
Professional Developer's
Tool Kit User's Guide

Order No. AA-N617D-TK

Professional Developer's
Tool Kit User's Guide

Order No. AA-N617D-TK

April 1984

This guide explains how to use the Professional Developer's Host Tool Kit and
the PRO/Tool Kit to write application software that will run under the Profes­
sional Operating System (P/OS).

DEVELOPMENT SYSTEM: VAX/VMS V3.0 or later
RSX-11 M V4.0 or later
RSX-11 M-PLUS V2.0 or later
P/OS V2.0

SOFTWARE VERSION: Host Tool Kit V2.0
PRO/Tool Kit V2.0

DIGIT AL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, December 1982
Revised, May 1983

Revised, September 1983
Revised, April 1984

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software or equipment
that is not supplied by DIGIT AL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for manufacture or sale of items without written permission.

Copyright © 1982, 1983, 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS
DEC
DECmate
DECsystem-1 O
DECSYSTEM-20
DEC US
DECwriter
DIBOL

mamaama

MASSBUS
PDP
P/OS
PRO/BASIC
PRO/Communications
Professional
PRO/FMS
PRO/RMS
PROSE
PROSE PLUS

Rainbow
RSTS
RSX
Tool Kit
UNIBUS
VAX
VMS
VT
Work Processor

CHAPTER 1

1.1
1.2
1. 3
1.4
1.5
1.6
1. 7
1. 7 .1
1.7.2
1.7.3
1. 7. 4
1.7.5
1.7.6
1.7.7
1. 7. 8

CHAPTER 2

2.1
2.1.1
2.1.2
2 .1. 3
2.1.4
2 .1. 5
2.1.6
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17

CONTENTS

PREFACE viii

GETTING STARTED

OVERVIEW • • . • • • • • • • • • • • • • • 1-1
TOOL KIT CONFIGURATIONS . • • • • • • •• 1-1
THE TARGET SYSTEM • • • • • • • • • • 1-2
THE DEVELOPMENT CYCLE • • • • • • • • • • • • 1-3
USING THE PRO/TOOL KIT • • • • • • • • 1-4
USING THE HOST TOOL KIT • • • • • • • 1-4
THE TOOL KIT DOCUMENTATION SET • • • • • • 1-5

Volume 1: Introduction ••••••••••••• 1-5
Volume 2: Video • • • • • • • • • • • • • • 1-7
Volume 3: Task Building • • • • • • • • •• 1-7
Volume 4: P/OS System • . • • • • • • • 1-8
Volume 5: PRO/RMS-11 •••••••••••••• 1-8
Volume 6: MACRO Program Development 1-9
Volume 7: PRO/DECnet • • • • • • • • • • • 1-10
PRO/Tool Kit Volume • • • • • • • • • • • 1-11

THE PROFESSIONAL DEVELOPER'S TOOL KIT

LANGUAGES • • • • • • • • • • 2-1
BASIC-PLUS-2 • • • • • • • • 2-1
COBOL-81 • • • • • • 2-1
DIBOL • • • • • • • • • • • • • • • • • 2-2
FORTRAN-77 • • • • • • • • • • • • • 2-2
MACR0-11 • • • • • • • • • • • • • ••• 2-2
PASCAL • • • • • • • • • • • • • • • 2-3

SOFTWARE DEVELOPMENT TOOLS . • • • • • 2-3
Application Builder (PAB) ••••••• 2-3
Application Diskette Builder •••••• 2-3
Communications • • • • • • • • • • • 2-3
CORE Graphics Library (CGL) •••••• 2-4
DECnet • • • • • • • • • • • • • • • 2-5
General Image Display Instruction Set (GIDIS) • 2-5
Fast Install • • • • • • • • • • • • • • • • 2-6
File Control Services (FCS-11) • • • • • • 2-6
Forms Management System (PRO/FMS-11) •••••• 2-6
Frame Development Tool (FDT) • • • • • ••• 2-7
On-Line Debugging Tool (ODT) • • • • • 2-7
Print Services Callable Task • • • • • • • • • • 2-7
POSRES User Interface Services Library • • • • 2-7
POSSUM System Services Library • • • • • 2-8
PROSE Callable Editor Task • • • • • • • 2-8
Record Management Services (PRO/RMS-11) •••• 2-8
SORT Callable Sort Task • • • • • • • • 2-8

iii

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5
4.6
4.7

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1

THE PROFESSIONAL 300 SERIES PERSONAL COMPUTER

HARDWARE CONFIGURATIONS • • • • • • • • • • • 3-1
THE PROFESSIONAL OPERATING SYSTEM (P/OS) • 3-1

The P/OS User Interface • • • • • • • • • • • • 3-3
P/OS Services • • • • • • • • • • • • • • • 3-3
P/OS System Components • • • • • • • • • • • • • 3-4
Calling P/OS Routines from High-level Languages 3-7
Calling P/OS Routines from MACR0-11 • • • • • 3-10

THE APPLICATION DEVELOPMENT CYCLE

• 4-1
• 4-1
• 4-2

THE DESIGN PHASE • • • • • • • • • • • • • •
THE IMPLEMENTATION PHASE • • • • • • • • • •
THE BUILD PHASE • • • • • • • • • • • • • •
THE TESTING PHASE • • • • • • • • • • • • • • 4-3 !

Testing Applications on the PRO/Tool Kit
Testing Applications on the Host Tool Kit

THE DEBUGGING PHASE • • • • • • • • • • •
THE TUNING PHASE • • • • • • • • • • • •
THE DISTRIBUTION PHASE • • • • • • • • • • •

APPLICATION DESIGN CONSIDERATIONS

• • 4-3
• • • 4-4

• • 4-5
• • • 4-5
• • • 4-5

TARGET SYSTEM CONFIGURATIONS • • • • • • • • • • • 5-1
VIRTUAL ADDRESS SPACE • • • • • • • •

Overlaying • • • • • • • • • • • • •
Cluster Libraries • • • • • •••
Multiple Tasks •••••••••••••
Multiple Regions ••••••••

PHYSICAL MEMORY • • • • • • • • • • •
Checkpointing • • • • • • • • • •

USING APPLICATION FILES

• • • • 5-2
• • 5-2

• • • 5-3
• • • • 5-3

• • 5-3
• • 5-4

• 5-4

P/OS FILE SPECIFICATIONS • • • • • • • • • 6-1
Devices • 6-2
Directories • • • • • • • • • • • • 6-4
File Names • • • • • • • • • • • • • • • • • 6-5
File Types • • • • • • • • • • • • • • • • • • • 6-6
Version Numbers • • • • • • • • • • • • • • 6-6
Wild Card Conventions • • • • • • • • • 6-7

LOGICAL NAMES • • • • • • • • • • • • • • 6-7
System Logical Names • • • • • • • • • • 6-8
PRO/RMS-11 Translation of Logical Names • • • • 6-9
FILES-11 ACP Use of Logical Names • • • • • • 6-10
Manipulating Logical Names • • • • • • • 6-10

(

ACCESSING APPLICATION FILES •••••••••• 6-11(
Menu and Help Files • • • • • • • • • • • • • 6-11

\

iv

6.3.2

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.5
8.5.1
8.5.2
8.5.3
8.6
8.7
8. 7 .1
8.7.2
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5

Running Applications from the PRO/Tool Kit • • 6-12

TASK BUILDING

INVOKING PAB ON THE PRO/TOOL KIT • • • • • •
INVOKING PAB ON VAX/VMS . • • • • • • • • •
INVOKING PAB ON RSX-llM/M-PLUS (DCL)
BUILDING APPLICATIONS • • • • • • • • • • •
THE COMMAND (• CMD) FI LE • • • • • • • • • •

The Command Line • • • • • •
The CLSTR Option • • • • • • •

• 7-1
• • • 7-1
• • • 7-2

• 7-2
• 7-3

• • 7-3
• 7-4

NULLIB • • • • • • • • • • • • • • • • • • • 7-5
• 7-6 THE OVERLAY DESCRIPTOR LANGUAGE FILE

P/OS USER INTERFACE SERVICES

OVERVIEW • • . • • • • • • • • • • 8-1
DESIGNING A MENU STRUCTURE • • • • • • • 8-4

Format of a Menu • • • • • • • . • • • • • • 8-4
Single-Choice Menus ••••• • 8-5
Multiple-Choice Menus •••••••• • • • 8-6
Key Processing in Menus •••••

IMPLEMENTING A MENU STRUCTURE • • •
Displaying Menus • • • • • • • • • • • • •
Programming with Menus • • • • • •••••
File Specification Routines •••

DESIGNING A HELP STRUCTURE • • •

• 8-7
• 8-9
• 8-9
8-11
8-12
8-14

Help Menus • • • • • • • . • •
Key Processing in Help Menus •
Help Text Frames • • • • •

. • • • 8-14
• • • • 8-15

Key Processing in Help Text Frames
A Sample Help Structure • • • • • • •

IMPLEMENTING A HELP STRUCTURE • • • . • • •
Opening Help Files • • • • • • • • • •
Setting the Default Help Frame • • ••
Activating the Help Structure ••••••

MESSAGE FILES AND SERVICES •
FUNCTION KEYS • • • • • • • • • • •

Using Function Keys • • • • • • • • • • •
Programming Function Keys • • • • • • • • • •

POSRES TASK IMAGE REQUIREMENTS • • • • • • •
The UNITS Option • • • • • • •

8-16
8-16
8-17
8-19
8-19
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26

The GBLDEF Option • • • • • • • • • • • • 8-26
The ASG Option • • • • • • • •
The EXTSCT Option • • • •
Placing Buffers in Overlay Branches

v

• • • • 8-27
8-28

• • • 8-31

CHAPTER 9

9.1
9.1.1
9.1.2
9.2
9.2.l
9.2.2
9.2.3
9.2.4
9.2.5
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.5

9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.7
9.7.1
9.7.2
9.8
9.8.1
9.8.2
9.8.3
9.8.4
9.8.5
9.8.6

APPENDIX A

APPENDIX B

APPENDIX C

APPLICATION TUNING

SYSTEM DIRECTIVES • • • • • • • • • • • • • • • • 9-1
Cost of Directives • • • • • • • • • • • • • • • 9-1
Directives .vs. Servers •••••••••••• 9-2

FILE HANDLING • • • • • • • • • • • • • • • • 9-2
When to Open Files • • • • • • • • • 9-3
Use of File ID'S • • • ••••••••••• 9-3
File Pre-Allocation • • • • • • • • • • 9-3
Pre-extending • • • • • • • • • • • • • • • 9-3
Multiblock I/O • • • • • • • • • • • • • 9-4

VIDEO PERFORMANCE • • • • • • • • • • • • 9-4
Size of Buffer • • • • • • • • • • • • • • • • • 9-4
Buffering • • • • • • • • • • • • • • • 9-5
Eight Bit Escape Sequence Characters •••••• 9-6
QIO$.vs. QIOW$ •••••••••••••••• 9-7
Turning the Cursor Off • • • • • • • • • • • 9-7
Standard Video Tricks • • • • • • • • • 9-8

KEYBOARD INPUT • • • • • • • • • • • • • • • • 9-9
Function Keys • • • • • • • • • • • • • • • • • 9-9
Eight Bit Characters • • • • • • • • • • • • • • 9-9
Input Buffering • • • • • • • • • • • • • • • 9-10
AST's With Notification • • • • • • • • • • • 9-10

PROGRAMMABLE LOGICAL ADDRESS SPACE (PLAS)
CONSIDERATIONS • • • • • • • • • • • • • • • • •
MULTI-TASK APPLICATIONS • • • • • • • • • • • •

Intertask Communication • • • • • • • • •
Memory usage • • • • • • •
Significant event impact •
Contention • • • • •••

. . . . • •

CONCURRENT APPLICATIONS • • • • • • • • • • • •
Only for "bounded" systems • • • • • • • • • •
Exercise extreme care • • • • • • • • • • • •

POOL CONSIDERATIONS • • • • • • • • • • • •
Off spring Control Blocks • • • • • • • • • • •
Lock Blocks • • • • • • • • • • • • • • • • •
Open Files • • • • • • • • • • •
Attachment Descriptor Blocks •
Send Data Packets • • • •
I/O Packets • • • • • • • • •

GLOSSARY

.
. .

SPACE REQUIREMENTS FOR P/OS DISKETTE Vl.7

POSRES STATUS BLOCK CODES

vi

9-10
9-11
9-11
9-12
9-12
9-13
9-14
9-14
9-14
9-15
9-15 (
9-15
9-16
9-16
9-16
9-16

APPENDIX D FUNCTION KEY NAMES AND CODES

APPENDIX E DOCUMENTATION DIRECTORY

INDEX

FIGURES

TABLES

E.l
E.2
E.3
E.4
E.5
E.6
E.7
E.8

VOLUME 1: INTRODUCTION ••••••••••••• E-1
VOLUME 2: VIDEO . • • • • • • • • • ••• E-1
VOLUME 3: TASK BUILDING ••••••••••••• E-1
VOLUME 4: P/OS SYSTEM •.••.•••••.•.• E-2
VOLUME 5: PRO/RMS-11 • . • • • • •.•.• E-2
VOLUME 6: MACRO PROGRAM DEVELOPMENT •••.••• E-2
VOLUME 7 : PRO/DECNET • . • . • E-2
PRO/TOOL KIT VOLUME • • • • • • • • • • • • • E-2

1-1 Tool Kit Configurations • • • • • • • •••• 1-2
3-1 Professional Keyboard (U.S./Canada) .•••••• 3-2
7-1 Sample PAB Command File • • • • • • • • • • • • • 7-3
8-1 The User Interface Tools • • • • • • • • • • ••• 8-3
8-2 Single-choice Menu • • • • • • • • • • • . • . 8-5
8-3 Multiple-choice Menu • • . • • • • • • • •• 8-6
8-4 "Name a File Form" • • • • • • • • • • • • • 8-13
8-5 Help Menu • • • • • • . . • • . • • • • 8-15
8-6 Help Text Frame • • • . •• 8-17
8-7 The P/OS Main Menu Help Structure (partial) 8-18
8-8 Message Frame • • • • . • . • . . . • • • . 8-21
8-9 PAB Command File with POSRES Options • • • • 8-26
8-10 POSRES Maximum Buffer Sizes • • • • • • • • 8-29
8-11 Sample .ODL File Showing Overlaid Buffers • • • 8-32

6-1 P/OS Physical and Pseudo Device Names • . • • 6-3
6-2 User-visible File Types . • • . • •••••• 6-6
6-3 System/Application File Types • • • • • ••• 6-6
6-4 P/OS System Logical Device Names • • • • • • • 6-8
6-5 Logical and Equivalence Directory Names • • • • . 6-9
8-1 POSRES Global Symbols • . . . • • • • • 8-27
8-2 Buffers Accessed by POSRES Routines • . • • 8-29
C-1 POSRES Status Values • • • • . • • • • • • • ••. C-1
C-2 Menu Service Routine Errors • • • • • . • • • C-3

vii

(
\

/
I
'

PREFACE

Intended Audience

The Tool Kit User's Guide is for application developers who are
creating software that will run under P/OS. It assumes that you are
familiar with the host system environment. If you need introductory
system information, refer to the RSX-llM/M-PLUS Guide to Program
Development, your host system command language manual, or the PRO/Tool
Kit Command Language and Utilities Manual

Document Structure

The Tool Kit User's Guide contains the
appendices:

following chapters and

1 • Getting Started explains what the Tool Kit is all
provides an overview of the Tool Kit configurations,
system, the development cycle, describes how to invoke
Kit, and lists the contents of the documentation set.

about. It
the target
the Tool

2. The Professional Developer's Tool Kit provides a brief overview of
each programming language and software development tool that makes
up the Tool Kit.

3. The Professional 300 Series Personal Computer is the target system
for the Tool Kit. This chapter describes the hardware and
software that makes up a Professional.

4. The Application Development Cycle is a series of phases that you
will go through in developing an application for the Professional.
This chapter provides an overview of each phase.

5. The first phase of application development is design. This
chapter covers some of the factors that you should consider during
the design phase.

6. Using Application Files explains P/OS file specifation syntax,
logical names, and how an executing application opens files.

7. Task Building provides a brief explanation of how to use the
Application Builder, the utility that creates task images.

8. P/OS User Interface Services describes how to design and implement
a menu-based user interface for your application, similar to that
used by P/OS itself.

9. The penultimate phase of application development is tuning. This
chapter explains some of the factors that affects an application's
performance. It is intended for experienced programmers.

ix

PREFACE

A. The Glossary describes some of the terms used in this manual

B. The Space Requirements for P/OS Diskette are significant if you
want your application to run on diskette-based systems.

c. The POSRES Status Block Codes describes the status information
returned by the User Interface Library Routines at run-time.
(This appendix is duplicated in the Tool Kit Reference Manual).

D. Function Key Names and Codes lists the Professional function keys
in a format useful for user interface programming. (This appendix
is duplicated in the Tool Kit Reference Manual).

E. The Documentation Directory lists the volumes, manuals, updates,
and order numbers of the Tool Kit documentation set.

Related Documentation

This manual is part of the Tool Kit documentation set. Related
documentation is referenced throughout the book. For abstracts and
order numbers of other Tool Kit documents, see Appendix E.

Documentation Conventions

Syntax diagrams are presented in a format intended to make them easy
to read and understand. Most languages do not require that you format
your code in any particular way; therefore, you should not regard the
formats used in this manual as mandatory.

Because some languages include the symbols normally used as
conventions in syntax diagrams, the following conventions are used:

Convention

BOLD UPPERCASE

UPPERCASE LETTERS

bold lowercase

lowercase letters

Meaning

Bold uppercase letters indicate elements that you
must use exactly as shown.

Uppercase letters indicate elements that you can
omit or use exactly as shown.

Bold lowercase letters indicate elements that you
must replace according to the description in the
text.

Lowercase letters indicate elements that you can
omit or replace according to the description in
the text.

x

red letters

PREFACE

A vertical ellipsis in a figure or example means
that not all of the statements are shown.

Red letters distinguish what you type from what
the computer types.

xi

(
\

(

CHAPTER 1

GETTING STARTED

1.1 OVERVIEW

The Professional Developer's Tool Kit is a set of programming
languages and software tools for developing applications for the
Professional 300 Series personal computers. The Professional consists
of a PDP-11/23-PLUS processor running P/OS, an operating system based
on RSX-llM-PLUS, a real-time, multitasking system. Thus, the Tool Kit
consists of software products that were originally designed for the
PDP-11 minicomputer family, including much larger systems like the
PDP-11/70. Most of the tools are RSX-llM-PLUS layered products that
have been modified for Professional 300 Series applications.

If you have had experience with PDP-11 minicomputers and RSX-llM-PLUS,
you will find the Tool Kit and P/OS very similar to tools that you
have already used. However, if your background has been primarily
with other personal computers, you may find that the Tool Kit and P/OS
are much more powerful and complex than what you have been using.

The Tool Kit provides an extensive documentation set that describes
the tools and how to use them to develop applications (overview
provided in Section 1.7). This manual and the Tool Kit Reference
Manual make up the "core" of the documentation set-.--If you are new to
the Tool Kit and P/OS, it is recommended that you become familiar with
them first.

Some tools have documentation consisting of several manuals. In those
cases, the RSX-llM/M-PLUS or generic manuals are included along with a
supplement containing information specific to the Tool Kit version.

1-1

TOOL KIT CONFIGURATIONS

1.2 TOOL KIT CONFIGURATIONS

The Tool Kit is available in two configurations:

•

•

The PRO/Tool Kit
Professional 350
Language (DCL) as
Professional 350
the same time.

runs as an installed application on the
personal computer and uses the DIGITAL Command

its user interface. It allows you to use the
as a development system and a target system at

The Host Tool Kit runs
compatibility mode) or on
You can take advantage of
communications provided by
using the Professional 350
the same time.

PRO/Tool Kit

on a VAX/VMS system (in PDP-11
a PDP-11 system running RSX-llM/M-PLUS.

the performance, mass storage, and
a minicomputer development system while
as a terminal and a target system at

Host Tool Kit

llllllllllKlllHllllllllllllll
llllfttlllllllllllllllllllllllll

Tool Kit Host

Communications Link

Figure 1-1: Tool Kit Configurations

1.3 THE TARGET SYSTEM

The Professional 300 Series of personal computers has two hardware
configurations: the Professional 325 and the Professional 350. Each
system unit comes with a dual diskette drive. The primary difference
is the mass-storage device: the Professional 350 can support a hard
disk.

1-2

THE TARGET SYSTEM

The Professional 300 Series also has two software
P/OS Hard Disk and P/OS Diskette. You must
consideration when designing your application.

1.4 THE DEVELOPMENT CYCLE

configurations:
take this into

The Tool Kit development cycle consists of several phases. Each phase
is described in detail in Chapter 4.

• The Design Phase

The design phase requires you to make several decisions that will
affect all of the other phases. They are: target system
configurations and use of virtual and physical memory.

• The Implementation Phase

During the implementation phase, you create a set of files that
specifies the algorithms and data structures used in your
application: source code, command files, form description files,
frame definition files, data files, and so forth. Some of these
files will change continuously as you work. Others will remain
relatively stable.

• The Build Phase

During the
represents
executable
forth.

build phase, you create another set of files that
an actual working version of your application:

images, form libraries, converted frame files, and so

• The Test Phase

During the test phase, you install the working version of your
application on a Professional personal computer and test all
aspects of it.

• The Debugging Phase

Some of the Tool Kit languages offer special debugging software
that allows you to stop and start an executing task, examine
variables, and so forth. You can connect a separate terminal to
your Professional for debugger interaction, allowing your task to
control the video monitor.

1-3

THE DEVELOPMENT CYCLE

• The Tuning Phase

As your application nears completion, you may want to make some
adjustments to optimize it's performance and use of resources. If
so, make sure to retest it thoroughly.

• The Distribution Phase

When you are satisfied that your application is ready to ship,
create a master distribution kit for duplication. The Tool Kit
includes a special tool for this purpose.

1.5 USING THE PRO/TOOL KIT

All the tools you need for program development, including the DIGITAL
editor EDT, are included in the PRO/Tool Kit. You can complete the
entire application development cycle without leaving the PRO/Tool Kit
environment.

Start up your system and select the PRO/Tool Kit option from the
appropriate menu. The startup command procedure START.CMD prints
messages indicating which tasks are being installed. The dollar sign
($) prompt indicates that the Digital Command Language {DCL) user·
interface is ready to accept commands. For complete information on
DCL, refer to the PRO/Tool Kit Command Language/Utilities Manual.

If you would like to have the PRO/Tool Kit {or any other application)
run automatically when P/OS starts up, create a file on the hard disk
named:

[ZZSYS]FIRSTAPPL.PTR

In the file, insert one line of text,
{padded with spaces if necessary)
directory (no brackets) containing the
run automatically. For example, start

$ SHOW LOGICAL APPL$DIR

exactly nine characters long\
that specifies the name of the
application that you want to
the PRO/Tool Kit and type:

If the PRO/Tool Kit directory is [ZZAP00002], the file should contain:

ZZAP00002

NOTE

Be careful when creating this file. If you make a
mistake, P/OS usually displays the Main Menu. It may
be possible, however, to render a system unusable if
the startup application creates problems.

1-4

USING THE HOST TOOL KIT

1.6 USING THE HOST TOOL KIT

The Host Tool Kit requires that you work on a host computer system for
the build phase of the development cycle. Most developers find it
convenient to use the host for all phases, right up to
testing/debugging.

For host system work, you can use whatever terminal you prefer. It is
recommended that you use a Professional 350 personal computer and
Terminal Emulator for your host work. This allows you to work
interactively with eight-bit characters. If you use a VT100-type
terminal, you can work with eight-bit characters in files only.

Both VAX/VMS and RSX-llM/M-PLUS require that you enter some terminal
commands to enable transmission or reception of eight-bit characters.
See the PRO/Communications Manual for details on terminal commands.

1.7 THE TOOL KIT DOCUMENTATION SET

The Tool Kit documentation set is organized so that related manuals
are in the same volume (binder). This section describes the contents
of each volume.

You may want to refer to some manuals not included in the PRO/Tool Kit
documentation set while you develop applications:

• Professional 300 Series End User Documentation

Read this documentation to learn how to install and run
applications such as the PRO/Tool Kit on the Professional, and to
understand the user's view of the system on which your
applications will run.

• Host System Documentation

Complete documentation for RSX-llM/M-PLUS and
can be obtained under separate license.
documentation assumes that you have and are
manuals for your host system.

• High-level Language Documentation

VAX/VMS host systems
The host Tool Kit
familiar with the

Four optional high-level languages, Tool Kit COBOL-81, Tool Kit
DIBOL, Tool Kit FORTRAN-77, and Tool Kit PASCAL are supported by
the Professional Tool Kit. See your Tool Kit Software Product
Description (SPD) for information on optional software products
and documentation.

1-5

THE TOOL KIT DOCUMENTATION SET

1.7.1 Volume 1: Introduction

• Host Tool Kit Installation Guide and Release Notes

This manual contains instructions for installing the Tool Kit
software on a host development system. It also provides
information specific to the current release of the Professional
Host Tool Kit. Ignore this manual if you are using the PRO/Tool
Kit.

• Tool Kit User's Guide

This manual describes how to develop application software for the
Professional 300 Series of personal computers. It contains
chapters that describe how to get started with the Tool Kit, the
individual tools, the target system, the development cycle,
building tasks, installing applications, creating distribution
kits, using application files, and the P/OS User Interface
Services. This manual is intended for all Tool Kit users.

• Tool Kit Reference Manual

This manual provides reference information about the following
tools: Application Diskette Builder, PRO/Communications, Fast
Install, File Control Services (FCS), Frame Development Tool
(FDT), Installation Command Languages, MACR0-11 Assembler (PMA),
POSRES User Interface Library, Print Services, PROSE Text Editor,
and PRO/SORT. This manual is intended for all Tool Kit users.

• FMS-11/RSX Release Notes

This manual provides information specific to the current release
of the FMS-11/RSX software and the FMS-11/RSX User Environment
Test Package (UETP).

NOTE

The Tool Kit installation procedure installs
PRO/FMS-11. Do not perform the installation
instructions in this manual.

• PRO/FMS-11 Documentation Supplement

This manual describes the differences between FMS/RSX and PRO/FMS,
and should be used with the Tool Kit FMS-11/RSX documentation. It
is intended for the application developer experienced with FMS-11.

1-6

THE TOOL KIT DOCUMENTATION SET

• FMS-11/RSX Software Reference Manual

This manual describes how to develop FMS-11
RSX-llM and RSX-llM-PLUS systems. Use it
PRO/FMS-11 Documentation Supplement.

1.7.2 Volume 2: Video

• Terminal Subsystem Manual

applications on
along with the

This manual describes the hardware and software that controls the
Professional keyboard and video monitor {the functions typically
performed by a video terminal). It documents text mode, in which
the Professional performs input/output using the DEC Multinational
Character Set. It also describes the differences between VT102
and VT125 emulation on the Professional and the corresponding
functions on VT102 and VT125 terminals.

• CORE Graphics Library Manual

This manual describes a general-purpose graphics subroutine
library based on the ACM SIGGRAPH CORE Graphics Standard. The
CORE Graphics Library provides a higher level graphics programming
interface than PRO/GIDIS. It provides descriptions of fundamental
graphics programming concepts and sample programs written in
high-level languages.

• PRO/GIDIS Manual

This manual describes the General Image Display Instruction Set, a
device-independent graphics interface that is specific to DIGITAL.
PRO/GIDIS is intended for applications where speed and compactness
are more important than the high-level implementation provided by
the CORE Graphics Library. Instructions are encoded as a stream
of op-codes and argument data, and passed from the application
program to the PRO/GIDIS layer via the P/OS QIO mechanism. The
manual is intended for developers with systems programming and
graphics software experience. The sample programs are written in
MACR0-11.

1-7

THE TOOL KIT DOCUMENTATION SET

1.7.3 Volume 3: Task Building

• RSX-llM/M-PLUS Task Builder Manual

This manual describes the RSX-llM/M-PLUS Task Builder (TKB) upon
which the Professional Appplication Builder (PAB) is based.

NOTE

The Tool Kit User's
task~~building.
Builder Manual if
information.

Guide includes a chapter about
Use the RSX-llM/M-PLUS Task

you need more detailed

1.7.4 Volume 4: P/OS System

• P/OS System Reference Manual

This manual describes the P/OS Executive, the "nucleus" of the
Professional Operating System. Topics include executive
directives, system functions, checkpointing, memory allocation,

• I the file system, and device drivers. It is intended for\
experienced application developers.

1.7.S Volume 5: PRO/RMS-11

Only MACR0-11 assembly language programmers can use the full set of
RMS-11 capabilities described in these manuals. All of the Tool Kit
high-level languages provide an a built-in interface to RMS-11 that is
appropriate for most applications.

NOTE

Some of the RSX-11 RMS-11 features
manual may not be available to
applications for P/OS. Refer to
Guide and Release Notes for a list

• PRO/RMS-11: An Introduction

documented in this
developers creating

your Installation
of any differences.

This manual introduces the concepts of RMS-11 record formats, file
organizations, and record access modes. It does not provide
reference or usage information, but should be read before the
other RMS-11 documents. It is intended for all users of RMS-11,
including MACR0-11 and high-level language programmers.

1-8

THE TOOL KIT DOCUMENTATION SET

• PRO/RMS-11 Macro Programmer's Guide

This manual provides reference material about the macros and
symbols that make up the interface between a MACR0-11 program and
the RMS-11 operation routines. It is intended for application
developers who are already familiar with RMS-11 facilities •

• RSX-llM/M-PLUS RMS-11 Users's Guide

This manual is a guide to using RMS-11 in file and task design for
application programs written in either MACR0-11 or a high-level
language. It is intended for application developers who are
already familiar with RMS-11 facilities.

1.7.6 Volume 6: MAC~O Program Development

• IAS/RSX-11 ODT Reference Manual

This manual describes how to use the On-line Debugging Tool (ODT)
to debug user task images. It is intended for all application
developers. Use it along with the IAS/RSX-11 ODT Supplement.

NOTE

Some high-level languages provide
debugging facilities.

• IAS/RSX-11 ODT Supplement

their own

This manual describes the differences between IAS/RSX-11 ODT and
ODT on the Professional, and should be used with the IAS/RSX-11
ODT documentation.

• PDP-11 MACR0-11 Language Reference Manual

This manual describes how to use the MACR0-11
assembler to develop assembly language programs.

• Guide to Writing a P/OS I/O Device
Programmer's Notes

Driver

relocatable

and Advanced

This manual defines Executive and I/O driver interface protocols,
describes system I/O data structures, and suggests I/O driver
routine coding procedures. The information is provided in
sufficient detail to allow you to:

1-9

THE TOOL KIT DOCUMENTATION SET

Incorporate a user-written driver into a P/OS system.

User Executive service routines that an I/O driver typically
employs. employs.

Develop applications that directly access the Professional
video bitmap.

This manual is written for the senior-level system programmer who
is familiar with the hardware characteristics of both the
Professional 300 Series and the device that the user-written
software supports. Unless explicitly noted otherwise, all
information in this manual is subject to change without notice.

1.7.7 Volume 7: PRO/DECnet

DECnet is the name given to a family of software and hardware
communications products that provide a network interface for Digital
operating systems. DECnet enables multiple computer systems to
participate in communications and resource sharing within a specific
network. PRO/DECnet allows Professional 350 computers to connect to
other DECnet systems on the Ethernet.

• PRO/DECnet Tool Kit Release Notes

This manual provides information specific to this release of the
PRO/DECnet Tool Kit.

• Introduction to DECnet

This manual is an overview of the concepts and capabilities of
DECnet networks. It describes the major network concepts behind,
all implementations of DECnet, defines specific network functions,
and identifies the DECnet implementations that support each
function.

• PRO/DECnet Tool Kit Installation Guide

This manual details procedures for installing the PRO/DECnet Tool
Kit either on an RSX-llM/M-PLUS or a VAX/VMS host system, or on a
Professional 350 personal computer. It also provides information
on how to customize Professional systems as PRO/DECnet nodes.

1-10

THE TOOL KIT DOCUMENTATION SET

• PRO/DECnet Programmer's Reference Manual

This manual discusses software requirements for creating
PRO/DECnet applications. It reviews software design conventions
which are critical to the early stages of program development and
details network programming calls used in the creation of
PRO/DECnet applications. It assumes that you have a working
knowledge of networking concepts.

1.7.8 PRO/Tool Kit Volume

This volume is provided only with the PRO/Tool Kit. It represents
information that is otherwise available to users of the host Tool Kit
through their host system documentation.

NOTE

Disregard this section if you are using the host Tool
Kit.

• PRO/Tool Kit Installation Guide and Release Notes

This manual contains instructions for installing the PRO/Tool Kit
software on a Professional 350 system. It also provides
information specific to the current release of the PRO/Tool Kit.

• PRO/Tool Kit Command Language and Utilities Manual

This manual describes the Digital Command Language (DCL) and
program development utilities available on the PRO/Tool Kit for
all phases of application development.

e RSX-llM/M-PLUS RMS-11 Utilities Manual

This manual describes the RMS-11 Utilities available to users of
RMS-11 on an RSX-llM/M-PLUS host system. The PRO/Tool Kit
implementation is a subset of those utilities and is described in
PRO/Tool Kit Command Language and Utilities Manual. This manual
is intended for application developers who are using high-level
languages and do not require or do not have access to the full set
of RMS-11 capabilities.

1-11

CHAPTER 2

THE PROFESSIONAL DEVELOPER'S TOOL KIT

2.1 LANGUAGES

The following high-level languages must be ordered separately from the
Tool Kit. MACR0-11 is part of the kit.

2.1.1 BASIC-PLUS-2

BASIC-PLUS-2 is an extended BASIC compiler. It takes full advantage
of the floating point and integer instructions, as well as
capabilities of the Professional Operating System.

In addition to elementary BASIC language features, BASIC-PLUS-2
provides compile-time directives, structured programming constructs,
EXTERNAL statements, language subsets and subset flaggers, exception
handling, and many more useful features for application development.

The BASIC-PLUS-2 language processor is composed of a
Object Time System Library. The compiler is
Professional Tool Kit BASIC-PLUS-2 product. The OTS
cluster library with PRO/RMS-11 and P/OS.

2.1.2 COBOL-81

compiler and an
included in the
is supplied as a

Professional Tool Kit COBOL-81 is a high-level language for business
data processing. Compatible with COBOL-81/RSX, it also shares many
features with VAX-11 COBOL; code developed using Tool Kit COBOL-81 may
be migrated to VAX-11 COBOL.

COBOL-81 consists of a compiler and an Object Time System/Library. It
uses an interactive symbolic debugger and includes many DIGITAL
extensions to the COBOL language, including advanced screen handling,

1 RMS-STS and RMS-STV special registers for debugging, and file sharing
features to enable more than one task to access data at the same time.

2-1

LANGUAGES

2.1.3 DIBOL

Professional Tool Kit DIBOL is the Tool Kit version of DIGITAL's
Business Oriented Language. Similar to COBOL in its use of DATA
DIVISION and English-like procedural statements, DIBOL takes extensive
advantage of the Professional's architecture.

DIBOL features RMS file support, a resident DIBOL library, and allows
use of P/OS system services while maintaining many of the standard
DIBOL features. It enables data manipulation, arithmetic expression
evaluation, subroutines, structured constructs, table subscripting,
record redefinition, external and internal calls to other programs,
intertask communication, and random, sequential, and indexed access to
files. In addition, DIBOL includes a comprehensive on-line debugging
utility, DDT, with which you can quickly isolate and correct
programming errors.

2.1.4 FORTRAN-77

Professional Tool Kit FORTRAN-77 is an extended implementation of the
ANSI subset FORTRAN-77 standard. Switch selectable support is
provided for user programs based on the previous ANSI FORTRAN
standard.

Features include CHARACTER data types, Block IF constructs for the
conditional execution of blocks of statements, double precision and
complex data types, intrinsic functions, exponentiation forms, format
edit descriptors, generic function selection, virtual array support
and access to sequential, relative, and indexed organization files.

The compiler
execution-time
adapter.

produces direct
efficiency on

PDP-11 machine
a Professional

code optimized for
with a floating point

2.1.S MACR0-11

Professional Tool Kit MACR0-11
relocatable assembly language
RSXMAC.SML and RMSMAC.MLB, reflect
directives and in RMS-11 Version
with the Tool Kit; you do not have

(PMA) is the standard PDP-11
processor. The macro libraries,
the changes in P/OS kernel system
2.0, respectively. PMA is supplied
to order it separately.

The assembler processes source statements sequentially, generating
binary machine instructions and data words or performing assembly-time
operations (such as macro expansions) for each statement.

2-2

LANGUAGES

2.1.6 PASCAL

Professional Tool Kit PASCAL is a structured, high-level lanugage that
provides a modular, systematic approach to problem solving. An
extended implementation of PASCAL, it helps to simplify application
design.

Major language features include user-defined and subrange scalar data
types, structured variables and constants, loop control statements,
standard functions and procedures, and attributes to facilitate access
to P/OS resources. A full set of I/O routines support sequential,
relative, and indexed files.

Tool Kit PASCAL is a true, optimizing compiler, generating PDP-11
instructions in the form of binary object modules or MACR0-11 source
code. The object-time system is a clustered library.

2.2 SOFTWARE DEVELOPMENT TOOLS

2.2.1 Application Builder (PAB)

The Professional Application Builder (PAB) is the Tool Kit version of
the RSX-llM/M-PLUS Task Builder, the utility that links user-created
object modules with system software, producing task image files that
can be executed on the Professional. PAB is an extremely powerful
tool that provides sophisticated programmers with virtually unlimited
control over the characteristics of a task image. It is documented
briefly in this manual, and in detail in the RSX-llM/M-PLUS Task
Builder Manual.

2.2.2 Application Diskette Builder

The Application Diskette Builder (ADB) is a Professional application
that creates a master copy of an application that can be reproduced
for distribution. It uses the information in your application command
(.INS) file to copy your application from the hard disk to one or more
diskettes, from which it can be installed on other systems. It is
documented in the Tool Kit Reference Manual.

2.2.3 Communications

Communications services allow you to perform communications operations
on the Professional. They fall into three categories:

2-3

SOFTWARE DEVELOPMENT TOOLS

1. Base System Services are part of the P/OS operating system. They
include an asynchronous driver (XKDRV) for the communications
port, as well as a communications service library (COMLIB). The
Base System Services allow you to set up and control a telephone
connection for data communication and to handle voice
communication if you install the optional Telephone Management
System (TMS). These services are documented in the Tool Kit
Reference Manual and the P/OS System Reference Manual.

2. PRO/Communications Services consists of a set of routines that
allow your application to access phone book, communications setup,
and file transfer utilities as well as the Terminal Emulator.
These services require that the end user has installed the
PRO/Communcations application on the target system. These
services are documented in the Tool Kit Reference Manual and the

~~ ~-

PRO/Co mm uni cations Manual.

3. Telephone--Management System (TMS) Services consist of a set of
routines that allow your application to control the TMS hardware.
These services require that the end user has installed the TMS
application and hardware on the target system. These routines are
documented in the Tool Kit Reference Manual and the Telephone
Management System (TMS) Programmer's Manual.

2.2.4 CORE Graphics Library (CGL)

The CORE Graphics Library (CGL) is a general-purpose graphics
subroutine package based on the ACM SIGGRAPH CORE Standard, with
additional instructions that provide high-level access to the
Professional 300 series video bitmap. Features include:

• Automatic mapping of user-defined coordinates to graphics devices.

• Lines, curves, polygons, rectangles, solid objects, and graphics
text.

• Control of styles, textures, and colors.

• Multiple user-defined fonts.

• Support for graphics plotters.

• Easy access from high-level languages.

• Device independence and transportability.

The CORE Graphics Library is documented in the CORE Graphics Library (
Manual.

2-4

SOFTWARE DEVELOPMENT TOOLS

2.2.s DECnet

PRO/DECnet software allows Professional 350 computers to connect to
other DECnet systems on the Ethernet. PRO/DECnet is an end node only
implementation of the Phase IV Digital Network Architecture. It is
compatible with other Phase III and Phase IV DECnet products. The
PRO/DECnet software supports:

• Multiple, simultaneous logical links between a Professional 350
and any other Phase III or Phase IV DECnet system.

• Task-to-task communication between a Professional 350 and any
other Phase III or Phase IV DECnet system.

• High speed resource sharing within a local area network.

• Various network management and maintenance functions.

• Transport facilities that permit programs utilizing RMS-11 V2.0 to
access remote files.

The Tool Kit documentation set includes a volume
PRO/DECnet.

devoted to

2.2.6 General Image Display Instruction Set (GIDIS)

PRO/GIDIS is a general-purpose graphics subroutine package that
provides low-level virtual device access to the Professional video
bitmap. Use PRO/GIDIS when speed and compactness are of primary
importance; for example, with systems software such as:

• interactive drawing packages

• graphics terminal emulators

• scientific/engineering data displays

• rapid picture display programs

The application interface for PRO/GIDIS is the RSX QIO call.
intended to be used from MACR0-11.

It is

PRO/GIDIS is documented in the PRO/GIDIS Manual, part of the PRO/Tool
Kit documentation set. See that manual for a more detailed comparison
of CGL and PRO/GIDIS.

2-5

SOFTWARE DEVELOPMENT TOOLS

2.2.7 Fast Install

Fast Install is a Professional 350 application that allows you to
install an application from a directory on the hard disk. (P/OS
Disk/Diskette Services can install an application from diskette only.)
Fast Install is distributed with the Host Tool Kit and the PRO/Tool
Kit on the Application Diskette Builder (ADB) diskette. It is
documented in the Tool Kit Reference Manual.

2.2.8 File Control Services (FCS-11)

File Control Services (FCS) is a set of file management routines for
use on the RSX-11 family of operating systems. FCS is included in the
Tool Kit only for the purpose of converting existing applications to
P/OS. You should use PRO/RMS-11 when you write new applications. FCS
is described in the IAS/RSX-11 I/O Operations Reference Manual, which
is included in the RSX-llM or RSX-llM-PLUS documentation set (not
included with the Tool Kit).

2.2.9 Forms Management System (PRO/FMS-11)

The Forms Management System (PRO/FMS-11) is the Tool Kit version of
FMS-11 for PDP-11 systems. FMS-11 performs screen management and
input validation by providing your application with access to a set of
predefined forms. A form can contain display-only information as well
as one or more fields, each of which has a set of help, display,
protection, and validation characteristics. PRO/FMS-11 is made up of
three software components:

• The Form Editor (PROFED) is an editor for creating and modifying
video forms. You edit forms while viewing them on the screen as
they are to appear to the application user. You can modify
existing forms without having to recompile the application or
reprocess collected data.

• The Form Utility (PROFUT) is a utility for creating and
maintaining binary form library files. If your target system is
P/OS Hard Disk, you can use these form libraries to reduce program
memory requirements.

• The Form Driver (FDV) is an object module containing a set of
callable subroutines that display forms, perform input and output
operations, respond to HELP requests, and so forth. The Form
Driver calls for the Professional produce somewhat different
results from FMS-11 calls for the VTlOO terminal.

2-6

SOFTWARE DEVELOPMENT TOOLS

The PRO/FMS-11 binder (included with the Tool Kit documentation set)
provides manuals that describe this tool in detail.

2.2.10 Frame Development Tool (FDT)

The Frame Development Tool (FDT) creates menu, help, and message
frames. FDT is used by application developers to create frames
through which an end user interacts with an application. Through a
series of forms, you specify the actual text to be displayed on menus
and help frames and the information relating to the manner and timing
of the frame displays. Service routines in POSRES must be called to
display the frames. The Frame Development Tool is documented in the
Tool Kit Reference Manual.

2.2.11 On-Line Debugging Tool (ODT)

The On-Line Debugging Tool (ODT) is a utility for debugging task
images. You can use it to control program execution, display and
alter the contents of memory locations and registers, search and fill
memory, and perform calculations. ODT is provided for debugging MACRO
programs, and programs written in higher level languages that do not
provide their own debuggers. It is documented in the IAS/RSX-11 ODT
Reference Manual and supplement.

2.2.12 Print Services Callable Task

Print services consists of a routine that allows your application to
print a file, stop, continue, abandon or restart a print job, or
obtain printer status. A request to print a file creates a
non-interactive task. Print services is documented in the Tool Kit
Reference Manual.

2.2.13 POSRES User Interface Services Library

The P/OS User Interface Services Library (POSRES) consists of a set of
routines that allow your task to have a menu-based user interface
consistent with that used by P/OS. These routines open and close
frame definition files, pack, unpack, read, and display menus, help
frames, and message frames, invoke the P/OS "New File" and "Old File"
frames, and process function keys. The Tool Kit User's Guide contains
a description of how to design and implement a menu-based user
interface. The POSRES routines are documented in the Tool Kit ----Reference Manual.

2-7

SOFTWARE DEVELOPMENT TOOLS

2.2.14 POSSUM System Services Library

The POSSUM System Services Library consists of a set of routines that
allow your task to manipulate file attributes, directories, volumes,
logical names, tasks, regions, and commons. POSSUM is documented in
the P/OS System Reference Manual.

2.2.15 PROSE Callable Editor Task

The PROSE callable editor task (CET) allows your application to offer
PROSE, the text editor supplied with P/OS, for use within its own
context. PROSE offers facilities for entering and editing text to
create documents, source programs, and memos or similar text files.
Editing keys on the Professional keyboard allow text manipulation.
The end user documentation describes PROSE and the PROSE user
interface. The callable editor task is documented in the Tool Kit
Reference Manual.

2.2.16 Record Management Services (PRO/RMS-11)

Record Management Services (PRO/RMS-11) provides an interface between
the Professional's file system and your application. All of the Tool
Kit high-level languages include built-in support for PRO/RMS-11.
Thus, unless you are programming in MACR0-11 or have I/O requirements
beyond those provided by your language, you need not be concerned with
PRO/RMS-11.

PRO/RMS-11 includes a set of run-time
direct, sequential, and multi-keyed
routines also let your program define,
files on direct access devices.

service routines that enable
access to data files. The

populate, update, and maintain (

The symbol tables, object module libraries, and overlay descriptor
files for task building P/OS applications against the PRO/RMS-11
resident library are included with the Tool Kit, as well as a
PRO/RMS-11 Macro library. The PRO/RMS-11 binder (included with the
Tool Kit documentation set) provides manuals that describe this tool
in detail.

2.2.17 SORT Callable Sort Task

PRO/SORT is a general-purpose sorting utility that is callable from
your applications. PRO/SORT is documented in the Tool Kit Reference
Manual.

2-8

CHAPTER 3

THE PROFESSIONAL 300 SERIES PERSONAL COMPUTER

3.1 HARDWARE CONFIGURATIONS

The Professional 300 Series of personal computers has two hardware
configurations: the Professional 325 and the Professional 350. These
differ in their ability to handle optional equipment and software.
The basic system consists of a system unit, keyboard, video monitor,
and storage media:

• The system unit houses a 16-bit PDP-11 minicomputer. At the base
of the Professional is a main system logic module, or system
board, based on the PDP-11 Central Processing Unit {CPU). It
supports a virtual address space of 64 K bytes. Its standard
configuration provides 512 K bytes of random access memory.
Additional memory can be added in 256 Kb increments.

• The keyboard has four distinct regions: function keys, numeric
keypad, text-editing keys and traditional keyboard {see Figure
3-1). These work with P/OS to create a clear and easy interface
between your application and the end user. When your application
is running, it can redefine the use of all but the system function
keys.

• The standard video monitor {VR201) has a 12"-diagonal,
low-reflection screen, with tilt adjustment in the back.

• The Professional has two kinds of storage media: diskettes and
the hard disk. Every system unit comes with a dual diskette drive
that provides over 800 Kb of storage capacity on two 5-1/4"
diskettes. The Professional 350 can also support an optional 5 Mb
hard disk {RD50) or 10 Mb hard disk {RD51).

3.2 THE PROFESSIONAL OPERATING SYSTEM (P/OS)

'All Professional 300 systems come equipped with the Professional
Operating System, P/OS. Based upon a pre-built, single-user version

3-1

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

of the RSX-llM-PLUS operating system, P/OS employs many of the
methods of managing resources as the RSX family of software.
example, checkpointing temporarily removes lower-priority tasks
memory so that higher-priority tasks can run.

same
For

from

Compose W•1t •• F11 Fl8 F19 F201 Fl1 F12 FU Addtnl Hold ScrHn lock
1ESC1 1BS~ 1Lfl Options - -

ooooonooooonoooor 1a1 ~ 10000
L][][[][][][][D[](][J[JLJ[;_JEJ
DEJEJ[J[][][]~D[]~[][]D""'"

LJLJEJ[][J0[][J[J[]DDDD
I.... l[][J[JEJ[][][J~DDUJI'"·· I

1~:::::. I

~l::lJ.:I
LJ L.::::J L:::J
EJFlFl

LJLJ
~

[!]~[!]

Figure 3-1: Professional Keyboard (U.S./Canada)

To support the
configurations:

two hardware configurations, P/OS
P/OS Hard Disk and P/OS Diskette:

EJLJLJLJ
[J[J[JLJ
[][][JD
[][][JD" ...
1° ID

also has two

• P/OS Hard Disk runs only on a Professional
Once copied onto the hard disk from the
its system software resides on hard disk
loaded into memory during system use.

350 with the hard disk •
distribution diskettes,

and is automatically

• P/OS Diskette, a subset of P/OS Hard Disk, supports the
entry-level systems in the Professional family: the Professional
325 and the Professional 350 without hard disk. P/OS Diskette
software resides on the distribution diskettes and is loaded into(
memory each time the Professional is powered up.

P/OS Diskette can also be used on a Professional 350 with hard disk,
where it will run as if the hard disk were not present. Both the
Professional 325 and 350 diskette systems can upgrade to a
Professional 350 Hard Disk. The Professional computer can therefore
consist of any of the following configurations:

• the Professional 325, running P/OS Diskette

• the Professional 350 without hard disk, running P/OS Diskette

• the Professional 350 with hard disk, running P/OS Diskette

3-2

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

• the Professional 350 with hard disk, running P/OS Hard Disk

The Professional end user is provided with a
describing the Professional and the use of
these manuals as part of your Tool Kit; refer
instructions on operating the Professional.

3.2.1 The P/OS User Interface

full
P/OS
to

set of
services.
them for

documents
You have
detailed

The P/OS user interface consists of menus, messages, forms, on-line
help, and function keys:

• Menus

The end user operates the Professional by making choices from
menus (lists of options) that appear on the screen. To make a
selection, the user moves the pointer to a menu item or types an
item on a command line, and presses the DO key.

• Messages

The Message/Status board displays information about errors or
completed activities without disturbing the current process.

• Forms

The user provides information to an application or system service
by filling in blanks on easy-to-understand forms that appear on
the screen.

• Function keys

The user can execute many operations by pressing function keys on
the top row of the keyboard and on the numeric keypad.

• On-line help

P/OS comes with its own context-sensitive help, which the user can
access at any point by pressing the HELP key.

3.2.2 P/OS Services

P/OS includes File, Disk/Diskette, Print and text editing services.
P/OS users will be familiar with these as the primary means of
handling data on the Professional. Your application also can access
these services.

3-3

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

• File services manipulate files on disk or diskette, allowing the
user to copy, rename, delete, display and delete-protect files.
P/OS Hard Disk file services also allow the user to back up and
restore files on disk.

• Disk/Diskette services allow the user to initialize diskettes; to
install, remove, start and stop applications; to unlock a file; to
copy the contents of one diskette to another; to create, delete,
and list directories; to display the current directory, and, in
some cases, to change the current directory. P/OS Hard Disk
services allow the user to integrate applications into and to
remove them from the Main Menu.

• Print services print stored files on a printer. Print services
start a print job, pause and continue it, restart printing at the
beginning of a file, abandon the print job, view the status of the
printer, and set printer characteristics.

• PROSE is the P/OS text editor. It is suitable for
or entering data. (PROSE is described in
Professional 300 Series User's Guides.)

writing memos
detail in the

• PRO/Communications includes the Terminal Emulator program and File
Transfer. The Terminal Emulator program allows the Professional
to operate as a VT52, VT102, or a VT125 terminal connected to a
host. The File Transfer service allows files to be passed between
the Professional and a host system, and is used as part of
application development with the Host Tool Kit. (See the
PRO/Communications Manual for full details.)

3.2.3 P/OS System Components

P/OS consists of a number of modules, some of which are resident in
memory at all times, some of which are brought into memory only as
needed by the application. These modules are packaged as part of P/OS
(there is no system generation). This section briefly describes the
main P/OS system components: the P/OS Executive, PRO/Dispatcher, and
cluster libraries.

3.2.3.1 The P/OS Executive

The Executive is the "nucleus" of the Professional Operating System.
It manages system resources such as memory and the CPU and serves as
the software interface to the Professional hardware. The P/OS
Executive was derived from the RSX-llM-PLUS Version 2.0 executive. It
was modified to fit into a single-user personal computer environment.
The P/OS System Reference Manual describes the P/OS Executive.

3-4

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

The P/OS Executive is essentially the same for P/OS Hard Disk and P/OS
Diskette. It performs the following functions:

• Provides an intertask communication mechanism to the
PRO/Dispatcher, thus allowing the PRO/Dispatcher to carry out its
application-related jobs.

• Services executive directives that are accessible through macro
calls. Executive directives may be used by applications to obtain
system information, such as the date and time, and to control
application execution, such as for multitasking.

• Provides access through device drivers to the dual diskette drive
and, with P/OS Hard Disk, the hard disk. When a diskette is
inserted in a drive, P/OS Executive automatically adds the
diskette name to the list of available volumes. When the diskette
is removed, the name is removed.

The end user is not required to perform device mount and dismount.
Disk/Diskette services provide the end user with access to the
media.

• Manages disk/diskette storage through PRO/RMS-11 and the on-disk
or on-diskette file structure. File, Disk/Diskette, and Print
services provide those facilities to the end user.

• Provides access through the terminal driver to the terminal
subsystem. The terminal subsystem controls the video image and
the keyboard. Applications can use the terminal subsystem
services along with the CORE Graphics library and PRO/GIDIS to
display images on the screen and interpret keyboard input.

• Provides access through the terminal driver to the printer. The
PRINT SCREEN key and Print Services allow the end user to print on
the printer.

3.2.3.2 PRO/Dispatcher

This is the primary, menu-oriented interface between the end user and
P/OS. The ProDispatcher performs many of the same functions as a
command language interpreter does on more traditional computers. The
PRO/Dispatcher controls the user interface in the following ways:

• Integrates the application software with P/OS. With P/OS Hard
Disk, adds the name of the application to the user-specified menu
when the end user runs Install. With Diskette P/OS, copies all
P/OS system software required to run the application to the
application diskette when the end user runs Prepare Application.

3-5

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

• Adds the name of the application tasks to the list of executable
tasks that make up the System Task Directory (STD).

• Invokes, aborts, and removes tasks. Uses the application
installation file to start the first task for that application.

• With P/OS Diskette, loads the communications port driver or
installs the graphics support system, if either is requested in
the application installation file. Removes them when the
application exits.

• Opens any default menu and help files specified in the application
installation file.

• If the end user presses the INTERRUPT key followed by the DO key,
PRO/Dispatcher aborts all tasks of the running application and,
after a specific period of time, removes all application tasks and
commons.

NOTE

INTERRUPT/DO is equivalent to CTRL/C. To prevent
application termination after the INTERRUPT/DO
sequence, the task can field the sequence by
attaching the terminal for CTRL/C ASTs. See the
high-level language documentation for information
about how to attach the terminal for CTRL/C ASTs.
In MACR0-11, read-pass-all or attaching to the
terminal for CTRL/C ASTs can be used to trap
CTRL/C. See the P/OS System Reference Manual for
more information.

• Recovers the system after disabling errors have occurred in a \
running application. If a task fails, control returns to
PRO/Dispatcher, and the Main Menu (P/OS Hard Disk) or other system
message (P/OS Diskette) is displayed.

3.2.3.3 Cluster Libraries

Cluster libraries provide a single copy of commonly used routines in a
way that can be shared by several tasks. Pre-built as an integral
part of the operating system, cluster libraries share the same virtual
address space and are loaded into physical memory as needed. The P/OS
cluster libraries are:

3-6

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

• Programming language object-time or run-time systems

e PRO/RMS-11 (RMSRES)

• CORE Graphics Library (CGLFPU)

e P/OS Services Library (POSRES)

e PRO/Communications (COMLIB)

• P/OS System Services library (POSSUM)

(For more information, see Chapter 7 and Chapter S).

3.2.4 Calling P/OS Routines from High-level Languages

P/OS routines use the standard PDP-11 RS calling sequence convention
(sometimes called the FORTRAN Calling Sequence Convention). This
section provides some general information about the RS convention.
The subsequent sections describe how to call P/OS routines from each
high-level language.

This manual and the Tool Kit Reference Manual provide a "Format:"
description for each P/os-routine that shows the external routine name
followed by a parameter block. The RS calling sequence convention
requires that you pass all parameters by reference. In other words,
the parameter block contains only addresses of parameters, not actual
data.

The data type and relative position of each parameter must match that
expected by the P/OS routine. Assume that there is little or no data
type checking of parameters. If a routine doesn't work correctly,
check the parameter data types. One of the most common bugs is the
specification of a real (floating point) parameter where an integer is
required.

Some languages allow you to pass an expression as a reference
parameter. The language's run-time library evaluates the expression,
stores it in a temporary location, and passes the address of the
location. If your language does not support this, read "expression"
as "constant or variable."

You can use arrays for multi-word parameters. For example, you can
use a two-word integer array for the POSRES status block. You must,
however, know how your language numbers arrays. For example,
BASIC-PLUS-2 numbers all arrays from zero, while PASCAL allows you to
specify your own numbering scheme.

3-7

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

3.2.4.1 BASIC-PLUS-2

In BASIC-PLUS-2, external subprogram calls do not have to be declared.
A call has the format:

CALL name BY REF (pl, p2, ••• , pn)

name is the name of the external subprogram.

BY REF specifies that the parameters are to be passed by reference.

pl,p2, ••• are actual parameters as described.

Refer to your BASIC-PLUS-2 documentation for detailed information on
calling external routines from BASIC-PLUS-2.

Notes:

• To pass an array, include the (empty) parentheses in the
BASIC-PLUS-2 call.

• BASIC-PLUS-2 does not allow you to pass array elements by
reference.

• You can pass a dynamic string variable, using the LEN function to
determine it's length. For example:

CALL name BY REF (••• , S$, LEN(S$), •••)

3.2.4.2 COBOL-81
I

In COBOL-81, external routine calls do not have to be declared. A
call has the format:

CALL •name• USING pl p2 ••• pn.

name is the name of the external routine.

pl p2 . . . are actual parameters as described.

Refer to the Tool Kit COBOL-81 Documentation Supplement for detailed
information on calling P/OS routines from COBOL-81.

3-8

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

3.2.4.3 DIBOL

In DIBOL, external subroutine calls do not have to be declared. A
call has the format:

XCALL name (pl, p2, ••• , pn)

name is the name of the external subroutine.

pl,p2, ••• are actual parameters as described.

Refer to the Tool Kit DIBOL User's Guide for detailed information on
calling P/OS routines from DIBOL.

3.2.4.4 FORTRAN-77

In FORTRAN-77, external subroutine calls do not have to be declared.
A call has the format:

CALL name (pl, p2, ••• , pn)

name is the name of the external subroutine.

pl,p2, ••• are actual parameters as described.

Refer to the Tool Kit FORTRAN-77 Documentation Supplement for detailed
information on calling P/OS routines from FORTRAN.

3.2.4.5 PASCAL

In PASCAL, an external procedure declaration has the format:

PROCEDURE name (VAR pl: VAR p2: ••• VAR pn): SEQll:

name is the name of the external routine.

VAR specifies pass by reference.

pl:p2: ••• are formal parameters as described.

SEQll specifies the PDP-11 RS calling sequence.

A procedure call has the format:

3-9

THE PROFESSIONAL OPERATING SYSTEM (P/OS)

name (pl , p2, • • • I pn):

name is the name of the external routine.

pl,p2, ••• are actual parameters that match the formal parameters in
the procedure declaration.

Refer to the Tool Kit PASCAL User's Guide for detailed information on
calling P/OS routines from PASCAL.

Notes:

• You can declare formal parameters with the READONLY attribute so
that you can pass constants as actual parameters.

• You can declare formal string (array [l •• n] of char)
with the UNSAFE attribute so that you can pass
different lengths as actual parameters.

3.2.S Calling P/OS Routines from MACR0-11

To transfer control to a P/OS routine:

JSR PC, name

name is the name (global entry point) of the routine.

parameters
strings of

General purpose register S (RS) contains the address of the parameter
block which has the following format:

high byte low byte

0 J number of parameters

address of parameter 1

address of parameter 2

address of parameter n J
When the P/OS routine returns, the contents of registers RO through RS

3-10

are undefined.
routine entry.

THE PROFESSIONAL OPERATING SYSTEM {P/OS)

The stack pointer {SP) is restored to its state at

3-11

CHAPTER 4

THE APPLICATION DEVELOPMENT CYCLE

4.1 THE DESIGN PHASE

Designing software for the Professional
consideration of several factors.

• target system configurations

• virtual address space

• physical memory

• user interface

300 series requires

These factors will affect all other development phases; thus, it's
important to resolve them before beginning implementation. The first
three are discussed in detail in Chapter 5. User interface design is
covered in Chapter 8.

4.2 THE IMPLEMENTATION PHASE

Implementation consists of creating the following:

• Application Directory

To test your application on P/OS Hard Disk, you must create a
directory to contain the executable files and installation command
(.INS) file. To create the directory, use the DCL
CREATE/DIRECTORY command or P/OS Disk Services.

NOTE

The application directory must have the same name
as the .INS file. For example, if the
installation file is PROGRAM.INS, the directory
must be named PROGRAM.

4-1

THE IMPLEMENTATION PHASE

If you are working with the PRO/Tool Kit, use this directory to
contain all of your application files.

• Program Source Code

Use any text editor to create your source code. If you are using
the PRO/Tool Kit, you can use the EDIT command to invoke EDT (the
default) or PROSE. If you use PROSE, do not save word/wrap/margin
settings.

• Frame and Form Files

Use the Frame Development Tool (FDT) (described in the Tool Kit
Reference Manual) or the Forms Editor (FED) (described in the
FMS-11/RSX Software Reference Manual) to create the frame and form
files associated with your application. Sketch out your frames
and forms before creating them and keep hard-copy descriptions on
hand while working on your source code.

• Professional Application Builder (PAB) Files

Use any text editor to create the PAB command and/or .ODL files
for building a task image, as described in Chapter 7. Most of the
Tool Kit programming languages have a facility for generating PAB
files that you can tailor to your application. Some of the tools,
(CGL, POSRES, PRO/FMS-11, and so forth) require that you make some
changes to the PAB files.

• Installation Command Files

One application installation command (.INS) file is required for
each Professional 300 series target configuration that your
application supports. The format and contents are described in
the Tool Kit Reference Manual.

4.3 THE BUILD PHASE

You may go through this procedure many times while developing an
application.

1. Compile or assemble the source code.

Use your language processor to create the object modules (.OBJ
files) that will make up your task images. For convenience, write
a, command procedure that compiles or assembles all of the files
automatically. If you are working with the PRO/Tool Kit, use the
SPAWN command to invoke it. If you are working on a host system,
use the batch queue.

4-2

THE BUILD PHASE

2. Build the task images.

Use the Professional Application Builder (PAB) to create task
images that can be executed on P/OS. PAB is described in Chapter
7. You can create a command procedure that invokes PAB and use it
in a noninteractive mode as described above.

3. Prepare frame and form files.

If your application uses frame description files, run FDT and use
the CONVERT command to create .HLP, .MNU., and .MSG files in
executable format, as described in the Tool Kit Reference Manual.
If your application uses form files, run the Forms Utility (FUT)
and create form libraries as described in the FMS-11/RSX Software
Reference Manual.

4.4 THE TESTING PHASE

If you are using the PRO/Tool Kit, please turn to Section 4.4.1. If
you are using the host Tool Kit, please turn to Section 4.4.2.

4.4.1 Testing Applications on the PRO/Tool Kit

If you are using the PRO/Tool Kit, you can run your application from
DCL command level or from the P/OS User Interface. This section
describes how to run your application from DCL. If you want to run
from P/OS, exit from the PRO/Tool Kit and turn to Section 4.4.2, Step
2.

NOTE

This procedure assumes that you have read Section
6.3.2. If not, please do so before proceeding.

1. Set the P/OS current directory to your application directory.
Type:

$ SET DEF [name]

where "name" is the name of your application directory.

2. Install the libraries used your application. For example:

$ INSTALL [ZZSYS]CGLFPU/READONLY

4-3

THE TESTING PHASE

3. Run the application. Type:

$ RUN TEST

4.4.2 Testing Applications on the Host Tool Kit

To test run your application with the host Tool Kit, follow these
steps:

1. Transfer the files to the target system.

Invoke the Professional Terminal Emulator, use the Professional
File Transfer utility to copy your application files to the
application directory on your Professional, and exit from the
Terminal Emulator. (See the PRO/Communications Manual for
details.)

NOTE

For the second and subsequent test runs, you need
transfer only files that have changed since the
last test. P/OS uses the latest versions of files
by default. (You can specify version numbers in
in the installation command file to override the
default.)

2. Install the application.

Use the Fast Install utility described in the Tool Kit Reference (
Manual.

NOTE

Once you have installed your application, it is
generally unnecessary to reinstall it when you
copy new files to your application directory.

3. Run the application.

Select the application from the menu on which you installed it.
If it won't start up or aborts, check the P/OS error codes listed
in the Tool Kit Reference Manual. Also, make sure that the
installation command file installs all necessary tasks.

4-4

THE DEBUGGING PHASE

4.5 THE DEBUGGING PHASE

Some high-level languages provide interactive debugging software that
allows you to control program execution, manipulate variables, and so
forth. Refer to your language documentation for more information.

The Tool Kit allows you to connect a separate terminal to your
Professional in order to control the debugger. This is especially
useful when debugging programs that use the Professional video screen:
menu interfaces, graphics, and so forth.

Use the console cable provided with the Tool Kit to attach your
of debugging terminal (any of the VTlOO family of terminals, an
or LA12) to the printer port on the back of the Professional
unit.

NOTE

The console cable is for debugging only. If you want
to use an LASO, LQP02, or LAlOO printer for normal
printing purposes, use a printer cable.

choice
LA120,
system

Set the terminal to run
I/O to the debugging
commands, while program
Professional.

at 9600 baud. You can then redirect debugger
terminal, using language-specific debugging

I/O continues to display undisturbed at the

4.6 THE TUNING PHASE

There are
performance
Chapter 9.

several techniques that
of your appplication.

NOTE

you can use to improve the
They are discussed in detail in

Most of the tuning information is intended for
experienced RSX-llM/M-PLUS programmers.

4.7 THE DISTRIBUTION PHASE

When your application is debugged and ready to distribute:

• Create a distribution kit.

4-5

THE DISTRIBUTION PHASE

Use the Application Diskette Builder (ADB) (described in the Tool
Kit Reference Manual) to create a master application distribution
kit on one or more diskettes.

• Test the distribution kit.

To test your distribution kit, use P/OS services to install and
run your application on all supported Professional hardware
configurations.

4-6

CHAPTER 5

APPLICATION DESIGN CONSIDERATIONS

5.1 TARGET SYSTEM CONFIGURATIONS

As you develop your application, you must decide whether it will run
on P/OS Hard Disk, P/OS Diskette, or both. Ideally, an application
will run on all Professional configurations. Greater storage
capacities are available to programs running on P/OS Hard Disk, as
well as greater speed. Although you can design an application that
runs on both P/OS Hard Disk and P/OS Diskette, certain applications
well-suited for hard disk systems may be unsatisfactory or even
unsuccessful when used with P/OS Diskette. You should consider your

)audience and your performance requirements when you choose your target
systems.

The following differences between P/OS Hard Disk and P/OS Diskette can
affect your design:

• Device Speed

The hard disk drive is a much faster device than the diskette
drive. Applications which are disk-intensive may perform poorly
on diskette-based systems. These include applications that are
disk-overlaid, applications that consist of multiple task images
and therefore may require checkpointing, and applications that
call several disk-resident P/OS cluster libraries and therefore
cause library swapping between memory and diskette.

Any application that uses diskettes heavily will run more slowly
on P/OS Diskette than it would on P/OS Hard Disk and may not be
suitable for diskette-based systems.

• Mass Storage

A P/OS Diskette application must fit on one diskette. Unlike the
distribution diskette for Hard Disk P/OS, a distribution diskette
for P/OS Diskette must include files which would otherwise be on
the hard disk. These include frame definition and cluster library
files for language support and additional task files that may be

5-1

TARGET SYSTEM CONFIGURATIONS

required (for example, communications, print server, or callable
editor tasks). Also, because P/OS Diskette copies system software
to the application diskette, you must leave room on the diskette
for these files. See Appendix B for details on diskette space
requirements.

Because a P/OS Diskette application uses one diskette drive while
running, it can access only one data diskette. P/OS Hard Disk
applications can access two data diskettes.

To calculate diskette usage by application, add the total file
sizes in the application directory to the number of components
used by the application. The file sizes are shown in Appendix B.
Also add the size of the checkpoint file, if any. If the total
exceeds approximately 745 blocks, the application may be too big
to fit on one diskette. 1

• Print Services

With Hard Disk P/OS, callable Print Services run in the background
while the application goes on to other processing. With Diskette
P/OS, Print Services returns control to the application only after
printing is complete (see the Tool Kit Reference Manual).
Applications that use printing may not be suitable for
diskette-based systems.

5.2 VIRTUAL ADDRESS SPACE

User tasks on the Professional are limited to a virtual address space
of 32K words. The task may map to other regions in memory but at any
given instant only 32K words of memory may be referenced. This places(
a constraint on the amounts and locations of code and data that a task
may contain. There are several options that you can exercise should
your task become so large that 32K words is no longer sufficient.
They are described in the following sections.

5.2.1 Overlaying

One of the traditional methods for most machines is to overlay the
task image such that only certain portions are addressable at a time.
This method will work for tasks that are structured such that portions
of the task can be logically separated. Overlaying is discussed in:

5-2

VIRTUAL ADDRESS SPACE

• Chapter 7 of this manual.

e The RSX-llM/M-PLUS Task Builder Manual.

• The POS System Reference Manual.

• The Guide to Writing a Device Driver and Advanced Programmer's
Notes.

5.2.2 Cluster Libraries

Cluster libraries share the same virtual address space and bear
similarities to memory-resident overlays for your task. As long as
these cluster libraries do not reference each other there are no
complications, and your task gains in the amount of virtual address
space that it may use. Cluster libraries are discussed in:

• Chapter 7 of this manual.

• The POS System Reference Manual.

e The RSX-llM/M-PLUS Task Builder Manual.

• The Guide to Writing~ Device Driver and Advanced Programmer's
Notes.

5.2.3 Multiple Tasks

Another option to consider is an
tasks. This is only possible if
functionally independent units.
between the tasks comprising the
be high. A carefully written
extremely well and is an option
is discussed in the P/OS System

5.2.4 Multiple Regions

application consisting of multiple
the application can be separated into
It is possible to transfer data

application, but the cost of this can
multi-task application can perform

that should be considered. This topic
Reference Manual.

If the task needs more virtual address space for data storage then a
possibility that emerges is to create a separate data region for the
task. Data may be stored in this region and kept outside of the
task's virtual address space until it is needed. At that time the
region is mapped by the task, data is manipulated and then the task

5-3

VIRTUAL ADDRESS SPACE

unmaps the region to continue working somewhere else. This topic is
discussed in the P/OS System Reference Manual.

5.3 PHYSICAL MEMORY

You must consider not only the amount of virtual address space
available to your application, but also the physical memory
constraints of the system. It is very possible to create an
application that runs slowly (or not at all) due to memory contention
or deadlocks. These can result from either ignoring the issue of
physical memory or overestimating its size.

On a standard Professional 300 system there are 512K bytes of memory.
Of this slightly less than one-half, approximately 240K bytes, is
available for use by the application. Into this memory must fit all
tasks, data regions, libraries and drivers required concurrently by
the application. If the application task exceeds this amount,
checkpointing will result.

5.3.1 Checkpointing

Checkpointing will start to occur as the amount of memory used by an
application approaches 240K bytes. Checkpointing is not necessarily
bad, it is merely a way of relieving the pressure of memory contention
caused by too many requests for too little memory. There are some
methods by which the impact of checkpointing on an application can be
minimized. These include using read-only or multi-user regions; they
are cheaper than read-write regions as they need not be written back
out to the disk.

5-4

CHAPTER 6

USING APPLICATION FILES

6.1 P/OS FILE SPECIFICATIONS

A P/OS file specification is a character string that identifies a
unique device, directory, or file. It consists of one or more fields,
separated by punctuation marks. Each field is explained in detail in
subsequent sections of this chapter.

A file specification has the format:

device:[directory]filename.typ;version

device an alphanumeric string that specifies the name of a
peripheral device.

directory an alphanumeric string that specifies the name of a
directory.

filename an alphanumeric string that specifies the name of a file.

typ an alphanumeric string that specifies the type of a file.

version a numeric string that specifies the version number of a
file.

You can omit fields from a file specification and let the system
provide default values. These defaults are discussed in detail in the
following sections.

6-1

P/OS FILE SPECIFICATIONS

Examples

DWl:
DWl: [USERFILES]
DWl:[USERFILES]TEST
DWl: [USERFILES]TEST.DAT
DWl:[USERFILES]TEST.DAT;7

[USERFILES]TEST.DAT;7
TEST.DAT;7

Notes

(device)
(device and directory)
(device, directory, and name)
(device, directory, name, and type)
(device, directory, name, type, and versic
(directory, name, type, and version)
(name, type, and version)

• Directory names, file names, file types, and version numbers apply
only to files on mass storage (file-structured) devices such as
disks and diskettes.

• The maximum length of a file name is 9 characters.

• The maximum length of a file type is 3 characters.

• File specifications are not case-sensitive.
are identical:

For example, these

DWl:[USERFILES]TEST.DAT;7 dwl: [userfiles]test.dat;7

• VAX/VMS and RSX-llM/M-PLUS file specifications allow square
brackets ([]) or angle brackets (<>) to enclose a directory name
field. For example:

[USERFILES] is equivalent to <USERFILES>

With P/OS, you must use square brackets.

• VAX/VMS file specifications allow a semicolon(;) or a period (.)
to separate the file type field from the version number field.
For example:

TEST.DAT;7 is equivalent to TEST.DAT.7

With P/OS, you must use a semicolon.

6.1.1 Devices

Each peripheral device known to P/OS has a permanent name called a
physical device name. It has the format:

ddnnn:

6-2

P/OS FILE SPECIFICATIONS

dd a two-character alphabetic string that specifies the device type.

nnn an optional one- to three-digit numeric string that specifies a
particular device, or, if a device has more than one drive, a
particular drive.

Some devices exist in name only. All I/O requests for a
"pseudo-device" are redirected to another physical device. This
provides device independence for standard naming conventions. Table
6-1 shows the P/OS physical device names and pseudo-device names.

Table 6-1: P/OS Physical and Pseudo Device Names

Device Physical Names

RDSO Hard Disk DWl

RDSl Hard Disk DWl

RXSO Diskette DZl, DZ2

Keyboard/Monitor TTl

Printer Port TT2

Comm Port XK

Device Pseudo Names

System library LB

Printer port LP

User default SY

Keyboard/monitor TI

Notes

• You can use a logical name to specify a peripheral device. See
Section 6.2 for information about logical names.

• If a file specification contains no device name, P/OS provides one
by default. The default device has the pseudo-device name SY:.
When the end user or the application changes the default device,
P/OS reassigns the pseudo-device name SY: to the new device.
Always use the name SY: in file specifications unless you are
trying to access a specific device by name.

6-3

P/OS FILE SPECIFICATIONS

If you are using P/OS Hard Disk, you can specify the default
device with either File Services, Disk/diskette services, or
SET-UP MENU A. The last is a "permanent" change: it stores
the new default device so that will take effect whenever you
start the system. When P/OS Hard Disk starts up the first
time, the default device is BIGVOLUME:.

If you are using PRO/Tool Kit DCL, you can specify the default
device with the SET DEFAULT command.

If you are using P/OS Diskette, you can specify the default
device with File Services. The system resets the default
device to USERDISK: each time an application starts up.
USERDISK: translates to the volume name of the diskette, if
any, mounted in drive DZ2.

An application program
calling PROLOG from
Reference Manual).

6.1.2 Directories

can specify the default device by
the POSSUM library (see the P/OS System

A directory is a file that identifies a set of files on a disk or a
diskette. Most people prefer to think of a directory as a named set
of files on a disk or diskette. That a directory is itself a file has
little to do with its function. Thus, we will use the terms
"directory" and "directory file" to mean a set of files and the file
that identifies them, respectively.

A file's name, type, and version number uniquely identifies that file
within a directory. Different files with the same name, type, and
version number can exist in other directories.

In a file specification, square brackets ([]) or angle brackets (<>)
indicate that the contents are a directory name. Directory names can
have the following formats:

• A one- through nine-character alphanumeric string. For example:

[PROGRAMS] <INVENTORY> [RECIPES]

• A two-part octal number in the format of a user identification
code (UIC). Separate the group number from the member number with
a comma. For example:

[O,O] [1,5] [150,13] [240,222]

6-4

•

P/OS FILE SPECIFICATIONS

A six-character numeric string in UIC format.
specify right-justified (zero-filled) numbers.

Omit the comma
For example:

and

(000000] (001005] (150013] (240222]

Notes

• You can use a logical name to refer to a directory in some
instances. See Section 6.2 for information about logical names.

• If a file specification contains no directory name, P/OS provides
one by default. A pair of empty square brackets([]) is an
explicit request for the default directory.

If you are using P/OS Hard Disk, you can specify the default
directory with either File Services, Disk/diskette services,
or SET-UP MENU A. The last is a "permanent" change: it
stores the new default directory so that will take effect
whenever you start the system. When P/OS Hard Disk starts up
the first time, the default directory is [USERFILES].

If you are using PRO/Tool Kit DCL, you can specify the default
directory with the SET DEFAULT command.

If you are using P/OS Diskette, you can specify the default
directory with File Services. The system resets the default
directory to [USERFILES] each time an application starts up.

An application program can specify the default directory by
calling PROLOG from the POSSUM library (see the P/OS System
Reference Manual).

• Numbered directories and directories that begin with the letters
"ZZ" are reserved for system software. Directories that begin
with the letters "ZZAP" contain installed applications. File
Services and Disk/diskette Services do not display these
directories unless you specifically ask for them.

• Your application can use the POSSUM library routine
the P/OS System Reference Manual) to create
directories.

6.1.3 File Names

PRODIR (see
and delete

A file name is a one- to nine-character alphanumeric string that is
,,generally used as a mnemonic name to identify a particular file within

a directory. Some valid file names are:

6-5

P/OS FILE SPECIFICATIONS

ACCOUNTS 001005 INDEX3 MAIL

Notes

• In a file specification, use a period(.) to separate the file
name field from the file type field.

• If a file specification contains no file name field, P/OS does not
supply one by default.

6.1.4 File Types

A file type is a three-character alphanumeric string that is generally 1

used to categorize a file. P/OS uses a set of standard file types to\
provide useful defaults. For example, the file type TSK indicates
that the file is an executable program (task image).

Table 6-2: User-visible File Types

File ~
BASIC program BAS
data file DAT
document file DOC
text file TXT

Table 6-3: System/Application File Types

File ~
forms library FLB
system file SYS
task image TSK
converted help file HLP
converted message file MSG
converted menu file MNU

In a P/OS file specification, use a semicolon (:) to separate the file
type field from the version number field.

6.1.S Version Numbers

A version number is a number that uniquely identifies files that have
the same file name and file type. On VAX/VMS and P/OS, version
numbers are decimal. On RSX-llM/M-PLUS systems, version numbers are
octal.

6-6

(

P/OS FILE SPECIFICATIONS

When you create a file that does not already exist, it is assigned
version number one by default. When you create a file that already
exists, it is assigned the next highest version number by default.

6.1.6 Wild Card Conventions

A full set of wild card conventions are available from PRO/Tool Kit
DCL. If you are using the PRO/Tool Kit, see the Command
Language/Utilities Manual for more information. If you are using the
host Tool Kit, refer to your host system command language manual.

6.2 LOGICAL NAMES

A logical name is a user- or system-defined name for all or part of a
file specification. You can substitute a logical name for a device,
directory, or file name either interactively or from within a program.

Programs that use logical names can be independent of specific
devices, directories, and files. At run-time, your program can make

, connections between its logical names and actual physical names.

A logical name always refers to an associated equivalence name. The
system provides a logical name facility that translates a logical name
and returns its equivalence name. An equivalence name can be a
physical device, directory, or file specification, or can itself be a
logical name. PRO/RMS-11, however, accepts physical device names,
volume labels, or other logical names as equivalence names (see
Section 6.2.2). Any number of logical names can have the same
equivalence name.

The system stores logical name strings and their equivalence strings
in a single logical name table that cooperating tasks can use. The
system uses this table when translating logical names to equivalence
names.

Within the strict context of the logical name facility, the logical
name and its equivalence name are simply character (byte) strings.
The only restrictions to logical name strings and equivalence name
strings are:

• The string length must not exceed 255(10) bytes.

• There must be an equivalence name string for each logical name
string entered in the logical name table.

6-7

LOGICAL NAMES

6.2.1 System Logical Names

Several logical names are defined and used by P/OS. Table 6-4 shows
the P/OS system logical device names. Table 6-5 shows the P/OS system
logical directory names.

NOTE

Tasks can refer to P/OS logical names but must not
reassign them. P/OS may run unpredictably or stop
processing if those names are reassigned.

Table 6-4: P/OS System Logical Device Names

Device Logical Name Equivalence Name

RD50/51 Hard Disk BIGDISK: DWOOl:

BIGVOLtlME: DWOOl:

DWOOl: BIGVOLUME:

LDWOOl: BIGDISK:

SYOOO: (current default device)

SYSDISK: LBOOO:

RX50 diskette DISKETTE!: DZOOl:

DISKETTE2: DZ002:

LDZ001: DISKETTE!:

LDZ002: DISKETTE2:

USERDISK: SYSDISK: *

DZOOl: **

** DZOOl:

DZ002: **

** DZ002:

* The data diskette (P/OS Diskette)

** Assigned at volume mount time (see Section 3.2.3)

6-8

LOGICAL NAMES

Table 6-5: Logical and Equivalence Directory Names

Logical Name

APPL$DIR

APPL$MENU

APPL$HELP

Directory Name
(P/OS Hard Disk)

SYSDISK: [ZZAPnnnnn]

SYSDISK: [ZZAPnnnnn]x.MNU

SYSDISK: [ZZAPnnnnn]x.HLP

Directory Name
(P/OS Diskette)

SYSDISK: [Z ZAPPL]

SYSDISK: [ZZAPPL]x.MNU

SYSDISK: [ZZAPPL]x.HLP

6.2.2 PRO/RMS-11 Translation of Logical Names

As part of I/O processing in program execution, PRO/RMS-11 translates
logical names and returns their equivalence names. The following
conventions govern PRO/RMS-11 translation of logical names:

1. PRO/RMS-11 translates only those logical names occurring within
the context of a valid device specification. PRO/RMS-11 does not
translate logical names that refer to directories or files.

2. PRO/RMS-11 continues to translate logical name strings until it:

• encounters an equivalence name string beginning with an
underscore {) character.

• fails to translate a string.

• encounters an equivalence name string not ending with a colon
{ :) .

• reaches the maximum number of translations allowed {eight).

6.2.3 FILES-11 ACP Use of Logical Names

The Files-11 Ancillary Control Processor (ACP) creates two logical
names when it mounts a file-structured disk or diskette:

1. The volume label specified at the time the volume was initialized
is equated to the physical device on which the volume is mounted.

2. The physical device name is equated to the volume label.

For example, if you mount a diskette volume named "FINANCE" in drive
1, the ACP would assign:

6-9

LOGICAL NAMES

Logical ™ Equivalence Name

FINANCE: DZOOl:

DZOOl: FINANCE:

An application program can reference the disk with the volume label
FINANCE by using the logical name FINANCE:. PRO/RMS-11 translates the
logical name to determine the actual physical device. Similarly, the
application can determine the volume that is currently mounted in a
specific drive.

6.2.4 Manipulating Logical Names

PRO/Tool Kit DCL provides several commands for manipulating logical
names: ASSIGN, SHOW LOGICAL, and so forth. See the PRO/Tool Kit
Command Language/Utilities Manual for more information. ~-

A program can call the POSSUM library routine
System Reference Manual) to perform the
functions:

PROLOG {see the
following logical

• Create a logical name for a device specification.

• Delete a logical name for a device specification.

• Translate a logical name to a device specification.

P/OS
name

Similarly, a program can issue the CLOG$, TLOG$, and DLOG$ directives
{se~ the P/OS S~stem Reference Manual) to perform the following
logical name functions:

• Create a logical name string {CLOG$)

• Delete a logical name string {DLOG$)

• Translate a logical name string {TLOG$)

6.3 ACCESSING APPLICATION FILES

Most applications consist of several files: task images, data files,
menu files, help files, and so forth. Unless explicitly placed
elsewhere, these files exist in the application directory.

On a P/OS Diskette system, there is only one application
[ZZAPPL]. Thus, there is no problem locating the files.

6-10

directory,
I

ACCESSING APPLICATION FILES

On a P/OS Hard Disk system, however, application directories created
by Disk/diskette Services have the form [ZZAPnnnnn], where nnnnn is an
integer value that is entirely site-dependent.

In order to access its files, a task image passes file specifications
to PRO/RMS-11 (usually via a language run-time system) that contain
the name of the application directory. That name is available in the
form of a logical name, APPL$DIR, assigned by P/OS at run-time.

PRO/RMS-11, however, cannot translate logical directory names (see
Section 6.2.2). Thus, a task must translate APPL$DIR in order to
determine the physical name of its application directory. The methods
for translating logical names are described in Section 6.2.4.

SYSDISK is the logical name of the device (disk or diskette) that
contains the application directory. Thus, on a Hard Disk system,
APPL$DIR generally translates to:

SYSDISK:[ZZAPnnnnn]

You can postpone the translation responsibility during program
development by using Fast Install, rather than Disk/diskette Services,
to install your application. With Fast Install, you create the
application directory yourself and can use its name as a constant in

1your application.

6.3.1 Menu and Help Files

The installation command (.INS) file provides an easy way for an
application to access a menu file and a help file. If you provide an
ASSIGN MENU line and an ASSIGN HELP line in your .INS file, the system
will automatically open the specified file whenever you call a User
Interface Library (POSRES) routine that uses it. If your program uses
additional menu and/or help files, it must explicitly open them.

6.3.2 Running Applications from the PRO/Tool Kit

The PRO/Tool Kit is an installed application. Thus, while the
PRO/Tool Kit is running, the logical name APPL$DIR equates to the
directory that contains the PRO/Tool Kit files. If your application
uses external files and you want to run it from PRO/Tool Kit DCL, use
one of the following techniques:

1. When opening files, specify the physical name of the application
directory. Do not translate APPL$DIR. This is only a temporary
state. You will have to modify your application to translate
APPL$DIR before distributing it.

6-11

ACCESSING APPLICATION FILES

2. Place your application files in the PRO/Tool Kit directory so that
translating APPL$DIR will work correctly. Be sure to remove the
files when you have completed your application.

NOTE

Do not reassign APPL$DIR. If you do, the PRO/Tool Kit
will not work correctly.

It is recommended that you use the first technique. In general, the
PRO/Tool Kit application directory should be left unchanged.

6-12

CHAPTER 7

TASK BUILDING

The Professional Application Builder (PAB} is a utility that links
your object modules (.OBJ files} with system software, producing task
image files that can be executed on P/OS. You control PAB by means of
two command files that are explained in detail later on.

PAB is a somewhat cryptic but extremely powerful tool. This chapter
provides enough practical information about PAB to task build simple
applications. Your documentation set includes the RSX-llM/M-PLUS Task
Builder Manual, which describes PAB in great detail. If you are
developing large or sophisticated applications, it is recommended that

·you read the manual and become proficient in the PAB languages. PAB
has powerful features that allow you to optimize task images in many
different ways.

7.1 INVOKING PAB ON THE PRO/TOOL KIT

If you are using the PRO/Tool Kit, invoke PAB with the LINK command
which is described in detail in the Command Language/Utilities Manual.

$ LINK @file

The default file type is ".CMD". Alternatively, you can type:

$ LINK
File(s)? @file

7.2 INVOKING PABON VAX/VMS

On VAX/VMS, the PAB executable image is called PROTKB.EXE. It runs
under the AME (Application Migration Executive) and supports named as
well as numbered directories. Insert the following symbol in your

'LOGIN.COM file:

7-1

INVOKING PAB ON VAX/VMS

$ PAB :== $PROTKB

Once the symbol is defined, you can use a single command to invoke
PAB:

$ PAB @file

The default file type is ".CMD". Alternatively, you can type:

$ PAB
PAB> @file

7.3 INVOKING PABON RSX-llM/M-PLUS (DCL)

On RSX-llM/M-PLUS, the PAB executable image is called PROTKB.TSK. If
PAB is installed on your system as " ••• PAB", you can invoke it with
the following command:

$ PAB @file

If PAB is not an installed task on your system, invoke it with the
following command:

$ RUN $PROTKB
PAB> @file

The same commands also work for MCR.

7.4 BUILDING APPLICATIONS

As mentioned in Chapter 4, the implementation phase requires that you
create two PAB files (a .CMD file and an .ODL file) for each task
image in your application. Each file contains commands in a different
language that tell PAB exactly how to build the desired task image.

Some of the Tool Kit languages include software for creating PAB files
that automatically contain language-specific information as well as
information for PRO/RMS-11. Others simply describe the required files
and expect you to create them yourself with an editor. In either
case, create the required files and examine their contents and format.

Because no language can anticipate all of your task's requirements,
you will almost certainly have to make some edits to those files
before task building. The following tools require specific
information in your PAB files:

7-2

BUILDING APPLICATIONS

• CORE Graphics Library

e PROIFMS-11

e PROIRMS-11

• POSRES User Interface Library

• POSSUM System Services

If your task uses any of those tools, turn to the documentation for
each tool and make the appropriate edits.

NOTE

Most of the high-level languages use POSRES User
Interface Library routines (particularly RDMSG and
WTRES) for run-time support and thus require some
POSRES support in your .CMD file. POSRES is described
in detail in Chapter 8.

7.5 THE COMMAND (.CMD) FILE

The PAB command (.CMD) file specifies input and output files and
contains option lines that specify cluster libraries, buffer sizes,
logical unit number assignments, and so forth.

Figure 7-1 shows a sample .CMD file, written for a MACRO program that
uses POSSUM and PROIRMS-11.

SAMPLE=SAMPLEIMP
CLSTR=POSSUM,RMSRES:RO
II

Figure 7-1: Sample PAB Command File

The double-slash <II) indicates the end of the file. The rest of the
file is explained in the following sections.

7.5.1 The Command Line

The first line is a command that specifies input and output files and
switches. Input files go on the right side of the equal sign and
output files go on the left. For example:

SAMPLE=SAMPLEIMP

7-3

THE COMMAND (.CMD) FILE

This command specifies one input file and one output file, both named
SAMPLE. The /MP switch specifies that the input file is an overlay
descriptor language (.ODL) file as described in Section 7.6. The
output file is a task image (default file type .TSK).

The use of an .ODL file does not imply that your task must be overlaid
to run on P/OS. It simply describes your task image in more detail
than is possible in the .CMD file.

NOTE

If an existing PAB command file has a /-CP switch on
the output file, remove it. Use /CP (the current
default) for all tasks built for P/OS.

If an existing PAB command file has a /-FP switch on
the output file, remove it unless no floating point
instructions are used by your task. Use /FP (the
default) for all tasks built for P/OS Vl.7 or later.
P/OS provides EIS libraries for upwards compatibility
purposes only.

If you would like a map that shows exactly how your task loads into
memory, specify a second output file, such as:

SAMPLE,SAMPLE/MA/-SP=SAMPLE/MP

This command specifies a task image and a load map (.MAP) file. The
/MA switch specifies that the load map is to contain the names of the
system library routines used in your task. The /-SP switch prohibits
automatic printing of the load map on host Tool Kit systems.

7.5.2 The CLSTR Option

The CLSTR option specifies the cluster libraries used by your task.
If your task references a non-null-rooted cluster library, it must be
the first (default) library in the CLSTR option. This applies to
high-level language run-time libraries, such as PASRES and PBFSML. If
all are null-rooted, the first library called by your task becomes the
default. For example, if a PASCAL program uses PRO/RMS-11 and POSRES
services, the cluster option would be:

CLSTR=PASRES,POSRES,RMSRES:RO

7-4

(

THE COMMAND (.CMD) FILE

NOTE

Do not embed any spaces in the CLSTR option. Also, do
not include a comment on the CLSTR option. It will
cause PAB to return a fatal option syntax error.

The ":RO" switch specifies read-only access. For P/OS Vl.7, the
overlay run-time system was modified to allow read/write access to
non-default (in addition to default) clustered libraries that have not
been installed read-only. Such libraries may be useful for:

• passing information between cooperating application tasks (the
tasks should provide their own access synchronization).

• extending the effective available read/write virtual memory usable
for task impure data.

In both cases, the task(s) must ensure that the library is mapped by
calling a routine in the library that does not return to the caller
until any access to the read/write data is completed. This is not
normally necessary for a non-null-rooted default cluster member, since
it is usually already mapped as desired.

7.5.3 NULLIB

The special non-null-rooted default cluster member NULLIB is provided
for two purposes:

• It can guard against potential memory fragmentation problems that
might cause task deadlock in certain instances.

• It can provide better performance in cases when a null-rooted
cluster member would otherwise become the 'effective' default
member of the cluster and would be unnecessarily re-mapped (and
potentially re-loaded from disk). Assuming that the application
would access cluster members other than the first one accessed,
re-mapping that first member after every access to some other one
could prove costly.

However, the increased physical memory now standard for P/OS makes
memory fragmentation problems considerably less likely for most
applications. Also, now that the RMSRES and POSSUM resident libraries
are fixed in memory, there is no possibility of disk loading overhead
when one of these becomes the effective default member of a cluster.

As a general rule, when all members of a library cluster have null
roots, your application should attempt to ensure that the first

)library accessed (which will become the effective default cluster
member) is the one that the application will refer to most frequently.

7-5

THE COMMAND (.CMD) FILE

This will minimize the likelihood of unnecessary mapping and possible
disk loading.

7.6 THE OVERLAY DESCRIPTOR LANGUAGE FILE

The overlay descriptor language (.ODL) file specifies the object
modules used by your task (some of which are automatically extracted
from libraries) and describes how your task image will use its 32K
words of virtual memory.

Each high-level language and development tool specifies which object
modules and/or libraries to include in your .ODL file, along with your
own object modules.

NOTE

Some tools may say to use files in LB: [1,1], the RSX
system library directory. The host Tool Kit system
library directory is LB:[l,5], not LB: [1,1]. Thus PAB
automatically replaces all references (including
defaults) to LB:[l,l] with LB:[l,5].

Normally, PAB allocates memory for each object module in linear
fashion (while automatically extracting object modules from SYSLIB.OLB
as needed). In order to reduce the size of a task, you can create a
structure where one or more modules are overlaid (share the same
memory). That subject is discussed in detail in the RSX-llM/M-PLUS
Task Builder Manual.

The following is an example of an .ODL file, written for a MACR0-11
program that uses PRO/RMS-11:

.ROOT USER-RMSROT
USER: .FCTR FIRST-USERSUB
@LB:[l,5]RMSRLX

.END

The first line is a .ROOT directive, which defines the structure and
contents of the task image. Although it can contain object modules,
.ROOT usually contains references to symbols defined elsewhere in the
.ODL file, as is the case here: USER and RMSROT are symbols.

The second line is a .FCTR directive, which defines the symbol USER as
two object modules: FIRST and USERSUB. To specify additional object
modules, you could add them to this .FCTR directive or include
additional .FCTR directives as needed.

7-6

THE OVERLAY DESCRIPTOR LANGUAGE FILE

The hyphen specifies that FIRST and USERSUB are to be concatenated
(each is to have its own area of memory). A comma would specify that
the modules are to be overlaid. In that case, PAB would allocate a
single area of memory, usable by both modules, but only one at a time.

The third line includes the PRO/RMS-11 overlay descriptor language
file RMSRLX.ODL, which defines the symbol RMSROT. The at-sign
character (@) allows you to nest .ODL files in the same way that you
can nest program source code.

7-7

(

(

\

CHAPTER 8

P/OS USER INTERFACE SERVICES

The P/OS user interface services provide the means by
interact with your application in exactly the same
interact with P/OS. From the user's point of view,
from P/OS to application can be just another menu.

which users* can
manner that they

the transition

The user interface services also allow you to remove all text from
your source code, making a single application usable in any number of
languages. For example, you can package the same task images with
menu, help, and message files in English, French, German, Italian, and
so forth.

This chapter describes how to design and implement a menu-based user
interface. To accomplish that, you must be familiar with how a menu
interface works from a user's point of view. This chapter assumes
that you are familiar with the P/OS user interface. If not, it is
recommended that you spend some time working with the P/OS menus and
help structure before proceeding.

8 .1 OVERVIEW

A menu-based user interface allows the user to interact with your
application by repeatedly selecting one or more options** from a
finite list or "menu." Because all options are visible to the user,
there is no necessity to memorize a command language.

In practice, the structure that best matches the user's perception of
a menu interface is the multi-way tree (hierarchy) where each option
on a menu represents a decision and "points" to another menu, and so

* In this chapter, the term "user" means the person who actually
acquires, installs, and uses your application.

P/OS end-user
"option."

documentation uses the

8-1

term "item" rather than

OVERVIEW

forth. The bottom or "leaf nodes" of the tree represent states in
which your application has gathered enough information to perform an
operation. When the operation is complete, the user repeats the
decision making process beginning at the "main menu" or at some other
menu in the tree.

Because the menu interface is entirely under program control, the user
need not be restricted to downward movement in the menu tree. You can
allow instantaneous movement, forward or backward, to any other menu
in the tree. You can use backward movement to provide the user with a
way to cancel a wrong decision and start over, and forward movement to
provide sophisticated users with an abbreviated or concise way to make
decisions.

While a menu is active, some function keys are "trapped" and used as
part of the option selection process (described in detail later on.)
Other function keys return control to your application with the
identity of the key that was pressed. This chapter contains some
recommendations on how to assign semantic meanings to and process
those keys.

A menu-based user interface also includes context-sensitive help in
the form of help menus, which are similar to control menus, and help
text frames, which are simply informative displays. Help structures
can be multi-way trees or complex networks of interlocking menus and 1

text frames.

You can associate help structures with menus or with individual
options on menus. While a menu is active, the menu interface
automatically activates the appropriate help structure whenever the
user presses the HELP key. If no menu is active, your application can
detect and process requests for help by explicitly activating a help
structure. You can even monitor the user's progress through the menu
tree and of fer help if the user makes repeated errors or seems to be(
stalled at some point.

A menu-based user interface also provides a way for your application
to display context-sensitive messages that announce error conditions,
confirm completion of operations, and so forth. Each time it displays
a menu, your application can specify up to two lines of messages to
appear with the menu at a predefined location. Your application can
also send a message to the "View Message/Status" service on the P/OS
Main Menu.

8-2

Figure 8-1:

OVERVIEW
Profile ror Siftll• Cnolce Menu ICAHf

frlM O.acrlptlon
[TMo " the .. ,. om ror the •l-nta.,, odooat1on apPl1oat1on.

[llATllASE•E!.!11

Globll Help Frue (MEH\J]

Der1ult Option (3 J

GlOtlll Act1on Strtn1

Displ•Y ror Single Choice i'tenu IU.IN

EIJJC!JrtMY Ef)'JCATION APPLICATION

This application orrers eierwentary education l.n seven fields c:' study. Select

one of the courses listtdhere.

BIOLOGY

COi'tPUTEP.SC[ENCE

GEOGRAPHY

GOVERNMENT

HISTORY

LITERAT'~RE

MAtHUIAT!CS

[MU:e 1 select1on and pru• tne DO key:

ActioriNumberJ forSingleCho<c11M11n'1MAIN

;)escription: G!:OGRAPHY

Act:.on 2escr:pior.

[This Ls the description of the Geocre.ptiy option.

Opt ion ~eyword (GEO
Option He ~p Frame (HE:..PGEO J

(GEOGOOlO
Option Act1on String

;:/~
-. "' <'> ... Ill "' 00

!In~ w w w w w w w
:::E :::E :::E :::E :::E :::E :::E << < < < < < < < a: :::E a: a: a: a: a: a: a: LL: LL LL LL LL LL LL LL

MENU

FOAMS

]

MENU DEFINITION FILE

"' ;? :::
w w w
:::E :::E :::E < < < a: a: a:
LL LL LL

·-------ELEMENTARY UlUCATrQN APPL!CA':'ION -------..

This application orrers elementary educatlon in seven rlelds of :>tully. Select
one of the courses listed here·

EIIOLOCY
CC»!PUT[R SCif.NCE

-> GEOGRAPHY

GOVERNMENT

HISTORY

LITERATURE
MATHEMATICS

Malle a selectlon and press the DO key:

The User Interface Tools

8-3

Additional Options anllable

OVERVIEW

The user interface services consist of:

• The Frame Development Tool

The Frame Development Tool (FDT) is a utility program (you may
prefer to think of it as an editor) that allows you to create
menu, help, and message frames, to store frames in files, and to
convert the files into executable format. FDT is described in
detail in the Tool Kit Reference Manual.

• The POSRES User Interface Library

POSRES is a P/OS cluster library containing a set of callable
routines that manage menus and help structures (including frames
stored in files) and process function keys. This chapter provides
a general description of how to use the POSRES routines. A
detailed description of each routine can be found in the Tool Kit
Reference Manual.

Figure 8-1 shows the relationship between FDT and POSRES. FDT allows
you to create a frame (in this case, a single-choice menu) by filling
in forms. The frame description is then stored in a file and
installed in the application directory along with the rest of your
application files. At run-time, your application uses POSRES routines
to open the frame file, retrieve the frame, and activate it.

8.2 DESIGNING A MENU STRUCTURE

The primary goals in designing a good menu tree are consistency and
friendliness. The user should never feel lost or trapped. You should
always provide a way to back out of a wrong decision.

Convenience is also very important. On any menu, include options that
are related by function (rather than logic) so that common operations
can be completed with minimal switching of menus. If necessary, put
the same option on more than one menu. For example, P/OS File
Services and Disk/Diskette Services both allow you to show your
current directory, show the contents of a directory, and so forth.

8.2.1 Format of a Menu

From the user's point of view, there are three types of menus:
single-choice menus, multiple-choice menus, and help menus. They all
have roughly the same fields. Figure 8-2 shows a single-choice menu
with the fields pointed out.

8-4

tor Selec
or

Point er

Optio

Prom
Line

ns

pt

/_

I I

Curso
Line

I •
rU

a;t~o~[Error
Inform
Lines

DESIGNING A MENU STRUCTURE

Title
Explanatory
Text

/
L.. L

L
ELEMENTARY EDUCATION APPLICATION

/
This application offers elementary education in seven fields of study. Select
one of the courses listed here:

'BIOLOGY
COMPUTER SCIENCE

• -> !GEOGRAPHY
GOVERNMENT

)HISTORY
LITERATURE

Make a selection and press the DO key:

Additional Options available

\
'\

Keyword Additional
Options Flag

~

Figure 8-2: Single-choice Menu

Rest
Position

On a single-choice menu, part of each option
order to indicate which characters the
unambiguous choice. The boldface characters
for the option.

appears in boldface in
user can type to make an
are called the "keyword"

8.2.2 Single-Choice Menus

There are actually two kinds of single-choice menu, static
dynamic, which is explained later on. The difference is relevant
to programmers; from the user's point of view, there is only one.

and
only

The user selects one from a list of up to 12 options. There are two
ways to select an option:

• The user positions the selector at the desired option by pressing
the Up Arrow and Down Arrow keys, then presses the DO key. When
the menu is displayed, the selector begins at the default option
or, if none was specified, at the rest position.

8-5

DESIGNING A MENU STRUCTURE

• The user positions the selector at the desired option by typing
keyword characters, then presses the DO key. The selector moves
only when the characters identify a unique choice.

Single-choice menus are normally used for verbs (program control).
For example, P/OS File Services has a single-choice menu with options
like "Copy file," "Delete file," "Display file," and so forth •

.. -------COURSE: GEOGRAPHY OF NORTH AMERICA--------·

This course covers rivers, lakes, and mountains. The first topic is mountains.
The mountains listed below are located in different parts of the world. Select
all the mountains located in North America:

->
MT. RUSHMORE
MT. WASHINGTON
MT. HOOD
GRAND TETON
MT. RAINIER
MT. FUJI
KILIMANJARO
MT. ST. HELENS
MT. MCKINLEY

Choose one or more options with the SELECT key and press the DO key:

Figure 8-3: Multiple-choice, Menu

8.2.3 Multiple-Choice Menus

On a multiple-choice menu, the user chooses one or more options from a
list. The list can be any length, possibly covering several screens.
Figure 8-3 shows a multiple-choice menu.

The user selects options by repeatedly positioning the selector (with
the up arrow and down arrow keys) and pressing the SELECT key. A
non-blinking arrow remains next to each selected option. The user can
deselect an option by pressing the SELECT key again, or can deselect
all options (start over) by pressing the CANCEL key.

8-6

DESIGNING A MENU STRUCTURE

If the option list covers more than one screen, the user can move
forward or backward in the option list by pressing the PREV SCREEN and
NEXT SCREEN keys. The DO key signals that the selection process is
complete.

Multiple-choice menus are normally used for objects (data), rather
than commands. A common example is a list of files or directories.

8.2.4 Key Processing in Menus

This section describes key processing in menu option selection.
Appendix D lists all of the key codes and labels.

• Keyboard keys are accepted if they match an option keyword.
Otherwise, the keyboard bell rings and selection continues. The
delete key deletes the previously typed character.

• The ADDTNL OPTIONS key returns control to your application if your
menu display call specified Additional Options. Otherwise, the
keyboard bell rings and option selection continues.

• The Up Arrow and Down Arrow keys move the selector up and down.
If the user tries to move the selector out of range, the keyboard
bell rings and selection continues.

• The CANCEL key moves the selector to the rest position.
multiple-choice menu, it deselects all options.

On a

• The DO key selects an option on a menu and returns control to your
application. On a multiple-choice menu, it selects the current
option and returns all other selected options. If no option has
been selected (the pointer is at the rest positon) it rings the
keyboard bell and continues.

• The HELP key activates a help structure as described in Section
8.5.3.

• The HOLD SCREEN key functions normally.

• The INTERRUPT key does not by itself return
application. If followed by the DO key, the
application and displays the P/OS Main Menu.
selection continues as usual.

• The PRINT SCREEN key functions normally.

8-7

control to your
system aborts your
Otherwise, option

DESIGNING A MENU STRUCTURE

• The SELECT key selects or deselects an option on a multiple-choice
menu. It does not return control to your application. The DO key
selects an option and returns control with all selected options.

• Other function keys either ring the keyboard bell or terminate the
menu display and return control to the executing task with a
numeric code to identify which key was pressed. In general, you
should handle invalid keystrokes by redisplaying the same menu
with a message something like "That key is invalid here please
try again."

8.2.4.1 Action Strings

Action strings are character strings that are stored in a menu
definition but not displayed: POSRES returns them to your program with
specific calls. Their purpose is to associate menus and options with
data usable by your task. For example, you can associate menu and
options with other menus, tasks, subroutines, or callable services.

There are two types of action strings:

• Global action strings

A global action string associates data with a single-choice menu.
Your application can obtain and use the global action string each
time it reads a new menu from the menu file.

• Option action strings

Option action strings associate data with options on a
single-choice menu. A successful option selection returns an
option action string to your application. (

8.2.4.2 Option Keywords

On a single-choice menu, part of each option must be designated the
keyword.. The user can select the option by typing keyword characters,
rather than by pressing arrow keys.

The keyword must be at least one character. It can be any contiguous
substring of an option or the entire option. For example, you could
use any of the following:

Enter Accounts Payable

Enter Accounts Payable

8-8

DESIGNING A MENU STRUCTURE

Enter Accounts Payable

A keyword must be unique within
substring of another keyword.
substring of the string "10".

the menu. No
For example,

Verbs are usually the most appropriate keyword.
suitable, use numbers (this is not recommended).

1 Sales Report: Area One
2 Sales Report: Area Two
3 Sales Report: Area Three

8.3 IMPLEMENTING A MENU STRUCTURE

keyword can be a
the string "l" is a

If no keyword is
For example:

From a developer's point of view, there are two kinds of menus:

• Static menus

Static menus are created with FDT and stored in library files. In
general, static menus are relatively easy to program and are
intended for program control.

• Dynamic menus

Dynamic menus are created by your application at run-time. In
general, dynamic menus are intended for manipulating data.

NOTE

Only single-choice menus can be static or dynamic.
Multiple-choice menus are always dynamic.

POSRES uses three buffers for temporary storage of menu frames, one
each for static single-choice menus, dynamic single-choice menus, and
multiple-choice menus. You allocate memory for these buffers when you
build your program (see Section 8.8). Because there is only one
buffer of each type, you can have only one menu of each type in memory
at one time.

8.3.1 Displaying Menus

All of the routines for displaying menus accept a parameter that
specifies whether to display the Additional Options message and return
control if the user presses the ADDTNL OPTIONS key. P/OS generally
uses Additional Options menus for services beyond those offered on the
current menu. For example, the OLDFIL file selection menu uses

8-9

IMPLEMENTING A MENU STRUCTURE

Additional Options to allow the user to type a file specification,
rather than select files from a list.

8.3.1.1 Static Single-Choice Menus

Static single-choice menus are created with FDT and stored in menu
definition files. There are two ways to open a menu definition file:

• The ASSIGN MENU command in your installation command file (see the
Tool Kit Reference Manual) opens a menu file at run-time. If your
application uses only one menu file, that's all you have to do.

• The Open Menu File (MFILE) routine explicitly opens menu files. /
To use it, however, you must specify the name of the directory\
that contains the menu file. For a P/OS Hard Disk application,
that requires translating the logical name APPL$DIR (see Section
6.3).

To display static-single choice menus, use the following POSRES
routines:

• Read Menu Frame (MFRAME)

MFRAME reads a specified menu from the menu file into the
buffer.

• Display Single-Choice Menu (MENU)

static

MENU displays the menu in the static buffer
keystrokes (as described in Section 8.2.4).
two message lines to appear on the menu.

and processes user
You can specify up to

8.3.1.2 Dynamic Menus

Dynamic menus are created by your application at run-time. To create
a dynamic menu, you must first clear the appropriate buffer (dynamic
single-choice or multiple-choice) and then pack it. The POSRES menu
packing routines are:

• Pack Dynamic Single-Choice Menu (DPACK)

DPACK packs the dynamic buffer with a new menu.

• Pack Multiple-Choice Menu (MPACK)

8-10

I

l

(

IMPLEMENTING A MENU STRUCTURE

MPACK packs the multi-buffer with a new menu. It includes
parameters for setting the maximum number of options the user can
select and for receiving the responses.

Both routines accept a parameter that clears the buffer. They also
accept any number of field parameter groups, each of which specifies
the contents of a menu field (see Figure 8-2). Thus, you can pack a
menu buffer with a single routine call or several calls.

You also can use the contents of the static buffer to create a dynamic
menu. The POSRES menu unpacking routine is:

• Unpack Menu Buffer {MUNPK)

MUNPK unpacks the menu in the static buffer so that its contents
can be modified and reused as a dynamic single-choice or
multiple-choice menu.

Once you have packed the dynamic buffer, display the menu by calling
one of the display routines:

• Display Dynamic Menu (DMENU)

• Display Multiple-Choice Menu (MMENU)

These routines display the menu in the appropriate buffer and process
user keystrokes (as described in Section 8.2.4). You can specify up
to two message lines to appear on the menu.

8.3.2 Programming with Menus

When control returns to your application from a menu display routine,
the menu remains visible on the screen. Examine the first word of the
status block to see what happened.

If it contains +l, option selection was successful and the second word
of the status block contains the ordinal number of the selected
option. You can branch on that value or use the option action string
(if defined).

If the first status word contains -14, the user pressed a function key
other than DO and the second word contains one of the function key
codes shown in Appendix D. If your menu display call specified
Additional Options, be sure to check for 14 in the second status block
word.

8-11

IMPLEMENTING A MENU STRUCTURE

Your application must determine which function keys are valid and
which are not in the context of the current menu. Section 8.2.4
provides some suggestions on how to process function keys. If the
user pressed an invalid key, redisplay the same menu with a helpful
message. A program designed for novice users could count the number
of consecutive invalid keys and offer help if and when appropriate.

Any other value indicates that an error has occurred. Appendix C
shows all of the possible values. While debugging, you may find it
helpful to dump the status block whenever an error occurs. Although
no application can anticipate all errors, try to anticipate and handle
those that a user might encounter.

When processing is complete, use the Close Menu File (MCLOSE) routine
to close the menu definition file (if open) and exit. Otherwise, the
file remains open until your task exits.

8.3.3 File Specification Routines

POSRES provides two special user interface routines for working with
files.

8.3.3.1 New File Name (NEWFIL)

The New File Name routine activates the P/OS New File Specification
form shown in Figure 8-4 and returns a full file specification in the
form:

dev:[directory]filename.typ;version

The user can fill in the form and press DO, or can press ADDTNL
OPTIONS. POSRES automatically displays an Additional Options menu
that allows the user to: specify a new file type, specify a different
directory, or enter an extended file specification.

When control returns to your application, reset menu and help
contexts. If your installation command file contains ASSIGN MENU
and/or ASSIGN HELP commands, the next POSRES call will automatically
reopen those files. If not:

• open the menu file explicitly with MFILE

• reset the menu frame with MFRAME

8-12

(

IMPLEMENTING A MENU STRUCTURE

• open the help file explicitly with HFILE

• reset the help frame with HFRAME

8.3.3.2 Old File Name (OLDFIL)

The Old File Name routine activates the P/OS File Selection Menu and
returns the full specifications of one or more selected files. You
can supply a wild-card string to specify a subset of the files in the
user's current directory and can specify the maximum number of
selections. For example, you can use the default wild-card
specification (*.*} by supplying a zero-length string. That displays
the latest versions of all files in the user's current directory.
{Refer to the Command Language/Utilities Manual or your host system
documentation for wild-card syntax.}

Enter a new file name and press DO.

Current director';:! is USERFILES on Volume BIGVOLUME

Fi le name:

File t';:jpe: Document

Additional 0 tions avail.:able

Figure 8-4: •Name a File Form•

An Additional Options menu allows the user to choose a different
directory or volume, enter an extended file name, show all versions of
the files, or show only the latest versions of files. The last two
options, however, work only when you use the default wild-card
specification or when you pass a wild-card specification that
specifies an asterisk {*} for the version number. Otherwise, when the
user selects "Show all versions" or "Show la~est version", the same
file selection menu will redisplay.

8-13

IMPLEMENTING A MENU STRUCTURE

When control returns to your application, reset menu and help
contexts. If your installation command file contains ASSIGN MENU
and/or ASSIGN HELP commands, the next POSRES call will automatically
reopen those files. If not:

• open the menu file explicitly with MFILE

• reset the menu frame with MFRAME

• open the help file explicitly with HFILE

• reset the help frame with HFRAME

8.4 DESIGNING A HELP STRUCTURE

The primary goal in designing a good help structure is to guide the
user smoothly through the menu tree. Although it's important to
anticipate where a user might become unsure how to proceed, there
should be no point in the menu tree where the HELP key produces
nothing but a beep. The help structure is an area where technical
writers often produce the best results.

Help structures consist of help menus and help frames.
not provide information~ they simply guide the user to
help text frame or another help menu. Help text
information about your application. The quality
documentation can do much to enhance its market image.

Help menus do(
the appropriate
frames provide
of this on-line

The help frames at the "root" of the menu tree should contain general
information. The frame at the "leaf nodes" should contain more·
specific information. Although you can assume that the ·user is
familiar enough with the menu system to select an option from a menu,(
it is recommended that you always state which keys are expected, for
example: "Make a selection and press DO.", "Press NEXT SCREEN to
continue.", and so forth.

8.4.1 Help Menus

On a help menu, the end user chooses one from a list of up to 12
options. Figure 8-5 shows a Help menu. The format and option
selection process are similar to a single-choice menu.

8-14

i
I
\,

DESIGNING A HELP STRUCTURE

8.4.2 Key Processing in Help Menus

This section describes key processing in help menus. Appendix D lists
all of the key codes and labels.

HELP ON ELEMENTARY EDUCATION APPLICATION ------..

You can display helpful information about the subjects listed below. Select an
option then press the DO key. Press the RESUME key to return to the Main Menu.

->
COMPLETING TESTS AND QUIZZES
READING THE REPORT CARD
SELECTING COURSES
USING THE MAP

Make a selection and press the DO key:

Figure 8-5: Help Menu

On a help menu, option selection keys are processed as follows:

• Main keyboard keys are accepted if they match an option keyword.
Otherwise, the keyboard bell rings and selection continues. The
delete key deletes the previously-typed character.

• The Up Arrow and Down Arrow keys move the selector up and down.
If the user tries to move the selector out of range, the keyboard
bell rings and selection continues.

• The CANCEL key moves the selector to the default option if
defined, otherwise to the rest position.

• The DO key displays the frame associated with the selected option
if option selection was successful. Otherwise, it rings the
keyboard bell.

8-15

DESIGNING A HELP STRUCTURE

• The HELP key rings the keyboard bell. In order to continue
through the help structure, the user must select an option.

• The HOLD SCREEN key functions normally.

• The INTERRUPT key does not by itself return
application. If followed by the DO key, the
application and displays the P/OS Main Menu.
selection continues as usual.

control to your
system aborts your
Otherwise, option

• The PREV SCREEN key displays the previous help frame, if defined.
Otherwise it rings the keyboard bell.

• The PRINT SCREEN key functions normally.

• The RESUME key returns control to the menu from which the user
entered the help structure or, if the help menu was activated
directly by your task, returns control to it.

• Invalid keys ring the keyboard bell but do not return control to
your application.

8.4.3 Help Text Frames

Help text frames can be a full frame (16 lines of text), the top half
of the screen (eight lines), or the bottom half of the screen (eight
lines). Figure 8-6 shows a help text frame on the bottom half of the
screen. When the user pressed the HELP key, the selector was
positioned on the option "Reading the Report Card" in Figure 8-5.

When displayed implicitly by POSRES, half-screen frames do not alter
the remainder of the screen. For example, in 8-5, part of the menu (
remains visible. If, however, your task calls HELP directly to
display a half-screen frame, POSRES clears the entire screen.

It is recommended that you use half-screen frames for menu frame
pointers when the size of the help text permits. Choose top or bottom
in order to allow relevant areas of the previous frame to remain
visible. You can design the help structure so that top and bottom
frames alternate, allowing the user to see two help frames at a time.

8.4.4 Key Processing in Help Text Frames

While a help text frame is active, only the following keys are
processed:

8-16

• The HELP
if one
keyboard

DESIGNING A HELP STRUCTURE

key and the NEXT SCREEN key display the next help frame,
was defined when the frame was created. Otherwise, the
bell rings.

.. ------- HELP ON ELEMENTARY EDUCATION APPLICATION -------·

You can display helpful information about the subjects listed below. Select an
option then press the DO key. Press the RESUME key to return to the Main Menu.

COMPLETING TESTS AND QUIZZES
-> READING THE REPORT CARD

SELECTING COURSES
US ING THE MAP

.. --------·HELP ON READING THE REPORT CARD--------..

The Report Card presents an objective evaluation of your work in courses offered
by the Elementary Education Application. The Report Card lists all the courses

you have taken. For each course, it indicates the number of correct and
incorrect answers given on tests and quizzes, the number of times the course
was taken, the date of the last quiz and test taken, and, if the course was

completed, the passing or failing grade.

Figure 8-6: Help Text Frame

• The PREV SCREEN key returns to the previous help frame, if
defined. Otherwise, the keyboard bell rings.

• The RESUME key returns control
entered the help structure
directly by your task, returns

8.4.S A Sample Help Structure

to the menu from which the user
or, if the help menu was activated
control to it.

Figure 8-7 shows part of the P/OS Vl.7 Main Menu help structure in
diagram form. In mathematical terms, the structure is a directed
graph with nodes representing frames and edges representing single
keystrokes and groups of keystrokes that select options.

The node labeled "HELP MENU" actually has several other options
associated with it. Only the part of the graph resulting from the
"Function Keys" option is shown.

8-17

DESIGNING A HELP STRUCTURE

This help structure could be changed significantly by altering some
frame descriptions. For example, only "Frame l" has a return path to
the "Help for Function Keys" menu. On the other "Frame n" nodes, the
previous screen is defined to be the next lower "Frame n" node.

You could make all of the "Frame n" nodes return to the "Help for
Function Keys" menu. You also could modify "Frame 5" so that the NEXT
SCREEN key goes to "Frame l" forming a ring. That way, a user could
cycle forward through the frames and still be able to back out at any
frame, without returning to the Main Menu.

w
::::e
1il---
w
a:

Frame 1

NEXT

MAIN MENU

PREV

HELP

HELP,
NEXT

HELP MENU

OPTION
SELECTION -----..

PREV

PREV

RESUME

JJ
m
Ul c:
s::
m

Figure 8-7: The P/OS Main Menu Help Structure (partial)

8-18

(

IMPLEMENTING A HELP STRUCTURE

8.5 IMPLEMENTING A HELP STRUCTURE

Help structures are made up of frames and frame pointers. A frame
pointer is data that specifies a help menu or help frame by name. For
static menus, you specify the frame pointers on the FDT Profile and
Action forms. For dynamic menus, you specify frame pointers in the
parameters passed to the POSRES routines that create the menu.

All menus contain a global frame pointer. When the user
HELP key with the pointer in the rest position, POSRES
help structure and displays the frame specified by the
pointer.

Single-choice menus (static or dynamic) contain a frame
each option on the menu. When the user presses the HELP
pointer on an option, POSRES activates the help structure
the frame specified by the option frame pointer.

presses the
activates the
global frame

pointer for
key with the
and displays

POSRES also maintains a default help frame pointer for use when no
menu is active or when the current menu does not define a help frame.
Your application can explicitly activate a help structure and/or
specify a new default help frame pointer.

8.5.1 Opening Help Files

There are two ways to open a help definition file:

• The ASSIGN HELP command in your installation command file (see the
Tool Kit Reference Manual) opens a help file at run-time. If your
application uses only one help file, that's all you have to do.

• The Open Help File (HFILE) routine explicitly opens a help file •
To use it, however, you must specify the name of the directory
that contains the menu file. For a P/OS Hard Disk application,
that requires translating the logical name APPL$DIR (see Section
6.3).

POSRES assumes that all frames used by the current help structure are
in the most recently opened help file.

8.5.2 Setting the Default Help Frame

There are several ways to set the default help frame:

8-19

IMPLEMENTING A HELP STRUCTURE

• The ASSIGN HELP command in your installation command file (see the
Tool Kit Reference Manual) specifies the default help frame.

• The Open Help File (HFILE) routine specifies a default help frame.
This takes precedence over a default help frame specified in your
installation command file.

• The Specify Help Frame (HFRAME) routine specifies the default help
frame. This takes precedence over a default help frame specified
in your installation command file.

• Each time the user presses the DO key to select a menu option,
that option's frame pointer, if defined, becomes the default.
This automatically maintains the help context.

8.5.3 Activating the Help Structure

While a menu is active, POSRES automatically activates the help
structure using the current menu's frame pointers whenever the user
presses the HELP key. This help processing is entirely transparent to
your application. POSRES uses the current menu's frame pointers in
the following order of precedence:

• The option help frame (single-choice menus only).

• The global help frame.

• The default help frame.

• If there is no default help frame, POSRES simply refreshes the
current frame and continues.

While no menu is active, you can activate the help structure by
calling the Display Help Frame (HELP) routine. POSRES uses frame
pointers in the following order of precedence:

• The help frame specified in the HELP call.

• The default help frame.

• If there is no default help frame (it is invalid) an error occurs.

You can also use the HELP routine while a menu is active. For
example, if your application detects an inordinate number of user
errors, it can suspend menu operations and activate the help
structure.

8-20

(

MESSAGE FILES AND SERVICES

8.6 MESSAGE FILES AND SERVICES

Like frame definition files, message definition files are created with
FDT. Message frames can contain up to 21 lines of text. By removing
the string constants from your task and placing them into a message
definition file, you can reclaim a significant amount of virtual
memory.

Unlike frame definition files, POSRES provides no routines to
explicitly display message frames. It does, however, provide a way to
extract message frames as needed so that you can use them as
parameters to other routines, such as the optional text lines on menus
and those routines listed below.

For example, the Installation Verification Program used by the Tool
Kit languages uses that technique for its Geography test answers.
Figure 8-8 shows the same multiple-choice menu in Figure 8-3 with a
message informing the user of an incorrect selection. This was
accomplished by extracting message frames and using them to specify
the optional text lines in the POSRES calls that created the menu .

.. -------·COURSE: GEOGRAPHY OF NORTH AMERICA-------..

This course covers rivers, lakes, and mountains. The first topic is mountains.
The mountains listed below are located in different parts of the world. Select

all the mountains located in North America:

-> MT. RUSHMORE

-> MT. WASHINGTON

-> MT. HOOD
-> GRAND TETON
-> MT. RAINIER

MT. FUJI

-> KILIMANJARO

-> MT. ST. HELENS
-> -> MT. MCKINLEY

Choose one or more options with the SELECT key and press the DO key:

Kilimanjaro is not in North America. It is in Tanzania, Africa.
At 19,J40 feet, it is the highest point in Africa.

Figure 8-8: Message Frame

POSRES includes the following message service routines:

8-21

MESSAGE FILES AND SERVICES

• Fatal Error (FATLER)

This routine provides a consistent way to inform the user of a
fatal error condition. It blanks line 22, displays the message
"Application error. Press RESUME to return to Main Menu." on line
23, and displays user-supplied text on line 24. That text can be
a message that tells the user why the application failed and where
to look for recovery information.

• Read Message (RDMSG)

This routine reads a message from a specified message file into a
buffer. You do not have to explicitly open the message file;
POSRES opens it for you each time you call RDMSG. If either the
file or the frame identifier specified in the RDMSG call cannot
not be opened or located, POSRES fills the buffer parameter with
the message "Can't access filename or can't find frame frameid."

• Send Message to Message/Status Display (MSGBRD)

This routine sends a message to the P/OS Message/Status Display,
which can be viewed by selecting the "View Message/Status" option
on the P/OS Main Menu. The Main Menu shows how many unread
messages have been queued. When the user selects "View
Message/Status", P/OS displays the messages in the order in which
they arrived.

NOTE

The MSGBRD routine is not actually in POSRES; it
is in the system library (SYSLIB). If you use the
MSGBRD routine, you must also edit your
Application Builder command file as described in
Section 8.8.

8.7 FUNCTION KEYS

The Professional keyboard contains three types of function key:
reserved, prelabeled, and generic. The reserved function keys, Fl and
F2 (also known as HOLD SCREEN aQd PRINT SCREEN), are accessible only
to the terminal subsystem. The other function keys are accessible to
applications. All of the function key codes and labels are shown in
Appendix D.

8-22

(

\

FUNCTION KEYS

8.7.1 Using Function Keys

The basic Professional keyboard comes with 12 prelabeled function keys
and 16 generic function keys (F3 to 14, and F17 to F20). The
prelabeled keys are:

arrows (4)
Do
Find
Help
Insert Here
Next Screen
Prev Screen
Remove
Select

P/OS provides a keyboard label strip that assigns semantic meanings to
11 of the generic keys:

Addtnl Options
Break
BS
Cancel
ESC
Exit
Interrupt
LF
Main Screen
Resume
Set-Up

If your application provides its own keyboard label strip, you can
assign your own semantic meanings to the keys. Otherwise, use the
meanings defined by the P/OS label strip, as described below.

• Use ADDTNL OPTIONS to accept auxiliary commands, and to offer
services beyond those offered in the current context.

• Use the arrow keys to move the cursor (or pointer) around the
screen in order to select or place objects. For example, a
spreadsheet could use the arrow keys to move to an adjacent cell.
In a menu tree, the up and down arrow keys are used in option
selection.

• Use BREAK only in commmunications applications to transmit a break
character.

• Use DO and CANCEL to confirm and reject input, respectively. Use
DO to indicate that a choice has been made or a value entered and
that the user is ready to proceed. Use CANCEL to indicate that
the choice or value is incorrect and must be reentered. In a menu

8-23

•

FUNCTION KEYS

tree, these keys are used in option selection.

Use EXIT to return to the point from which the current
was invoked. In a menu tree, use it back up one menu.
outermost level, use EXIT to terminate the application.

activity
If at the

• Use the INTERRUPT/DO sequence to request "emergency" termination
of your application. You can process INTERRUPT/DO yourself or
allow P/OS to process it for you.

• Use MAIN SCREEN to return to internal command level. In a menu
tree, use it to jump to the "root node". If already at this
level, use MAIN SCREEN to terminate the application.

e Use NEXT SCREEN and PREV SCREEN to move through a series of
displays. For example, PROSE uses them to move through a
document. In a help structure, they activate frame pointers.

• Use RESUME to indicate that the user is ready to continue an
interrupted activity. In a help structure, RESUME returns control
to the menu or task that activated the struture.

• Use SELECT to record the current position of the cursor (or
pointer) for some subsequent action. In a multiple-choice menu,
SELECT is used in option selection.

8.7.2 Programming Function Keys

When a function key (other than DO) terminates a menu, control returns
to your application with the following values in the status block:

first word second word

-14 key code

POSRES also provides several routines to help you process function
keys independently from the menu interface. They are:

• Get Keystroke (GETKEY)

This routine inputs a single keystroke from the terminal without
echo. The first word of the status block contains one of the
following values:

+l indicates that the user pressed a main keyboard key. The
second word contains the DEC Multinational decimal code of the
key.

8-24

FUNCTION KEYS

+2 indicates that the user pressed a function key. The second
word contains one of the codes listed in Appendix D.

n indicates that an error has occurred. The second word
contains one of the error codes listed in Appendix c.

• Parse String (PRSCSI)

This routine parses a string for a control
scans the string from the left for a CS!
position in the string, and translates the
into a code representing one of the
Appendix D.

• Wait for Resume Key (WTRES)

sequence (CSI}. It
character, returns its
subsequent characters

function keys shown in

This routine echoes all keystrokes except the RESUME key by
ringing the keyboard bell. When the user presses the RESUME key,
control returns to your application. You can use this routine to
allow the user to read something on the screen or change a
diskette, for example, before proceeding. Before calling WTRES,
display a message such as "Press RESUME to continue." on the
screen.

8.8 POSRES TASK IMAGE REQUIREMENTS

POSRES requires that you make some edits to your PAB command file. To
determine which edits are required, make a list of the POSRES routines
used by your task. Subsequent sections will describe how to edit the
.CMD file.

NOTE

Be sure to include any POSRES routines that are used
by your high-level language run-time support library
(see your language documentation and Chapter 7).

Figure 8-9 shows a sample .CMD file, written for a PASCAL program that
uses all of the POSRES routines. The contents of this file are
explained in detail in the following sections. It is assumed that you
are familiar with the general contents and purpose of a .CMD file. If
not, please turn to Chapter 7.

PASDEM/CP/FP,PASDEM/MA/-SP=PASDEM/MP
CLSTR=PASRES,POSRES,RMSRES:RO
STACK = 30 ; Startup stack size
UNITS = 46 Number of units available
GBLDEF = TT$EFN:7 ; Terminal I/O event flag number
ASG = LB:33:34:35:36 System device

8-25

POSRES TASK IMAGE REQUIREMENTS

GBLDEF
GBLDEF
GBLDEF
GBLDEF
ASG
GBLDEF
ASG
GBLDEF
EXTSCT
EXTSCT
EXTSCT
EXTSCT
EX TS CT
II

= MS$LUN:41
= MN$LUN:42
= MB$LUN:43
= HL$LUN:44
= SY:37
= WC$LUN:45
= TI:38
= TT$LUN:46
= MN$BUF:4540
= DM$BUF:4540
= MM$BUF:l000
= HL$BUF:3410
= FL$BUF:4310

Message frame file
; Menu Frame file

Message/Status display
; Help frame file

P/OS current device
OLDFIL/NEWFIL device

; User terminal
; Terminal I/O

Static single-choice buffer
; Dynamic single-choice buffer
; Multiple-choice buffer

Help frame buff er
OLDFIL/NEWFIL buffer

Figure 8-9: PAB Command File with POSRES Options

8.8.1 The UNITS Option

The UNITS option to specifies (in decimal) how many logical units
(LUNs) your application requires. LUNs identify simultaneously open
files or devices.

8.8.2 The GBLDEF Option

The global symbol definition (GBLDEF) option equates a symbolic name
to an octal number. POSRES requires a GBLDEF option for each symbol
shown in Table 8-1. Do not omit any symbol.

(
\ Compare the list of POSRES routines used by your task to Table 8-1.

Some POSRES routines do not require symbols and are not shown in the
table. Equate a logical unit number (as described in Section 8.8.3)
or an event flag number (described below) to each symbol associated
with each POSRES routine on your list. For the remainder of the
symbols, specify LUN zero. For example, if your task does not call
MSGBRD, you can specify:

GBLDEF = MB$LUN:O

Most POSRES routines require an event flag (EFN) to perform terminal
I/O. Select an event flag number in the range 1 to 24 decimal,
convert it to octal, and use the GBLDEF option to equate the symbol
TT$EFN to the octal number as shown in Figure 8-9. This assignment
must not conflict with any other event flag assignments (language
run-time systems use DIGITAL-reserved event flags 25-32).

8-26

POSRES TASK IMAGE REQUIREMENTS

Table 8-1: POSRES Global Symbols

Routine HL$LUN MB$LUN MN$LUN MS$LUN TT$EFN TT$LUN WC$LUN

DMENU x
FATLER
GETKEY
HCLOSE x
HELP x
HF ILE x
HFRAME x
MC LOSE
MENU x
MF ILE
MFRAME
MME NU x
MSGBRD x
NEWFIL
OLDFIL
PRSCSI
RDMSG
WTRES

x = symbol
= symbol

8.8.3 The ASG Option

x
x
x
x

x
x

x

used
not used

x x
x x
x x

x x

x x

x x

x
x

x
x

x x

x
x

The ASG option associates a physical device with one or more logical
unit numbers (LUNs). These assignments tell POSRES which devices to
use. For example, your application's frame definition files reside on
device LB:, the P/OS system device. Without the assignments, POSRES
would look for these files on SY:, the P/OS current device. On a P/OS
Hard Disk system, that is usually, but not necessarily, identical to
the hard disk, LB:. On a P/OS Diskette system, however, SY: is the
drive with the data diskette, and LB: the drive with the application
diskette.

The ASG option accepts decimal numbers but the GBLDEF option accepts
octal numbers. To avoid confusion, use this procedure to assign LUNs:

1. Use the ASG option to associate a device with a decimal LUN.

2. Convert the LUN from decimal to octal.

8-27

POSRES TASK IMAGE REQUIREMENTS

3. Use the GBLDEF option to equate a symbol to the octal LUN.

Using available LUNs in the range 1 to 128, make the following
assignments.

NOTE

Your assignments must not conflict with any other ASG
assignments in your .CMD file.

• Assign four LUNs to LB:, the device that contains the application
directory, and equate them to MSLUN, MNLUN, MB$LUN, and HL$LUN.
For example, if you want to use LUNs 33 through 36 and they are
not used elsewhere, insert:

ASG = LB:33:34:35:36
GBLDEF = MS$LUN:41
GBLDEF = MN$LUN:42
GBLDEF = MB$LUN:43
GBLDEF = HL$LUN:44

• Assign a LUN to SY:, the P/OS current device, and equate it to
WC$LUN. For example, if you want to use LUN 37 and it is not used
elsewhere, insert:

ASG = SY:37
GBLDEF = WC$LUN:45

• Assign a LUN to TI:, the Professional keyboard/video monitor, and
equate it to TT$LUN. For example, if you want to use LUN 38 and
it not used elsewhere, insert:

ASG = TI:38
GBLDEF = TT$LUN:46

8.8.4 The EXTSCT Option

POSRES uses the program section names shown in Table 8-2 as buffers to
store menus, help frames, and so forth. Insert an EXTSCT option for
each buffer shown to extend its program section by a specified (octal)
number of bytes.

Compare your list of used POSRES routines to Table 8-2 and assign each
accessed buffer sufficient size, as described below. If a routine
does not appear in the table, it does not access any buffer. If your
task does not use any of the routines that access a particular buffer,
assign that buffer a size of zero. Do not omit any buffer names.

8-28

POSRES TASK IMAGE REQUIREMENTS

Table 8-2: Buffers Accessed by POSRES Routines

Routine DM$BUF FL$BUF HL$BUF MM$BUF MN$BUF

DMENU x x
DP ACK x
HCLOSE x
HELP x
HF ILE x
HFRAME x
MC LOSE x
MENU x x
MF ILE x
MFRAME x
MME NU x x
MP ACK x
MUN PK x
NEWFIL x x
OLDFIL x x x x

x = buffer accessed
= buff er not accessed

Figure 8-10 shows an example of the EXTSCT options with values
calculated for the largest possible frame of each type. In other
words, if every field on a menu, help, and message frame were filled
in with the suggested maximum amount of data, the respective buffers
would have to be allocated the sizes shown.

EXTSCT = DM$BUF:4540
EXTSCT = FL$BUF:4310
EXTSCT = HL$BUF:3410
EXTSCT = MM$BUF:l000
EXTSCT = MN$BUF:4540

Dynamic single-choice buffer
OLDFIL/NEWFIL buffer
Help frame buff er
Multiple-choice buffer
Static single-choice buffer

Figure 8-10: Suggested Maximum POSRES Buffer Sizes

NOTE

There is no maximum size for FL$BUF or MM$BUF. If you
use extraordinarily large menus, you might have to
expand these buffers.

It is recommended that you begin with the maximum size for each
accessed buffer. If your task exceeds the bounds of virtual memory,
you can reduce the size of one or more buffers as described below.

8-29

POSRES TASK IMAGE REQUIREMENTS

Some care should be exercised when shrinking POSRES buffers. If you
change a frame definition file, you might find that a frame has become
too large for its buffer, requiring you to enlarge the buffer and task
build again. For example, translating frames into another language
can cause them to expand. Therefore, allocate some extra space to any
buffer for which the maximum frame size is not completely stable.

To compute the minimum buffer for a static display (a static
single-choice menu, help menu, and so forth):

1 • Take the size of the
when you use the
unavailable, you can
definition file. On

largest frame (provided by FDT in decimal
CONVERT command). If the source data file is
use a system utility to analyze the frame
a VAX/VMS system, type:

$ ANALYZE/RMS file.typ

The longest record in the file will appear under the "RMS FILE
ATTRIBUTES" section of the output. On an RSX-llM/M-PLUS system or
on the PRO/Tool Kit, type:

$ RUN $DMP
DMP> TT:=filename.typ/HD/BL:O

The length of the longest record will appear in the F.RSIZ field ,
in the "HEADER AREA" of the output.

2. Add 200 bytes to this number.

3. Convert the result to octal.

4. Use this number with the EXTSCT option.

You can approximate the minimum buffer size for a dynamic (
single-choice menu by using FDT to build a similar static
single-choice menu and using its converted size. Choose a frame that
represents your worst (largest) case situation and allow a large
margin for error (approximately 200 bytes). Otherwise, use this
procedure:

1. Total the sizes of all the fields in the largest frame.

2. Add an overhead of eight bytes per field.

3. Add 200 bytes to the total.

4. Convert the result to octal.

8-30

POSRES TASK IMAGE REQUIREMENTS

5. Use this number with the EXTSCT option.

The minimum buffer size for a multi-choice menu is difficult to
determine because it depends on factors present at run-time. If you
find it necessary to reduce this buffer, the recommended procedure is:
change the buffer size by the desired amount task build, and test your
application thoroughly, using the largest possible multiple-choice
menu.

NOTE

The following section assumes that you are familiar
with Overlay Descriptor Language. If not, it is
recommended that you refer to the RSX-llM/M-PLUS Task
Builder Manual before continuing.

8.8.5 Placing Buffers in Overlay Branches

Another way to reclaim virtual memory is to place all code that
references POSRES routines and buffers into overlay segments. Unless

. you specify otherwise, the PAB allocates POSRES buffers in the root.

If you put a POSRES buffer in an overlay segment:

• The buffer's contents will be reinitialized whenever that segment
is loaded into memory. Thus, you are responsible for replacing
its contents.

• You cannot call the POSRES routine that uses that buffer from
another overlay segment (except from another co-tree}. Thus, you
must subdivide your task into segments that use POSRES and those
that do not.

Figure 8-11 shows an example of how to place the buffers into an
overlay branch.

8-31

.ROOT
MENU: .FCTR
CODE: .FCTR
@LB: [l, 5] RMSRLX

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

.PSECT

BUFFA: .FCTR
BUFFB: .FCTR

.END

POSRES TASK IMAGE REQUIREMENTS

RCODE-RMSROT-(*MENU,*CODE)
MCODE-BUFFA-BUFFB
ARTN-BRTN-CRTN

DM$BUF,RW,D,GBL,REL,CON
DM$BUG,RW,D,GBL,REL,CON
FL$BUF,RW,D,GBL,REL,CON
FL$BUG,RW,D,GBL,REL,CON
FL$FAB,RW,D,GBL,REL,CON
HL$BUF,RW,D,GBL,REL,CON
HL$BUG,RW,D,GBL,REL,CON
MM$BUF,RW,D,GBL,REL,CON
MM$BUG,RW,D,GBL,REL,CON
MN$BUF,RW,D,GBL,REL,CON
MN$BUG,RW,D,GBL,REL,CON

DM$BUF-DM$BUG-FL$BUF-FL$BUG-FL$FAB-HL$BUF
HL$BUG-BM$BUF-MM$BUG-MN$BUF-MN$BUG

Figure 8-11: Sample .ODL File Showing Overlaid Buffers

In Figure 8-11, the modules RCODE, MCODE, ARTN, BRTN and CRTN all
refer to user-supplied portions of the task. Use the .PSECT
directives exactly as shown (if they do not match the actual
attributes of the PSECTs that they reference, you will get errors when
task building).

The POSRES buffers that you can overlay are:

Buff er
DMBUF, DMBUG
FLBUF, FLBUG
FL$FAB
HLBUF, HLBUG
MMBUF, MMBUG
MNBUF, MNBUG

Use
Dynamic menu
OLDFIL, NEWFIL
OLDFIL, NEWFIL
Help frames
Multi-choice menu
Static, single choice menu

The xxBUF/xxBUG pairs must be in the same overlay. These pairs of
PSECTS are used by POSRES to determine buffer sizes. If they are not
in the same overlay, unpredictable behavior will result.

8-32

CHAPTER 9

APPLICATION TUNING

Application tuning consists of the reduction of unnecessary operations
and the use of system specific knowledge allowing the more efficient
use of features. An application for P/OS should make as much use as
possible of the facilities provided by the Professional 300, both
hardware and software. While there are no requirements that an
application use these facilities they were designed with the idea of a
user-friendly, integrated atmosphere with consideration towards easing
the job of writing an application.

9.1 SYSTEM DIRECTIVES

It is in the best interests of applications to use the least expensive
directive for a given purpose. From the larger view of the
application, a system directive is relatively inexpensive; but from a
smaller view at the instruction level a system directive takes many
instructions to process. This adds to the overhead of the task and
contributes to any performance problems that might be observed.

9.1.1 Cost of Directives

When comparing directives it will be sometimes be found that there are
several directives, or combinations of directives, that will
accomplish a given function. Of these directives, one is probably the
least expensive to use in terms of system overhead. Which is the
least expensive is not always easy to ascertain, but the determination
is usually worthwhile. Therefore, the goal is to make use of the
directive or directives that incur the least amount of system
overhead.

As an example, the PLAS (memory management) directives vary greatly in
execution time and complexity. For instance, the EXTK$ directive will

.·be very expensive when it is necessary to checkpoint the task region
to disk and reallocate memory in the system controlled "GEN"

9-1

SYSTEM DIRECTIVES

partition. The MAP$ directive is cheaper than UMAP$/MAP$ pairs, which
are cheaper than the ELAW$/CRAW$ pairs. Other directives have ways in
which they can be made less expensive.

9.1.2 Directives .vs. Servers

There is a small area of overlap between callable system routines and
several system directives. The logical name support directives and
the default directory directives can both be manipulated by a callable
system routine or directly by system directives. If you are
programming in a language that allows the issuing of system directives
then you may want to consider issuing the directives rather then
calling the system routine.

Let's examine the specific cases. For the logical name directives
CLOG$, DLOG$, and TLOG$ the system routine PROLOG translates the
strings to upper case and issues the system directive to perform the
function. The task could simply issue the directive itself and save a
large amount of time. In this instance, the task must specify LT.USR
and a modifier of 0 and ensure that the logical is uppercased if used
by RMS-11 or another task or system service. Logical strings are
binary and hence case sensitive. This is why the server always
translates to upper case first.

Otherwise, if the callable routine is used, the task that services the
request must be loaded into memory and started, it must receive and
process the request via a system directive and then return the results
to the calling task. For logical name support, the additional
services provided by the callable routine are to ensure that the
string is in upper case and specify LT.USR and modifier O.

Default directory support on the other hand should be done using the(
server. The server actually performs RMS parsing operations on the
input string to determine that it contains a valid device and
directory specification. If the task chooses to issue the directives
itself, there is a possibility that it could specify an invalid
directory string. The PROLOG call uses the RMS parser to verify that
the device syntax is legitimate. The directive, on the other hand,
accepts any string as the default directory string. This could cause
problems when attempting to find or create files. So, in this case it
is best if the application task uses the POSSUM PROLOG routine to
process the request despite the extra overhead.

9.2 FILE HANDLING

When dealing with files, there are several methods that may be used.to(
increase application performance. Almost all of these methods require

9-2

FILE HANDLING

some trade-offs, either in terms of some additional logic in the task
or in the use of disk space.

9.2.1 When to Open Files

One of the simplest techniques to use when handling files is to defer
the opening of any file until is is necessary. It may at first seem
better to open all files at application startup time but the primary
tuning goal at application startup is usually to start interacting
with the user as soon as possible. Opening files takes time and if at
all possible should be put off until data is actually needed from the
file. This should not pose too many difficulties for the task.

9.2.2 Use of File !D's

The use of file ID's for operations on files reduces overhead. If
possible, preserve the file ID of a file that is to be opened several
times. This incurs less overhead than finding the file by name each
time. The cost to your application is merely to remember the file ID.
It would be even more efficient to simply keep the file open.

9.2.3 File Pre-Allocation

Preallocating the space necessary for a file will also save time and
cut overhead. If a file does not contain sufficient room to append
records, then the necessary disk space must be allocated to the file.
By preallocating the amount of space that the file will require at the
time the file is created your task can avoid the overhead of later
extending the file.

The technique of preallocating sufficient space will only work in
instances where the size of the file to be written is known in
advance. This is not always the case. However, if it is known that a
file will require even a minimum amount of space, then preallocating
that minimum amount will save time later.

9.2.4 Pre-extending

An additional method by which to improve file performance is to
specify a reasonable default extend quantity to RMS. This means that
whenever RMS needs to extend your file to add an additional record it

.will extend the file by the number of blocks specified in the default
extend quantity. If this number is reasonably large, this will result

9-3

FILE HANDLING

in fewer extensions to your file which will translate into improved
performance for your application.

Prior to version 1.7 of P/OS, if you did not specify a default extend
quantity for sequential files, you received only enough extension to
satisfy the I/O request. With version 1.7, if you do not specify a
default extend then the file is extended by at least 10 blocks
whenever an extension is necessary. This improves performance by a
significant amount. This increase in performance may be improved by
experimenting with the default extend quantity such that your
application works at its best. Note that RMS will truncate the file
to its logical EOF if the last extend was and implicit extend. That
is, if no extensions occurred or the last extend was caused by the
task asking RMS to explicitly extend it, then the file will not
automatically be truncated on close.

9.2.5 Multiblock 1/0

As with most I/O operations, the more data transferred per operation
the more efficient the operation becomes. This applies to disk I/O
whether it be reads and writes directly to the disk or through an
intermediate record processor such as RMS. Increasing the size of the
reads and writes will reduce the time per block spent reading or
writing buffers to the disk as well as your virtual address space.

9.3 VIDEO PERFORMANCE

Video performance is perhaps one of the most sensitive areas in terms
of performance and tuning. Not matter how fast an application may be,
if the video throughput is perceived as slow then that application 1

\

will be thought of as slow. For this reason it is worth spending some
time on an application to insure that the video performance is as high
as possible. There are a number of simple rules and techniques that
can be applied to an application to help tune for the best possible
throughput.

9.3.1 Size of Buffer

The size of the output buffers is one of the most important factors
governing throughput rate. Very simply, the larger the buffers the
less time spent in overhead and the greater the thoughput rate. Above
64 characters per buffer the output rate becomes asymptotic to the
current maximum throughput rate of the video.

9-4

VIDEO PERFORMANCE

9.3.2 Buffering

One of the largest possible improvements in terminal output can be
obtained from the use of large buffers. One method that may be used
to increase the size of the output buffers for the terminal is the use
of an intermediate buffering scheme. This buffering scheme employs a
routine that accepts text to be output to the screen. This text is
then placed into an intermediate buffer. When this intermediate
buffer is full it is output to the terminal. A secondary routine to
force output to the terminal is also provided to allow the forced
flushing of the intermediate buffer.

Let's take a look at a specific example of this. Assume a task
generates output of varying lengths and at varying times. Not all
output strings generated by this task are terminated by a
carriage-return, line-feed pair (a prompting string, for example).
Following is a listing of the routines necessary to handle the
intermediate buffering:

OUTCHR -
This routine is used to output a character to the terminal.

All output is temporarily stored in an intermediate output buffer
; before queuing to the terminal. Note that this routine assumes
; explicit carriage control in the text strings.

Input:

Outchr: Dec
Blt

Mo vb
Inc
Return

OutchO: Qiow$C
Mov
Mov
Br

; STRING -

RO - Character

Ttyctr
OutchO
RO,@Ttyptr
Ttyptr

Decrement the count
No room left, make some

Store the byte
Increment pointer
Then return to caller

Io.Wvb,TtLun,TtEfn,,,,<Ttybuf,.Lntty,O>
#.Lntty,Ttyctr ; Reset the counter
#Ttybuf ,Ttyptr and the pointer
Outchr ; Then try again to output the char.

This routine is used to print an ASCIZ string on the terminal • .
I

; Input:

String:

StrinO:

Call
Mov
Mo vb

Beq
Call
Br

RO - Pointer to string

$Saval Save registers
RO,RS . Save up pointer I

(RS)+,RO Get next byte
Strinl Done
Outchr Output the character
StrinO Loop

9-5

VIDEO PERFORMANCE

Strinl: Return Return to caller

FRCOUT -
This routine is used to force out the TTY buffer

Frcout: Mov #.Lntty,RO Get buffer length
Sub Ttyctr,RO Compute amount of buffer

Beq FrcouO i None, just exit
Qiow$S #Io.Wvb,#Tt$Lun,#Tt$Efn,,,,<#Ttybuf,R0,#0>
Mov #Ttybuf ,Ttyptr
Mov #.Lntty,Ttyctr

FrcouO: Return

Terminal buff er

.Even
Ttyctr: .Blkw 1
Ttyptr: .Blkw 1
Ttybuf: .Blkb 80.

.Lntty = .-Ttybuf

Reset pointer
and counter

Return to caller

Buff er byte count
Byte pointer
TTY buffer

Length of buffer

filled

The code shown above will buffer up all text until the buffer is full
or the routine to force output is called. Circumstances under which
the force output routine might be called are:

• At the end of any escape sequence to prevent it from being broken
into two separate QIO's.

• In the OUTCHR routine whenever a carriage-return or line-feed
character is detected. This may seem to violate the rule of
buffering as much as possible, but forcing out buffers on line
terminator characters may make the output look less clumpy to the
user.

I

• In an AST routine specified in a MRKT$ directive which is called a\
few times a second to dump the buffer. If text data is showing up
at random intervals and without line terminators to rely on, this
may be the only way to output a sequence that does not end with a
line terminator, such as a prompting sequence. The rate at which
the AST routine would be called is dependent on the rate at which
data shows up and with consideration given to the amount of
overhead caused by the AST routine.

9.3.3 Eight Bit Escape Sequence Characters

The use of the eight bit characters in escape sequences will decrease
the number of characters per sequence by one. Replacing the escape-[
sequence with the CSI character is one example. This may not seem<
like much but it reduces the amount of work that must be done by~

9-6

VIDEO PERFORMANCE

several different components. This, in turn, translates into more CPU
time for your application task as well as slightly greater video
throughput. Offsetting this advantage is the fact that VTlOO support
is lost.

9.3.4 QIO$.vs. QIOW$

All text output to the video on the Professional is handled by a task
that actually draws each character onto the bitmapped screen. For a
variety of reasons an asynchronous QIO will not be returned to the
task until very near the completion of the actual I/O. Even if it
were, the terminal task runs at a very high priority and would lock
out the application task. Therefore, there is no great advantage to
using asynchronous QIO$'s over a synchronous QIOW$ on the
Professional. So, if you are writing a new application that uses
QIO$'s to the video, then you might want to use the QIOW$. As noted,
there is not a large advantage to using asynchronous QIO's to the
video, and additionally the task will be simpler overall with
synchronous QIO's. The preceding discussion does not apply to other
devices such as the printer port (TT2:).

9.3.5 Turning the Cursor Off

Another way to save system overhead and increase the amount of CPU
time available to your task is to simply turn the cursor off via the
appropriate escape sequence. The terminal task will no longer have to
blink the cursor and this will save time for your application. Note
that this technique should not be used in every possible instance.
Consideration must be given to how the screen will appear without a
cursor. For some applications, such as a spreadsheet, the lack of a
blinking cursor may not be a problem. For other applications turning
off the cursor may startle the user and possibly even make it appear
that the machine has crashed.

Now consider this from a wider perspective. The cursor, as far as the
terminal task is concerned, is just a blinking field. The amount of
time and overhead that is required of the system and the terminal task
is large for the first blinking field. If there is more than one
blinking field, the incremental overhead is not large. Therefore, if
there are blinking fields on the screen turning the cursor off will
not provide any substantial performance improvement. Before this
technique is discarded because a pointer of some type is needed on the
screen, consider using a non-blinking, reverse video field as a cursor
substitute. Once. again, this does not apply in every situation but
may just do the trick for some applications.

9-7

VIDEO PERFORMANCE

9.3.6 Standard Video Tricks

There are several
effectively when
performance and
techniques will
considered.

fairly standard "tricks" that can be used quite
dealing with video output. The potential savings in
overhead can be quite large. Three of these
be discussed and the cost of using them will be

The first technique provides a very large potential savings in
overhead. It is simply a matter of not writing more data than is
necessary. For instance, your task manages the entire screen and
provides updates only to certain portions of the screen. One method
of updating the screen would be to rewrite the entire screen on every
update. This would be rather slow as the amount of data could be
quite large. A variation on this would be to only update any regions
that are known to change dynamically. This is faster, but could still
produce a large amount of output. What is needed are two copies of
the dynamic sections of the screen image in your task. One copy
reflects the current state of the screen, the other the desired state.
Your task compares these memory-resident copies and determines which
character positions must change and only updates those positions.
This technique reduces the amount of I/O that must be performed to an
absolute minimum, which in turn will increase your performance and
terminal throughput.

The cost of this technique is in the virtual memory space required to
contain two copies of any dynamic regions on the screen. Two copies
of an 80 column, 24 line screen would require 3840 bytes. For some
tasks, this may be too much. For others, the performance improvement
would be well worth the added task size.

The second technique is used when the cursor position is changing
rapidly and within a row or column. If this is the case, then the
cursor motion escape sequences {such as UP, DOWN, LEFT, RIGHT) are(
less expensive than the use of the cursor positioning sequence. This'
method of moving the cursor works well in conjunction with the
multiple screen technique. When combined they can result in
tremendous savings in the amount of data that must be output and a
corresponding increase in terminal throughput.

A corollary to this is to take advantage of the editing functions
provided as part of the VT102 interface of the video. These include
line insert, line delete, character insert, character delete.

The third technique also applies only to applications that manage the
entire screen as well as producing large amounts of output. It is
known that output which causes the screen to scroll will appear on the
screen at a slower rate than output which does not cause the screen to
scroll. This may be used to advantage when writing output to the
screen. If the application produces logically distinct, single:
screens of output, then a performance improvement technique that can

9-8

VIDEO PERFORMANCE

be applied is to clear the screen and home the cursor before writing
to the screen. This requires no penalty in the form of increased
virtual address space, but consideration should be given to how the
application will look and "feel" when screens of output are presented
as a unit rather than as a single, scrolled amount of text.

9.4 KEYBOARD INPUT

Keyboard input is usually not considered as an area in which large
improvements start. However, there are several methods by which
keyboard input may be made more efficient as well as improving the
"feel" of the application.

9.4.1 Function Keys

Perhaps the simplest method to improve the feel of the application is
to make use of the function keys provided by the LK201 keyboard.
These keys produce escape sequences by which the key may be identified
and a specific action taken. Most applications should certainly make
use of such standard keys as MAIN SCREEN, EXIT and HELP. Depending on

)the application, others may be translated into either functions such
as NEXT SCREEN. Finally, for a custom touch the application may
define and use unassigned function keys such as Fl7 through F20.

As mentioned in the preceeding paragraph, most applications should
make use of the function keys. A suggested usage of the functions
keys is provided in the appendix on P/OS User Interface Guidelines.

9.4.2 Eight Bit Characters

The use of eight-bit characters on input serves two purposes. The
first use is to reduce the amount of overhead required to process any
of the function, cursor or numeric keypad keys. The escape sequence
generated by the keys will contain the eight bit equivalent character.

The second use for eight bit characters is that this mode will allow
you access to the full multinational character set. More will be said
about multinational characters later, but it is generally a good idea
to keep your application free of any possible restrictions.

9-9

KEYBOARD INPUT

9.4.3 Input Buffering

As with terminal output buffering, input can also be made more
efficient through the use of input buffering. Very simply, your task
accepts input from the terminal and keeps it stored in an intermediate
buffer until it is required by your task. This can be accomplished by
polling the terminal at some interval or by attaching the terminal
with AST notification of unsolicited input if single character input
is needed by the application.

9.4.4 AST's With Notification

Consider the case of an application that requires keyboard input but
not necessarily on a command line or even a line basis. One
relatively efficient method of obtaining keyboard input in this case
is by attaching the terminal device with AST notification of input.
In this manner, whenever characters or function keys are typed on the
keyboard they are delivered to your task en masse. That is, when you
finally end up in your AST routine you may read in as many characters
as occupy the typeahead buffer. This is more efficient than attaching
with an AST per character. Also note that when a function key is
typed the entire escape sequence generated by that function key is
delivered to the terminal driver as a single sequence of characters •.
If this type of AST routine is used, the entire sequence may be read
at one time from the typeahead buffer.

When in the AST routine be sure to issue the QIO$ function SF.GMC,
subfunction TC.TBF, to determine the amount of data that exists in the
buffer. This will return the amount of data that should be read,
which can then be input with a QIO$ for the entire amount. The buffer
may then be transferred to the actual input buffer (there may still be
data in the task's internal input buffer, so this typeahead buffer 1

that was just read in must be placed at the end of the data not yet
processed).

9.5 PROGRAMMABLE LOGICAL ADDRESS SPACE (PLAS) CONSIDERATIONS

An application can benefit greatly from the use of the PLAS directives
to modify its virtual address space or to create or map additional
regions that contain data.

The most common traps that can develop are from misuse (or over-use)
of the PLAS directives. Creating a single large data region could
cause problems when attempting to bring it in and out of memory.
Another example is in sending task regions by reference with the SREF$
directive. The sender, receiver and all regions mapped by both must
be in memory. This can cause severe memory contention and perhaps·

9-10

PROGRAMMABLE LOGICAL ADDRESS SPACE {PLAS) CONSIDERATIONS

even a deadlock situation.

Other traps to watch out for are the use of some PLAS directives that
can potentially waste system resources. Not using WS.NAT in the
window block for a RREF$ directive can waste system pool space and
degrade performance. Other potential performance problems are not
keeping a region mapped such that it is removed from memory and must
be read in frequently; not using read-only or multi-user libraries
where possible, to cut down on checkpointing time. There are
certainly other problems that can arise, the watchword with PLAS
directives is caution.

9.6 MULTI-TASK APPLICATIONS

Many applications seem to be multi-task applications. This may
sometimes lead to special problems not encountered in a single task
application. Most, if not all, of these difficulties result from
additional complexities involving intertask communication and memory
or CPU contention. Several of these topics will be examined with an
eye towards techniques that can be applied to reduce overhead and
improve performance of multi-task applications.

9.6.1 Intertask Communication

Very few, if any, multi-task applications consist of tasks that are
totally independent of one another. Usually, the tasks cooperate in
the completion of operations for the user of the application. By the
very nature of cooperation it is imperative that the tasks be able to
communicate quickly and efficiently. There are many methods of doing
this. They range from merely sharing event flags to passing small
amounts of data to passing entire regions of data between tasks. A
subsequent section will deal with the subject of synchronizing tasks
via event flags.

One common approach to intertask communication is to send data or send
regions of data between tasks. If this is done incorrectly,
performance problems are often the result. Let's look at one specific
example. Say that a task cannot spare the two APRs necessary to map
some cluster libraries but can spare one APR. The application is then
constructed of two cooperating tasks that share data. One task is the
main task which generates requests for the other task to fulfill. One
possibility is to send data from one task to another using a send by
reference {SREF$) directive for every request. This could prove t6 be
very time consuming as the system needs to process the SREF$ and RREF$
for every request.

9-11

MULTI-TASK APPLICATIONS

An alternative approach is to issue only one SREF$/RREF$ pair to set
up a common region between the tasks. The tasks then communicate via
this region and synchronize with event flags. All buffers of data
that are necessary to be passed are kept in this region rather than
being copied into the region whenever necessary. The final memory
configuration of the two tasks is shown in the following diagram.

Tasks Sharing a Region

+-------+
+---------->! Data !<----------+

+-------+

+---------------+ +---------------+
Task A Task B

+---------------+ +---------------+
Another possibility,
a read-write PLAS
SREF$/RREF$ pair.
essentially the same

9.6.2 Memory usage

very similar to the one just presented is to use
region or static common rather than a single
This accomplishes the same results and in
manner.

There are some simple things to avoid that may help reduce memory
contention and the possibility of deadlock. If the tasks use cluster
libraries, the NULLIB library may be used to reduce the amount of (
physical memory that must be occupied while executing in the task
region.

9.6.3 Significant event impact

If two cooperating tasks within an application are using global event
flags to synchronize themselves to events, then the proper method of
setting a flag for the other task to react to is to declare a
significant event after setting the flag. The following is a skeletal
representation of the two cooperating tasks setting flags without the
use of the significant event mechanism.

9-12

Task

SETF$S
WTSE$S
CLEF$S

Tl

#34
#33
#33

MULTI-TASK APPLICATIONS

Task

WTSE$S
CLEF$S

{code
SETF$S

T2

#34
#34

here)
#33

And below is a skeletal representation of the two cooperating tasks
setting flags with the use of the significant event mechanism. Note
that the only difference in the tasks is the declaration of a
significant event after a flag has been set. This simple change
provides a large amount of performance improvement.

Task Tl Task T2

SETF$S #34 WTSE$S #34
DECL$S CLEF$S #34
WTSE$S #33 {code here)
CLEF$S #33 SETF$S #33

DECL$S

9.6.4 Contention

If an application has multiple active tasks care should be taken to
avoid contention problems, both memory and CPU contention. If it is
not necessary for a task to run concurrently with other tasks but is
necessary that it be available to perform some processing, then use
should be made of the distinction between stopping and waiting. With
directives that wait, the task is still competing for memory resources
and could possibly create contention problems. Directives that cause
the task to be stopped will remove the task from contention for memory
and allow easier access for any other tasks that must still perform
processing. In addition, tasks that stop may be checkpointed and
remain in the checkpoint file until the stop bit is cleared. They
will not contend with other tasks to be brought back into memory. To
avoid possible memory fragmentation, it is suggested that, if
possible, the task not be mapped to any commons while stopped.

Specifically, assume that you have a server task that is notified of
an operation by an event flag. Rather than using WTSE$, use STSE$.
Your task will become unstopped and start executing and competing for
memory again. If it has been checkpointed it will be brought back
into memory. Once the task has completed its function it can stop
itself once again via the STSE$ directive.

9-13

CONCURRENT APPLICATIONS

9.7 CONCURRENT APPLICATIONS

Concurrent applications refers to the ability to support two or more
simultaneous applications. At the present time P/OS supports
multi-task applications but not concurrent applications. P/OS
maintains much information on a system wide basis, including logicals
such as APPL$DIR, APPL$HELP and APPL$MENU, and default directory.
There also exists the possibility of task naming conflicts, event flag
conflicts and even data file conflicts. For these and other reasons,
P/OS does not currently support concurrent applications.

9.7.1 Only for •bounded• systems

Even though P/OS does not support concurrent applications, there are a
number of applications that are being designed and written with the
idea of becoming background applications. This may work in a very
bounded environment. A bounded environment is one in which the
machine and its workload are carefully tailored and in which help is
available to solve contention problems and conflicts. Essentially, a
bounded environment is one in which every machine may obtain
individual attention or consideration from the application developer.
A background application task is made known to the system by the
/NOREMOVE switch in the install file or by the "NOREMOVE" request bit
in a PROTSK (POSSUM) install call. "NOREMOVE" tasks and commons will
be neither aborted nor removed when the application exits.

9.7.2 Exercise extreme care

Should you undertake the development of a background application,
remember a few facts. At this time concurrent applications are not (
supported by P/OS. When a background application starts it should\
gather all the necessary information at that time. It should not rely
on system wide information after it has been started, nor should it
change such information. For a background task to rely, for example,
on the default directory or the logical name APPL$DIR would be
disastrous for the background application. For the background
application to change system wide information would be disastrous for
the foreground application as well as confusing for the user. A
background application should not use task or region names that might
be used by a foreground application. This is essentially asking the
background application to do the impossible, that is, to guess at a
potential name of a future foreground application.

9-14

POOL CONSIDERATIONS

9.8 POOL CONSIDERATIONS

The system's dynamic storage region, or pool, can be another source of
possible performance problems. It is in the best interest of
applications to be careful with those functions that may result in
pool depletion.

It is quite possible for an application to cause the system to exhaust
all available free space in pool while attempting to service the
requests generated by the application. The following sections examine
circumstances which can lead to pool exhaustion.

9.8.1 Offspring Control Blocks

Offspring control blocks are one source of packets that build up and
exhaust pool. When a parent task exits, the OCB's of its offspring
are NOT deallocated. The OCB's are deallocated only when the child
exits or emits status (EMST$).

If you request (RQST$ or RPOI$ without RP.OAL) a task rather then
spawning it, there will be no OCB created.

NOTE

Prior to V2.0 of P/OS, if any task without an OCB
either aborted or exited with outstanding I/O, the
system would bugcheck. Even an OCB which no longer
pointed to a parent (the parent exited before the
off spring) would be sufficient to prevent this
bugcheck. With V2.0, this type of bugcheck is limited
to background (NOREMOVE) tasks.

9.8.2 Lock Blocks

If your application uses QIO's for file access rather than RMS then
you should exercise great care. For example, say that your
application uses RMS to open a file but uses QIO's to read and write
blocks in that file. One possible side effect is that the improper
setting of the SHR field in the RMS FAB block may cause a large number
of record lock blocks to be generated. It may take a while to deplete
system pool, but when it happens it will generate some very confusing
messages for the user of the application or possibly the developer of
the application. Care should be exercised when selecting the values
to be placed in the SHR field.

9-15

POOL CONSIDERATIONS

If RMS is used for all file accesses, then RMS will manage all the
record lock blocks and system pool will not be unnecessarily depleted.

9.8.3 Open Files

Any open file requires that the system use some amount of pool space.
If you have a large number of files open you may be using a large
amount of pool. If it is possible, reduce the number of files that
are open at any one time. This will reduce pool requirements. Any
files open when your task aborts could be damaged or left in strange
states.

9.8.4 Attachment Descriptor Blocks

Attachment descriptor blocks may build up in pool if the task is not
careful to specify that they should not be created unless necessary.
For instance, use WS.NAT in the window block for a RREF$ directive.
This tells the directive that the attachment descriptor block should
only be created if necessary.

9.8.5 Send Data Packets

Packets from the send data directive will pile up in secondary pool if
the receiver is not receiving. If a large number of send data packets
are issued and the receiver for some reason is not receiving any of
them or even receiving them at a rate slower than they are being sent,
then secondary pool will fill with the packets.

9.8.6 I/O Packets

It is very easy to fill up pool with I/O packets. All it takes is the
use of the QIO$ directive and the lack of any code to check for the
eventual completion of the directive. One easy way to cause this to
happen is to generate a large number of QIO$'s to a relatively slow
device. For instance, a large number of single character QIO$'s to
the line printer port (TT2:) would cause pool to fill up with I/O
packets.

9-16

APPENDIX A

GLOSSARY

Application Developer

A person or persons using the Tool Kit to develop application programs
for the Professional 300 series of personal computers.

Application Diskette Builder (ADB)

The Tool Kit software component that builds a distribution diskette
for an application by copying the appropraite files from disk. The
program runs on the Professional.

Application

The end result of the Tool Kit development cycle, a computer program
that performs some useful service. In this manual, the term
"application" is often a program and its related files.

Checkpointing

The process by which the Executive makes memory
time available to higher-priority tasks by
lower-priority tasks from memory and storing
called "rolling out".

End User

space and processor
temporarily removing

them on disk. Also

The person who will ultimately install and run your application.

Frame Development Tool (FDT)

A utility (editor) that creates menus, on-line help, and messages
through an interactive session using forms. The displays are called
frames, and frames are stored in frame definition files.

A-1

GLOSSARY

Host

An operating system that supports the Tool Kit as a layered product.
VAX/VMS and RSX-llM/M-PLUS are Tool Kit host systems.

Interactive Program

A P/OS application that requires user interaction. On P/OS Hard Disk
systems, only one interactive program can run at one time. An
interactive program, however, can run at the same time as one or more
noninteractive programs.

Noninteractive Program

A program that
Services and
noninteractive
program.

runs primarily without user interaction, such as Print
File Transfer. On P/OS Hard Disk systems, multiple!
programs can run concurrently with an interactive

Object Module

A file containing a task in the form of
instructions and data.

P/OS

unrelocated binary

The Professional 300 series operating system. P/OS is a single-user,
real-time, multitasking system based on RSX-llM-PLUS.

P/OS Executive

The "nucleus" of the P/OS Operating System.

PRO/FMS-11 (Forms Management System)

A tool that performs screen management and data input via predefined
forms.

PRO/RMS-11 (Record Management System)

A tools that provides an interface to the P/OS file system.

PRO/SORT

A tool that reorders data files according to control or key fields
within the input data records.

A-2

(

GLOSSARY

RSX-llM-PLUS

A real-time, multitasking, operating system that makes use of the
enhanced hardware features and memory of PDP-11/44 and PDP-11/70
processors.

Task

The fundamental executable program unit.

Task Builder

A tool (sometimes called a "linker") that converts an object module
into a task image by relocating code and data and resolving external
references.

Task Image

A file that contains a loadable task in the form of relocated binary
instructions and data.

Terminal Emulator

An application that allows the Professional to function as a terminal
for the purpose of working on host systems.

Tool Kit

A set of software tools and documentation used to develop applications
for the Professional 300 series of personal computers.

User Interface

The method by which an end user interacts with a task. The P/OS user
interface consists of menus, on-line help, a message system, and
standard use of function keys.

Workstation

A Professional 350 personal computer used in combination with a host
system to perform a particular operation.

A-3

Filename

BASIC2.ERR
C81DBG.HLP
C81LIB.TSK
C81RTE.TXT

CET.TSK
CGLFPU.TSK
CMAIN.TSK
COMLIB.TSK

COMSETUP.DAT
CPRNT.TSK
CREDEL.TSK
CTEX.MSG

DBLRES.TSK
DIBOLERR.MSG
FMSERR.MSG
GDSCOM.TSK

PASERR.MSG
PASRES.TSK

PBFSML.TSK
POSRES.TSK

PRINT.MSG
PROF77.MSG
PROF77.TSK
PROSE.HLP
PROSE.MNU

APPENDIX B

SPACE REQUIREMENTS FOR P/OS DISKETTE Vl.7

Directory

001002
001002
ZZSYS
001002

ZZSYS
ZZSYS
ZZSYS
ZZSYS

ZZSYS
ZZSYS
ZZSYS
ZZSYS

ZZSYS
001002
001002
ZZSYS

001002
ZZSYS

ZZSYS
ZZSYS

ZZSYS
001002
ZZSYS
ZZSYS
ZZSYS

File
Size (in
blocks)

8
13
34
10

123
22
86
13

1
33

1
3

35
5
2
1

7
34

34
38

6
7

34
66

3

Memory
Size
(in Kb)

8

56
13

3

15

20

16

16
18

16

Must be included for:

Tool Kit BASIC-PLUS-2
Tool Kit COBOL-81
Tool Kit COBOL-81
Tool Kit COBOL-81

Callable Editor
OPTIONS Graphics (CGL)
All applications
PRO/Communications

PRO/Communications
Print services
PROD IR
All applications

Tool Kit DIBOL
Tool Kit DIBOL
PRO/FMS
OPTIONS Graphics

Tool Kit PASCAL
Tool Kit PASCAL, PRO/SORT,
Callable Editor
Tool Kit BASIC-PLUS-2
All applications

Print services
Tool Kit FORTRAN-77
Tool Kit FORTRAN-77
Callable Editor
Callable Editor

,---

B-1

PROSE.MSG
PROSE.UDK
PROSORT.SYS
PROSORT.TSK
RMSERROR.MSG

SUMFBI.TSK
SYSTEM.MNU
XKDRV.TSK
XTDRV.TSK

ZZSYS
ZZSYS
ZZSYS
ZZSYS
ZZSYS

ZZSYS
ZZSYS
ZZSYS
ZZSYS

7
10
26
74

3

1
4

16
17

42

6

B-2

Callable Editor
Callable Editor
PRO/SORT
PRO/SORT
POSRES

PRO FBI
OLDFIL/NEWFIL
PRO/Communications
TMS

(

APPENDIX C

POSRES STATUS BLOCK CODES

POSRES uses the status block parameter to return error and status
information to the calling program. It is recommended that your task
check the status block after each POSRES call.

Decimal status values are returned to the calling task in a two-word
integer array. The first column of Table C-1 shows the values
returned in the first word of the status array. The second column
lists the values returned in the second word of the status array,
except for menu routine errors, which are shown in Table C-2.

, In Table C-1, the numbers one and two represent the first and second
status block words, respectively. In your application, the first word
may be array element zero, one, or n, depending on which programming
language you are using. For example, BASIC-PLUS-2 numbers arrays from
zero while PASCAL lets you define your own numbering scheme.

, Table C-1: POSRES Status Values

Status Block Words

1 2

+l 1 through 12

ASCII code

Undefined

+2 0

Description

For menus, option selection was successful and
the second word contains the ordinal option
number.

For GETKEY, the second word contains an ASCII
decimal code representing a keyboard key.

For other routines, there was no error.

A record or field was truncated.

C-1

Table C-1 (cont.)

1 2

-6

Key code

Key value

-1 DSW

-2 I/O code

-3
-1
-2
-3
-4
-5

-4 See Table C-2

-5 See Table C-2

-6 See Table C-2

-7 -11
-12
-13

-9

-10 0

-11

-1

-12 RMS error code

-13 See Table C-2

POSRES STATUS BLOCK CODES

Description

A message
truncated
displayed.

sent to the message board was
to 59 or fewer characters and

For GETKEY, the second word contains one of the
function key codes listed in Appendix D.

For PRSCSI routine, a valid CSI sequence was
entered.

RSX DSW error. See the P/OS System Reference'
Manual for error codes.

I/O status error
directive. See
Manual.

code returned from
the P/OS System

a QIO$
Reference

File access error.
Index record not 256 bytes long
No match during index operation
File index record is greater than one block
File is not open
Frameid is not in Radix-SO character set

Error executing help routine.

Error executing menu routine.

Error executing dynamic menu routine.

Invalid CSI sequence found
No CSI sequence found
File extension error

Calling parameter error

Insufficient buffer space

Short message error

No matching entry number

PRO/RMS-11 File access error. See
PRO/RMS-11 manual set for error codes.

Error executing menu unpack routine.

C-2

the

POSRES STATUS BLOCK CODES

Table C-1 (cont.)

1 2

-14 Key .code

-15 See Table C-2

-16 See Table C-2

-17 See Table C-2

-18
-1
-2
-3

-19

-20 -1

Description

Option selection failed. The second word
contains one of the function key codes listed
in Appendix D. For example, the value 14
indicates that the user pressed the ADDTNL
OPTIONS key.

Error displaying frame specified with frameid.

Error executing multiple-choice menu routine.

Error executing menu pack or unpack routine.

Error executing OLDFIL routine.
No choices made
No files found
Error in wildcard selection

Buffer error. The buffers FL$BUF and MM$BUF are
not large enough.

Message rejected. The Message/Status Display is
full. The Display lists up to 255 messages.

Table C-2: Menu Service Routine Errors

Word Two

-1

-2

-4

-5

-6

-8

-9

.-10

-11

Description of Error

Option number greater than maximum

Multiple once-only fields

Error in keyword definition

Title or text field length error

Text field length error

Argument error or unknown f ieldid

Buffer error

Text or option line number greater than maximum

Error in menu packing

C-3

POSRES STATUS BLOCK CODES

Table C-2 (cont.)

Word Two

-12

-13

-14

-15

Description of Error

No options for multiple-choice menu

Multiple-choice menu limits responses to zero

More responses allowed than options

No help available

C-4

APPENDIX D

FUNCTION KEY NAMES AND CODES

Code PRO Label P/OS Label

1 Fl Fl

2 F2 F2

3 F3 BREAK

4 F4 SETUP

5 FS FS

6 F6 Reserved

7 F7 RESUME

8 F8 CANCEL

9 F9 MAIN SCREEN

10 FlO EXIT

11 Fll Fll

12 Fl2 Fl2

13 Fl3 Fl3

14 Fl4 ADDTNL OPTIONS

15 HELP HELP

16 DO DO

17 Fl7 Fl7

18 Fl8 Fl8

D-1

FUNCTION KEY NAMES AND CODES

Code

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

PRO Label

Fl9

F20

FIND

INSERT HERE

REMOVE

SELECT

PREV SCREEN

NEXT SCREEN

up arrow

left arrow

down arrow

right arrow

PF!

PF2

PF3

PF4

(Application Mode only)

35 minus

36

37

38

39

40

41

42

comma

period

ENTER

0

1

2

3

D-2

P/OS Label

Fl9

F20

FIND

INSERT HERE

REMOVE

SELECT

PREV SCREEN

NEXT SCREEN

up arrow

left arrow

down arrow

right arrow

PF!

PF2

PF3

PF4

minus

comma

period

ENTER

0

1

2

3

FUNCTION KEY NAMES AND CODES

Code PRO Label P/OS Label

43 4 4

44 5 5

45 6 6

46 7 7

47 8 8

48 9 9

D-3

(

APPENDIX E

DOCUMENTATION DIRECTORY

This appendix lists the documentation provided with the Professional
Host Tool Kit and PRO/Tool Kit.

E.l VOLUME 1: INTRODUCTION

Host Tool Kit Installation Guide and Release Notes
Tool Kit User's Guide
Tool Kit Reference Manual
FMS-11/RSX Release Notes
PRO/FMS-11 Documentation Supplement
FMS-11/RSX Software Reference Manual

E.2 VOLUME 2: VIDEO

Terminal Subsystem Manual
CORE Graphics Library Manual
(Update 1)
PRO/GIDIS Manual
(Update 1)

E.3 VOLUME 3: TASK BUILDING

RSX-llM/M-PLUS Task Builder Manual

AA-N616C-TK *
AA-N617D-TK
AA-BT74A-TH
AA-H857A-TC
AA-Pl03B-TK
AA-H855A-TC

AA-N623B-TK
AA-N619B-TK
AD-N619B-Tl
AA-Y660A-TK
AD-Y660A-Tl

AA-L680B-TC

* Provided with the PRO/Tool Kit but intended for use only with the
Host Tool Kit.

E-1

VOLUME 4: P/OS SYSTEM

E.4 VOLUME 4: P/OS SYSTEM

P/OS System Reference Manual
(Update 1)
(Update 2}

E.S VOLUME 5: PRO/RMS-11

PRO/RMS-11: An Introduction
PRO/RMS-11 Macro Programmer's Guide
RSX-llM/M-PLUS RMS-11 User's Guide

E.6 VOLUME 6: MACRO PROGRAM DEVELOPMENT

IAS/RSX-11 ODT Reference Manual
IAS/RSX-11 ODT Supplement
PDP-11 MACR0-11 Language Reference Manual
Guide to Writing a P/OS I/O Device Driver

and Advanced Programmer's Notes

E.7 VOLUME 7: PRO/DECNET

PRO/DECnet Tool Kit Release Notes
Introduction to DECnet
PRO/DECnet Tool Kit Installation Guide
PRO/DECnet Programmer's Reference Manual

E.8 PRO/TOOL KIT VOLUME

PRO/Tool Kit Installation Guide and Release Notes
Command Language and Utilities Manual
RSX-llM/M-PLUS RMS-11 Utilities Manual

E-2

AA-N620A-TK
AD-N620A-Tl
AD-N620A-T2

AA-P098A-TK
AA-P099A-TK
AA-L669A-TC

AA-M507A-TC
AA-Pl93B-TK
AA-V027A-TC

AA-BT73A-TH

AA-AV71A-TK
AA-JOSSC-TK
AA-AV70A-TK
AA-AV69A-TK

AA-X911B-TH
AA-X912A-TH
AA-L670A-TC

INDEX

-A-

Action string
description, 8-8
global, 8-8
option, 8-8

ADB
see Application Diskette

Builder
Additional Options, 8-7, 8-10,

8-12, 8-13
APPL$DIR, 1-4, 6-11, 8-10, 8-19,

9-14
APPL$HELP, 9-14
APPL$MENU, 9-14
Application directory, 4-3, 4-4,

8-28
description, 4-1
P/OS Diskette, 6-10
P/OS Hard Disk, 6-11

Application Diskette Builder, 4-6,
A-1

description, 2-3
Asynchronous System Trap, 3-6,

9-6, 9-10
Attachment Descriptor Block, 9-16

-B-

BASIC-PLUS-2, B-1
array parameter, 3-8
description, 2-1
external subprogram call, 3-8
string parameter, 3-8

BIGVOLUME, 6-4
Bitmap

documentation, 1-10

-c-
Callable Editor Task, 2-8, B-1,

B-2
Callable Sort Task, 2-8
Calling Sequence Convention,

PDP-11 RS, 3-7
CET

see Callable Editor Task

CGL
see CORE Graphics Library

Character set
documentation, 1-7

Checkpointing, S-1, S-4, A-1
CLOG$ system directive, 6-10, 9-2
Cluster library, S-3

default, 7-4
description, 3-6

COBOL-81, B-1
description, 2-1
external routine call, 3-8

COMLIB, 2-4, 3-7
Communications, 3-4, 3-7
Communications Services

description, 2-3
Console cable

use of in debugging, 4-S
Convention, PDP-11 RS Calling

Sequence, 3-7
CORE Graphics Library, 2-4, 3-S,

3-7, 4-2, 7-3, B-1
documentation, 1-7

CRAW$ system directive, 9-2
CS! sequence

parsing, 8-25
Cursor

turning off, 9-7

-D-

DCL
see Digital Command Language

DEC Multinational Character Set
documentation, 1-7

DECnet
description, 2-S
documentation, 1-10

Device Driver
documentation, 1-9

Device name
default, 6-3

setting, 6-4
description, 6-2

DIBOL, B-1
description, 2-2
external subroutine call, 3-9

Index-1

INDEX

Digital Command Language, 1-4,
6-10, 6-11

CREATE command, 4-1
documentation, 1-11
EDIT command, 4-2
INSTALL command, 4-3
LINK command, 7-1
RUN command, 4-4
SET command, 4-3, 6-4, 6-5
SPAWN command, 4-2

Directory name
default, 9-2

setting, 6-5
description, 6-4

Disk/Diskette Services, 2-6, 3-4,
3-5, 4-1, 6-4, 6-5, 6-11, 8-4

DLOG$ system directive, 6-10, 9-2
Dynamic menu

description, 8-9, 8-10
displaying, 8-11
frame pointer, 8-19
from static menu, 8-11

-E-

EDT, 4-2
Eight-bit characters

using, 1-5, 9-6, 9-9
ELAW$ system directive, 9-2
EMST$ system directive, 9-15
Equivalence name

definition, 6-7
Event flag

use of, 8-26
EXTK$ system directive, 9-1

-F-

Fast Install, 4-4, 6-11
description, 2-6

Fatal error
handling, 8-22

FCS-11
see File Control Services

FDT
see Frame Development Tool

File
pre-allocation, 9-3
pre-extension, 9-3
use of identifier, 9-3
when to open, 9-3

File Control Services
description, 2-6

File name
description, 6-5

File Selection Menu, 8-13
File Services, 3-4, 6-4, 6-5, 8-4,

8-6
File specification

description, 6-1
File Transfer utility, 4-4
File type

description, 6-6
Files-11

use of logical names, 6-9
FIRSTAPPL.PTR, 1-4
FMS-11

see Forms Management System
Forms Management System, 4-2, 4-3,

7-3, B-1
description, 2-6
documentation, 1-6

FORTRAN-77, B-1
description, 2-2
external subroutine call, 3-9

Frame Development Tool, 4-2, 8-4, ,
8-10, 8-19, 8-21, 8-30, A-1

CONVERT command, 4-3
description, 2-7

Frame pointer
description, 8-19
use of, 8-20

Function key, 8-2
codes, D-1
description, 8-22 (
menu option selection, 8-7
menu programming, 8-12
programming, 8-24
use of, 8-23, 9-9

-G-

GIDIS, 3-5
description, 2-5
documentation, 1-7

-H-

Help
programming

see POSRES

Index-2

INDEX

Help file
opening, 8-19

Help frame
default

specifying, 8-19
Help menu

description, 8-14
key processing, 8-15

Help structure, 8-2
activating, 8-20
designing, 8-14
implementing, 8-19

Help text frame
description, 8-16
half-screen, 8-16
key processing, 8-16

Host Tool Kit
description, 1-2
documentation, 1-6
using, 1-5

-I-

Installation
ASSIGN HELP command, 6-11, 8-12,

8-14, 8-19, 8-20
ASSIGN MENU command, 6-11, 8-10,

8-12, 8-14
command file, 2-3, 4-1, 4-2,

4-4, 6-11

-K-

· Keyboard, 8-28
description, 3-1
documentation, 1-7
label strip, 8-23

Keystroke
input routine, 8-24

Keyword, 8-5, 8-8

-L-

Lock block, 9-15
Logical name

description, 6-7
Files-11 use, 6-9
manipulating, 6-10
RMS-11 translation, 6-9
table, 6-7

Logical unit number
see LUN

LUN
use of, 8-26

-M-

MACR0-11
see Professional Macro

Assembler
MAP$ system directive, 9-2
Memory

physical, 5-4
virtual, 5-2

Memory management, 9-2
Menu

key processing, 8-7
programming

see POSRES
user perception, 8-2

Message
use of, 8-2

Message file
description, 8-21

Message frame
reading, 8-22

Message/Status Display, 8-2, 8-22,
C-2, C-3

Multiple-choice menu, 8-4, 8-6
displaying, 8-11
option selection, 8-6
unpacking, 8-10
use of, 8-7

-N-

New File Specification form, 8-12
NULLIB, 7-5, 9-12

-o-

ODT
see On-Line Debugging Tool

Offspring Control Block, 9-15
On-Line Debugging Tool

description, 2-7
documentation, 1-9

Overlay Descriptor Language, 7-4,
7-6 to 7-7

.FCTR directive, 7-6

.ROOT directive, 7-6

Index-3

INDEX

Overlaying, 5-2

-P-

PAB
see Professional Application

Builder
Parameter

data type checking, 3-7
position of, 3-7

PASCAL, B-1
description, 2-3
external procedure call, 3-9
external procedure declaration,

3-9
READONLY attribute, 3-10
UNSAFE attribute, 3-10

PDP-11 RS Calling Sequence
Convention, 3-7

Physical memory, 5-4
PLAS directive, 9-1, 9-10
PMA

see Professional Macro
Assembler

P/OS
access from high-level

languages, 3-7
components, 3-4
configurations, 5-1
current device, 8-27, 8-28
description, 1-1
Diskette

description, 3-2
Executive

description, 3-4
documentation, 1-8

file specification, 6-1
Hard Disk

description, 3-2
overview, 3-1
user interface, 3-3

POSRES, 3-7, 4-2, 6-11, 7-3, 8-1
to 8-32, B-2

and FDT, 2-7, 8-4
buffer names, 8-29
clearing buffers, 8-11
description, 2-7, 8-4
DMENU routine, 8-11, 8-27, 8-29
DPACK routine, 8-10, 8-29
FATLER routine, 8-22, 8-27

POSRES (Cont.)
GETKEY routine, 8-24, 8-27, C-1,

C-2
global symbols, 8-26
HCLOSE routine, 8-27, 8-29
HELP routine, 8-20, 8-27, 8-29
HFILE routine, 8-13, 8-14, 8-19,

8-20, 8-27, 8-29
HFRAME routine, 8-13, 8-14,

8-20, 8-27, 8-29
MCLOSE routine, 8-12, 8-27,

8-29
menu programming, 8-11
MENU routine, 8-10, 8-27, 8-29
MFILE routine, 8-10, 8-12, 8-14,

8-27, 8-29
MFRAME routine, 8-10, 8-12,

8-14, 8-27, 8-29
MMENU routine, 8-11, 8-27, 8-29
MPACK routine, 8-10, 8-29
MSGBRD routine, 8-22, 8-26,

8-27
MUNPK routine, 8-11, 8-29
NEWFIL routine, 8-12, 8-27,

8-29, B-2
OLDFIL routine, 8-10, 8-13,

8-27, 8-29, B-2, C-3
overlaying buffers, 8-31
PRSCSI routine, 8-25, 8-27, C-2
RDMSG routine, 7-3, 8-22, 8-27
reducing buffer sizes, 8-29
status block, 8-11, 8-24
status codes, C-1
suggested maximum buffer sizes,

8-29
task image requirements, 8-25
use of buffers, 8-9
use of by languages, 8-25
WTRES routine, 7-3, 8-25, 8-27

POSSUM, 3-7, 7-3, 7-5
description, 2-8
PRODIR routine, 6-5
PROFBI routine, B-2
PROLOG routine, 6-4, 6-5, 6-10,

9-2
PROTSK routine, 9-14

Print Services, 3-4, 3-5, 5-2,
B-1

description, 2-7
Printer

use of in debugging, 4-5

Index-4

INDEX

PRO/Communications, 2-4, B-1, B-2
PRO/DECnet

see DECnet
PRO/Dispatcher, 3-5
PRO/FMS-11

see Forms Management System
PRO/GI DIS

see GIDIS
PRO/RMS-11

see Record Managment Services
PRO/SORT, B-1, B-2

description, 2-8
PRO/Tool Kit

application directory, 1-4
description, 1-2
documentation, 1-6, 1-11
startup command procedure, 1-4
using, 1-4

Professional
hardware configurations, 1-2,

3-1
Professional Application Builder,

4-2, 4-3, 7-1 to 7-7, 8-22,
8-25

ASG option, 8-27
CLSTR option, 7-4
command file, 7-3
CP switch, 7-4
description, 2-3
documentation, 1-8
EXTSCT option, 8-28, 8-29
FP switch, 7-4
GBLDEF option, 8-26, 8-27
MA switch, 7-4
PRO/Tool Kit, 7-1
RSX-llM/M-PLUS, 7-2
SP switch, 7-4
UNITS option, 8-26
VAX/VMS, 7-1

Professional Macro Assembler, 2-3,
2-5' 2-7' 2-8

description, 2-2
documentation, 1-9
P/OS routine call, 3-10

PROSE, 3-4, 4-2
description, 2-8

Pseudo-device, 6-3

-Q-

'QIO system directive, 9-6

QIO$ system directive, 9-7, 9-10,
9-16

QIOW$ system directive, 9-7

-R-

RS Calling Sequence Convention,
PDP-11, 3-7

Record Management Services, 2-6,
3-5, 3-7, 6-7, 7-3, 9-15

description, 2-8
documentation, 1-8
input parsing, 9-2
logical name translation, 6-9,

6-10' 6-11, 9-2
utilities

documentation, 1-11
RMS-11

see Record Managment Services
RMSRES, 7-5
RPOI$ system directive, 9-15
RQST$ system directive, 9-15
RREF$ system directive, 9-11,

9-16
RSX-llM/M-PLUS

description, 1-1

-s-

Sequence Convention, PDP-11 RS
Calling, 3-7

Single-choice menu, 8-4, 8-5
option selection, 8-5
packing, 8-10
static, 8-10
use of, 8-6

SREF$ system directive, 9-10,
9-11

STARTUP.COM, 1-4
Static menu

description, 8-9
frame pointer, 8-19

Storage media
description, 3-1

STSE$ system directive, 9-13
SYSDISK, 6-11
System Services

see POSSUM
System Task Directory, 3-6
System unit

description, 3-1

Index-5

INDEX

-T-

Task Builder
see Professional Application

Builder
documentation, l-8

Telephone Management System, 2-4,
B-2

Terminal
use of in debugging, 4-5

Terminal Emulator, 2-4, 3-4, 4-4,
A-3

documentation, 1-7
Terminal subsystem, 3-5

documentation, 1-7
TLOG$ system directive, 6-10, 9-2
TMS

see Telephone Management System,
2-4

-u-

UMAP$ system directive, 9-2
User Interface Services

see POSRES

USERDISK, 6-4
USERFILES, 6-5

-v-
Version number

description, 6-6
Video bitmap

documentation, 1-10
Video monitor, 8-28

description, 3-1
documentation, 1-7
in debugging, 4-5

Virtual Address Space, 5-2

-w-

Wild-card, 6-7
Wild-card specification, 8-13
WTSE$ system directive, 9-13

-x-
XKDRV, 2-4

Index-6

(

I
I
I
I
I
I
I
'I
i

j
I
I
I
I
I
I
I
I
I
~.

-{

I
I
I
I
I
I
I

QJ

~
IJ>

£
O> c:
0
iii
:;
u
QJ
IJ>

"' QJ
Cl:

READER'S COMMENTS

Professional Developer's
Tool Kit User's Guide
Order No. AA-N617D-TK

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPR) service. submit your comments
on an SPR form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.
D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)-------------------------

Name _______________________ Date __________ _

Organization----------------------------------
Street ___________________________________ _

City _______________ State _______ Zip Code ______ _

or

Country

I
I
I
I
I

Do '\iot Tear - Fold Here and Tape --1

'l'ID'D 111111 ,.:~,::~::~~:h. : .. ~ w ~ United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

----Do Not Tear - Fold Here---1
I
I
I
I
I
I
It
I'\

