cannot
manually adjust the plotting area from the front panel of the
plotter.

B-9

HEWLETT-PACKARD PLOTTERS

• Digitize Point mode •

• Rotating of the X and Y axes on the HP7475A.

• Arcs with other than one segment per 10 degrees of arc •

• Hatching with arbitrary line separation. Separation is
either an eighth or a sixteenth of an inch, approximately.

B-10

APPENDIX C

INCLUDE FILES

The following include files can be found (if present) in
LB: [1, 5] •

C.l BASIC-PLOS-2

The following include file, CGL.B2S, is provided with the CORE
Graphics Library.

&
Professional 300 CORE Graphics Library V2.0 &

&
declarations for Tool Kit BASIC-PLUS-2 &

&

Ol-Mar-1984 &

This include file is provided for
instructional purposes only. It
is not supported software.

DECLARE INTEGER CONSTANT
1
! Instruction names

MOVE ABS 2
MOVE-REL-2
INQUIRE_CURRENT_ POSITION
LINE ABS 2
LINE REL-2 - -POLYLINE ABS 2
POLYLINE REL-2
POLYGON ABS 2
POLYGON-REL-2
RECTANGLE ABS 2

2

C-1

=
=
=
=
=
=
=
=
=
=

&
&

&

&
&

&
&
&
&

1%, &
2%, &
3%, &
4%, &
5%, &
6%, &
7%, &
8%, &

9%, &
10%, &

CGL.B2S

RECTANGLE REL 2 = 11%, &
SET LINESTYLE = 12%, &
INQUIRE LINESTYLE = 13%, &
SET LINEWIDTH = 14%, &
INQUIRE_LINEWIDTH = 15%, &
TEXT = 16%, &
INQUIRE_ TEXT_ EXTENT_ 2 = 17%, &
SET FONT = 18%, &
INQUIRE FONT = 19%, &
SET CHARSIZE = 20%, &
INQUIRE_CHARSIZE = 21%, &
SET CHARPATH = 22%, &
INQUIRE_CHARPATH = 23%, &
SET CHARSPACE = 24%, &
INQUIRE CHARSPACE = 25%, &
SET CHARJUST = 26%, &
INQUIRE_CHARJUST = 27%, &
SET CHARITALIC = 28%, &
INQUIRE_CHARITALIC = 29%, &
SET FONT SIZE = 30%, &
INQUIRE FONT SIZE = 31%, &
LOAD CHARACTER = 32%, &
MARKER ABS 2 = 33%, &
MARKER-REL-2 = 34%, &
POLYMARKER-ABS 2 = 35%, &
POLYMARKER-REL-2 = 36%, &
SET MARKER-SYMBOL = 37%, &
INQUIRE MARKER SYMBOL = 38%, &
ARC ABS-2 - = 39%, &
ARC-REL-2 = 40%, &
CURVE ABS 2 = 41%, &
CURVE-REL-2 = 42%, & - -SET WRITING INDEX = 60%, &
INQUIRE_WRITING_INDEX = 61%, &
SET BACKGROUND INDEX = 62%, &
INQUIRE BACKGROUND INDEX = 63%, &
SET COLOR MAP - = 64%, &
INQUIRE COLOR MAP = 65%, &
SET COLOR MAP-ENTRY = 66%, &
INQUIRE_COLOR MAP_ENTRY = 67%, &
SET WRITING PLANES = 68%, &
INQUIRE WRITING PLANES = 69%, &
SET WRITING MODE = 70%, & - -INQUIRE WRITING MODE = 71%, &
SET GLOBAL ATTRIBUTES = 72%, &
INQUIRE_GLOBAL_ATTRIBUTES = 73%, &
SET FILL MODE = 74%, &
INQUIRE FILL MODE = 75%, &
SET FILL ENTITY = 76%, &
INQUIRE_FILL_ENTITY = 77%, &
SET FILL CHAR = 78%, &

C-2

CGL.B2S

INQUIRE_FILL_CHAR = 79%, &
SET WINDOW = 80%, &
INQUIRE WINDOW = 81%, &
SET VIEWPORT 2 = 82%, &
INQUIRE VIEWPORT 2 = 83%, &
SET WINDOW CLIPPING = 84%, &
INQUIRE_WINDOW_CLIPPING = 85%, &
SET ORIGIN = 86%, &
INQUIRE ORIGIN = 87%, &
ERASE VIEWPORT = 88%, &
SCROLL = 89%, &
INITIALIZE CORE = 90%, &
TERMINATE CORE = 91%, &
NEW FRAME = 92%, &
REPORT MOST RECENT ERROR = 93%, &
PRINT SCREEN = 94%, &
CGL WAIT = 95%, &
BEGIN BATCH = 96%, &
END BATCH = 97%, &
SET LINEWIDTH ORIENTATION = 98%, & - -INQUIRE LINEWIDTH ORIENTATION = 99%, &
SET CURSOR - = 100%, &
INQUIRE CURSOR = 101%, &
SCROLL VIEWPORT = 102%, &
INITIALIZE VIEW SURFACE = - - 103%, &
TERMINATE VIEW SURFACE = - - 104%, &
SELECT VIEW SURFACE = 105%, &
DESELECT VIEW SURFACE = 106%, &
SET NDC SPACE-2 = 107%, &
INQUIRE-NOC SPACE 2 = 108%, &
BEGIN DEFINE CHARACTER = - - 109%, &
END DEFINE CHARACTER = - - 110%, &
PLAYBACK FILE = 111%, &
LOAD FONT = 112%, &

&
! Fill modes &
! &
OFF = 0%, &
VERT LINE = 1%, &
HORIZ LINE = 2%, &
POINT = 3%, &
POLYGON = 4%, &

&
! Character justification modes &

&
LEFT JUST = 1%, &
CENTER JUST = 2%, &
RIGHT JUST = 3%, &
TOP JUST = 1%, &
BOTTOM JUST = 3%, &

&

C-3

CGL.B2S

! Standard line styles &
! &
SOLID = 1%, &
DASHED = 2%, &
DOT DASHED = 3%, &
DOTTED = 4%, &
DOT DOT DASHED = 5%, & - -DOTTED WIDE SPACING = 6%, &
DASHED-SHORT LINES = 7%, &
DASHED-LONG LINES = 8%, & - -DOT DASHED SHORT LINES = 9%, &
! &
! Writing modes &
! &
TRANSPARENT = 0%, &
TRANSPARENT.NEGATE = 1%, &
COMPLEMENT = 2%, &
COMPLEMENT NEGATE = 3%, &
OVERLAY = 4%, &
OVERLAY NEGATE = 5%, &
REPLACE- = 6%, &
REPLACE NEGATE = 7%, &
ERASE = 8%, &
ERASE NEGATE = 9%

C.2 DIBOL

The following include file, CGL.DBL, is provided with Tool Kit
DIBOL •

.
I

1 Professional 300 CORE Graphics Library V2.0
1 definitions for Tool Kit DIBOL .
I

.
I

01-Mar-1984

1 This include file is provided for instructional
1 purposes only. It is not supported software • .
I

RECORD
GMA2
GMR2
GICP2
GLA2
GLR2
GPLA2
GPLR2

,D2
,D2
,D2
,D2
,D2
,D2
,D2

,01 .
I

,02
,03 .

I

,04 .
I

,OS .
I

,06 .
I

,07 .
I

C-4

Move Absolute 2
Move Relative 2
Inquire Current Position
Line absolute 2
Line relative 2
Polyline absolute 2
Polyline relative 2

2

GPGA2
GPGR2
GRA2
GRR2
GSLS
GILS
GSLW
GILW
GT
GITE2
GSF
GIF
GSCS
GICS
GSCP
GICP
GS CSP
GI CSP
GSCJ
GICJ
GSCI
GICI
GSFS
GIFS
GLC
GMKA2
GMKR2
GPMA2
GPMR2
GS MKS
GI MKS
GAA2
GAR2
GCA2
GCR2
GSWI
GIWI
GSBI
GIB!
GSCM
GICM
GS CME
GI CME
GSWP
GIWP
GSWM
GIWM
GSG~
GIGA
GSFM
GIFM

,02
,02
,02
,02
,02
,D2
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,02
,D2
,02
,02
,02
,02
,02
,02
,02
,02
,D2
,02
,02
,02

,08
,09
,10
,11
,12
,13
,14
,15
,16
,17
,18
,19
,20
,21
,22
,23
,24
,25
,26
,27
,28
,29
,30
,31
,32
,33
,34
,35
,36
,37
,38
,39
,40
,41
,42
,60
,61
,62
,63
,64
,65
,66
,67
,68
,69
,70
,71
,72
,73
,74
,75

CGL.DBL

Polygon absolute 2
Polygon relative 2
Rectangle absolute 2
Rectangle relative 2
Set line style
Inquire line style

; Set line width
Inquire line width
Text
Inquire text extent 2
Set font
Inquire font
Set character size
Inquire character size
Set character path
Inquire character path
Set character space
Inquire character space
Set character justification
Inquire character justification
Set character italics
Inquire character italics
Set font size
Inquire font size
Load character
Marker absolute 2
Marker relative 2
Polymarker absolute 2
Polymarker relative 2

; Set marker symbol
Inquire marker symbol
Arc absolute 2
Arc relative 2
Curve absolute 2
Curve relative 2
Set writing index
Inquire writing index
Set background index
Inquire background index
Set color map
Inquire color map
Set color map entry
Inquire color map entry
Set writing planes
Inquire writing planes
Set writing mode

; Inquire writing mode
Set global attributes

; Inquire global attributes
Set fill mode
Inquire fill mode

C-5

GSFE
GIFE
GSFC
GIFC
GSW
GIW
GSV2
GIV2
GSWC
GIWC
GSO
GIO
GEV
GS
GIC
GTC
GNF
GRMRE
GPS
GCW
GBB
GEB
GSLO
GILO
GSCU
GICU
GSV
GIVS
GTVS
GSVS
GOVS
GSNS2
GINS2
GBDC
GEDC
GPF
GLF

C.3 FORTRAN-77

,D2
,D2
,02
,D2
,D2
,02
,02
,D2
,02
,D2
,D2
,D2
,02
,D2
,D2
,02
,D2
,D2
,02
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,02
,02
,02
,02
,D2
,D2

,76
,77
,78
,79
,80
,81
,82
,83
,84
,85
,86
,87
,88
,89
,90
,91
,92
,93
,94
,95
,96
,97
,98
,99
,100
,101
,102
,103
,104
,105
,106
,107
,108
,109
,110
,111
,112

CGL.DBL

; Set fill entity
; Inquire fill entity
1 Set fill character
; Inquire fill character
1 Set window
1 Inquire window
1 Set viewport 2
; Inquire viewport 2
1 Set window clipping
1 Inquire window clipping
1 Set origin
1 Inquire origin
1 Erase viewport
1 Scroll
1 Initialize cgl
1 Terminate cgl
1 New frame
1 Report most recent error
1 Print screen
1 Cgl wait
1 Begin Batch
1 End Batch
1 Set Linewidth Orientation
1 Inquire Linewith Orientation
; Set cursor
; Inquire cursor
; Scroll Viewport
; Initialize View Surface
; Terminate View Surface
; Select View Surf ace
; Deselect View Surf ace
; Set NOC Space 2

Inquire NOC Space 2
; Begin Define Character
; End Define Character
; Playback File
; Load Font

The following include file, CGL.FTN, is provided with the CORE
Graphics Library.

c
C Professional 300 CORE Graphics Library V2.0
C definitions for Tool Kit FORTRAN-77
c

C-6

CGL.FTN

C 01-Mar-1984
c
C This include file is provided for instructional
C purposes only. It is not supported software.
c

IMPLICIT INTEGER G
PARAMETER (GMA2 = 01)
PARAMETER (GMR2 = 02)
PARAMETER (GICP2 = 03)
PARAMETER (GLA2 = 04)
PARAMETER (GLR2 = 05)
PARAMETER (GPLA2 = 06)
PARAMETER (GPLR2 = 07)
PARAMETER (GPGA2 = 08)
PARAMETER (GPGR2 = 09)
PARAMETER (GRA2 = 10)
PARAMETER (GRR2 = 11)
PARAMETER (GSLS = 12)
PARAMETER (GILS = 13)
PARAMETER (GSLW = 14)
PARAMETER (GILW = 15)
PARAMETER (GT = 16)
PARAMETER (GITE2 = 17)
PARAMETER (GSF = 18)
PARAMETER (GIF = 19)
PARAMETER (GSCS = 20)
PARAMETER (GICS = 21)
PARAMETER (GSCP = 22)
PARAMETER (GICP = 23)
PARAMETER (GSCSP = 24)
PARAMETER (GICSP = 25)
PARAMETER (GSCJ = 26)
PARAMETER (GICJ = 27)
PARAMETER (GSCI = 28)
PARAMETER (GICI = 29)
PARAMETER (GSFS = 30)
PARAMETER (GIFS = 31)
PARAMETER (GLC = 32)
PARAMETER (GMKA2 = 33)
PARAMETER (GMKR2 = 34)
PARAMETER (GPMA2 = 35)
PARAMETER (GPMR2 = 36)
PARAMETER (GSMKS = 37)
PARAMETER (GIMKS = 38)
PARAMETER (GAA2 = 39)
PARAMETER (GAR2 = 40)
PARAMETER (GCA2 = 41)
PARAMETER (GCR2 = 42)
PARAMETER (GSWI = 60)
PARAMETER (GIWI = 61)
PARAMETER (GSBI = 62)

C-7

Move Absolute 2
Move Relative 2
Inquire Current Position 2
Line Absolute 2
Line Relative 2
PolyLine Absolute 2
PolyLine Relative 2
PolyGon Absolute 2
PolyGon Relative 2
Rectangle Absolute 2
Rectangle Relative 2
Set Line Style
Inquire Line Style
Set Line Width
Inquire Line Width
Text
Inquire Text Extent 2
Set Font
Inquire Font
Set Character Size
Inquire Character Size
Set Character Path
Inquire Character Path
Set Character SPace
Inquire Character SPace
Set Character Justification
Inquire Character Justification
Set Character Italics
Inquire Character Italics
Set Font Size
Inquire Font Size
Load Character
MarKer Absolute 2
MarKer Relative 2
PolyMarker Absolute 2
PolyMarker Relative 2
Set MarKer Symbol
Inquire MarKer Symbol
Arc Absolute 2
Arc Relative 2
Curve Absolute 2
Curve Relative 2
Set Writing Index
Inquire Writing Index
Set Background Index

CGL.FTN

PARAMETER (GIBI = 63) Inquire Background Index
PARAMETER (GSCM = 64) Set Color Map
PARAMETER (GICM = 65) Inquire Color Map
PARAMETER (GSCME = 66) Set Color Map Entry
PARAMETER (GICME = 67) Inquire Color Map Entry
PARAMETER (GSWP = 68) Set Writing Planes
PARAMETER (GIWP = 69) Inquire Writing Planes
PARAMETER (GSWM = 70) Set Writing Mode
PARAMETER (GIWM = 71) Inquire Writing Mode
PARAMETER (GSGA = 72) Set Global Attributes
PARAMETER (GIGA = 73) Inquire Global Attributes
PARAMETER (GSFM = 74) Set Fill Mode
PARAMETER (GIFM = 75) Inquire Fill Mode
PARAMETER (GSFE = 76) Set Fill Entity
PARAMETER (GIFE = 77) Inquire Fill Entity
PARAMETER (GSFC = 78) Set Fill Character
PARAMETER (GIFC = 79) Inquire Fill Character
PARAMETER (GSW = 80) Set Window
PARAMETER (GIW = 81) Inquire Window
PARAMETER (GSV2 = 82) Set Viewport 2
PARAMETER (GIV2 = 83) Inquire Viewport 2
PARAMETER (GSWC = 84) Set Window Clipping
PARAMETER (GIWC = 85) Inquire Window Clipping
PARAMETER (GSO = 86) Set Origin
PARAMETER (GIO = 87) Inquire Origin
PARAMETER (GEV = 88) Erase Viewport
PARAMETER (GS = 89) Scroll
PARAMETER (GIC = 90) Initialize Cgl
PARAMETER (GTC = 91) Terminate Cgl
PARAMETER (GNF = 92) New Frame
PARAMETER (GRMRE = 93) Report Most Recent Error
PARAMETER (GPS = 94) Print Screen
PARAMETER (GCW = 95) Cgl Wait
PARAMETER (GBB = 96) Begin Batch
PARAMETER (GEB = 97) End Batch
PARAMETER (GSLO = 98) Set Linewidth Orientation
PARAMETER (GILO = 99) Inquire Linewith Orientation
PARAMETER (GSCU = 100) Set cursor
PARAMETER (GICU = 101) Inquire cursor
PARAMETER (GSV = 102) Scroll Viewport
PARAMETER (GIVS = 103) I Initialize View Surface
PARAMETER (GTVS = 104) Terminate View Surface
PARAMETER (GSVS = 105) Select View Surf ace
PARAMETER (GOVS = 106) Deselect View Surf ace
PARAMETER (GSNS2 = 107) Set NDC Space 2
PARAMETER (GINS2 = 108) Inquire NDC Space 2
PARAMETER (GBDC = 109) Begin Define Character
PARAMETER (GEDC = 110) End Define Character
PARAMETER (GPF = 111) Playback File
PARAMETER (GLF = 112) Load Font

C-8

PASCAL

C.4 PASCAL

The following include file, CGLDEFS.PAS, is provided with Tool
Kit PASCAL.

(* PASCAL declarations for the CORE Graphics Library Vl.7 *)

CONST

(* clipping *)

off = O;
on = l;

(* curve mode *)

open curve = O;
closed curve = l;

(* definitions for Vl.O compatibility *)

opened = open curve;
closed = closed_curve;

(* writing mode *)

transparent = O;
transparent negate= l;
complement ;;- 2;
complement negate = 3;
overlay = 4;
overlay_negate = 5;
replace = 6;
replace negate = 7;
erase =-8;
erase_negate = 9;

(* fill entity *)

fill off = O;
vert-line = l;
horiz line = 2;
point-= 3;
polygon = 4;

(* justification *)

left just = l;
center_just = 2;

C-9

right just = 3;
top just = I;
bottom_just = 3;

(* character path *)

char mode = O;
string_mode = l;

(* marker symbol *)

period = l;
plus sign = 2;
asterisk = 3;
circle = 4;
cross = 5;

(* window origin *)

bottom left = O;
top left = l;
top-right = 2;
bottom_right = 3;

(* line style *)

solid = l;
dashed = 2;
dot dashed = 3;
dotted = 4;

CGLDEFS.PAS

dot dot dashed = 5;
dotted wide spacing = 6;
dashed-short lines = 7;
dashed-long Tines = 8;
dot dashed short lines = 9;

TYPE
clipping= off •• on;
curve mode = open curve •• closed curve;
writing mode= transparent •• erase negate;
fill mode= fill off •• point; -
justification= left just •• right just;
char path mode= char mode •• string mode;
origin code= bottom Ieft •• bottom right;
byte = -0 •• 255; - -
planes= o •• 7;
RGB value= 0 •• 7;
color map index= o •• 7;
font desig = o •• 3;
font-extent= 32 •• 126;
reals= ARRAY [1 •• 10) OF real; (*arbitrary size*)

C-10

CGLDEFS.PAS

string= PACKED ARRAY [1 •• 80] OF char; (* arbitrary size*)
char matrix= ARRAY [0 •• 15] OF unsigned;
color map= ARRAY [0 •• 23] OF RGB value;
color map_entry =ARRAY [1 •• 3] OF RGB_value;

[EXTERNAL($PCGL)]
PROCEDURE move abs 2(VAR x, y: [readonly] real;

- - $$$: integer := l); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE move rel 2(VAR dx, dy: [readonly] real;

- - $$$: integer := 2); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire current position 2(VAR x, y: real;

- - - $$$: integer := 3); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE line abs 2(VAR x, y: [readonly] real;

- - $$$: integer:= 4); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE line rel 2(VAR dx, dy: [readonly] real;

- - $$$: integer:= S); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE polyline abs 2(VAR x, y: [readonly, unsafe] reals;

- - VAR n: [readonly] integer;
$$$: integer := 6); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE polyline rel 2(VAR dx, dy: [readonly, unsafe] reals;

- - VAR n: [readonly] integer;
$$$: integer := 7); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE polygon abs 2(VAR x, y: [readonly, unsafe] reals;

- - VAR n: [readonly] integer;
$$$: integer := 8}; SEQll;

[EXTERNAL($PCGL)]
PROCEDURE polygon_rel_2(VAR dx, dy: [readonly, unsafe] reals;

VAR n: [readonly] integer;

C-11

CGLDEFS.PAS

$$$: integer := 9); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE rectangle abs 2(VAR x, y: [readonly] real;

- - $$$: integer := 10); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE rectangle rel 2(VAR dx, dy: [readonly] real;

- - $$$: integer := 11); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set linestyle(VAR style: [readonly] integer;

- VAR pattern: [readonly] unsigned;
VAR mult: [readonly] integer;
$$$: integer:= 12); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire linestyle(VAR style: integer;

- VAR pattern: unsigned;
VAR mult: integer;
$$$: integer := 13); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set linewidth(VAR dx, dy: [readonly] real;

- $$$: integer := 14); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire linewidth(VAR dx, dy: real;

- $$$: integer := 15); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE txt(VAR s: [readonly, unsafe] string;

VAR len: [readonly] integer;
$$$: integer := 16); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire text extent 2(VAR len: [readonly] integer;

- - - VAR dx, dy: real;
$$$: integer := 17); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set_font(VAR n: [readonly] font_desig;

C-12

CGLDEFS.PAS

$$$: integer := 18): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire font(VAR n: font desig:

- $$$: integer := 19): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set charsize(VAR width, height: [readonly] real:

- $$$: integer := 20): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire charsize(VAR width, height: real:

- $$$: integer := 21): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set charpath(VAR a: [readonly] integer:

- VAR m: [readonly] char path mode:
$$$: integer := 22): SEQll:-

[EXTERNAL($PCGL)]
PROCEDURE inquire charpath(VAR a: integer:

- VAR m: char path mode:
$$$: integer := 23): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set charspace(VAR dx, dy: [readonly] real:

- $$$: integer := 24): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire charspace(VAR dx, dy: real:

- $$$: integer := 25): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set charjust(VAR x just, y just: [readonly] justification:

- $$$: integer 7= 26): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire charjust(VAR x just, y just: justification:

- $$$: integer := 27): SEQll:

[EXTERNAL($PCGL)]

C-13

CGLDEFS.PAS

PROCEDURE set charitalic(VAR angle: [readonly] integer1
- $$$: integer := 28): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire charitalic(VAR angle: integer:

- $$$: integer := 29): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set font size(VAR extent: [readonly] font extent:

- - VAR x size, y size: [readonly] integer:
$$$: integer 7= 30): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire font size(VAR extent: font extent:

- - VAR x size, y size: integer:
$$$: integer 7= 31): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE load character(VAR ch: [readonly] font extent:

- VAR matrix: [readonly] char matrix:
$$$: integer := 32): SEQll:-

[EXTERNAL($PCGL)]
PROCEDURE marker abs 2(VAR x, y: [readonly] real:

- - $$$: integer := 33): SEOll:

[EXTERNAL($PCGL)]
PROCEDURE marker rel 2(VAR dx, dy: [readonly] real:

- - $$$: integer := 34): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE polymarker_abs_2(VAR x, y: [readonly, unsafe] reals:

[EXTERNAL($PCGL)]

VAR n: [readonly] integer:
$$$: integer := 35): SEQll:

PROCEDURE polymarker rel 2(VAR dx, dy: [readonly, unsafe] reals:
- - VAR n: [readonly] integer:

$$$: integer := 36): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set_marker_symbol(VAR n: [readonly] integer:

c-14

[EXTERNAL($PCGL)]

CGLDEFS.PAS

VAR c: [readonly] char:
$$$: integer := 37): SEQll:

PROCEDURE inquire marker symbol(VAR n: integer:
- - VAR c: char:

$$$: integer := 38): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE arc abs 2(VAR x, y: [readonly] real:

- - VAR a: [readonly] integer:
$$$: integer := 39): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE arc rel 2(VAR dx, dy: [readonly] real:

- - VAR a: [readonly] integer:
$$$: integer := 40): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE curve abs 2(VAR x, y: [readonly, unsafe] reals:

- - VAR n: [readonly] integer:

[EXTERNAL($PCGL)]

VAR c: [readonly] curve mode:
$$$: integer:= 41): SEQll:

PROCEDURE curve rel 2(VAR dx, dy: [readonly, unsafe] reals:
- - VAR n: [readonly] integer;

VAR c: [readonly] curve mode:
$$$: integer := 42); SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set writing index(VAR n: [readonly] color map index:

- - $$$: integer := 60); SEQll:-

[EXTERNAL($PCGL)]
PROCEDURE inquire writing index(VAR n: color map index;

- - $$$: integer-:= 61): SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set background index(VAR n: [readonly] color map index:

- - $$$: integer := 62); SEQll;-

C-15

CGLDEFS.PAS

[EXTERNAL($PCGL)]
PROCEDURE inquire background index(VAR n: color map index;

- - $$$: integer-:= 63); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set color map(VAR c: [readonly] color map;

- - $$$: integer := 64); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire color map(VAR c: color map;

- - $$$: integer-:= 65); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set color map entry(VAR entry: [readonly] color map inde

- - - VAR color: [readonly] color-map-entr
$$$: integer := 66); SEQll;- -

[EXTERNAL($PCGL)]
PROCEDURE inquire color map entry(VAR entry: color map index;

- - - VAR c: color map-entry;
$$$: integer-:= 67); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set writing planes(VAR n: [readonly] planes;

- - $$$: integer := 68); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire writing planes(VAR n: planes;

- - $$$: integer := 69); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set writing mode(VAR n: [readonly] writing mode;

- - $$$: integer := 70); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire writing mode(VAR n: writing mode;

- - $$$: integer :~ 71); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set fill mode(VAR n: [readonly] fill mode;

- - $$$: integer := 74); SEQll;

C-16

CGLDEFS.PAS

[EXTERNAL($PCGL)]
PROCEDURE inquire fill mode(VAR n: fill mode;

- - $$$: integer := 75); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set fill entity(VAR x, y: [readonly] real;

- - $$$: integer := 76); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire fill entity(VAR x, y: real;

- - $$$: integer := 77); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set fill_char(VAR font: [readonly] integer;

VAR ch: [readonly] byte;

[EXTERNAL($PCGL)]

VAR width mult: [readonly] integer;
VAR height mult: [readonly] integer;
$$$: integer := 78); SEQll;

PROCEDURE inquire_fill_char(VAR font: integer;
VAR ch: char;

[EXTERNAL($PCGL)]

VAR width_mult: integer;
VAR height mult: integer;
$$$: integer := 79); SEQll;

PROCEDURE set window(VAR xmin, xmax, ymin, ymax: [readonly] real;
- $$$: integer := 80); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire window(VAR xmin, xmax, ymin, ymax: real;

- $$$: integer := 81); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set viewport 2(VAR xmin, xmax,

- - ymin, ymax: [readonly] real;
$$$: integer := 82); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire viewport 2(VAR xmin, xmax, ymin, ymax: real;

- - $$$: integer := 83); SEQll;

C-17

CGLDEFS.PAS

[EXTERNAL($PCGL)]
PROCEDURE set window clipping(VAR n: [readonly] clipping:

- $$$: integer := 84): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire window clipping(VAR n: clipping:

- - $$$: integer := 85): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set origin(VAR n: [readonly] origin code:

- $$$: integer := 86): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire origin(VAR n: or1g1n code:

- $$$: integer 7= 87): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE erase_viewport($$$: integer := 88): SEQll;

[EXTERNAL($PCGL)]
PROCEDURE scroll(VAR dx, dy: [readonly] real;

$$$: integer := 89); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE initialize_core($$$: integer := 90); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE terminate_core($$$: integer := 91); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE new_frame($$$: integer := 92); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE report most recent error(VAR f, e: integer;

- - - $$$: integer := 93); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE print screen(VAR xmin, xmax,

- ymin, ymax, xoff, yoff: [readonly] real:
$$$: integer := 94); SEQll:

C-18

CGLDEFS.PAS

[EXTERNAL($PCGL)]
PROCEDURE cgl wait(VAR s: [readonly] real:

- $$$: integer := 95): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE begin_batch($$$: integer := 96): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE end_batch($$$: integer := 97): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set linewidth orientation(VAR dx, dy: [readonly] real:

- - $$$: integer := 98): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE inquire linewidth orientation(VAR dx, dy: real:

- - $$$: integer := 99): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE set_cursor(VAR font: [readonly] font desig:

[EXTERNAL($PCGL)]

VAR ch: [readonly] font extent:
VAR width, height: [readonly] integer:
VAR dx, dy: [readonly] real:
$$$: integer := 100): SEQll:

PROCEDURE inquire_cursor(VAR font: font desig:
VAR ch: font extent:
VAR width, height: integer:
VAR dx, dy: real:
$$$: integer := 101): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE scroll viewport(VAR dx, dy: [readonly] real:

- $$$: integer := 102): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE initialize view surface(VAR name: [readonly,unsafe] string

- - VAR length: [readonly] integer:
$$$: integer := 103): SEQll:

[EXTERNAL($PCGL)]
PROCEDURE terminate view_surface(VAR name: [readonly,unsafe] string:

VAR length: [readonly] integer:

C-19

CGLDEFS.PAS

$$$: integer := 104); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE select view surface(VAR name: [readonly, unsafe] string;

- - VAR length: [readonly] integer;
$$$: integer := 105); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE deselect view surface(VAR name: [readonly, unsafe] strir

- - VAR length: [readonly] integer;
$$$: integer := 106); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE set ndc space 2(VAR width, height: [readonly] real;

- - - $$$: integer := 107); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE inquire ndc space 2(VAR width, height : real;

- - - $$$: integer := 108); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE begin define character(VAR code: [readonly] integer;

- - $$$: integer := 109); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE end define_character($$$: integer := 110); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE playback file(VAR s: [readonly, unsafe] string;

- VAR len: [readonly] integer;
$$$: integer := 111); SEQll;

[EXTERNAL($PCGL)]
PROCEDURE load_font(VAR s: [readonly, unsafe] string;

VAR len: [readonly] integer;
$$$f integer := 112); SEQll;

C-20

APPENDIX D

EXAMPLE PROGRAMS

The following example programs
purposes only. They are not
included with the Tool Kit.

are provided for educational
supported software and are not

D.1 COLORMAP.PAS - COLOR MAP EDITOR

program color_map_editor;

This program is provided for instructional purposes only. 1
It demonstrates some aspects of the following software tools:

f Tool Kit PASCAL Vl.l J
f CORE Graphics Library Vl.7 l
f P/OS User Interface Library 1

f This application graphically demonstrates the function 1
f of the color map provided with the Professional 300 Series 1
f Extended Bitmap Option. Please refer to the associated 1
f help frame for more information. 1

%include 'lb:[l,S]cgldefs.pas/nolist'

type
status block= array [O •• l] of integer;

var
x, y
ttch, status
current RGB
current-map
current-index
current entry
done -
RGB char

real;
status_ block;
1.. 3;
color map;
color-map index;
color-map-entry;
boolean; -
char;

D-1

COLORMAP.PAS - COLOR MAP EDITOR

const
black= color_map_entry (O,O,O);
white= color map entry (7,7,6);
RGB_string = 1 RGB7 1

procedure getkey (vars : status_block)1 seqll1

procedure help (vars : status_block)1 seqll1

procedure draw_color_map (var current_map : [readonly] color_map)1
var

i, j integer;
x, y : real;
current index : color map index;
current_entry color map entry;

begin
new frame1
begTn batch1
set writing planes (7)1
set-color map (current map)1
set-background index (O);
set-writing index(?);
set-writing-mode (overlay)1
set-fill mode (polygon);
for-i :=-0 to 7 do { Draw the color bars 1
begin

set writing index (i)1 y := i;
move abs 2 To.o, y)1
rectangle rel 2 (3.0, 1.0);

end { for 1~ -
set fill mode (fill off);
set-writing index (7);
for-i := 0 to 8 do { Outline the color bars 1
begin

y := i; move abs 2 (O.O, y); line abs 2 (3.0, y);
end { for };

for i := 0 to 3 do
begin

x := i1 move abs_2 (x, 0.0); line_abs_2 (x, 8.0);
end { for };

set charsize (0.25, 0.5);
set-charjust (center just, center just);
for-i := 1 to 3 do - - { Label the map 1
begin

move abs 2 (i - 0.5, -0.5); txt (RGB_string[i], 1);
end { for T:

for i := 0 to 7 do
begin

move abs 2 (-0.5, i + 0.5); txt (chr(i + 48), 1)1
end { for T:

D-2

COLORMAP.PAS - COLOR MAP EDITOR

set charspace (0.25,0.0);
move abs 2 (1.5,8.5);
txt T'Press HELP for help.', 20);
set writing mode (complement);
for-i := O to 7 do [Draw the RGB values J
begin

current index := i;
inquire-color map entry (current_index,current_entry);
for j :~ 1 to-3 do
begin

move abs 2 (j - 0.5, i + 0.5);
txt TchrTcurrent entry[j] + 48), l);

end [for l; -
end [for };

end batch;
end [-draw_color_map };

begin
initialize core; new frame;
set window-(-1.0, 4.0, -1.0, 9.0);
set-viewport 2 (0.1875, 0.8125, O.O, 1.0);
current map == color map
(0,0,0,-7,0,0, 0,7,0~ 0,0,6, 7,7,0, 7,0,6, 0,7,6, 7,7,6);
[black, red, green, blue, yellow, magenta, cyan, black 1
draw color map (current map);
current index := O; current RGB := l; done := false;
while not done do

begin
x := current RGB - 0.5; y := current index + 0.5;
move abs 2 (x,y); [position cursor on RGB number 1
getkey (ttch);
case ttch[O] of

1 : [Main keyboard key 1
if (ttch[l] - 48) in [O, 1, 2, 3, 4, 5, 6, 7)
then [new RGB value in ttch[l] 1
begin

begin batch;
inquire color map entry (current index, current entry)
current-entry[current RGB] := ttch[l] - 48; -
set color map entry (current index, current entry);
RGB-char 7= chr(current entry[current RGB] + 48);
[the old RGB number was drawn in complement mode }
[so to get rid of it, we draw it's negative image 1
[using the same writing index as the color bar 1
set writing index (current index);
set-writing-mode (erase negate); txt (RGB char, l);
[draw the new RGB number } -
set writing mode (complement); txt (RGB_char, l);
end-batch; -

end [-if l;
2 : [Function key 1

D-3

COLORMAP.PAS - COLOR MAP EDITOR

case ttch[l] of
7, 8, 9, 10 : { RESUME, CANCEL, MAIN SCREEN, EXIT

begin
new frame; terminate core; done := true:

end;
15 : { HELP J

begin { set up for text mode l
inquire_color_map (current_map);
new frame;
set-color map entry (O,black);
set-color-map-entry (4,white);
help (status)"'i°
draw_color_map (current_map);

end;
27 : [Up arrow l

current index := (current_index - 1) mod 8;
28 : { Left-arrow l

current RGB := ((current RGB + 1) mod 3) + l;
29 : { Down-arrow l -

current index := (current_index + 1) mod 8;
30 : { Right arrow l

current RGB := (current_RGB mod 3) + l;
otherwise [-ignore it l;

end [case J;
otherwise { ignore it J;

end [case J;
end { while J;

end.

D.1.1 COLORMAP.HLP - HELP FRAME

What ~ou see is a graphic representation of the Professional 300 series
color map <EBO re9uired). It contains the primar~ colors (red, green,
and blue>, the complementar~ colors <~ellO!/J, magenta, and c~an), black,
and white. The background index is 0 and the writing index is 7.

You can manipulate the red, green, and blue values in each color map
entr~ with the following keys:

Arrow ke~s move the cursor around the color map.

Numeric ke~s (range 0 ta 7) set new RGB values.

EXIT and MAIN SCREEN retuni to the Main Menu.

Press RESUME to continue.

D-4

GEDIT.B2S - GRAPHICS SKETCHPAD

D.2 GEDIT.B2S - GRAPHICS SKETCHPAD

10
Program GEDIT - Graphics Scratchpad Program

DEC ESD&P SCD
ZK01-2/E16
110 Spit Brook Road
Nashua, NH 03061

Instructions:

The status line displays the current
function, home position, and mode.

*** Editing Keys ***

+----+----+----+
IMOVEIWRITIERASI
+----+----+----+
I NH IHOMEI cs I
+----+----+----+

I ... I
+----+----+----+
I <- I v I -> I
+----+----+----+

MOVE:
WRIT:
ERAS:
NH:
HOME:
CS:

Select move mode
Select write mode
Select erase mode
Set new home position
Return to home position
Clear the screen

The arrow keys move the cursor.

*** Function Keys ***

Fl7 F18 F19 F20
+----+----+----+----+

• IVECTjRECTjCIRCI I
+----+----+----+----+

VECT:
RECT:
CIRC:

Begin vector
Begin rectangle
Begin circle

To draw a vector, press <VECT>, move the cursor to the
other end of the vector and press <DO>.

To draw a rectangle, press <RECT>, move the cursor to
the opposing corner of the rectangle and press <DO>.

To draw a circle, press <CIRC>, move the cursor from the
center of the circle to any point on the circumference
and press <DO>.

Exit:
Cancel:
Fll:

*** Other Keys ***

Exit graphics sketchpad.
Cancel function (vector, circle, rectangle)
Enable/disable keyboard bell

Environmental Definitions

D-5

100

START:

GEDIT.B2S - GRAPHICS SKETCHPAD

%include "LB:[l,S]CGL.B2S" ! CGL symbols

declare real constant
XINC = .003, x movement index
YINC = -.002 y movement index

declare integer constant
CIRCUMF = 360 Degrees in a circle

' DO KEY = 29 Do key parameter val.

' CANCEL KEY = 19 Cancel Key

' FIND KEY = 1 Find Key

' INSERT KEY = 2 Insert key

' REMOVE KEY = 3 Remove key
!
declare real

ex Current X position

' CY Current Y position

' PX Stored X position

' PY Stored Y position

' xx Vector end-point X

'
yy Vector end-point Y

' HOM EX Home X position

' HOMEY Home Y position

declare integer
v Locator Mode Flag

' Vl Locator Action Flag

' WK Function key param.

' CURRENT MODE Writing mode

' LOUD Bell on error flag

declare string
MODE NAME Current Writing mode

' OPTION NAME Current Action mode
!

Program Initialization
!

Sets the default writing mode, home position and
positions the cursor at home.

call CGL by ref (INITIALIZE CORE)

&
&

&
&
&
&
&
&

&
&
&
&
&
&
&
&

&
&
&
&
&

&
&

call CGL by ref (NEW FRAME T
call CGL by ref (SET WINDOW,
CURRENT MODE = OVERLAY
MODE NAME = "Write"
OPTION NAME = "Plot"

0 • 0 , 1 • 0 , 0 • 0 , 0 • 6 2 5) ! squarE
Default writing mode

LOUD =--1%
v = 0%

D-6

Mode name
Default option

! Default to beep for err.
! Start non-vector mode

110
MAIN:

GEDIT.B2S - GRAPHICS SKETCHPAD

ex, CY, HOMEX, HOMEY = 0.5
gosub CLEAR SCREEN

Default home position
Erase the screen

gosub STATUS LINE
call CGL by ref (
call CGL by ref (
call CGL by ref (
call CGL by ref (

Display status
SET WRITING MODE, CURRENT MODE
SET LINESTYLE, SOLID, 0%,-0%)
MOVE ABS 2, ex, CY) cursor home
LINE ABS=2, CX, CY) ! plot a point

Main plotting loop. This loop calls the movement
routine and plots a point.

gosub COMMANDS
call CGL by ref
goto MAIN

LINE_ABS_2, ex, CY)
get movement
plot a point
loop

120
COMMANDS:

!
! The movement routine

dim TTCH% (1 %)
call GETKEY by ref (TTCH%())
return unless TTCH%(0%) = 2% Ignore non-function keys
select TTCH%(1%)

case 8 ! CANCEL
Vl = -1% if V = 1%

case 10 ! EXIT
gosub ENDIT

case 11 ! Fll
gosub NOISE

case 15 ! HELP
gosub HELP_IT

case 16 ! DO
Vl = 1% IF V = 1%

case 17 ! F17
go sub VECTOR PLOT unless v = 1%

case 18 ! F18
gosub RECTANGLE unless V = 1%

case 19 ! F19
gosub CIRCLE unless v = 1%

case 21 ! FIND
gosub TRACE_MODE

case 22 ! INSERT HERE
gosub WRITE_MODE

case 23 ! REMOVE
gosub ERASE_MODE

case 24 ! SELECT
gosub SET..:...HOME unless v = 1%

case 25 ! PREV SCREEN

D-7

240

GEDIT.B2S - GRAPHICS SKETCHPAD

gosub HOME_CURSOR unless V = 1%
case 26 ! NEXT SCREEN

gosub CLEAR SCREEN unless V = 1%
case 27 ! up arrow -

CY = CY + YINC
case 28 ! left arrow

ex = ex - XINC
case 29 ! down arrow

CY = CY - YINC
case 30 ! right arrow

ex = ex + XINC
case else

end select
return

HOME CURSOR:
!

250

! Move current position to Home position

ex = HOMEX \ CY =
call CGL by ref
return

HOMEY
MOVE ABS_2, ex, CY)

CLEAR SCREEN:

260

call CGL by ref (
call CGL by ref (
call CGL by ref (
call CGL by ref (
call CGL by ref (
gosub STATUS_LINE
return

NEW FRAME)
SET-WRITING MODE, OVERLAY)
MOVE ABS 2,-0.0, 0.0)
RECTANGLE ABS 2, 1.0, 0.625)
SET WRITING MODE, CURRENT MODE)

- - ! Redisplay-status

ERASE MODE:

270

Set writing mode to erase mode and update status line.
If in Locator mode, do not change actual writing mode.

MODE NAME = "Erase"
CURRENT MODE = ERASE
gosub STATUS LINE
return if V -

Mode switch
Display Status Line
Locator mode return

call CGL by ref (SET WRITING_MODE, CURRENT_MODE)
return

WRITE MODE:

Set mode to replace mode and update status line. In
Locator mode, don't update real writing mode.

D-8

280

GEDIT.B2S - GRAPHICS SKETCHPAD

MODE NAME = "Write"
CURRENT MODE = OVERLAY
gosub STATUS LINE

Mode switch
Display Status Line
Locator mode return return if V -

call CGL by ref (SET WRITING_MODE, CURRENT_MODE)
return

TRACE MODE:

290
NOISE:

340

Trace mode - no writing, just movement. Do not
alter actual writing mode in locator mode.

!
MODE NAME = "Move"
CURRENT MODE = TRANSPARENT
gosub STATUS LINE

set mode switch
Display Status Line
Locator mode return return if V -

call CGL by ref (SET WRITING_MODE, CURRENT MODE)
return

Toggle beep on bad input

LOUD = not LOUD
return

Toggle beep flag
go back.

SET HOME:

! Home is where the cursor is. Update status line.

HOMEX = ex \ HOMEY = CY
gosub STATUS_LINE Display Status Line
return

350
HELP IT:

!
! Help the user. No help yet.
!
return

700 ! Locator action routines

VECTOR PLOT:
T
! Plot a vector from here to located point.

leave cursor at end of vector.
!
OPTION NAME = "Vector"
gosub STATUS LINE
PX = ex \ PY-= CY
gosub VECTOR FIND

D-9

! What routine we are
! Display Status Line
! Save current position
! Find the end point

GEDIT.B2S - GRAPHICS SKETCHPAD

goto RESTORE CURSOR if Vl < 0%
xx = ex \ YY-= CY
gosub DRAW VECTOR
OPTION NAME = "Plot"
gosub STATUS_LINE
return

Restore stuff if canceled
Prepare vector
draw vector
Default option
Display Status Line

720
RECTANGLE:

730
CIRCLE

!
! Draw a rectangle by finding the oposite corner.

OPTION NAME = "Rectangle"
gosub STATUS LINE Display Status Line
PX = ex \ PY-= CY
gosub VECTOR FIND
goto RESTORE-CURSOR if Vl < 0
call CGL by ref (MOVE ABS 2, PX, PY) Put corner back
call CGL by ref (RECTANGLE ABS 2, ex, CY)
goto RESTORE CURSOR - - Put stuff back

Draw a circle with center here and radius located
Operation can be canceled.

OPTION NAME = "Circle" Circle option
gosub STATUS LINE Display Status Line
PX = CX - Hang on to beginning
PY = CY point for use as center
gosub VECTOR FIND Locate a radius
goto RESTORE-CURSOR if Vl < 0 Quit if canceled
call CGL by ref (MOVE ABS 2, ex, CY) ! Back to center
call CGL by ref (ARC ABS 2, PX, PY, CIRCUMF)

735 ! - -
RESTORE CURSOR:

!
! Restore cursor after locator find

10000

ex = PX \ CY = PY
call CGL by ref (MOVE ABS 2, ex,
OPTION NAME = "Plot" - - !
gosub STATUS LINE
return -
!
!
! Service routines •••

VECTOR FIND:
T

Reset current position
CY)
Default option
Display Status Line
Return

Locator - Find endpoints of vector with one end here.

D-10

10100

GEDIT.B2S - GRAPHICS SKETCHPAD

call CGL by ref (SET WRITING MODE, COMPLEMENT)
v = 1 \ Vl = 0 \ xx = ex \-YY = CY
gosub DRAW VECTOR
while Vl =-0%

gosub DRAW VECTOR
xx = ex \ YY = CY
gosub DRAW VECTOR
gosub COMMANDS

next
gosub DRAW VECTOR
call CGL by ref (SET_WRITING_MODE, CURRENT MODE)
v = 0
return

DRAW VECTOR:

10200

Draw Vector

This routine plots a vector from point (PX,PY)
to point (XX,YY) in whatever writing mode.

call CGL by ref (MOVE ABS 2, PX, PY)
call CGL by ref (LINE-ABS=2, XX, YY)
return

Beginning
Plot to end
Return

STATUS LINE:

32767
ENDIT:

! Display a status line at the bottom of the screen and
! put the cursor back at the top of the screen
!
call CGL by ref (SET WRITING MODE, REPLACE)
call CGL by ref (MOVE ABS 2,-0.01, 0.58)
STAT$ = FORMAT$ (HOMEX-; "Home: (#.###II) + &

FORMAT$ (HOMEY, II , # • # # #) II) + &
FORMAT$(0PTION NAME, "Action Mode: 'LLLLLLLL ") + &
FORMAT$(MODE NAME, "Plot Mode: 'LLLL")

call CGL by ref (TEXT, STAT$, LEN(STAT$))
call CGL by ref (MOVE ABS 2, ex, CY)
if v then call CGL-by ref (SET WRITING MODE, COMPLEMENT)

else call CGL by ref (SET WRITING MODE, CURRENT MODE)
end if
return

end the program

call CGL by ref (NEW FRAME)
call CGL by ref (TERMINATE CORE
end

D-11

FONT.B2S - DISPLAY A FONT

D.3 FONT.B2S - DISPLAY A FONT

10
This program is provided for instructional purposes.
only. It demonstrates some aspects of the following
software tools:

Tool Kit BASIC-PLUS-2 V2.1
CORE Graphics Library Vl.7

This application displays fonts. If you specify font O,
it displays the entire DEC Multinational set (including
CO and Cl), as shown in Chapter 1.

If you specify a user-defined font, it assumes that data
for one or more 16 x 16 characters exists as a terminal­
format file on the target system. The first line of the
file contains the number of characters. The next 16 lines
specify the contents of a character definition matrix,
followed by a single delimiter line, followed by another
character matrix, and so forth.

%INCLUDE 'LB:[l,5]CGL.B2S'

CALL CGL BY REF (INITIALIZE_CORE)
CALL CGL BY REF (NEW FRAME)
INPUT 'Font number';-FONT%
IF FONT% = 0% THEN EXTENT% = 255% \ GOTO 20 \ END IF

! User-defined font

CALL CGL BY REF (SET FONT, FONT%)
LINPUT 'File name'; FILE NAME$
OPEN FILE NAME$ FOR INPUT AS FILE #1, ACCESS READ
INPUT #!,-EXTENT% \ EXTENT% = EXTENT% + 31%
CALL CGL BY REF (SET FONT SIZE, 0%, 16%, 16%) ! Clear font
CALL CGL BY REF (SET-FONT-SIZE, EXTENT%, 16%, 16%)
! - -

! Convert terminal-format data to binary.

DIM CHAR MATRIX%(15%)
FOR CH% ; 32% TO EXTENT%

FOR I% = 0% TO 15%
N% = 0% \ LINPUT

! For each character
! For each definition line
#1, S$

! Scan the line and set the appropriate bit for
! each non-space character.
!
N% = N% OR (2% - J%) &

IF MID$(S$, J% + 1%, 1%) <> I ' &
FOR J% = 15% TO 0% STEP -1%

D-12

FONT.B2S - DISPLAY A FONT

CHAR MATRIX%(!%) = N%
NEXT !% -
CALL CGL BY REF (LOAD CHARACTER, CH%, CHAR MATRIX%())
LINPUT #1, S$! discard delimiter line -

NEXT CH% \ CLOSE #1
!
! Display a font
!

20 CALL CGL BY REF (SET WINDOW, -1.0, 16.0, -1.0, 16.0)
CALL CGL BY REF (NEW-FRAME)
IF FONT% = 0% THEN CH% = 0%
ELSE CH% = 32%

CALL CGL BY REF (SET_CHARSIZE,0.5,0.8)
END IF
CALL CGL BY REF (BEGIN BATCH)

LOOP: FOR X = O.O TO 15.0 -
FOR Y = 0.0 TO 15.0

CALL CGL BY REF (MOVE ABS 2, X, Y)
CALL CGL BY REF (TEXT~ CHR$(CH%), 1%)
CH% = CH% + 1%
EXIT LOOP IF CH% > EXTENT%

NEXT Y
NEXT X
CALL CGL BY REF (END_BATCH)

! Outline the window

CALL CGL BY REF (MOVE ABS 2, -1.0, -1.0)
CALL CGL BY REF (RECTANGLE_ABS_2, 16.0, 16.0)

! Finish up

DIM F00%(1%)
CALL GETKEY BY REF (FOO%()) ! Wait for input
CALL CGL BY REF (NEW FRAME)
CALL CGL BY REF (TERMINATE_CORE)
END

D-13

FONT.B2S - DISPLAY A FONT

D.3.1 SUITS.FNT - SAMPLE USER-DEFINED FONT

For convenience, this file is shown in two columns.
4

x
xxx

xxxxx
xxxxxxx

xxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxx x xxxxx
xxx x xxx

x
xxx

xxxxx

5432109876543210
xxx xxx

xxxxx xxxxx
xxxxx xxxxx

xxxxxxx xxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxx
xxxxxxx
xxxxx

xxx
x

5432109876543210

x
xxx

xxxxx
xxxxxxx

xxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxx !
xxxxxxxxx !
xxxxxxx
xxxxx
xxx

x

5432109876543210
xxx

xxxxx
xxxxxxx
xxxxxxx
xxxxx

xxx
xxx x xxx

xxxxx x xxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxx x xxxxx

xxx x xxx
x

xxx
xxxxx

5432109876543210

D-14

MODE.B2S - DEMONSTRATE WRITING MODES

D.4 MODE.B2S - DEMONSTRATE WRITING MODES

10
This program is provided for instructional purposes.
only. It demonstrates some aspects of the following
software tools:

Tool Kit BASIC-PLUS-2 V2.l
CORE Graphics Library Vl.7

This application was used to generate one of the figu~es
in Chapter One: The Writing Modes Shown with Line Style.
It draws two large filled areas, each covering one fourth
of the window, then seven horizontal lines, each in a
different writing mode.

%INCLUDE 'LB:[l,S]CGL.B2S'
!
CALL CGL BY REF (INITIALIZE CORE)
CALL CGL BY REF (NEW_FRAME)-

! Set up the color map for black and white
!
DIM BLACK%(2%), WHITE%(2%)
DATA 0,0,0, 7,7,7

20 READ BLACK%(!%) FOR !% = 0% TO 2%
READ WHITE%(!%) FOR !% = 0% TO 2%
CALL CGL BY REF (SET COLOR MAP ENTRY, 7%, WHITE%())
CALL CGL BY REF (SET=COLOR=MAP=ENTRY, 0%, BLACK%())

! A line printer image is the negative of what appears on
! the screen. So, make the screen image reversible.
!
LINPUT 'Reverse image'; R$ \ R$ = EDIT$(R$, 32%)
LINPUT 'Print screen'; P$ \ P$ = EDIT$(P$, 32%)
IF R$ = 'Y' THEN

ELSE

END IF

CALL CGL BY REF (SET WRITING INDEX, 0%)
CALL CGL BY REF (SET=BACKGROUND_INDEX, 7%)

CALL CGL BY REF (SET WRITING INDEX, 7%)
CALL CGL BY REF (SET=BACKGROUND_INDEX, 0%)

CALL CGL BY REF (NEW FRAME)

! Set up the window
!
DECLARE REAL CONSTANT LOWER X = 0, UPPER X = 4, &

LOWER Y = 0, UPPER-Y = 17

CALL CGL BY REF (SET_WINDOW, LOWER X, UPPER X, &
LOWER-Y, UPPER Y)

D-15

30

MODE.B2S - DEMONSTRATE WRITING MODES

Draw vertical fill for background

CALL CGL BY REF (SET FILL MODE, POLYGON)
CALL CGL BY REF (MOVE ABS-2, O, LOWER Y)
CALL CGL BY REF (RECTANGLE ABS 2, 1, UPPER Y)
CALL CGL BY REF (MOVE ABS 2, 2~ LOWER Y) -
CALL CGL BY REF (RECTANGLE ABS 2, 3, UPPER Y)
CALL CGL BY REF (SET_FILL_MODE~ OFF) -

! Storage for visible mode names
!
DATA "COMPLEMENT",

"OVERLAY",
"REPLACE",
"ERASE" ,

"COMPLEMENT NEGATE",
"OVERLAY NEGATE",
"REPLACE NEGATE",
"ERASE NEGATE"

Draw a horizontal line for each mode

WRITING MODE% = COMPLEMENT
CALL CGL BY REF (SET LINEWIDTH, O.O, 1.3)

&
&
&

CALL CGL BY REF (SET-LINEWIDTH ORIENTATION, 0.0, 0.0)
CALL CGL BY REF (SET=LINESTYLE~ DOT_DASHED, 0%, 0%)
FOR Y = 1 TO 16 STEP 2

NEXT Y

CALL CGL BY REF (BEGIN BATCH)
CALL CGL BY REF (SET WRITING MODE, WRITING MODE%)
READ WM$ \ WRITING MODE% = WRITING MODE% +-1%
CALL CGL BY REF (MOVE ABS 2, LOWER-X, Y)
CALL CGL BY REF (LINE-ABS-2, UPPER-X, Y)
CALL CGL BY REF (MOVE-ABS-2, LOWER-X + 0.05, Y)
CALL CGL BY REF (SET WRITING MODE,-REPLACE NEGATE)
CALL CGL BY REF (TEXT, WM$, LEN(WM$)) -
CALL CGL BY REF (END_BATCH)

! Outline the window

CALL CGL BY REF (SET LINEWIDTH, 0.0, 0.0)
CALL CGL BY REF (SET-LINESTYLE, SOLID, 0%, 0%)
CALL CGL BY REF (SET-WRITING MODE, OVERLAY)
IF R$ = 'Y' - -

END IF

THEN CALL CGL BY REF (SET WRITING INDEX, 7%)
ELSE CALL CGL BY REF (SET_WRITING=INDEX, 0%)

CALL CGL BY REF (MOVE ABS 2, LOWER X, LOWERY)
CALL CGL BY REF (RECTANGLE_ABS_2, UPPER_X, UPPER_Y)

! Finish up

40 CALL CGL BY REF (PRINT SCREEN, LOWER X, UPPER X, &
LOWER=Y, UPPER_Y, 0~ O) IF P$ = 'Y'

D-16

MODE.B2S - DEMONSTRATE WRITING MODES

DIM F00%(1%)
CALL GETKEY BY REF (FOO%()) ! Wait for input
CALL CGL BY REF (NEW FRAME)
CALL CGL BY REF (TERMINATE_CORE)
END

D-17

APPENDIX E

SUMMARY OF INSTRUCTIONS

In BASIC-PLUS-2, the data types of constants and
(implicity-created) variables can be observed at a glance. Thus,
in this appendix, the following BASIC-PLUS-2 conventions are used
to indicate the data types of CGL instruction parameters.

• No suffix indicates a real (two-word, floating point) type.

• A percent sign (%) indicates an integer (16-bit, signed)
type.

• A dollar sign ($) indicates a string (array of character)
type.

• A subscript indicates an array.

This summary does not
instructions. All
corresponding INQUIRE
parameter list.

ARC_ABS_2 (x, y, angle%)

NOTE

include symmetric INQUIRE
SET instructions have a

instruction with the same

Draws an arc of a circle whose center is at a specified
position, beginning at the current position, and
continuing for a specified number of degrees.

ARC_REL_2 (x, y, angle%)

Draws an arc of a circle whose center is at a specified
offset, beginning at the current position, and continuing
for a specified number of degrees.

E-1

SUMMARY OF INSTRUCTIONS

BEGIN BATCH

Begins storing all subsequent view surface updates in a
buffer and continues to do so until END BATCH or until
the buffer is full.

BEGIN_DEFINE_CHARACTER (code%)

Begins the definition of a character.

CGL_WAIT (seconds)

Suspends all changes to the video monitor screen for a
specified period of real time.

CURVE_ABS_2 (x_array, y_array, n%, type%)

Draws a smooth curve connecting a list of positions.

CURVE_REL_2 (x_array, y_array, n%, type%)

Draws a smooth curve connecting a list of offsets.

DESELECT_VIEW_SURFACE (name$, length%)

The DESELECT VIEW SURFACE instruction removes a specific
device from- the- set of devices to which CGL performs
output.

END BATCH

Performs all view surf ace updates stored since the last
BEGIN BATCH.

END DEFINE CHARACTER

Ends the definition of a character.

ERASE VIEWPORT

Clears the viewport.

INITIALIZE CORE

Guarantees that the graphics system is in a standard
state with default parameters established.

INITIALIZE_VIEW_SURFACE (name$, length%)

Prepares (does not implicitly select) a specific output
device for operation.

E-2

SUMMARY OF INSTRUCTIONS

INQUIRE_CURRENT_POSITION_2 (x, y)

Returns the current world coordinate position.

INQUIRE_TEXT_EXTENT_2 (length%, delta_x, delta_y)

Reports the amount of world coordinate space that would
be used to draw a string of the indicated length,
unjustified, beginning at the current position.

LINE_ABS_2 (x, y)

Changes the current position to the specified position
and draws a connecting line.

LINE_REL_2 (delta_x, delta_y)

Changes the current position to the specified offset and
draws a connecting line.

LOAD_CHARACTER (code%, matrix%())

Loads a character into the current user-defined font.

LOAD_FONT (name$, length%)

Loads characters into the current user-defined font from
a named region.

MARKER_ABS_2 (x, y)

Changes the current position to the specified position
and draws a marker.

MARKER_REL_2 (delta_x, delta_y)

Changes the current position to the specified offset and
draws a marker.

MOVE_ABS_2 (x, y)

Changes the current position to the specified position.

MOVE_REL_2 (delta_x, delta_y)

Changes the current position to the specifed offset.

NEW FRAME

Clears currently selected view surfaces.

E-3

SUMMARY OF INSTRUCTIONS

PLAYBACK_FILE (name$, length%)

Executes a file of GIDIS commands.

POLYGON_ABS_2 (x_array, y_array, n%)

Draws a series of connected lines starting and ending at
the first position in the specified list.

POLYGON_REL_2 (dx_array, dy_array, n%)

Draws a series of connected lines starting and ending at
the first offset in the specified list.

POLYLINE_ABS_2 (x_array, y_array, n%)

Draws a series of connected lines starting at the current
position and ending at the last position in the specified
list.

POLYLINE REL 2 (dx_array, dy_array, n%)

Draws a series of connected lines starting at the current
position and ending at the last offset in the specified
list.

POLYMARKER_ABS_2 (x_array, y_array, n%)

Changes the current position to each of a list of
positions and draws a marker at each position.

POLYMARKER_REL_2 (dx_array, dy_array, n%)

Changes the current position to each of a list of offsets
and draws a marker at each offset.

PRINT SCREEN (lower x, upper_x, lower_y, upper_y,
y_offset) -

x_offset,

Sends an image of the video monitor screen to a graphics
printer (LASO or LAlOO).

RECTANGLE ABS 2 (x, y)

Draws a series of connected lines forming a four-sided,
perpendicular, polygon with the current position at one
corner and the specified point at the opposing corner.

E-4

SUMMARY OF INSTRUCTIONS

RECTANGLE_REL_2 (dx, dy)

Draws a series of connected lines forming a four-sided,
perpendicular, polygon with the current position at one
corner and the specified offset at the opposing corner.

REPORT_MOST_RECENT_ERROR (inst_name%, code%)

Reports the instruction number and error code associated
with the most recent execution error and returns the
system to a nonerror state.

SCROLL (delta_x, delta_y)

Moves the contents of the entire video monitor screen by
a specified amount of world coordinate space.

SCROLL_VIEWPORT (delta_x, delta_y)

Moves the contents of the viewport by a specified amount
of world coordinate space.

SELECT_VIEW_SURFACE (name$, length%)

Adds a specific device to the set of view surfaces to
which CGL performs output.

SET BACKGROUND INDEX (index%)

Specifies an index into the color map for the background.

SET_CHARITALIC (angle%)

Specifies the slant of the individual characters in a
text string.

SET CHARJUST (x_just%, y_just%)

Specifies the starting position of text
relative to the current position.

SET CHARPATH (path%, mode%)

primitives

In character mode, specifies the path (relative to
horizontal) of individual characters. In string mode,
specifies the path (relative to horizontal) of entire
strings.

E-5

SUMMARY OF INSTRUCTIONS

SET_CHARSIZE (width, height)

Specifies the X and Y size, in world coordinate units, of
text primitives.

SET_CHARSPACE (delta_x, delta_y)

Specifies the horizontal and vertical displacement
between the starting points of adjacent letters.

SET_COLOR_MAP (color_map%())

Specifies the RGB values of the entire color map and of
any existing images.

SET_COLOR_MAP_ENTRY (entry%, color%())

Specifies the RGB values of an individual color map entry
and of any existing images drawn with that entry.

SET CURSOR (font%, char%, width%, height%, dx, dy)

Controls the appearance of the cursor, the
representation of the current position.

SET_FILL_CHAR (font%, char%, width_mult%, height_mult%)

Specifies the character used for area fill.

SET_FILL_ENTITY (x, y)

visual

Specifies the line or point used as the reference for
area fill.

SET_FILL_MODE (mode%)

Specifies the current area fill mode:
line, horizontal line, point).

SET_FONT (font%)

(off, vertical

Specifies one of the four available character fonts.

SET FONT SIZE (extent%, x size%, y size%) - - - -
Initializes the current user-defined font: specifies the
highest-numbered character and the size of the characters
in physical device coordinate units.

E-6

SUMMARY OF INSTRUCTIONS

SET_GLOBAL_ATTRIBUTES (int_list%(), real_list())

Specifies the values of the entire
primitive attribute list.

SET_LINESTYLE (style%, pattern%, mult%)

global

Specifies the current pattern for line primitives.

SET_LINEWIDTH (dx, dy)

output

Specifies the X and Y width of line primitives in world
coordinate units.

SET LINEWIDTH ORIENTATION (dx, dy)

Specifies the offset from the end of a line primitive to
the actual drawing position specified in the line
primitive instruction.

SET MARKER SYMBOL (symbol%, code%)

Specifies one of five standard symbols or a user-defined
symbol as the current marker symbol.

SET NOC SPACE 2 (width, height)

Defines normalized device coordinate space.

SET_ORIGIN (origin%)

Specifies which corner of the viewport corresponds to the
origin of the window.

SET VIEWPORT 2 (xmin, xmax, ymin, ymax)

Specifies a portion of normalized device coordinate space
to be the viewport and resets the current position to the
origin of the window.

SET_WINDOW (xmin, xmax, ymin, ymax)

Specifies the edges of the window and resets the current
position to the origin of the window.

SET WINDOW CLIPPING (on_off%)

Controls the display of output primitives (or portions of
output primitives) that fall outside of the window.

E-7

SUMMARY OF INSTRUCTIONS

SET WRITING INDEX (index%)

Specifies an index into the color map for images created
by subsequent output primitive instructions.

SET_WRITING_MODE (mode%)

Specifies the exact manner in which CGL draws output
primitives.

SET_WRITING_PLANES (n%)

Specifies which of the three bitmap planes can be written
into by CGL.

TERMINATE CORE

Releases all resources used by the CGL system.

TERMINATE_VIEW_SURFACE (name$, length%)

Terminates access to and releases a specific output
device.

TEXT (string$, length%)

Draws a line of text.

E-8

APPENDIX F

GLOSSARY

The words in this glossary are used throughout this manual.
These definitions are not absolute and may differ somewhat in
other contexts. Where possible, the CORE Standard usage is the
basis of the definition.

ATTRIBUTE

One of a CGL-maintained list of values that determine the
characteristics of appearance of output primitives.

See also OUTPUT PRIMITIVE.

BASIC-PLUS-2

The Professional Developer's Tool Kit implementation of
BASIC-PLUS-2, a highly extended compiler for BASIC (Beginner's
All-purpose Symbolic Instruction Code), a widely-used programming
language.

CLIPPING

The state in which output primitives occupying world coordinate
positions outside the window do not appear on the view surface.

See also OUTPUT PRIMITIVE, WINDOW, WORLD COORDINATES.

CURRENT POSITION

The world coordinate position that defines the current drawing
location.

See also WORLD COORDINATES.

F-1

GLOSSARY

CURSOR

In text mode, the cursor is the visual representation of where
the next character will appear. It is indicated by a blinking
character at that position or by a blinking underline.

While CGL is operational, the cursor is the visual representation
of the current position. It is indicated by blinking cross-hairs
or a character that you specify.

On a printing terminal, the cursor is considered to be the
current location of the print head.

See also GRAPHICS MODE, TEXT MODE.

GRAPHICS MODE

A mode of operation in which physical device coordinate positions
can be addressed and written to. Graphics mode and text mode are
mutually exclusive. CGL is an interface between the Professional
graphics mode and application programs.

See also PHYSICAL DEVICE COORDINATES, TEXT MODE.

IMAGE

A view of one or more graphical objects.

See also VIEWING TRANSFORMATION.

NORMALIZED DEVICE COORDINATES (NDC)

Device-independent Cartesian coordinates in the range 0 to 1 for
specifying the viewport.

See also PHYSICAL
COORDINATES.

OUTPUT PRIMITIVE

DEVICE COORDINATES, VIEWPORT, WORLD

A part of a picture, such as a geometric object or a text string,
that has a specific appearance. Values of attributes determine
some aspects of the appearance.

PHYSICAL DEVICE COORDINATES

Device-dependent Cartesian coordinates for specifying locations
on the view surface of an output device. The Professional's
physical device coordinate space is 960 (horizontal) by 600
(vertical) units. Some special CGL instructions accept binary
values where each bit corresponds to a physical device coordinate

F-2

GLOSSARY

unit.

SCREEN

A two-dimensional, physical view surface upon which images are
drawn~ specifically the Professional 300 Series video monitor.

TEXT MODE

A terminal subsystem mode in which the video display is divided
into discrete rectangular cells, each consisting of 12 X 25
physical device coordinate units, that are treated as the
smallest unit of display resolution.

See also PHYSICAL DEVICE COORDINATES, GRAPHICS MODE.

VIEWING TRANSFORMATION

A transformation that maps world coordinates to normalized device
coordinates (which can include clipping).

See also CLIPPING,
COORDINATES.

VIEWPORT

NORMALIZED DEVICE COORDINATES, WORLD

The currently used portion of normalized device coordinate space.

See also NORMALIZED DEVICE COORDINATES.

VIEW SURFACE

The visual display component of a physical output device.

WORLD COORDINATES

Device-independent Cartesian coordinates
application program to describe data to CGL.

defined by the

See also CURRENT POSITION, NORMALIZED DEVICE COORDINATES,
PHYSICAL DEVICE COORDINATES, VIEWING TRANSFORMATION.

F-3

-A-

Absolute position
definition, 1-12

ACM
and CORE Standard, 1-1, 1-3

Application Builder
see PAB

Arc
appearance, 1-14
drawing, 7-8 to 7-9

ARC ABS 2
general description, 1-19
reference description, 7-8
summary description, E-1

ARC REL 2
general description, 1-19
reference description, 7-9
summary description, E-1

Aspect ratio
viewport, 1-14

Association
see ACM

Attribute
default values, 1-5
definition, 1-21
glossary definition, F-1
instruction, 1-5

-B-

Background
definition of, 1-21

Background index
default value, 5-3
definition, 1-33
in ERASE VIEWPORT, 3-10
in replace mode, 1-38
in replace negate mode, 1-38
in scrolling, 4-6, 4-8
on plotter, B-4
setting, 5-2, 5-9

BASIC-PLUS-2
array numbering, 7-4 to 7-5
array parameter, 2-2
CALL statement, 2-1
data types, E-1

INDEX

glossary definition, F-1
include file, 2-1

listing, C-1
NOECHO function, 2-7
string parameter, 2-2
WAIT statement, 3-10

BEGIN BATCH
general description, 1-6
reference description, 3-9
summary description, E-2

BEGIN DEFINE CHARACTER
reference description, 8-4
summary description, E-2

Bitmap
definition of, 1-30
interface to color map, 1-34

-c-

Calling Sequence
FORTRAN, 2-1
PDP-11 RS, 2-1

Cartesian coordinate
definition, 1-7

CGL
definition of, xi

CGL WAIT
general description, 1-6
reference description, 3-10
summary description, E-2

Character
as current pattern, 1-36
half-size, 8-7
inversion, 8-7
user-defined, 1-20, 1-26, 8-3

Character italic
default value of, 8-11
definition, 1-29
setting, 5-9, 8-10

Character justification
default value of, 8-10
definition, 1-28
setting, 5-9, 8-10

Character path
character mode, 8-8
default value of, 8-9
definition, 1-27

Index-1

INDEX

effect on character spacing,
8-8

setting, 5-9, 8-8
string mode, 8-8

Character size
computing, 1-25
default value of, 8-7
definition, 1-25
setting, 5-9, 8-6
standard, 1-26

Character spacing
default value of, 8-8
definition, 1-27
setting, 5-9, 8-7

Circle
drawing, 7-8, 7-10

Clipping
controlling, 4-3
definition, 1-14
glossary definition, F-1

COBOL-81
CALL statement, 2-2
integer to real conversion, 2-3
text declaration, 2-3

Color
complementary, 1-31
formation by addition, 1-31

Color map
background index, 5-2
default values, 1-5, 1-33
description, 1-32
example program, D-1
instruction, 1-32
interface to bitmap, 1-34
setting, 5-3 to 5-4
setting for complement mode,

1-37
writeable entries, 5-6
writing index, 5-1

Complement mode
and cursor, 1-11
description, 1-36
setting, 5-7
when not to use, 7-15

Complement negate mode
description, 1-37
setting, 5-7

Complementary color
definition, 1-31

Control instruction
using

description, 1-4
Coordinate space

definition, 1-7
CORE Standard

character size, 8-7
compatibility, ix, 1-1
definition of, xi
description, 1-2
function name, x
function names, 1-16

Current pattern
definition, 1-36

Current position
description, 1-11
glossary definition, F-1
instruction, 1-17, 6-1
obtaining, 6-2
resetting, 4-2, 4-5
setting, 6-1 to 6-2, 6-4 to 6-

7-1 to 7-3, 7-5 to 7-6, 7-
to 7-9, 7-11 to 7-12

Cursor
glossary definition, F-2
purpose, 1-11
setting, 6-3

Curve
appearance, 1-15
drawing, 7-11 to 7-12

CURVE ABS 2
general-description, 1-19
reference description, 7-11
summary description, E-2

CURVE REL 2
general-description, 1-19
reference description, 7-12
summary description, E-2

-D-

DEC Multinational Character Set
contents, 1-29
decimal code, 8-4 to 8-5, 8-1~
in Font 0, 8-11

DESELECT VIEW SURFACE
general description, 1-6
reference description, 3-7
summary description, E-2

DIBOL
include file, 2-4

listing, C-4
XCALL statement, 2-3

Index-2

INDEX

-E-

EBO
and color map, 1-32
description, 1-31
effect on complement mode, 1-37
with monochrome device, 1-31

Echo
disabling, 2-7

END BATCH
general description, 1-6
implicit, 3-2
reference description, 3-9
summary description, E-2

END DEFINE CHARACTER
reference description, 8-5
summary description, E-2

Erase mode
description, 1-38
on plotter, B-4
setting, 5-7
use of background index, 5-2

Erase negate mode
description, 1-38
on plotter, B-4
setting, 5-7
use of writing index, 5-1

ERASE VIEWPORT
effect on background index, 5-2
general description, 1-7
reference description, 3-10
summary description, E-2

Error message
behavior of plotter, B-9
complete list, A-1

Error reporting
see REPORT MOST RECENT ERROR

Extented Bitmap Option
see EBO

-F-

Fill
definition, 1-23

Fill character
default value of, 7-20
definition, 1-24
on plotter, B-5
setting, 5-9, 7-20

Fill entity
default value, 7-19

definition, 1-23
purpose, 1-23
resetting, 4-1 to 4-2, 4-5
setting, 5-9, 7-19

Fill mode
setting, 5-9, 7-18

Font
definition, 1-29
on plotter, B-8
setting, 5-9, 8-11
user-defined, 3-6, 8-2 to 8-3,

8-11
example, D-14

Font editor
definition, 1-20
example program, D-12

Font size
definition, 1-30
on plotter, B-8
setting, 8-12

FORTRAN
CALL statement, 2-4
include file, 2-4

listing, C-6

-G-

GETICEY
for terminal I/O, 2-7

GIGI
and ReGIS, 1-2

Global attribute
default values, 5-9
definition, 1-16

Global attribute list
description, 1-38
setting, 5-8

Graphics mode
accessing, 1-1
glossary definition, F-2

-I-

Image
correcting distortion, 1-13
glossary definition, F-2

INITIALIZE CORE
general description, 1-5
reference description, 3-1
summary description, E-2
using, 1-5

Index-3

INITIALIZE VIEW SURFACE
general description, 1-5
reference description, 3-3
summary description, E-2

INQUIRE instruction
format conventions, x
purpose, ix
symmetric, E-1

INQUIRE CURRENT POSITION 2
general description, 1=11
reference description, 6-2
summary description, E-3

INQUIRE TEXT EXTENT 2
general description, 1-20
reference description, 8-2
summary description, E-3

Installation
command file, 2-10

Instruction
format conventions, x

Instruction name
meaning of suffix, 1-16
select ion, ix

Interpolation
definition, 1-19

Italic
see Character italic

-L-

Line
drawing, 7-1 to 7-7

Line attribute
instruction, 1-21, 7-13

Line primitive
instruction, 1-18, 7-1, 7-8

Line style
as current pattern, 1-36
as fill character, 1-24
default value, 7-13
definition, 1-21
multiplier, 7-14
on plotter, B-5
setting, 5-9, 7-13
vertical for fill, 7-20

Line width
default value of, 7-15
definition, 1-22
effect of sign, 7-16
effect on drawing speed, 7-15
on plotter, B-5

INDEX

setting, 5-9, 7-14
Line width orientation

default value, 7-18
definition, 1-22
setting, 7-16

LINE ABS 2
effect-on current position,

1-11
general description, 1-18
reference description, 7-1
summary description, E-3

LINE REL 2
general description, 1-18
reference description, 7-1
summary description, E-3

LOAD CHARACTER
general description, 1-20
non-effect on plotter, B-2
reference description, 8-3
summary description, E-3

LOAD FONT
general description, 1-20
non-effect on plotter, B-2
reference description, 8-2
summary description, E-3

Logical unit number
assigning, 2-9

LUN
see logical unit number

-M-

MACR0-11
calling CGL from, 2-6

Marker
definition, 1-17
drawing, 6-4 to 6-6
symbol

default value of, 6-8
Marker attribute

instruction, 1-24, 6-7
Marker primitive

instruction, 1-17, 6-4
Marker symbol

definition, 1-24
on plotter, B-4
setting, 5-9, 6-7

MARKER ABS 2

Index-4

general description, 1-17
reference description, 6-4
summary description, E-3

INDEX

MARKER REL 2
general description, 1-17
reference description, 6-5
summary description, E-3

Monochromatic image
description, 1-30

MOVE ABS 2
effect-on current position,

1-12
general description, 1-17
reference description, 6-1
summary description, E-3

MOVE REL 2
effect-on current position,

1-12
general description, 1-17
reference description, 6-2
summary description, E-3

-N-

NEW FRAME
effect on background index, 5-2
general description, 1-5
non-effect on plotter, B-2
reference description, 3-2
summary description, E-3

Normalized device coordinate
definition, 1-8
description, 1-12
glossary definition, F-2
space, 1-12

Normalized device coordinate
(NDC)

space, 1-13

-o-

Origin
as default fill entity, 7-19
definition, 1-10
effect on scrolling, 4-6, 4-8
resetting, 4-1 to 4-2

Output primitive
description, 1-16
factors affecting, 1-16
glossary definition, F-2
instruction, 1-4

Overlay mode
description, 1-37
on plotter, B-4

setting, 5-7
use of writing index, 5-1

Overlay negate mode
description, 1-37
setting, 5-7
use of writing index, 5-1

-P-

P/OS User Interface Library
using with CGL, 2-8

PAB
command file, 1-5, 2-8
overlay descriptor file, 2-8

PASCAL
include file, 2-5

listing, C-9
parameter passing, 2-6
READONLY attribute, 2-6
SEQll declaration, 2-5
TEXT identifier, 8-1
UNSAFE attribute, 2-6

Physical device coordinate
definition, 1-8, 1-14
glossary definition, F-2
space, 1-14, B-2

Pixel
general definition, 1-14

Plane
definition of, 1-30
selecting, 1-35, 5-6

PLAYBACK FILE
general description, 1-6
reference description, 3-8
summary description, E-4

Plotter
Hewlett-Packard, B-1, B-10

POLYGON ABS 2
general description, 1-18
reference description, 7-4
summary description, E-4

POLYGON REL 2
general description, 1-18
reference description, 7-5
summary description, E-4

POLYLINE ABS 2
general description, 1-18
reference description, 7-2
summary description, E-4

POLYLINE REL 2
general description, 1-18

Index-5

reference description, 7-3
summary description, E-4

POLYMARKER ABS 2
general description, 1-17
reference description, 6-5
summary description, E-4

POLYMARKER REL 2
general description, 1-18
reference description, 6-6
summary description, E-4

Portability
of programs, x, 1-3

POSRES
using with CGL, 2-8

Primary color
in light, 1-31

PRINT SCREEN
general description, 1-7
reference description, 3-11
summary description, E-4

PRO/GI DIS
description, 1-1

Professional Application Builder
see PAB

Pythagorean Theorem
example, 7-9 to 7-10

-o-
QIO

access to PRO/GIDIS, 1-2

-R-

RECTANGLE ABS 2
general-description, 1-19
reference description, 7-6
summary description, E-4

RECTANGLE REL 2
general-description, 1-19
reference description, 7-7
summary description, E-5

ReGIS
description, 1-2
implementation, 1-2

Relative position
definition, 1-12

Replace mode
description, 1-38
setting, 5-7
use of background index, 5-2

INDEX

Replace negate mode
description, 1-38
setting, 5-7
use of background index, 5-2

REPORT MOST RECENT ERROR
and carry-bit, 2=1
general description, 1-7
reference description, 3-12
summary description, E-5

RGB value
definition, 1-32
setting, 5-3 to 5-4
with monochrome device, 1-34

Rounding errors
in consecutive arcs, 7-8, 7-10

-s-

Screen
glossary definition, F-3
printing

see PRINT SCREEN
SCROLL

non-effect on plotter, B-2
reference description, 4-6
summary description, E-5

SCROLL VIEWPORT
non-effect on plotter, B-2
reference description, 4-7
summary description, E-5

Scrolling
of screen, 4-6
of viewport, 4-7

SELECT VIEW SURFACE
general description, 1-6
reference description, 3-5
summary description, E-5

SET instruction
format conventions, x

SET BACKGROUND INDEX
effect on plotter, B-4
general description, 1-33
reference description, 5-2
summary description, E-5

SET CHARITALIC
effect on character size, 1-21
general description, 1-29
reference description, 8-10
summary description, E-5
use of with SET_CHARPATH, 8-9

SET CBARJUST

Index-6

INDEX

general description, 1-28
reference description, 8-10
summary description, E-5

SET CHARPATH
effect on character size, 1-26
general description, 1-27
modes, 1-27
reference description, 8-8
summary description, E-5

SET CHARSIZE
general description, 1-25
reference description, 8-6
summary description, E-6

SET CHARSPACE
general description, 1-27
reference description, 8-7
summary description, E-6
with SET CHARPATH, 1-28

SET COLOR MAP
EBO requirement, 5-1
general description, 1-32
non-effect on plotter, B-2
reference description, 5-4
summary description, E-6

SET COLOR MAP ENTRY
EBO requirement, 5-1
general description, 1-33
non-effect on plotter, B-3
reference description, 5-3
summary description, E-6

SET CURSOR
general description, 1-11, 1-17
non-effect on plotter, B-3
reference description, 6-3
summary description, E-6

SET FILL CHAR
effect-on plotter, B-5
general description, 1-24
reference description, 7-20
summary description, E-6

SET FILL ENTITY
general description, 1-23
reference description, 7-19
summary description, E-6

SET FILL MODE
general description, 1-23
reference description, 7-18
summary description, E-6

SET FONT
effect on plotter, B-8
general description, 1-29

reference description, 8-11
summary description, E-6

SET FONT SIZE
effect-on plotter, B-8
effect on view surfaces, 3-6
general description, 1-30
reference description, 8-12
relationship to LOAD CHARACTER,

8-4 to 8-5 -
summary description, E-6
use of with LOAD_CHARACTER, 8-4

to 8-5
use of with LOAD_FONT, 8-3

SET GLOBAL ATTRIBUTES
general description, 1-38
reference description, 5-8
summary description, E-7

SET LINESTYLE
effect on plotter, B-5
general description, 1-21
reference description, 7-13
summary description, E-7

SET LINEWIDTH
effect on plotter, B-5
general description, 1-22
reference description, 7-14
summary description, E-7

SET LINEWIDTH ORIENTATION
general description, 1-22
reference description, 7-16
summary description, E-7

SET MARKER SYMBOL
effect on plotter, B-4
general description, 1-24
reference description, 6-7
summary description, E-7

SET NDC SPACE 2
reference description, 4-3
summary description, E-7

SET ORIGIN
general description, 1-11
reference description, 4-2
summary description, E-7

SET VIEWPORT 2
general description, 1-13
reference description, 4-5
summary description, E-7

SET WINDOW
general description, 1-10
reference description, 4-1
summary description, E-7

Index-7

SET WINDOW CLIPPING
general description, 1-14
reference description, 4-3
summary description, E-7

SET WRITING INDEX
effect on-plotter, B-3
general description, 1-33
reference description, 5-1
summary description, E-8

SET WRITING MODE
effect on-plotter, B-4
general description, 1-36
reference description, 5-7
summary description, E-8

SET WRITING PLANES
EBO requirement, 5-1
general description, 1-35
non-effect on plotter, B-3
reference description, 5-6
summary description, E-8

SIGGRAPH
and CORE Standard, 1-1, 1-3

Slant
see Character italic

Special Interest Group
see SIGGRAPH

Suspending execution
see CGL WAIT

-T-

Terminal Subsystem
modes, 1-1

TERMINATE CORE
general-description, 1-5
reference description, 3-2
summary description, E-8

TERMINATE VIEW SURFACE
general-description, 1-6
reference description, 3-4
summary description, E-8

TEXT
general description, 1-20
reference description, 8-1
summary description, E-8

Text
appearance, 1-15
drawing, 8-1

Text attribute
instruction, 1-25, 8-6

Text extent

INDEX

definition, 8-2
Text mode

accessing, 1-1
and graphics, 1-19
glossary definition, F-3

Text primitive
instruction, 1-19, 8-1

Transparent mode
description, 1-36
on plotter, B-4
setting, 5-7

Transparent negate mode
description, 1-36
on plotter, B-4
setting, 5-7

-v-
Video monitor

initialization and selection,
3-1

View surf ace
erasing

see NEW FRAME
font definition, 8-12
glossary definition, F-3
in viewing transformation, 1-1
optional, B-1

Viewing transformation
default values, 1-5
definition, 1-9, 1-14
effect on arcs, 7-8 to 7-9
effect on line width, 1-22
effect on output primitives,

1-16
glossary definition, F-3
instruction, 1-4

Viewport
aspect ratio, 1-14
default values of, 4-5
definition, 1-13
erasing

see ERASE VIEWPORT
glossary definition, F-3
in viewing transformation, 1-J
setting, 4-5

VT125

Index-8

and ReGIS, 1-2
color map compatibility, 1-33

1-37

INDEX

-w-

Window
default value of, 4-2
description, 1-10
effect on character size, 8-7
in viewing transformation, 1-14
origin

see Origin
resetting, 4-1
simulating multiple, 3-11

World coordinate
definition, 1-7
description, 1-8
glossary definition, F-3
space, 1-9 to 1-10

Writing index

Index-9

default value, 5-2
definition, 1-33
in erase negate mode, 1-38
in overlay mode, 1-37
in overlay negate mode, 1-37
in replace mode, 1-38
in replace negate mode, 1-38
on plotter, B-3
setting, 5-1, 5-9

Writing mode
definition, 1-36
example program, D-15
on plotter, B-4
setting, 5-7, 5-9
use of background index, 5-2
use of writing index, 5-1

QI

~
"' .s
gi

READER'S COMMENTS

CORE Graphics Library Manual
Order No. AA-N619C-TK

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPA) service. submit your comments
on an SPA form.

Did you find this manual understandable. usable. and well-organized?
Please make suggestions for improvement.

0
fti Did you find errors in this manual? If so. specify the error and the page number.
3
0
QI

"' .,,
QI

a:

Please indicate the type of reader that you most nearly represent.
D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)------------------------

Name ______________________ Date __________ _

Organization---------------------------------
Street ___________________________________ _

City--------------- State _______ Zip Code ______ _

or

Country

·--- Do No1 Tear - Fold Herc and Tape --

mamaama 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGIT AL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

1f Mailed in the
United States

----Do Nol Tear - Fold Herc---

