
Telephone Management System
(TMS) Programmer's Manual

AA-AD34A-TH

Telephone Management System
(TMS) Programmer's Manual

AA-AD34A-TH

November 1983

This document describes TMS, the Professional Telephone Management Sys­
tem, as implemented for the Professional Developer's Tool Kit. This is a user
guide and reference manual for programmers developing telephone applica­
tions for Professional personal computers.

DEVELOPMENT SOFTWARE:

TARGET OPERATING SYSTEM:

Professional Host Tool Kit V1 .7
PRO/Tool Kit V1 .7

P/OS V1.7

DIGIT AL EQUIPMENT CORPORATION
Maynard. Massachusetts 01754

First Printing, November 1983

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may only
be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by DIG IT AL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part as
the basis for the manufacture or sale of items without written permission.

Copyright ©, 1983 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASS BUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-1 O PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

mamanma PROSE
PROSE PLUS

Work Processor

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.5
1.6
1.7
1.8
1.8.1
1.8.2
1.8.3
1.8.4
1.8.5

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.4
3.4.1
3.4.2

CONTENTS

PREFACE vii

INTRODUCTION

PROFESSIONAL SERIES COMMUNICATIONS SERVICES • • • 1-3
TMS COMPONENTS • • • • • • • • • • • • • • 1-5
STANDARD TMS FEATURES • • • • • • • • • • • • • • 1-5

Dialing Capabilities • • • • • • • • • • •• 1-6
Voice Storage and Retrieval • • • • 1-7

OPTIONAL FEATURES • • • • • • • • • • • • 1-7
OPERATING EFFICIENCY • • • • • • • • • • • 1-7
EMERGENCY CONSIDERATIONS • • • • • • • • • • • 1-8
TMS OPTIONS • • • • • • • • • • • • • • • • • 1-9
APPLICATION EXAMPLES • • • • • • • • • • • • • 1-9

Voice Calls for Telemarketing •• -· • • • • • 1-10
Serial Data Calls for Data Transfer • • • 1-11
Voice Store and Forward • • • • • • • • • • • 1-12
Manual Voice Calls at Your Desk • • • 1-13
Voice Call Originated by an Application Program 1-15

SYSTEM DESCRIPTION

TMS/PROFESSIONAL INTERFACE • • • • • • • • 2-1
TMS CONTROLLER UNIT FUNCTIONS • • • • • • • • • • 2-2

Modem Capabilities • • • • • • • • • • • • 2-2
DTMF Facilities •••••••••••••••• 2-3
Autodialing • • • • • • • • • • 2-3
Dial Modes • • • • • • • • • • • • • • • • • • • 2-3
Speech Handling • • • • • • • • • • • • 2-4
Speech Buffers • • • • • • • 2-5

TMS STATUS AND ERROR DETECTION • • • • • • 2-5
TELEPHONE LINE INTERFACE (TLI) • • • • 2-5

TMS Telephone Line States • • • • • • • • • • • 2-6
Special Line Features • • • • • . • • • • • 2-6
Telephone Connections • • • • • • • • • 2-7

OPTIONAL VOICE UNIT • • • • • • • • • • • • • 2-7

DRIVER CALLS TO TMS

CALLING PROGRAM LANGUAGES • • • • • • • • 3-3
TMS I/O DRIVER CALL FORMAT • • • • • • • • 3-3
GENERAL QIO PARAMETERS • • • • • • • • • • • • 3-4

Sample Call to the TMS Driver • • • • • • • • • 3-4
CALL DESCRIPTIONS • • • • • • • • • • • • 3-5

Answer a Line (IO.ANS) ••••••••••••• 3-6
Attach Line with ASTs (IO.ATA) ••••• 3-9

iii

3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12

3.4.13
3.4.14
3.4.15
3.4.16
3.4.17

CHAPTER 4

4.1
4 .1.1
4 .1. 2
4.1.3
4 .1. 4
4.1.5
4.1.6
4.1.7
4.1.8
4 .1.9
4.2
4.2.1

Attach Line (IO.ATT) •••••••••
Issue a Break (IO.BRK) • • • • • •
Connect Line (IO.CON) ••••••••••••
Detach Line Request (IO.DET) •••••••••
Place a Line on Hold Request (10.HLD) ••••
Hang Up a Line Request (IO.UNG) •••••••
Cancel I/O Request (IO.KIL) •••••••••
Link Task to Interrupts (IO.LT!) •••••••
Originate Connection (IO.ORG) • • • • • • • •
Read Functions (IO.RAL, IO.RLB, IO.RNE, IO.RVE) .
Unlink Tasks from Interrupts (IO.UT!) ••••
Write Functions (IO.WAL, IO.WLB, and IO.WVB) •
Write Special Data (IO.WSD) •••••••••
Get Multiple Characteristics (SF.GMC) ••
Set Multiple Characteristics (SF.SMC) ••••

COMMUNICATIONS CHARACTERISTICS

3-11
3-12
3-13
3-18
3-19
3-20
3-21
3-22
3-24

3-26
3-29
3-30
3-32
3-34
3-40

GENERAL TMS COMMUNICATIONS CHARACTERISTICS • • • • 4-2
Data Mode • • • • • • • • • • • • • • • • • 4-4
Dial Mode • • • • • • • • • • • • • • • • • 4-4
Auto-Answer Ring Count • • • • • • • • • • • 4-5
Translation • • • • • • • • • • • • • • • • • • 4-6
Voice Unit Keypad ••••••••••••••• 4-6
DTMF Escape-Sequence • • • • • • • • • • • • • 4-6
DTMF Signal Length • • • • • • • • • • • • • • 4-7
DTMF Pause Leng.th • • • • • • • • • • • • • • • 4-7
Hold Control • • • • • • • • • • • • • • • • • • 4-8

SERIAL COMMUNICATIONS CHARACTERISTICS • • • • • • 4-9
Typical Application: Terminal. Emulator vs. Work
Station • 4-9

4.2.2 Modifiable Serial Characteristics • • • • 4-10
4.2.2.l Transmit Speed • • • • • • • • • • • • • 4-10
4.2.2.2 Receive Speed • • • • • • • • • • • • • • • 4-10
4.2.2.3 Modem Type • • • • • • • • • • • • • • • 4-11
4.2.2.4 Parity Generation and Checking • • • • • • • 4-11
4.2.2.5 Parity Type • • • • • • • • • • • • 4-11
4.2.2.6 Character Frame Size (5,6,7,8,9) • • • • • • 4-12
4.2.2.7 Stop Bits ••••••••••••••••• 4-12
4.2.2.8 Eight-Bit Characters • • • • • • • • 4-12
4.2.2.9 Binary Characters • • • • • • • • • 4-12
4.2.2.10 Control-S State • • • • • • • • • • 4-12
4.2.2.11 Prepare to Go Voice • • • • • • • • • • 4-13
4.2.2.12 Type-Ahead Buffer • • • • • • • • • • • • • 4-13
4.3 CODEC DATA MODE CHARACTERISTICS • • • • • • 4-13
4.3.1 Silence Processing • • • • • • • • • • • • 4-14
4.3.2 Silence-Detection Timeout • • • • • • 4-14

iv

CHAPTER 5

5.1
5.2
5.3
5.3.l
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10

CHAPTER 6

6.1
6.1.1
6.1.2
6 .1. 3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6 .1. 9
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.3

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

TMS EVENT REPORTING

TMS EVENTS • 5-1
ENABLING AND DISABLING EVENT-HANDLING • • • • 5-2
EVENT DESCRIPTIONS • • • • • • • • • • • • 5-3

Carrier Detect (XTU. CD) • • • • • • 5-3
Carrier Loss (XTU.CL) • • • • • • • • • 5-4
XOFF Received (XTU.OF) • • • • • •• 5-4
XON Received (XTU.ON) ••• 5-4
Ring (XTU.RI) ••••••••••••••••• 5-4
Unsolicited Input (XTU.UI) ••••••• 5-5
DTMF Escape Sequence Received (XTU.DR) ••••• 5-5
Telephone-Handset Off-hook (XTU. TU) • • • • • • 5-5
Telephone-Handset On-hook (XTU.TD) • • • 5-6
Auxiliary Keyboard and DTMF Unsolicited Input • 5-6

TMS HARDWARE COMPONENTS

CONTROLLER MODULE COMPONENTS • • • • • 6-1
TMS Micro-Processor • • • • • • • • 6-3
Random-Access Memory • • • • • • • • • • • 6-3
Read-Only Memory • • • • • • • • • • • • • 6-4
TMS Bus • • • • • • • • • • • • • • • • • • 6-4
Crossbar Array • • • • • • • • • • 6-5
DTMF-Tone Transmitter/Receiver • • • • • • 6-5
Tone Detector • • • • • • • • • • • • • • • 6-6
Codec • • • • • • • • • • • • • • • • • • • 6-6
Mod em (s) • • • • • • • • • • • 6- 6

TELEPHONE LINE INTERACE (TLI) COMPONENTS • • • 6-7
TLI/Line Connectors • • • • • • • • 6-7
TLI/TMS Communications • • • • • • • • • • • • • 6-9

VOICE UNIT COMPONENTS • • • • • • • • • • • 6-10
Voice Unit Keypad • • • • • • • • • • • • • • 6-10
Voice Unit/TMS Communications • • • • • • 6-10
Voice Unit Speaker/Microphone • • • • • • • • 6-11

TMS CALL SUMMARY

SAMPLE TMS PROGRAM

TMS ERROR AND STATUS CODES

v

FIGURES

TABLES

1-1 Professional Telephone Management System (TMS) • 1-2
1-2 TMS Component Diagram • • • • • • • • • • • • • • 1-4
2-1 TMS Telephone Line Interface (TLI) Back Panel •• 2-6
2-2 TMS Optional Voice Unit Controls/Indicators ••• 2-8
6-1 TMS System Block Diagram • • • • • • • • • • • • • 6-2
6-2 TMS Telephone Line Interface (TLI) • • • • • • • • 6-8

1-1
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
5-1
5-2
6-1

TMS Components and Order Numbers • • • • • • • • • 1-9
TMS Voice Storage Requirements • • • • • • • • • • 2-4
TMS Driver Functions • • • • • • • • • • • • 3-2
Legal Characters for TMS Telephone Numbers • • • 3-14
DTMF/ASCII Dialing Codes • • • • • • • • • • • • 3-15
Voice Unit Indicator States • • • • • • • • 3-33
Line Characteristics (SF.GMC) • • • • • 3-35
Frame Size/Parity Values • • • • • • • • 3-37
Valid Receive/Transmit Speeds (TC.RSP & TC.XSP) 3-38
Type of Modem Characteristic (XT.MTP) • • • • • 3-38
Dial Modes (XT.DLM) • • • • • • • • • • • • • • 3-39
Data Modes (XT.DTM) • • • • • • • • • • 3-39
Line Characteristics (SF. SMC) • • • • • • • 3-41
Frame Size/Parity Values • • • • • • • • • • • • 3-43
Valid Receive/Transmit Speeds (TC.RSP & TC.XSP) 3-44
Type of Modern Characteristic (XT.MTP) • • • 3-45
Dial Modes (XT.DLM) • • • • • • • • • • 3-46
Data Modes (XT.DTM) • • • • • • • • • • • • 3-46
Modifiable Characteristics • • • • • • • • 4-2
TMS Unsolicited Event Types • • • • • • • • • • • 5-3
Voice Unit Key Signals •••••••••••••• 5-7
TLI Signals • • • • • • • • • • • • • • • • • 6-9

vi

PREFACE

MANUAL OBJECTIVES

This manual describes TMS and is intended to be used as both a
reference manual and user guide. It covers applications running
on the Professional and also provides information about the
hardware components of TMS.

INTENDED AUDIENCE

You should read this manual if you are developing a telephone
communications application for the Professional 300 Series
computer and need information about TMS, the Telephone Management
System that runs on the Professional computer. TMS is one of the
tools that can be used in developing communications applications
for the Professional computer.

This document is intended for programmers who have had experience
with systems programming and communications applications
software. The reader also is expected to be familiar with the
Professional Developer's Tool Kit, and either MACR0-11 or any of
the other Tool Kit Languages.

It is recommended that you also read the Tool Kit User's Guide
and the P/OS System Reference Manual for a more information on
communications software development on the Professional computer.

STRUCTURE OF THIS DOCUMENT

The manual has six chapters and three appendixes.
are summarized in the following subsections.

Chapter 1 -- Introduction

The contents

Introduces TMS capabilities and the environment for telephone
communications applications running on the Professional.
Presents TMS hardware and software components, along with both
standard and optional TMS features. Compares the Professional's
Communications Services Library (COMLIB) capabilities and
ease-of-programming to TMS' own I/O driver (XT) software
efficiency. Describes typical TMS application functions and
capabilities.

vii

Chapter 2 -- System Description

Describes the major TMS system components and their interface
with P/OS, the Professional's operating system. Describes the
functions and capabilities of each component and the various
programmable telephone capabilities inherent in TMS.

Chapter 3 -- Driver Calls to TMS

Summarizes TMS driver call groups and their functions. Describes
the Queue Input/Output (QIO) function directives that send
instructions to TMS and return TMS status and event reports.
Provides MACR0-11 programming syntax rules and examples, as an
introduction to the remainder of the chapter, an alphabetically
ordered detailed description of the TMS calls.

Chapter 4 -- Communications Characteristics

Describes the TMS' four data modes, DTMF, serial, voice, or
Codec. Provides detailed descriptions of the various
programmable characteristics for TMS data lines.

Chapter 5 -- TMS Event Reporting

Describes TMS' reported reactions to changes in the state of the
telephone lines and other hardware components. Defines events
that TMS responds to and lists the driver calls used to program
event handling.

Chapter 6 -- TMS Hardware Components

Provides a functional description of the individual TMS hardware
components.

Appendix A -- Instruction Summary

Lists the TMS calls and their associated parameters.

Appendix B -- Sample Program

Pascal/MACR0-11 sample routines

Appendix C -- TMS error and status codes and their meanings

viii

ASSOCIATED DOCUMENTS

• Telephone Management System Owner's Manual

• Installation Instructions Telephone Management System

Also, refer to the other Tool Kit Documentation Set manuals for
more information on developing communications applications for
the Professional.

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions.

Convention

[optional]

UPPERCASE

lowercase

•

Meaning

Square brackets indicate optional fields in a
call line. Do not include the brackets in the
call line. If the field appears in lowercase
type, you must substitute a legal parameter
if you include the field. Do not confuse the
square brackets in a call line format with
the square brackets that you use to specify a
file specification.

Any call line field in uppercase type
indicates that you should type the word or
letter exactly as shown.

You must substitute a value for any call
field in lowercase type. Usually
lowercase word identifies the type
substitution required.

line
the
of

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example: parameter [,parameter •••]

A vertical ellipsis in a
means that not all of
shown.

ix

figure or example
the statements are

CHAPTER 1

INTRODUCTION

The Professional Telephone Management System (TMS) integrates
everyday telephone equipment with Digital's Professional
computers. TMS offers voice communications management, automatic
telephone dialing and answering, multi-speed modem capabilities,
and message recording and playback.

TMS lends itself to a wide variety of software applications. The
TMS hardware components are programmable under control of the TMS
I/O Driver (XTDRV) software interface. The following list
provides just a few of the potential application areas for TMS:

• Telemarketing (order entry, mailing lists, and the like)

• Automated store and forward

• Voice mail with forwarding

• Combined text and voice message handling

• Teleconferencing with simultaneous voice and text

• "Smart Directory" with automatic dialing

• Integrated executive workstation

Applications extend the capacities of most professional business
areas, such as integrated dictation and word processing,
telemarketing, teleconferencing, auto-dialed communications,
automatic computer-to-computer data exchange, and voice message
storage and retrieval. TMS' hardware and the Professional's XT
driver interface software are designed to be the optimum tools
for telecommunications application development.

1-1

INTRODUCTION

TMS operates on two public switched telephone network or on
private branch exchange lines. One of the telephone lines
accommodates a telephone handset that can be used for normal
telephone operation (non-computer-assisted). The handset must be
provided by the user or by the local telephone supplier.

Figure 1-1: Professional Telephone Management System (TMS)

1-2

INTRODUCTION

TMS also has an optional "no-hands" voice unit
speaker, and microphone. Figure 1-1 shows a
equipped with TMS and an optional voice unit.

with keypad,
Professional

TMS application programs running on the Professional can
originate or answer calls. Applications can perform these
operations semi-automatically, under explicit control of a
Professional keyboard user. Alternatively, applications can
perform fully automatically on a time-delayed basis and/or to
transmit data in an unattended mode.

Design considerations ensure that TMS operations do not use
Public Switched Telephone Network resources unnecessarily for
ineffective calls. Various TMS operations are illustrated in the
series of sample application descriptions provided at the end of
this introductory chapter.

1.1 PROFESSIONAL SERIES COMMUNICATIONS SERVICES

Communications
operations on
communications
including TMS:

services allow you to perform communications
the Professional. There are three categories of
services in the Professional environment,

1. Base System Services included with the P/OS operating
system. These services include an asynchronous driver
(XKDRV) for the commu~ications port, as well as a
communications service library (COMLIB).

2. PRO/Communications Services, optional application
software providing features beyond those of the base
system. These services include utility programs (such
as a terminal emulator), as well as additional
communications routines.

3. Telephone Management System (TMS) Services, the optional
package that includes TMS communications hardware and
driver software for TMS' unique communications
capabilities.

Your TMS application program can access the Professional
communications services by calling routines you program with the
functions described in Chapter 3. Alternatively, high-level
programming languages can choose to call TMS using existing
Professional communications library routines or to spawn tasks
that execute Professional communications utility programs.

1-3

PROFESSIONAL SERIES COMMUNICATIONS SERVICES

Croeebar (Analog Swttcll)

CODEC (32 kblts/9ec CVSD)
Modem-Bell 103,212
Modem-103,202,V.21,V.23
DTMF Tone Generator
DTMF~

T-Detector

Figure 1-2: TMS Component Diagram

For example, your program can call a routine named CCATT to
attach a telephone line; alternatively, the program can spawn a
task that executes a terminal emulation utility. For
applications written in MACR0-11 or with queue input/output (QIO)
requests, a call to the TMS IO.ATT function performs the same
line attach.

1-4

PROFESSIONAL SERIES COMMUNICATIONS SERVICES

TMS communications functions are described in Chapter 3 of this
manual. For details of base system P/OS communications services
and the Professional's Communications Services Library (COMLIB),
refer to the Tool Kit User's Guide. In this manual, Appendix C
provides some sample MACR0-11 routines and a Pascal program that
calls the various routines. These samples are provided as
examples of one method for programming TMS for telephone
communications applications.

1.2 TMS COMPONENTS

The Professional's TMS option is made up of three hardware
components: (1) an internal controller board that plugs into the
Professional's bus, (2) a telephone line interface unit (TLI)
that provides standard plug jacks for connecting two different
telephone lines, and (3) an external telephone set, and an
optional cable-connected voice unit. TMS' two telephone lines
operate independently, rather than connecting them together as a
single unit involving two lines. Chapter 2 describes component
functions.

The TMS internal controller board has on-board memory, its own
8031 micro-processor, serial data communications (modem)
components, and ROM-based firmware under control of the TMS I/O
Driver. Event reporting from TMS to the Professional can be
enabled so that unsolicited and unscheduled events involving the
TMS hardware trigger interrupts to P/OS via the Professional's
data bus. Figure 1-2 is a diagram of TMS components. For
specifics on TMS hardware components, refer to Chapter 2.

1.3 STANDARD TMS FEATURES

TMS capabilities offer the following calling methods and data
modes:

• Voice calls involving a user present at the system.

• Data calls (originated/answered both semi-automatically
and automatically) using the current asychronous modem
capable of Bell 103 and Bell 212 operations or using
tone ~ata. (A version of.TMS is planned with V.21, V.23
capabilities for international communications. Also
Bell 202 capabilities are provided by the TMS hardware,
but without software support.)

1-5

•

STANDARD TMS FEATURES

Codec calls (digitized
originated or answered
automatically).

voice
both

calls, which can
semi-automatically

be
and

• Tone-data calls using dual-tone multifrequency (DTMF),
or "Touch-Tone"* sounds. DTMF tones can be used to
request that an application retrieve digitized voice
messages, store new messages, or perform other data
processing functions.

*Touch-Tone is a registered trademark of AT&T

Under software control, each mode of TMS call can be switched
from current mode to any of the other modes. For example, a user
who places a voice mode call to ask for computer services could
switch to data mode for the transfer of data files. A DTMF mode
caller could signal with a DTMF tone to switch TMS to codec mode
and rerieve recorded messages. A codec call could switch to
voice mode to allow person-to-person order taking following a
recorded marketing message, and so forth.

1.3.1 Dialing Capabilities

TMS is capable of dialing calls using either the interrupted
pulsing method of dialing (the TMS I/O driver default dial mode)
or the CCITT standard MF 4 tones. The user specifies with a
setup option the dialing mode for each line. This setup is
executed automatically each time the Professional operating
system is initialized and remains in effect until altered by the
user or until the next initialization of the system.

For dialing using application software, the application program
can specify a telephone number with a maximum length of 48
characters, including the special characters. (The TMS I/O
driver provides functions for dialing TMS calls from the
application program. Refer to the IO.CON description in Chapter
3 of this manual.)

When dialing via the telephone set or the keypad on the Voice
Unit, there are no special considerations; the user dials in the
normal manner and listens for intermediate tones as if using a
regular telephone.

1-6

STANDARD TMS FEATURES

1.3.2 Voice Storage and Retrieval

The TMS voice digitizer translates analog voice signals into
digital signals suitable for computer storage. The TMS storage
requirement uses approximately 0.25 megabytes of storage per
minute of spoken voice. Voice to be stored can be entered from a
remote telephone dialed into TMS or can be entered using the
optional TMS voice unit. Speech can be retrieved both remotely
or with the voice unit.

An application program could forward voice messages from one
Professional
transmit the
unless a
Ethernet).
establish a
message to a

to another using a high-speed communications link to
encoded form in serial data mode (a lengthy process
communications link is extremely fast, such as
Alternatively, the application program could

telephone link in Codec mode to rebroadcast the
waiting receiver.

1.4 OPTIONAL FEATURES

The TMS voice unit makes a wide variety of telecommunications
applications possible. It allows you to answer and originate
calls using the buttons on the voice unit keypad. The voice unit
serves as a conference-call phone and device for dialing and
signalling applications.

The voice unit option also provides connections for a headphone,
a hand-held microphone, or a standard dictation foot pedal. When
making telephone calls, the voice unit normally operates on line
1; however, an application program could intercept the user's
actions on the voice unit and direct the call to line 2 or could
perform other actions, such as storing voice or retrieving
pre-stored voice recordings without telephone line involvement.

the optional TMS voice
and to communicate with

For details on TMS

A secondary firmware component resides in
unit to control voice unit hardware
firmware on the TMS controller unit.
hardware, refer to Chapter 2 and Chapter 6.

1.5 OPERATING EFFICIENCY

TMS firmware has several features to ensure that it is operating
on an effective call. These features prevent TMS from needlessly
using the resources of the public telephone network.

1-7

OPERATING EFFICIENCY

When operating in voice mode, TMS requires that a user be present
at the system to monitor the progress of the call. Unless a
physical, external stimulus is received (lifting the telephone
handset or depressing a key on the Voice Unit) any call
originated or answered in voice mode is abandoned automatically
after 40 seconds.

When using modems, the serial data mode requires that modem
carrier be present. If, during the initiation of a call, carrier
is not received within 40 seconds of completion of dialing or
answering, the call is abandoned. The loss of carrier during a
call also causes a call to be abandoned.

When using DTMF control signalling, the absence of any new DTMF
signals from the distant end for two minutes and fifty seconds
initiates a ten-second warning tone after which the call is
abandoned.

Codec mode can be used to deliver a sound message or to record a
message for a maximum of two minutes and fifty seconds (unless
DTMF control signals are being received). If no DTMF signals are
received within the timeout period, a ten-second warning tone is
heard. Unless a DTMF tone is detected during the ten seconds,
TMS abandons the call.

It is expected that this mode be used primarily for answering
incoming calls and providing special applications. It is also
possible to originate calls in this mode. It is recommended that
applications originating calls begin a voice announcement
immediately after dialing so that the recipient of the call is
aware of what is happening.

1.6 EMERGENCY CONSIDERATIONS

If a telephone line in use by TMS is needed for an emergency, TMS
has three methods of releasing the line quickly. If you lift the
telephone handset on line 1, TMS automatically relinquishes
control of the line.

1-8

EMERGENCY CONSIDERATIONS

TMS always relinquishes control of the line and returns the
telephone handset to normal use whenever the power to the
Professional computer is turned off. As an additional emergency
consideration, a lighted switch on the rear of the Professional
can be used to disable the use of TMS instantly.

NOTE

When the switch is out and the light is off, TMS
is disabled and does not have access to the
telephone lines.

1.7 TMS OPTIONS

Table 1-1 lists the TMS components and order numbers.

Table 1-1: TMS Components and Order Numbers

Component

TMS Standard Equipment

1 TMS Controller Board,
1 Telephone Line Interface,
1 Modular jack phone cable

TMs·optional Equipment

Multi-line keyset adapter
Voice Unit

Voice Unit Foot Pedal
Voice Unit Microphone
Voice Unit Headset

1.8 APPLICATION EXAMPLES

Order Number

DTCll-A

DTCll-XK
DTCll-B
DTCll-XF
DTCll-XM
DTCll-XH

The following sections provide sample application situations and
the way TMS functions in handling the various situations. Note
that the TMS-specific functions are used for these samples:
optionally, other Professional communications services can be
used in place of the TMS functions. Refer to the Tool Kit User's
Guide for information on the Professional's communications
services.

1-9

APPLICATION EXAMPLES

1.8.l Voice Calls for Telemarketing

Incoming voice calls:

When TMS is used for telemarketing applications that involve
incoming calls (information service or order-taking situation),
the operation takes place as follows:

1. You start up a telemarketing application program.

2. The application program chooses either to enable
auto-answering or to issue explicit answer commands on
detection of incoming ring(s).

3. A call can be answered initially in either voice or
Codec mode. If the initial answer is in Codec mode, a
special "greeting" announcement could be made.

4. The call is passed to you. TMS notifies you of the call
with a "zip tone," heard by both parties.

5. The ON/OFF LED on the Voice Unit (if present) flashes
(240 impulses per minute) during the first 40 seconds of
the call. If you do not depress the ON/OFF button to
respond to the call during this period, TMS abandons the
call to free telephone resources.

6. The call terminates when any of the following occurs:

a. You pick up the telephone set. In this case, TMS
notifies the application program of two unsolicited
events: Telset off-hook and off-line.

b. The application program issues a hang-up command
(QIO IO.HNG). Driver software sends a hang-up
function command to TMS, then TMS unconditionally
terminates the call and reports back with an
off-line message, which the driver reports to the
application as successful completion.

c. You depress the ON/OFF hook button. TMS sends the
button-depressed-code and line-released messages,
followed by the off-line message, which the driver
software reports to the application program (if
unsolicited event notification is enabled).

1-10

APPLICATION EXAMPLES

Outgoing voice calls:

When TMS does outgoing calls for telemarketing, the process is
exactly as for voice calls originated by application, described
at the end of this section. The application provides a list of
outgoing numbers and places calls sequentially under human
supervision. Completion of one call causes the application to
proceed to the next. (This application is not part of the TMS
I/O Driver software.)

1.8.2 Serial Data Calls for Data Transfer

Manually originated data calls, with retries:

1. You start up a serial data application program and set
parameters: the telephone number and whether to retry
or not.

2. The program sets TMS characteristics to serial mode (the
QIO IO.SMC function)and then specifies dialing the
proper phone number (the QIO IO.CON function).

3. TMS takes line off~hook and outpulses the number. Pause
commands could be present in the number and are handled
as follows:

a. The "," character cal,lses an unconGiiti9i:ial delay of 2
$econds.

b. The "!" character causes a wait for dial tone. TMS
proceeds with the next character i.n the dialing
sequence either when dial tone is detebted er a£t•r
six seconds elapse.

c. When two exclamation points appear together ("!!"),
TMS waits 40 seconds for dial tone. This longer
wait allows the user to wait for dial tones that
take several wait cycles to occur, such ~s when
accessing either a remote PBX or a <;Hal-access
common carrier.

4. After dialing, TMS sets a 30-second timer to tim~out in
the event of no carrier.

5. If the timeout occurs prior to carrier detection, TMS
reports this to the application program as an error
return from the IO.CON function.

1-11

APPLICATION EXAMPLES

6. If the program specifies a timeout of less than 30
seconds on the IO.CON and TMS does not return with
carrier-detected in this time period, the driver
software terminates the sequence and reports the status
as IE.TMO.

7. In the event of an error, the application program
determines whether to retry the connection, and when.
Application programmers must be aware of any regulatory
requirements in the locale where the programs are used,
as to permitted frequency of retries. (Some regulatory
or operating authorities might restrict the frequency of
retries to prevent network blockage.)

8. If carrier is detected, serial communications is
established, and data transmission can begin. During
data transmission, an application has the full scope of
serial features, such as large buffers, read timeouts,
and so forth.

9. A call terminates when the application issues an IO.HNG
function, which the driver software reports to the
application if the application requests unsolicited
event notification. If the application attempts to
issue IO.RLB (read logical block) or ~O.WLB (write
logical block) after carrier is lost, these requests
terminate with an error.

Automatically originated and terminated serial data calls:

Serial store and forward operates precisely as described above.
The only difference is that the parameters (telephone number, and
so forth) are supplied by the application program.

1.8.3 Voice Store and Forward

Store and Forward to Another TMS system: When calling another
TMS system, the call should be originated in serial mode as
described previously. Once a serial protocol, application
dependent, is used to determine that the correct system is
reached and that the remote system is prepared to receive a voice
message, the following takes place:

1-12

----------- --- ----- ------ -----

APPLICATION EXAMPLES

1. One of the two systems (the application dependent
protocol determines which, referred to here as system B)
issues a "prepare to go voice" characteristic command,
temporarily disabling loss of carrier disconnect. This
system notifies the other system (system A), again by
use of a serial protocol, that it is ready to switch to
voice mode.

2. The application running on system A sets its mode to
Codec (a QIO IO.SMC function). TMS on system A drops
carrier, causing TMS on System B to also drop carrier,
but not to disconnect. Each end now has a 30-second
timer running to ensure that a new on-line mode is
established. The TMS unit on system B reports loss of
carrier, which the driver software relays to the
application program. Then the application program sets
the system B mode to Codec (an IO.SMC function).

3. At this point the two systems are ready to begin
communication in Codec mode. By an application
dependent method, the two systems will have already
determined who will receive and who will transmit, so
the applications can issue appropriate QIO commands to
set direction and IO.ORG or IO.ANS QIOs to reestablish
on-line mode.

4. TMS, when operating in Codec mode, uses a two minute
fifty second timer to ensure effective call progress.
Prior to the expiration of this timer, the two
applications must communicate with each other using DTMF
in order to maintain the call. The applications will
have agreed prior to the establishment of Codec mode
exactly how this exchange will take place. In the
absence of an appropriate handshake taking place, TMS
must terminate the call.

1.8.4 Manual Voice Calls at Your Desk

Dialing from the TMS voice unit:

1. With the Professional turned on, you press the voice
unit's ON/OFF button. The LED adjacent to the ON/OFF
button lights.

2. TMS enters on-line voice mode, conditional only on the
telephone set being on-hook, and preempts any resources
in use by any other process.

1-13

APPLICATION EXAMPLES

3. You dial a telephone (waiting for intermediate dial
tones, if necessary). TMS allows you to dial at any
speed and stores digits until they can be outpulsed. If
the line is in rotary mode, depressing the "#" key
temporarily switches the line to DTMF mode to permit the
use of dial~access computers or common carriers.

4. You listen for ringing, busy, or network error messages.

s. If no effective call is established, you press the
ON/OFF button to discontinue the call.

6. You talk to the desired party.
above is permitted to allow
computers or common carriers.

Dialing as described
the use of dial-access

7. TMS releases the line when you either depress the ON/OFF
button or you pick up the telephone handset. The call
can be continued using the telephone handset, but
software control terminates. If the line is in
temporary DTMF mode, it returns to rotary mode when it
goes off ... line.

8. When TMS releases the line; the LED adjacent to the
ON/OFF button goes out.

Transferring a telephone handset call to the voice unit:

1. Telephone handset is already off-hook.

2. You depress ON/OFF. The LED next to the ON/OFF button
lights.

3. TMS goes off~hook, but does not
detects a telephone handset
time-out period is 30 seconds.

go on-line until it
on-hook status. The

4. You place the telephone handset on-hook.

5. TMS enters on-line voice mode.

6. Talk to the called party using the TMS Voice Unit.

7. TMS releases the line when you either depress the ON/OFF
button or when you pick up the telephone handset. For a
line temporarily in DTMF mode, the dial mode returns to
rotary mode upon going off-line.

1-14

APPLICATION EXAMPLES

8. When TMS releases the line, the LED adjacent to ON/OFF
goes out.

1.8.5 Voice Call Originated by an Application Program

1. The application program sets the line to voice mode and
specifies the telephone number to call (the TMS SF.SMC
and IO.CON functions).

2. TMS takes the line off-hook, mutes the telephone handset
if present, outpulses the desired number.

3. If the telephone handset is off-hook (voice mode only),
TMS cancels the connect command with a preempt message
to the application program as an error completion of the
originate function (IO.ORG). If the application
requests interrupt on unsolicted event notification, TMS
reports "Telset-off-hook".

4. Upon completion of dialing, TMS immediately reports
on-line status to the application program, connects
speaker and microphone and begins flashing -the LED
adjacent to the ON/OFF switch (240 impulses per minute).
TMS starts its 30-second timeout timer.

s. Upon receipt of on-line
notifies the program
IO.ORG function.

message, the driver software
by successful completion of the

6. You listen for ringing, busy, or network error messages
and take the call by depressing the ON/OFF button to
cancel the 30-second timer and stop the LED flashing.
There is no notification when the ON/OFF button is
depressed to cancel the timer. If you do not press the
button within the timeout period, TMS abandons the call.
An off-line message is sent as an unsolicited event to
the application program by the driver software.

End of Chapter

1-15

CHAPTER 2

SYSTEM DESCRIPTION

This chapter describes the interface between TMS and the
Professional computer, the functions of TMS system components,
and their specific role in the management of telephone
communications. Major functional components of the TMS system
include:

• TMS I/O Driver Software Interface, the system-level
software included with P/OS. The I/O driver controls an
application's access to TMS hardware components.

• TMS Controller Unit, a printed-circuit board with:
RAM/ROM memory for TMS commands, data, and shared access
areas, modem facilities for serial data communications,
a dual-tone multi-frequency (DTMF) receiver/transmitter
for pushbutton telephone signal processing, the TMS
8-bit micro-processor, and a Codec for recording and
playing back voice messages.

• Telephone Line Interface Unit connecting TMS directly to
individual telephone lines.

• Voice Unit, a separate optional desk-top
that combines "no-hands" telephoning
recording and playback capabilities.

2.1 TMS/PROFESSIONAL INTERFACE

keypad unit
with message

Professional-to-TMS communication requires the TMS I/O driver, a
standard RSX QIO software interface that is provided with P/OS.
The driver provides a the link between application software and
TMS firmware. Chapter 3 provides a detailed description of each
of the TMS I/O driver functions. The TMS I/O driver encompasses
all communication between P/OS and TMS. There are two types of
interaction: (1) commands from the driver to TMS that control

2-1

TMS/PROFESSIONAL INTERFACE

TMS hardware activity and telephoning functions, and (2) event
reports from TMS to P/OS reporting on TMS activity, unscheduled
events, and hardware s.tatus changes. TMS firmware directs the
operations of telephone-interface hardware as instructed by TMS
I/O driver function commands. Driver requests are made by the
application program running on the Professional. When the
hardware reacts to these operations, TMS firmware detects any
changes in the hardware state (incoming call sensed, on-board
modem characteristics changed, and so forth) and reports these
changes to the application program for further instructions.

For example, TMS could interrupt with a detection report about an
incoming call on one of its phone lines, then, the application
program could initiate an 11 answer the phone" function that the
TMS I/O driver would interpret, causing TMS to answer the
incoming call. With the phone answered and connection
established, further application program/TMS interaction could
determine the call type and provide the application program with
sufficient information to allow a choice of appropriate actions.

2.2 TMS CONTROLLER UNIT FUNCTIONS

The TMS controller unit is an option board on the Professional's
bus. Controller unit components enable TMS to interpret and
execute requests for telephone services, to transmit and receive
data, and to detect status changes in connected telephone lines.
The major controller component functions described here include:

• Modem capabilities

• DTMF functions

• Codec capabilities

Additional information on the TMS controller components is
provided in Chapter 6.

2.2.1 Modem Capabilities

The TMS controller includes on-board modem facilities that handle
serial data and link the TLI's phone lines to TMS through the
parallel input~output port. The standard TMS modem is the
asynchronous 212A modem used in TMS. This low-to-medium-speed
modem prOVideS the Capabilities for; transmitting and receiving
serial digital data over telephone lines. The modem provides:
(1) bi-directional 103 frequency shift keying (FSK) at 75 to 300

2-2

TMS CONTROLLER UNIT FUNCTIONS

baud and (2) high-speed differential phase shift keying (DPSK)
capabilities at 1200 bps.

TMS includes the same low-speed capabilities as the 103 modem, as
well as half-duplex operation compatible with 202 modems at
speeds up to 1200 bps.

2.2.2 DTMF Facilities

TMS handles dual-tone multi-frequency (DTMF) signaling with an
on-board DTMF receiver/transmitter. DTMF tones are used for
incoming and outgoing functions (including both dialing and data
transmission) and for tone deciphering of incoming telephone
push-button signals. TMS has the capability of operating, not
only the twelve tones on a normal telephone, but also can
transmit an additional four tones, called A, B, C, and D, which
make up a fourth column of tones as included on the DTMF Standard
for future use. The values used in DTMF are provided with the
description of the connect-line (IO.CON) function described in
Chapter 3.

2.2.3 Autodialing

TMS provides a dialing capability, along with telephone number
storage. The I/O driver functions that initiate a call and dial
a telephone number are described in Chapter 3. Refer to the
IO.CON function description.

2.2.4 Dial Modes

TMS is capable of telephoning in one of four possible dial modes.
The choice of dial mode is dictated by the telephone equipment
connected to the telephone line. For example, dialing over
certain lines cannot exceed a 10-pulse-per-second rate without
losing information. The reason for the rate limit lies in the
type of line switches used with many telephone systems.

TMS' selectable dial modes are:

Pulse mode, 10 pps An interruption rate of 10 pulses per
secondJ usually required for telephone
l~nes equipped with rotary dial phones.

2-3

TMS CONTROLLER UNIT FUNCTIONS

DTMF (Dual-Tone
Multi-Frequency)

Pulse mode, 20 pps

Off-hook Service

2.2.5 Speech Handling

Two groups of four signaling frequencies
that provide up to 16 combinations of
tone and enable transmission rates
higher than pulse-mode lines. DTMF
lines are present when the telephone
supplier's line equipment supports
tone-dialing service.

A relatively fast rotary dial service
with lines that permit an interruption
rate of 20 pulses per second.

The off-hook dial mode can be used with
telephone equipment connected to fixed,
hard-wired, dedicated telephone lines or
special service lines where the
telephone equipment contains a
pre-specified number, which eliminates
the need for a user to dial. A
dedicated "red-phone" connecting two
parties with a single dedicated line
with a telephone at each end is an
example of off-hook service.

TMS' on-board Codec provides for voice communication over either
of TMS' telephone lines or from the optional TMS voice unit. The
TMS codec is an integrated Continuous-Variable-Slope-Detect
(CVSD) codec. Tone and speech synthesis is not supported.

Storage characteristics: Table 2-1 lists the amount of voice
data that can be handled by TMS. Limits are imposed by the
storage space available on your Professional.

Table 2-1: TMS Voice Storage Requirements

Conversation Length

4 Minutes
8 Minutes

Storage Space Required

2-4

1 Megabyte
2 Megabytes

·1

----------·-----------·-----~----- . --~----- - ----

TMS CONTROLLER UNIT FUNCTIONS

There is a silence detection algorithm that can reduce storage
requirements: the amount of storage space saved depends on the
characteristics of the speech being recorded. Varying levels of
telephone connections provided by local telephone suppliers can
affect the performance of the TMS silence-detection mechanism.
Silence detection and reduction can be enabled/disabled by the
set-multiple-characteristics (SF.SMC) function. (See Chapter 3.)

2.2.6 Speech Buffers

Any program receiving voice from the TMS codec must be able to
store data continuously without exhausting limited on-board
buffering. A program transmitting voice data must be able to
fill buffers continuously. A double-buffering algorithm should
be used to ensure no loss of data.

2.3 TMS STATUS AND ERROR DETECTION

TMS monitors its own system status, telephone line events, and
any error conditions. Each change in status or new event is
noted. When TMS is enabled for interrupts, individual events are
reported by the TMS on-board processor. (See Chapter 5 for
details on event reporting from TMS.)

2.4 TELEPHONE LINE INTERFACE (TLI)

The TMS Telephone Line Interface (TLI) Unit provides connections
for tying TMS directly int6 individual telephone lines and to the
external voice unit. The TMS controller links the TLI to the
Professional.

The TLI contains jacks which form an interface between physical
telephone lines and the TMS controller. Each line has various
capabilities and dedicated functions described in the following
subsections. Figure 2-1 shows the back panel containing TMS
telephone line jacks.

TMS TLI provides two jacks to telephone lines, one jack for a
telephone set, a DIN connector for the TMS voice unit cable, and
the TMS bypass switch. Two of the back panel jacks are reserved
for Line 1 -- one for the external phone connection, and one for
the user-provided telset. The bypass switch allows disabling of
TMS in the event of an emergency requiring immediate use of the
telset. (You cannot attach a telset to Line 2 through TMS.)

2-5

VOICE UNIT
CONNECTOR

TELEPHONE LINE INTERFACE (TLI)

Figure 2-1: TMS Telephone Line Interface (TLI) Back Panel

2.4.1 TMS Telephone Line States

TMS firmware reports status changes for the three TMS lines. A
line can be on-line or not, or can be on-hook or off-hook. These
terms are defined in the following section.

On-line

On-hook

Off-hook

Required resources are allocated successfully.
All the conditions necessary for communication
in a particular data mode are established.

Telephone connection is idle (hung-up).

Telephone connection is active.

2.4.2 Special Line Features

Special line status changes also can be detected by TMS.
Whenever TMS has interrupts enabled, it can notify the
Professional of special features activity. Some of TMS' special
features include:

Escape sequence
checking

TMS can be programmed to listen for a special
DTMF password and notify the Professional.

2-6

Zip tone

TELEPHONE LINE INTERFACE (TLI)

An informational tone provided by TMS when
answering in voice mode to indicate to both the
calling party and to a TMS user that a new call
is present. (This feature is useful when doing
telemarketing with auto-answer enabled.}

2.4.3 Telephone Connections

TMS can be connected to several different jacks, depending on the
application requirement. Possible jacks are:

• RJllC 6-Position Jack

• RJ13C 6-Position Jack

• RJ34X 8-position Jack

• RJ35X 8-Position Jack

For details, see FCC Rules and Regulations, Volume X, Part
68.502. A keyset adapter option merges the telephone handset and
line 1 jacks for attaching a multi-line keyset rather than a
single-line telephone handset.

2.5 OPTIONAL VOICE UNIT

The TMS optional voice unit is a separate desk-top keypad unit
combining "no-hands" telephoning with message recording and
playback capabilities. The voice unit contains a speaker,
microphone, and a keypad for dialing and/or key signalling TMS
functions. A serial cable connects the voice unit to a DIN
connector on the TMS TL! back panel.

The voice unit houses logic enabling transmission and reception
of signals to and from both TMS and the Professional. The keypad
switches can be used for signalling: also, signals from TMS:
and/or the Professional can control the speaker and microphone,
and can turn on and off voice unit LED indicators. Figure 2-2
shows the keypad and LED indicators {A}, along with control
switches {B} found on the voice unit. For programmable switch
and indicator descriptions, see the auxiliary keyboard input
section in Chapter 4.

2-7

VOLUME

MIKE SENSITIVITY-

INTERNAL
MICROPHONE

OPTIONAL VOICE UNIT

Record o Play o

lc:::=:::JI r.:::1 ====1
Fast Forward Rewind o

lc:::=:::JI l!::I ===:!JI
Insert o Comment o

lc:-JI H II
Pause o Microphone o

lc::::::::JI II . II
0

INTERNAL
SPEAKER

om
~~Ea m[rIJ]m

~[!)]

CONTROL
KEYPAD

NUMERICAL
KEYPAD

HEADPHONE CONNECTOR

FOOTPEDALCONNECTOR

i---- MICROPHONE CONNECTOR

Figure 2-2: TMS Optional Voice Unit Controls/Indicators

End of Chapter

2-8

CHAPTER 3

DRIVER CALLS TO TMS

The TMS I/O driver software directs TMS operations under control
of P/OS. The driver interprets and initiates calls from an
application program to the TMS processor. See Chapter 2 for
details on communication between the driver and TMS components.

This chapter contains descriptions of each of the driver calls to
TMS. Table 3-1 groups the TMS I/O driver calls by general
function for: initializing TMS, placing outgoing telephone
calls, answering incoming calls, transmitting data, receiving
data, and terminating TMS operations. The table briefly
describes each call.

The TMS calls in this chapter are arranged in alphabetical order
by function code name. Each call description begins with a
definition of the call's function. The description provides the
call format and parameter definitions. Notes describe
operational effects, results, and special considerations for the
call. Call-specific error messages are listed at the end of each
description. The sequence and interaction of the various calls
is illustrated by the application descriptions at the end of
Chapter 1.

As an alternative to using the QIO functions described in this
manual, TMS set-up and control operations can be handled by the
Professional's communications services. Professional service
routines allow you to control TMS operations from high level
languages.

TMS-specific communications services provide library routines
that control TMS line mode, enable/disable the voice unit keypad,
handle switches to voice mode, and set the TMS DTMF sequence for
a line. General Professional base system services and the
PRO/Communications option provide callable routines for other TMS
functions as well. See the Tool Kit User's Guide for
descriptions of P/OS communications----racilities, communications
programming information, and the communications services library
(COMLIB).

3-1

Table 3-1: TMS Driver Functions

Initialization

IO.ATA
IO.ATT
IO.LT!
SF.GMC
SF.SMC
IO.BRK

Placing Calls

IO.CON
IO.ORG

Answering Calls

IO.ANS

Transmitting Data
---~-------------
IO.WAL
IO.WLB
IO.WSD
IO.WVB

Receiving Data

IO.RAL
IO.RLB
IO.RNE
IO.RVB

Termination

IO.DET
IO.HLD
IO.HNG
IO.KIL
IO.UT!

Attach a task to a line and report unsolicited events
Attach a task to a line without event reporting
Monitor an unattached line for unsolicited events
Retrieve existing characteristics of a line
Initialize or modify characteristics of a line
Issue a break or long-space

Dial a specified phone number and connect a line to it
Initiate a call on an existing connection

Answer an incoming call

Write logical data block and pass all bits
Write a logical data block
Write special data to modify voice unit controls/indica
Write a virtual data block

Read a logical data block, pass all 'bits
Read a logical data block and echo data
Read a logical data block, do not echo data
Read a virtual data block and echo data

Detach a task from a line
Place a line on hold
Hang up a line
Cancel any current or pending TMS functions
Discontinue monitoring a line for unsolicited events

3-2

CALLING PROGRAM LANGUAGES

3.1 CALLING PROGRAM LANGUAGES

You can call TMS I/O driver functions from any of the
Professional's Tool Kit program development languages. For
generic call information, see the appropriate Tool Kit language
manual and/or user's guide.

3.2 TMS I/O DRIVER CALL FORMAT

To request any of the TMS I/O driver services, use the Queue I/O
(QIO) system directive. The QIO directive instructs P/OS to
place an I/O request into the device queue for TMS. The system
transfers the request to TMS according to the request priority
and TMS availability.

P/OS clears the I/O status block when the request is queued and
then sets the block to the final I/O status once the request
completes. Optionally, you can select event flag notification
and I/O completion asynchronous system traps (ASTs).

This section describes the MACR0-11 QIO call format for the TMS
I/O driver. A summary description of the generic QIO parameters
and some sample calls follow the QIO format. Each TMS call
description in this chapter contains detailed definitions of TMS
call-specific parameters. In the call descriptions, general QIO
parameters are omitted and represented by an ellipsis (•••). For
calling information from high level Professional programming
languages, see the Tool Kit User's Guide and/or the appropriate
language manual(s). ~~ ~-

Each QIO directive requires a specific TMS I/O function code, the
logical unit number for the TMS device, any selected optional QIO
parameters, followed by any TMS-specific parameters. The
MACR0-11 call format is:

QIO[W] fnc,lun,[efn] ,[pri] ,[isb] ,[ast] ,TMS-parameters

Required parameters include fnc (function code), lun (logical
unit number), and most TMS parameters. Brackets([]) indicate
the call parameters that are optional. The event flag number is
required with the synchronous wait form, QIOW. (For the system
to parse MACR0-11 calls correctly, unused optional parameters
must be represented by a comma delimiter in place of the
argument.)

3-3

GENERAL QIO PARAMETERS

3.3 GENERAL QIO PARAMETERS

The following sections summarize those parameters expected for
each MACR0-11 TMS I/O driver call. In the call format, the
general QIO parameters precede any TMS-specific parameters.

Required QIO Parameters

f nc

lun

I/O function code (IO.ATT, IO.ANS, IO.LT!, etc.)

logical unit number for one of the TMS lines (a
lun assigned in the program to XTl, XT2, or XT3,
logical names r~presenting TMS lines 1, 2, and
3, respectively).

Optional QIO Parameters

efn event flag number (required with the
QIO-and-wait form of the directive) (1-64/clear
is queued; set is completed}

pri priority (ignored}

isb address of a two-word I/O status block

ast address of AST service routine entry point

TMS TMS-specific parameter list <Pl, ••• P6>

(See function descriptions further on for parameter specifics.)

TMS returns error and status messages as described in
of this manual. Chapter 5 also identifies the
unexpected events that occur during TMS operation
rings, loss of carrier during a call, and so forth.}

3.3.1 Sample Call to the TMS Driver

chapter 5
types of
(incoming

The following sample call illustrates the type of call statement
used to direct the TMS ~/O driver. Note that data definitions
are not provided for the sample TMS call.

QIOW$S #IO.RLB!TF.TMO,#TLUN,#TEFN,,#IOSB,,<#BUFF,#BUFSIZ,#RDTMO>

This call statement performs a read function (read logical block}
to receive information on the specified TMS telephone line
(TLUN}. TMS sets TEFN upon I/O completion, and returns call

3-4

GENERAL QIO PARAMETERS

status to IOSB. The TMS-specific parameters BUFF and BUFSIZ
define the input buffer provided for the received data. The
RDTMO parameter specifies a timeout period in seconds for the
read function, returning the total number of bytes read to the
second word of IOSB. For details, refer to the read function
description further on in this chapter.

3.4 CALL DESCRIPTIONS

The remainder of this chapter contains TMS call descriptions.
The descriptions are presented in alphabetical order by function
code name. A summary of the TMS I/O driver calls is provided in
an appendix.

3-5

CALL DESCRIPTIONS

3.4.1 Answer a Line (IO.ANS)

The answer function establishes a connection in response to a
ringing line or explicitly by answering an existing connection.
This call directs TMS to take the line off-hook and to process
the call according to the line-s current data mode.

The answered line switches to on-line status immediately for
voice and Codec modes. For serial mode, on-line occurs after
modem carrier is established; for DTMF mode, on-line occurs after
sending a DTMF tone to the other party.

Format:

QIO[W]$S #IO.ANS,#lun, ••• ,<TMS-specific-parameters>

lun

...
A logical unit assigned to XTl, XT2, or XT3

Optional general QIO parameter(s)

<TMS-specific-parameters>

dbf

size

Notes:

A data buffer required by P/OS
transferred)

(No

A size value required by P/OS (e.g., #I)

data

For line 1 (XTl), the answer command first checks current line
status; if the telephone handset is off-hook, the answer command
waits for an on-hook status for 40 seconds before timing out and
cancell:i,ng itself. While waiting for a hung-up status, TMS takes
the specific line off-hook. Once the telephone handset is
on-hook, the answer command marks the line's status as on-line
(off-hook). Then TMS determines the line's data mode to resolve
resource allocation.

In voice, DTMF, and Codec modes, IO.ANS temporarily attaches
DTMF receiver (if available) to accept unsolicited
characters. When DTMF escape-sequence checking is enabled,
function retains the DTMF receiver for 15-seconds waiting
DTMF tone, then releases it in vo:i,ce mode. In Codec mode
is no time-out; TMS keeps the DTMF receiver on the line.

3-6

the
DTMF
this

for a
there

CALL DESCRIPTIONS

If the line is already on-line, IO.ANS always returns success

Effects of the IO.ANS function vary, according to the line's data
mode, as described in the following paragraphs:

DTMF, Voice,
and Codec Modes

DTMF Mode

Serial Mode

Voice Mode

The answer function completes successfully if
necessary resources are available. TMS reports
any characters arriving (even if the characters
are part of an escape-sequence) as unsolicited
DTMF tone events. The escape-sequence, when
received, is reported as an unsolicited event,
escape-sequence received.

TMS attaches available DTMF resources and
answers the line by applying the answer tone (a
DTMF pound sign, #) for the period specified for
DTMF tone length. TMS checks the
escape-sequence until the first read command is
issued. If the DTMF receiver is attached to
another line, this command terminates at once
with device-not-ready (IE.DNR) error.

TMS attaches serial resources and performs the
appropriate modem protocol. However, the answer
does not complete until carrier is established.
If carrier is not present, the call terminates
with a carrier-not-received error message.

TMS checks for availability of speaker and and
microphone; if either is allocated to another
line, the answer command terminates with a fatal
error. If both are available, TMS first
attaches the speaker to the outgoing line and
applies a zip tone of 941 Hz for 200
milliseconds. Then TMS attaches both speaker
and microphone. If the DTMF receiver is
available, TMS also checks the escape-sequence
for 15 seconds.

3-7

Codec Mode

Status:

Is.sue

IS.PND

IE.DNR

IE.CNR

IE.RSU

CALL DESCRIPTIONS

TMS attaches
receiver is
TMS does
unsolicited
time-out for
data mode.)

and enables the codec. If the DTMF
free, TMS attaches it. If enabled,
escape-sequence checking and

DTMF tone reporting. (There is no
the DTMF receiver checking in Codec

Successful completion

I/O request pending

Device not ready. Could not answer the specific
line within the time-out period specified in the
call, or in serial mode on a line connected to a
modem without carrier present.

Connection rejected.

Shared resource in use, unable to answer.

3-8

CALL DESCRIPTIONS

3.4.2 Attach Line with ASTs (IO.ATA)

The attach-device/specify-unsolicited-input-AST function, a
version of the simpler attach (IO.ATT) function, specifies
asynchronous system traps (ASTs) to process unsolicited events
coming in from TMS. Refer to Chapter 5 for additional
information on events. When you attach a line with this
function, no other program can interrupt control until your
program terminates or releases the line with a detach (IO.DET).

Format:

QIO[W]$S #IO.ATA,#lun, ••• ,<TMS-specific-parameters>

lun A logical unit assigned to XTl, XT2, or XT3.

Optional general QIO parameter(s)

<TMS-specif ic- parameters>

ast

par2

Notes:

Address of an asynchronous system trap routine

User-specified optional one-byte parameter
passed to the AST anytime an event occurs. (For
example, par2 could be 1 or 2 indicating the TMS
line reporting the event.)

The unsolicited event types reported are:

XTU.CD

XTU.CL

XTU.OF

XTU.ON

XTU.RI

XTU.UI

XTO.DR

XTO.TU

Carrier detected (returned in serial mode and to
report on-line transitions in other modes)

Carrier lost in serial mode and disconnect for
all modes

XOFF received

XON received

Ringing detected (with auto-answer disabled)

Unsolicited input (serial and DTMF modes)

DTMF escape-sequence received

Telephone handset taken off-hook (Linel only)

3-9

CALL DESCRIPTIONS

XTU.TD Telephone handset placed on-hook (Line! only)

When the event type.is XTU.UI indicating unsolicited input, the
AST becomes "disarmed" until the task issues a read request.
Once the read request completes, the AST is armed again for new
unsolicited events. A read-with-zero-timeout can be used to
catch all ASTs. (Refer to the read function description further
on in this chapter.)

Unsolicited input from the voice unit's auxiliary keyboard and
unsolicited DTMF input is indicated by the low byte returned.
When the low-order byte in the top word in the stack is negative,
it is the negated value of the key depressed on the keyboard or
the negated value of the DTMF code. See Chapter 5 for k&yboard
values and refer to the IO.CON description in this chapter for
DTMF values.

Note that DTMF unsolicited input always comes in on TMS lines 1
or 2, while unsolicited input for the voice unit keypad always
arrives on line 3.

An IO.KIL does not detach an attached line.

Status:

rs.sue Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted.

IE.DAA Device already attached to calling task.

3-10

CALL DESCRIPTIONS

3.4.3 Attach Line (IO.ATT)

The attach function reserves the TMS line specified by the call's
logical unit number parameter. Once you attach a line, no other
program can interrupt control until your program releases the
line with a detach (IO.DET) call or until your program
terminates. Refer to the IO.ATA call for a line-attaching call
that also enables ASTs.

Format:

QIO[W]$S #IO.ATT,#lun,!""'

lun A logical unit assigned to XTl, XT2, or XT3

Optional general QIO parameter(s)

Notes:

An IO.KIL does not detach an attached line.

Status:

IS.SOC Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted.

IE.DAA Device already attached to calling task.

3-11

CALL DESCRIPTIONS

3.4.4 Issue a Break (IO.BRK)

The break function specifies sending either a long-space or break
signal on the addressed line. Some systems use break and long
space as special control characters. A long space is a
3.5-second space state on the line. A break is a 300-millisecond
space state on the line.

Format:

QIO[W]$S #IO.BRK,4lun, ••• ,<TMS-specific-parameter>

lun A logical unit number assigned to line 1 or 2

Optional general QIO parameter(s)

<TMS-specif ic-parameters>

type 0 = break
1 = long space (parameter!)

Notes:

If the specified TMS line is not in serial data mode, this
function is ignored and returns immediate success.

With the $S form of the macro, the type parameter's 0 or 1 must
be either preceded by a pound sign (#), contained in a register,
or indirectly referenced.

Status:

rs.sue Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted.

3-12

CALL DESCRIPTIONS

3.4.5 Connect Line (IC.CON)

The connect function directs TMS to dial the specified telephone
number and connect the indicated TMS line to the dialed number
Phone numbers are encoded as ASCII input that corresponds to
dialing digits. See the "notes" part of this description for a
table of ASCII/dialing values.

The connection takes place in the line's current data mode. An
optional time-out parameter allows you to specify abandoning the
call before the hardware time-out period elapses.

Format:

QIO[W]$S #IO.CON,#lun, ••• ,<TMS-specific-parameters>

lun A logical unit assigned to TMS lines XTl or XT2

. . . Optional general QIO parameter(s)

<TMS-specif ic-parameters>

phone number Address of the stored telephone number

size Size of the phone number buffer

[time-out] Optional wait period value in secs. (0-30)

Notes:

For line!, the telephone handset is temporarily disconnected
during the dialing process.

TMS evaluates the optional time-out parameter in the following
manner: the low byte specifies the time-out in 10-second
multiples; any high byte value is added to this value as
one-second multiples. If the result is greater than 255, the
value is changed to 255. For example, time-out values of 1 or
2560 both specify a 10-second time-out; 2561 specifies 20
seconds; 256 is one second and 257 is 11 seconds. This
resolution of value also applies to the IO.ORG and TMS read
functions.

For the time-out parameter to have an effect, the 1/0 function
must be IO.CON!TF.TMO.

3-13

CALL DESCRIPTIONS

TMS abandons dialing unless the tone detector is available to
detect dial tone.

An automatic hardware time-out occurs when the line's data mode
is DTMF and no DTMF tone is detected. Codec mode always
completes immediately after dialing.

Telephone numbers are variable-length. The maximum size of the
phone number buffer (after any translation) must be no larger
than 48 bytes, including special characters used for access
pauses and any optional start and end sequences. Table 3-2 lists
all legal characters for TMS telephone numbers.

Table 3-2: Legal Characters for TMS Telephone Numbers

Character

0-9

! !

'

* A B C D

Usage

Digits zero to nine.

The exclamation mark character causes an access
pause to wait six seconds for an initial or
intermediate dial tone(s).

Two exclamation marks cause a longer access
pause (40 seconds) for intermediate dial tone
used when significant network switching time is
needed (more than a few seconds).

The comma character provides a fixed 2-second
delay.

The pound-sign used in DTMF mode, sends the tone
for the symbol. In interrupted pulse mode,
indicates a temporary change to DTMF for the
rest of the number. (Used where mixed-mode
dialing permitted; for example, where local
telephone systems support only interrupted
dialing, but calls are to be switched further
through a remote DTMF access port reached via
the public switched telephone network.

These character codes are valid only when
dialing in DTMF mode, where they generate the
defined tones for each of these symbols.

3-14

CALL DESCRIPTIONS

Table 3-3 lists the ASCII/DTMF dialing codes.

Table 3-3: DTMF/ASCII Dialing Codes

ASCII
CHAR.

O"
111
2 II
3 II
4
5
6
7
8
9
*

<OCTAL>
VALUE

<60>
<61>
<62>
<63>
<64>
<65>
<66>
<67>
<70>
<71>
<52><72>
<43><73>

HEX
VALUE

30
31
32
33
34
35
36
37
38
39
2A,3A
23,38

KEYPAD
BUTTON

0
1
2
3
4
5
6
7
8
9
*

---------------- Auxiliary DTMF ASCII Codes ----------------
"A11

011
C"
D"
" ' ! "

E"
p11
G"

llH"
II I"
II J II

II K"
II L"

<101><141><74> 41,61,3C A
<102><142><75;:{ 42,62,3D B
<103><143><76> 43,63,3E c
<104><144><77> 44,64,3F D
'<54> 2C Pause 2 secs
<41> 21 Pause 3 secs,
<105><145> 45,65 697 Hz
<106><146> 46,66 770 Hz
<107><147> 47,67 852 Hz
<110><150> 48,68 941 Hz
<111><151> 49,69 1209 Hz
<112><152> 4A,6A 1336 Hz
<113><153> 4B,6B 1477 Hz
<114><154> 4C,6C 1633 Hz

NOTE

Multiple octal/hex codes are interchangeable on
ASCII values * through L when TMS transmits DTMF
data: however, received DTMF values are in the
range 60 to 77, as shown in this table. For
example, for the DTMF ASCII for "A", TMS can
transmit any of the values (<101>,<141>, or <74>
in octal and 41, 61, or 3C in hexadecimal), but
TMS receives the A only as <74> or 41.

3-15

await dial tone

CALL DESCRIPTIONS

For a hook-flash before dialing, the first character of the
number must be the caret (-) to cause the hook-flash before
dialing the number. When the number consists only of a
hook-flash caret, TMS performs the hook-flash and does not dial
anything further (not even the optional start and end sequences).

The effects of the IO.CON vary, according to the line's current
data mode, as described in the following paragraphs.

DTMF Mode

Codec Mode

TMS attaches DTMF resources.
successful when TMS receives
after the hardware time-out
whichever occurs first.

Connection is
a DTMF tone, or

period elapses,

Serial Mode TMS attaches serial resources, and
when dialing completes, begins conditioning the
appropriate modem. The call terminates with a
"device not ready" status if carrier is not
present before either the user-specified or
hardware time-out period elapses after dialing
completes.

TMS checks for availability of both speaker and
microphone; if either is allocated to another
line, the command terminates with a fatal error.
With both available, TMS attaches speaker and
microphone to the outgoing line.

TMS attaches the Codec and the
IO.CON completes immediately
dialing.

DTMF receiver.
on completion of

For line 1 only, when in serial, Codec, or DTMF mode, if the
telephone handset is off-hook at the end of the dialing, TMS
waits 30 seconds for the set to go on-hook before timing out. In
voice mode, with the telephone handset off-hook when dialing
completes, the function terminates with a message, and the user
can handle the call on the telephone handset in the usual manner.

Status:

rs.sue

IS.PND

IE.ABO

IE.ALC

Successful completion

I/O request pending

Operation aborted.

Allocation failure when size of phone number
(plus the start and end sequences) exceeds size
of TMS buffer.

3-16

IE.CNR

IE.DNR

IE.RSU

IE.BAD

CALL DESCRIPTIONS

Connection rejected because carrier is already
present when IO.CON call issued.

Device not ready. Could not connect the line
within the default time-out period or in the
time-out period specified; alternatively, could
not connect in serial mode when connected to a
modem without carrier •

. Shared resource in use, unable to connect

Invalid phone number digit or call issued for
line 3.

3-17

CALL DESCRIPTIONS

3.4.6 Detach Line Request (IO.OET)

The detach function relinquishes access to a specific TMS
telephone line. Following the detach, the line can be accessed
by any program.

Format:

QIO[W]$S #IO.DET,#lun, ••• ,

lun

Notes:

A logical unit number assigned to line 1, 2, or
3

Optional general QIO parameter(s)

If a program that attached the line exits without issuing an
IO.DET, the operating system executive automatically detaches the
line for use by other programs.

Status:

Is.sue Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted

3-18

CALL DESCRIPTIONS

3.4.7 Place a Line on Hold Request (IO.HLD)

The function performs the same operation as IO.HNG. However, if
hold-control is enabled, TMS indicates to the local telephone
equipment that the call is to be placed on hold rather than
terminated. (From TMS' standpoint, the call is released fully.)

Format:

QIO[W]$S #IO.HLD,#lun, ••• ,

lun

• • •

Notes:

None

Status:

Is.sue

IS.PND

IE.ABO

A logical unit assigned to XTl, XT2, or XT3

Optional general QIO parameter(s)

.Successful completion

I/O request pending

Operation aborted

3-19

CALL DESCRIPTIONS

3.4.8 Hang Up a Line Request (IO.HNG)

The hang-up function releases a TMS line and any TMS resources
currently in use by the line. For Linel and Line2, line status
changes to on-hook~ for Line3, the function releases the Codec
(if it is dedicated to the specified line).

Format:

QIO[W]$S #IO.HNG,#lun, ••• ,

lun Logical unit number assigned to line 1, 2, or 3

Optional general QIO parameter(s)

Notes:

Line status reverts to off-line. Line! and Line2 go on-hook.

Status:

rs.sue Successful completion

IS.PND I/O request pending

TE.ABO Operation aborted

3-20

CALL DESCRIPTIONS

3.4.9 Cancel I/O Request (IO.KIL)

The kill function interrupts call processing, directs TMS to
abort the currently executing instruction for that line and
purges all of the line's pending I/O requests. The IO.KIL call
overrides all other calls and executes immediately.

Format:

QIO[W]$S #IO.KIL,#lun, ••• ,

lun Logical unit number assigned to XTl, XT2, or XT3

Optional general QIO parameter(s)

Notes:

TMS responds to the IO.KIL call by
currently executing instruction
calls waiting for that line.

immediately terminating the
and by purging all subsequent

Pending TMS calls are purged to preserve control of subsequent
TMS operations. Purged calls return a status code IE.ABO and
activate an appr_opriate AST, if specified.

If the addressed TMS line is off-hook but not connected to
another party, TMS sets the line on-hook (hangs up the line).

Due td the asynchronous nature of both the hardware and software,
it is possible for an application to issue an IO.KIL as a
connection is being established. The I/O status of the IO.CON,
IO.ANS, or IO.ORG functions correctly indicate whether or not the
connection occurred before the effect of the IO.KIL. If these
functions indicate successful connection, the application must
issue an IO.HNG to release the call.

Note that an IO.KIL completes immediately, however it can take a
short time for other outstanding I/O requests to complete. The
requests do not necessarily complete in the same order as issued.

Status:

rs.sue Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted.

3-21

CALL DESCRIPTIONS

3.4.10 Link Task to Interrupts (IO.LT!)

The IO.LT! function arranges for notification of a specified task
by any asynchronous system trap (AST) upon detection of an
unsolicited event. This function is used to monitor a TMS line
whenever another task is not specifically attached to the line.
The IO.LT! function specifies a task to handle the unsolicited
event. Refer to Chapter 5 for additional information on TMS
event-handling.

Format:

QIO[W]$S #IO.LTI,#lun, ••• ,<TMS-specific-parameters>

lun A logical unit assigned to XTl, XT2, or XT3.

Optional general QIO parameter(s)

<TMS-specific-parameters>

dbuf

size

par3

Notes:

Address of three-word buffer in the form:
.WORD AST-address
.RADSO /first half of task name/
.RADSO /second_half_of_task_name/

The size of the AST and taskname buffer (must be
6)

User-specified optional one-byte parameter
passed to the AST anytime an event occurs. (For
example, par2 could be 1 or 2, indicating the
TMS line reporting the event.)

The unsolicited event types reported are:

XTU.CD

XTU.CL

XTU.OF

XTU.ON

XTU.RI

Carrier detected (returned in serial mode and to
report on-line transitions in other modes)

Carrier lost in serial mode and disconnect in
all data modes)

XOFF received

XON received

Ringing detected (with auto-answer disabled)

3-22

XTU.UI

XTU.DR

XTU.TU

XTU.TD

CALL DESCRIPTIONS

Unsolicited input (serial mode only)

DTMF escape-sequence received

Telephone handset taken off-hook (Line 1 only)

Telephone handset placed on-hook (Line 1 only)

When the event type is XTU.UI indicating unsolicited input, the
AST becomes "disarmed" until the task issues a read request.
Once the read request completes, the AST is armed again for new
unsolicited events. A read-with-zero-timeout can be used to
catch all ASTs.

Unsolicited input from the voice unit's auxiliary keyboard and
unsolicited DTMF input is indicated by the low byte returned.
When the low-order byte in the top word in the stack is negative,
it is the negated value of the key depressed on the keyboard or
the negated value of the DTMF code. See Chapter 5 for keyboard
values and refer to the IO.CON description for DTMF codes.

Note that DTMF unsolicited input always arrives on lines 1 or 2,
and voice unit keypad input always comes in on line 3.

An IO.KIL does not detach an attached line.

Status:

Is.sue Successful completion

IS.PND I/O request pending

IE.ABO Operation aborted

IE.ALC Buffer size not 6

3-23

CALL DESCRIPTIONS

3.4.11 Originate Connection (IO.ORG)

The connect function directs TMS to connect to an existing party
on the indicated line. Prior existence of connection is assumed.

The connection takes place in the line's current data mode. An
optional time-out parameter allows you to specify abandoning the
call before 40 seconds elapse.

Format:

QIO[W]$S #IO.ORG,#lun, ••• ,<TMS-specific-parameters>

lun A logical unit number assigned to XTl, XT2, or
XT3.

Optional general QIO parameter(s)

<TMS-specific-parameters>

dbuf A data buffer (required by P/OS)

size Size of the data buffer

[time-out] Optional waiting period value in seconds (0-60)

Notes:

The line goes off-hook (even if already off-hook). If the line
is already on-line, this function immediately returns success.
The line switches to on-line status immediately for voice and
Codec modes. For serial mode, on-line occurs after carrier is
established. For DTMF mode, on-line occurs after a DTMF tone is
received from the called party.

For the time-out period to be used, the call's function must be
IO.ORG!TF.TMO. A zero value for the optional time-out parameter
returns successfully for an already-connected line; when not
connected, the function returns the IE.DNR message and does not
attempt connection. (This allows the application program to
check to see if a line is on-line.) A non-zero value for the
time-out parameter results in normal connection.

TMS evaluates the optional time-out parameter in the following
manner: the low byte specifies the time-out in 10-second
multiples; any high byte value is added to this value as one­
second multiples. If the result is greater than 255, the value
is changed to 255. For example, time-out values of 1 or 2560
both specify a 10-second time-out; 2561 specifies 20 seconds; 256

3-24

CALL DESCRIPTIONS

is one second and 257 is 11 seconds. This resolution of value
also applies to the IO.CON and TMS read functions.

For line 1, when the time-out parameter and TF.TMO modifier are
not specified and the telephone handset is on-hook, TMS returns
the IE.DNR message. With the telephone handset off-hook the
connection occurs as soon as the telephone handset is placed on
hook unless the 40-second hardware time-out period elapses before
the on-hook state. This allows manual originate mode on line 1.

Additional effects of the IO.ORG, according to the line's current
data mode, are described in the following paragraphs.

DTMF Mode

Serial Mode

Voice Mode

Codec Mode

Status:

Is.sue

IS.PND

IE.ABO

IE.DNR

IE.RSU

IE.TMO

TMS requires that the DTMF receiver be available
in order to originate the connection
successfully.

TMS attaches serial resources and begins to
condition the appropriate modem to originate
frequency bands.

TMS checks for availability of both speaker and
microphone; if either is allocated to another
line, the call terminates with a fatal error.
With both available, TMS attaches speaker and
microphone to the outgoing line.

TMS attaches and enables the codec and DTMF
receiver.

Successful completion

I/O request pending

Operation aborted

Device not ready. Could not connect the line
within default time-out period; alternatively,
could not connect in serial mode when connected
to a modem without carrier present.

Shared resource in use.
connection.

Cannot establish

Could not connect within the specified time-out
period.

3-25

CALL DESCRIPTIONS

3.4.12 Read Functions (IO.RAL, IO.RLB, IO.RNE, IO.RVE)

The read functions are Pass All Bits (IO.RAL), Read Logical Block
(IO.RLB), Read With No Echo (IO.RNE), and Read Virtual Block
(IO.RVE).

These functions direct TMS to read incoming data and to pass the
data to the requesting task. The characteristics of the TMS line
determine whether any bits are stripped or whether control
characters are recognized. For details on line characteristics,
refer to the SF.GMC and SF.SMC function descriptions further on
in this chapter.

A read function call specifies a byte count maximum for a receive
buffer. Once data equals the requested byte count, TMS passes
the data to the driver. An optional time-out parameter allows
timed reads. The read-all-bits function, IO.RAL, overrides the
eight-bit character (SBC) characteristic specified by the SF.SMC
function and returns all bits passed by the TMS hardware.

Format:

QIO[W]$S #IO.rdf,#lun, ••• ,<TMS-specific-parameters>

rdf

lun

. . .

One of the read functions (RAL, RLB, RNE, or
RVE)

A logical unit number assigned to XTl, XT2, or
XT3.

Optional general QIO parameter(s)

<TMS-specific-parameters>

dbuf A receive buffer for incoming data

size Size of the data buffer (1-60 bytes)

[time-out] Optional waiting period value in seconds (0-60)

Notes:

In serial data mode, the read function does not pass CTRL/Q or
CTRL/S to the requesting task unless you disable XON/XOFF support
(the TC.BIN characteristic).

3-26

CALL DESCRIPTIONS

In serial and DTMF data modes, when the TF.TMO sub-function is
specified with a time-out of 0 seconds (the default value), the
read command completes immediately, once it completes transfer of
as many characters as are already received and stored in the
type-ahead buffer (up to the receive buffer maximum as specified
by the size parameter.

TMS evaluates the optional time-out parameter as follows: the
low byte specifies the time-out in 10-second multiples; any high
byte value is added to this value as one-second multiples. If
the result is greater than 255, the value is changed to 255. For
example, time-out values of 1 or 2560 both specify a 10-second
time-out; 2561 specifies 20 seconds; 256 is one second and 257 is
11 seconds. This resolution of value also applies to the IO.CON
and IO.ORG functions.

For the time-out parameter to have an effect, the I/O function
must be IO.CON!TF.TMO.

When a 1-60 second time-out is specified, the read completes as
soon as either the time-out period elapses or the specified
number of characters transfers. The number of bytes transferred
is returned in the second word of the I/O status block.

DTMF mode incoming data translates to ASCII according to the
chart in Table 3-3 earlier in this chapter. Prior to the first
read command in DTMF mode, DTMF characters received can cause a
DTMF event. Once the first read is issued, DTMF characters are
handled exactly as in serial mode. That is, the XTU.UI event
occurs and characters are placed in a type-ahead buffer

In Codec mode, buffers as large as possible (preferably a
multiple of 1024 bytes) should be specified. Double buffering
must be used so there always is an outstanding read request to
avoid loss of voice input. In Codec mode, read and write
functions cannot be performed simultaneously. DTMF data is
reported as a DTMF event.

In DTMF mode, although simultaneous read/write functions are
permitted, because of telephone line characteristics, results are
unpredictable. In addition, after completing any write functions
in DTMF mode, it might be necessary to wait for the echo delay
period and clear the type-ahead buffer to remove transmitted
characters that echoed causing TM.S to receive them. This
requirement is most likely necessary on satellite connections.

3-27

Status:

IS.TMO

Is.sue

IS.PND

IE.ABO

IE.DNR

CALL DESCRIPTIONS

Successful completion of a read. The input from
TMS terminated by the user-specified time-out
parameter. (The input buffer contains the bytes
read.

Successful completion

I/O request pending

Operation aborted. (Word 2 contains the total
number of bytes transferred before cancelling.)

Device not ready. Returned if a read function
is attempted in voice mode when not on-line and
whenever a read function is attempted in Codec
while a write is active.

3-28

--··-· ----·-· ------------

CALL DESCRIPTIONS

3.4.13 Unlink Tasks from Interrupts (IO.UT!)

The IO.UT! function halts monitoring of unsolicited events on an
unattached line. (Refer to the IO.LT! function description and
to Chapter 5 for details of the event monitoring process.)

Format:

QIO[W]$S #IO.UTI,#lun, •••

lun

. . .
Notes:

(See IO.LT!)

Status:

rs.sue

IS.PND

IE.ABO

A logical unit number assigned to XTl, XT2, or
XT3.

Optional general QIO parameter(s)

Successful completion

I/O request pending

Operation aborted.

3-29

CALL DESCRIPTIONS

3.4.14 Write Functions (IO.WAL, IO.WLB, and IO.WVB)

The write functions are Pass All Bits (IO.WAL), Write Logical
Block (IO.WLB), and Write Virtual Block (IO.WVB)~

These functions direct TMS to transmit data on the specified line
in the line's current data mode. All write functions pass all
bits of the data on the line. With this function, all . outgoing
information including control characters pass from the task
issuing the write function. The write-special-data function
(IO.WSD), the voice unit indicator control function, is described
further on in this section.

Format:

QIO[W]$S #IO.wrf,tlun, ••• ,<TMS-specific-parameters>

wrf One of the write functions (WAL, WLB, or WVB)

lun A logical unit number assigned to XTl, XT2, or
XT3.

••• Optional general QIO parameter(s)

<TMS-specif ic-parameters>

dbuf A data buffer for outgoing data

size Size of the data buffer (0 to 60 bytes)

Notes:

The line's data mode must be DTMF, serial, or codec.
transmit-data command cannot be used with voice mode.

The TMS

The addressed line must be on-line (connected) before the
tranmit-data command executes. If the line is off-line,
execl,ltion terminates with a fatal-error status.

DTMF mode outgoing data translates to ASCII according to the
chart in Table 3-3.

Status:

Is.sue Successful completion

IS.PND I/O request pending

3-30

IE.ABO

IE.DNR

CALL DESCRIPTIONS

Operation ·aborted. (Word 2 contains the total
number of bytes transferred before cancelling.)

Device not ready. Write function issued with
the line off-line or in voice mode, or, if in
Codec mode, with a read outstanding.

3-31

CALL DESCRIPTIONS

3.4.15 Write Special Data (IO.WSD)

The write-special-data function directs TMS to modify the voice
unit indicators according to the configuration specified in the
call's accompanying data buffer. Indicator numbers and states
are encoded as numeric input, listed later in this section.

Format:

QIO[W]$S #IO.WSD,#lun, .•• ,<TMS-specific-parameters>

lun A logical unit assigned to any TMS line

Optional general QIO parameter(s)

<TMS-specific-parameters>

icb

size

address of the stored indicator configuration
buffer

Size of the indicator buffer (maximum 30 bytes)

This driver call to a TMS line enables and disables one or more
specific voice-unit indicators. At least one data byte must
accompany the call. The accompanying data bytes are encoded
values indicating the state {ON or OFF) and the specific
indicator number to be affected. On/Off requests for the
microphone/mute indicator are ignored.

Notes:

Octal values 101 and 141 operate on all software-controllable
LEDs by turning them off {101) or on (141) as a group. {The
microphone mute indicator does not respond to this value.}

Indicator configuration buffers are variable in length. The
maximum size of the buffer must not exceed 30 bytes. Table 3-4
lists the legal values for TMS voice unit indicator states.

3-32

CALL DESCRIPTIONS

Table 3-4: Voice Unit Indicator States

Value

1-6

7

10-11

41-46

47

50-51

101

141

Status:

rs.sue

IS.PND

IE.ABO

IE.ALC

IE.DNR

IE.BAD

Usage

Digits one through six turn off the
corresponding indicator(s) (indicators 1 through
6)

Invalid. The microphone-mute indicator is not
under software control.

Octal digits
corresponding
11.

10 and 11 turn off the
voice unit indicators, 10 and/or

Octal digits 41 through 46
corresponding indicator(s)

turn on the

Invalid value. The microphone-mute indicator is
not under software control.

Octal digits 50 and 51 turn on the corresponding
voice unit indicators.

The octal value 101 turns off
indicators, with the single
microphone-mute indicator.

The octal value 141 turns on
indicators, with the single
microphone-mute indicator.

Successful completion

I/O request pending

Operation aborted.

all voice unit
exception of the

all voice unit
exception of the

Allocation failure when size of configuration
buffer exceeds 30 bytes.

Device not ready.

7, 47, or an out-of-range value specified

3-33

CALL DESCRIPTIONS

3.4.16 Get Multiple Characteristics (SF.GMC)

The SF.GMC function retrieves the identifying characteristics of
the specified TMS line. Use this function to assess the current
characteristics of a communications line, and use the SF.SMC
function to set or to modify current line characteristics.

The line characteristics that TMS reports are listed in Table
3-5. Originating and receiving characteristics must be
coordinated for intelligible data communications to take place.
Refer to Chapter 4 for additional information on data line
protocols and characteristics.

The TMS protocol defaults in effect on start-up are listed in the
following table. These predefined TMS I/O driver defaults can be
overridden by start-up options available through the P/OS system.
(Refer to the P/OS system documentation for start-up options.)

Format:

QIO[W]$S #SF.GMC,flun, ••• ,<TMS-specific-parameters>

lun A logical unit assigned to XTl, XT2, or XT3.

••• Optional general QIO parameter(s)

<TMS-specific-parameters>

cbuf

size

Starting address of the characteristics buffer,
a variable-length buffer with each
characteristic represented by a two-byte field
holding the TMS line characteristic-name and
characteristic value in the form:

.BYTE characteristic-name

.BYTE 0

Characteristic-names and their possible values
are listed in Table 3-5.

The size (total number of bytes) of the SF.GMC
characteristics buffer.

3-34

CALL DESCRIPTIONS

Table 3-5: Line Characteristics (SF.GMC)

Name

TC.ARC

TC.BIN

TC.CTS

TC.EPA

TC.FSZ

TC.PAR

TC.RSP

TC.STB

TC.TBF

TC.TRN

TC.XMM

Valid
Values

0-20

0,1

0,1

0,1

5-9

Meaning

Number of rings (1 to 20) to wait before
answering an incoming call. A value of 0
disables auto-answering and enables
interrupts on ringing.

Enable (1) or disable (O) binary mode.
(With binary mode enabled, XON/XOFF
recognition/transmission disabled.)

Status of data output is suspended (1) or
active (0). (Serial data mode only)

Odd (0) or Even (1) parity sense (ignored
unless TC.PAR is enabled (1).

Character frame size (width in
plus parity bit if enabled).
Table 3-6 for values.

data bits,
See Note 1,

0,1 Enable (1) or disable (0) parity checking
and generation. See Note 1, Table 3-6 for
values.

(Table 3-7) Set speed (baud rate) for receiving
incoming data in bits-per-second. Table
3-7 in Note 2 lists valid TC.RSP and TC.XSP
values. (Note that for Release 1 of TMS,
transmit speed and receive speed must be
the same.)

1,2

0-255

(Invalid)

0,1

Number of stop bits at the end of each
character.

For SF.GMC, number of unprocessed
characters in the line's input buffer. A
value of 255 indicates a m1n1mum of 255
characters to be processed.

Invokes error when used with SF.GMC.
(Write only. Refer to SF.SMC description.)

Hold control (low-order bit only).

3-35

Name

TC.XSP

TC.SBC

XT.MTP

XT.DLM

XT.DMD

XT.DIT

XT.DTT

XT.GOV

XT.SDE

XT.TAK

XT.TSP

Valid
Values

CALL DESCRIPTIONS

Meaning

(Table 3-7) Set speed (baud rate) for transmitting
outgoing data in bits-per-second. Table
3-7 (Note 2) lists valid TC.RSP and TC.XSP
characteristic values. (Note that the
receive and transmit speed must be the
same.)

0,1 Pass 7-bit (0) or S-bit (1) characters on
input. (A TC.BIN value of 1 and/or the use
of the IO.RAL (read-all) function overrides
the TC.SBC value.)

(Table 3-S) Specifies one of the modem types listed in
Note 3, Table 3-8.

(Table 3-9) Specifies one of the valid dial modes
listed in Note 4, Table 3-9.

(Table 3-10) Specifies one of the valid data modes
listed in Note 5, Table 3-10.

1,255

1,255

(Invalid)

(Invalid)

0,1

0,1

Sets the length of the pause between dialed
DTMF signals. (TMS multiplies value by 10
milliseconds. See XT.DTT.)

Sets the length of time to apply a dialed
DTMF signal. (TMS multiplies value by 10
milliseconds. See XT.DIT.)

Invokes error when used with SF.GMC.
(Write Only. Refer to SF.SMC details.)

Invokes error when used with SF.GMC.
(Write Only. Refer to SF.SMC details.)

Enables (1) or disables (0) the automatic
interpretation of input from the keyboard
on TMS' optional voice unit.

TMS input silence processing state. The
default, (1), indicates that the analog
level detector is to be used to force TMS
input to silence if it drops below the
threshold. (Note that this is a global
flag that applies to all TMS lines.

3-36

Name

XT.TTO

Notes:

Valid
Values

0-255

CALL DESCRIPTIONS

Meaning

Sets a time limit for a Codec line that is
rece1v1ng silence. Limit is value
multiplied by 100 milliseconds.

End of Table

1. TC.FSZ and TC.PAR together determine the number of data bits
returned to the task as shown in Table 3-6.

Table 3-6: Frame Size/Parity Values

TC.FSZ TC.PAR Number of Data Bits Returned

9
8
8
7
7
6
6
5

1
0
1
0
1
0
1
0

8
8
7
7
6
6
5
5

The following combinations are invalid:

1. TC.FSZ=9 with TC.PAR=O (Driver sets TC.PAR)

2. TC.FSZ=5 with TC.PAR=! (Driver clears TC.PAR)

2. The speed selected determines the type of modem to use and
overrides the modem type characteristic. For speeds from 110-300
bps, TMS uses the USFSK modem, and for 1200 bps, TMS uses the
USDPSK modem.

3-37

CALL DESCRIPTIONS

Table 3-7: Valid Receive/Transmit Speeds (TC.RSP & TC.XSP)

Value for TC.RSP
and/or TC.XSP

Actual Receive Speed
(Bits-per-second)

--~----------------
S.110
S.134
S.150
S.200
S.300
S.1200

110
134.5
150
200
300
1200

(75 and 600 bps are reserved for future use.)

3. The modem-type (XT.MTP) characteristic specifies
there is a remote modem in use and, if so, its type.
values are listed in Table 3-8.

Table 3-8: Type of Modem Characteristic (XT.MTP)

XT.MTP Value Modem Type

whether
Valid

XTM.FS
XTM.PS

USFSK - 0 to 300 baud Bell 103J
DPSK - 1200 baud Bell 212

4. The dial-mode (XT.DLM) characteristic specifies the type of
telephone equipment TMS is to emulate. Dial mode is dictated by
telephone system line limitations. The valid dial modes are
listed in Table 3-9.

3-38

CALL DESCRIPTIONS

Table 3-9: Dial Modes (XT.DLM)

XT.DLM Value

XT.DIA
XT.DTM
XT.D20
XT.OHS

Equipment Type

Dial-pulse, 10 pulses per second (Default)
Dual-tone multifrequency
Dial-pulse, 20 pulses per second
Off-Hook service (direct-wired or central
office controlled)

-----~--~------------

5. The data-mode (XT.DMD) characteristic specifies the type
data communications enabled on the line and ensures that
required TMS hardware is appropriated for the call. Valid
modes are listed in Table 3-10.

of
the

data

Table 3-10: Data Modes (XT.DMD)

-------------------,---

Status:

Is.sue

IS.PND

IE.ABO

XT.DMD Value Communications type

XT.DTD
XT.ENC
XT.SER
XT.VOI

Dual-tone Multifrequency (DTMF) data
Encoded voice data (Codec) (Line 3 default)
Serial data (modem) (Line 2 default)
Attended voice telephone (Line 1 default)

Successful completion

I/O request pending

Operation aborted or message. If
returned is IE.ABO, the high byte of
I.O status word contains one of the
three values:

the value
the first
following

SE.NIH
SE.VAL
0

Characteristic not implemented
Illegal characteristic value
Operation Aborted

3-39

CALL DESCRIPTIONS

3.4.17 Set Multiple Characteristics (SF.SMC)

The SF.SMC function initializes and modifies the operating
characteristics of a specified TMS line. Use this function to
set and reset characteristics of a communications line, and use
the SF.GMC function view current communications line
characteristics.

TMS line characteristics are listed in Table 3-11. Originating
and receiving line characteristics must be coordinated for
intelligible data communications to take place. Refer to Chapter
4 for additional information on TMS data line protocols and
characteristics.

The TMS protocol defaults in effect on start-up are listed in the
following table. These predefined TMS I/O driver defaults can be
overridden by start-up options available through the P/OS system.
(Refer to the P/OS system documentation for start-up options.)

Format:

QIO[W]$S #SF.SMC,#lun, ••• ,<TMS-specific-parameters>

lun A logical unit assigned to XTl, XT2, or XT3.

Optional general QIO parameter(s)

<TMS-specific-parameters>

cbu

siz

Starting address of the characteristics buffer,
a variable-length buffer with each
characteristic represented by a two-byte field
holding the TMS line characteristic-name and
characteristic value in the form:

.BYTE characteristic-name

.BYTE 0

Characteristic~names and their possible values
are listed in Table 3-11.

The size (total number of bytes) of the SF.SMC
characteristics buffer

3-40

CALL DESCRIPTIONS

Table 3-11: Line Characteristics (SF.SMC)

Name

TC.ARC

TC.BIN

TC.CTS

TC.EPA

TC.FSZ

TC.PAR

TC.RSP

TC.STB

TC.TBF

TC.TRN

TC.XMM

Valid
Values

0-20

0,1

0,1

0,1

5-9

0,1

Meaning

Number of
answering
disables
interrupts

rings (1 to 20) to wait before
an incoming call.A value of 0
auto-answering and enables
on ringing.

Enable (1) or disable (O) binary mode.
With binary mode enabled, XON/XOFF
recognition/transmission disabled.

Resume (O) or suspend (1) data output
(serial mode only)

Odd (0) or Even (1) parity sense (ignored
unless TC.PAR is enabled (1).

Character frame size (width in data bits,
plus parity bit if enabled) See Note 1,
Table 3-12 for values.

Enable (1) or disable (0) parity checking
and generation. See Note 1, Table 3-12 for
values.

(Table 3-13) Set speed (baud rate) for receiving
incoming data in bits-per-second. Table
3-13 in Note 2 lists valid TC.RSP and
TC.XSP values.

1,2

0-255

(Note 3)

0,1

Number of stop bits at the end of each
character.

For SF.SMC flushes all characters in the
line's type-ahead buffer, despite the value
specified.

For SF.SMC, specifies translations for
dialing or sets up standard sequences to be
sent before and after telephone numbers.
Refer to Note 3.

Hold control (low-order bit only).

3-41

Name

TC.XSP

TC. 8BC

XT.MTP

XT.DLM

XT.DMD

XT.DIT

XT.DTT

XT.GOV

XT.SDE

Valid
Values

CALL DESCRIPTIONS

Meaning

(Table 3-13) Set speed (baud rate) for transmitting
outgoing data in bits-per-second. Table
3-13 (Note 2) lists valid TC.RSP and TC.XSP
characteristic values.

0,1 Pass 7-bit (O) or 8-bit (1) characters on
input. (A TC.BIN value of 1 and/or the use
of the IO.RAL (read-all) function overrides
the TC.SBC value.)

(Table 3-14) Specifies one of the modem types listed in
Note 4, Table 3-14.

(Table 3-15) Specifies one of the valid dial modes
listed in Note 5. , Table 3-15.

(Table 3-16) Specifies one of the valid data modes
listed in Note 6. , Table 3-16.

1,255 Sets the length of the pause between dialed
DTMF signals. (TMS multiplies value by 10
milliseconds. See XT. DTT.)

1,255 Sets the length of time to apply a dialed
DTMF signal. (TMS multiplies value by 10
milliseconds. See XT.DIT.)

(any value) Temporarily enables a 30-second wait
without carrier for a telephone handset
off-hook status or a change in data mode.
(IO.HNG function cancels the wait and
disconnects.)

(ASCII) Sets the DTMF escape-sequence for password
recognition. The format is:

.BYTE XT.SDE,string char count

.ASCII /esc seq string/ -

.EVEN - -

Next SF.SMC characteristic must begin on a
word boundary. (XT.SDE invokes an error
when used with SF.GMC.)

3-42

Name

XT.TAK

XT.TSP

XT.TTO

Notes:

Valid
Values

0,1

0,1

0-255

CALL DESCRIPTIONS

Meaning

Enables (1) or disables
interpretation of input
TMS' optional voice unit.

(0) automatic
from keyboard on

TMS input silence processing. Setting this
on any line affects all lines.

Sets a time limit for a Codec line
receiving silence. Limit is
multiplied by 100 milliseconds.
only)

End of Table

that
value

(Codec

1. TC.FSZ and TC.PAR together determine the number of data bits
returned to the task as shown in Table 3-12.

Table 3-12: Frame Size/Parity Values

TC.FSZ TC.PAR Number of Data Bits Returned

9
8
8
7
7
6
6
5

1
0
1
0
1
0
1
0

8
8
7
7
6
6
5
5

The following combinations are invalid:

1. TC.FSZ=9 with TC.PAR=O (Driver sets TC.PAR)

2. TC.FSZ=5 with TC.PAR=l (Driver clears TC.PAR)

3-43

CALL DESCRIPTIONS

2. The speed selected determines the type of modem to use and
overrides the modem-type characteristic when line is off-line.
For speeds from 110-300 bps, TMS uses the USFSK modem, and for
1200 bps, TMS uses the USDPSK modem.

Taole 3-13: Valid Receive/Transmit Speeds (TC.RSP & TC.XSP)

Value for TC.RSP
and/or TC.XSP

s.110
S.134
S.150
s.200
S.300
S.1200

Actual Receive Speed
(Bits-per-second)

110
134.5
150
200
300
1200

(75 bps is reserved for future use.)

3. The translate table is made up of three sections: (1) a
dial-translation table, (2) a start sequence string, and (3) an
end-sequence string. Any (or all) sections can be empty.
(TC.TRN is an invalid parameter and returns an error when used
with the SF.GMC function.)

The format of SF.SMC's TC.TRN characteristic is:

.BYTE XT.TRN,countl,count2,count3

.ASCII /dial translate table/

.ASCII /start sequence/

.ASCII /end sequence/

.EVEN -

The dial-translate table is a string of character pairs, input
character followed by output character. This translate table is
used to convert a phone number, typically to remove format
characters, such as parentheses, dashes, commas, and spaces.

If a character in a telephone number matches a character in the
input section of the dial-translate table, the character is
converted to the character from the output section. If the
character from the output section is O, the character from the
telephone number is ignored. The TMS I/O Driver provides a
default translation table that removes fhese characters: (,),
-, and space.

3-44

CALL DESCRIPTIONS

The start-sequence ASCII string, if specified,
the phone number. If an end-sequence string
is dialed following the phone number. Note
characteristic following TC.TRN data must
boundary.

is dialed before
is specified, it

that the SF.SMC
begin on a word

4. The modem-type (XT.MTP) characteristic specifies the type of
remote modem in use. Valid values are listed in Table 3-14.

If the specified line is on-line when this function executes,
modem types changes are ignored. If the speed is invalid for the
current modem, an active USFSK modem switches to 300 bps, and an
active DPSK modern switches to 1200 bps.

If the line is off-line, speed has precedence over modem type,
see note 2. When modern type is DPSK and TC.FSZ plus TC.STB do
not equal 9: parity goes off, TC.STB is 1, and TC.FSZ is 8.

If speed is not 75 (reserved for future use) and TC.FSZ plus
TC.STB does not equal 9 or 10: the parity goes off, TC.STB and
TC.FSZ are set to 1 and 8, respectively.

Table 3-14: Type of Modem Characteristic (XT.MTP)

XT.MTP Value

XTM.FS
XTM.PS

Modern Type

USFSK - 0 to 300 baud Bell 103J
DPSK - 1200 baud Bell 212

---~-----

5. The dial-mode (XT.DLM) characteristic specifies the type of
telephone equipment TMS is to emulate. Dial mode is dictated by
telephone system line limitations. The valid dial modes are
listed in Table 3-15.

3-45

CALL DESCRIPTIONS

Table 3-15: Dial Modes (XT.DLM)

XT.DLM Value

XT.DIA
XT.DTM
XT.D20
XT.OHS

Equipment Type

Dial-pulse, 10 pulses per second (Default)
Dial-tone multifrequency
Dial-pulse, 20 pulses per second
Off-Hook service (direct-wired)

6. The data-mode (XT.DMD) characteristic specifies the type of
data communications enabled on the line so corresponding TMS
hardware is appropriated for the call. Valid data modes are
listed in Table 3-16.

Table 3-16: Data Modes (XT.DMD)

Status:

rs.sue

IS.PND

IE.ABO

XT.DMD Value Communications type

XT.DTD
XT.ENC
XT.SER
XT.VOI

Dual-tone Multifrequency (DTMF) data
Encoded voice data (Codec) (Line 3 default)
Serial data (modem) (Line 2 default)
Attended voice telephone (Line 1 default)

Successful completion

I/O request pending

Operation aborted or message. If the value
returned is IE.ABO, the high byte of the first
I/O status word contains one of the following
three values:

SE.NIH
SE.VAL
0

Characteristic not implemented
Illegal characteristic value
Operation Aborted

End of Chapter

3-46

CHAPTER 4

COMMUNICATIONS CHARACTERISTICS

Communications take place in one of the four TMS data modes. TMS
can operate in DTMF, serial, voice, or Codec data mode. Because
each mode has its own operating characteristics, TMS permits
modification of these characteristics on a per-line basis. The
TMS I/O driver can specify any TMS data mode for a line, and, by
modifying the line's characteristics, can implement that mode of
communication for both transmitting and receiving.

For example, line 1 could originate a call for someone speaking
on the telephone handset while line 2 operates in serial data
mode to send a file to another computer and line 3 (the voice
unit's Codec line) accepts dictation from the voice unit.
Alternatively, line 2 could receive a call while in DTMF mode in
order to decode an incoming password: once the password checks,
the line could switch to serial data mode and accept incoming
serial data from another computer.

To accommodate the flexibility required by three lines assuming
any one of the TMS communications modes, the TMS I/O driver
provides two functions that report/modify line characteristics.
These QIO functions are (1) the get-multiple-characteristics
function (SF.GMC) used for reading the Professional's current
line characterics, and (2) set-multiple-characteristics function
(SF.SMC) for modifying the current features for a line: for
details, refer to these function descriptions in Chapter 3.

Table 4-1 summarizes the modifiable TMS characteristics. Some
line characteristics apply to all four data modes, while others
are specific to a single data mode. Applicable modes are
indicated in the table by initial (D -- DTMF mode, S -- Serial
mode, V -- voice mode, C -- Codec mode). The data modes and
their characteristics are described in this section.

4-1

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

4.1 GENERAL TMS COMMUNICATIONS CHARACTERISTICS

The following section describes characteristics applicable to all
four TMS communications (data) modes. Mode-specific
characteristics not applicable
the sections on serial, voice,

to all four modes are described in
DTMF, and Codec characteristics.

Table 4-1: Modifiable Characteristics

·Characteristic

Data Mode

Dial Mode

Auto-Answer
Ring Count

Translation

Voice Unit
Keypad

DTMF Esc.-Seq.

DTMF Signal
Length

DTMF Pause
Length

Hold Control

Type-ahead
Buffer

Transmit Speed

Mode*

DSVC

DSVC

DSVC

DSVC

DSVC

DSVC

DSVC

DSVC

DSVC

DS

s

Function

Sets TMS' data mode (DTMF, serial,
voice, and Codec).

Sets TMS' call-dialing mode (DTMF,
dial-pulse/10 pps, dial-pulse/20pps,
and off-hook service.

Sets number of rings (1 to 20) to let
ring before answering incoming calls.
(0 means do not answer.)

Sets up
dialing.

translation table(s) for

Enables/disables special firmware
interpretation of TMS' optional voice
unit keypad.

Specifies DTMF escape-sequence signal.

Sets the length of time to apply a
dialed DTMF signal.

Sets the length of the pause between
dialed DTMF signals.

Selects hold control and maintenance
mode (the latter for Digital use only.)

Evaluate status of the
input type-ahead buffer

Set speed (baud rate) for
outgoing data (bits/sec:
150, 200, 300, and 1200).

I/O Driver's
for a line.

transmitting
110, 134.5,

* D -- DTMF, S -- Serial, V -- Voice, C -- Codec

4-2

-----. -·---

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

Characteristic Mode*

Receive Speed S

Modem S
types

Parity S
Generation
and Checking

Parity s

Character Frame S
Size

Stop Bits

Eight-bit
Characters

Binary
Characters

Control
Transmission

Prepare
to go Voice
Disconnect

Silence-Detection
Time-out

Codec Silence
Processing

s

s

s

s

s

c

Function

Set speed (baud rate) for receiving
incoming data (bits-per-second -- 110,
134.5, 150, 200, 300, and 1200). (75
and 600 bps - future implementation.)

Specifies one of the permitted modem
(USFSK and DPSK, CCITTV.21 and
CCITTV.23/Mode 1 and Mode 2 reserved.)

Enable (1) or disable (0) parity
checking and generation.

Select ODD or EVEN parity sense.

Define width of exchanged characters.
Includes data bits and parity bit, if
enabled.

Define the number of
following each character.

stop bits

Specify 7 or 8-bit input characters.

Enable or disable XON/XOFF.

Resume or suspend block data output.

Enable or disable a one-time 30-second
wait after carrier-loss for changing
to voice communications.

C Sets a time limit for termination of
READ-QIO's on a silent line.

Determines input silence processing.

* D -- DTMF, S -- Serial, V -- Voice, C -- Codec

End of Table

4-3

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

4.1.1 Data Mode

The TMS data mode characteristic determines the type of
communications to take place on the specified line. Only lines 1
and 2 can vary their mode of communications; line 3 operates
exclusively in Codec mode. The data mode defines the resources
to be allocated to a line when calling out or answering a call.
The four TMS communications data modes are:

• Dual-Tone Multifrequency {DTMF)

• Encoded voice {Codec)

• Serial

• Voice {Attended)

For example, with line 1 set to serial mode, execution of an
Answer or Originate function automatically attaches the TMS
on-board modem and proceeds as a serial call. If the modem is
not available, the call does not proceed, and TMS reports a
device-not-ready status to the I/O driver.

If the specifi~d line is on-line {in-use) during the execution of
a Set Multiple Characteristics function that calls for a change
in data mode, TMS terminates the current data mode, releasing
that line's resources for other lines. The state of the
specified line changes to off-line, but the telephone connection
does not terminate. A subsequent Answer or Originate function
takes place on that line in the new data mode.

To allow for a user at the distant end of the connection to
change from serial mode to voice mode, you can enable the
prepare-to-go-voice characteristic, establishing a 30-second
waiting period. The waiting period maintains the connection
during the temporary loss of carrier while switching from serial
to voice mode.

4.1.2 Dial Mode

The dial mode characteristic defines the type of signalling for
TMS to use when placing outgoing calls. Dial mode is dictated by
the local telephone exchange.

4-4

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

Once you specify a specific dial mode for a TMS line, all
outgoing calls are signalled in that dial mode. The outgoing
dialing signals that TMS can generate are:

• Dial pulse, 10 pulses/sec

• Dial pulse, 20 pulses/sec

• Dual-tone multifrequency

• Off-hook service

Dial pulsing is performed by interrupting the current through the
telephone in a precisely timed way at a nominal 10 pulses per
second. Dual-tone multifrequency dialing uses tone generators
for faster signalling with two sinusoidal signals, one from each
of the DTMF signalling frequency groups. Off-hook service dial
mode is used for a connection on which dialing is not necessary.

TMS can perform DTMF signalling at the rate specified by the
SF.SMC function's XT.DIT and XT.DTT characteristics. (Refer to
the DTMF signal and pause-length characteristics for signalling
information.)

4.1.3 Auto-Answer Ring Count

The automatic-answer
number of rings to be
on line 1 or line 2.
to 20 rings. If
answering, allowing
notification, which
explicit IO.ANS.

ring count characteristic specifies the
counted before TMS answers an incoming call
The ring count can be set in a range of one

you set the count at o, TMS disables auto­
the user to receive incoming ring
might be ignored or used to trigger an

TMS detects incoming rings on the line and waits for the total
number of i-J.ngs to equal the value specified before going on,
usually to an ANSWER function. For example, with a ring count of
2 specified for line 2, the on-board ring-detector would
distinguish two distinct rings before answering an incoming call~
TMS resets the count to zero if 20 seconds elapse with no new
ringing.

4-5

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

4.1.4 Translation

The translation characteristic identifies one or more specific
translation table(s) for non-standard dialing from TMS. A
translation table converts telephone number data, changing it to
the table's corresponding data value. The TMS I/O driver
provides a default translation table that removes (,), -, and
space characters.

For example, a translation table could convert letters to the
corresponding number to allow a telephone number to be specified
as (800) DIGITAL. A translation table also could remove
parentheses and/or other characters which are not dialed.

Additionally, optional strings can be specified before
after the telephone number. For example, some telephone
require that accounting information be specified with the
For details on setting up translation tables, refer to
CHARACTERISTICS description in Chapter 3.

4.1.5 Voice Unit Keypad

and/or
systems
number.
the SET

The voice unit keypad characteristic enables or disables
interpretation of signals from the buttons on the optional voice
unit. When interpretation is enabled, the TMS on-board firmware
interprets certain keys allowing the voice unit operate as a
completely independent telephone. As an independent telephone,
the voice unit uses Line 1 for outgoing calls, much like the
optional telephone handset attached to the same line. An
application still can be notified when buttons are depressed to
do call accounting or to take special action on specific buttons.

With signal interpretation disabled, an application program can
intercept signals from the keypad and can direct the call from
TMS Line 1 to Line 2 or can perform non-telephone-related
actions, such as storing voice or retrieving previously stored
voice. The reaction to keypad input is the responsibility of the
application program; the TMS I/O Driver only passes the signals
on to the application program when enabled to do so.

4.1.6 DTMF Escape-Sequence

The DTMF escape-sequence characteristic specifies a string of
DTMF signals to check when answering an call on line 1 or line 2.
Escape-sequence checking takes place in voice, DTMF, and Codec
modes. You specify the escape-sequence as a string of ASCII
values that represent the DTMF signals to check. TMS can check a

4-6

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

sequence of up to eight characters. Escape-sequence checking
must start during the first 15 seconds following answering. To
disable checking, use this characteristic with a null character
string in place of an escape-sequence. Refer to the connect
(IO.CON) function description in Chapter 3 for details on
DTMF/ASCII signal representation •

.
Typically, the escape-sequence contains a password that must be
matched by incoming DTMF signals so that an application program
can take special action. TMS checks incoming calls for that
specific sequence while answering until the sequence checks or
times out.

4.1.7 DTMF Signal Length

The DTMF signal-length characteristic sets the length of time
that TMS applies a DTMF signal tone when dialing an outgoing
call. This characteristic works with the DTMF pause-length
characteristic to set timing values for DTMF signalling.

The value of the DTMF signal length is an integer in the range 1
to 255. TMS multiplies this value by 10 milliseconds to derive
the actual amount of time the hardware applies the signal. For
example, a signal length of 7 results in a 70 millisecond signal
for each DTMF digit dialed.

4.1.8 DTMF Pause Length

The DTMF pause-length characteristic
that TMS pauses between two
interdigital pause and the DTMF
provide DTMF signal timing for TMS.

specifies the length of time
dialed DTMF signals. The

signal-length characteristic

The value of the DTMF pause-length is an integer in the range 1
to 255. TMS multiplies the value by 10 milliseconds to derive
the actual amount of time the hardware pauses between signals.
For example, a pause value of 5 sets a SO-millisecond wait
between the end of one DTMF signal and the beginning of the next
digit.

4-7

GENERAL TMS COMMUNICATIONS CHARACTERISTICS

4.1.9 Hold Control

The value of the hold control characteristic indicates whether to
operate the HOLD relay provided by TMS control leads A and Al
(yellow and black wires).

The hold control characteristic consists of the low-order bit of
the eight-bit field returned or set by TC.XMM in the SF.SMC or
SF.GMC function. The seven high-order bits of this field are
reserved for maintenance use by Digital.

When the bit is set to 1, the HOLD relay will be operated. When
this bit is set to zero, the HOLD relay will not be operated.

NOTE

The HOLD relay should only be operated in a
system which supports HOLD functions controlled
by the telephone circuits A and Al. Activating
this function in a telephone system that does not
support HOLD functions in this manner can lead to
improper operation of the telephone system. This
can result in service calls for which your
telephone supplier may assess a service charge.
Improper operation includes the creation of a
short circuit across the yellow and black wires
of the telephone system, which, if not used for
HOLD control, may be connected to unknown
circuits by your telephone supplier. (For
example, to additional telephone lines or to
power supplies for lights or bells.) Shorting
this circuit when it is not used for HOLD can
cause damage to your telephone system and to
other equipment connected to it.

If you have the PRO/Communications application,
you should allow the user to set the hold control
characteristic (bit) via the setup menu provided
with that application. Set the bit with SF.SMC
only if PRO/Communications is unavailable.

Before changing the value of the hold control bit, you must save
the states of the seven reserved bits. Use the SF.GMC function
to save the current states. Include these saved states when you
subsequently invoke the SF.SMC function to change the hold
characteristic.

4-8

SERIAL COMMUNICATIONS CHARACTERISTICS

4.2 SERIAL COMMUNICATIONS CHARACTERISTICS

TMS handles serial data mode communications over either of its
telephone lines. Serial communications are possible with one of
Digital's host computers, another Professional, or with any other
device capable of serial communications. Application software
can initiate outgoing serial data calls and answer incoming
serial calls. The following subsections describe TMS serial
characteristics.

Modifiable serial characteristics allow the Professional to match
various communications protocols. A protocol is a set of rules
or characteristics required by another computer before
information can be exchanged. The general characteristics
described in the precedihg section also apply to serial
communications.

4.2.l Typical Application: Terminal Emulator vs. Work Station

Once in communication with another system, the TMS I/O driver
allows the Professional to operate in two different communication
methods: as an interactive terminal or as an independent
intelligent work station. As an interactive terminal, TMS can
emulate any large computer's terminal. As a terminal emulator,
the Professional works like any CRT attached to and under control
of a host computer, using the host's time, memory, and storage
resources to work with programs and data files.

As an independent work station, TMS accesses a host computer like
a terminal and then "downloads" host information (copies host
program and data files to the Professional's storage media).
With the information copied, you can operate independently to run
host programs and to modify data files as a stand-alone computer
without using any of the resources of the host computer. (The
two systems can maintain an idle serial link or can terminate all
connection at this point.)

To return modified files to the host, TMS can re-establish
connection with the host and then "upload" the files serially
(copy its own files of modified information onto the host
computer's storage media). The way these capabilities are used
depends on the application software that is directing TMS.

4-9

SERIAL COMMUNICATIONS CHARACTERISTICS

4.2.2 Modifiable Serial Characteristics

TMS can modify the communications characteristics of the
Professional to establish connection with another computer. The
set of characteristics chosen must match the protocol
requirements of the other computer for the two to communicate.

Serial characteristics are flexible to meet the protocol
requirements of various host computer systems and interface
devices. Essentially, the Professional can be camouflaged to
look like a compatible terminal by changing its protocol. TMS
Serial characteristics are described in the following.

Note that TMS establishes full-duplex communications for
transmitting and rece1v1ng data. Most host systems communicate
in full duplex, an exchange protocol which permits both terminal
and host to send data. simultaneously along parallel circuits.
Application software can emulate full-duplex with local copy,
commonly referred to as "half-duplex."

4.2.2.1 Transmit Speed - The transmit-speed characteristic
selects the per-second rate of speed at which TMS sends bits
along the transmission line. Usually the rate is predetermined
by the device used for sending and/or by the receiving port on a
host system.

The available transmit-speed bit rates are: 110, 134.5, 150,
200, 300, and 1200. Generally, data transfer over telephone
lines is done at bit-rates of 300 or 1200.

Transmit and receive speed must be the same.

4.2.2.2 Receive Speed - The receive-speed characteristic selects
the per-second rate of speed at which TMS receives bits from the
transmission line.

As with transmit speed, the receive rate is pre-determined by the
receiving device and/or by the transmitting port on a host
system. The available receive-speed bit rates are: 110, 134.5,
150, 200, 300, and 1200.

Transmit and receive speed must be the same.

4-10

SERIAL COMMUNICATIONS CHARACTERISTICS

4.2.2.3 Modem Type - The modem characteristic specifies which
type of modem TMS uses for the line. Currently, TMS supports the
following modem types:

0 USFSK - 110 to 300-baud Bell 103J

0 DPSK - 1200-baud Bell 212A

The USFSK 103-type modem (U.S. Frequency Shift Keying) provides
300-baud, asynchronous, full-duplex operation over two-wire
telephone circuits by use of frequency division multiplexing.
The two data channels are obtained by operating in separate
frequency bands, one for each direction of transmission. The
DPSK 212A-type modem offers 1200-baud, asynchronous, full-duplex
operation. Refer to the SF.SMC description in Chapter 3 for
additional modem details.

4.2.2.4 Parity Generation and Checking - The parity-enable
characteristic (TC.PAR) determines whether or not a
non-information bit is added to each character transmitted. With
parity enabled, TMS adds a parity bit, according to the parity
selected by the parity-type characteristic (TC.EPA).

With parity enabled, transmitted data could be checked at the
other end for dropped bits. When parity is enabled, include the
parity bit in the total number of bits per character, character
width defined by the frame-size characteristic (TC.FSZ).

4.2.2.5 Parity Type - The parity-type characteristic (TC.EPA)
selects the type of parity required by the host. The two
available parity types are: ODD, and EVEN. For either type,
parity checking must be enabled with the parity-enable
characteristic (TC.PAR). With ODD parity selected, the parity
bit is manipulated to ensure that the total count of bits for a
character is an odd number: For EVEN parity, the total bit count
for each character is made an even number.

4-11

SERIAL COMMUNICATIONS CHARACTERISTICS

4.2.2.6 Character Frame Size (5,6,7,8,9) - The character-width
(frame-size) characteristic (TC.FSZ) specifies the number of bits
to expect in each character being transmitted. When two
computers are communicating, they must both use the same number
of data bits per character.

A frame can be as small as five bits in width and up to nine bits
in width. When determining character-width with parity enabled,
include the parity bit in the frame width.

4.2.2,7 Stop Bits - This characteristic specifies the number of
inter-character marking bits at the end of character. Stop bits
indicate where one character stops and the next character starts.
The values for stop-bits are 1 or 2. Usually, one stop bit is
sufficient for telephone communications: however, two stop bits
often are used by mechanical printing terminals operating at 110
bps or slower.

4.2.2.8 Eight-Bit Characters - The eight-bit-characters
characteristic allows you to choose whether to clear the
high-order bit on received characters with a character frame size
of 8 or 9.

4.2.2.9 Binary Characters - Automatic XON/XOFF support is
available. With XON/XOFF support enabled, data transmission
stops any time there is danger of losing information (receiving
device buffer almost full, screen scrolling halted, set-up mode
selected, etc.) and resumes automatically when the condition
changes. Without support (binary-mode-endabled), data could be
lost on overflow.

4.2.2.10 Control-S State - The control-S state characteristic
(TC.CTS) for transmitting data on a line is set by the TMS driver
when XOFF is received from the distant end and reset when XON is
received. The user can examine the bit to determine the state,
if necessary, or can clear the state to resume output. This
instance can arise if a noisy communications line causes loss of
an XON. Although not normally necessary, the user can set the
state, preventing output until reset or until an XON is received.
However, since the SF.SMC does not execute until other
outstanding I/O completes, use by an application program could
require the IO.KIL function.

4-12

SERIAL COMMUNICATIONS CHARACTERISTICS

4.2.2.11 Prepare to Go Voice - This characteristic holds Line 1
or Line 2 in preparation for suspending serial data mode and
allowing for temporary human interaction (generally, a change to
voice data mode). With the 30-second waiting period enabled, TMS
holds the line for 30 seconds, despite loss of carrier signal.

If carrier is not lost during the first waiting period, the wait
times out and has no effect. If carrier is lost during the first
waiting period but no remedial action is taken by the application
program. Before the end of the second waiting period, the line
disconnects.

4.2.2.12 Type-Ahead
characteristic refers to
buffer provided by the TMS
this characteristic clears

Buffer - The
the number of unread
I/O Driver. Setting
the buffer.

type-ahead-buffer
characters in the

any value into

The buffer is used as a type-ahead
characters coming into TMS. TMS
each line, permitting simultaneous
separate lines.

buffer for serial or DTMF
maintains separate buffers for
DTMF and serial operations on

4.3 CODEC DATA MODE CHARACTERISTICS

The Codec allows TMS to record and store encoded
voice messages and to play them back at any time.
and 2 can select Codec data mode in order to record
messages: line 3 operates exclusively in Codec mode
dictation and transcription facilities using the TMS

(digitized)
Both lines 1
or playback
and provides
voice unit.

One minute of spoken voice requires approximately 0.25 megabytes
of storage for the digital signals that represent the recorded
voice. Pauses in voice conversation on an incoming TMS Codec
line do not use up unnecessary storage. Silence is represented
on disk by the silence pattern value (hexadecimal AA).

To conserve disk space, TMS' silence compression facility keeps
track of multiple occurrences of the Codec silence pattern and
represents these occurrences by the AA byte value followed by the
total count of the number of consecutive occurrences of the byte.
For example, rather than storing six consecutive silent patterns
as AAAAAAAAAAAA, TMS always represents such silence as AA 6. On
playback, the silence is interpreted and restored as a pause of
the same length as the original voice pause.

4-13

CODEC DATA MODE CHARACTERISTICS

Data received from or sent to the TMS codec always observes this
format, regardless of the setting of the silence processing
characteristic. When playing previously recorded data, it is not
necessary to know the setting of the silence processing
characteristic was when the data was recorded.

Two Codec characteristics save additional storage space:

1. The silence processing characteristic permits
conservation of disk space by setting a low-level limit
for recording incoming voice signals.

2. The silence-detection timeout permits notification of
silence when reading from a line in Codec mode.

These two Codec characteristics are described in the following
subsections.

4.3.1 Silence Processing

Since silence is seldom perfect (there is usually some amount of
background noise), the Codec rarely uses the silence pattern for
more than a few bytes at a time. Little compression is done when
the combining algorithm is the only silence compression method.
The silence processing characteristic utilizes TMS' silence
detection circuit. This hardware component detects the level of
sound reaching the codec. When this characteristic is set, TMS
ignores actual data from the Codec that is below the detection
level (such as background noise).

Below-threshhold sounds are interpreted as silence, are presented
as the silence pattern, and are stored by the previously
described TMS silence-compression method. Compression permits
the combining algorithm to conserve more space when storing data.

Without this characteristic set, all sound entering the Codec is
recorded, regardless of level. The combining algorithm is still
used, but the presence of background noise reduces the amount of
space conserved.

4.3.2 Silence-Detection Timeout

The TMS silence-detection timeout permits you to request
notification when silence is detected while reaading from a line
in Codec mode. When you specify a non-zero value for this
characteristic and TMS detects silence on the line for that

4-14

CODEC DATA MODE CHARACTERISTICS

length of time, read operations in Codec mode terminate on
timeout with the IS.TMO (success with timeout) status. A zero
value eliminates any timeout period, and TMS continues reading
whether incoming data is silence patterns or non-silent data.

This permits an application to take appropriate action when
silence is detected. When a read operation terminates on
timeout, subsequent read operations that are already queued begin
receiving further data, whether silent or not. The timeout is
reset and applies again when additional silence is detected.

The timeout value represents 100-millisecond increments. This
characteristic allows you to specify timeouts from l/lOth of a
second through 25 1/2 seconds. (The TMS silence-compression
characteristic state has no effect on the silence-detection
timeout characteristic.)

The timeout period is cumulative; it does not necessarily apply
to a single read operation. The timeout period is reset and
begins to time again any time non-silence occurs or after each
notification of silence. (The TMS silence-detection timeout is
controlled by the silence detector and occurs regardless of the
setting of the silence processing characteristic.)

For example, when you set a silence-detection timeout period of
two seconds (a decimal value of 20), any time the silence
detector detects two or more seconds below the threshold, the
current read is terminated with a partially filled buffer.
Depending on when the timeout occurs, any number of bytes from
zero to the specified buffer size might be in the buffer. The
number of bytes actually stored is contained in the second word
of the QIO status block. The next data byte, whether silent or
not, is stored in the buffer specified by the next outstanding
read.

End of Chapter

4-15

CHAPTER 5

TMS EVENT REPORTING

TMS reacts to changes in the state of the telephone lines and
other hardware components by reporting them to the Professional
as unsolicited events. TMS' on-board processor reports any
unsolicited events by sending interrupt signals along the bus to
the Professional. The TMS driver software detects and identifies
event information coming from TMS, and the application software
determines the response to TMS interrupts.

~·

Applications can (1) ignore all event information, (2) note an
event occurrence but not respond to it, or (3) note an event and
respond to it by discerning the reason for the status change and
dealing with the event appropriately. For example, an
application that answers incoming calls needs to respond properly
when the telephone rings, while an application program for
transmitting encoded voice (Codec) data to another computer could
ignore a ringing line.

Responses to unsolicited and unscheduled TMS events depend on the
application software controlling TMS. This chapter defines TMS
events, describes auxiliary voice unit keyboard input, and
provides references to event-handling driver functions described
in Chapter 3.

5.1 TMS EVENTS

TMS reports line activity, unscheduled events, unsolicited input,
and hardware status changes. These include:

1. On-line/off-line and modem changes (carrier detect/loss,
XON/XOFF signals, and DTMF escape sequence input)

2. Detection of incoming rings

5-1

TMS EVENTS

3. Unsolicited keyboard/indicator input from the voice unit

4. Line 1 telephone handset changes (on-hook or off-hook)

TMS firmware interrupts each time any hardware event occurs. The
interrupt is received by the TMS I/O driver through P/OS and sent
to the application program. The AST provides an event-type
identifier byte (low byte, top word of stack) that specifies the
event causing the interrupt. The line-identifing parameter for
the event, as specified by the attach function (IO.ATA), is
contained in the high byte of the same word to identify the line
sensing the event.

5.2 ENABLING AND DISABLING EVENT-HANDLING

There are five TMS I/O driver functions that allow you to ignore
or respond to unsolicited, unscheduled TMS events. The functions
that control event-handling are:

IO.ATA Attach a task to a line and report unsolicited events

IO.ATT Attached a task to a line without event reporting

IO.DET Detach a task from a line

IO.LT! Monitor an unattached line for unsolicited events

IO.UT! Discontinue monitoring for unsolicited events

Each event-handling driver function is detailed in Chapter 3.

The attaching/detaching functions (IO.ATA, IO.ATT, and IO.DET)
can be called from the application task that controls the
appropriate line. Event reporting within a task permits feedback
on status changes and latest interrupt information while the task
commands other TMS operations. For example, a serial-data
transfer application might need immediate notification if carrier
dropped on the transmit line.

The monitoring functions (IO.LT! and IO.UT!) usually are used by
a task that does not control the line but simply keeps track of
any unsolicited incoming data or unscheduled hardware changes (a
ringing line, a record request from the voice unit, etc.) A
monitoring-type application could respond to a ringing line by
starting up another program to attach to the specific line and
answer the phone. For additional information on event-handling,
refer to the P/OS System Reference Manual.

5-2

EVENT DESCRIPTIONS

5.3 EVENT DESCRIPTIONS

The following subsections describe the various unsolicited and
unscheduled events that TMS reports. Each event report is
described as to the hardware changes prompting the interrupt.
Auxiliary keypad input from the TMS voice unit also is described
in this chapter. Table 5-1 summarizes the reported events.

Event reports often represent more than one type of hardware
change so that event reports vary in meaning, depending on the
line reporting and the current TMS line states. For example, the
carrier-detect event indicates successful modem connection when
reporting for a line in serial data mode; on the other hand, a
carrier-detect message for a line in voice mode indicates that
the voice connection is established.

Table 5-1: TMS Unsolicited Event Types

Event
Message

Message
Meaning

----------~--
XTU.CD
XTU.CL
XTU.DR
XTU.OF
XTU.ON
XTU.RI
XTU.UI
XTU.TU
XTU.TD

Carrier Detect/on-line
Carrier Loss/disconnect complete
DTMF Escape Sequence Received
XOFF Received (serial only/ASCII mode)
XON Received (serial only/ASCII mode)
Ring (with auto-answer disabled)
Unsolicited Input (DTMF & serial only)
Telephone handset Off-hook (Line 1 only)
Telephone handset On-Hook (Line 1 only)

5.3.1 Carrier Detect (XTU.CD)

TMS issues the carrier-detect
switches from off-Line (no
made) to show a call answered
event is reported following
comes on-line in the new data
for all three TMS lines (Line

event report when line status
connection) to on-line (connection

or originated successfully. This
a change in data mode once the line
mode. On-line status is reported
1, Line 2, and Line 3).

When the line is in serial mode, carrier already is detected
before TMS issues the event message. For voice, on-line occurs
immediately after answering or dialing. For DTMF, on-line occurs
on answer after the tone is sent; on originate, on-line occurs
following detection of a tone from the called party. For Codec,
on-line occurs as soon as the Codec is ready.

5-3

EVENT DESCRIPTIONS

5.3.2 Carrier Loss (XTU.CL)

TMS reports the carrier-loss event whenever line status switches
from on-line (connection in effect) to off-line (connection
broken). This event shows that a call disconnected successfully.
Off-line status is reported for all three TMS lines (Line 1, Line
2, and Line 3).

When received for a TMS line operating in serial data mode, this
message indicates that the line no longer has carrier signal.
This event is valid for either line 1 or line 2 in serial mode.

TMS issues the carrier-loss interrupt report to notify that
carrier signal is lost on the specified line. Note that in
serial mode, if the distant end disconnects, TMS reports this
message twice; once when carrier is lost, and again when the line
actually goes off-line. When the TMS end initiates the
disconnect, the message only comes in once.

5.3.3 XOFF Received (XTO.OF)

XON/XOFF support can be set with the set-multiple-characteristics
(SF.SMC) function's TC.BIN characteristic value set to O. When
communicating with another machine that transmits XOFF and XON
signals, TMS reports receiving the XOFF signal as input on one of
the lines and blocks data transmission to wait for the incoming
XON signal. The TC.CTS characteristic of the SF.SMC function
determines XON/XOFF state. (Refer to Chapter 3.)

5.3.4 XON Received (XTU.ON)

See the preceding XOFF Received (XTU.OF) description.

5.3.5 Ring (XTU.RI)

The ring event notifies that the TMS ring detecter received a
ring-in signal for the indicated line (line 1 or line 2).

NOTE

With the auto-answer facility enabled, TMS does
not send this message to acknowledge incoming
rings.

5-4

EVENT DESCRIPTIONS

5.3.6 Unsolicited Input (XTU.UI)

TMS reports the unsolicited input event only when the line is in
DTMF or serial data mode. When data arrives and no read request
is active, the TMS I/O driver reports unsolicited (XTU.UI) to the
task.

To ensure capture of all event reports, the AST becomes
"disarmed" until the task issues a read request. Once the read
request completes, the AST is armed again for new unsolicited
events.

Note that in DTMF data mode, prior to the issuance of the first
read, DTMF data is reported as an unsolicited character received.
Refer to the section on auxiliary keyboard and DTMF unsolicited
input further on in this chapter.

5.3.7 DTMF Escape Sequence Received (XTU.DR)

TMS reports the DTMF escape sequence received message to indicate
that the TMS DTMF receiver detected a completed escape sequence.
Checking occurs in DTMF, voice, and Codec modes. This event
message comes .in only when the received characters match the
sequence specified by the XT.SDE characteristic specified with
the SF.SMC function as described in Chapter 3 of this manual.

In DTMF data mode, escape sequence recognition is disabled after
the first read commend is issued. For a chart of the ASCII
character codes representing DTMF tones, refer to the IO.CON
description in Chapter 3.

5.3.8 Telephone-Handset Off-hook (XTU.TU)

The telephone-handset-off-hook event message reports that the
telephone handset on Line 1 changed states to off-hook (picked
up). This event applies only to Line 1 and indicates that the
telephone handset is off-hook.

Once TMS detects the new status, TMS relinquishes
the line, and Line 1 reverts to manual control.
current data mode for that line and goes off-line
telephone handset is lifted off-hook.

5-5

all control of
TMS aborts the

as soon as the

EVENT DESCRIPTIONS

5.3.9 Telephone-Handset On-hook (XTU.TD)

The telephone-handset-on-hook event message announces that the
Line 1 telephone handset changed states to on-hook (hung-up).
This event refers only to the telephone handset on line 1.

5.3.10 Auxiliary Keyboard and DTMF Unsolicited Input

DTMF unsolicited input arrives only on TMS lines 1 and 2. DTMF
unsolicited input can come in any time the line is in Codec mode
and in voice or DTMF mode while escape sequence checking is
active.

In DTMF mode, the DTMF unsolicited input arrives until the first
read command is issued; thereafter, unsolicited DTMF input is
reported by the unsolicited input message (XTU.UI).

DTMF signalling returns the values described for the connect
function. Refer to the IO.CON description in Chapter 3 of this
manual.

TMS can receive data from the keypad of the the optional TMS
voice unit. The input received depends on the keys depressed on
the keypad. This input only appears on TMS Line 3. There is a
unique byte value for every possible voice unit action or
keystroke.

TMS indicates the key depressed with a negative value. One of
the keyboard values shown in Table 5-2 is sent as a negative
value in the range -13 to -134. (The negated value can be found
in the low byte of the top word of the stack.)

5-6

EVENT DESCRIPTIONS

Table 5-2: Voice Unit Key Signals

Decimal Octal Meaning

48 060 0 key of numeric telephone keypad

49 061 1 key of numeric telephone keypad
,J

so 062 2 key of numeric telephone keypa'd

51 063 3 key of numeric telephone keypad

52 064 4 key of numeric telephone keypad

53 065 5 key of numeric telephone keypad

54 066 6 key of numeric telephone keypad

55 067 7 key of numeric telephone keypad

56 070 8 key of numeric telephone keypad

57 071 9 key of numeric telephone keypad

58 072 * key of numeric telephone keypad

59 073 # key of numeric telephone keypad

Press/Release

6/18 6/22 Record pushbutton

1/13 1/15 Play pushbutton

7/19 7/23 Fast Forward pushbutton

2/14 2/16 Rewind pushbutton

8/20 10/24 Insert pushbutton

3/15 3/17 Comment pushbutton

9/21 11/25 Pause pushbutton

5/17 5/21 ON/OFF pushbutton

4/16 4/20 Mike pushbutton (Muted/No longer Muted)
--

End of Chapter

5-7

CHAPTER 6

TMS HARDWARE COMPONENTS

The TMS hardware components enable a Professional computer to
communicate through TMS with people and with other computers.
This section provides a functional description of TMS hardware
and the data communications interfaces between TMS, external
telephone lines, and the Professional computer.

The TMS hardware system has three major separate components: (1)
the TMS Controller module, a printed-circuit board within the
Professional serving as a dedicated slave computer system for
handling data communications between the Professional and TMS
users1 (2) the Telephone Line Interface (TLI) module connecting
the Professional to external telephone lines, an optional
telephone handset and the optional TMS Voice Unit1 and (3) the
TMS Voice Unit, a desktop telephone speaker unit with a
pushbutton pad for dialing calls or controllin~ applications and
a set of TMS pushbutton/indicators that report on and control the
voice unit's speaker, recording, and playback functions.

6.1 CONTROLLER MODULE COMPONENTS

The TMS controller module has an on-board 8031 micro-processor
and a dual-ported memory bus interface to the Professional's own
processor. On-board random-access memory (RAM) serves as
dedicated buffer space for exchanging data, commands, and TMS
status reports with the Professional.

The TMS micro-processor controls a variety of communications
subsystems by means of parallel and serial I/0 devices located on
the module's on-board bus and processor I/O ports. Analog
signals are routed among the subsystems and the external
telephone lines through a crossbar array controlled from the TMS
bus. Figure 6-1 is a block diagram of the TMS controller module,
its bus, and interface paths to the Professional and the TMS TLI.

6-1

11··

°' I
IV

PTN ,---,

I
I
i

L....-1

CTI BUS

~ ---- --- --- ---- ------ --- ---
I MEMOR'I I SUBSYSTEM

I r-- I

I I
I I I I MICRO .SHAVED :
: DIAGNOSTIC PROCESSOR RAM I
1 ROM ROM I I : :

~~-r1
1 n 1 I

~

I ---- - ---~ L ____ -------- ---

TMS ADDRESS/DATA BUS

~~

LINE2

LINE1

TELEPHONE:
LINE I

INTERFACE l
MODULE l

, I

' I

1
TELEPHONE

HANDSET
VOICE
UNIT

Lr=l
n;:;J
I
I
I
I

1/0 PROCESSING SUBSYSTEM r------------1
I
I
I
I

T
I
I
I
I
I
I
I

DTMF

CODEC

I
I
I
I

T
I
I
I
I
I
I

_L

COMMUNICATION SUBSYSTEM r-------------,

~
I I

I
R

I
I

I
I
I
I
I
I

_L
I
I

USART

I
I
I
I

..L
I
I

I
I

.....

;s=:; ~- - --,
~I

-,...
I~ CONTROL

TMS ADDRESS/DATA BUS

CTIBUS
INTERFACE

0"

I
I

T
I
I
I
I
I
I
I

T
I
I

212A
MODEM

I
I
I
I
I
I
I

J ,-
1
I
I

I
I
I
I
I
I M ~ I : I : PROC:ssoR • l

I
L-----~-

____ _J I I L ____________ _J TMS CONTROLLER
MODULE I SERIALDATA {

I TO~ROM=-~==------~---=====---_-_-_~_ --- --------- --- --- --- --- --- - _ _J

Figure 6-1: TMS System Block Diagram

()
0 z
t-3

~
t""
t""
t"'l
~

J:
0
0 c
t""
t"'l

()
0
J:
1-tj

0 z
t"'l z
t-3
00

CONTROLLER MODULE COMPONENTS

The four-layer controller board has a 2K-byte random-access
memory (RAM) for data and command buffering, timers, and both
serial and parallel ports. Parallel ports exist for the
telephone line interface (TLI), DTMF-tone transmitter/receiver,
the Codec, the on-board modem(s), and the signal switching
crossbar. TMS' own 5-source, 2-priority-level nested interrupt
structure controls the on-board micro-processor and permits rapid
servicing of external events and real-time-driven peripherals.
Each of these components is described in the following
subsections.

6.1.1 TMS Micro-Processor

TMS' 8-bit on-board processor manages telephone communications
resources on the controller module and exchanges data, commands,
and status information with the Professional's own processor.
The TMS processor has an external 8K-byte read-only memory used
for controller system and test procedure firmware.

The TMS micro-processor has two different memory cycle types,
program memory cycles of 6 clock cycles (500 nanoseconds) and
data memory cycles of 12 clock cycles (1 usec). The firmware ROM
is accessed with program memory cycles providing 2-byte fetches
in a 12-clock-cycle period. TMS bus buffer RAM and I/O devices
are accessed with data memory cycles with single-byte fetches
each 12-clock-cycle period. The 8031 is a control-oriented CPU
designed for use in sophisticated real-time applications.

The 803l's universal asynchronous receiver/transmitter (UART) is
assigned to the TMS on-board modems. The UART operates in
standard asynchronous mode with a start bit, eight data bits, and
a stop bit. The TMS controller firmware implements a full-duplex
110-baud UART to communicate with the TMS voice unit. FSK modem
support is provided in firmware as a full-duplex 75-baud UART.

6.1.2 Random-Access Memory

On-board random-access memory (RAM) serves as dedicated buffer
space for exchanging data, commands, and TMS status reports with
the Professional. The 2K-byte static RAM appears from the
Professional's bus as 64 bytes of memory, mapped as the lower
byte in 64 words accessible. The first location is reserved for
the TMS page pointer, which selects the RAM page to be accessed
through the remaining RAM locations. The first two locations are
pre-empted by diagnostics ROM and the TMS address register.

6-3

CONTROLLER MODULE COMPONENTS

For the TMS on-board processor, RAM appears as 32 discontinuous
62-byte pages. Any the 32 RAM buffers can be selected by loading
the page pointer with the appropriate octal address (000 to 037).

NOTE

Application software access to RAM locations is
restricted to the TMS I/O driver interface.

6.1.3 Read-Only Memory

Two on-board SK-byte components provide the TMS processor with
read-only memory for controller system and test firmware. (The
8031 has no internal ROM.) The firmware ROM contains the TMS
firmware command set, a TMS-specific instruction set for
communication between the Professional and the TMS I/O devices.

Communication with the TMS firmware consists of (1) commands from
the TMS I/O driver controlling outgoing serial data, TMS hardware
activity, and telephoning functions, and (2) messages from TMS to
the driver reporting on line activity, unscheduled events,
incoming data, and hardware status changes. The TMS firmware
command set is accessible only to the TMS I/O driver:
applications cannot access to the TMS firmware instruction set.

The 8K diagnostic ROM contains TMS
firmware activates every time the
power-up self-testing procedures.
analyzes the results of the TMS
during module initialization.

self-test firmware. This
Professional executes its
The power-up self-test

firmware power-up self-test

The diagnostic firmware checks the RAM, DTMF local loopback,
DTMF-Codec local loopback, Codec-tone detector local loopback,
modem local analog loopback, and voice unit loopbacks. Voice
unit self-test interactively verifies operation of the LEDs,
keypad, speaker, and microphone. The Professional handles any
errors reported during TMS power-up self-test. System test
firmware is available for testing through TMS diagnostic
programs, which utilize the TMS I/O driver.

6.1.4 TMS Bus

To manage all hardware resources, the TMS controller has its own
bus. This bus controls eight data lines buffered from the 8031
processor's parallel port 0 by a bi-directional bus buffer.

6-4

CONTROLLER MODULE COMPONENTS

Eight bits of parallel I/O are assigned to controlling the
telephone line interface (TLI). Thirteen bits are assigned to
the DTMF receiver/transmitter. Twelve bits of parallel I/O are
assigned to each modem subsystem. The analog signal switching
crossbar array also is controlled from the TMS bus.

The TMS controller module's universal synchronous/asynchronous
(USART) and its three bits of parallel I/O are assigned to the
CVSD voice coder/decoder (CODEC). The USART operates
synchronously at 32K bits per second. Its function is to accept
parallel data for output to the Codec as continuous serial data
and input of incoming serial Codec data for conversion to
parallel format for TMS.

At power-up, the TMS micro~processor initializes the bus I/0
devices as follows: sets both the 212A and FSK modems to Bell
103 mode (inactive); turns off the DTMF transmitter and sets the
TLI relays to on-hook (hung up) and voice unit microphone
unmuted; initializes the USART to synchronous mode with one-byte
sync character, external sync detection, and a single sync
character for silence-pattern.

6.1.5 Crossbar Array

The TMS controller module drives its associated devices using an
8-input/8-output signal crossbar. The signal switching system is
implemented with two CMOS 8 x 4 crossbars. The crossbars provide
signaling paths to the following TMS components: three external
communications lines (the two telephone lines and the voice
unit); the modem subsystem(s); the Codec subsystem; the DTMF
subsystem; and the call-progress tone detector.

The TMS crossbar array is controlled by the on-board processor,
which makes connections as needed to perform TMS operations.

When the Professional powers up, all crossbar switches are reset
to open. Inputs are connected to outputs by writing a 1 to the
appropriate bit in the I/O RAM page. Writing a 0 disconnects the
inputs from the outputs. The crossbar array permits software
assignment of any subsystem to any line and permits connecting
systems to themselfves or to each other for testing and
diagnostic purposes.

6.1.6 DTMF-Tone Transmitter/Receiver

The TMS on-board DTMF transmitter/receiver is used for data
communications and for recognizing DTMF input. DTMF signaling is

6-5

CONTROLLER MODULE COMPONENTS

approximately eleven times faster than rotary pulse-dialing
within those telephone systems equipped for DTMF transmissions.
(TMS provides both types of dialing.)

The DTMF subsystem handles receiving and sending for dual-tone
multifrequency signaling, a pair of high/low frequency sinusoidal
signals used to represent the standard 16-character tone set
(often referred to as "touch-tone" signaling, a trademark of the
American Telephone and Telegraph Company).

6.1.7 Tone Detector

The TMS controller's on-board filter and detector subsystem is an
input-only device that detects call-progress tones to assist
automatic call placement. The tone detector reports rece1v1ng
the following tones: dial tone and audible ringback signals.
Detected tones are expected at a level above -37 dBm.

6.1.8 Codec

The TMS controller includes a coder/decoder (CODEC) for
digitizing voice input and for playing back digitized voice. The
device is half-duplex and can either record or play back at one
time: it cannot transmit and receive simultaneously. TMS' Codec
uses a continuously variable slope delta (CVSD) modulation scheme
at a serial data stream rate of 32 kilobits per second.

The Codec subsystem also includes a voice-detect circuit and an
automatic level control (ALC) circuit. The voice detector allows
detection of silent passages for compacting of periods of
recognizable silence in voice input: the ALC adjusts the signal
levels to compensate for gain variations in incoming calls.

6.1.9 Modem(s)

The TMS controller is designed for two modems that operate with
the two telephone lines. The TMS modems are: (1) the Western
Electric high-speed DPSK operation modem compatible with Bell
212A and low-speed FSK operation compatible with Bell 103J, and
(2) the international FSK modem, an AM7910 FSK unit supporting
communication under five Bell and CCITT protocols, including V.21
and V.23.

6-6

CONTROLLER MODULE COMPONENTS

Data transmission operates asynchronously at rates ranging from
75 bps to 1200 bps using full-duplex modems. (Application
software can effect full-duplex with local copy.) TMS also can
operate at data rates of 75 bps to 1200 bps using the half-duplex
Bell 202 modem contained on the 7910 chip; however, this modem is
no longer in common use, and no software support is planned.

A TMS modem is most sensitive to crosstalk from other crossbar
devices due to the amount of information extracted from very low
signals in the presence of noise. To avoid any problems, the
modems are not connected at the crossbar to the Codec output, the
voice unit input, or the DTMF transmitter -- all high amplititude
signals with components in the modem passbands.

6.2 TELEPHONE LINE INTERACE (TLI) COMPONENTS

The TMS telephone line interface (TLI) module is a small
interface board that resides at the back of the Professional
system unit. The TLI plugs into a 22-pin general I/O connector,
and 16 wires on the Professional's data bus connect the TLI
connector to the TMS controller module.

The TLI module contains plugs for connecting TMS telephone lines
to external telephone lines. TLI connections also provides plug
attachments for an optional telephone handset and for an optional
TMS voice unit. The TLI's bypass switch permits override of TMS
telephone line control for any emergency requiring the use of
TMS-dedicated telephones.

6.2.1 TLI/Line Connectors

Figure 6-2 shows the connectors and switches on the TLI's
external plug panel, along with the interface hardware to the TMS
controller module. The TMS TLI provides two jacks to telephone
lines, one jack for a telephone handset, and a DIN connector to
the TMS voice unit. Two of the back panel jacks are reserved for
Line 1 -- one for the external phone connection and one for the
user-provided telephone handset.

6-7

TELEPHONE LINE INTERACE (TL!) COMPONENTS

~ s::::::Ds::::::m • • • • •

Figure 6-2: TMS Telephone Line Interface (TLI)

6-8

TELEPHONE LINE INTERACE (TLI) COMPONENTS

6.2.2 TLI/TMS Communications

TMS sends and receives status and data signals along the data
bus. Digital signals from the TLI represent status changes on
the various external lines. Analog signals are buffered between
the bus and the TMS crossbar subsystem. Voice unit serial data
also uses the data bus passing information between the voice unit
and the TMS controller module's on-board processor.

The TLI contains two optocouplers configured to detect ring-in on
the two external telephone lines. Each line also has a hold
relay for optional control of the A and Al leads in multi-button
systems. (See the description of the hold control line
characteristic -- TC.XMM --·in Chapter 4). A third optocoupler
detects offhook condition on the external telephone handset.
Each relay has one dedicated line on the Professional data bus.
Table 6-1 lists the particular signals that pass between the TLI
module and the TMS controller module.

Table 6-1: TLI Signals

Digital Relay Controls and Status Indicators

Telephone Line 1 Hook Relay Control
Telephone Line 2 Hook Relay Control
Telephone Line 1 Hold Relay Control
Telephone Line 2 Hold Relay Control
External Telephone Handset Mute Relay Control
External Telelphone Handset Of fhook Indicator
Telephone Line 1 Ring-in Indicator
Telephone Line 2 Ring-in Indicator

Analog Crossbar Signals

Transmit to Telephone Line 1
Receive from Telephone Line 1
Transmit to Telephone Line 2
Receive from Telephone Line 2
Transmit to Voice Unit
Receive from Voice Unit

Voice Unit Serial Data

Transmit Data to Voice Unit
Receive Data from Voice Unit

6-9

'

VOICE UNIT COMPONENTS

6.3 VOICE UNIT COMPONENTS

The TMS voice unit is a speaker/microphone accessory that
functions as a

• hands-free speaker telephone,

• dictation recorder/player, and

• pushbutton/indicator panel for application-specific
signaling.

The TMS voice unit has its own on-board controller that
communicates with the TMS controller module's processor through a
pair of 110-baud current-loop serial data lines. Refer to Figure
6-2 for voice unit/TMS controller connections.

6.3.1 Voice Unit Keypad

The voice unit provides a standard numeric telephone keypad for
dialing telephone calls and for application-interpreted
signaling. A bank of nine LED indicators under control of the
TMS I/O driver can be programmed for specific TMS applications.

The voice unit's own microprocessor scans and transmits any
keypad input, drives the LEDs as directed by the TMS controller,
reports on footswitch status, and controls the automatic level
control circuits for the microphone and speaker.

6.3.2 Voice Unit/TMS Communications

Signaling between the voice unit and the TMS controller occurs
via the serial cable interfacing through the TLI and from there
to the TMS microprocessor on the TMS controller module. The
voice unit carries serial signaling information, audio input and
output, and power and ground leads. The voice unit contains a
connector jack for an optional headset, microphone, or earphone
and foot-pedal switch.

6-10

VOICE UNIT COMPONENTS

The interconnections for the voice unit include the following:

• Transmit voice to speaker

• Receive voice from microphone

• Transmit serial data for LED and switch control

• Receive serial data from keypad and pushbuttons

• Positive Power

• Negative Power

• Reset Voice Unit processor

6.3.3 Voice Unit Speaker/Microphone

The voice unit contains a built-in speaker and a set of circuits
to switch and condition voice. The speaker subsystem features
automatic level control (ALC), a feedback system for maintaining
a modulated voice level. A voice detector lets the voice unit
controller sense voice and silence and arbitrate half-duplex
operation during a conversation.

The voice unit's built-in microphone and its associated circuits
send voice as analog-encoded signals to the Professional. The
microphone subsystem includes an external microphone jack, a
sensitivity switch, an ALC feedback system to modulate voice
level, and a voice detector to sense differences between voice
and silence for arbitration of half-duplex operations during
conversations.

End of Chapter

6-11

APPENDIX A

TMS CALL SUMMARY

Call TMS Parameters

IO.ANS Databuffer, buffersize

IO.ATA Astname, [usercodebyte]

IO.ATT (No TMS parameters)

IO.BRK Break type

IO.CON Numbuffer,buffersize, [tmo]

IO.DET (No TMS parameters)

IO.HLD (No TMS parameters)

IO.HNG (No TMS parameters)

IO.KIL (No TMS parameters)

IO.LT! Taskbuff, buffsz, [userbyte]

IO.ORG Databuffer, buffersize [tmo]

IO.RAL Inbuffer, buffersize [tmo]

IO.RLB Inbuffer, buffersize [tmo]

IO.RNE Inbuffer, buffersize [tmo]

A-1

Purpose

Answer an incoming call

Attach a task and report
unsolicited events

Attach w/o event reporting

Issue break or long-space

Dial a number and connect

Detach a task from a line

Place a line on hold

Hang up a line

Cancel pending functions

Monitor unattached line
for unsolicited events

Initiate a call on an
existing connection

Read logical data block,
pass all bits

Read a logical data block
and echo data

Read a logical data block,
do not echo data

IO.RVB

IO.UT!

IO.WAL

IO.WLB

IO.WSD

IO.WVB

SF.GMC

SF.SMC

Inbuffer, buffersize [tmo]

(No TMS parameters)

Outbuffer, buffersize [tmo]

Outbuffer, buffersize [tmo]

Indicatorbuff, buffersize

Outbuffer, buffersize [tmo]

Characteristicsbuffer, buffsz

Characteristicsbuffer, buffsz

End of Appendix

A-2

Read a virtual data block
and echo data

Stop monitoring line for
unsolicited events

Write logical data block
and pass all bits

Write logical data block

Write special data to set
voice unit controls

Write virtual data block

Get line characteristics

Set/reset characteristics

APPENDIX B

SAMPLE TMS PROGRAM

The following Pascal program is a demonstration of the
capabilities of the Telephone Management System. The program
reads a telephone number from a file called PHONENUM.TXT. Then
it prompts the user to press the DO key, causing the program to
dial the number it read from the file. The user picks up the
phone, presses DO (after being prompted again), hears a tone, and
speaks. After a few seconds of silence TMS times-out, or after a
period of time TMS beeps the user to finish the message. Then
TMS plays back the message for the user to hear.

The program accesses TMS line 1, which should be connected from
the TLI unit to a wall telephone jack. To run the program, you
must:

• Store the telephone number in PHONENUM.TXT, which is a
relative file. (See the file's OPEN statement near the
beginning of the program.)

• Create a voice file and store it on disk.

• Install the TMS driver (installing the
PRO/Communications application does this for you).

The file PHONENUM.TXT contains three records:

1. the phone number,

2. the voice file name (where the message is stored),

3. a playback line, which is a number whose value
determines whether TMS plays back the message on a
telset (value=l) or on the voice unit (value=2).

B-1

The program opens the voice file by calling the routine
Open Voice File. Like other routines that the program calls,
Open Voice:File is a MACR0-11 subroutine contained in a file
called HANDLER.MAC. We show this file after the main module.
Definitions for the MACR0-11 subroutines, included in the main
module from the file TMSINC.PAS, also appear later in this
appendix.

B-2

{----------------------- Pascal Main Module ------------------------}
Program NccRecord (Input,Output);

{ This program will print a message to the screen for the user and then
allow the user to record a message and hear it played back.

Record.pab

Recordlfplcp,Recordl-sp=RecordlMP
CLSTR=PASRES,POSSUM,POSRES,RMSRES:RO
Task = Record
Stack = 30
units = 46
asg = ti:l0:13
gbldef=g$lun:l2 10.
gbldef=ms$lun:l5 13.
gbldef=Vl$LUN:l4 12.
gbldef=V2$LUN:l3 11.
gbldef=tt$lun:S S.
gbldef=Ll$Lun:20 16.
gbldef=L2$Lun:l7 15.
gbldef=L3$Lun:l6 14.
gbldef=tt$efn:l
gbldef=xt$efl: 2
gbldef=xt$ef2:3
gbldef=xt$ef3:4
gbldef=xt$ef4:5
gbldef=wc$lun:O
gbldef=mn$lun:O
gbldef=hl$lun:O
II

Record.odl

.root User - Handler - RecrdSpw - PAS - RMSROT
USER: .fctr Record
PAS: .fctr lb:[l,S] :PASLIBllb
@lb: [l,SJ :rmsRLX

.end

%include 'TMSINC.PASlnolist'

Type LineType =
Len
Oat

End;

Record
Integer;
Text Type;

{ Global Variable Definitions
var

Phone Text
Phonenum
Phonenumlen
Table File
Table Entry
EntryNumber
LongStatus
Status
FileNumber
Name
Name Length
RABAddress
Number

File of LineType;
Text Type;
Integer;
file of VoiceTableType;
VoiceTableType;
integer;
LongStatusType;
StatusType;
integer;
Text Type;
Integer;
Integer;
Text Type;

B-3

NumberLength
StartingBlock
NumberOfBlocks
Answer

integer:
integer:
integer:
char;
integer:
LineType:
integer:

Record Line
Record Line
Playback Line
PlayBack
Timeout
NumGotten
i
Key
Beep
RecNum

TextType:
integer:
integer;
integer;
Statustype;
Char;
Integer:

(************ Procedures and Functions

[External (Getkey)]
Procedure Getkey (Var Key
Seqll:

: StatusType);

Procedure ExitSt(Status : integer);
external;

function Length(S:TextType):integer;

var
i : integer;
Done : boolean:

begin
i := 80:
Done : = false:
while not J):)ne do

begin
Done : = (i < 1) :
if not Done then

Done := (S[i) <> ' '):
if not Done then

i := i - 1
end;

Length := i
end; { of Function Length]

Procedure Phone;

Begin

************)

Open (Phone Text,'SysDisk:[ZZSYS]Phonenum.txt' ,history:= old,
organization:= relative,Access Method :=direct access);

Reset (Phone Text); -
RecNum := 1 ;-
Find (Phone Text,RecNum);
Record Line-:= Phone Text-:
Get (Phone Text); - { Reading Phone number l
Phonenum :~ Record Line.dat;
Phonenumlen := Length(Phonenum):
RecNum := 2;
Find (Phone Text,RecNum);
Record Line-:= Phone Text-;
Get (Phone Text): - { Reading Voice File l
Name := Record Line.dat;
NameLength := Length(Name);
RecNum := 3:

B-4

Find (Phone Text,RecNum);
Record Line-:= Phone TextA;
Get (Phone Text); -
PlayBack :~ Record_Line.dat;
End; [of procedure phone}

(*********

Begin [Main Routine
Beep := chr(7);

Initialize_TMS;

Main Program

[Reading Playback Line number J

*********)

[Beep keyboard

Call the phone routine that gets the phonenumber etc ... J
Phone;
Close (Phone_Text);

[Record and Playback}
RecordLine := l;
PlaybackLine := ord(Playback(l]) - ord('O');
Hang Up Phone(Recordline); [Making sure phone is hung up before we startJ
write1n:
If RecordLine <> PlaybackLine then Hang_Up_Phone(PlaybackLine);

Writeln (''(27)' #3 Telephone Management System');
Writeln (''(27)' #4 Telephone Management System');
Writeln;Writeln;Writeln;
Writeln ('This is Digital Equipment Corporation' ,"'",'s Telephone Management')
Writeln ('System (TMS) demonstration.');
Writeln;
Writeln ('The Professional 300 Series computers can be configured with');
Writeln ('the TMS option, which uses the phone network for both voice');
Writeln ('and data communications. Its hardware, with appropriate ');
Writeln ('software, can support: voice storage and forward, dictation, ');
Writeln ('voice annotation of text, and simultaneous voice/data calls to');
Writeln ('allow voice communications concurrent with screen transmission.');
Writeln;
Writeln ('TMS was designed with the PROFESSIONAL in mind.');
Writeln; 1

Writeln ('This is your chance to give the new Telephone Management System');
Writeln ('(TMS) a try.');
Writeln;
Write ('Press the DO key for instructions on how to run this');
Writeln ('demonstration. ');

Repeat
Getkey(key);
If (Key[l]<>2) then Begin Write(Beep);Break(Output);end;
If (Key (l] = 2)and(key[2] <> 16) then begin write(Beep);Break(Output);end;

Until (Key[l] = 2) and (Key(2] = 16};

writeln(''(27)' [H'(27)' [J'); [Clear Text Screen
Writeln(' DEMONSTRATION INSTRUCTIONS ');
Writeln;Writeln;
Writeln ('**NOTE: PLEASE READ ALL INSTRUCTIONS BEFORE YOU CONTINUE ');
Writeln;
Writeln('In this demonstration you will have the opportunity to talk to a ');
Writeln('Telephone Management System (TMS). Your voice will be recorded');
Writeln ('on the disk using the telephone next to the machine. You can');
Writeln('then listen to your message as it is played back by TMS. ');
Writeln;
Writeln('l) Press the DO key and the telephone will ring. ');

B-5

Writeln;
Writeln('2) Pick up the phone after it rings. ');
Writeln;
Writeln('3) When ready to record press DO. ');
Writeln;
Writeln('4) Start speaking at the sound of the tone. ');
Writeln;
Writeln('5) TMS will timeout after a few seconds of silence on the line ');
Writeln(' or you will hear another tone to signal that your time is up. ');
Writeln;
Writeln('6) Listen for the playback of your message. ');
Writeln;
Writeln('7) Hang up the telephone. ');
Repeat
Getkey(key);
If (Key[ll<>2) then begin Write(Beep);Break(Output);end;
If(Key [l] = 2)and(key[2] <> 16) then Begin write(Beep);Break(output);end;

Until (Key[l] = 2) and (Key(2] = 16);

FileNumber := 1;
StartingBlock := l;
Open Voice File(LongStatus,Name,NameLength,FileNumber,RABAddress);

If (LongStatus(l] <> 1) or (LongStatus[3] <> 1) then
Begin

writeln(' '(27)' [H' (27)' [J');
Writeln ('Error occured in Opening Voice File');
Write ('Status=' ,LongStatus[l] :5, LongStatus(2] :5);
Writeln(LongStatus[3] :5,LongStatus[4] :5);
Writeln;
Writeln ('Press RESUME to Return to Main Menu');
Repeat

Getkey(key);
If (Key[l]<>2) then Begin Write(beep) ;Break(output);end;
If (Key (l] = 2)and(key(2] <> 7) then

Begin
write(Beep);
Break(output);

End;
Until (Key[l] = 2) and (Key[2] 7);
Exits t (1) ;

end;

Timeout := 20; 2 seconds J
if Timeout <> O then

Set TMS TimeOut(RecordLine,TimeOut);
repeat -
Set TMS To Codec(RecordLine);
if PhoneNumLen <> o then

Dial Phone Number(RecordLine,PhoneNum,PhoneNumLen)
else - -

Pick Up Phone(RecordLine);
NumberOfBTocks := 10;
writeln('Press DO to start recording.');

Repeat
Getkey(key);
If (Key[ll<>2) then Begin Write(Beep) ;Break(output);End;
If (Key [l] = 2)and(key[2] <> 16) then

Begin
write(Beep);
Break(output);

End;
Until (Key(l] = 2) and (Key[2] = 16);

B-6

TMS Tone(RecordLine);
writeln('Recording ••• ');
TMS Record (Status,RABAddress,RecordLine,StartingBlock,

NumberOfBlocks,NumGotten);
TMS Tone(RecordLine);
Writeln;
writeln('The recording is done ••• ');
If RecordLine <> PlaybackLine then

Begin
Hang Up Phone(RecordLine);
Pick-Up-Phone(PlaybackLine);

End; - -
key [l l : = 0; key [21 : = O;
Wri teln;
Writeln('Playing back your message ••• ');

TMS PlayBack(Status,RABAddress,PlaybackLine,StartingBlock,NumGotten);
WrTteln;
writeln('Press DO to hear the message again or EXIT to quit');
Repeat

getkey(key);
If (key[l] <> 2) then Begin write(beep);Break(output);end;
If ((key[l]=2) and (key[2]<>16)) and ((key[l]=2)and(key[2]<>10))

Then
Begin
Write(Beep);
Break(Output);

End;
Until ((key[l]=2) and (key[2]=16)) or ((key[l]=2) and (key[2]=10));
While (key[l] =2) and (key[2] =16) do

Begin
Writeln('Playing back your message ••• ');
TMS Playback(Status,RABAddress,PlaybackLine,StartingBlock,NumGotten);
Writeln;
Writeln('Press DO to hear the message again or EXIT to quit');
Repeat

getkey(key);
If (key[l] <> 2) then Begin write(beep);Break(output);end;
If ((key[l]=2) and (key[2]<>16)) and ((key[l]=2)and(key[2]<>10))
Then

Begin
Write (Beep) ;
Break(Output);

End;
Until ((key[l]=2) and (key[2]=16)) or ((key[l]=2) and (key[2]=10));

End;
Writeln;

Hang Up Phone(PlaybackLine);
until-(kiy[l] = 2) and (key[2] = 10);

Close Voice File(Status,FileNumber);
Writeln; -
Writeln ('Hope you enjoyed talking to TMS; I enjoyed talking with you.');
Writeln ('I am hanging up now.');
Writeln;
Hang Up Phone(RecordLine);
if RecordLine <> PlaybackLine then

Hang Up Phone(PlaybackLine);
end. - -
!----~----------- end of Pascal main module -------------------!
!---------------- File TMSINC.PAS -------------------!
! TMS Handler Include File.}

8-7

[This file contains definitions of the MACR0-11 routines used by
[the Pascal program.

type
TextType =packed array [1 •• 80) of char:
LongStatusType =packed array [1 •• 4) of integer:
StatusType =packed array [1 •• 2) of integer:

[EXTERNAL (OPNVOI)]
procedure Open_Voice_File(var Status: LongStatusType7

var Name : TextType: ·
var NameLength integer:

FileNumber integer:
var RABAddress : integer):

external:

[EXTERNAL (CREVOI)]
Procedure Create Voice_File(var Status: LongStatusType1

var Name : TextType:
var NameLength integer:

FileNumber integer:
var RABAddress integer):

external:

[EXTERNAL (CLOVOI)]
Procedure Close Voice_File(var Status : StatusType:

FileNumber : integer):
external:

[EXTERNAL (TMTALK)]
Procedure TMS_Playback(var Status

RABAddress
Line Number
StartBlo.ck
NumOfSegs

external:

[EXTERNAL (TMLSTN)]
Procedure TMS_Record(var Status

RABAddress
Line Number
Start Block
NumToGet

var NumGotten
external:

[EXTERNAL (TMSCDC)]

StatusType1
integer:
integer:
integer:
integer) 1.

StatusType7
integer:
integer:
integer:
integer:
integer) 1

Procedure Set TMS_To_Codec(var LineNumber
external: -

[ReadOnly] integer):

[EXTERNAL (TMTOUT)]
Procedure Set_TMS_TimeOut(var LineNumber

var Timeout
external:

[EXTERNAL (TMSDTM)]
Procedure Set TMS To_DTMF(var LineNumber

external: - -

[EXTERNAL (TMPICK)]

B-8

[ReadOnly] integer:
integer):

[ReadOnly] integer)1

Procedure Pick Up Phone(var LineNumber
external1 - -

(EXTERNAL (TMDIAL)]

[ReadOnly] integer)1

Procedure Dial_Phone_Number(var LineNumber : (ReadOnly] integer1
var Number TextType7
var NumLen : integer)1

external1

(EXTERNAL (TMHANG)]
Procedure Hang Up Phone(var LineNumber

external7 - -

(EXTERNAL (TMWDTM)]

(ReadOnly] integer)1

Procedure Write DTMF_Chars(var LineNumber : (ReadOnly] integer7
var Str TextType7
var Len : integer)J

external1

(EXTERNAL (TMRDTM)]
Procedure Read DTMF_Chars(var

var
var
var
var

external1

[EXTERNAL (TMTONE)]

LineNumber : [ReadOnly] integer7
NumOfCharsToGet : integer7
Timeout : integer7
Str : TextType7
NumOfCharsGotten : integer)7

Procedure TMS Tone(var LineNumber
external1 -

[ReadOnly] integer)1

[EXTERNAL (TMINIT)]
Procedure Initialize_TMS1

external7

[EXTERNAL (TMVUKD)]
Procedure Disable Voice Unit Keys1

external1 - - -

[----------------------- End Of TMS Include File --------------------!
----------------------- File HANDLER.MAC

This file contains MACR0-11 routines used by the Pascal demonstratior
program •

• enable lc,mcl,gbl
.title HANDLR - TMS Handlers •
• ident /JMS2.0/

LST$$ = 1 7 Define RMS Listing Symbol •
• globl Vl$LUN,V2$LUN,Ll$LUN,L2$LUN,L3$LUN
TTSym$

.sbttl OPNVOI - Open A Voice File.

Open Voice File.
Calling Sequence:

[EXTERNAL (OPNVOI)]
procedure Open Voice File(var Status: packed array [1 •• 4) of integer7

.- - var Name : StringText1

B-9

OPNVOI::

Conn:

;
Exit:

external;

var NameLength
FileNumber

var RABAddress

integer;
integer;
integer);

This routine opens an existing file with the name of Name (whose
length is NameLength). It assigns it to the channel specified by
FileNumber. Returned the address of the appropriate RAB (for use
by VOREAD and VOWRIT), and a status block. (First two words contain
the OPEN Status, second two contain the CONNECT status.)

mov rO,-(sp)
mov rl,-(sp)
mov r2,-(sp)
mov r3,-(sp)
mov r4,-(sp)
mov rS,-(sp)

mov 20(sp),rl
dee rl
asl rl
mov rl,r3
mov RabTbl(rl) ,rl
$fetch rO,FAB,rl
mov rl,-(sp)
mov RMSLun(r3),rl
$store rl,LCH,rO
mov 24 (sp) ,rl
jsr pc,CopyNm
$store (rl) ,FNS,rO
mov (sp)+,rl
$open rO
mov 26(sp) ,r3
$fetch (r3),STS,r0
$fetch 2(r3),STV,r0
cmp (r3) , #1
bne Exit

Connect the FAB to a

$connect rl
$fetch 4(r3),STS,rl
$fetch 6(r3),STV,rl
cmp 4 (r3) , u
bne Exit
mov 16 (sp) ,r4
mov rl,(r4)

mov (sp)+,r5
mov (sp)+,r4
mov (sp)+,r3
mov (sp)+,r2
mov (sp)+,rl
mov (sp)+,ro
mov (sp) ,12(sp)
add #12,sp
rts pc

RAB.

Save the regs.

Get the File number.
Subtract one to calculate the offset.

Remember the offset for a bit.
Get the address of the RAB
Get the address of the FAB
Save RAB for later.
Get the LUN Number.
Tell RMS what lun to use.
Get the address of the string length.
Copy the name.
Save the name length.
Get the RAB back.
Open the file.
Get the address of the status block.
get the status.

Check the status.
If bad, exit without doing the connect.

Do the connect.
Get the first status word.
and the second.
Connect go okay?

Get the address of where to store the RAB.
And store the RAB address there.

restore the silly registers.

Move the return address to the top.
Move the stack to the top.
and sure enough, everything is cool.

.sbttl CREVOI - Create a Voice File.

B-10

:
CREVOI::

CopyNm:

1$:

2$:

create a Voice File.

Calling Procedure:

[EXTERNAL (CREVOI)]
Procedure Create Voice File(var Status: packed array [1 •• 4] of integer:

- var Name : StringText:

external:

var NameLength integer:
FileNumber integer:

var RABAddress integer):

This routine opens an existing file with the name of Name (whose
length is NameLength). It assigns it to the channel specified by
FileNumber. Returned the address of the appropriate RAB (for use
by VOREAD and VOWRIT), and a status block. (First two words contain
the OPEN Status, second two contain the CONNECT status.)

mov rO,-(sp)
mov rl,-(sp)
mov r2,-(sp)
mov r3,-(sp)
mov r4,-(sp)
mov rS,-(sp)

mov 20(sp),rl
dee rl
asl rl
mov rl,r3
mov RabTbl (rl) , rl
$fetch rO,FAB,rl
mov rl,-(sp)
mov RMSLun(r3),rl
$store rl,LCH,rO
mov 24(sp),rl
jsr pc,CopyNm
$store (rl),FNS,rO
mov (sp)+,rl
$create rO
mov 26(sp),r3
$fetch (r3),STS,r0
$fetch 2(r3),STV,r0
cmp (r3) ,#1
bne Exit
br Conn

mov 30(sp),r4
mov (rl) ,r3
beq 2$
$fetch rS,FNA,rO

mo vb (r4)+,(r5)+
sob r3,1$

rts pc

Save the registers.

Get the File number.
Subtract one to calculate the offset.

Remember the offset for a bit.
Get the address of the RAB
Get the address of the FAB
store away the RAB for now.
Get the LUN Number.
Tell RMS what lun to use.
Get the address of the string length.
Copy the name.
Fill in the file name length.
Get the RAB back.·
Go and ere ate.
Get the address of the status block.
Save the status.

Did the open go well?

if so, go do the connect.

Starting address of name.
Get string address.
Return if it is zero.
Address of Buffer in RS.

Copy the character.
Are we done?

uh, yep •••

.sbttl VOREAD - Read a Voice Block from Disk.

Read A Voice Block from the disk.

B-11

VOREAD::

Calling procedure:

mov tStatusBlock,-(sp)
mov RABAddr,-(sp)
mov tFirstBlock,-(sp)
mov BufferStart,-(sp)
mov tBufferSize,-(sp)
jsr pc,VOREAD

This routine reads from the stream specified by RABAddr a voice
block (4Kb). It starts at the. VBN specified by the contents of
FirstBlock. It places the contents starting at BufferStart, and
copies Buffersize bytes to the file. (It is recommended that
BufferSize be equal to 4096.)

mov rO,-(sp)
mov rl,-(sp)
mov r2,-(sp)

mov 16(sp),r0
$fetch rl,FAB,rO
mov 14(sp),rl
mov (rl) ,rl
clr r2
$store rl,BKT,rO
$store 12(sp),UBF,r0
mov lO(sp),rl
$store (rl),USZ,rO
$read rO
mov 20(sp),r2
$fetch (r2),STS,r0
$fetch 2(r2),STV,r0

mov (sp)+,r2
mov (sp)+,rl
mov (sp)+,rO
mov (sp)+,lO(sp)
add UO ,sp
rts pc

Save Registers.

Get address of the RAB.
And get the Fab address.
Get the address of the VBN.
Get the VBN.
First word is zero.
Tell RMS where to start.
Tell RMS where to put it.
Get the address of the buffer size.
Tell RMS how much to put.
and go get the stuff.
Get the status block.
Find out how we did.

Restore Pc.

.sbttl VOWRIT - Write a Voice Block from Disk.

Write A Voice Block from the disk.

Calling procedure:

mov #StatusBlock,-(sp)
mov RABAddr,-(sp)
mov tFirstBlock,-(sp)
mov #BufferStart,-(sp)
mov #BufferSize,-(sp)
jsr pc,VOWRIT

This routine reads from the stream specified by RABAddr a voice
block (4Kb). It starts at the VBN specified by the contents of
FirstBlock. It places the contents starting at BufferStart, and
copies Buffersize bytes to the file. (It is recommended that

B-12

VOWRIT::

;
CLOVOI::

BufferSize be equal to 4096.)

mov
mov
mov

mov
mov
mov
clr
$store
mov
$store
mov
$store
$write
mov
$fetch
$fetch

mov
mov
mov
mov
add
rts

rO,-(sp)
rl,-(sp)
r2,-(sp)

16(sp),r0
14(sp),rl
(rl) ,rl
r2
rl,BKT,rO
12(sp),rl
rl,RBF,rO
lO(sp),rl
(rl) ,RSZ ,rO
rO
20(sp),r2
(r2),STS,r0
2(r2),STV,r0

(sp)+,r2
(sp)+,rl
(sp)+,ro
(sp)+,lO(sp)
UO,sp
pc

Save Registers.

Get address of the RAB.
Get the address of the VBN.
Get the VBN.
First word is zero.
Tell RMS where to start.
Get the address of the input buffer.
Tell RMS where to put it.
Get the address of the buffer size.
Tell RMS how much to put.
and go put the stuff.
Get the status block.
Find out how we did.

Restore Pc.

.sbttl CLOVOI - Close A Voice File.

Close the Voice File.

Calling Procedure:

[EXTERNAL (CLOVOI)]
Procedure Close Voice_File(var Status : packed array [1 •• 2] of integer;

FileNumber: integer);

mov rO,-(sp)
mov rl,-(sp)
mov r2,-(sp)

mov lO(sp),rl
dee rl
asl rl
mov rl,r2
mov RabTbl(rl),rl
$fetch rO,FAB,rl
$close rO
mov 12(sp),r2
$fetch (r2),STS,r0
$fetch 2(r2) ,STV,rO

mov (sp)+,r2
mov (sp)+,rl
mov (sp)+,ro
mov (sp)+,2(sp)
clr (sp)+
rts pc

Save the regs.

Get the File number.
Subtract one to calculate the offset.

Remember the offset for a bit.
Get the address of the RAB
Get the address of the FAB

Get the address of the status block.
get the status.

Restore the silly registers.

Move the return address to the top.

and sure enough, everything is cool.

B-13

.sbttl TMTALK - TMS Playback Routine.

1 TMS Playback Routine
Calling Procedure:

[EXTERNAL (TMTALK)]
, Proc
dure TMS_Playback(var Status packed array

RABAddress
LineNumber
Start Block
NumOfSegs

[l. .2) of
integer1
integer1
integer1
integer)7

integer1

TMTALK::

1$:

2$:

external1

This procedure plays back the voice stored in the file that
RABAddress refers to. The voice that gets played back starts
at the VBN specified by StartBlock*8. It is NumOfSegs*8 blocks
long. A RMS Status is returned in the Status buffer.

The LineNumber parameter determines which LUN the QIO will use.
The TMS unit must be set to Encoded Voice Mode (Codec Mode).

mov
mov
mov
mov
mov
mov
dee
asl
mov
mov
mov
dee
mul
inc
mov
mov
clr
dir$

mov
asl
wtse$s
clef$s
mov
mov
mov
mov
mov
call
dir$

bee
bpt

dir$
add
inc
bic
sob

rO,-(sp)
rl,-(sp)
r2,-(sp)
20(sp),TMStat
16(sp),TMRAB
14(sp),r0
rO
rO
TMSLun(rO),Talkl+Q.IOLU
TMSLun(rO),Talk2+Q.IOLU
12(sp),r0
rO
t8. ,rO
rl
rl,TMVBN
lO(sp),rO
rl
tSetEF2

rl,r2
r2
LockTb(r2)
LockTb(r2)
TMStat,-(sp)
TMRAB,-(sp)
#TMVBN,-(sp)
BufTbl(r2),-(sp)
tTMBFSZ,-(sp)
Vo Read
TalkTb(r2)

2$

WaitTb(r2)
t8. ,TMVBN
rl
tl 77776,rl
r0.,1$

B-14

Save registers.

Store the Status.
And the RAB Address.
Get the Line Number.
Calculate what lun to use.

And tell the QIOs.

And the Starting Voice Block.

Multiply by eight to get the VBN.
But, start at VBN 1.

Get the address of the length.
Start with first set of diredtives.
Make sure first wait doesn't.

Get Buffer Table Offset.
Wait for buffer to free up.
And then lock it.
Pass the Status.
And the RAB Address.
And the VBN to get.
And pass the address of the Buffer.
And the size of said buffer.
Go fetch the Voice Block.
Playback what we found.

Did we succeed?
No, do something about it later.

Wait for last talk to finish.
Add the voic.eblock size to the VBN.
Switch Buffers.

And read the next block if we want.

1
BflAst:

1
Bf2Ast:

TMLSTN::

mov (sp)+,r2 Restore ourselves.
mov (sp)+,rl
mov (sp)+,ro
mov (sp)+,lO(sp)
add UO,sp
rts pc

setf$s BflLck Clear the Lock on this buffer.
tst (sp)+ Get rid of IOSB address.
astx$s

setf$s Bf2Lck Clear the lock on this buffer.
tst (sp)+ Clean up the stack.
astx$s

.sbttl TMLSTN - TMS Record Routine.

TMS Record Routine

Calling Procedure:

[EXTERNAL (TMLSTN)]
Procedure TMS_Record(var Status

RABAddress
Line Number
Start Block
LenToRecord

packed array (1 •• 2) of integer;
integer;
integer;
integer;
integer;

var LenRecorded integer);
external.;

This procedure plays back the voice stored in the file that
RABAddress refers to. The voice that gets played back starts
at the VBN specified by StartBlock. It is NumOfSegs*8 blocks
long. A RMS Status is returned in the Status buffer.

The TMS unit must be set to Encoded Voice Mode (Codec Mode).

mov
mov
mov
mov

mov
mov
mov
dee
asl
mov
mov
mov
mov
mov
mov
mo vb
dir$
mov
dee

rO,-(sp)
rl,-(sp)
r2,-(sp)
r3,-(sp)

24(sp),TMStat
22(sp),TMRAB
20(sp),r0
rO
rO
TMSLun(rO),Lstnl+Q.IOLU
TMSLun(r0),Lstn2+Q.IOLU
TMSLun(rO),SMC+Q.IOLU
TMSLun(rO),Kill+Q.IOLU
#STMOut,SMC+Q.IOPL
#STMOSz,SMC+Q.IOPL+2
TimOut(rO);STMOut+l
#SMC
16(sp),r0
rO

Save registers.

Store the Status.
And the RAB Address.
Get the LineNumber.
Calculate which lun to use.

And load up the directives.

Also, tell SMC what buff to use.

Add Silence Detection Timeout.

And the Starting Block.

B-15

1$:

2$:
3$:

4$:

5$:

6$:

mul
inc
mov
mov
wtse$s
clef$s
dir$
wtse$s
clef$s
dir$
mov
mov
clr

dir$
inc
bic
mov
asl

cmp
beq
mov
mov
sub
add
movb
dir$
dir$
bit
beq
movb
asr
mov
sob
mov
mov
mov
mov
mov
mov
call
inc

cmp
beq

add
cmp
ble
wtse$s
clef$s
dir$
dee
beq
jmp

mov
mov

mov
mov
mov

#8. ,ro
rl
rl,TMVBN
14(sp),r0
BflLck
BflLck
#Lstnl
Bf2Lck
Bf2Lck
#Lstn2
#1,rl
#2,r2
r3

WaitTb(r2)
rl
#177776,rl
rl,r2
r2

#TMSBSZ,@SizeTb(r2)
4$
@SizeTb(r2),rO
#TMSBSZ,rl
rO,rl
BufTbl(r2),rO
#1,STMOut+l
#SMC
#Kill
#1,ro
2$
#125, (rO)+
rl
#652,(rO)+
rl,3$
#177777,rl
TMStat,-(sp)
TMRAB,-(sp)
#TMVBN,-(sp)
BufTbl(r2),-(sp)
#TMBFSZ,-(sp)
VoWrit
r3

#177777,rl
6$

#8. ,TMVBN
r0,#2.
5$
LockTb(r2)
Lock Tb(r2)
Ls.tnTb (r2)
rO
6$
1$

12(sp),r0
r3, (rO)

(sp)+,r3
(sp)+,r2
(sp)+,rl

Multiply by 8 to get the VBN

one word is big enough for us.
Get the length.
Wait for the buffer to be free.
Lock the buffer for further use.
Go off and start filling buffers.
Wait for the buffer to be free.
Lock the buffer for further use.

Initialize Buffer Counter to Buf 2
and Buffer Offset.
Contains # of completed reads.

Wait until current buffer full.
Set up to use other buffer.

Calculate new offset.

Did we get a full block or timeout?
Skip next bit if we got a full block.
Save what we did get!
Now, calculate the amount to fill.

Add the base address of the buffer.
Put in a 10 Milisecond.
Make the outstanding read go away.
Kill the outstanding IO.
Is the last byte odd?

Yes, shove some silence into it.
Now we have the # of words to fill.
Fill with silence.
Until no more to fill.
Set stop flag.
Pass the Status.
And the RAB Address.
And the VBN to get.
And the address of the Buffer.
And the size of said buffer.
Go store the Voice Block.
Up our completed counter.

See if we should stop now.
Yes, we should

Add the voiceblock size to the VBN.
Should we queue up another request?

B-16

Buffer should be free, but we check
anyways, just in case! Then lock it.
Queue up this buffer again.
And read the next block if we should.
Oops, we shouldn't •••
Go start this all over again!

Get address of Number recorded.
And save the number we did get.

Restore ourselves.

TMTONE::

1$:

TMSCDC::

1$:

mov
mov
add
rts

• sbttl

(sp)+,rO
(sp)+,12(sp)
#12, sp
pc

TMTONE - TMS Tone Emitter •

TMS Tone Emitter

Calling Procedure:

[EXTERNAL (TMTONE)]
Procedure TMS Tone(var LineNumber

external; -
integer);

This procedure emits a beep through the line specified by LineNumber.

mov

mov
mov
dee
asl
mov

mov
dir$
sob
mov
mov
rts

rO,-(sp)

4(sp) ,ro
(rO),rO
rO
rO
TMSLun(rO),Tone+Q.IOLU

#8.,ro
#Tone
r0,1$
(sp)+,rO
(sp)+,(sp)
pc

Save our registers.

Get the line Number.

Calculate which lun to use.

And store the lun we want.

Repeat thi~ loop 8 times.
Beep Away!

Restore ourselves.

.sbttl TMSCDC - Set TMS to Codec Mode.

Set TMS to Codec Mode.

Calling Procedure:

[EXTERNAL (TMSCDC)]
Procedure Set TMS To_Codec(var LineNumber : integer);

external;

This routine Sets the TMS unit to work in Encoded Voice mode. Th.is
allows Voice Input and Output.

mov

mov
mov
dee
asl
mov
mov
mov
DIR$

bee
bpt

mov

rO,-(sp)

4(sp),r0
(rO) , rO
rO
rO
TMSLun(rO),SMC+Q.IOLU
#SetCdc,SMC+Q.IOPL
#SCdcSz,SMC+Q.IOPL+2
#SMC

1$

(sp)+,rO

Save some registers.

Get the Line Number.

Calculate which Lun to use.

And tell the directive which to use.
Also, tell it what to set.

Set Multiple Characteristics.

If no error, then skip to end.

; Restore to whence we came.

B-17

;
TMVUKD::

1$:

TMTOUT::

mov (sp)+,(sp)
rts pc

.sbttl TMVUKD - Voice Unit Key Disable

Voice Unit Key Disable
Calling Procedure:

[EXTERNAL (TMVUKD)]
Procedure Disable Voice_Unit_Keys;

external;

This procedure disables the keys on the voice unit.

mov
mov
mov
DIR$

TMSLun,SMC+Q.IOLU
#SetKyD,SMC+Q.IOPL
#SKyDSz,SMC+Q.IOPL+2
#SMC

bee 1$
bpt

rts pc

Tell the directive to use Line 1.
Also, tell it what to set.

Set Multiple Characteristics.

.sbttl TMTOUT - Set TMS Timeout

Set TMS Timeout

Calling Procedure:

[EXTERNAL (TMTOUT)]
procedure Set_TMS_Timeout(var LineNumber : integer;

var Timeout : integer);
external;

This procedure sets a silence timeout for the line specified.

mov
mov

mov
mov
dee
asl
mov
mov

mov
mov
mov
clr
rts

rO,-(sp)
rl,-(sp)

lO(sp),rO
(rO) , rO
rO
rO
6(sp),rl
(rl),TimOut(rO)

(sp)+,rl
(sp)+,rO
(sp)+,2(sp)
(sp)+
pc

Save some registers.

Get the Line Number.

Calculate which Lun to use.

Get the amount to timeout.
And remember it for the read.

Restore to whence we came.

.sbttl TMSDTM - Set TMS to DTMF Mode.

Set TMS to DTMF Mode.

Calling Procedure:

[EXTERNAL (TMSDTM)]
Procedure Set TMS To_DTMF(var LineNumber integer);

B-18

TMSDTM::

SetAst:

TMPICK::

external:

This routine sets the TMS unit to receive DTMF (Dual Tone,
Multi-Frequency) signals. This allows for touch-tone input.

This does not put the unit into DTMF mode, as this does not
work correctly yet.

mov rO,-(sp)
mov 4(sp),r0 Get the Line Number.
mov (rO) ,ro
dee rO Calculate which Lun to use.
asl rO
mov TMSLun(rO),SMC+Q.IOLU : And tell the directives which to use.
mov TMSLun(rO),Attach+Q.IOLU
mov TMSLun(rO),Pick+Q.IOLU
mov TMSLun(rO),Detach+Q.IOLU

dir$ #ClrEF2
mov #SetAST,Attach+Q.IOPL Tell Attach what AST to use.
dir$ #Attach
mov #SetCdc,SMC+Q.IOPL Set for CODEC mode. ·(Bizarre, eh?)
mov #SCdcSz,SMC+Q.IOPL+2
dir$ #SMC
dir$ #Wait! Wait for the Set to complete.
dir$ #Pick Good, now we can pick up the phone.
dir$ #Detach And get rid of the line.

mov (sp)+·,ro Restore ourselves.
mov (sp)+,(sp)
rts pc

dir$ '#SetEF2 Wake up our program.
tst (sp)+ Remove the request on
astx$s

.sbttl TMPICK - Pick Up the Phone.

Pick Up The Phone.

Calling Procedure:

[EXTERNAL (TMPICK)]
Procedure Pick Up Phone(var LineNumber : integer):

external: - -

the stack.

This procedure takes the phone line off-hook. It pays no heed to
whether it was ringing or not.

mov

mov
mov
dee
asl
mov
DIR$

bee
bpt

rO,-(sp)

4(sp) ,ro
(rO) ,ro
rO
rO
TMSLun(rO),Pick+Q.IOLU
#Pick

1$

Save some registers.

Get the Line Number.

Calculate which Lun to use.

And tell the directive.
Pick up the phone.

If no error, then finish up.

B-19

1$:

TMDIAL::

mov
mov
rts

(sp)+,rO
(sp)+,(sp)
pc

Restore to whence we came.

.sbttl TMDIAL - Dial a Phone Number.

Dial a Phone Number.

Calling Procedure:

[EXTERNAL {TMDIAL)]
Procedure Dial Phone_Number(var LineNumber : integer;

var Number packed array [1 •. 80] of char;
var NumLen : integer;

external;

This procedure dials the phone number specified by the array Number,
whose size is NumLen. The phone number may contain all of the legal
characters as specified by the TMS Functional Specification for
dialing a phone number.

mov

mov
mov
mov
mov
mov
dee
asl
mov
DIR$

mov
mov
add
RETURN

rO, -{sp)

4(sp), rO
(rO), Dial+Q.IOPL+2
6(sp), Dial+Q.IOPL+O
lO(sp),rO
{ rO) , rO
rO
rO
TMSLun(rO),Dial+Q,IOLU
#Dial

(Sp)+,
{Sp)+,
#4,sp

rO
4(sp)

• sbttl TMHANG - Hang up the Line.

Hang Up the Phone Line.

Calling Procedure:

[EXTERNAL (TMHANG)]

Save scratch register.

Get address of the string record.
Set string length in bytes.
Set string address.
Get the Line Number.

Calculate which Lun to use.

And tell the directive.
Dial the phone.

Restore scratch register.
Pop the parameter off the stack.

Done •

Procedure Hang Up Phone(var LineNumber
external; - -

integer);

This procedure puts the phone line on hook.

TMHANG::
mov

mov
mov
dee
asl
mov
DIR$

rO,-(sp)

4(sp) ,rO
(rO) ,rO
rO
rO
TMSLun(rO),Hangup+Q.IOLU
#Hangup

B-20

Save some registers.

Get the Line Number.

Calculate which Lun to use.

And tell the directive.
Hang up the line.

TMWDTM::

.
I

.TMRDTM::

mov
mov
rts

(sp)+,ro
(sp)+,(sp)
pc

Restore to whence we came.

.sbttl TMWDTM - Write DTMF characters.

Write DTMF characters.

Calling Procedure:

[EXTERNAL (TMWDTM)]
Procedure Write DTMF_Chars(var LineNumber : integer7

var Str packed array (1 •• 80] of char1
var Len : integer)1

external1

This routine writes the characters specified in the array Str to
the TMS unit, using DTMF mode.

mov rO, -(sp) Save scratch register.

4 (sp), rO mov
mov
mov
mov
mov
dee
asl
mov
DIR$

(rO), DTMOut+Q.IOPL+2
6(sp), DTMOut+Q.IOPL+O
lO(sp),rO

Get address of the string record.
Set string length in bytes.
Set string address.
Get the Line Number.

(rO), rO
rO Calculate which Lun to use.
rO
TMSLun(rO),DTMOut+Q.IOLU
#DTMOut

1 And tell the directive.
Dial the phone.

mov
mov
clr

(Sp)+,
(sp)+,
(sp)+

rO
2(sp)

Restore scratch register.
Pop the parameter off the stack.

return Done •

• sbttl TMRDTM - Read DTMF Characters

Read DTMF Characters

Calling Procedure:

[EXTERNAL (TMRDTM)]
Procedure Read DTMF_Chars(var

var
var
var
var

external7

LineNumber : integer1
NumOfCharsToGet : integer7
Timeout : integer7
Str : packed array (1 •• 80] of char1
NumOfCharsGotten : integer)1

This routine waits Timeout seconds to read NumOfCharsToGet characters
from the TMS unit in DTMF mode. Upon completion, NumOfCharsGotten
characters are stored in the Str buffer •

mov
mov

mov

rO,-(sp)
rl,-(sp)

16(sp),r0

Save the registers!

Get the Line Number.

B-21

mov (rO) , rO
dee rO
asl rO
mov TMSLun(rO),Attach+Q.IOLU
mov TMSLun(rO),Detach+Q.IOLU
mov 14(sp),r0
mov (rO) , NumLft
mov lO(sp) ,rl
mov #RedAst,Attach+Q.IOPL
dir$ #Attach

1
1$: dir$ #ClrEF2

dir$ #Waitl
cmp NumLft,NumGot
bne 1$

dir$ #Detach
mov 6(sp) ,rO
mov NumGot,(rO)

mov (sp)+,rl
mov (sp)+,ro
mov {sp)+,lO{sp)
add UO,sp
return

RedAST: mov {sp)+,rO
neg rO
movb rO,(rl)+
inc NumGot
dir$ #SetEF2
astx$s

Calculate which Lun to use.

1 And tell the directive.

Get the address of NumOfCharsToGet
And remember it's contents.
Get address of Str Buffer.
Tell Attach which AST to use.
Attach the line.

Make sure we will wait.
And then wait. (dumdeedumdum)
See if we have gotten them all yet.

We don't need any more interruptions
Get address of NumOfCharsGotten. ·
and save what we got.

Restore our registers

Get the character off of the stack.

Add character to the buffer.
Update our counter.
Tell the rest of the world.
and return •

• sbttl TMINIT - Initialize TMS unit.

Initialize TMS unit.

Calling Procedure:

[EXTERNAL (TMINIT)]
procedure Initialize_TMS Unit1

This procedure initializes the various things that have to be
initialized. This should be called before any other TMS handler
routines are called.

TMINIT::
setf$s
setf$s
alun$s
bes
alun$s
bes
alun$s
bee

1$: bpt

2$: rts

BflLck
Bf2Lck
#Ll$LUN,#"XT,#l
1$
#L2$LUN,#"XT,#2
1$
#L3$LUN,#"XT,#3
2$

pc

Unlock the buffers to start.

Assign the luns we will need.

B-22

.sbttl TMS & RMS Data Definitions •

• psect TMSDAT,rw,d,con,gbl,rel

TMS Data Definitions.

TMStat:
TMRAB:
TMVBN:
BUFTBL:

• word 0
• word 0
• word 0
.word TMBufl
.word TMBuf2

SizeTb: .word ISB1+2
.word ISB2+2

TimOut: .bl kw 3
SetCdc: .byte XT.DMD

.byte XT.ENC
SCDCSZ = .-SetCdc
SetKyD: ,byte XT,TAK
SKyDSZ = .-SetKyD
STmOut: .byte XT.TTO

.byte 0
STmOSz = .-StmOut
SDTMBF: .byte XT.DMD

• byte XT.DTM
SDTMSZ = .-SDTMBF
ISBl: .blkw 2
ISB2: .blkw 2
TMBFSZ: .word RMSBSZ
TMBufl: .blkb 4096.
TMSBSZ = .-TMBUFl
RMSBSZ = .-TMBUFl
TMBuf2: .blkb TMSBSZ
LockTb:
BflLck:
Bf2Lck:
TMSLun:

• word
• word
• word
.word
.word

TonBuf: • rept

XT$EF3
XT$EF4
Ll$LUN
L2$LUN
L3$LUN
30.
177400 .word

.endr
TonSiz = .-TonBuf
NumGot: .word 0
NumLft: .word O

Address of the Status Block •
Address of the RAB •
The VBN of the current block •

Stores the Timeout for each line.
Set to Codec Mode SMC Buffer.

Disable Voice Unit Keyboard.

Set Timeout.

Set to DTMF Mode SMC Buffer •

I/O Status Buffer.

The size of the Voice Buffer.
The first TMS Voice Buffer.

The second TMS Voice Buffer.

The buffer 1 Lock •
The buffer 2 Lock •
The Luns for the various Lines •

Alternating all l's and all O's.

The number of DTMF chars we have gotten so far.
The number we still have to get.

.psect TMSMAC,rw,d,con,gbl,rel

TMS Macro Tables • .
I

WaitTb: .word Waitl
.word Wait2

TalkTb: .word Talk!
.word Talk2

TlkSiz: .word Talkl+Q.IOPL+2
.word Talk2+Q,IOPL+2

LstnTb: .word Lstnl
.word Lstn2

TMS Macro Definitions.
~

Waitl: WTSE$ XT$EF2

B-23

Wait2:
ClrEF2:
SetEF2:
Talkl:
Talk2:
Lstnl:
Lstn2:
Tone:
SMC:
Pick:
Dial:
Hangup:
DTMOut:
DTMin:
Kill:
Attach:
Detach:

WTSE$
CLEF$
SETF$
QIO$
QIO$
QIO$
QIO$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$
QIOW$

XT$EF1
XT$EF2
XT$EF2
IO.WAL,0,XT$EF1,,ISB1,BflAst,<TMBufl,TMSBSZ,0>
IO.WAL,O,XT$EF2,,ISB2,Bf2Ast,<TMBuf2,TMSBSZ,0>
IO.RAL,O,XT$EFl,,ISBl,BflAst,<TMBufl,TMSBSZ,0>
IO.RAL,0,XT$EF2,,ISB2,Bf2Ast,<TMBuf2,TMSBSZ,0>
IO.WAL,0,XT$EFl,,ISBl,,<TonBuf,TonSiz,O>
SF.SMC,0,XT$EFl,,ISBl,,<O,O>
IO.ANS,O,XT$EF1,,ISB1,,<TMBufl,l>
IO.CON,O,XT$EFl,,ISBl,,<O,O,O>
IO.HNG,0,XT$EF1,,ISB1
IO.WAL,0,XT$EFl,,ISBl,,(0,0,0>
IO.RAL,O,XT$EFl,,ISBl,,<O,O,O>
IO.KIL,0,XT$EF1,,ISB1
IO.ATA,O,XT$EF1,,ISB1,,<0>
IO.DET,O,XT$EFl,,ISBi

.psect TMSRMS,rw,d,con,gbl,rel

RMS Data Definitions.

Define some pool space.

pool$b
p$fab
p$rab
p$buf
p$bdb
pool$e

RMSLun: .word
.word

I

RabTbl: .word
.word

I

Fabl:

.
I

Rabl:

.
I

Fab2:

fab$b
f$alq
f$deq
f$fac
f$org
f$fop
f$shr
f$rat
f$fna
fab$e

rab$b
r$fab
r$mbf

fab$b
f$alq
f$deq
f$fac
f$org
f$fop
f$shr
f$rat
f$fna
fab$e

2
2
2*512.
4

Vl$LUN
V2$LUN

Rabi
Rab2

8.
8.
fb$rea!fb$wrt
fb$rel
fb$dlk!fb$ctg
fb$nil
fb$blk
Name

Fabl
8

8.
8.
fb$rea!fb$wrt
fb$rel
fb$dlk!fb$ctg
fb$nil
fb$blk
Name

Two files.
Two Streams.
Two sequential file IO buffers.
Four Buffer Block Pool

Logical Unit Table.

Rab lookup Table.

Initial allocation.
Default Extension size.
Access is read/write.
Relative organization.
don't lock + contiguous.
no access sharing.
Blocked format.
Name block address.

link to the Fab.
Number of blocks to xfer at a time.

Initial allocation.
Default Extension size.
Access is read/write.
Relative organization. ·
don't lock + contiguous.
no access sharing.
Blocked format.
Name block address.

B-24

Rab2: rab$b
r$fab Fab2 link to the Fab.
r$mbf 8 Number of blocks to xfer at a time.
rab$e

Name: .bl kb 80. Name buffer.
.end

;-------------------- end of MACR0-11 subroutines file --------------

End of Appendix

B-25

APPENDIX C

TMS ERROR AND STATUS CODES

In addition to status codes generated by the executive
(documented in the P/OS documentation), the TMS driver generates
the following codes:

Status codes are returned in the first byte of the I/O Status
Block. Unless otherwise specified, the second byte is undefined.

Success:

IS.SOC

IS.TMO

Error:

IE.TMO

IE.FHE

IE.RSU

IE.BAD

Successful
operation.

completion of the requested

Read operation completed successfully, but with
timeout.

Operation failed due to
supplied timeout. (not
operations)

exceeding
applicable

a
to

user
READ

Fatal hardware error on device. The TMS
hardware returned an unexpected error code. The
TMS hardware error code is contained in the
second byte, and should be reported to Digital.

Shared resource in use. An attempt was made to
activate a component of TMS which is already in
use and therefore not available.

Bad Parameters. The meaning of this depends on
the value of the second byte:

0 Illegal value specified in the buffer of an
IO.WSD QIO.

C-1

IE.DAO

IE.ABO

IE.DNR

2 The TMS firmware has reported a SYNTAX
error. The most likely case is an illegal
digit in a telephone number. Please report
any other occurence of this to Digital.

3 The TMS firmware has reported illegal
option. This can occur if an attempt is
made to transmit data while not in SERIAL,
CODEC, or DTMF data mode.

1 The TMS firmware has reported illegal
digit. This occurs when a DTMF digit is
specified in a telephone number but rotary
dialing has been requested.

Data overrun. This indicates that TMS was not
able to get a response from the host. This
should not happen unless there is a hardware
malfunction. Note that data overruns due to
application programs not processing data fast
enough are not reported.

Operation aborted. If the
this means that a QIO was
of an IO.KIL or that a
aborted as a result of
current on-line state (e.g.

second byte is zero,
aborted as the result

READ operation was
termination of the
loss of carrier).

A second byte of SE.VAL means that an attempt
was made to specify an inappropriate value for a
characteristic in an IO.SMC.

A second byte of SE.NIH means that an attempt
was made to reference an unimplemented or
undefined characteristic or an attempt was made
to GET a SET-only characteristic.

In these two cases, the
indicates the point in
which caused the error.
to the error point were

second word of the IOSB
the characteristics list

Characteristics prior
correctly pro- cessed.

Device not ready.
following cases:

This is returned in the

If a READ or WRITE is issued in Codec mode while
the opposite command is active (Codec is
half-duplex).

C-2

IE.ALC

IE.OFL

IE.CNR

If a read is issued and TMS is not on-line in
CODEC, SERIAL, or DTMF data mode.

If the zero timeout form of the IO.ORG!TF.TMO
command (test on-line status} is issued and TMS
is not on-line.

If the TMS hardware cannot complete an operation
within the TMS hardware timeout period or the
operation is cancelled by pre-emption (such as
picking up the telephone}.

Illegal user Buffer. This is returned if a
telephone number is too long (greater than 48
digits after translation and inclusion of the
prefix and/or suffix strings, if any were
specified) or if more than 30 bytes of indicator
control commands were specified in an IO.WSD
QIO, or if the buffer specified in an IO.LT! is
not 6 bytes.

This is also returned by the executive if the
executive address checking determines that the
user buffer is illegal.

Device Off-line. This is returned by the
executive if the TMS Qriver is not active. It
is returned by the driver to terminate I/O
requests active when the driver is being
unloaded. Note that prior to the first load of
the TMS driver (when there is no database), this
is not returned, since it is not possible to
have assigned a LUN to TMS. See the P/OS
documentation for more details.

Connection Rejected. This is returned if an
attempt is made to issue an IO.CON if carrier is
up in SERIAL mode.

End of Appendix

C-3

Additional tones, 2-3
Alternative

to QIO functions, 3-1
Analog

conversion to digital, 1-7
Answer

a line, 3-6
auto, ring count, 4-5
automatic, 1-3
calls, 1-3

Application
examples, 1-9
originating call, 1-15

Application, typical
terminal emulator vs. work

station, 4-9
Associated documents, ix
Attach line, 3-11

with ASTs, 3-9
Auto answer

ring count, 4-5
Autodialing, 2-3
Automated database information

retrieval, 1-1
Automatic

answer, 1-3
call origination, 1-12
origination, 1-3

Auxiliary keyboard/DTMF
unsolicited input, 5-6

Back panel
TLI, 2-5

Base System Services, 1-3, 3-1
Binary character, 4-12
Bit

hold control, 4-8
stop, 4-12

Buffer
speech, 2-5
type-ahead, 4-13

Bypass switch, 2-5

Call
c,odec, 1-5
data, 1-5
format

INDEX

Call
format (Cont.)

MACR0-11, 3-3
termination, 1-10
to driver, format, 3-3
transfer

telset to voice unit, 1-14
Calling program languages, 3-3
Calls

to driver, 3-lff
Cancel I/O request, 3-21
Capabilities, 1-1
Carrier, 1-12

detect, 5-3
loss, 5-4

CCATT routine, 1-4
CCI TT

standard MF 4 tones, 1-6
Character

binary, 4-12
eight-bit, 4-12
frame, 4-12
frame size, 4-12

Characteristic
hold control, 4-a
translation, 4-6

Characteristics
communications, 4-2ff
mode-specific, 4-2
modifiable, 4-1, 4-2

serial, 4-9
serial, 4-9

modifiable, 4-10
Checking

escape sequence, 2-6
Codec, 1-8, 6-6

call, 1-5
CVSD, 2-4

Combined text and voice message
handling, 1-1

COMLIB, 3-1
Communications services, 1-3, 3-1

categories, 1-3
Computer, host

protocol, 4-10
Conference call, 1-7
Connect line, 3-13

Index-1

Connections, telephone, 2-7
Control

hold characteristic, 4-8
Control-$ state, 4-12
Controller board, 1-5, 6-3
Controller module

components, 6-1
Controller unit, 2-1

codec capabilities, 2-2
components, 2-2
DTMF functions, 2-3
functions, 2-2
modem capabilities, 2-2

CPU
8031, 6-3
cycle period, 6-3
UART, 6-3

Crossbar array, 6-1, 6-5

Data
calls, 1-5
mode, 4-4
serial, 2-2

Data mode
CODEC characteristics, 4-13

Data modes, 4-1
Detach line request, 3-18
Detection

silence
algorithm, 2-5

status/error, 2-5
Detector

tone, 6-6
Development software, 1
Device queue, 3-3
Diagnostic memory, 6-4
Dial

mode, 4-4
Dial modes, 2-3

selectable, 2-3
Dialing capabilities, 1-6
Dialing signals

outgoing, 4-5
Differential phase shift keying,

2-3
Digital

conversion from analog, 1-7
DIN connector, 2-5
Disk storage

conservation, 4-13
voice, 4-13

Document conventions, ix
Document structure, vii
Driver

call format, 3-3
calls, 3-lff
I/O, 1-1
requests, 2-2
XTDRV, 1-1

Driver calls
answer a line, 3-6
attach line, 3-11
attach line with ASTs, 3-9
cancel I/O request, 3-21
connect line, 3-13
detach line request, 3-18
get multiple characteristics,

3-34
hang up a line request, 3-20
issue a break, 3-12
link task to interrupts, 3-22
originate connection, 3-24
place line on hold request,

3-19
read functions, 3-26
set multiple characteristics,

3-40
unlink tasks from interrupts,

3-29
write functions, 3-30
write special data, 3-32

Driver functions
initialization, 3-2
placing calls, 3-2
receiving data, 3-2
termination, 3-2
transmitting data, 3-2

DTMF
escape sequence, 4-6
escape sequence received, 5-5
mode, 2-4
pause length, 4-7
signal length, 4-7
transmitter/receiver, 6-5

Efficiency recommendations, 1-8
Eight-bit character, 4-12
Emergency considerations, 1-8

lift handset, 1-9
power shut off, 1-9
rear emergency switch, 1-9
releasing the line, 1-8

Index-2

)

Escape sequence
checking, 2-6, 4-7
DTMF, 4-6
password, 4-7

Event descriptions, 5-3ff
Event flag

notification, 3-3
Event types

auxiliary keyboard/DTMF
unsolicited input, 5-6

carrier detect, 5-3
carrier loss, 5-4
DTMF escape sequence received,

5-5
ring, 5-4
telephone-handset off-hook, 5-5
telephone-handset on-hook, 5-6
unsolicited, 5-3
unsolicited input, 5-5
XOFF received, 5-4
XON received, 5-4

Event-handling
disabling, 5-2
enabling, 5-2

Events
unscheduled, .1-5
unsolicited, 1-5, 5-1

Firmware interrupts, 5-2
Flag, event

notification, 3-3
Format

call
MACR0-11, 3-3

Forward
voice messages, 1-7

Frequency shift keying (FSK), 2-2
Full-duplex communications, 4-10
Functions, monitoring, 5-2

General parameters, 3-4
Get multiple characteristics,

3-34

Half-duplex communications, 4-10
Hang up a line, 3-20
High-level languages, 1-3, 3-1
Hold -

control, 3-35, 3-41, 4-8, 6-9
relay, 4-8, 6-9

Host computer
protocol, 4-10

I/O
driver, 1-1, 2-1
status block, 3-3, C-1

Input-output port, parallel, 2-2
Intended audience, vii
Interrupted

pulsing method, 1-6
Interrupts, firmware, 5-2
IO.ANS, 3-6
IO.ATA, 3-9
IO.ATT, 3-11
IO.BRK, 3-12
IO.CON, 3-13
IO.DET, 3-18
IO.HLD, 3-19
IO.HNG, 3-20
IO.KIL, 3-21
IO.LT!, 3-22
IO.ORG, 3-24
IO.RAL, 3-26
IO.RLB, 3-26
IO.RNE, 3-26
IO.RVE, 3-26
IO.UT!, 3-29
IO.WAL, 3-30
IO.WLB, 3-30
I 0 • WS D , 3-3 2
IO.WVB, 3-30
Issue a break, 3-12

Key signals
voice unit, 5-7

Keying
DPSK, 2-2
FSK, 2-2

Languages
calling program, 3-3
high-level, 3-1

Lead
A, 4-8, 6-9
Al, 4-8, 6-9

Library routines, 3-1
Line state, 2-6

off-hook, 2-6
on-hook, 2-6
on-line, 2-6

Index-3

Line-characteristics,
report/modify, 4-1

Link task to interrupts, 3-22
Logical unit number, 3-3

MACR0-11
call format, 3-3
subroutines, B-2

Maintenance
reserved bits, 4-8

Manual
call origination, 1-11
voice calls at desk, 1-13

Manual objectives, vii
Memory

cycle types, 6-3
diagnostic, 6-4
random-access, 6-3
read-only, 6-3, 6-4

Message, voice
digitized, 4-13
storage, 4-13

Micro-processor, 6-1
8031, 1-5

Mode
data, 4-lff, 4-4
dial, 4-4

Mode, pulse, 2-3
20/pps, 2-4

Modem, 6-6
102, 2-3
103' 2-3' 4-11
212A, 4-11

Modem type, 4-11
Modes, dial

selectable, 2-3
Modifiable characteristics, 4-1
Monitoring functions, 5-2

Off-hook service, 2-4
Operating efficiency, 1-7
Optional features, 1-7

foot pedal, 1-7
headphone, 1-7
microphone, 1-7

Optional strings
in phone number, 4-6

Optocouplers, 6-9
Order numbers, 1-9
Originate

calls, 1-3

Originate (Cont.)
connection, 3-24

P/OS, 3-1
Parallel input-output port, 2-2
Parameters, required, 3-3
Parity

checking, 4-11
generation, 4-11
type, 4-11

Pause commands, 1-11
!, 1-11
!!, 1-11
(comma), 1-11

Pause length
DTMF, 4-7

Place line on hold request, 3-19
Port, parallel input-output, 2-2
Power-up

professional, 6-5
Preface, vii
Prepare to go voice, 4-13
Priority, request, 3-3
Private branch exchange, 1-2
PRO/Communications

Services, 1-3, 3-1
set hold control bit, 4-8

Professional
power-up, 6-5

Program
error, 1-12
originating call, 1-15

Protocol
host computer, 4-10

Public switched network, 1-2
Pulse mode, 2-3

20/pps, 2-4
Pulse/second rate, 2-3

Queue, device, 3-3

Rate, pulse/second, 2-3
Read functions, 3-26
Receive

speed, 4-10
"Red phone", 2-4
Regulations

FCC, 2-7
frequency of retries, 1-12

Releasing the line, 1-8

Index-4

'•,

Report/modify
line-characteristics, 4-1

Request priority, 3-3
Required parameters, 3-3
Requirements

frequency of retries, 1-12
Ring, 5-4
RJllC 6-Position Jack, 2-7
RJ13C 6-Position Jack, 2-7
RJ34X 8-position Jack, 2-7
RJ35X 8-Position Jack, 2-7
ROM-based

firmware, 1-5
Routines, library, 3-1

Sample call
to driver, 3-4

Saving
hold" control bi ts, 4-8

Self-test firmware, 6-4
Serial

communications characteristics,
4-9

data, 2-2
data transfer, 1-11

Service, off-hook, 2-4
Services

Base System, 3-1
PRO/Communications, 3-1
TMS, 3-1

Set multiple characteristics,
3-40

SF.GMC, 3-34
SF.SMC, 3-40
Signal length

DTMF, 4-7
Signals, dialing

outgoing, 4-5
Silence processing, 4-14
Silence-detection timeout, 4-14
Smart directory with automatic

dialing, 1-1
Spawn task, 1-4
Special line features, 2-6
Speech

buffer, 2-5
handling, 2-4

Speed
receive, 4-10
transmit, 4-10

Standard features, 1-5

State, control-s, 4-12
State, line, 2-6

off-hook, 2-6
on-hook, 2-6
on-line, 2-6

Status block
see IO status block

Status/error
detection, 2-5

Stop bits, 4-12
Storage

voice, 2-4
Storage, disk

conservation, 4-13
voice, 4-13

Strings, optional
in phone number, 4-6

Switch, bypass, 2-5
System

directive
QIO, 3-3

trap, asynchronous, 3-3
System block diagram, 6-2

Target operating system, 1
Teleconferencing with both voice

and text, 1-1
Telemarketing, 1-1
Telephone connections, 2-7
Telephone line interface

see TLI
Telephone-handset

off-hook, 5-5
on-hook, 5-6

Tel set
transfer call from

to voice unit, 1-14
Terminal emulation, 1-4
Timeout, 1-8
Timeout, silence-detection, 4-14
TLI. 1-5, 2-1, 2-5

communication with TMS, 6-9
components, 6-7
line connectors, 6-7
signals, 6-9

TMS
bus, 6-1, 6-4
call summary, A-1
communication with TLI, 6-9
communications characteristics,

4-lff

Index-5

TMS (Cont.)
components, 2-1
CPU, 6-3
data modes, 4-1
driver calls to, 3-lff
driver functions

see driver functions
error codes, C-lff
event reporting, 5-lff
hardware components, 6-lff
introduction, 1-lff
micro-processor, 6-3ff
options, 1-9
power-up, 6-5
sarnp~ program, B-lff
services, 1-3, 3-1
status codes, C-lff
system

block diagram, 6-2
system description, 2-lff

TMS/Professional interface, 2-1
Tone

data, 1-6
detector, 6-6

Tones, additional, 2-3
Translation

characteristic, 4-6
Transmit

speed, 4-10
Type-ahead buffer, 4-13
Typical application

terminal emulator vs. work
station, 4-9

Unit, controller, 2-1
codec capabilities, 2-2
DTMF functions, 2-3
functions, 2-2
modern capabilities, 2-2

Unit, voice, 2-1
Unlink tasks from interrupts,

3-29
Unscheduled

events, 1-5
Unsolicited

events, 1-5, 5-1
input, 5-5

Voice
call originated by program,

1-15
calls for telemarketing, 1-10
calls/user present, 1-5
mail with forwarding, 1-1
outgoing calls, 1-11
retrieval, 1-7
storage, 1-7, 2-4
storage requirement, 1-7
store and forward, 1-12

Voice message
digitized, 4-13
storage, 4-13

Voice Unit
communication with TMS, 6-10

Voice unit, 1-5, 2-1, 2-7ff
components, 6-10
control switches, 2-7
indicators, 2-7
key signals, 5-7
keypad, 4-6, 6-10
optional controls/indicators,

2-8
speaker/microphone, 6-11
transfer call to

from teleset, 1-14

Write functions, 3-30
Write special data, 3-32

XOFF
received, 5-4

XON
received, 5-4

XTDRV, 1-1
XTU.CD, 5-3
XTU .CL, 5-4
XTU.DR, 5-5
XTU.OF, 5-4
XTU.ON, 5-4
XTU.RI, 5-4
XTU.TU, 5-5, 5-6
XTU.UI, 5-5

Zip
tone, 1-10, 2-7

Index-6

Q)

&
Vl

:s
O>
c:
0
c;;
:;
<.>
Q)
Vl

"' Q)

a:

..

READER'S COMMENTS

Telephone Management System
(TMS) Programmer's Manual
Order No. AA-AD34A-TH

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPR) service. submit your comments
on an SPR form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

--------·-------------------------~----------- - -----------

Please indicate the type of reader that you most nearly represent.
D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify) _________ _

Name _____________ _ _____ __ Date ___ -----------------------

Organization _________________ _

Street __________________ _

City ____________ _ State _______ Zip Code ______ _

or

Country

I

I
I
I
I
I

·--- Do Not Tear - Fold Here and Tape --1

mamaama 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY .ADDRESSEE

Professional 300 Series Publications
DIGIT AL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

if Mailed in the
United States

----Do Not Tear - Fold Here-----·-------------------------------------·-----1
I
I
I
I
I
I
I
I

